IBM WebSphere Application Server for z/0S, Version 8.0

Securing applications and their
environment

..ll




Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1035)

Compilation date: July 14, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.



Contents
How to send your comments.
Changes to serve you more quickly

Chapter 1. Overview and new features for securing applications and their environment .
Security planning overview

Chapter 2. How do | secure applications and their environments? .
Chapter 3. Task overview: Securing resources

Chapter 4. Setting up, enabling and migrating security
Migrating, coexisting, and interoperating — Security considerations
Interoperating with previous product versions .
Interoperating with a C++ common object request broker archrtecture cIrent
Migrating trust association interceptors .
Migrating Common Object Request Broker Arch|tecture programmatrc Iogln to Java Authentlcatlon
and Authorization Service (CORBA and JAAS) . ..
Migrating from the CustomLoginServlet class to servlet fllters
Migrating Java 2 security policy .
Migrating with Tivoli Access Manager for authentlcatlon enabled on a smgle node
Migrating with Tivoli Access Manager for authentication enabled on multiple nodes
Migrating unrestricted jurisdiction policy files, local_policy.jar and US_export_policy.jar .
Preparing for security at installation time . C e e e e e
Securing your environment after installation .
WebSphere Application Server security for z/OS .
Defining Secure Sockets Layer security for servers . .
Creating Secure Sockets Layer digital certificates and System Authorlzatlon Facrllty keyrrngs that
applications can use to initiate HTTPS requests .
Creating a new System SSL repertoire alias
Creating a new Java Secure Socket Extension repertorre allas
Setting up SSL connections for Java clients.
Enabling administrative security and the default appllcatlon seounty pol|cy
Disabling administrative security .
Enabling security
Administrative security.
Security considerations when ina multr node WebSphere Applrcat|on Server WebSphere Appl|cat|on
Server, Network Deployment environment
Application security .
Java 2 security
Enabling security for the realm
Testing security after enabling it.
Security Configuration Wizard
Security configuration report .
Adding a new custom property in a gIobaI securlty conflguratlon orina securlty domaln

configuration . .
Modifying an existing custom property ina global secunty conf|gurat|on orina securlty domarn
configuration .
Deleting an existing custom property ina gIobaI securlty conflguratlon orina securlty domaln
configuration .

Securing specific appllcatron servers .
Server-level security settings .
Controlling application environments wrth RACF server class profrles

© Copyright IBM Corp. 2011

. Xi

. Xxii

.1

. 13

. 15
. 15
.17
. 18
.19

.22
.24
. 25
. 28
. 29
. 31
. 31
. 32
. 33
. 57

. 60
. 62
. 63
. 64
. 64
. 66
. 66

. 70

.79
. 80
. 81
. .90
. 123
. 124
. 124

. 127
. 128
. 129
. 129

. 131
. 133



Resource Access Control Facility Tools .

RACF keyring setup .
Controlling access to console users when usmg a Local OS Reglstry
Using CBIND to control access to clusters . .

Chapter 5. Configuring multiple security domains .
Multiple security domains . .
Creating new multiple security domams
Deleting multiple security domains.
Copying multiple security domains.
Configuring inbound trusted realms for multlple securlty domams
Configure security domains
Name
Description
Assigned Scopes .
Application Security: .
Enable application security
Java 2 security:. .
Use global security settmgs .
Customize for this domain .
Use Java 2 security to restrict appllcatlon access to Iocal resources
Warn if applications are granted custom permissions .
Restrict access to resource authentication data .
User Realm: .
Trust Association: .
Interceptors .
Enable trust assomahon
SPNEGO Web Authentication:
RMI/IIOP Security: .o
CSIv2 inbound commumcatlons
CSIv2 outbound communications .
JAAS Application logins.
Use global and domain-specific Ioglns
JAAS System Logins:
System Logins . . .
JAAS J2C Authent|cat|on Data
Use global and domain-specific entries .
Java Authentication SPI (JASPI)
Authentication Mechanism Attributes: .
Authorization Provider: .
z/OS security options:
Enable application server and z/OS thread |dent|ty synchronlzatlon
Custom properties.
Web Services Bindings .
External realm name.
External realm name.
Trust all realms .
Trust all realms (mcludmg those external to thls ceII)
Trust realms as indicated below.
Add External Realm...
Security domains collection
Maximum rows .
Retain filter criteria
Copy selected domain .
Copy global security .
Authentication cache settings

iv Securing applications and their environment

. 134
. 138
. 140
. 141

. 143
. 146
. 164
. 167
. 168
. 172
. 172
. 172
. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 176
. 176
. 176
. 176
77
177
177
177
177
177
177
. 178
. 178
. 178
. 178
. 179
. 179
. 179
. 179
. 179
. 179
. 179
. 179
. 180
. 180
. 180
. 180
. 180



Enable authentication cache .

Cache timeout: .

Initial cache size:

Maximum cache size.

Use basic authentication cache keys (password one- way hashed)

Chapter 6. Authenticating users .
Selecting a registry or repository
Configuring local operating system reg|str|es
Configuring Lightweight Directory Access Protocol user reg|str|es
Configuring stand-alone custom registries .
Managing the realm in a federated repository conflguratlon
Standalone Lightweight Directory Access Protocol registries
Selecting an authentication mechanism .
Lightweight Third Party Authentication
Configuring LTPA and working with keys
Kerberos (KRB5) authentication mechanism support for securlty
Setting up Kerberos as the authentication mechanism for WebSphere Appllcatlon Server
RSA token authentication mechanism
Configuring the RSA token authentication mechanlsm
Simple WebSphere authentication mechanism (deprecated)
Message layer authentication
Integrating third-party HTTP reverse proxy servers.
Trust associations . .
Trust association settings .
Trust association interceptor coIIect|on
Trust association interceptor settings .
Single sign-on for authentication
Single sign-on for authentication using LTPA cookles .
Using a WebSphere Application Server API to achieve downstream web smgle srgn on wrth an
LtpaToken2 cookie. .
Global single sign-on principal mappmg for authentrcatlon .
Implementing single sign-on to minimize web user authentications .
Single sign-on for HTTP requests using SPNEGO web authentication.
Creating a single sign-on for HTTP requests using SPNEGO Web authentlcat|on
Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated) .
Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
Configuring administrative authentication e e e
Job manager security
Java Authentication and Authorlzatlon Servrce
Java Authentication and Authorization Service authonzatron
Using the Java Authentication and Authorization Service programming model for web authentlcatlon
Developing custom login modules for a system login configuration for JAAS
Performing identity mapping for authorization across servers in different realms .
Configuring inbound identity mapping.
Configuring outbound identity mapping to a dlﬁerent target reaIm .
Updating system login configurations to perform a System Authorization FaC|I|ty |dent|ty user
mapping . .o .
Security attribute propagatlon
Default authentication token . .
Propagating security attributes among applrcatlon servers .
Using the default authorization token to propagate security attrlbutes
Using the default propagation token to propagate security attributes
Using the default single sign-on token with default or custom token factory to propagate securlty
attributes
Configuring the authenhcatron oache

Contents

. 180
. 180
. 181
. 181
. 181

. 183
. 183
. 186
. 191
. 218
. 248
. 339
. 344
. 346
. 347
. 348
. 356
. 357
. 359
. 364
. 364
. 365
. 366
. 369
. 369
. 370
. 370
. 370

. 372
. 373
. 374
. 377
. 381
. 383
. 420
. 435
. 436
. 438
. 438

440

. 442
. 453
. 455
. 462

. 466
. 467
. 471
. 472
. 475
. 478

. 483
. 484

\'}



Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication

settings. . . .. . . . . . 484
Configuring Common Secure Interoperablhty Versron 2 mbound commumcatrons . . . . . . .485
Configuring Common Secure Interoperability Version 2 outbound communications . . . . . . . 493
Configuring inbound transports . . . . . . . . . . . . . . . . . . . . . . . . . .501
Configuring outbound transports . . . . . . . . . . . . . . . . . . . . . . . . .505
Configuring inbound messages . . . . . . . . . . . . . . . . . . . . . . . . . .b0os8
Configuring outbound messages . . . . . . 509
Common Secure Interoperability Version 2 and Securlty Authentlcatlon Servrce (SAS) cllent
configuration . . . o2 0]
Authentication protocol for EJB securrty e e e e . ... ... ... ... ... .b1b
Authentication protocol support . . . . e e e e . ... ... . . . . . . .b18
Common Secure Interoperability Version 2 features e e e e . ... ... .. . . . . .b18
Identity assertion to the downstream server . . . . . . . . . . . . . . . . . . . . .519
Identity assertions with trust validaton . . . . . . . . . . . . . . . . . . . . . . .520
Message layer authentication . . . e e e e oo ..
Using Microsoft Active Directory for authenhcatron P 1224
Authentication using Microsoft Active Directory . . . e e e e ... .. . . . . . .523
Groups spanning domains with Microsoft Active Dlrectory . < VoY
Microsoft Active Directory Global Catalog . . . .. . . . . . .5b29
Options for finding group membership within a Mlcrosoft Actlve D|rectory forest .. . . . . . .53
Authenticating users with LDAP registries in a Microsoft Active Directory forest . . . . . . . . 535
Chapter 7. Authorizing access toresources . . . . . . . . . . . . . . . . . . . . .53
Authorization technology . . . R < X 1)
Administrative roles and namlng service authonzatlon L0
Role-based authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . .b546
Administrativeroles . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .b49
Authorization providers . . . . O o Yo 24
System Authorization Facility for roIe based authonzatlon N o (S1¢)
Using distributed identity mapping for SAF. . . . . . . . . . . . . . . . . . . . . .b578
Delegations . . . - . . . . . . . . . . .58
Authorizing access to Java EE resources usmg T|voI| Access Manager .« . . . . . . . . . .HbB6
Using the built-in authorization provider . . . . . . . . . . . . . . . . . . . . . . .b586
Enabling an external JACC provider . . . . . . . . . . . . . . . . . . . . . . . .59
Authorizing access to administrative roles . . . . S ¢ 724
Administrative user roles settings and CORBA namlng service user settmgs Ce . . ... .. B22
Administrative group roles and CORBA naming service groups . . . . . . . . . . . . . .624
Assigning users to naming roles . . . . - . . . . . . . . . .0626
Propagating administrative role changes to T|voI| Access Manager I s 24
migrateEAR utility for Tivoli Access Manager . . . . . e . . . . . . . . . . . .0b28
Assigning users from a foreign realm to the admin- authz me . . . 630
Enabling pluggable login modules to map Java EE identities to System Authorlzatlon Facrllty (SAF) 631
Fine-grained administrative security . . . . . . . . . . . . . . . . . . . . . . . . .63
New Administrative Authorization Group. . . . . . . . . . . . . . . . . . . . . . .637
Administrative Authorization Group collection. . . . . . . . . . . . . . .0638
System Authorization Facility for fine-grained adm|n|strat|ve authorlzat|on S . . . .638
Creating a fine-grained administrative authorization group using the administrative console . . . . 639
Editing a fine-grained administrative authorization group using the administrative console . . . . . 642
Fine-grained administrative security in heterogeneous and single-server environments . . . . . . 644
Using SCA authorization and security identity policies. . . . . . . . . . . . . . . . . . .645
Using the SCA RequestContext.getSecuritySubject) API . . . . . . . . . . . . . . . . .647
Chapter 8. Securing communications. . . P e T2 1¢)
Secure communications using Secure Sockets Layer (SSL) e - 1510
SSL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .056

Vi Securing applications and their environment



Keystore configurations for SSL.

Dynamic outbound selection of Secure Sockets Layer conflguratlons .

Central management of SSL configurations

Secure Sockets Layer node, application server, and cluster |solat|on .

Certificate options during profile creation

Default chained certificate configuration in SSL .
Dynamic configuration updates in SSL .
Management scope configurations.

Certificate management using iKeyman prior to SSL
Certificate management in SSL .

Using the retrieveSigners command in SSL to enabIe server to server trust

Creating a Secure Sockets Layer configuration .
SSL certificate and key management.
SSL configurations for selected scopes .
SSL configurations collection .
SSL configuration settings .
Secure Sockets Layer client certlflcate authentlcatlon
Certificate authority (CA) client configuration .
Certificate authority (CA) client conflguratlon coIIectlons
Writable SAF Keyring settings
Creating a chained personal certificate in SSL
Recovering deleted certificates in SSL .
Renewing a certificate in SSL
Revoking a CA certificate in SSL

Using a CA client to create a personal certlflcate to be used as the default personal certlflcate

Creating a CA certificate in SSL.

Developing the WSPKIClient interface for commun|cat|ng W|th a cert|f|cate authorlty

Creating a custom trust manager configuration for SSL .
Creating a custom key manager for SSL

Associating a Secure Sockets Layer configuration dynamlcally W|th an outbound protocol and

remote secure endpoint .
Quality of protection (QoP) settings
ssl.client.props client configuration file
Creating a CA client in SSL .
Deleting a CAclientin SSL . . . .
Viewing or modifying a CA client in SSL .
Creating a keystore configuration for a preexisting keystore f|Ie .
Managing keystore configurations remotely
Keystores and certificates collection .
Key store settings .
Key managers collection
Key managers settings .
Creating a self-signed certificate .
Replacing an existing personal certlflcate . .
Creating a new SSL certificate to replace an eX|st|ng onein a node
Creating new SSL certificates to replace existing ones in a cell .
Creating a certificate authority request .
Certificate request settings
Personal certificates collection
Self-signed certificates settings . .
Personal certificate requests collection .
Personal certificate requests settings .
Extract certificate request .
Receiving a certificate issued by a certlflcate authorlty
Replace a certificate .
Using writable SAF keyrings .

Contents

. 664
. 668
. 669
. 670
. 673
. 676
. 686
. 687
. 688
. 689
. 692
. 694
. 697
. 698
. 699
. 699
. 700
. 704
. 706
. 706
. 708
. 708
. 709
. 710

710

. 712
. 713
. 714
. 719

. 724
. 734
. 735
. 744
. 745
. 745
. 746
. 747
. 748
. 750
. 752
. 752
. 753
. 754
. 755
. 756
. 758
. 759
. 759
. 761
. 763
. 764
. 765
. 766
. 769
. 770

Vii



Creating writable SAF keyrings .

Configuring the root certificate keyring

Enabling writable SAF keyrings .

SAF keyring support for audit signing and encrypt|on
Extracting a signer certificate from a personal certificate.

Extract certificate .

Extract signer certificate

Retrieving signers using the retrleveS|gners ut|I|ty at the cllent

Changing the signer auto-exchange prompt at the client.

Importing a signer certificate from a truststore to a z/OS keyring.

Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore
Retrieving signers from a remote SSL port. .

Retrieve from port.

Adding a signer certificate to a keystore

Add signer certificate settings

Signer certificates collection .

Signer certificate settings . .
Adding a signer certificate to the default S|gners keystore .
Exchanging signer certificates .

Keystores and certificates exchange S|gners .

Configuring certificate expiration monitoring

Manage certificate expiration settings.

Notifications .

Notifications settings . .

Key management for cryptographlc uses
Creating a key set configuration.

Active key history collection .

Add key alias reference settings

Key sets collection

Key sets settings . .

Creating a key set group conf|gurat|on .

Example: Retrieving the generated keys from a key set group

Example: Developing a key or key pair generation class for automated key generatlon

Key set groups collection . Coe e

Key set groups settings.

Chapter 9. Developing extensions to the WebSphere security infrastructure
Developing stand-alone custom registries .
Result.java file .
UserRegistry.java files .
Developing a custom SAF EJB roIe mapper .
Implementing custom password encryption
Developing applications that use programmatic securlty
Protecting system resources and APls (Java 2 security) for developlng appllcatlons
Developing with programmatic security APIs for web applications e
Developing with programmatic APIs for EJB applications
Customizing web application login . . .
Developing servlet filters for form login processmg .
Secure transports with JSSE and JCE programming mterfaces . .
Using System Authorization Facility keyrings with Java Secure Sockets Exten3|on . .
Configuring Federal Information Processing Standard Java Secure Socket Extension files .
Implementing tokens for security attribute propagation
Implementing a custom propagation token for security attrlbute propagatlon
Implementing a custom authorization token for security attribute propagation .
Implementing a custom single sign-on token for security attribute propagation.
Implementing a custom authentication token for security attribute propagation.

viii Securing applications and their environment

. 772
. 773
. 775
. 776
. 778
. 778
. 779
. 779
. 780
. 782
. 783
. 784
. 785
. 786
. 787
. 787
. 788
. 788
. 790
. 791
. 792
. 793
. 795
. 795
. 796
. 796
. 798
. 799
. 799
. 800
. 801
. 802
. 803
. 806
. 806

. 809
. 809
. 810
. 811
. 816
. 817
. 818
. 819
. 841
. 848
. 852
. 856
. 860
. 863
. 866
. 868
. 869
. 875
. 882
. 890



Propagating a custom Java serializable object for security attribute propagation .

Developing a custom interceptor for trust associations
Trust association interceptor support for Subject creation

Enabling a plugpoint for custom password encryption.
Plug point for custom password encryption

Implementing a custom authentication provider using JASPI
Developing a custom JASPI authentication provider

Configuring a new JASPI authentication provider using the adm|n|strat|ve console .

Modifying an existing JASPI authentication provider using the administrative console .

Deleting a JASPI authentication provider using the administrative console .

Enabling JASPI authentication using the Map JASPI prowder option durlng appl|cat|on deployment

JASPI authentication providers collection
JASPI authentication provider details . .
JASPI authentication enablement for applrcahons .

Chapter 10. Auditing the security infrastructure.
Enabling the security auditing subsystem
Security Auditing detail . .
Context object fields .
Creating security auditing event type f||ters
Auditable security events .
Event type filter settings
Event type filters collection
Example: Generic Event Interface .
Context objects for security auditing .
Context object fields .
Configuring security audit subsystem fa|lure not|f|cat|ons
Audit monitor collection .
Audit notification settings .
Configuring the default audit service prowders for securlty aud|t|ng
Audit service provider collection.
Audit service provider settings .
Example: Base Generic Emitter Interface . .
Configuring a third party audit service providers for securlty audltlng .
Example: Base Generic Emitter Interface .
Configuring the SMF audit service providers for securlty audltlng
Example: Base Generic Emitter Interface .
Configuring audit event factories for security aud|t|ng
Audit event factory configuration collection.
Audit event factory settings
Example: Generic Event Factory Interface
Protecting your security audit data.
Encrypting your security audit records
Signing your security audit records .
Audit encryption keystores and certificates collect|on .
Audit record encryption configuration settings.
Audit record signing configuration settings .
Audit record keystore settings
Using the audit reader .

Chapter 11. Tuning, hardening, and maintaining security configurations .

Tuning security configurations
Security tuning tips .
Tuning security performance .
Hardening security configurations .
Enablement and migration considerations of Securlty hardenlng features

. 897
. 900
. 904
. 906
. 907
. 908
. 910
. 914
. 915

. 916
916

. 917

. 918
. 918

. 921
. 922
. 923
. 924
. 927
. 928
. 930
. 930
. 931
. 932
. 933
. 936
. 937
. 938
. 938
. 939
. 940
. 941
. 942
. 943
. 943
. 944
. 945
. 946
. 946
. 947
. 948
. 949
. 950
. 951
. 951
. 952
. 953
. 954

. 959
. 959
. 962
. 966
. 967
. 968

Contents

ix



Securing passwords in files
Encoding passwords in files .
Enabling custom password encryption

Chapter 12. Troubleshooting security configurations.

Security components troubleshooting tips .

Security configuration and enablement errors.

Security enablement followed by errors .

Access problems after enabling security .

SSL errors for security.

Single sign-on configuration troubleshootmg t|ps for secunty

Security authorization provider troubleshooting tips .

SPNEGO trust association interceptor (TAI) troubleshooting tlps (deprecated)
SPNEGO troubleshooting tips . e e .o

Chapter 13. Directory conventions
Appendix. Directory conventions .
Notices .

Trademarks and service marks .

Index .

X  Securing applications and their environment

. 970
. 970
. 973

. 977

. 977

. 990

.. 993
. 1000
. 1004
. 1007
. 1010
. 1015
. 1021

. 1031
. 1033
. 1035
. 1037

. 1039



How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 Xi



xii Securing applications and their environment



Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 Xiii



xiv Securing applications and their environment



Chapter 1. Overview and new features for securing
applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

[What is new for security specialists|

This topic provides an overview of new and changed features in security.

This topic describes how IBM® WebSphere® Application Server provides security infrastructure and
mechanisms to protect sensitive Java Platform, Enterprise Edition (Java EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

[“Security planning overview”|

Several communication links are provided from a browser on the Internet, through web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configurations and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

Samples

The [Samples documentation|offers:

* Login - Form Login
The Form Login Sample demonstrates a very simple
example of how to use the login facilities for
WebSphere Application Server to implement and
configure login applications. The Sample uses the Java
Platform, Enterprise Edition (Java EE) form-based login
technology to customize the look and feel of the login
screens. It uses servlet filters to log the user
information and the date information. The Sample
finishes the session by using the form-based logout
function, an IBM extension to the Java EE specification.

* Login - JAAS Login
The JAAS Login Sample demonstrates how to use the
Java Authentication and Authorization Service (JAAS)
with WebSphere Application Server. The Sample uses
server-side login with JAAS to authenticate a real user
to the WebSphere security run time. Based upon a
successful login, the WebSphere security run time uses
the authenticated Subject to perform authorization
checks on a protected stateless session enterprise
bean. If the Sample runs successfully, it displays all the
principals and public credentials of the authenticated
user.

Security planning overview

When you access information on the Internet, you connect through web servers and product servers to the
enterprise data at the back end. This section examines some typical configurations and common security
practices.

© IBM Corporation 2003 1



This section also examines the security protection that is offered by each security layer and common
security practice for good quality of protection in end-to-end security. The following figure illustrates the
building blocks that comprise the operating environment for security within WebSphere Application Server:

The following information describes each of the components of WebSphere Application Server security,
Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security
WebSphere Application Server security enforces security policies and services in a unified
manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support
the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface
(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based
security policies and supports Java EE security APls.

EJB security using Common Secure Interoperability Protocol Version 2 (CSiv2)
Common Secure Interoperability Version 2 (CSIv2) is an IIOP-based, three-tiered, security
protocol that is developed by the Object Management Group (OMG). This protocol
provides message protection, interoperable authentication, and delegation. The three
layers include a base transport security layer, a supplemental client authentication layer,
and a security attribute layer. WebSphere Application Server for zZOS® supports CSIv2,
conformance level 0.

Java 2 security
The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so
on. Application code must explicitly grant the required permission to access a protected
resource.

Java Virtual Machine (JVM) 5.0
The JVM security model provides a layer of security above the operating system layer. For
example, JVM security protects the memory from unrestricted access, creates exceptions
when errors occur within a thread, and defines array types.

Platform security

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. These services include the file system security
support that secures sensitive files in the product installation for WebSphere Application
Server. The system administrator can configure the product to obtain authentication
information directly from the operating system user registry.

Operating system security

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. The operating system identity of the servant,
controller, and daemon Started Task, as established by the STARTED profile, is the
identity that is used to control access to system resources such as files or sockets.
Optionally, the operating system security can provide authentication services using the
User Registry of local operating system, and/or authorization services using SAF
Authorization for the WebSphere Administration console and for applications running under
the application server.

2 Securing applications and their environment



In addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer Security
(TLS), the administrator must be familiar with System Authorization Facility (SAF) and
Resource Access Control Facility (RACF®), or an equivalent SAF based product.

The identity and verification of users can be managed by using a Local Operating System
as the User Registry, RACF or equivalent SAF base product. Alternatively, an LDAP,
Custom, or Federated User Registry can be used.

WebSphere can be configured to use SAF Authorization, which will use RACF or an
equivalent SAF based product to manage and protect users and group resources.
Alternatively, WebSphere can be configured to use WebSphere Authorization or a JACC
External Authorization Provider.

When using either Local Operating System as the User Registry and/or using SAF
Authorization, security auditing is an inherit feature of RACF or the equivalent SAF based
products.

Network security
The Network Security layers provide transport level authentication and message integrity
and confidentiality. You can configure the communication between separate application
servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and
Virtual Private Network (VPN) for added message protection.

WebSphere Application Server, Network Deployment installation
Important: A node agent instance exists on every computer node.

Each product application server consists of a web container, an Enterprise Java Beans (EJB) container,
and the administrative subsystem.

The WebSphere Application Server deployment manager contains only WebSphere Application Server
administrative code and the administrative console.

The administrative console is a special Java EE web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,
which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see ['FEncoding passwords in files” on page 970.|

The administrative console web application has a setup data constraint that requires access to the
administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when
administrative security is enabled.

The following figure shows a typical multiple-tier business computing environment.
Administrative security

WebSphere Application Servers interact with each other through CSIv2 and z/OS Secure Authentication
Services (z/SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server administrative security. The WebSphere Application Server administrative subsystem in
every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and
configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP

Chapter 1. Overview and new features: Securing 3



protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,
the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you
can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that
you enable administrative security and enable SSL to protect the sensitive configuration data.

You can enable HTTPS for applications even when administrative security is disabled. You can configure
the SSL port for a particular server by adding the SSL port to the HTTP port list in the server web
container, in addition to where it is added to the virtual hosts in the Environment configuration. You can
connect to the web application using HTTPS and the correct port. Internal WebSphere Application Server
for z/OS communication does not use SSL unless you enable administrative security.

When administrative security is enabled, you can disable application security at each individual application
server by clearing the Enable administrative security option at the server level. For more information,
see |“Securing specific application servers” on page 1ZQI Disabling application server security does not
affect the administrative subsystem in that application server, which is controlled by the security
configuration only. Both administrative subsystem and application code in an application server share the
optional per server security protocol configuration.

Security for Java EE resources

Security for Java EE resources is provided by the web container and the EJB container. Each container
provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security
policy, including information that is derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use programmatic security to make access decisions. When administrative security is enabled and
application server security is not disabled at the server level, Java EE applications security is enforced.
When the security policy is specified for a web resource, the web container performs access control when
the resource is requested by a web client. The web container challenges the web client for authentication
data if none is present according to the specified authentication method, ensures that the data constraints
are met, and determines whether the authenticated user has the required security role. The web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal
has one of the required security roles. Servlets and JSP files can use the HttpServietRequest methods,
isUserInRole and getUserPrincipal.

When cell-level security is enabled, unless server security is disabled, the EJB container enforces access
control on EJB method invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods,
isCallerInRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable
business data from access by unauthorized users through the Internet and the intranet. Refer to
web applications using an assembly tool| and [Securing enterprise bean applications]

4 Securing applications and their environment



Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources
including the JMX system management subsystem, user registries, and Java Naming and Directory
Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security
roles:

Monitor role
A monitor can view the configuration information and status but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server IDs and passwords, enable or disable administrative
security and Java 2 security, and map users and groups to the administrator role.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin
scripting only.

Deployer
A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager
An administrative security manager can map users to administrative roles. Also, when fine grained
admin security is used, users granted this role can manage authorization groups.

Auditor
An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. Certain configuration tasks exist that a configurator does not have sufficient
authority to do when administrative security is enabled, including modifying a WebSphere Application
Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and
assigning users to administrative security roles. Those sensitive configuration tasks require the
administrative role because the server ID is mapped to the administrator role.

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.
Application server security can be selectively disabled if no sensitive information is available to protect. For
securing administrative security, refer to |“Authorizing access to administrative roles” on page 621| and
IAssigning users and groups to roles]

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run
application code. Java 2 security provides a fine-grained and policy-based access control to protect
system resources such as files, system properties, opening socket connections, loading libraries, and so
on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that web
and EJB components expect to have.

Chapter 1. Overview and new features: Securing 9



Table 1. Java EE security permissions set for web components. The Java EE security permissions set for web
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.io.FilePermission * read, write
java.util.PropertyPermission * read

Table 2. Java EE security permissions set for EJB components. The Java EE security permissions set for EJB
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4
specification. The specification grants web components read and write file access permission to any file in
the file system, which might be too broad. The WebSphere Application Server default policy gives web
components read and write permission to the subdirectory and the subtree where the web module is
installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

${java.home}/jre/1ib/security/java.policy
This file is used as the default policy for the Java virtual machine (JVM).

$WAS_HOME/properties/server.policy
This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for a WebSphere Application
Server subsystem. These policy files, which are an extension of the WebSphere Application Server
runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java
EE applications:
* $WAS_HOME/config/cells/cell_name/nodes/node_name/spi.policy
This file is used for embedded resources that are defined in the resources.xml file, such as the Java
Message Service (JMS), JavaMail API, and JDBC drivers.
* $WAS_HOME/config/cells/cell name/nodes/node name/library.policy
This file is used by the shared library that is defined by the WebSphere Application Server
administrative console.
* $WAS_HOME/config/cells/cell name/nodes/node name/app.policy
This file is used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports the packaging of a was.policy file with each
application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the
potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.
WebSphere Application Server uses a permission filtering policy file to alert you when an application

6 Securing applications and their environment



installation fails because of additional permission requirements. For example, it is recommended that you
not give the java.lang.RuntimePermission exitVM permission to an application so that application code
cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the conﬁg/ce] 1s/cell _name/filter.policy
file. Moreover, WebSphere Application Server also performs run-time permission filtering that is based on
the run-time filtering policy to ensure that application code is not granted a permission that is considered
harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application
Server, you might temporarily give those applications the java.security.AllPermission permission in the
was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is
active. For example, identify which extra permissions, if any, are required, and grant only those
permissions to a particular application. Not granting the A11Permission permission to applications can
reduce the risk of compromising system integrity. For more information on migrating applications, refer to
[‘Migrating Java 2 security policy” on page 25

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.
Applications that are granted the Al11Permission permission not only have access to sensitive system
resources, but also WebSphere Application Server run-time resources and can potentially cause damage
to both. In cases where an application can be trusted as safe, WebSphere Application Server does support
having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by
default in the administrative console and clear the Java 2 security flag to disable it at the particular
application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application
access to local resources options on the Global security panel of the administrative console, the
information and other sensitive configuration data, are stored in a set of XML configuration files. Both
role-based access control and Java 2 security permission-based access control are employed to protect
the integrity of the configuration data. The example uses configuration data protection to illustrate how
system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is
the same as the Enable administrative security option in Version 8.0. Also, the Enable Java
2 security option in previous releases is the same as the Use Java 2 security to restrict
application access to local resources option in Version 8.0.

* When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless the code is granted the required
WebSphere Application Server run-time permissions.

* When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless the code is granted the required file read and write permission.

* The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
administrative security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

» If a user can disable Java 2 security, the user can also modify the WebSphere Application Server
configuration, including the WebSphere Application Server security identity and authentication data with
other sensitive data. Only users with the administrator security role can disable Java 2 security.

» Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable administrative security, change server IDs and passwords, and
map users and groups to administrative roles, and so on.

Chapter 1. Overview and new features: Securing 7



The CSIv2 security protocol also supports client certificate authentication. SSL client authentication can
also be used to set up secure communication among a selected set of servers based on a trust
relationship.

If you start from the WebSphere Application Server plug-in at the web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the
selected two WebSphere Application Servers as shown in the following figure. Note that you can use
self-signed certificates to reduce administration and cost.

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in
WebSphere Application Server B to accept secure socket connections only from the WebSphere
Application Server plug-in W.

« To complete this task, you can generate three certificates using Resource Access Control Facility
(RACF) called certificate W, A, and B. Configure the WebSphere Application Server plug-in to use
certificate W and trust certificate A and B. Configure the HTTPS server of WebSphere Application
Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate
w.

Table 3. Trust relationships from example. The trust relationship that is depicted in the previous figure is shown in the
following table.

Server Key Trust
WebSphere Application Server plug-in W A B
WebSphere Application Server A A w
WebSphere Application Server B B w

The WebSphere Application Server Deployment Manager is a central point of administration. System
management commands are sent from the deployment manager to each individual application server.
When administrative security is enabled, you can configure WebSphere Application Servers to require SSL
and mutual authentication.

You might want to restrict WebSphere Application Server A so that it can communicate with WebSphere
Application Server C only and WebSphere Application Server B can communicate with WebSphere
Application Server D only. All WebSphere Application Servers must be able to communicate with
WebSphere Application Server deployment manager E; therefore, when using self-signed certificates, you
might configure the CSIv2 and SOAP/HTTPS Key and trust relationship, as shown in the following table.

Table 4. CSlv2 and SOAP/HTTPS Key and trust relationships from example. The CSIv2 and SOAP/HTTPS Key and
trust relationships are shown in the following table.

Server Key Trust
WebSphere Application Server A A C E
WebSphere Application Server B B D, E
WebSphere Application Server C C A E
WebSphere Application Server D D B, E
WebSphere Application Server Deployment E A'B,C,D
Manager E

8 Securing applications and their environment



When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)

user registry, you also can configure SSL with mutual authentication between every application server and
the LDAP server with self-signed certificates so that a password is not visible when it is passed from
WebSphere Application Server to the LDAP server.

In this example, the node agent processes are not discussed. Each node agent must communicate with

application servers on the same node and with the deployment manager. Node agents also must

communicate with LDAP servers when configured to use an LDAP user registry. It is reasonable to let the
deployment manager and the node agents use the same certificate. Suppose application server A and C
are on the same computer node. The node agent on that node needs to have certificates A and C in its

trust store.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere
Application Server you are using, review the WebSphere Application Server security architecture, and
review each of the following topics:

“Server and administrative security” on page 71|

“Authentication protocol support” on page 518|

“Common Secure Interoperability Version 2 features” on page 518|
“ldentity assertion to the downstream server” on page 519

“Selecting an authentication mechanism” on page 344

— [“Lightweight Third Party Authentication” on page 346

— [“Trust associations” on page 366

— |“Single sign-on for authentication using LTPA cookies” on page 370
[“Selecting a registry or repository” on page 183

— [|“Local operating system registries” on page 187

— [|“Standalone Lightweight Directory Access Protocol registries” on page 339
[Java 2 security” on page 81|

— [Java 2 security policy files” on page 85|

[‘Java Authentication and Authorization Service” on page 438|

— |Programmatic login for JAAS|

Java EE connector security|

“Access control exception for Java 2 security” on page 89

— [‘Role-based authorization” on page 546

— [‘Administrative roles and naming service authorization” on page 540|
[l/mplementing a custom authentication provider using JASPI” on page 908|

Chapter 1. Overview and new features: Securing

9



10 Securing applications and their environment



Chapter 2. How do | secure applications and their
environments?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

[Secure HTTP sessions|

[Develop applications that use programmatic security|

|Configure declarative security for EJB applications that use J2EE authorization|

|Deve|op programmatic security for EJB applications that use J2EE authorization|

IApply Web Services Security (WS-Security) to applications]

[Enable Java 2 security with the console]

[Enable Java 2 security with scripting|

[Developing custom login modules|

[Enable resource security for J2C and JDBC data sources]

[Enable resource security for JavaMail|

[[mplement a custom authentication provider using JASPI|

Secure the application hosting environment. The counterpart of securing your applications before and
after deployment is to secure the server hosting environment into which the applications are deployed.

[Assign users to roles|

[Configure security with wsadmin scripting|

By default, security is enabled out of box. You have an opportunity to modify the default whenever you
create a profile, at installation time or any other time. If you do not deselect it, administrative security will
be enabled for a profile. Out of box security authenticates users against the file-based federated repository
powered by virtual member manager.

[Enable and configure administrative security with the console]

[Enable and configure administrative security with scripting|

[Authenticate users with the local operating system user registry|

[Authenticate users with an LDAP user registry|

|Authenticate with a custom user registry

|Authenticate with the file-based federated repository|

© Copyright IBM Corp. 2011 11



[Set up single sign-on (SSO)|

[Access secure resources using SSL and applet clients

[Set up Secure Sockets Layer (SSL) between remote servers or clients and servers|

Set up CSlv2

[Configure an authorization provider|

[Troubleshoot security]

12 Securing applications and their environment



Chapter 3. Task overview: Securing resources

WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) model for
creating, assembling, securing, and deploying applications. Applications are often created, assembled, and
deployed in different phases and by different teams.

About this task

You can secure resources in a Java EE environment by following the required high-level steps. Consult
the Java EE specifications for complete details.

Procedure

» Set up and enable security. You must address several issues prior to authenticating users, authorizing
access to resources, securing applications, and securing communications. These security issues include
migration, interoperability, and installation. After installing WebSphere Application Server, you must
determine the proper level of security that is needed for your environment. For more information, see
|Chapter 4, “Setting up, enabling and migrating security,” on page 15.|

» Configure multiple domains. Security domains enable you to define multiple security configurations for
use in your environment. For example, you can define different security (such as a different user
registry) for user applications than for administrative applications. You can also define separate security
configurations for user applications deployed to different servers and clusters. For more information, see
[Chapter 5, “Configuring multiple security domains,” on page 143|

Authenticate users. The process of authenticating users involves a user registry and an authentication
mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,
configure single sign-on capability, and specify how to propagate security attributes between application
servers. For more information, see [Chapter 6, “Authenticating users,” on page 183/

» Authorize access to resources. WebSphere Application Server provides many different methods for
authorizing accessing resources. For example, you can assign roles to users and configure a built-in or
external authorization provider. For more information, see [Chapter 7, “Authorizing access to resources,’]

» Secure communications. WebSphere Application Server provides several methods to secure
communication between a server and a client. For more information, see [Chapter 8, “Securing|
[communications,” on page 649

» Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides
various plug points so that you can extend the security infrastructure. For more information, see
[Chapter 9, “Developing extensions to the WebSphere security infrastructure,” on page 809

» Use the Auditing Facility to report and track auditable events to ensure the integrity of your system. For
more information, see |Chapter 10, “Auditing the security infrastructure,” on page 921|

» Secure various types of WebSphere applications. See Securing WebSphere applications for tasks
involving developing, deploying, and administering secure applications, including web applications, web
services, and many other types. This section highlights the security concerns and tasks that are specific
to each type of application.

» Tune, harden, and maintain security configurations. After you have installed WebSphere Application
Server, there are several considerations for tuning, strengthening, and maintaining your security
configuration. For more information, see [Chapter 11, “Tuning, hardening, and maintaining security|
[configurations,” on page 959/

Troubleshoot security configurations. For more information, see [Chapter 12, “Troubleshooting security|
[configurations,” on page 977

Results

Your applications and production environment are secured.

© IBM Corporation 2002, 2006 13



Example

See the Security: Resources for learning article for more information on the WebSphere Application Server
security architecture.

14 Securing applications and their environment



Chapter 4. Setting up, enabling and migrating security

You must address several issues prior to authenticating users, authorizing access to resources, securing
applications, and securing communications. These security issues include migration, interoperability, and
installation.

About this task

After installing WebSphere Application Server, you can determine the proper level of security that is
needed for your environment. By default, administrative security is enabled and provides the authentication
of users using the WebSphere administration functions, the use of Secure Sockets Layer (SSL), and the
choice of user account repository.

You can also use the following permissions to enhance security:

» Use the getSSLConfig permission to give your application code the ability to call several of the
JSSEHelper methods. For more information about these methods, see the description of the
com.ibm.websphere.ssl.JSSEHelper API in the Programming interfaces section of the Information
Center.

* Use the AdminPermission permission to give your application code the ability to call WebSphere
Application Server administrative APIs. See the topic Setting Java 2 security permissions for an
example of how to set this permission.

» Use the accessRuntimeClasses permission to give your application code the ability to load classes that
are included with the product. If you are operating in an environment that normally restricts access to
these classes, this permission enables your application code to bypass this restriction during class
loading. See the topic Global security settings for a description of how to set this permission.

The following information is covered in this section:

Procedure

» Determine if any migration and interoperability issues might affect your installation. For more
information, see [‘Migrating, coexisting, and interoperating — Security considerations.”|

* Prepare your environment before and after installing WebSphere Application Server. For more
information, see [‘Preparing for security at installation time” on page 31

» Enable security for all your application servers or for specific application servers in your realm.

For more information, see either ['Enabling security” on page 66| or [Chapter 5, “Configuring multiple]
[security domains,” on page 143.|

What to do next

After installing WebSphere Application Server and securing your environment, you must authenticate
users. For more information, see [Chapter 6, “Authenticating users,” on page 183/

Migrating, coexisting, and interoperating — Security considerations

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and
its applications to the new installation of WebSphere Application Server.

Before you begin
This information addresses the need to migrate your security configurations from a previous release of

IBM WebSphere Application Server to WebSphere Application Server 8.0. Complete the following steps to
migrate your security configurations:

© IBM Corporation 2005, 2008 15



» If security is enabled in the previous release, obtain the administrative server ID and password of the
previous release. This information is needed in order to run certain migration jobs.

* You can optionally disable security in the previous release before migrating the installation. No logon is
required during the installation.

« If scriptCompatibility is false when migrating to WebSphere Application Server 8.0 on z/OS, any
SSLConfig repertoire of type System SSL (SSSL) is converted to type JSSE. The exception is when the
SSLConfig repertoire belongs to the daemon; the repertoire is not converted from type SSSL to type
JSSE in this case.

Note: In WebSphere Application Server Version 8.0, be aware of the following additional migration
requirements for security:

* When migrating from WebSphere Application Server Version 7.x to Version 8.0, if you have a
business need to preserve security audit logs from the older release you must first archive the
security audit log files in Version 7.x. WebSphere Application Server does not support the
migration of security audit log files from the older release to Version 8.0.

* When migrating from WebSphere Application Server Version 7.x to Version 8.0 on a z/OS
system, if you used a writeable System Authorization Facility (SAF) keyring setting on version 7.x
make sure that writeable SAF is also enabled on the Version 8 system. Writeable SAF is a
RACF setting.

* If your WebSphere Application Server Version 7.x environment is enabled for Kerberos, and you
are migrating to version 8.0 on a different machine, the keytab and configuration files for
Kerberos must be at the same location on the Version 8.0 machine as on the Version 7.x
machine or the configuration will not work.

Procedure

Migrate the appropriate product configuration. You can migrate the base application server node, a
deployment manager, and a federated node.

Results

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 8.0.

What to do next
You must migrate any custom class files that are not migrated.

If you are migrating a Version 6.1 environment or earlier with System Authorization Facility (SAF)
authorization enabled, be aware that the term describing the string that is prepended to the EJBROLE
profile names, which was previously referred to as the z/OS security domain, has been updated to "SAF
profile prefix". Additionally, the corresponding property name in the security.xml file has been updated to
com.ibm.security.SAF.profilePrefix The old property names are security.z0S.domainName and
security.z0S.domainType. The term has changed to more accurately describe the purpose of this property
and to avoid confusion with the WebSphere security domains feature that was introduced in Version 7.0. If
a SAF profile prefix is specified and scriptCompatiblity is a false value, further action is not necessary
during migration; the old properties are converted to the new properties.

Note: The SAF distributed identity mapping feature is not supported in a mixed-version cell (nodes prior to
WebSphere Application Server Version 8.0).

If you are migrating a Version 6.0.x environment with Sync to OS Thread enabled to a Version 8.0
environment, you should be aware of the following migration considerations:

» In addition to the application and configuration specifying the desire to use Sync to OS Thread that was
required in earlier versions of WebSphere Application Server, the RACF administrator must also define

16  Securing applications and their environment



a resource role in order for Sync to OS Thread to operate in Version 6.1 and later. A FACILITY class
profile must be defined to allow or disallow the use of Sync to OS Thread. Also, an optional
SURROGAT class profile can be used to further refine the use of Sync to OS Thread to particular
authenticated users.

See f‘System Authorization Facility classes and profiles” on page 43.|

* In Version 6.1 and later, a FACILITY class profile must be defined to enable trusted applications.
WebSphere Applications Server checks this FACILITY class profile during initialization to ensure that
only authorized trusted applications are enabled. This FACILITY class profile expands the RACF
administrator's role in ensuring that only authorized trusted applications are enabled.

See ['System Authorization Facility classes and profiles” on page 43

Interoperating with previous product versions

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to
configure this behavior.

Before you begin

Interoperability is achieved using the z/OS Secure Authentication Service (z/SAS) security mechanism for
local OS and System Authorization Facility (SAF)-based authorization.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Procedure

1. Configure WebSphere Application Server Version 8.0 with the same distributed user registry (that is,
LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user
registry is shared by all of the product versions.

a. In the administrative console, select Security > Global security.

b. Choose an available Realm definition and click Configure.

c. If SAF authorization is disabled, enter a Primary administrative user name. This identity is the
user with administrative privileges that is defined in your local operating system. If you are not
using the local OS ad the user registry, select the Server identity that is stored in the user
repository, enter the Server user ID, and the associated password. The user name is used to log
on to the administrative console when administrative security is enabled. WebSphere Application
Server Version 6.1 requires an administrative user that is distinct from the server user identity so
that administrative actions can be audited.

Attention: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is
required for both administrative access and internal process communication. When migrating to
Version 8.0, this identity is used as the server user identity. You need to specify another user for
the administrative user identity.

d. When interoperating with Version 6.0.x or previous versions, you must select the Server identity
that is stored in the user repository. Enter the Server user id and the associated Password.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be
disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from
WebSphere Application Server Version 8.0 and import them into the previous release.

a. In the administrative console select Security > Global security.

b. From Authentication mechanisms and expiration, click LTPA.

c. Click the Key set groups link , then click the key set group that displays in the Key set groups
panel.

Clear the Automatically generate keys check box.

Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key
set groups panel.

Chapter 4. Setting up, enabling and migrating security 17



f.  Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the
LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.
h. Enter the Fully qualified key file name that contains the exported keys.
i. Click Export keys.

j- Follow the instructions provided in the previous release to import the exported LTPA keys into that
configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere
Application Server Version 8.0 common trust store. Otherwise, extract signers where necessary to
import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

b. Click Key stores and certificates.

c. Click CellDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer. For example, /tmp/signerl.arm.

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.
Repeat steps e through h to extract the other signers.

You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from
a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer
certificates that originated on the non-z/OS platform server. For more information, see Importing a
signer certificate from a truststore to a z/OS keyring.

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc
directory of the back-level product version. If the previous release is not using the dummy certificate,
the signer certificate(s) from the previous release must be extracted and added into the WebSphere
Application Server Version 8.0 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL ROOT}/bin directory.
Select Key Database File > Open.

Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile. jks.

Enter WebAS for the password.

Select Add and enter one of the files extracted in step 2. Continue until you have added all of the
signers.

g. Repeat steps c through f for the DummyClientTrustFile. jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and
naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

~0ooo00

Interoperating with a C++ common object request broker architecture
client

WebSphere Application Server supports security in the CORBA C++ client to access-protected enterprise
beans. If configured, C++ CORBA clients can access protected enterprise bean methods using a client
certificate to achieve mutual authentication on WebSphere Application Server applications.

18 Securing applications and their environment



About this task

Interoperability can be achieved between C++ CORBA clients and WebSphere Application Server using
the Common Secure Interoperability Version 2 (CSIv2) or by using the z/OS Secure Authentication Service
(z/SAS) protocols. CSIv2 should be used unless interoperability is required with a WebSphere Application
Server Version 4.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application
Server supports security in the CORBA C++ client to access-protected enterprise beans. If configured,
C++ CORBA clients can access protected enterprise bean methods using a client certificate to achieve
mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans, complete the following steps:

» Create an environment file for the client, such as current.env. Set the variables presented in the
following list in the file:

Table 5. Environment Variables.

This table lists the environment variables needed to support the C++ CORBA client in accessing protected enterprise
beans.

C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to authenticate at the target server.

security_sslKeyring Specifies the name of the RACF keyring for the client to use. The keyring
must be defined under the user ID that is issuing the command to run the
client.

» Point to the environment file using the fully qualified path name through the WAS_CONFIG_FILE
environment variable. For example, in the test.sh test shell script, export:

/WebSphere/V6ROMO/DeploymentManager/profiles/default/config/cells
/PLEX1Network/nodes/PLEX1Manager/servers/dmgr

Some of the environment file terms are explained below:

default
profile name

PLEX1Network
cell name

PLEX1Manager
node name

dmgr server name

Migrating trust association interceptors
Use this topic to manually migrate trust associations.

Before you begin
Note: Data sources are not supported for use within a Trust Association Interceptor (TAl). Data sources
are intended for use within J2EE applications and designed to operate within the EJB and web

containers. Trust Association Interceptors do not run within a container, and while data sources may
function in the TAI environment, they are untested and not guaranteed to function properly.

Chapter 4. Setting up, enabling and migrating security 19



The following topics are addressed in this document:

« [Changes to the product-provided trust association interceptors|
- [Migrating product-provided trust association interceptors|

+ [Changes to the custom trust association interceptors|

« [Migrating custom trust association interceptors|

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional
com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTTP/1.1 webseall:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name
Fred, is not used when matching the host names. By default, this property is not set, which implies that
any proxy host names and ports that are expected in the VIA header are listed in the host names and the
ports properties to satisfy the isTargetinterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article
in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not
migrated from previous versions of WebSphere Application Server. You must migrate the appropriate
properties to WebSphere Application Server Version 6.0.x using the trust association panels in the
administrative console. For more information, see [Configuring trust association interceptors]

Changes to the custom trust association interceptors

If the custom interceptor extends the
com.ibm.websphere.security. WebSphereBaseTrustAssociationInterceptor property, implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.
Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,
you can either change your implementation to match the expectations or make one of the following
changes:
Method 1:
Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association
interceptor custom properties. Set the property to the value that indicates the interceptor is
successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.
Method 2:
Add the com.ibm.websphere.security.trustassociation.ignorelnitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells

20 Ssecuring applications and their environment



WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that
is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.
The interceptor can then use these properties to initialize itself. For example, in the product-provided
implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming
in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the
interceptor initialization is successful. Any other value implies that the initialization is not successful and
the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.
The only requirement is that you enter the file name containing the custom trust association properties
using the Custom Properties link of the interceptor in the administrative console or by using scripts. You
can enter the property using either of the following methods. The first method is used for backward
compatibility with previous versions of WebSphere Application Server.
Method 1:
The same property names used in the previous release are used to obtain the file name. The file
name is obtained by concatenating .config to the
com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is
located in the [app server root|/properties directory, set the following properties:
e com.ibm.websphere.security.trustassociation.types = myTAItype
+ com.ibm.websphere.security.trustassociation.myTAItype.config = lapp server rootf
properties/myTAI.properties
Method 2:
You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust
association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=
properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one
continuous line.

In a WebSphere Application Server, Network Deployment installation, where the location of the file name
can vary for different nodes, use the variable install_root to refer to the WebSphere Application Server
installation directory.

However, it is highly recommended that your implementation be changed to implement the init(Properties)
method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to WebSphere Application Server Version 8.0. You can manually migrate these trust associations
using the following steps:

Procedure
1. Recompile the implementation file, if necessary.

For more information, refer to the "Changes to the custom trust association interceptors" section
previously discussed in this document.

To recompile the implementation file, type the following code:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/plugins/com.ibm.ws.runtime.jar;
%WAS_HOME%/dev/JavaEE/j2ee.jar your_implementation_file.java

Chapter 4. Setting up, enabling and migrating security 21



The previous line of code is broken into two lines for illustrative purposes only. Type the code as one
continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. Copy
these class files into the %WAS_HOME%/1ib/ext directory.

3. Start WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom
trust association properties file and in the trustedserver.properties file are not migrated from
previous versions of WebSphere Application Server. You must migrate the appropriate properties to
WebSphere Application Server Version 8.0 using the trust association panels in the administrative
console.

For more information, see |Configuring trust association interceptorsl

Migrating Common Object Request Broker Architecture programmatic
login to Java Authentication and Authorization Service (CORBA and
JAAS)

Use this topic as an example of how to perform programmatic login using the CORBA-based
programmatic login APIs.

Before you begin

Common Object Request Broker Architecture (CORBA) application programming interfaces (API) are not
supported in the WebSphere Application Server for z/OS environment. If you have an application that you
are porting from another WebSphere Application Server product to WebSphere Application Server for z/OS
you must be aware that the security APIs that are deprecated in Version 6.0.x. If you want to use these
applications on WebSphere Application Server for z/OS Version 8.0, you must migrate to Java
Authentication and Authorization Service (JAAS).

The following list includes the deprecated CORBA programmatic login APls.

e ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
LoginHelper. java.

* ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator. java.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs
and a product implementation of standard JAAS interfaces.

The supported APIs that are provided in WebSphere Application Server for z/OS are a combination of
standard JAAS APIs and a product implementation of standard JAAS interfaces with some minor
extension.

The following information is only a summary; refer to the JAAS documentation for your platform located at:
Ihttp://www.ibm.com/developerworks/java/jdk/security/ .
* Programmatic login APIs:
— javax.security.auth.login.LoginContext
— javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product
provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl
Provides a non-prompt CallbackHandler handler when the application pushes basic
authentication data (user ID, password, and security realm) or token data to product login
modules. This API is recommended for server-side login.
com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerimpl
Provides a stdin login prompt CallbackHandler handler to gather basic authentication data
(user ID, password, and security realm). This API is recommended for client-side login.

22 Securing applications and their environment


http://www.ibm.com/developerworks/java/jdk/security/

Note: If this APl is used on the server side, the server is blocked for input.
— javax.security.auth.callback.Callback interface:
javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.
javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.
com.ibm.websphere.security.auth.callback.WSCredTokenCallbackimpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.
— javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side
login. Refer to the Securing applications and their environment PDF for details.
* javax.security.Subject:
com.ibm.websphere.security.auth.WSSubject
An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject

An application must invoke the WSSubject.doAs method for J2EE resources access using the
subject that is generated by an explicit invocation of a WebSphere Application Server login
module.

com.ibm.websphere.security.cred.WSCredential
After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,
a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the
Subject.

com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal that is created and stored in a Subject that is authenticated by the
WebSphere Application Server LoginModules interface.

Procedure

Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security
permissions. For more information, see the Securing applications and their environment PDF and the
JAAS documentation located at |http://www.ibm.com/developerworks/java/jdk/security/}

public class TestClient {

private void performLogin() {
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext Tc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by 1login prompt

//  and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception: "
+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted
//  to the application, or the JAAS Login Configuration is not defined.
}

if (1c != null)

try {
1c.login(); // perform login

Chapter 4. Setting up, enabling and migrating security ~ 23


http://www.ibm.com/developerworks/java/jdk/security/

javax.security.auth.Subject s = Tc.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com. ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

1

return null;

}
}
)s

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.printin("Principal: " + p.getName());

} catch (javax.security.auth.login.LoginException e) {
System.err.printin("ERROR: login failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin logic
}
}

Migrating from the CustomLoginServlet class to servlet filters

Use this topic to allow migration in an application that uses form-based login and servlet filters without the
use of the CustomLoginServlet class.

Before you begin

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those
applications using the CustomLoginServlet class to perform authentication now need to use form-based
login. Using the form-based login mechanism, you can control the look and feel of the login screen. In
form-based login, a login page is specified and displays when retrieving the user ID and password
information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information that is
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached
servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security_check URL. The j_security_check is posted by the form login page with

24 Securing applications and their environment



the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

Procedure

1. Develop a form login page and error page for the application.
Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application.
Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.
Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL
or for the /j_security_check URL. Use an assembly tool or development tools like Rational® Application
Developer to configure filters. After configuring the servlet filters, the web-xm1 file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.
Results

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

What to do next

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.
Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy
Use this topic for guidance pertaining to migrating Java 2 security policy.

About this task
Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent
enterprise applications from calling the System.exit and the System.setSecurityManager methods. These
two Java application programming interfaces (APl) have undesirable consequences if called by enterprise
applications. The System.exit API, for example, causes the Java virtual machine (application server
process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with
doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.
Application code is not privileged and subject to the permissions that are defined in the policy files. The
doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the
application code must be granted the permissions that are required by the server runtime. This situation is
due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the
Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere
Application Server:

* java.lang.RuntimePermission(exitVM)

 java.lang.RuntimePermission(setSecurityManager)

Chapter 4. Setting up, enabling and migrating security ~ 25



Application code is denied access to these permissions regardless of what is in the Java 2 security policy.
However, the server runtime is granted these permissions. All the other permission checks are not
enforced.

Only two permissions are supported:
* java.net.SocketPermission
* java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the
application code all the other permissions besides the two listed previously or the enterprise application
can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are
enforced. The default Java 2 security policy for an enterprise application is the recommended permission
set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the
conﬁg/ce] 1s/cell_name/nodes/node_name/app.policy file for the default Java 2 security
policy that is granted to enterprise applications. This policy is a much more stringent compared to previous
releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.

There is an exception to this rule: enterprise applications are denied access to permissions that are

declared in the config/ce] 1s/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the
permissions are enforced in WebSphere Application Server Version 8.0. The security policy might
fail because the application code does not have the necessary permissions granted where system

resources, such as file I/O, can be programmatically accessed and are now subject to the
permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an
application uses the setSecurityManager permission, there is a conflict with the internal security manager
within WebSphere Application Server. If you must set a security manager in an application for RMI
purposes, you also must enable the Use Java 2 security to restrict application access to local
resources option on the Global security page within the WebSphere Application Server administrative
console. WebSphere Application Server then registers a security manager. The application code can verify
that this security manager is registered by using System.getSecurityManager() application programming
interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

» java.security.policy. The absolute path of the policy file (action required). This system property
contains both system permissions (permissions granted to the Java virtual machine (JVM) and the
product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the
enterprise application to Version 8.0. For Java 2 security policy migration, see the steps for migrating
Java 2 security policy.

+ enabledJava2Security. Used to enable Java 2 security enforcement (no action required). This system
property is deprecated; a flag in the WebSphere configuration application programming interface (API) is
used to control whether to enable Java 2 security. Enable this option through the administrative console.

+ was.home. Expanded to the installation directory of WebSphere Application Server (action might be
required). This system property is deprecated; superseded by the ${user.install.root} and
${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is

26  Securing applications and their environment



used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere
Application Server or the WebSphere Application Server, Network Deployment environments. See the
steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to Version 8.0 automatically because of a mixture of
system permissions and application permissions in the same policy file. Manually copy the Java 2 security
policy for enterprise applications to a was.policy or app.policy file. However, migrating the Java 2
security policy to a was.policy file is preferable because symbols or relative code base is used instead of
an absolute code base. This process has many advantages. Grant the permissions that are defined in the
was.policy to the specific enterprise application only, while permissions in the app.policy file apply to all
the enterprise applications that run on the node where the app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The
contents include the Java 2 security policy file for the appl.ear enterprise application and the system
permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product
server runtime.

The default location for the Java 2 security policy file is properties/java.po]icy. Default
permissions are omitted for clarity:

// For product Samples
grant codeBase "file:${app_server_root}/installedApps/appl.ear/-" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",
"read";
IH

For clarity of illustration, all the permissions are migrated as the application level permissions in this
example. However, you can grant permissions at a more granular level at the component level (Web,
enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to
a particular component.

Procedure
1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated
applications in the configuration repository with the following contents:
grant codeBase "file:${application}" {
permission java.security.SecurityPermission "printldentity";

permission java.io.FilePermission "
${user.install.root}${/}temp${/}somefile.txt", "read";
}s

The third and fourth lines in the previous code sample are presented on two lines for illustrative
purposes only.

The was.policy file is located in the profile root]/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.
You also can use an assembly tool to validate the contents of the was.policy file. For more
information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2
security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node name/app.policy file. This validation requires code review, code
inspection, application documentation review, and sandbox testing of migrated enterprise applications
with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by

Chapter 4. Setting up, enabling and migrating security ~ 27



Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party
libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that
the application is granted all the required permissions, or it might fail to run when Java 2 security is
enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.
Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing
environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.
This trace function can be helpful in debugging the AccessControlException exception that is created
when an application is not granted the required permission or some system code is not properly
marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes
on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,
the administrator or deployer must review their enterprise applications to see if extra
permissions are required before enabling Java 2 security. If the enterprise applications are not
granted the required permissions, they fail to run.

Migrating with Tivoli Access Manager for authentication enabled on a
single node

When Tivoli® Access Manager security is configured for your existing environment and security is enabled
for a single node, you can migrate to WebSphere Application Server, Version 8.0.

Before you begin
Your profiles must be migrated using the migration tools to migrate product configurations.

Important: Do not restart the WebSphere Application Server Version 8.0 server until after performing the
following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Note: WebSphere Application Server Version 8.0 hosts Tivoli Access Manager specific files under the
%WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Note: In the following steps, $WASX% refers to the installation root of the source WebSphere Application
Server product, and %WAS8% refers to the installation root of the target WebSphere Application
Server product (the Version 8.0 installation root).

Procedure
1. Copy the following files from the source location to target location.

Table 6. Files to copy from the source location to the target location. Files to copy from the source location to the
target location

Source Location Target Location
%WASX%\java\jre\PDPerm.properties %WAS8%\tivoli\tam\PDPerm.properties
%WASX%\java\jre\lib\security\PdPerm.ks (if found) %WAS8%\tivoli\tam\1ib\security\PdPerm.ks
%WASX%\java\jre\1ib\PdPerm.ks (if found) %WAS8%\tivoli\tam\PdPerm.ks
%WASX%\java\jre\PolicyDirector\PDCA.ks %WAS8%\tivoli\tam\PolicyDirector\PDCA.ks

28  Securing applications and their environment



Table 6. Files to copy from the source location to the target location (continued). Files to copy from the source
location to the target location

Source Location Target Location
%WASX%\java\jre\PolicyDirector\PD.properties %WAS8%\tivoli\tam\PolicyDirector\PD.properties
%WASX%\java\jre\PolicyDirector\etc\pdjrte_paths %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_paths
%WASX%\java\jre\PolicyDirector\etc\pdjrte_mapping %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_mapping

2. Edit the PD.properties file, and change the following configuration settings:

appsvr-plcysvrs=null\:0:\:1
config_type=standalone

Make the appropriate changes to point to your Tivoli Access Manager Policy Server, for example:

appsvr-plcysvrs=pdmgrd.test.gc.au.ibm.com\:7135\:1
config_type=full

3. Edit the following four files on the target system and make sure that all of the path references are
corrected:

o %WAS8%/tivoli/tam/PdPerm.properties

o %WAS8%/tivoli/tam/PolicyDirector/PD.properties

* %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte paths

o %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte mapping
When you correct the paths, complete the following steps in order:

a. Ensure that all references from %WASX%/java/jre/PolicyDirector are changed to
%WAS8%/tivoli/tam/PolicyDirector.

b. Ensure that all references (in the PdPerm.properties file) from the%WASX%/java/jre/[security]/
PdPerm.ks file are changed to %WAS8%/tivoli/tam/pdPerm.ks.

c. Ensure that all remaining references from %WASX%/java/jre are changed to %WAS8%/java/jre.

d. Edit the %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping file. It contains the JRE->JRE
mapping: %WAS8%/java/jre=%WAS8%/java/jre.
Change this mapping to JRE->tivoli/tam: %WAS8%/java/jre=%WAS8%/tivoli/tam.

What to do next

Also see Migrating with Tivoli Access Manager for authentication enabled on multiple nodes for more
information.

Migrating with Tivoli Access Manager for authentication enabled on
multiple nodes

When Tivoli Access Manager security is configured for your existing environment and security is enabled
for multiple nodes, you can migrate to WebSphere Application Server, Version 8.0.

Before you begin
Your profiles must be migrated using the migration tools to migrate product configurations.
Important: Do not restart the WebSphere Application Server Version 8.0 server until after performing the

following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Chapter 4. Setting up, enabling and migrating security ~ 29



Note: WebSphere Application Server Version 8.0 hosts Tivoli Access Manager specific files under the
%WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Note: In the following steps, $WASX% refers to the installation root of the source WebSphere Application
Server product, and %WAS8% refers to the installation root of the target WebSphere Application
Server product (the Version 8.0 installation root).

Migration in a multi-node environment involves migrating individual nodes, starting with the deployment
manager. The following procedure discuss both the overall migration steps and the host-specific migration
steps.

Procedure
1. For the overall migration steps, do the following:

a. On the deployment manager (hostl) perform the host specific migration steps as described in step
2 below.

Start the deployment manager.
For each of the application server node/hosts (such as host2, host3 and so on), do the following:
» Perform the host specific migration steps as described in step 2 below.
« Start the node-agent and associated application server on the respective host.
2. For the host specific migration steps, do the following:
a. Copy the following files from the source location to the target location:

Table 7. Files to copy from the source location to the target location. Files to copy from the source location to the
target location

Source Location Target Location

%WASX%\java\jre\PDPerm.properties %WAS8%\tivoli\tam\PDPerm.properties
%WASX%\java\jre\lib\security\PdPerm.ks (if found) %WAS8%\tivoli\tam\lib\security\PdPerm.ks
%WASX%\java\jre\1ib\PdPerm.ks (if found) %WAS8%\tivoli\tam\PdPerm.ks
%WASX%\java\jre\PolicyDirector\PDCA.ks %WAS8%\tivoli\tam\PolicyDirector\PDCA.ks
%WASX%\java\jre\PolicyDirector\PD.properties %WAS8%\tivoli\tam\PolicyDirector\PD.properties
%WASX%\java\jre\PolicyDirector\etc\pdjrte_paths %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_paths
%WASX%\java\jre\PolicyDirector\etc\pdjrte_mapping %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_mapping

b. Edit the PD.properties file, and change the following configuration settings:
appsvr-plcysvrs=null\:0:\:1
config_type=standalone
Make the appropriate changes to point to your Tivoli Access Manager Policy Server, for example:

appsvr-plcysvrs=pdmgrd.test.gc.au.ibm.com\:7135\:1
config_type=full

c. Edit the following four files on the target system and make sure that all of the path references are
corrected:

* %WAS8%/tivoli/tam/PdPerm.properties

* %WAS8%/tivoli/tam/PolicyDirector/PD.properties

o %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte paths
o %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte mapping

When you correct the paths, complete the following steps in order:

1) Ensure that all references from %WASX%/java/jre/PolicyDirector are changed to
%WAS8%/tivoli/tam/PolicyDirector.

2) Ensure that all references (in the PdPerm.properties file) from the%WASX%/java/jre/
[security]/PdPerm.ks file are changed to %WAS8%/tivoli/tam/pdPerm.ks.

30  Securing applications and their environment



3) Ensure that all remaining references from %WASX%/java/jre are changed to %WAS8%/java/jre.

4) Edit the %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping file. It contains the JRE->JRE
mapping: %WAS8%/java/jre=%WAS8%/java/jre.
Change this mapping to JRE->tivoli/tam: %WAS8%/java/jre=%WAS8%/tivoli/tam.

What to do next

Also see Migrating with Tivoli Access Manager for authentication enabled on a single node for more
information.

Migrating unrestricted jurisdiction policy files, local_policy.jar and
US_export_policy.jar

You can migrate the unrestricted jurisdiction policy files, Tocal_policy.jar and US_export_policy.jar.
About this task

If you want to use encryption keys that are greater than 128-bits, you must use the unrestricted jurisdiction
policy files, Tocal policy.jar and US_export policy.jar.

The files are located in the [WAS_HOME/java/1ib/security directory.

If your back-level version of WebSphere Application Server is using the unrestricted jurisdiction policy files,
you must perform special steps to migrate these files to your new version of WebSphere Application
Server. If you are not using the unrestricted jurisdiction policy files, you do not need to take any action.

Procedure

1. Before migrating, copy the modified Tocal policy.jar file to a temporary location.
2. Migrate the WebSphere Application Server installation.

3. Mount the new product HFS as read/write.
4

Copy the modified Tocal_policy.jar file from step 1 to the following directory on the new WebSphere
Application Server installation: WAS _HOME/java/1ib/security.

Mount the new product HFS as read-only.
6. Start the new WebSphere Application Server installation as normal.

o

Preparing for security at installation time

Complete the following tasks to implement security before, during, and after installing WebSphere
Application Server.

Procedure

1. Install WebSphere Application Server. This step describes how to install WebSphere Application Server
on the z/OS platform. For more information, see "Installing the product and additional software" in the
InfoCenter.

2. Migrate security configurations from previous releases during installation, when you are prompted to do
so0. This step describes how to migrate security configurations from a previous release of WebSphere
Application Server to WebSphere Application Server Version 8.0.

For more information, see "Migrating product configurations" in the InfoCenter.

3. If you go into the advanced profile creation, a panel is available for changing the default settings for
your certificate, a root certificate (used to sign your personal certificate) and a personal certificate
(used to sign/encrypt data over the network). Ensure that the root certificate has a long lifetime and the
personal certificate a shorter one. Import your own personal certificate and or root certificate. If your

Chapter 4. Setting up, enabling and migrating security 31



personal certificate is signed by the certificate authority (CA), it is not important to change your root
certificate. You should also change the default keystore password to something more secure.

4. Optional: During customization of a stand-alone application server or WebSphere Application Server,
Network Deployment cell, you can enable administrative security "out of the box" by using either a
z/OS security product or WebSphere Application Server to manage users, groups, and the security
policy.

5. Secure your environment after installation. This step provides information on how to protect password
information after you install WebSphere Application Server. For more information, see
fenvironment after installation.”|

6. For information about enabling security after customization is complete, see|“Enainng security” on|
page 66]

Securing your environment after installation

WebSphere Application Server depends on several configuration files that are created during installation.
These files contain password information and need protection. Although the files are protected to a limited
degree during installation, this basic level of protection is probably not sufficient for your site. You should
verify that these files are protected in compliance with the policies of your site.

Before you begin

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords.
The default keytab file is krb5.keytab. It is important for hosts to protect their Kerberos keytab files
by storing them on the local disk, which makes them readable only by authorized users.

The files in the WAS_HOME/config and the WAS_HOME/properties directories need protection. For example,
give permission to the user who logs onto the system for WebSphere Application Server primary
administrative tasks. Other users or groups, such as WebSphere Application Server console users and
console groups need permissions as well.

The files in the WAS_HOME/properties directory that must be readable by everybody are:
* TraceSettings.properties
e client.policy

e client_types.xml

* ipc.client.props

* sas.client.props

* sas.stdclient.properties
* sas.tools.properties

* soap.client.props

* wsadmin.properties

* wsjaas_client.conf

The value for WAS_HOME directory is specified in the WebSphere z/OS Profile Management Tool or the
zpmt command when WebSphere Application Server for z/OS is installed, for both the base product and
WebSphere Application Server, Network Deployment.

Procedure

Secure files on WebSphere Application Server for z/OS systems.

1. Use the WebSphere z/OS Profile Management Tool or the zpmt command and follow the generated
instructions to customize your system.

The customization jobs that are generated perform the following functions:

» Create System Authorization Facility (SAF) WebSphere Application Server user IDs that are needed
for administrator and server processes.

32  Ssecuring applications and their environment



» Create a SAF WebSphere Application Server configuration group and add the SAF WebSphere
Application Server user IDs.

* Provide a mapping from a Java 2, Enterprise Edition (J2EE) principal to SAF user ID. You can
generate a sample mapping module or you can specify one that you created yourself.

« Associate WebSphere Application Server-started tasks with the SAF user IDs and groups that are
defined previously.

* Populate the file system with the system and property files that are needed to run WebSphere
Application Server.

» Change the ownership of these files to the WebSphere Application Server administrator.
» Create the appropriate file permissions.

All files in the WAS_HOME/config directory must have write and read access by all the members of the
WebSphere Application Server configuration group, but must not be accessible by everyone (mode
770). All files in the WAS_HOME/properties directory must have write and read access by all the
members of the WebSphere Application Server configuration group. Set the access permissions for the
following files as it pertains to your security guidelines:

e TraceSettings.properties
e client.policy

e client_types.xml

e ipc.client.props

e sas.client.props

* sas.stdclient.properties
e sas.tools.properties

* soap.client.props

* wsadmin.properties

* wsjaas_client.conf

For example, you might issue the following command: chmod 775 file_name. file_name is the name of
the file listed previously. These files contain sensitive information such as passwords.

Note: If you enabled Kerberos authentication or SPNEGO web authentication, set the access
permissions for the following files as it pertains to your security guidelines: the Kerberos
configuration file (krb5.conf or krb5.ini) and the Kerberos keytab file.

Add administrators who perform full or partial WebSphere Application Server administration tasks to
the configuration group.

Restrict access to the /var/mqm directories and the log files that are needed for WebSphere Application
Server embedded messaging or WebSphere MQ as the JMS provider. Give write access only to the
mgm user ID or members of the mgm user group.

Results

After securing your environment, only the users with permission can access the files. Failure to adequately
secure these files can lead to a breach of security in your WebSphere Application Server applications.

What to do next

If failures occur that are caused by file accessing permissions, check the permission settings.

WebSphere Application Server security for z/0S

WebSphere Application Server for z/OS supports access to resources by clients and servers in a
distributed environment. Determine how to control access to these resources and prevent inadvertent or
malicious destruction of the system or data.

Chapter 4. Setting up, enabling and migrating security 33



These are the pieces in the distributed network that you must consider:
* You must authorize servers to the base operating system services in z/OS. These services include

System Authorization Facility (SAF) security, database management, and transaction management.

— For the server clusters, you must distinguish between controllers and servants. Controllers run
authorized system code, so they are trusted. Servants run application code and are given access to
resources, so carefully consider the authorization you give servants.

— You must also distinguish between the level of authority for run-time servers and for your own
application servers have. For example, the node needs the authority to start other clusters, while
your own application clusters do not need this authority.

You must authorize clients (users) to servers and objects within servers. The characteristics of each

client requires special consideration:

— Is the client on the local system or is it remote? The security of the network becomes a consideration
for remote clients.

— Wil you allow unidentified (unauthenticated) clients to access the system? Some resources on your
system might be intended for public access, while others you might need to protect. To access
protected resources, clients must establish their identities and have authorization to use those
resources.

Authentication is the process of establishing the identity of a client in a particular context. A client can

be an end user, a machine, or an application. The term authentication mechanism in WebSphere

Application Server on z/OS refers more specifically to the facility in which WebSphere identifies an

authenticated identity, using HTTP and Java Management Extensions (JMX) facilities. When configuring

a cell, you must select an authentication mechanism. The choices for authentication mechanism include:

— Simple WebSphere Authorization Mechanism (SWAM) - only on Base Application Server, not
available on the Network Deployment configuration

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a
future release.

— Lightweight Third Party Authentication (LTPA)

— Kerberos

Information about users and groups reside in a user registry. In WebSphere Application Server, a user

registry authenticates a user and retrieves information about users and groups to perform

security-related functions, including authentication and authorization. Implementation is provided to

support multiple operating system or operating environment-based user registries. When configuring a

cell, you must select a single user registry. The user registry can be local or remote. The choices for

user registry include:

— SAF-based local registry (default when a z/OS security product is chosen for administrative security
during customization)

— Standalone Lightweight Directory Access Protocol (LDAP) registry - LDAP can be either a local or
remote registry

— Stand-alone custom user registry - A custom user registry is set up to meet unique registry needs.
WebSphere Application Server provides a simple user registry sample called the
FileBasedRegistrySample.

— Federated repositories (default when the WebSphere Application Server is chosen for administrative
security during customization)

If you need to protect resources, it is critical that you identify who accesses those resources. Thus, any
security system requires client (user) identification, also known as authentication. In a distributed network
supported by WebSphere Application Server for z/OS, clients can access resources from:

Within the same system as a server

Within the same sysplex as the server

Remote z/OS systems

Heterogeneous systems, such as WebSphere Application Server on distributed platforms, Customer
Information Control System (CICS®), or other Java Platform, Enterprise Edition-compliant systems.

34  Securing applications and their environment



Additionally, clients can request a service that requires a server to forward the request to another cluster.
In such cases, the system must handle delegation, the availability of the client identity for use by
intermediate clusters and target clusters.

Finally, in a distributed network, how do you verify that messages being passed are confidential and have
not been tampered? How do you verify that clients are who they claim to be? How do you map network
identities to z/OS identities? These issues are addressed by the following support in WebSphere
Application Server for z/OS:

* The use of Secure Sockets Layer (SSL) and digital certificates

* Kerberos

» Common Secure Interoperability, Version 2 (CSIv2)

» Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

 Distributed identity mapping feature in SAF

z/OS Profile Management Tool security settings

The z/OS Profile Management Tool allows you to specify System Authorization Facility (SAF) profile
prefixes (previously referred to as z/OS security domains) for your WebSphere Application Server for z/OS
configuration.

Note:

* You must set up a base Application Server using the WebSphere z/OS Profile Management Tool
or the zpmt command before using the Application Server to set up a WebSphere Application
Server, Network Deployment node, which is managed by the deployment manager process
(dmgr). It is critical that you LOAD saved environment variables from the base Application Server
into the deployment manager node that federates the base node. Do this before performing
security customization on the deployment manager node.

« If the APPL class is active and you have defined a profile for WebSphere Application Server,
make sure that all z/OS identities using WebSphere Application Server services have READ
permission to the WebSphere Application Server APPL profile. This includes all WebSphere
Application Server identities, WebSphere Application Server unauthenticated identities,
WebSphere Application Server administrative identities, user IDs based on role-to-user
mappings, and all user identities for system users. If you have not specified a SAF profile prefix,
the APPL profile used is CBS390 or the name used as the SAF profile prefix. If you have
specified a SAF profile prefix, the APPL profile used. When adding an administrator to the
administrative console using local operating system security, if the APPL class is activated, the
administrator's user ID must be authorized to the CBS390 (or the name specified as the SAF
profile prefix) APPL class for RACF as well. If the administrator's user ID is not authorized to
CBS390 APPL, message BBOSO0108E is issued, indicating that the credential-handling function
(RunAsGetSpecCred) failed in routine because the user is not authorized.

* Once a profile is created, it is possible to control checking the APPL class profile from the
administrative console by navigating to the SAF authorization options panel and by configuring
the check box labeled "Use APPL profile to restrict access to the server".

SAF profile prefixes and the customization jobs
You can configure a System Authorization Facility (SAF) profile prefix (previously referred to as a z/OS
security domain) by using the z/OS Profile Management Tool.

An SAF profile prefix allows an installation to add a prefix to the SAF profiles that represent their roles. For
example, an installation can define SAF class EJBRole and a SAF profile of myPrefix.administrator. A SAF
profile prefix can be defined for the entire cell or it can be defined at the WebSphere security domain-level
granularity of security permissions. SAF profile prefixes:

* Provide WebSphere security domain-level granularity of roles
» Allow different administrators to be assigned for test and production
* Are used as the APPL profile for servers in the WebSphere security domain

Chapter 4. Setting up, enabling and migrating security 35



You can configure a SAF profile prefix by using the z/OS Profile Management Tool to customize your
settings or on the SAF authorization options panel in the administrative console. This provides a new
sample set of Resource Access Control Facility (RACF) customization jobs that must only be run once
when the domain is created.

The RACF profiles that are created and checked differently because of this are:
* CBIND

+ EJBROLE

* APPL

Use CBIND profiles to restrict access to servers if no other specific profile is set. If there is no SAF profile
prefix, enter the following RACF commands:

/* CBIND profiles in case no server definition is set */
"RDEFINE CBIND CB.BIND.* UACC(NONE)"
"RDEFINE CBIND CB.* UACC(NONE)"

If there is a SAF profile prefix defined as TESTSYS, enter:

/* CBIND CB.BIND.domain_name. */
"RDEFINE CBIND CB.BIND.TESTSYS.* UACC(NONE)"
"RDEFINE CBIND CB.TESTSYS.* UACC(NONE)"

Use an APPL profile to protect WebSphere Application Server for z/OS. Sample profiles can grant a
certain level of APPL access to everyone if you use the universal access authority, UACC, and grant
access to the configuration group, unauthenticated user IDs, and all valid WebSphere Application Server
for z/OS user IDs. A UACC(NONE) will give a default access of NONE to everyone. You can control
whether the APPL class profile is used for authorization by setting the checkbox labeled "Use APPL profile
to restrict access to the server" on the SAF authorization options panel in the administrative console.

For example, if there is no SAF profile prefix, enter the following RACF commands:

RDEFINE APPL CB390 UACC(NONE)
PERMIT CB390 CLASS(APPL) ID(TSCLGP) ACCESS(READ)

And if there is a SAF profile prefix defined as TESTSYS, for example, enter:

RDEFINE APPL TESTSYS UACC(NONE)
PERMIT TESTSYS CLASS(APPL) ID(TSCLGP) ACCESS(READ)

The following EJBROLE profiles are defined for role-based authorization checks if there is no SAF profile
prefix and the configuration group is defined as TSTCFG. Note that these are the minimum set of users
requiring access to naming and administrative roles when System Authorization Facility (SAF)
authorization is selected.

The following roles must be defined for both operating system and application security. Enter the following
RACF commands:

RDEFINE EJBROLE administrator UACC(NONE)
RDEFINE EJBROLE monitor UACC (NONE)
RDEFINE EJBROLE configurator UACC(NONE)
RDEFINE EJBROLE operator UACC (NONE)
RDEFINE EJBROLE deployer UACC (NONE)
RDEFINE EJBROLE adminsecuritymanager UACC (NONE)
RDEFINE EJBROLE auditor UACC (NONE)

PERMIT administrator CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT auditor CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT adminsecuritymanager CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)

/* Setting up EJBRoles Profiles for Naming roles %/
RDEFINE EJBROLE CosNamingRead  UACC(NONE)

PERMIT CosNamingRead CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingWrite UACC(NONE)

PERMIT CosNamingWrite CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingCreate UACC(NONE)

PERMIT CosNamingCreate CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingDelete UACC(NONE)

PERMIT CosNamingDelete CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)

36  Securing applications and their environment



If there is a SAF profile prefix defined as TESTSYS and the configuration group is defined as TSTCFG,
enter the following RACF commands:

RDEFINE EJBROLE TESTSYS.administrator UACC(NONE)

RDEFINE EJBROLE TESTSYS.monitor UACC (NONE)

RDEFINE EJBROLE TESTSYS.configurator UACC(NONE)

RDEFINE EJBROLE TESTSYS.operator UACC (NONE)

RDEFINE EJBROLE TESTSYS.deployer UACC (NONE)

RDEFINE EJBROLE TESTSYS.adminsecuritymanager UACC (NONE)
RDEFINE EJBROLE TESTSYS.auditor UACC (NONE)

PERMIT TESTSYS.administrator CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT TESTSYS.auditor CLASS (EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT TESTSYS.adminsecuritymanager CLASS (EJBROLE) ID(TSTCFG) ACCESS(READ)

/* Setting up EJBRoles Profiles for Naming roles */

RDEFINE EJBROLE TESTSYS.CosNamingRead  UACC(NONE)

PERMIT TESTSYS.CosNamingRead CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingWrite UACC(NONE)

PERMIT TESTSYS.CosNamingWrite CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingCreate UACC(NONE)

PERMIT TESTSYS.CosNamingCreate CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingDelete UACC(NONE)

PERMIT TESTSYS.CosNamingDelete CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)

CBIND profile definitions for servers

If there is no SAF profile prefix, enter the following RACF commands:

RDEFINE CBIND CB.BIND.BBO* UACC(NONE)

RDEFINE CBIND CB.BIND.TSTCOO1 UACC(NONE)

PERMIT CB.BIND.BBO* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
PERMIT CB.BIND.TSTC001 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.BBO* UACC(NONE)

RDEFINE CBIND CB.TSTC0O1 UACC(NONE)

If there is a SAF profile prefix defined as TESTSYS, enter:

RDEFINE CBIND CB.BIND.TESTSYS.BBO* UACC(NONE)

RDEFINE CBIND CB.BIND.TESTSYS.TSTC001 UACC(NONE)

PERMIT CB.BIND.TESTSYS.BBO* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
PERMIT CB.BIND.TESTSYS.TSTC001 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TESTSYS.BBO* UACC(NONE)

RDEFINE CBIND CB.TESTSYS.TSTC001 UACC(NONE)

Note:
» If you wish to create a new specific server that has a jobname starting with a prefix other than
BBO*, define a specific CBIND profile by entering the following RACF commands:

RDEFINE CBIND CB.BIND.TSTC002 UACC(NONE)
PERMIT CB.BIND.TSTC002 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TSTC002 UACC(NONE)

* The samples create server definitions with specific server names (but a generic profile with a
server prefix of BBO). If you have created an alternative server prefix and wish to avoid
additional CBIND definitions, add generic CBIND profiles that reflect the new name by entering
the following RACF commands, where TST is your server jobname prefix:

RDEFINE CBIND CB.BIND.TESTSYS.TST* UACC(NONE)

PERMIT CB.BIND.TESTSYS.TST* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TESTSYS.TST* UACC(NONE)

Note:

* While the SAF profile prefix separates the RACF classes (CBIND, EJBROLE, APPL), it does not
separate the file permissions for configuration files in the Hierarchical File System (HFS). For
example, if:

— The administrator is WSADMIN in group WSCFG

— The Servant region identity is WASSRV (which must also belong to the WSCFG group)

— The user TOM has READ access to the TEST.administrator EJBROLE but not to the
PROD.administrator EJBROLE,

TOM cannot use the administration application to make changes to the PROD cell.

* A rogue application running in the TEST application server can modify HFS files in the PROD
cell. This is because the TEST server runs with the WASSRYV user ID that belongs to the

Chapter 4. Setting up, enabling and migrating security 37



WSCFG group. Both the TEST and PROD HFS files can be modified by the WSCFG group. For
maximum protection, PROD should be created and associated with a different RACF group from
TEST. Also, consider enabling application server and z/OS thread identity synchronization. This
process enables that z/OS system services, such as writing to the HFS, are performed using the
Java Platform, Enterprise Edition (Java EE) identity, instead of the servant region identity. For
more information, read about z/OS security options.

System Authorization Facility considerations for the operating system and
application levels

There are a few things to consider when enabling System Authorization Facility (SAF) authorization for the
operating system and application levels.

With WebSphere Application Server for z/OS, authorization can happen at two different levels:

* Resources can be protected at the operating system level. If a program accesses a protected resource,
the resource manager uses a call to SAF to let the security manager, typically RACF, perform an
authorization check.

* Resources can be protected at the application level. If a Java Platform, Enterprise Edition (Java EE)
application has a security constraint, the container will use a SAF call to let the security manager
(RACF) perform an authorization check.

When SAF authorization is enabled, authorization on any level is always performed by the operating
system's security manager (RACF or an equivalent product). Therefore, it is essential that users are
authenticated with a security manager (RACF) user ID. Refer to ['Summary of controls” on page 40| for
more information.

When SAF Authorization is selected during systems customization, administrative EJBROLE profiles for all
administrative roles are defined by the RACF jobs generated using the z/OS Profile Management Tool or
the zpmt command. SAF authorization (the use of SAF EJBROLE profiles to assign SAF users and
groups to roles) can be used as an authorization mechanism for all user registries. If SAF authorization is
selected on the administrative console it overrides any other authorization choice (such as Tivoli Access
Manager authorization).

If you do not select local operating system, you must map the distributed identity to a SAF user id using
one of two options. You can configure and install a Java Authentication and Authorization Service (JAAS)
login module to perform the mapping, or in WebSphere Application Server Version 8.0 you can use the
SAF distributed identity mapping feature.

Note that SAF authorization is also supported for non-local operating system registries. If you turn on SAF,
it becomes the default provider (will handle naming and administration functions). Enable SAF and it
becomes the native authorization provider.

For more information, refer to[‘Selecting a registry or repository” on page 183.|

When SAF Authorization is enabled, use SAF EJBROLE profiles to enforce Java EE roles (the profile
name is the role name for the application). Additionally, you can define a SAF profile prefix, which is an
eight or less character string that is prepended to every SAF EJBROLE profile name. Refer to the
following articles for more information:

» |“System Authorization Facility for role-based authorization” on page 5691
« [“Special considerations for controlling access to naming roles using SAF authorization” on page 576
* |“Role-based authorization” on page 5@

Note that when SAF Authorization is enabled, the Everyone and All Authenticated settings are ignored.
These attributes are managed in RACF. Everyone and All Authenticated are intended for WebSphere
Authorization when they are enabled.

38  Securing applications and their environment



Everyone
Because no authentication is required (any user can sign on to the Web application and subjects
or principals are not authenticated) for Everyone, RACF will return false if you do not take the
following into consideration. WebSphere Application Server for z/OS uses the default
(unauthenticated) user ID and uses an ACEE that checks for ACCESS( READ) access defined
with the RESTRICTED attribute (the universal access authority (UACC) does not apply). If you
want Everyone to be able to access a particular role, you must grant the default user ID READ
access.

All Authenticated
You can permit any name in the user registry to sign on to the web application (All user names are
authenticated when signing on). You must define UACC(READ) on the profile being accessed and
do not issue the RACF PERMIT command for the default user ID.

Note: The universal access authority does not apply to users defined with the RESTRICTED
attribute. For example, if you want the WebSphere unauthenticated identity to have READ
access to an EJBROLE, then you must explicitly grant the id READ permission, regardless
of the UACC setting.

When using a Local OS Registry, you can control access to console users .

If you decide at a future date to turn on SAF authorization, you must issue these RACF commands to
enable proper WebSphere Application Server operation. (Change the value of the configured default user
ID if you have chosen a different unauthenticated user ID.)

Authentication mechanisms

After you have your system up and running, the next step in setting up security is to select an
authentication mechanism. An authentication mechanism defines rules about security information (for
example, whether a credential is forwardable to another Java process) and the format of how security
information is stored in both credentials and tokens. Authentication is the process of establishing whether a
client is valid in a particular context. A client can be either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user
registry. The user registry is the user and groups accounts repository that the authentication mechanism
consults with when performing authentication. The authentication mechanism is responsible for creating a
credential which is an internal product representation of successfully authenticated client user. Not all
credentials are created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although this product provides several authentication mechanisms, only a single active authentication
mechanism can be configured at once. The active authentication mechanism is selected when configuring
WebSphere Application Server administrative security. WebSphere Application Server supports the
following authentication mechanisms:

» Lightweight Third Party Authentication (LTPA)

* Kerberos

» Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM was deprecated in WebSphere Application Server Version 8.0 and will be removed in a
future release.

Specifics about identification and authentication

For identification, each controller and servant start procedure must have its own user ID and you must
define it in the STARTED class. Because you should give differing resource authorizations to each, you
should give differing user IDs to controllers and servants.

Chapter 4. Setting up, enabling and migrating security 39



Note: For identification, each controller and servant start procedure must have its own user ID and you
must define it in the STARTED class. Because you should give differing resource authorizations to
each, you should give differing user IDs to controllers and servants

Additional user IDs are required for installation. We provide the definitions for these user IDs in our RACF
sample. See the customized instructions produced when you run the z/OS Profile Management Tool.

e User IDs for controllers and servants.

» Auser ID for the Installation Verification Test (IVT) and its application cluster. Our RACF sample uses
WSIVT.

* Auser ID called WSADMIN used by the Administration application.

» A default local and remote user ID associated with each cluster through the administrative console. We
use WSGUEST.

Regarding authentication, an operator starts a cluster by using the START command and the controller
start procedure. Authentication of the start procedure's user ID is made by virtue of the fact that an
operator started the start procedure-that is, no password is required. If you want to restrict an operator's
ability to start clusters, do so through the OPERCMDS class in RACF.

The WAS installer automatically generates the STARTED class profile to assign the User ID to WebSphere
Application Server. If you are not using AUTO UID and AUTO GID in the OMVS segment for the
WebSphere Application Server STC User ID, make sure that you have UNIQUE UID and GID assigned to
the WebSphere Application Server STC. If they are not unique, you might either have problems starting
WebSphere Application Server or in logging in to the administrative console if admin security is enabled.

All WebSphere user ids and groups must have an OMVS segment with a valid and unique UID or GID.

Authorization checking

Each controller, servant, and client must be associated with an MVS™ user ID. When a request flows from
a client to the server or from a server to another server, WebSphere Application Server for z/OS passes
the user identity (client or server) with the request. This way, each request is performed on behalf of the
user identity and the system checks to see if the user identity has the authority to make such a request.

When security is enabled, WebSphere Application Server administrative and Java EE authorizations can
be performed using the identity authenticated with the configured user registry or repository.

When the user registry or repository is configured to be the local operating system, the operating system
and WebSphere Application Server identities are the same. You can configure authorization to use either
WebSphere Authorization, System Authorization Facility (SAF) authorization, or a Java Authorization
Contract for Containers (JACC) external provider.

Summary of controls:

Each controller, servant, and client must have its own MVS user ID. When a request flows from a client to
the cluster or from a cluster to a cluster, WebSphere Application Server for z/OS passes the user identity
(client or cluster) with the request. Thus, each request is performed on behalf of the user identity and the
system checks to see if the user identity has the authority to make such a request. The tables in this
article outline System Authorization Facility (SAF) and non-SAF authorizations.

Summary of z/OS security controls independent of administrative security setting

In a WebSphere Application Server for z/OS configuration, there are many different types of processes:
* Deployment managers
* Node agents

40 Ssecuring applications and their environment



* Location service daemons
* WebSphere Application Servers

Each of these can be viewed as either a WebSphere Application Server for z/OS controller process or pair

of processes (a controller and servant).

Each controller and servant must run under a valid MVS user ID assigned as part of the definition of a
started task. This MVS user ID must have a valid UNIX Systems Services user identity (UID) and be
connected to WebSphere configuration group that is common to all servers in the cell with a valid MVS
and UNIX System Services group identity (GID) identity.

The following table summarizes the controls used to grant authorizations needed by these controllers and
servants to access operating system resources. By understanding and using these controls, you can
control all resource accesses in WebSphere Application Server for z/OS.

Table 8. Summary of controls and SAF authorizations.

This table contains a summary of controls and their SAF authorizations.

Control Authorization
DATASET class Access to data sets
DSNR class Access to Database 2 (DB2%)

FACILITY class (BPX.WLMSERVER)

Access to the BPX.WLMSERVER profile to perform
Workload Manager (WLM) enclave management in the
servant. Without this access, classification is not
performed.

FACILITY class (IMSXCF.OTMACI)

Access to Open Transaction Manager Access (OTMA) for
Information Management System (IMS™), and access to
the BPX.WLMSERVER profile

HFS file permissions

Access to Hierarchical File System (HFS) files

LOGSTRM class

Access to log streams

OPERCMDS class

Access to startServer.sh shell script and Integral
JMSProvider

SERVER class

Access to controller by a servant

STARTED class

Associate user ID (and optionally group ID) to start
procedure

SURROGAT class (*.DFHEXCI)

Access to EXCI for Customer Information Control System
(CICS) access

Tthe WebSphere z/OS Profile Management Tool or the zpmt command and Resource Access Control
Facility (RACF) customization jobs set these up for the initial server settings for the *'ed profiles.

Note: Examples of authorizations for the other profiles can be found in the generated exec file in
HLQ.DATA(BBOWBRAC). The selection of an identity to be used for authorization to native connector
resources (CICS, DB2,, IMS) is dependent on the:

* Type of connector

* Resource authentication (resAuth) setting of the deployed application

* Availability of an alias
« Security setting

Chapter 4. Setting up, enabling and migrating security ~ 41




Resource managers such as DB2, IMS, and CICS have implemented their own resource controls,
which control the ability of clients to access resources. When resource controls are used by DB2,
use the DSNR RACF class (if you have RACF support) or issue the relevant DB2 GRANT
statements. You can:

* Access OTMA for IMS through the FACILITY Class (IMSXCF.0TMACI)

* Access EXCI for CICS through the SURROGAT class (*.DFHEXCI)

» Control access to data sets through the DATASET class and HFS files through file permission

Note that MVS SAF Authorization to all other MVS subsystem resources accessed by J2EE
applications is typically performed using the identity of the servant MVS user ID. Refer to |“Java|
|Platform, Enterprise Edition identity and an operating system thread identity” on page 77| for more
information.

The BPX.WLMSERVER profile in the FACILITY class is used to authorize an address space to use
the Language Environment® (LE) run-time services that interface with workload management
(WLM) to perform workload management within a server region. These LE run-time services are by
used by WebSphere Application Server to extract classification information from enclaves and to
manage the association of work with an Enclave. Because unauthorized interfaces are used to
manipulate WLM enclaves for server region work that has not been passed from a controller to a
servant, WebSphere Application Server servants should be permitted READ access to this profile.
Without this permission, attempts to create, delete, join, or leave a WLM enclave fails with a
java.lang.SecurityException.

Summary of z/OS security controls in effect when administrative and application security are
enabled

When administrative and application security are enabled, SSL must be available for encryption and
message protection. In addition, authentication and authorization of J2EE and administrative clients is
enabled.

The FACILITY class authorization needed for SSL services and the definition of SAF keyrings are required
when administrative security is enabled.

When a request flows from a client to WebSphere Application Server or from a cluster to a cluster,
WebSphere Application Server for z/OS passes the user identity (client or cluster) with the request. Thus
each request is performed on behalf of the user identity and the system checks to see if the user identity
has the authority to make such a request. The tables in this article outline z/OS specific authorizations
using SAF.

The following table summarizes the controls used to grant authorizations to resources. By understanding
and using these controls, you can control access to all resources in WebSphere Application Server for
z/OS.

Table 9. Summary of controls and SAF authorizations.

This table contains a summary of controls and their SAF authorizations.

Control Authorization

CBIND class Access to a cluster

EJBROLE or GEJBROLE class Access to methods in enterprise beans
FACILITY class (IRR.DIGTCERT.LIST and SSL key rings, certificates, and mappings
IRR.DIGTCERT.LISTRING)

FACILITY Class (IRR.RUSERMAP) Kerberos credentials

FACILITY Class (BBO.SYNC) Enables Synch to OS Thread Allowed

42 Securing applications and their environment



Table 9. Summary of controls and SAF authorizations (continued).

This table contains a summary of controls and their SAF authorizations.

Control Authorization

FACILITY Class (BBO.TRUSTEDAPPS) Enables trusted applications

SURROGAT Class (BBO.SYNC) Enables Synch to OS Thread Allowed

PTKTDATA class PassTicket enabling in the sysplex

Set OS Thread Identity to RunAs Identity J2EE cluster property used to enable the start identity for
non-J2EE resources

Enabling trusted applications:

From a z/OS perspective, trusted applications imply that the WebSphere Application Server started task
control (STC) is to be considered a "trusted application" and is allowed to change System Authorization
Facility (SAF) identity on the thread of execution. When a z/OS applications (such as WebSphere
Application Server) are trusted, the security infrastructure allows the creation of MVS credentials without
using a password, passticket, or certificate as an authenticator, while still preserving the integrity of the
MVS system.

Through the use of the FACILITY class and BBO.TRUSTEDAPPS class profile, trusted applications (as a
general rule) are needed when using SAF as the local operating system user registry or when you plan to
use SAF authorization. When WebSphere Application Server is configured to use: SAF security for a local
operating system user registry, SAF authorization, or Sync to Thread Allowed, trusted applications must be
enabled so that MVS system integrity remains preserved. Trusted applications meet the MVS integrity
rules so that unauthorized callers are NOT allowed to call sensitive WebSphere Application Server code to
perform authorized functions. When using SAF, you must define the trusted application within the
Resource Access Control Facility (RACF) or an equivalent product. The SAF authorization resource rules
need to define WebSphere Application Server as the trusted application with the authority to change the
identity on thread execution. In this way, WebSphere Application Server and MVS can work together
without jeopardizing each other's integrity.

Using FACILITY class profiles

You enable the trusted applications by ensuring that the WebSphere Application Server has SAF access of
READ to the RACF class of FACILITY and profile of BBO.TRUSTEDAPPS.<cell short name>.<cluster short

name>.

Once defined, the trusted applications need to be enabled. You use the FACILITY class profile to give the
RACF administrator control over the enabling of trusted applications. The following examples illustrates
how you use the FACILITY class and the BBO.TRUSTEDAPPS class profile to provide this control.

» Generic Example:

RDEF FACILITY BBO.TRUSTEDAPPS.#*UACC (NONE)
PERMIT BBO.TRUSTEDAPPS.#* CLASS(FACILITY) ID(MYCBGROUP) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

» Specific Example with a specific server identified by a cell short name of SY1, a cluster short name of
BBOCO001, and a controller region userid of MYSTCCR.

RDEF FACILITY BBO.TRUSTEDAPPS.SY1.BBOCO0O1 UACC NONE
PERMIT BBO.TRUSTEDAPPS.SY1.BB0OC00O1 CLASS(FACILITY) ID(MYSTCCR) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

System Authorization Facility classes and profiles:

Chapter 4. Setting up, enabling and migrating security ~ 43



When you are using Resource Access Control Facility (RACF) or System Authorization Facility (SAF) you
must consider:

1. Using roles for enterprise beans and web applications, and servlets
2. Using RACEF class profiles
a. Using CBIND to access servers and objects in the servers
Using SERVER to access controllers using servant regions
Using STARTED to associate user IDs and groups with started procedures
Using APPL to restrict access of authenticated users to applications in the server

Using FACILITY to establish permission to enable Synch to OS Thread Allowed and allow mapping
of distributed identities to SAF identities using the JAAS mapping login modules.

f. Using SURROGAT to optionally establish permission to enable Synch to OS Thread Allowed
3. Creating multiple security configurations within a sysplex
4. Generating new user IDs and Profiles for a new server
5. Using minimalist profiles

© 2 0T

Roles for Enterprise JavaBeans and web applications, and servlets

Roles are associated with Java Platform, Enterprise Edition (Java EE) applications. Modules within the
applications refer to roles using the role reference that points to the application role. Access to web
applications, servlets, or EJB methods is based upon the user or caller. Roles are associated with web
applications, and servlets or enterprise beans at assembly time. The role needed to use a servlet or EJB
method is named in the application's deployment descriptors.

Which users and groups have which roles is determined using RACF profiles in the EJBROLE class (if
SAF authorization is selected). If a user is in the access list of an EJBROLE profile, the user has that role.
If a group is in the access list of an EJBROLE profile, users in that group have that role. If the EJBROLE
profile has ACCESS(READ), all users have that role.

The SAF profile prefix (previously referred to as z/OS security domain), if specified, becomes a prefix used
by WebSphere Application Server for z/OS and RACF when checking EJBROLE profiles. This provides
WebSphere SAF profile prefix-level granularity of roles.

For example:

Test
Cell has Security Domain=TEST Production Cell has Security Domain=PROD

For example, an application using role Clerk is deployed on both cells. On the test cell, users need READ
access to the EJBROLE profile TEST.Clerk. On the production cell, users need READ access to the
EJBROLE profile PROD.Clerk.

The following profiles are defined in the RACF EJBROLE class for administrative authorization:
administrator, configurator, monitor, operator, deployer, adminsecuritymanager, and auditor.

Refer to [‘System Authorization Facility for role-based authorization” on page 569 for more information on
how SAF can be used for Java EE-based role authorization.

Using the RACF profiles

It is important to understand the security mechanisms used to protect the server resources using the
CBIND, SERVER, and STARTED classes in RACF (or your equivalent security product). You must also
understand the techniques for managing the security environment.

The RACF profiles that protect the WebSphere Application Server for z/OS resources use the following
classes:

44 Securing applications and their environment



CBIND: Use this class to access to servers, and access to objects in the servers

SERVER: Use this class to access to controllers by servant regions

STARTED: Use this class to associate user IDs and groups to started procedures

APPL: Use this class to restrict access of authenticated users to applications running on the server
FACILITY: Use this class to:

» associate user IDs and groups to the Synch to OS Thread Allowed option

» control which security configurations are allowed to map distributed identities to SAF identities using
the JAAS mapping login modules

6. SURROGAT: Use this optional class to associate user IDs and groups to the Synch to OS Thread
Allowed option

SE A

Refer to [‘System Authorization Facility considerations for the operating system and application levels” on|
|page 38| for more information.

Basic information about the RACF profiles used by WebSphere Application Server for z/OS can be found
in the SAF-based authorization. This section adds some additional details about the CBIND, SERVER,
FACILITY, SURROGAT, and STARTED class profiles.

User IDs and Group IDs

When creating a profile for an application server, the BBOCBRAK job generates the RACF commands. When
creating a profile for a cell, deployment manager, job manager, or admin agent, the job name is
BBODBRAJ. When creating a profile for a custom node, the job name is BBOMBRAJ. Enter the following
information:

CR = Controller Region SR = Servant
Region CFG = Configuration (group) server = server short name cluster = generic
server (short) name (also called cluster transition name)

Six users and six groups, defined as follows, are shown symbolically to help you understand how they are
used in the various permissions later on:

<CR_userid> <CR_groupid>, <CFG_groupid> <SR_userid> <SR_groupid>, <CFG_groupid> <demn_userid> <demn_groupid>,
<CFG_groupid> <admin_userid> <CFG_groupid> <client_userid> <client_groupid> <ctracewtr_userid> <ctracewtr_groupid>

Below are the various profiles used to protect the WebSphere Application Server for z/OS resources, along
with the permissions and access levels.

Using CBIND class profiles

There are two formats and levels of CBIND class profiles for protecting access to application servers and
objects in those servers:

CBIND Class profiles - access to generic servers CB.BIND.<cluster> UACC(READ); PERMIT <CR_group> ACC(CONTROL)
CBIND Class profiles - access to objects in servers
CB.<cluster> UACC(READ) PERMIT <CR_group> ACC(CONTROL)

If you are using “SAF profile prefix”, the CBIND profiles are qualified by the “profilePrefix” as follows:

CBIND Class profiles - access to generic servers CB.BIND.<profilePrefix>.<cluster> UACC(READ)
CBIND Class profiles - access to objects in servers
CB.<profilePrefix>.<cluster> UACC(READ)

CBIND profiles control access to WebSphere Application Server for z/OS servers, including web servers
running the WebSphere Application Server plug-in, and to objects in the servers, from Java application
clients and other WebSphere Application Server servers. For access to servers, enter:

CB.CBIND.<cluster>
CB.CBIND.<SAF profile prefix>.<cluster>

For access to objects within servers, enter:

CB.<cluster> CB.<SAF profile prefix>.<cluster>

Chapter 4. Setting up, enabling and migrating security ~ 45



Using SERVER class profiles

There are currently two formats of the SERVER class profiles for protecting access to the server
controllers.
SERVER
class profiles — access to controllers using static Application Environments
CB.<server>.<cluster> UACC(NONE) PERMIT <SR_userid> ACC(READ)
SERVER class profiles — access to controllers using dynamic Application

Environments CB.<server>.<cluster>.<cell> UACC(NONE) PERMIT <SR userid>
ACC (READ)

In using the WebSphere z/OS Profile Management Tool or the zpmt, both formats are predefined, and one
of these is actually required at runtime. The required format is determined dynamically by the WebSphere
Application Server for z/OS Runtime based on the availability of Dynamic Application Environment (DAE)
support. The following command provides access to controllers using static Application Environments:

RDEFINE
CB.&<server<cluster> UACC(NONE); PERMIT &<SR_userid> ACCESS(READ)

For this example, server = server name, cluster = cluster name or cluster transition name if a cluster has
not yet been created, and SR is the MVS user ID for the server region.

The following command provides access to controllers using dynamic Application:

CB.& <server>.&<cluster>.<cell>
UACC(NONE) ; PERMIT &<SR_userid> ACC(READ)

For this example, server = server name, cluster = cluster name or cluster transition name if a cluster has
not yet been created, cell = cell short name, and SR is the MVS user ID for the server region.

SERVER class profiles control whether a servant can call authorized routines in the associated controller.

For access to Controller using Static Application Environment, enter:

CB.<server>.<cluster>
CB.<SAF profile prefix>.<server>.<cluster>

For access to Controller using Dynamic Application Environment, enter:

CB.<server>.<cluster>.<cell>
22

Using STARTED class profiles

There are three formats of STARTED class profiles used to assign user IDs and group IDs to controllers:

STARTED Class profiles - (MGCRE) - for control regions, daemons, and Node agents
<<CR_proc>.<CR_jobname> STDATA(USER(CR_userid) GROUP(CFG_groupid))
<demn_proc>.* STDATA(USER(demn_userid) GROUP(CFG_groupid))

STARTED Class profiles - (ASCRE) - for servant regions and adjuncts
<SR_jobname>.<SR_jobname> STDATA(USER(SR_userid) GROUP(CFG_groupid))

STARTED Class profiles for IJP - (MGCRE)
<MQ_ssname>.* STDATA(USER(IJP_userid) GROUP(CFG_groupid)) - These IJPs don't exist in WAS 6.1

STARTED class profiles are generated to assign user IDs to the various WebSphere Application Server for
z/OS regions. Regions include:

* Daemon

» Deployment Manager (controller and servant)

* Node Agent

» Application Servers (controller, servant and ajunct)
» Admin agents (controller and servant)

» Job managers (controller and servant)

Using APPL class profiles

46 Securing applications and their environment



An APPL class profile controls whether an authenticated user can use any applications in the cell. If a SAF
profile prefix is specified, the APPL class profile name will be the SAF profile prefix name. If SAF profile
prefix is not specified, the APPL class profile name will be CBS390. Refer to [‘System Authorization Facility|
[considerations for the operating system and application levels” on page 38|

The APPL class profile only takes effect when both the APPL class is active in RACF and when the option
to use the APPL profile is enabled in WebSphere. The WebSphere option can be enabled or disabled from
the administrative console by navigating to the SAF authorization options panel and setting the checkbox
"Use APPL profile to restrict access to the server". For more information on this setting, read about
[System Authorization Facility authorization” on page 573

Creating multiple security configurations within a cell

You might require distinct sets of profiles within a given cell to separate logical WebSphere security
domains in your enterprise, (for example, test, and production users).

You can define a SAF profile prefix during customization using the z/OS Profile Management Tool, the
zpmt command, or the SAF Authorization options panel in the administration console.

Use the WebSphere Application Server for z/OS administrative console to set a SAF profile prefix under
Security > Global security > External authorization provider > System Authorization Facility (SAF)
authorization > Configure > SAF profile prefix, which creates the following property in the security.xml
file.

xmi:id="Property_47" name="com.ibm.security.SAF.profilePrefix"
value="<profile_prefix>" required="false"/>
When a SAF profile prefix identifier is set, the following profile definitions and checks are affected:

Table 10. Profile definitions and checks affected when SAF profile prefix identifier is set..

This table lists the profile definitions and checks affected when SAF profile prefix identifier is set.

Class No SAF profile prefix With a SAF profile prefix

CBIND CB.clustername CB.<profilePrefix>.clustername
CB.BIND.clustername CB.BIND.<profilePrefix>.clustername

EJBROLE ApplicationRoleName <profilePrefix>.ApplicationRoleName

APPL CBS390 <profilePrefix>

Generating new user IDs and Profiles for a new Server

If you want to use unique user IDs for each new application server, you must define these users, groups,
and profiles in the RACF database.

Through using the WebSphere z/OS Profile Management Tool or the zpmt command, you need to edit a

copy of the BBOWBRAK member (or BBODBRAK depending on the type of profile) job's target .DATA

partitioned data set, and change the following entries to the new users, groups, and unique New_server

name, and New_cluster name profiles:

» If unique user IDs for the new servers are desired, define three new users and connect them to the
following groups:

<New_CR userid> <CR _groupid>, <CFG_groupid>

<New_SR_userid> <<SR_groupid>, <CFG_groupid>

<New_ADJUNCT userid> <<ADJUNCT groupid>, <CFG_groupid>

<New_client _userid> <client_groupid>

» CBIND class profiles for the new cluster (generic server short name):
— CB.BIND.<New_cluster>

Chapter 4. Setting up, enabling and migrating security ~ 47



— CB.<New_cluster>
* SERVER class profiles for the new server and cluster:
— CB.<New_server>.<New_cluster>
— C(B.<New_server>.<New_cluster>.<cell>
« STARTED class profiles for the new server's controller and servant's regions:
— <CR proc>.<New CR_jobname> STDATA(USER(New CR userid) GROUP(CFG_groupid))
— <New_SR_jobname>.* STDATA(USER(New SR userid) GROUP(CFG_groupid))
— <New_ADJUNCT_jobname>.* STDATA(USER(New ADJUNCT userid) GROUP(CFG_groupid))

Using FACILITY and SURROGAT class profiles (Synch to OS Thread Allowed Option)

The FACILITY and SURROGAT class profiles give the RACF administrator control over the use of Synch
to OS Thread Allowed.

Attention: If these profiles are not defined in RACF, Sync to thread will not be allowed, and the RACF
administrator will use the server ID.

* FACILTY class profile BB0.SYNC.<cell short name>.<cluster short name>

— If the WebSphere controller does not have access to the profile, Synch to OS Thread Allowed will be
disabled.

— If the WebSphere controller has READ access to profile. Sync to OS Thread Allowed can be used,
but it is limited to security environments that represent certain users. The SURROGATE class profile
(below) needs to be defined.

— The WebSphere controller has CONTROL access to the profile. Sync to OS Thread Allowed can be
used to build security environments to represent any user. The SURROGATE class profile will not be
checked.

* SURROGAT class profile BB0.SYNC.<user ID>

— If the WebSphere controller only has READ access to the FACILITY class profile of BB0O.SYNC.<cell
short name>.<cluster short name> that enables Synch to OS Thread Allowed, the SURROGAT
class profile check is used to verify that the WebSphere servant is authorized to establish a security
environment for the target user.

— Class profile checks are consistent with other products that perform similar functions.
The formats and use of the FACILITY and SURROGAT class profiles is as follows:

RDEF FACILITY BBO.SYNC.<cell short name>.<cluster short name> UACC NONE

PE BBO.SYNC.<cell short name>.<cluster short name> CLASS(FACILITY)ID(<CR userid>) ACC(READ or CONTROL)
RDEF SURROGAT BBO.SYNC.<SR userid> UACC NONE

PE BBO.SYNC.<application> CLASS(SURROGAT) ID(<SR userid>)ACC(READ)

Note: The cluster short name is the server generic short name if no clustering is defined. Also, the
SURROGAT class profile needs to be placed in a (RACLISTed) memory table to improve the
performance of the access checks.

If the <CR userid> is given CONTROL access, then any individual user ids that request Synch to OS Thread

Allowed are allowed to synch. If the <CR userid> is given READ access then any individual user ids that

request Synch to OS Thread Allowed must also have READ access to a SURROGAT class profile that gives

the application user id explicit permission to Synch to OS Thread Allowed in the servant region (SR). For
example, assume a system with cell short name of SY1, a cluster short name (the server generic short
name) of BBOCO001, CR userid of CBSYMCR, SR userid of CBSYMSR, and an application running under
the userid of JavaEEID. The following commands would be used to establish Synch to OS Thread Allowed
control.

RDEF FACILITY BBO.SYNC.SY1.BBOCOO1 UACC NONE

PE BBO.SYNC.SY1.BBOCOO1 CLASS(FACILITY) ID(CBSYMCR) ACC(READ)
RDEF SURROGAT BBO.SYNC.J2EEID UACCNONE

PE BBO.SYNC.J2EEID CLASS(SURROGAT) ID(CBSYMSR) ACC(READ)

Using FACILITY class profiles (Enabling Trusted Applications)

48  Securing applications and their environment



The FACILITY class profile gives the RACF administrator control over the enabling of trusted applications.
To enable trusted applications, you must define the following FACILITY class profile and give the controller
region user id READ access to it.

RDEF FACILITY BBO.TRUSTEDAPPS.<cell

short name>.<cluster short name> UACC NONE PE
BBO.TRUSTEDAPPS.<cell short name>.<cluster

short name> CLASS(FACILITY) ID(CR userid) ACC(READ)

The following generic example can be user for all servers:

RDEFINE FACILITY BBO.TRUSTEDAPPS.mycel101.**UACC(NONE)
PERMIT BBO.TRUSTEDAPPS.mycel101.** CLASS(FACILITY) ID(MYCBGROUP) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

The following example is for a specific server, that is, a system with a cell short name of SY1, a cluster
short name (the server generic short name) or BBOCO001, and a controller region userid of CBSYMCR:

RDEF FACILITY BBO.TRUSTEDAPPS.SY1.BBOCOO1 UACC
NONE PE BBO.TRUSTEDAPPS.SY1.BBOCOO1 CLASS(FACILITY) ID(CBSYMCR) ACC(READ)

Using minimalist profiles

To minimize the number of users, groups, and profiles in the RACF data set, you can use one user ID,
one group ID, and very generic profiles so they cover multiple servers in the same cell. This technique can
also be used with Integral Java Message Service provider and WebSphere Application Server, Network
Deployment configurations.

The advantages of using minimalist profiles include having fewer:
» Profile definitions to define
 Digital certificates to consider for interprocess Secure Sockets Layer communication

A disadvantage is that you must more closely monitor applications because if multiple servers run with the
same user IDs or groups, an application can cause problems in one server and potentially corrupt the
configuration of its own server (for example, by turning security off) and other servers as well.

Cluster authorizations:

This section discusses the kinds of authorization checking WebSphere Application Server for z/OS does
for a clusters. Servants must have access to profiles in the RACF SERVER class. This controls whether a
servant can call authorized routines in the controller.

The following explains the kinds of authorization checking WebSphere Application Server for z/OS does for

clusters.

1. Servants must have access to profiles in the RACF SERVER class. This controls whether a servant
can call authorized routines in the controller.

Controllers do not require such access control. Only authorized programs, loaded from Authorized
Program Facility (APF) libraries, run in controllers.

2. Resource managers such as DB2, IBM Information Management System (IMS), and Customer
Information Control System (CICS) have implemented their own resource controls, which control the
ability of applications to access resources.

When resource controls are used by DB2, all controllers and servants need to be granted access to
the relevant resources. You can grant access by using the DSNR RACF class (if you have RACF
support) or by issuing the relevant DB2 GRANT statements.

Access to Open Transaction Manager Access (OTMA) for IMS access is accomplished through the
FACILITY Class (IMSXCF.OTMACI). Access to EXCI for CICS is accomplished through the
SURROGAT class (*.DFHEXCI).

You can control access to data sets through the DATASET class and hierarchical file system (HFS)
files through file permissions.

Chapter 4. Setting up, enabling and migrating security ~ 49



Server process authorization checking:
You can specify specific access restrictions to z/OS resources.

To control access to WebSphere Application Server for z/OS resources:
* As a general rule, give greater authority to controllers and less authority to servants.

Table 11. Level of trust and authority for regions.

This table indicates the level of trust and authority for regions.
Region Level of trust and access authority

Controller Note:
» Contains WebSphere Application Server for z/OS system code.
* Trusted, runs APF-authorized
» Contains communication ports and manipulation of System Authorization Facility
(SAF) client identities

Servant Note:
» Contains WebSphere Application Server for z/OS system code, application code, and
pluggable service providers (such as jdbc drivers)
» Supports Java 2 Security to protect sensitive data and system services
Untrusted

* Regarding the WebSphere Application Server for z/OS run-time clusters, the general rule is to give less
authority to the location service daemon, and greater authority to the node, as explained in the table
below:

Table 12. Assigning authorities to WebSphere Application Server for z/OS run-time cluster control and servants.

This table lists the required authorities for z/OS run-time cluster control and servants.

Run-time Cluster Region Required Authorities
Location service Control * STARTED class
daemon » Access to Workload Manager (WLM) services

e Access to DNS

* OPERCMDS access to START, STOP, CANCEL, FORCE, and
MODIFY other clusters

* |IRR.DIGTCERT.LIST and IRR.DIGCERT.LISTRING in FACILITY

(SSL)
Node Control STARTED class
Controller Control e SSL
* Kerberos

* READ authority to the SERVER class,
« OPERCMDS access to START, STOP, CANCEL, FORCE and
MODIFY other servers

Servant Control The following classes:
« OTMA
 SERVER
« DSNR,

+ DATASET

+ SURROGATE
« STARTED

*+ LOGSTREEAM

* Remember to protect the Resource Recovery Services (RRS) log streams. By default, UACC is READ.

» Protect the WebSphere Application Server for z/OS properties XML files, especially if they contain
passwords. For more information, see the WebSphere Application Server variables in the administrative
console or the documentation.

» Deployment Manager also needs permission to start and stop servers.

50 Securing applications and their environment



Secure Sockets Layer security for WebSphere Application Server for z/0S

This topic assumes you understand the Secure Sockets Layer (SSL) protocol and how cryptographic
services system SSL works on z/OS. SSL is used by multiple components within WebSphere Application
Server to provide trust and privacy. Such components include the built-in HTTP transport, the Object
Request Broker (ORB) (client and server), and the secure Lightweight Directory Access Protocol (LDAP)
client. Configuring SSL is different between client and server with WebSphere Application Server. If you
want the added security of protected communications and user authentication in a network, you can use
SSL security.

SSL is an integral part of the security provided by WebSphere Application Server for z/OS. It is activated
when administrative security is enabled. When administrative security is enabled, SSL is always used by
the administrative subsystem to secure administrative commands, the administration console, and
communications between WebSphere Application Server processes.

The WebSphere Application Server for z/OS runtime can optionally use SSL when server security is
enabled in these cases:

» SSL is used to protect web application when confidentiality is specified as a Web Application Security
Constraint. A transport guarantee of CONFIDENTIAL or INTEGRAL guarantees that the communication
between the web client and the web server is secured and is transported over HTTPS (HTTP SSL). In
addition, you can use SSL to perform client authentication when the security constraint (CLIENT_CERT)
is specified during application deployment .

» SSL can be used to protect Inter-ORB Protocol (IIOP) requests when SSL/TLS is supported (or
required) in the Common Secure Interoperability version 2 (CSIv2) transport settings. These are set by
clicking Security > Global security. Under RMI/IIOP security, click CSIv2 inbound transport or CSlv2
outbound transport.

» SSL can be used to protect communications between an LDAP client and server when the active user
registry is LDAP.

When configuring SSL, there are two types of SSL repertoires on WebSphere Application Server for z/OS.
The type of repertoire relates to the underlying services used to process SSL.

» Java Secure Socket Extension (JSSE) must be selected as the SSL repertoire type for administrative
requests using the HTTP/SOAP Connector. JSSE repertoires can (with APAR PQ77586 applied) specify
either a SAF keyring for the keystore or truststore, or an hierarchical file system (HFS) file.

Note: All SSL configuration repertoires of the System Secure Sockets Layer (SSSL) type, except those
that belong to the daemon, are converted to the Java Secure Socket Extension (JSSE) type.
System SSL is now only used by the Daemon Address Space because the daemon runs without a
JVM and JSSE is only supported in Java.

This topic gives a brief explanation of the SSL protocol and how SSL works on z/OS. For information
about the SSL protocol, go to the following website: |http://home.netscape.com/eng/ssl|3/ssl-toc.html|

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server to
provide trust and privacy. These components are the built-in HTTP Transport, the ORB (client and server),
and the secure LDAP client. Configuring SSL is different between client and server with WebSphere
Application Server. If you want the added security of protected communications and user authentication in
a network, you can use Secure Sockets Layer (SSL) security. The SSL support in WebSphere Application
Server for z/OS has several objectives:

» To provide ways accepted by the industry to protect the security of messages as they flow across the
network. This is often called transport layer security. Transport Layer Security (TLS) is a function that
provides privacy and data integrity between two communicating applications. The protection occurs in a
layer of software on top of the base transport protocol (for example, on top of TCP/IP).

SSL provides security over the communications link through encryption technology, ensuring the
integrity of messages in a network. Because communications are encrypted between two parties, a third

Chapter 4. Setting up, enabling and migrating security 51


http://home.netscape.com/eng/ssl3/ssl-toc.html

party cannot tamper with messages. SSL also provides confidentiality (ensuring the message content
cannot be read), replay detection, and out-of-sequence detection.

» To provide a secure communications medium through which various authentication protocols can
operate. A single SSL session can carry multiple authentication protocols, that is, methods to prove the
identities of the parties communicating.

SSL support always provides a mechanism by which the server proves its identity. The SSL support on

WebSphere Application Server for z/OS allows these ways for the client to prove its identity:

— Basic authentication (also known as SSL Type 1 authentication), in which a client proves its identity
to the server by passing a user identity and password (or password phrase) known by the target
server.

With SSL basic authentication:

- A z/OS client can communicate securely with WebSphere Application Server for z/OS with a user
ID and password as defined by the CSIv2 user name and password mechanism Generic Security
Services Username Password (GSSUP).

- A WebSphere Application Server client can communicate securely with a WebSphere Application
Server for z/OS server by using a MVS user ID and password (or password phrase).

- Because a password is always required on a request, only simple client-to-server connections can
be made. That is, the server cannot send a client's user ID to another server for a response to a
request.

— Client certificate support, in which both the server and client supply digital certificates to prove their
identities to each other.

When digital certificates are provided for authentication to WebSphere Application Server for z/OS
the decrypted certificate is mapped to a valid user identity in the enabled user repository. Web
applications can have thousands of clients, which makes managing client authentication an
administrative burden. When the local operating system is the enabled user repository on
WebSphere Application Server for z/OS, SAF certificate name filtering allows you to map client
certificates, without storing them, to MVS user IDs. Through certificate name filtering, you can
authorize sets of users to access servers without the administrative overhead of creating MVS user
IDs and managing client certificates for every user.

— SSL support always provides a mechanism by which the server proves its identity. A variety of
mechanisms can be used to prove the clients identity. The SSL v3 (and TLS) protocol provides for
the ability for client digital certificates to optionally be exchanged. These certificates can be used for
authentication.

— CSIv2 identity assertion, which provides support for z/OS principals, X501 distinguished names, and
X509 digital certificates.

— ldentity assertion, or trusted association, in which an intermediate server can send the identities of its
clients to a target server in a secure yet efficient manner. This support uses client certificates to
establish the intermediate server as the owner of an SSL session. Through the Resource Access
Control Facility (RACF), the system can check that the intermediate server can be trusted (to confer
this level of trust, CBIND authorization is granted by administrators to RACF IDs that run secure
system code exclusively). After trust in this intermediate server is established, client identities (MVS
user IDs) need not be separately verified by the target server; those client identities are simply
asserted without requiring authentication.

» To be securely interoperable with other products, such as:

— Customer Information Control System (CICS) Transaction Server for z/OS

— Other WebSphere Application Server versions

— Common Object Request Broker Architecture (CORBA)-compliant object request brokers

SSL is disabled by default and SSL support is optional. If you are running WebSphere Application Server

for z/OS with security turned on, SSL is required by the administrative console. Java Secure Socket
Extension (JSSE) is the SSL repertoire type used.

52  securing applications and their environment



Table 13. SSL connection sequence.

This table describes how an SSL connection works.

Stage Description

Negotiation After the client locates the server, the client and server negotiate the type of
security for communications. If SSL is to be used, the client is told to connect to a
special SSL port.

Handshake The client connects to the SSL port and the SSL handshake occurs. If successful,
encrypted communication starts. The client authenticates the server by inspecting
the server's digital certificate.

If client certificates are used during the handshake, the server authenticates the
client by inspecting the client's digital certificate.

Ongoing communication During the SSL handshake, the client and server negotiate a cipher spec to be
used to encrypt communications.

First client request The determination of client identity depends upon the client authentication
mechanism chosen, which is one of the following:
* CSlv2 user ID and password (GSSUP)
* CSlv2 asserted identity

Rules
» Either a Java or C++ client on z/OS is interoperable with a WebSphere Application Server for z/OS or
workstation Application Server, and can use SSL. CSIv2 security only supports Java clients on z/OS.
» Part of the handshake is to negotiate the cryptographic specs used by SSL for message protection.
There are two factors that determine the cipher specs and key sizes used:
— The security level of the cryptographic services installed on the system, which determines the cipher
specs and key sizes available to WebSphere Application Server for z/OS.
— The configuration of the server through the administrative console allows you to specify SSL cipher
suites.

For more information, see z/OS System Secure Sockets Layer Programming.
» For z/OS system SSL sockets you must use RACF or an equivalent to store digital certificates and
keys. Placing digital certificates and keys into a key database in the HFS is not an option.

Tip: To define SSL basic authentication security, you must first request a signed certificate for your server
and a certificate authority (CA) certificate from the certificate authority that signed your server
certificate. After you have received a signed certificate for your server and a CA certificate from the
certificate authority, you must use RACF to authorize the use of digital certificates, store server
certificates, and server key rings in RACF, create an SSL repertoire alias, and define SSL security
properties for your server through the administrative console.

For clients, you must create a key ring and attach to it the CA certificate from the certificate authority that
issued the server's certificate. For a z/OS client, you must use RACF to create a client key ring and to
attach the CA certificate to that key ring. For the client to authenticate the server, the server (actually, the
controller user ID) must possess a signed certificate created by a certificate authority. The server passes
the signed certificate to prove its identity to the client. The client must possess the CA certificate from the
same certificate authority that issued the server's certificate. The client uses the CA certificate to verify that
the server's certificate is authentic. After the certificate is verified, the client can be sure that messages are
truly coming from that server, not someone else. For the server to authenticate the client, note that there is
no client certificate that the client passes to prove its identity to the server. In the SSL basic authentication
scheme, the server authenticates the client by challenging the client for a user ID and password (or
password phrase).

See [‘Setting up a keyring for use by Daemon Secure Sockets Layer” on page 57| for information on
creating a keyring for the daemon's MVS user ID.

Chapter 4. Setting up, enabling and migrating security 53



SSL repertoires:

With Secure Sockets Layer (SSL) configuration repertoire, administrators can define any number of SSL
settings that can be used to make HyperText Transport Protocol SSL (HTTPS), Internet Inter-ORB Protocol
SSL (IIOPS) or Lightweight Directory Access Protocol SSL (LDAPS) connections.

Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console which allows SSL connections. This simplifies the SSL
configuration process since you can reuse many of these SSL configurations by simply specifying the alias
in multiple places. The appropriate repertoire is referenced during the configuration of a service that sends
and receives requests encrypted using SSL, such as the web and enterprise beans containers. Before
deleting SSL configurations from the repertoire, remember that if an SSL configuration alias is referenced
somewhere, and it is deleted here, an SSL connection will fail if the deleted alias is accessed.

Note: You can also create an alias, but first you must create an SSL configuration repertoire alias or
entry. You can then select the alias later when a component is configured for SSL support.

If you choose to use SSL, Java Secure Socket Extension (JSSE) is the SSL repertoire type used. An
exception to this is that System SSL (SSSL) is the SSL repertoire type used by the Daemon Address
Space as the daemon runs without a JVM, but JSSE is only supported in Java.

Daemon Secure Sockets Layer:

Use the administrative console panel to modify the port and Secure Sockets Layer (SSL) port settings and
to specify the SSL settings (the SSL repertoire). The default repertoire is the same one used for the
server, which is a SystemSSL [IOP repertoire. During daemon initialization the SSL usage initialization is
attempted if security is enabled and a valid repertoire is found. In order to turn off the daemon SSL port a
cell-level WebSphere variable (DAEMON_security disable daemon_ss1) must be created and set to true.
The default for this variable is false.

SSL can be used to protect locations in the SSL daemon using the Location Service Daemon if:
» Administrative security is enabled

* A daemon SSL repertoire is configured in the administrative console (the daemon SSL repertoire refers
to a valid RACF keyring that is owned by the MVS user ID associated with the daemon process)

» A certificate and keyring have been defined

On the administrative console, click System administration > Node groups >
sysplex_node_group_name. Under Additional properties, click z/OS location service.

Location service daemon

This panel specifies the configuration settings for the Tocation service daemon for this cell.
Changes made to these settings to the entire cell and to the location service daemon instance
on each node in the cell.

Job Name BBODMNC Specifies z/0S jobname of location
service daemon.

Host Name BOSSXXXX.PLEX1.L2.IBM.COM Specifies host name to be used when
contacting location service daemon.

Port 5755 Specifies port location service daemon
listens on for unencrypted communication.

SSL Port 5756 Specifies port location service daemon
listens on for encrypted communication.

SSL Setting PLEX1Manager/DefaultIIOPSSL Specifies a Tist of predefined SSL

settings to choose from for connections.
These are configured at the SSL repertoire
panel.

You can use the WebSphere z/OS Profile Management Tool or the zpmt command to specify
authentication information, including the daemon's user ID, UID, and SSL port. RACF commands are
generated to create a keyring for server use (the default is WASKeyring). The z/OS Profile Management
Tool or the zpmt command generates the daemon keyring and the certificate. To generate the daemon
keyring and certificate using the z/OS Profile Management Tool, select Security Domain > SSL

54  securing applications and their environment



Customization > Enable SSL on the Location Service Daemon. If you type Y next to this option, the
RACF commands are generated to do the following tasks:

» Create a daemon keyring and certificate
» Connect the certificate and certificate authority (CA) certificates to the keyring.

Important: This option does not control the use of the daemon SSL.

This is appropriate if the user IDs are the same, but if the daemon has a separate user ID, see
|a Keyring for use by WebSphere Application Server for z/OS|. The values selected are picked up by the
administrative console.

If the daemon process is assigned the same MVS user ID assigned to a secure WebSphere Application
Server, the keyring you use to secure WebSphere Application Server can also be used to secure daemon
requests. If the daemon process is not assigned the same MVS user ID assigned to a secure WebSphere
Application Server, it is recommended that you perform the daemon SSL setup similarly to the setup for
your WebSphere Application Server. Modify the customization job commands generated in BBOCBRAK (or
HLQ.DATA(BBODBRAK) on WebSphere Application Server, Network Deployment) to perform the steps in
[Setting up a Keyring for use by WebSphere Application Server for z/OS|

Setting permission for files created by applications

Files created by applications running in the servant will have permission bits set according to the default
umask. To change the default umask for the servant, specify the _BPX_BATCH_UMASK environment
variable for the servant. Deployment manager and application servers require group read/write access to
the data in their config root.

Before you begin
About this task

Deployment manager and application servers require group read/write access to the data in their config
root. The server must run with a 007 umask in order to support system management functions. Do not
change this umask setting and your server will function correctly.

Use the _BPX_BATCH_UMASK environment variable for the servant to set the umask to 007. You define
_BPX_BATCH_UMASK as a new environment variable using the administrative console.

To view the administrative console page, click Environment > WebSphere variables.

To define this new variable using the administrative console, select the appropriate scope from the list of
available options and then click New to create the name _BPX_BATCH_UMASK and the desired value.
You will need to restart the server to pick up the _BPX_BATCH_UMASK setting.

Recommendation: A umask value of 007 will cause applications to create directories with permission bits
set to 770 and files with permission bits set to 660. This is the value recommended by IBM.

Note: See the documents listed in the steps below for more information.

Procedure

» z/OS Language Environment Programming Reference, for more information on ENVAR

» z/OS C/C++ Programming Guide, for more information on how to change the UMASK defaults
» z/0OS UNIX System Services Command Reference

RACF protection for DB2

You can use the Resource Access Control Facility (RACF) DSNR resource class to protect DB2 resources.
This helps you centralize security management. This section gives you pointers to general information

Chapter 4. Setting up, enabling and migrating security 55



about setting up RACF protection for DB2 and specific information about the resources, groups, user IDs,
and permissions used by WebSphere Application Server for z/OS.

There are three functional areas in RACF to consider regarding protection for DB2:
* RACF DSNR class

The RACF DSNR class controls access to the DB2 subsystems. If the DSNR class is active, then
WebSphere Application Server for z/OS controllers and servants need access to the db2_ssn. RRSAF
profiles, where db2_ssn is your DB2 subsystem name. If a controller or servant does not have access,
then that region will not initialize.

» Secondary authorization IDs

DB2 identification and signon exits (DSN3@ATH and DSN3@SGN) are used to assign authorization
IDs. If you want to use secondary authorization IDs (RACF group names), then you must replace the
default exits with these two sample routines. For details on how to install these sample routines, see
DB2 Administration Guide.

* Grant statements

WebSphere Application Server for z/OS does not support the protection of DB2 objects through the
DSNX@ XAC exit. To protect DB2 objects, you must use GRANT statements.

For more information on using RACF with DB2, see the documentation in the DB2 Information Centers.

System Authorization Facility (SAF) profile names

The Profile Management Tool and the zpmt command generate jobs that help you create the necessary
System Authorization Facility (SAF) profiles—such as STARTED, CBIND, or SERVER—that enable your
server to run.

At runtime, normal SAF specific and generic profile matching uses a combination of the cell short name,
cluster short name (or cluster transition name for a non-clustered server), server short name, and the SAF
profile prefix (if one is specified) to select the appropriate matching profile.

WebSphere Application Server for z/OS uses two schemes, specific and generic, in the creation of SAF
profiles:

* With the specific profile scheme, a set of fully-qualified specific profiles is created to exactly match the
short names that apply to the server you customize.

» With the generic profile scheme, a set of generic profiles is also created (the STARTED class BBO*.*
profiles for example) The purpose of these generic profiles is to provide a default profile for any server
that is created administratively and that has a default name so that the servers can operate successfully
by default.

Examples:

— An application server created through the administrative console has a default server short name of
BBOSnnn and a cluster short name (or cluster transition name for a non-clustered server) of
BBOCnnn, where nnn is a unique number. By default, this server can start using the BBO* generic
profiles.

— Node federation creates a node agent server. If the base application server that you federate is
configured with a Java Message Service (JMS) integral provider, then a standalone JMS server is
also created. The node agent has a default name of BBONnnn and the JMS server is BBOJnnn,
where nnn is a unique number. By default, these servers can start using the BBO* generic profiles.

The generic profiles that are created are not required and exist only for your convenience in case you use
the default server short names and cluster short names (or cluster transition names for non-clustered
servers) generated by WebSphere Application Server for z/OS. You can choose to delete the generic
profiles if, for example, your organization has particular naming conventions and you will not use the
default names generated by WebSphere Application Server for z/OS. In that case, ensure that you have
your own strategy for creating the required SAF profiles, either generic or specific, with your own naming
convention—WebSphere Application Server for z/OS does not create them for you.

56  Securing applications and their environment



Defining Secure Sockets Layer security for servers

Complete these steps for RACF to authorize the server to use digital certificates. SSL uses digital
certificates and public and private keys.

Before you begin

You need to request a certificate authority (CA) certificate and a signed certificate for your server. If you
plan to implement Secure Sockets Layer (SSL) client certificate support, you must also have certificate
authority certificates from each certificate authority that verifies your client certificates. You must have a
user ID with the authority to use the RACDCERT command in the Resource Access Control Facility
(RACF) (for example, SPECIAL authority).

About this task

If your application server uses SSL, you must use RACF to store digital certificates, and you must use
public and private keys for the user identities under which the server controllers run.

Procedure

1. For each server that uses SSL, create a key ring for the controller user ID of that server. Example:
Your controller is associated with the user ID called ASCR1. Issue the following command:
RACDCERT ADDRING(ACRRING) ID(ASCR1)

2. Receive the certificate for your application server from the certificate authority. Example: You
requested a certificate and the certificate authority returned the signed certificate to you, which you
stored in a file called ASCR1.CA. Issue the following command:

RACDCERT ID (ASCR1) ADD('ASCR1.CA') WITHLABEL('ACRCERT') PASSWORD('password')

3. Connect the signed certificate to the controller user ID's key ring and make the certificate the default
certificate. Example: Connect the certificate labeled ACRCERT to the key ring ACRRING owned by
ASCRA1. Issue the following command:

RACDCERT ID(ASCR1) CONNECT (ID(ASCR1) LABEL('ACRCERT') RING(ACRRING) DEFAULT)

4. If you plan to have the server authenticate clients (SSL client certificate support), complete the
following steps:

a. Receive each certificate authority (CA) certificate that verifies your client certificates. Example:
Receive the CA certificate that will verify a client with user ID CLIENT1. That certificate is in a file
called USER.CLIENT1.CA. Issue the following command:

RACDCERT ADD('USER.CLIENT1.CA') WITHLABEL('CLIENT1 CA') CERTAUTH
b. Give each CA certificate the CERTAUTH attribute.
Connect each client's certificate authority (CA) certificate to the controller user ID's key ring.

Example: Connect the CLIENT1 CA certificate to the ring ACRRING owned by ASCR1.
RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL('CLIENT1 CA') RING(ACRRING))
5. Give read access for IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING in the RACF FACILITY
class to the controller user ID. Example: Your controller user ID is ASCR1. Issue:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(ASCR1) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(ASCR1) ACC(READ)

What to do next

You are done with the RACF phase when the RACF commands succeed.

Setting up a keyring for use by Daemon Secure Sockets Layer
Follow these steps to configure a keyring for use by Daemon Secure Sockets Layer.

Chapter 4. Setting up, enabling and migrating security 57



About this task

Modify the customization job commands generated in BBOCBRAK (or HLQ.DATA(BBODBRAK) on
WebSphere Application Server, Network Deployment) to perform these steps:

Procedure

1. Create a keyring for the daemon’s MVS user ID to own. Generally, this is the same keyring name that
was created for your application servers. Issue the following TSO command: RACDCERT
ADDRING (keyringname) ID(daemonUserid)

2. Generate a digital certificate for the daemon’s MVS user ID to own by issuing the following TSO
command:

RACDCERT ID (daemonUserid) GENCERT SUBJECTSDN(CN('create a unique CN') O('IBM'))
WITHLABEL('TabelName') SIGNWITH(CERTAUTH LABEL('WebSphereCA'))

3. Connect the generated certificate to the daemon’s keyring by issuing the following TSO command:

RACDCERT ID(daemonUserid) CONNECT (LABEL('labelName') RING(keyringname) DEFAULT)

4. Connect the certificate authority (CA) certificate to the server’s keyring by issuing the following TSO
command:

RACDCERT CONNECT (CERTAUTH LABEL(WebSphereCA) RING(keyringname))
Results

Tip: The CA certificate that is generated during configuration (WAS Test CertAuth) is an example. Use the
CA you normally use to create user certificates, and connect the CA certificate to the daemon and
server keyrings.

Defining SSL security for clients and servers
Use the steps in this topic to allow the client to use digital certificates.

Before you begin

Note that this assumes you use z/OS Security Server (RACF) as your security server. You must obtain a
copy of the certificate authority (CA) certificate used to sign the server certificates. The server certificates
connect your client to the server. You must also have a user ID with the appropriate authority (such as
SPECIAL) to use the z/OS Security Server Resource Access Control Facility (RACF) RACDCERT
command. For more information on the RACDCERT command, refer to z/OS Security Server RACF
Command Language Reference (SA22-7687-05), available at |http://www.ibm.com/servers/eserver/zseries/]
lzos/bkserv/r5pdf/secserv.htmll For more information on the RACF in general, refer to z/OS Security Server
RACF Security Administrator's Guide (SA22-7683-05), available at|http://www.ibm.com/servers/eserver|
lzseries/zos/bkserv/r5pdf/secserv.html.

About this task

Complete the following RACF steps to allow the client to use digital certificates. SOAP, Secure Socket
Layer (SSL), and Java Secure Socket Extensions (JSSE) use digital certificates that have public and
private keys. If your client uses SOAP, SSL or JSSE, you must use RACF to store digital certificates that
have public and private keys for the user identities under which the client runs.

Procedure

1. For each administrative client program that uses SOAP, create a keyring for the client user ID. For
example, if your client is running with a user ID called CLIENTID, issue the following command:

RACDCERT ADDRING(ACRRING) ID(CLIENTID)

2. The keyring created in the step above must include the public certificate of any certificate authority
(CA) certificates that are required to establish trust in the servers to which your administrative client
connects to. For each CA certificate complete the following steps:

58  Securing applications and their environment


http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html

a. Determine whether this CA certificate is currently stored in RACF. If so, record the existing
certificate label. If not you must:

1) Receive each CA certificate used to sign a server certificate. For example, to receive the CA
certificate that is stored in the USER.SERVERL1.CA file and that verifies a server with the user ID
SERVERT1, issue the following command:

RACDCERT ADD('USER.SERVER1.CA') WITHLABEL('SERVER1 CA') CERTAUTH

2) Connect each server's CA certificate to the client user ID's keyring. For example, to connect the
SERVERT1 CA certificate to the ring ACRRING owned by CLIENTID:

RACDCERT ID(CLIENTID) CONNECT(CERTAUTH LABEL('SERVER1 CA') RING(ACRRING))

3. If the servers your administrative client connect to implements SSL client certificate support, you must
create certificates for your client and add them to the server keyrings. Refer to [Defining SSL security]|
[for servers]| for instructions on setting up keyrings for the servers.

4. Give READ access for the IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING profiles in the RACF
FACILITY class to the client user ID. For example, if your client user ID is CLIENTID, issue the
following command:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(CLIENTID) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CLIENTID) ACC(READ)

What to do next

You are done with the RACF phase when the RACF commands have run successfully.

Secure Sockets Layer (SSL) considerations for WebSphere Application Server
administrators

The Resource Access Control Facility (RACF) customization jobs create an SSL keyring owned by the
WebSphere Application Server for z/OS administrator. This SSL keyring contains the digital certificate
needed to communicate with WebSphere Application Server. Other MVS user IDs, which require
WebSphere Application Server for z/OS administration require additional customization.

Before you begin

The Resource Access Control Facility (RACF) customization jobs create an SSL keyring owned by the
WebSphere Application Server for z/OS administrator containing the digital certificate needed to
communicate with WebSphere Application Server. However, additional customization is required for
administration by other MVS user IDs.

Note that the MVS user ID in the description below is the MVS user ID under which the wsadmin process
is running, not the user ID specified in the wsadmin request.

About this task

In the example below:

* yyyyy is the user ID of the new WebSphere Application Server for z/OS administrator

» xxxxx is the name of the keyring that is specified in soap.client.props in the profile root/properties
directory.

» zzzzz is the label name used in the BBOSBRAK jobs to specify which certificate authority certificate
was used to generate server keys

Procedure

1. If the new administrator is not a member of the WebSphere Application Server for z/OS administrative
group, make sure that the new user ID has access to the appropriate RACF keyrings and digital
certificates. For example:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(yyyyy) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(yyyyy) ACC(READ)

Chapter 4. Setting up, enabling and migrating security 59



2. Use the setup completed by the customization jobs as a model for the additional steps. This
information is in the BBOCBRAK member of the <HLQ>.DATA data set generated during the
customization process. The BBOCBRAK job contains the set of RACF commands that were used:

/* Generating SSL keyrings for WebSphere administrator */
RACDCERT ADDRING (xxxxx) ID( yyyyyy )

/* Connect WebSphere Application Server CA Certificates to Servers keyring */
"RACDCERT ID(yyyyy) CONNECT (RING(xxxxx) LABEL('zzzzz')  CERTAUTH"

SETROPTS RACLIST(FACILITY) REFRESH"

Creating Secure Sockets Layer digital certificates and System
Authorization Facility keyrings that applications can use to initiate
HTTPS requests

You can create Secure Sockets Layer (SSL) digital certificates and System Authorization Facility (SAF)
keyrings that applications can use to initiate HTTPS requests.

About this task

The owner of the SAF keyring (and personal keys) must be the MVS user ID established by the servant
region's STARTED class profile. This user ID must be the owner because these applications run in the
WebSphere Application Server for z/OS servant region address. This user ID is different than the
WebSphere Application Server for z/OS controller user ID.

If you use keystores and trust stores in a Hierarchical File System (HFS), a file name uniquely identifies
the file within the file system.

Procedure
1. If you are using Resource Access Control Facility (RACF) as your security server, you can generate a
personal keyring to be used by your HTTPS application by specifying:

RACDCERT ID(ASSR1) GENCERT SUBJECTSDN(CN('J2EE SERVER') 0('Z/0S WEBSPHERE')
L('POUGHKEEPSIE') SP('NEW YORK') C('US')) SIZE(512)
WITHLABEL('ASSR1 SERVER CERTIFICATE') SIGNWITH(CERTAUTH LABEL('PVT CA'))

In this example, the certificate authority used to generate the unique servant region certificate is the
same one used to generate the certificates for the WebSphere Application Server for z/OS servers by
the customization job.

2. Create a keyring with the same name used for the control region user ID:

RACDCERT ADDRING(S1GRING) ID( ASSR1 )

The new keyring is owned by the servant user ID for the certificate authority certificate and the servant
server certificate.

3. You must have a certificate authority certificate (a certificate from a certificate authority). You might
choose to use the same certificate authority to generate a certificate used by HTTPS applications,
which is similar to the certificate used for WebSphere Application Server runtime processing. The
certificate authority certificate that is used to create the digital certificates is used by the WebSphere
Application Server Runtime, and is created during system customization (and can be created by the
WebSphere z/OS Profile Management Tool or the zpmt command). You can connect this certificate
authority certificate to the keyring you just created by specifying:

RACDCERT ID(ASSR1) CONNECT (RING(S1GRING) LABEL('PVT CA') CERTAUTH)

For this example:

* SI1GRING represents the RACF keyring

* ASSR1 represents the servant user ID

* PVT CA represents the certificate authority

Note that if the target of the request is another WebSphere Application Server for z/OS server, you
must also import the certificate authority certificate used by the WebSphere Application Server for z/OS

60  Securing applications and their environment



HTTPS repertoire (which is generally set up during customization) into your keyring if it is different than
the certificate signer. If authentication using client certificates is requested, you must also import the
certificate authority of your application into the HTTPS repertoire.

4. Connect the personal certificate to your keyring:
RACDCERT ID(ASSR1) CONNECT(ID(ASSR1) LABEL('ASSR1 SERVER CERTIFICATE') RING(S1GRING) DEFAULT)

For this example:
* SIGRING represents the RACF keyring
» ASSR1 represents the servant user ID
e ASSR1 SERVER CERTIFICATE represents the server certificate for servant user 1D
5. Enter the customizable information that needs to be unique across a sysplex. This can include the:
* Subject's public key
» Subject's Distinguished Name (which uniquely identifies an entity in an X.509 certificate)
— Common Name
— Title
— Organization name
— Organizational Unit name
— Locality name
— State or Province name
— Country
» Distinguished Name of the certificate authority that is issuing the certificate
» Date from which the certificate is valid
« Expiration date of the certificate
* Version number
« Serial number

6. Verify the output of your customization jobs to see what is set up. Look at HLQ.DATA.(BBOWBRAK,
BBOSBRAK if they were saved), and record the settings of the certificate authority certificate label, the
servant region's started task identity. If you wish to use an existing repertoire definition for web
services, the keyring name created.

Results

Note:
e Consider that:

* The repertoire type that is pointed to by the SSLConfig definition must be a Java Secure Socket
Extension (JSSE) repertoire. This repertoire can be configured to refer to:

— Java Key Store (JKS) key store and trust store files in an HFS file
— SAF keyrings such as RACFJSSESettings
* The scope of the repertoire definition depends upon the type of repertoire. For example:

— When the repertoire refers to a SAF keyring, the keyring must be owned by the MVS user ID
of process that uses it. The customization jobs create keyrings that are owned by the
WebSphere Application Server for z/OS controller started task user ID. WebSphere
Application Server web services clients run using the user ID of the WebSphere Application
Server for z/OS servant region's started task user ID. This means that you must create a new
keyring to be owned by the servant region's user ID. This user ID is used by WebSphere
Application Server web services clients even if you specify an existing SSL repertoire.

— When the repertoire refers to an HFS file, all processes can share the key stores. If you use
key stores and trust stores in an HFS, a file name uniquely identifies the file within the file
system.

Chapter 4. Setting up, enabling and migrating security 61



Some digital certificate and keyring management is required to edit and use the ss1Config property, which
is one of the user-definable ibm-webservicesclient-bnd.xmi assembly properties. .

Creating a new System SSL repertoire alias

With Secure Sockets Layer (SSL) configuration repertoire, administrators can define any number of SSL
settings that can be used to make HyperText Transport Protocol SSL (HTTPS), Internet Inter-ORB Protocol
SSL (IIOPS) or Lightweight Directory Access Protocol SSL (LDAPS) connections. You can reuse many of
these SSL configurations by simply specifying an alias in multiple places.

Before you begin

You must start the administrative console.
About this task

Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console that allows SSL connections. This simplifies the SSL
configuration process because you can reuse many of these SSL configurations by simply specifying the
alias in multiple places.

Procedure

1. Click Security > SSL certificate and key management > SSL configuration to open the SSL
configuration panel.

2. To create a new SSL alias, click New SSSL Configuration.

Type the alias name in the Alias field.

4. Specify the SSL Resource Access Control Facility (RACF) key ring in the Key file name field. All
repertoires used by the same server (such as HTTPS, CSIV2, z/SAS) must have the same keyring

name. If the keyring names are not the same, the HTTPS keyring name is used to initialize the server.
If you specify the wrong RACF key ring, the server gets an error message at runtime.

w

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

5. Optional: Select the Client authentication option for your authentication protocol. Client authentication
occurs if this repertoire is selected for HTTPS. However, the value is ignored if you use using Common
Secure Interoperability Version 2 (CSIv2) or z/OS Secure Authentication Services (z/SAS).

To enable client authentication for CSlIv2, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click CSIv2 inbound authentication. Select the appropriate option for Client
certificate authentication.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click zZ/SAS authentication. Select the Client certificate option.

6. Select Strong, Medium, or Weak from the Security level menu to specify the high, medium, or low
set of cipher suites. If you add specific cipher suites on this panel, those cipher suites take precedence
over the strong, medium, or weak specification. If a cipher list is specified, WebSphere Application
Server uses the list. If the cipher list is empty, WebSphere Application Server uses the strong, medium,
weak specification. The following list explains these specifications:

Strong
128-bit cipher suites with digital signature

Medium
40-bit cipher suites with digital signature

Weak No encryption is used, but digital signature is used

7. Specify the SSL V3 timeout value in the V3 timeout field. This value is the length of time, in seconds,
that the system holds session keys. The range is 0-86400 (1 day). The default is 600 seconds.

62  Securing applications and their environment



8. Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set,
and the cipher suites available are determined by the value of the Security Level (Strong, Medium, or
Weak). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

9. Click OK when you have made all your selections.

Creating a new Java Secure Socket Extension repertoire alias

The following steps describe how to generate a new Java Secure Socket Extension (JSSE) repertoire
alias. Using the JSSE repertoire, you can pick one of the JSSE repertoire settings defined here from any
location within the administrative console.

About this task

This simplifies the JSSE repertoire configuration process because you can reuse many of these JSSE
configurations by specifying the alias in multiple places.

Procedure
1. Click Security > SSL to open the SSL Configuration Repertoires panel.

2. To create a new JSSE repertoire, click New JSSE repertoire near the top of the panel. The JSSE
Repertoire panel appears.

3. Enter the alias name in the Alias field.

4. Optional: Select the Client authentication option for your authentication protocol. This option enables
client authentication to occur if this repertoire is selected for HTTPS. However, the value is ignored if
you use using Common Secure Interoperability Version 2 (CSIv2) or z/OS Secure Authentication
Services (z/SAS).

To enable client authentication for CSIv2, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click CSIv2 inbound authentication. Select the appropriate option for Client
certificate authentication.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click zZ/SAS authentication. Select the Client certificate option.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

5. Select Strong, Medium, or Weak from the Security level menu to specify the strong, medium, or
weak set of cipher suites. If you add specific cipher suites on this panel, those cipher suites take
precedence over the strong, medium, or weak specification. If a cipher list is specified, WebSphere
Application Server uses the list. If the cipher list is empty, WebSphere Application Server uses the
strong, medium, or weak specification. The following list is an explanation of the high, medium, and
low specifications:

Strong
128-bit cipher suites with digital signature

Medium
40-bit cipher suites with digital signature
Weak No encryption is used, but digital signature is used

6. Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set.
The set of cipher suites available is determined by the value of the Security Level (Strong, Medium,
or Weak). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

7. Select the Cryptographic token option if hardware or software cryptographic support is available.

8. Indicate which JSSE provider that you are using by selecting either Predefined JSSE provider or
Custom JSSE provider in the Provider field. WebSphere Application Server comes with the
IBMJSSE2 provider predefined.

Chapter 4. Setting up, enabling and migrating security 63



If you are not using the IBMJSSE2 provider, configure a custom provider by selecting Custom JSSE
provider. Under Additional properties, click Custom Properties > New. After specifying the custom
provider, return to the JSSE repertoire panel.

9. Select a Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol version.

Note: The protocol chosen for the server must match the protocol chosen for the client. Also, for two
servers to interoperate, they must use the same protocol.

10. Specify the name of the key file in the Key file name field. Specify the fully qualified path to the
Secure Sockets Layer (SSL) key file that contains public keys and private keys. Type safkeyring:///
if you are using a RACF key ring for the key file.

11. Specify the password needed to access the key file in the Key file password field. Type password if
you are using a RACF key ring for the key store.

12. Select the format of the key file from the Key file format menu.
13. Click OK when you have made all your selections.

Setting up SSL connections for Java clients

Follow these steps to configure SSL for use between Java clients running on a workstation and the
WebSphere Application Server for z/OS Java Platform, Enterprise Edition (Java EE) server.

Procedure

1. Determine what SSL repertoire the server is using. For example: WASKeyring.

2. Determine the user ID the server is running. For example: CBSYMSR1.

3. Export the certificate authority from RACF. For example:

RACDCERT CERTAUTH EXPORT (LABEL('WebSphereCA')) DSN('IBMUSER.WAS.CA') FORMAT(CERTDER)

4. Move the file to the workstation. (Note that the FTP transfer must use binary.) For example: \tmp
directory

5. Add the digital certificate to the TrustStore used by the client. For example, for the
DummyClientTrustFile. jks file, type:

keytool -import -file \tmp\IBMUSER.WAS.CA -keystore DummyClientTrustFile.jks]

Enabling administrative security and the default application security
policy

Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

About this task

Start the administrative console by specifying the following website:

http://server_hostname:port_number/ibm/console

Perform the following steps to enable administrative security. The options on the Global security panel
provide greater flexibility than previous releases of WebSphere Application Server in enforcing security in
your environment.

Procedure
1. Click Security > Global security.
2. Select the Enable administrative security option.

3. Optional: Clear the Enable application security option if you do not want to require WebSphere
Application Server to authenticate application users.

64  Securing applications and their environment



4. Optional: Clear the Use Java 2 security to restrict application access to local resources option if
you do not want to enable Java 2 Security permission checking.

When Java 2 Security is enabled and if an application requires more Java 2 security permissions than
are granted in the default policy, then the application might fail to run properly until the required
permissions are granted in either the app.policy file or the was.policy file of the application.
AccessControl exceptions are generated by applications that do not have all the required permissions.
Review the Java 2 Security and Dynamic Policy documentation if you are unfamiliar with Java 2
security.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

a. Optional: Select the Warn if applications are granted custom permissions option. The
filter.policy file contains a list of permissions that an application should not have according to
the J2EE 1.3 Specification. If an application is installed with a permission specified in this policy file
and this option is enabled, a warning is issued. The default is enabled.

b. Optional: Select the Restrict access to resource authentication data option if you need to

restrict application access to sensitive Java EE Connector Architecture (JCA) mapping
authentication data.

For detailed information, see|‘Global security settings” on page 93/

5. Select which authentication mechanism is active when security is enabled from the Authentication
mechanisms and expiration menu. In this release of WebSphere Application Server, the
authentication mechanism choices include LTPA and Kerberos.

Note: SWAM was deprecated in WebSphere Application Server Version Version 8.0 and will be
removed in a future release.

6. Use the User account repository menu to specify the repository that is active when security is enabled.
You can configure settings for one of the following user repositories:

Federated repositories
The federated repositories functionality enables you to use multiple registries with WebSphere
Application Server. These registries, which can be file-based registries, LDAP registries, or a
sub-tree of an LDAP registry, are defined and theoretically combined under a single repository.

Local operating system
The implementation is a System Authorization Facility (SAF) compliant registry such as the
Resource Access Control Facility (RACF), which is shared in an MVS sysplex.

Standalone LDAP registry
The stand-alone LDAP registry settings are used when users and groups reside in an external
LDAP directory. When security is enabled and any of these properties are changed, go to the
Global security panel and click OK or Apply to validate the changes.

Stand-alone custom registry
The stand-alone custom registry feature supports any user registry that is not implemented by
WebSphere Application Server. You can use any user registry that is used in the product
environment by implementing the UserRegistry interface.

7. Optional: Select the Use the United States Federal Information Processing Standard (FIPS)
algorithms option from the Security > SSL certificate and key management panel if you are using a
FIPS-certified JSSE. WebSphere Application Server supports a channel framework that uses
IBMJSSE2. IBMJSSE2 uses IBMJCEFIPS for cryptographic support when you enable the Use the
United States Federal Information Processing Standard (FIPS) algorithms option.

8. Click OK.
This panel performs a final validation of the security configuration. When you click OK or Apply from
this panel, the security validation routine is performed and any problems are reported at the top of the

page. When you complete all of the fields, click OK or Apply to accept the selected settings. Click
Save (at the top of the panel) to persist these settings out to a file. If you see any informational

Chapter 4. Setting up, enabling and migrating security 65



messages in red text color, then there is a problem with the security validation. Typically, the message
indicates the problem. So, review your configuration to verify that the user registry settings are
accurate and the correct reqgistry is selected. In some cases, the LTPA configuration might not be fully
specified.

For detailed information, see [‘Global security settings” on page 93/

9. Optional: Configure for SAF Authorization. For more information on these settings, see ['zZ/OS System
[Authorization Facility authorization” on page 573)

Results

Configuration is successful when error messages do not display at the top of the panel.

Disabling administrative security

You can disable administrative security through the administrative console. If administrative security is not
working properly, it can cause the server to not start, or to start without providing you with the ability to log
into the administrative console.

About this task

If you cannot log into the administrative console and you must disable administrative security, locate your
profile_root/bin directory and first run the wsadmin -conntype NONE command. At the wsadmin
prompt, type securityoff and then type exit to return to a command prompt. Restart the server with
security disabled to check any incorrect settings through the administrative console.

If you can log into the administrative console, you can disable administrative security by completing the
following steps:

Procedure

1. Click Security > Global security.

2. Deselect the Enable administrative security check box.
3. Restart the server.

Results

Administrative security is disabled.

Enabling security

The following provides information on how to configure security when security was not enabled during the
WebSphere Application Sever profile creation.

Before you begin

When you are installing WebSphere Application Server, it is recommended that you install with security
enabled. By design, this option ensures that everything has been properly configured. By enabling security,
you protect your server from unauthorized users and are then able to provide application isolation and
requirements for authenticating application users.

It is helpful to understand security from an infrastructure perspective so that you know the advantages of
different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right
security components to meet your needs is a part of configuring security. The following sections help you
make these decisions.

Read the following articles before continuing with the security configuration:

66  Securing applications and their environment



» Security

[Security

After you understand the security components, you can proceed to configure security in WebSphere
Application Server.

Attention: There are some security customization tasks that are required to enable security. There tasks
require updates to the security server such as Resource Access Control Facility (RACF). You might need
to include your security administrator in this process.

Procedure

1.

3.

Start the WebSphere Application Server administrative console.

Start the deployment manager and, in your browser, type in the address of your WebSphere
Application Server, Network Deployment server. By default, the console is located at
http://your_host.your_domain:9060/ibm/console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if
security is currently enabled, you are prompted for both a user ID and a password. Log in with a
predefined administrative user ID and password.

Click Security > Global security.

Use the Security Configuration Wizard, or configure security manually. The configuration order is not
important.

gotcha: You must separately enable administrative security, and application security. Because of this
split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application
security is disabled, by default. Before you attempt to enable application security on the
target server, verify that administrative security is enabled on that server. Application security
can be in effect only when administrative security is enabled.

For more information on manual configuration, see [Chapter 6, “Authenticating users,” on page 183/
Configure the user account repository. For more information, see [‘Selecting a registry or repository’|
On the Global security panel, you can configure user account repositories such as
federated repositories, local operating system, stand-alone Lightweight Directory Access Protocol
(LDAP) registry, and stand-alone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a
WebSphere Application Server installation to automatically generate an internal server ID. For
more information about automatically generating server IDs, see[‘Local operating system|
[settings” on page 189

One of the details common to all user registries or repositories is the Primary administrative user

name. This ID is a member of the chosen repository, but also has special privileges in WebSphere

Application Server. The privileges for this ID and the privileges that are associated with the

administrative role ID are the same. The Primary administrative user name can access all of the

protected administrative methods.

In stand-alone LDAP registries, verify that the Primary administrative user name is a member of the
repository and not just the LDAP administrative role ID. The entry must be searchable.

When you use the stand-alone local operating system registry on WebSphere Application Server for
z/OS, the user ID for the server is not set using the administrative console, but is set through the
STARTED class in the z/OS operating system.

Select the Set as current option after you configure the user account repository. When you click
Apply and the Enable administrative security option is set, a verification occurs to see if an
administrative user ID has been configured and is present in the active user registry. The
administrative user ID can be specified at the active user registry panel or from the console users
link. If you do not configure an administrative ID for the active user registry, the validation fails.

Chapter 4. Setting up, enabling and migrating security 67



68

Note: When you switch user registries, the admin-authz.xml file should be cleared of existing
administrative ids and application names. Exceptions will occur in the logs for ids that exist in
the admin-authz.xml file but do not exist in the current user registry.

Optional: You can configure and change your External Authorization provider to either WebSphere
Authorization, System Authorization Facility (SAF) authorization, or an external JACC provider. For
more information, see [‘z/OS System Authorization Facility authorization” on page 573 and [‘Enabling
|an external JACC provider’ on page 591.|To change the Authorization provider, click Security >
Global security.

Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA) or Kerberos, which is new to this release of
WebSphere Application Server, under Authentication mechanisms and expiration. LTPA credentials
can be forwarded to other machines. For security reasons, credential expire; however, you can
configure the expiration dates on the console. LTPA credentials enable browsers to visit different
product servers, which means you do not have to authenticate multiple times. For more information,
see|Configuring the Lightweight Third Party Authentication mechanism|

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your
authentication mechanism. However, SWAM was deprecated in WebSphere Application Server
Version 8.0 and will be removed in a future release. SWAM credentials are not forwardable to
other machines and for that reason do not expire.

If you want single sign-on (SSO) support, which provides the ability for browsers to visit different
product servers without having to authenticate multiple times, see ['Implementing single sign-on to|
[minimize web user authentications” on page 374.| For form-based login, you must configure SSO
when using LTPA.

Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For
more information, see the following articles:

+ [Exporting Lightweight Third Party Authentication keys!

+ [Importing Lightweight Third Party Authentication keys|

gotcha: If one of the cells you are connecting to resides on a Version 6.0.x system, see the topic
Configuring Lightweight Third Party Authentication keys in the Version 6.0.x Information
Center for more information.

Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the Global
security panel. The z/OS Security Authentication Service (z/SAS) protocol is provided for backwards
compatibility with previous product releases, but is deprecated. Links to the zZ/SAS protocol panels
display on the Global security panel if your environment contains servers that use previous versions
of WebSphere Application Server and support the SAS protocol. For details on configuring CSIv2 or
z/SAS, see the article, [‘Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and|
[outbound communication settings” on page 484

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

Attention: IBM no longer ships or supports the z/OS Secure Authentication Service (z/SAS) 110OP
security protocol. It is recommended that you use the Common Secure Interoperability version 2
(CSIv2) protocol. CSlv2 will interoperate with previous versions of WebSphere Application Server
except for the Version 4 client.

Set the authorization. If you chose to use a z/OS security product during customization, then the
authorization is by default set to use System Authorization Facility (SAF) authorization (EJBROLE
profiles). Otherwise, the default is WebSphere Application Server authorization. Optionally, you can

Securing applications and their environment



10.

set a Java Authorization Contract for Containers (JACC) external authorization. See|“Special

considerations for controlling access to naming roles using SAF authorization” on page 576|or

“Authorization providers” on page 552

Verify the Secure Sockets Layer (SSL) repertoires for WebSphere Application Server to use. The
sample customization jobs that are generated by the WebSphere z/OS Profile Management Tool or
the zpmt command generate sample jobs to create SSL key rings that are usable if RACF is your
security server. These jobs create a unique RACF certificate authority certificate for your installation
with a set of server certificates signed by this certificate authority. The Application Server
controller-started task ID has a SAF key ring that includes these certificates. Similarly in a
WebSphere Application Server, Network Deployment environment, RACF key rings that are owned by
the deployment manager user ID and the node agent user IDs are created.

A RACF key ring is uniquely identified by both the key ring name in the repertoire and the MVS user
ID of the server controller process. If different WebSphere Application Server controller processes
have unique MVS user IDs, you must be sure that a RACF key ring and a private key are generated,
even if they share the same repertoire.

Two kinds of configurable SSL repertoires exist:

* The System SSL repertoire is used for HTTPS and Internet InterORB Protocol (IIOP)
communication, and are used by the native transports. If you want to use the administrative
console after security is enabled you must define and select a System SSL type repertoire for
HTTP. You must define a System SSL repertoire and select if IOP security requires or supports
SSL transport, or if a secure Remote Method Invocation (RMI) connector is selected for
administrative requests.

* The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL communications.

Users must configure a System SSL repertoire to use HTTP or IIOP protocols and a Java
Management Extensions (JMX) connector must be configured to use SSL. If the SOAP HTTP
connector is chosen, a JSSE repertoire must be selected for the administrative subsystem. In a
WebSphere Application Server, Network Deployment environment, click System Administration >
Deployment Manager > Administration Services > JMX Connectors > SOAP Connector >
Custom Properties > sslConfig.

A set of SSL repertoires are set up by the z/OS installation dialogs. These dialogs are configured to

refer to SAF key rings and to files that are populated by the customization process, when generating
RACF commands.

Table 14. SSL repertoires set up the z/OS installation dialogs.

This table lists the SSL repertoires that are set up by the z/OS installation dialogs.

Repertoire name Type Default use

NodeDefaultSSLSettings JSSE (Base only) configuration for SOAP JMX
connector, SOAP client, web container HTTP
transport

CellDefaultSSLSettings JSSE (Network deployment only) configuration for

SOAP JMX connector, SOAP client, web
container HTTP transport

DefaultllOPSSL SSSL Used only if DAEMON SSL is enabled

11.

12.

13.

No additional action is required if these settings are sufficient for your needs. If you want to create or
modify these settings, you must ensure that the keystore files to which they refer are created.

Click Security > Global security to configure the rest of the security settings and enable security.
For information about these settings, see [‘Global security settings” on page 93

For additional information, see[‘Server and administrative security” on page 71

Validate the completed security configuration by clicking OK or Apply. If problems occur, they display
at the top of the console page in red type.

If there are no validation problems, click Save to save the settings to a file that the server uses when
it restarts. Saving writes the settings to the configuration repository.

Chapter 4. Setting up, enabling and migrating security 69



Important: If you do not click Apply or OK in the Global security panel before you click Save, your
changes are not written to the repository. The server must be restarted for any changes
to take effect when you start the administrative console.

The save action enables the deployment manager to use the changed settings after WebSphere
Application Server is restarted. For more information, see [‘Enabling security for the realm” on pagel
90.|A Deployment manager configuration differs from a stand-alone base application server. The
configuration is stored temporarily in the deployment manager until it is synchronized with all of the
node agents.

Also, verify that all of the node agents are up and running in the domain. Stop all application servers
during this process. If any of the node agents are down, run a manual file synchronization utility from
the node agent machine to synchronize the security configuration from the deployment manager.
Otherwise, the malfunctioning node agent does not communicate with the deployment manager after
security is enabled on the deployment manager.

14. Start the WebSphere Application Server administrative console.
Start the deployment manager and, in your browser, type in the address of your WebSphere

Application Server, Network Deployment server. By default, the console is located at
http://your_host.your domain:9060/ibm/console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a
predefined administrative ID and password. This ID is typically the server user ID that is specified
when you configured the user registry.

Administrative security

Administrative security determines whether security is used at all, the type of registry against which
authentication takes place, and other values, many of which act as defaults. Proper planning is required
because incorrectly enabling administrative security can lock you out of the administrative console or
cause the server to end abnormally.

Note: It is strongly recommended that you allow the default installation to install administrative security as
on by default.

Administrative security can be thought of as a "big switch" that activates a wide variety of security settings
for WebSphere Application Server. Values for these settings can be specified, but they will not take effect
until administrative security is activated. The settings include the authentication of users, the use of Secure
Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including
authentication and role-based authorization, is not enforced unless administrative security is active.
Administrative security is enabled by default.

Note: Administrative security need not be activated in order for WebSphere applications to make use of
JSSE methods to encrypt communication to remote sites.

Administrative security represents the security configuration that is effective for the entire security domain.
A security domain consists of all of the servers that are configured with the same user registry realm
name. In some cases, the realm can be the machine name of a local operating system registry. In this
case, all of the application servers must reside on the same physical machine. In other cases, the realm
can be the machine name of a stand-alone Lightweight Directory Access Protocol (LDAP) registry.

A multiple node configuration is supported because you can access remotely user registries that support
the LDAP protocol. Therefore, you can enable authentication from anywhere.

The basic requirement for a security domain is that the access ID that is returned by the registry or
repository from one server within the security domain is the same access ID as that returned from the
registry or repository on any other server within the same security domain. The access ID is the unique
identification of a user and is used during authorization to determine if access is permitted to the resource.

70  Securing applications and their environment



The administrative security configuration applies to every server within the security domain.
Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.
Administrative security is enabled by default during the profile creation time. There might be some
environments where no security is needed such as a development system. On these systems you can
elect to disable administrative security. However, in most environments you should keep unauthorized
users from accessing the administrative console and your business applications. Administrative security
must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following
technologies:
» Authentication of HTTP clients
* Authentication of IIOP clients
» Administrative console security
* Naming security
* Use of SSL transports
* Role-based authorization checks of servlets, enterprise beans, and mbeans
» Propagation of identities (RunAs)
* CBIND checks
* The common user registry
* The authentication mechanism
» Other security information that defines the behavior of a security domain includes:
— The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) security)
— Other miscellaneous attributes

Note: It is recommended that before registering a node with an administrative agent process, that you first
have administrative security enabled in the administrative agent and base profile. Once you register
a profile with the administrative agent, the state of administrative security enablement cannot be
changed.

Server and administrative security

The term administrative security refers to providing the authentication of users using the WebSphere
administration functions, the use of Secure Sockets Layer (SSL), and the choice of user account
repository.

When you configure a Local OS user registry, it uses the Resource Access Control Facility (RACF), or

System Authorization Facility (SAF)-compliant, user database. Selecting the Local OS user registry as the

active registry enables you to take advantage of z/OS System Authorization Facility functions directly using

the WebSphere Application Server principals:

» Share identities with many other z/OS connector services

» Use SAF delegation, which minimizes the need to store user IDs and passwords in many locations in
the configuration

» Utilize additional audit capabilities

These functions are available using other registries, but require identity mapping through modifications to
the WebSphere Application Server system login configuration and Java Authentication and Authorization
Service (JAAS) login modules. Refer to ['Updating system login configurations to perform a System|
|[Authorization Facility identity user mapping” on page 466|for more information.

Chapter 4. Setting up, enabling and migrating security 71



Configuration of administrative security for a security domain consists of configuring the common user
registry, the authentication mechanism, and other security information that defines the behavior of a
security domain. The other security information that is configured includes the following components:

» Java 2 Security Manager
+ Java Authentication and Authorization Service (JAAS)
» Java 2 Connector authentication data entries

« Common Secure Interoperability Version 2 (CSIv2) and z/OS Secure Authentication Service (z/SAS)
authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP)
security)

* Other miscellaneous attributes.

Where multiple nodes and multiple servers within a node are possible, you can configure certain attributes
at a server level. The attributes that are configurable at a server level include security enablement for the
server, Java 2 security manager enablement, and CSIv2 and z/SAS authentication protocol (RMI/IIOP
security). You can disable security on individual application servers while administrative security is
enabled, however, you cannot enable security on an individual application server while administrative
security is disabled.

While application server security is disabled for user requests, administrative and naming security is still
enabled for that application server so that the administrative and naming infrastructure remains secure. If
cell security is enabled, but security for individual servers is disabled, J2EE applications are not
authenticated or authorized. However, naming and administrative security is still enforced. Consequently,
because naming services can be called from user applications, grant Everyone access to the naming
functions that are required so that these functions accept unauthenticated requests. User code does not
directly access administrative security except through the supported scripting tools.

If you are using System Authorization Facility (SAF) authorization, then you should ensure that the UACC
field for the EJBROLE profile of CosNamingRead is set to READ, and that the unauthenticated id has
READ access to this profile.

Java thread identity and an operating system thread identity
You can specify options to synchronize a Java thread identity and an operating system thread identity.

Enterprise JavaBeans (EJB) support a method-level RunAs role specification that associates a Java
Platform, Enterprise Edition (Java EE) role with an EJB method invocation. The EJB method runs by using
the authority associated with the designated security role. The authority is mapped to the designated role
using a user identity. Normally, this identity is recognized by Web-based and Java EE runtime and is
associated with the current dispatch thread. This identity governs access to only those resources and
those facilities subject to Java EE security. The actual OS thread identity is unaffected by the EJB RunAs
role selection and is typically the identity of the server.

Setting the OS identity thread synchronizes the Java EE role identity and OS thread (SyncToOSThread).
This means that the OS thread identity is associated with the Java EE role identity for the duration of the
EJB method invocation (application assemblers and deployers associate the RunAs identity with the
operating system thread by setting the thread identity to the RunAs identity for specific bean methods).
This association means that the caller or security role identity (rather than the server region identity) is
used for z/OS system service requests such as access to files and database management systems. Note
that the WebSphere Application Server for z/OS Java EE server can be configured to enable or disable
this association (or synchronization). The default setting disables the ability to modify the identity on the
operating system thread, regardless of the OS thread identity to RunAs identity setting in the deployment
descriptor for the installed application. If the application installer does not enable synchronization, any
method that sets the RunAs identity to the operating system thread fails with a no_permission error.

You complete the specification of options to synchronize a Java thread identity and an operating system
thread identity by using the resource access control facility (RACF) to define FACILITY and optionally

72 Securing applications and their environment



SURROGAT class profiles for Synch to OS Thread Allowed. This gives the RACF administrator in the
WebSphere Application Server configuration the ability to control the permissions that allow the
synchronization of the Java EE role identity and the OS thread (SyncToOSThread).

Using the administrative console, you can specify the following options for thread identity synchronization
on the z/OS security options panel:

Enable WebSphere Application Server and z/OS thread identity synchronization
Specifies whether an application SynchToOSThread is permitted. When this security option is
selected (meaning frue is specified) the application-specified SyncToOSThread is honored and
subsequently carried out by the EJB and web containers as indicated by EJB and web application
SyncToOSThread specifications. The default is false or disabled.

Enable the connection manager RunAs thread identity
Specifies whether the connection manager synchronizes the current Java EE principal to the OS
thread when a connection is obtained from a resource reference that specifies
res-auth=container. The default is false or disabled.

You can also select the SyncToOSThread support using a method-level extended deployment descriptor
(XDD) for Enterprise JavaBeans (EJB). Enable this support using a distinguished environment entry
defined through the EJB or web application standard deployment descriptor. During assembly or
deployment, bind a value to this variable by specifying:

» True, which specifies that the Java EE principal or identity should be synchronized to the OS thread for
all requests invoked on the EJB or web application.

* False, specifies the Java EE principal application or identity should not be synchronized to the OS
thread for all requests invoked on the EJB or web application. This value is the default.

When processing a request, the web container understands what roles, if any, are required to access the
component represented by the input URL. The container validates requestor authentication and that the
authenticated user has been granted permission to the required roles. The web container makes use of
the same System Authorization Facility (SAF)-based user registry and EJB role profiles as the EJB
container to perform this validation. Therefore, you can use the same user registry and role profiles for
administering web applications as you use for Enterprise Beans and Java EE Services. For setting thread
identity, possible active user registries include:

e Local OS
« LDAP
e Custom

Application events that modify the thread identity value include:

Initial value when the first method is set
By default, invocations of servlet service methods and EJB business methods implicitly run as
caller (RunAsCaller) unless the Run as field of a policy's attribute specifies otherwise. EJB client
applications always run as server (RunAsServer).

Note: For web applications, if security constraints are not specified, the application might run with
an unauthenticated user ID.

Method delegation changes to the Java EE identity (RunAs Specified)
The connection manager synchronizes the current Java EE identity with the OS thread when
obtaining applications from resources references that have container-managed resource
authorization (res-auth=container). EJB methods marked with SynchToOSThread cause the Java
EE role identity to be synchronized to the OS thread.

WSSubject.doAs()
This setting offers flexibility when associating the Subject with remote calls on a thread without
having to do a WSSubject.doAs() to associate the subject with the remote action.

Chapter 4. Setting up, enabling and migrating security 73



Thread identity is temporarily reset on the server in the following situations:

JavaServer Pages (JSP) Compilation
Web container JSP compilation modifies the identity of the server if SyncToOSThread is enabled
for the server (security EnableSyncToOSThread=1).

Access of Stateful Backing Store
EJB container stateful session activation changes the identity of the server if SyncToOSThread is
enabled. Always access the EJB stateful session backing store using theidentity of the server.

Web application Reloading
When the web container reloads the web application, it changes the server identity if
SyncToOSThread is enabled for web applications.

Connection Manager Requests
When the resource reference specifies res-auth=application, the thread identity is temporarily set
to the identity of the server.

Note: When running with administrative security enabled, it is recommended that you have Java 2
security enabled. Exercise caution when enabling this support because it can cause general z/OS
system resources (such as files and sockets) to fall outside the control of the WebSphere
Application Server runtime and these system resources management to be accessible to identities
established through Java EE applications.

Considerations for setting the Synch to OS Thread Allowed option:
There are a number of options to consider when setting the Synch to OS Thread Allowed option.

With the Synch to OS Thread Allowed support:

1. The application developer or assembler requests behavior by setting the special application
environment entry env-entry in the deployment descriptor:
com.ibm.websphere.security.SyncToOSThread=true|false.

2. The system administrator grants the request made by the application developer or assembler using an
application server configuration setting.

3. The resource access control facility (RACF) administrator controls if Synch to OS Thread Allowed can
be used by defining a FACILITY class profile with an optional SURROGAT class profile to refine the
control.

You can select the Synch to OS Thread Allowed option at development time or at assembly time:

» At development time, use Rational Application Developer to add an environment entry (environment
variable) to the Enterprise JavaBeans (EJB) component or web application module.

Important: Environment entries (environment variables) can be defined on individual EJB components
but cannot be set on individual web components.

A Java Platform, Enterprise Edition (Java EE) standard deployment descriptor can be defined for each
EJB component and for each web application module. Note that a web component is either a servlet or
JavaServer Pages (JSP) files. For web components, environment entries (environment variables) can
only be set on a web application module. A web application module contains servlets and JSP files.

» At assembly time, you can add or change environment entries (environment variables) using an
assembly tool.

Application Synch to OS Thread Allowed:
Use application Sync to OS Thread Allowed to synchronize a Java thread identity (or JAAS subject) with

the OS thread identity for the duration of the current Java Platform, Enterprise Edition (Java EE)
application request.

74 Securing applications and their environment



If you do not choose this option, the OS thread identity value is the same as the servant identity value.
Refer to[‘Java thread identity and an operating system thread identity” on page 72 for more information.

Application Sync to OS Thread Allowed requires configuration in both the application and the application
server as well as resource access control facility (RACF) permissions:

1. The WebSphere Application Server developer must configure the application to declare that it wants to
run with application Sync to OS Thread

2. The WebSphere Application Server administrator must configure the application server to enable
application Sync to OS Thread Allowed

3. The RACF administrator must define a FACILITY class profile and optional SURROGAT class profile to
ensure that Synch to OS Thread Allowed is utilized.

The Java EE application developer configures the application for individual Enterprise JavaBeans (EJB) or
web applications by setting a special env-entry in the deployment descriptor
com.ibm.websphere.security.SyncToOSThread={true|false}. The default case in which this deployment
descriptor is not specified is equivalent to defining it with a value of false.

When an EJB or web application that requests Sync to OS Thread Allowed is dispatched, the application
server (at the request of the EJB container or the web container) synchronizes the OS thread identity
associated with the current Java thread identity so the Java thread identity is current on the native thread.
This synchronization is effective as long as the EJB or web application is running the current request.
When the EJB or web completes processing, the native thread is restored to its former state.

If the application requests Sync to OS Thread Allowed but Sync to OS Thread Allowed is not enabled in
the application server, when the application attempts to run a no permission exception is issued. If the
application does not request Sync to OS Thread Allowed but Sync to OS Thread Allowed is enabled in the
application server, no synchronization occurs and the current OS thread identity remains the same as the
server identity.

Refer to[‘Java Platform, Enterprise Edition identity and an operating system thread identity” on page 77| for
more information about the identities discussed above.

Connection Manager RunAs Identity Enabled and system security:

WebSphere Application Server includes connector configurations that use operating system thread
security. By enabling Connection Manager Sync to OS Thread support, the Java EE identity (the RunAs
identity, for example) can be used to obtain the EIS connection for connector configurations that use
operating system thread security.

Operating system thread security: Under certain configurations of Java EE Connector Architecture
(JCA), Java Message Service (JMS), or Java database connectivity (JDBC) connectors on WebSphere
Application Server for z/OS, the OS thread identity is the identity used to create the enterprise information
systems (EIS) connection. Refer to Connection threadfor more information on which configurations support
OS thread security.

The Connection Manager Sync to OS Thread support is enabled by selecting the Enable the connection
manager RunAs thread identity option, which is available by clicking Security > Global security > z/0S
security options. If the Enable WebSphere Application Server and z/OS thread identity
synchronization option is not enabled on the same administrative console panel, the connection to a
resource manager under a connector configuration that uses operating system thread security is obtained
using the server identity (which serves as a default in this case). Refer to the topic, z/OS security options,
for more information.

The WebSphere Connection Manager performs the operating system thread security-related functions. The
Connection Manager synchronizes the OS thread identity with the Java thread identity (this Java thread

Chapter 4. Setting up, enabling and migrating security 75



identity corresponds to the Java EE identity) before obtaining the EIS connection. Refer to the topic, Java
thread identity and an operating system thread identity, for more information. After the Connection
Manager performs the synchronization, the OS thread identity is temporarily replaced with the Java thread
identity, and the Java thread identity is the identity used to obtain the EIS connection. This means that
Connection Manager Sync to OS Thread support provides a way to obtain an EIS connection using the
Java thread identity (the RunAs identity, for example). After obtaining the connection the Connection
Manager restores the previous OS thread identity.

Note:

* The application Sync to OS Thread Allowed setting is not pertinent to determining which identity
is used to create a connection under a connector configuration that supports operating system
thread security. The topic, Using thread identity support, explains which identity is used to create
a connection in which the configuration is unchanged by the application Sync to OS Thread
Allowed support. In particular, for connector configurations that use operating system thread
security (but in which Connection Manager Sync to OS Thread is disabled), the server identity is
used to create the connection regardless of the application Sync to OS Thread Allowed setting or
the current RunAs identity.

* Connection Manager Sync to OS Thread support is only pertinent to obtaining EIS Connections
managed by WebSphere Connection Management. For example Connection Manager Sync to
OS Thread support might be pertinent to Java database connectivity (JDBC) Connections
obtained from application requests on DataSource objects configured via WebSphere Application
Server administrative console, and then looked up in Java Naming and Directory Interface
(JNDI). (This would depend on whether or not a specific DataSource instance under a specific
JDBC provider used OS thread security or not). However, Connection Manager Sync to OS
Thread support would not be pertinent for JODBC Connections obtained using the unmanaged
DriverManager.getConnection(...) API. Access to such unmanaged resources for which the
authorization is performed against the OS thread identity might be affected by the application
Sync to OS Thread Allowed support, however.

* Connection Manager Sync to OS Thread support is used (or not used) for connection requests
made by user-written code (such as JMS or JDBC calls from a stateless session bean),
connection requests made by certain components of WebSphere Application Server (such as the
Message Driven Beans (MDB) Listener), or connection requests made by tooling-generated code
(such as container-managed persistence (CMP) beans).

« Some (but not all) connector configurations that use the Java EE identity also use OS Thread
Security. Connector configurations such as the Customer Information Control System (CICS)
CTG Connector in local mode allow use of the Java EE identity using a different Connection
Manager mechanism to create the EIS connection. This configuration does not use operating
system thread security.

Refer to the topic, Connection thread identity, for details concerning connector configurations that use
operating system thread security. You can also refer to the topic, Using thread identity support.

Refer to the topic, Java Platform, Enterprise Edition identity and an operating system thread identity, for
more information about the identities discussed above.

When to use application Synch to OS Thread Allowed:

Specify application Synch to OS Thread Allowed to use the Java thread identity to access the
non-WebSphere-managed resources accessed by your application.

As a result of exploiting the application Synch to OS Thread Allowed support, access control privileges
associated with the current Java thread identity (not the access control privileges for the server identity)
are applied when accessing these resources. (An example of a non-WebSphere-managed resource is the
file system.)

76  Securing applications and their environment



Use application Synch to OS Thread Allowed to control file system access based on the Java thread
identity. The default Java thread identity is the client identity, which is the user who invoked the application.
The Java Platform, Enterprise Edition (Java EE) RunAS role deployment descriptor settings can override
this default to choose from other choices. These choices include the server identity or the specified role,
such as a user ID (chosen by the application server) configured to be in the specified role. By running with
the Java thread identity and specifying Synch to OS Thread Allowed, all file system access control
decisions are based on the access privileges of the Java thread identity.

Application Synch to OS Thread Allowed is not relevant to container managed persistence (CMP) entity
beans but Connection Management RunAs Identity Enabled might be relevant, depending on the JDBC
Provider.

Refer to the following:

 |Deploying secured applications| and |“Deve|oping applications that use programmatic security” on page|

818| for details on WebSphere role-based security.

 [‘Connection Manager RunAs Identity Enabled and system security” on page 75| for more information for
CMP entity beans.

+ [“Java Platform, Enterprise Edition identity and an operating system thread identity”| for more information
about identities.

Java Platform, Enterprise Edition identity and an operating system thread identity:

A user is identified using an identity that must be authenticated by WebSphere Application Server in order
to access a WebSphere Application Server application in a secure environment.

Understanding the different types of identities: The WebSphere Application Server authenticates the
user identity and represents the user with a Java Authentication and Authorization Service (JAAS) subject.
A subject contains one or more principals (which are technology-dependent representations of the
authenticated user identity). More detail follows:

User identities

Java EE identity
The user identity authenticated by WebSphere and used for access control decisions
made by the WebSphere Application Server at Java Platform, Enterprise Edition (Java EE)
runtime (such as the user identity associated with a Java EE application request and used
in EJB method permission access control decisions).

Operating system (OS) identity
The user identity authenticated by the underlying operating system and used for access
control decisions made by the OS and its subsystems (such as the user identity
associated with a WebSphere Application Server for z/OS servant by the SAF STARTED
class facility and used by the file system for access control decisions when the server
attempts to access files).

Thread identity

Java thread identity
The Java EE identity currently associated with a Java thread managed by the WebSphere
Java EE runtime (a Java thread is the Java Virtual Machine (JVM) representation of a
thread). The Java thread identity is associated with an operating system (OS) thread, but
the JVM manages the user identity on the Java representation of the thread - separate
from the user identity that the operating system manages on the operating system thread.
The Java EE identity is current on the Java thread for the life of the a given application
request

OS thread identity
The operating system identity currently associated with the operating system thread. The

Chapter 4. Setting up, enabling and migrating security 77



OS thread identity is typically the user identity assigned to servant and is normally not the
same as the Java thread identity. Note that Java EE maintains a Java EE identity that
corresponds to the OS thread identity assigned to the servant. This Java EE identity can
be used as a RunAs identity.

RunAs identity
The Java EE identity chosen as the Java thread identity for a given Java EE application request
(based on the RunAs deployment descriptor policy on an Enterprise JavaBeans (EJB) invoked
within the Java EE application request). The Java EE identity is normally the identity of the
authenticated user who has made the Java EE application request. WebSphere Application Server
RunAs policy allows three choices in assigning the Java thread identity for the current request:

1. Assign the client (for example, user) Java EE identity - also referred to as selecting RunAs of
"Caller"

2. Assign the server's Java EE identity
3. Assign the Java EE identity that is in the specified role

When security is enabled, each WebSphere Application Server for z/OS request that invokes a Java EE
component is authenticated to ensure that an authorized user is requesting access. A user is represented
by a Java EE identity (also called a JAAS subject). This Java EE identity contains one or more principals,
and each principal corresponds to a specific user identity. This association is managed by the WebSphere
Application Server. The Java EE identity and operating system OS thread identity are associated with each
other because they have the same name and represent the same user.

WebSphere Application Server for z/OS dispatches component requests in one of its available servant
processes. Within the servant process the component request is dispatched on a Java thread. A Java
thread is then mapped internally by the JVM to a z/OS thread control block (TCB). A TCB is an operating
system thread and is considered part of the native process infrastructure. A servant process has a OS
identity assigned to it when it starts. The z/OS security policy uses the SAF STARTED class facility to
assign the identity.

Java EE authorization decisions including role authorization and permission checking are determined using
the Java EE identity. Through a configuration setting, role authorization checking can be delegated to the
underlying operating system security manager (such as System Authorization Facility (SAF)), in which
case the associated operating system OS identity is used in the role authorization decision.

Some resource managers on z/OS use the OS thread identity to make authorization decisions. For
example, file system access control is determined entirely based on which OS thread identity is currently
on the TCB when the file is accessed. Similarly, local Java database connectivity (JDBC) connections to
DB2 for z/OS use the TCB OS thread identity as the authorization identity under certain configurations. For
resource managers that use the OS thread identity such as DB2 for z/OS (and unlike the file system) that
applications access through Java Message Service (JMS), JDBC, or Java EE Connector Architecture
(JCA) connectors managed by the WebSphere Application Server for z/OS connection management, we
say that the connectors to these z/OS resource managers "use operating system thread security".

For more information, refer to:

» |“Java thread identity and an operating system thread identity” on page 72|
 [‘Connection Manager RunAs Identity Enabled and system security” on page 75|
« [“Application Synch to OS Thread Allowed” on page 74|

» |Connection thread identity
» |Using thread identity supporti

78  Securing applications and their environment



Security considerations when in a multi-node WebSphere Application
Server WebSphere Application Server, Network Deployment
environment

WebSphere Application Server, Network Deployment supports centralized management of distributed
nodes and application servers. This support inherently brings complexity, especially when security is
included. Because everything is distributed, security plays an even larger role in ensuring that
communications are appropriately secure between application servers and node agents, and between
node agents (a node-specific configuration manager) and the deployment manager (a domain-wide,
centralized configuration manager).

Before you begin

Because the processes are distributed, an authentication mechanism must be selected that supports an
authentication token such as Lightweight Third Party Authentication (LTPA). The tokens are encrypted,
signed and forwardable to remote processes. However, the tokens have expiration times which are set on
the WebSphere Application Server administrative console. The SOAP connector which is the default
connector, is used for administrative security and does not have retry logic for expired tokens. However,
the protocol is stateless so a new token is created for each request if there is not sufficient time to run the
request with the given time left in the token. An alternative connector is the Remote Method Invocation
(RMI) connector, which is stateful, and has some retry logic to correct expired tokens by resubmitting the
requests after the error is detected. Also, because tokens have time-specific expiration, the
synchronization of the system clocks is crucial to the proper operation of token-based validation. If the
clocks are off by too much (approximately 10-15 minutes), you can encounter unrecoverable validation
failures that can be avoided by having them in sync. Verify that the clock time, date, and time zones are all
the same between systems. It is acceptable for nodes to be across time zones, provided that the times are
correct within the time zones (for example, 5 PM CST = 6 PM EST, and so on).

You have additional considerations with Secure Sockets Layer (SSL). WebSphere Application Server for
z/OS can use Resource Access Control Facility (RACF) keyrings to store the keys and the truststores that
are used for SSL, but different SSL protocols are used internally. You must be sure to set up both:

» A system SSL repertoire for use by the web container

* A Java Secure Sockets Extension (JSSE) SSL repertoire for use by the SOAP HTTP connector if the
SOAP connector is used for administrative requests

Verify that the keystores and truststores that you configure are set up to trust only the servers to which
they communicate. Make sure they do include the necessary signer certificates from those servers in the
trust files of all servers in the domain. When using a certificate authority (CA) to create personal
certificates, it is easier to ensure that all servers trust one another by having the CA root certificate in all
the signers.

The WebSphere z/OS Profile Management Tool or the zpmt command uses the same certificate authority
to generate certificates for all servers within a given cell, including those of the node agents and the
deployment manager.

About this task

Consider the following issues when using or planning for a WebSphere Application Server, Network
Deployment environment.

Procedure

* When attempting to run system management commands such as the stopNode command, explicitly
specify administrative credentials to perform the operation. Most commands accept —user and
—password parameters to specify the user ID and password, respectively. Specify the user ID and

Chapter 4. Setting up, enabling and migrating security 79



password of an administrative user; for example, a user who is a member of the console users with
Operator or Administrator privileges or the administrative user ID that is configured in the user registry.
An example of the stopNode command follows:

stopNode.sh -username user -password pass

= Verify that the configuration at the node agents is always synchronized with the deployment manager
prior to starting or restarting a node. To manually get the configuration synchronized, issue the
syncNode command from each node that is not synchronized. To synchronize the configuration for
node agents that are started, click System Administration > Nodes. Select all the started nodes, and
then click Synchronize.

» Verify that the LTPA token expiration period is long enough to complete your longest downstream
request. Some credentials are cached and therefore the timeout does not always include the length of
the request.

* The administrative connector that is used by default for system management is SOAP. SOAP is a
stateless HTTP protocol. For most situations, this connector is sufficient. If you have a problem using
the SOAP connector, you might want to change the default connector on all the servers from SOAP to
RMI. The RMI connector uses Common Secure Interoperability Version 2 (CSIv2), a stateful,
interoperable protocol, and can be configured to use identity assertion (downstream delegation),
message-layer authentication (BasicAuth or Token), and client certificate authentication (for server trust
isolation). To change the default connector on a given server, go to Administration Services under
Additional properties for that server.

* An error message might occur within the administrative subsystem security. This error indicates that the
sending process did not supply a credential to the receiving process. Typically the cause of this problem
is the sending process has security disabled while the receiving process has security enabled. This
setup typically indicates that one of the two processes are not synchronized with the cell. Having
security disabled for a specific application server does not have any effect on administrative security.

Results

Proper understanding of the security interactions between distributed servers greatly reduces the problems
that are encountered with secure communications. Security adds complexity because additional function
must be managed. For security to work properly, it needs thorough consideration during the planning of
your infrastructure.

What to do next

When you have security problems that are related to the WebSphere Application Server, Network
Deployment environment, see [Chapter 12, “Troubleshooting security configurations,” on page 977|to find
additional information about the problem. When trace is needed to solve a problem because servers are
distributed, it is often required to gather trace on all servers simultaneously while recreating the problem.
This trace can be enabled dynamically or statically, depending on the type of problem that is occurring.

Application security

Application security enables security for the applications in your environment. This type of security
provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. Before you can enable application security, you must verify that administrative security is
enabled. Application security is in effect only when administrative security is enabled.

80  Securing applications and their environment



An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into
the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where
the object lives. This tag is server-specific and enables clients to know when application security is
disabled at the target server of its request.

For web resources, when application security is enabled, security constraints on those resources in
web.xml are enforced. When accessing a protected resource, a web client is prompted for authentication.

For enterprise bean resources, when application security is disabled, the client Common Secure
Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown
system objects. When pure clients see that application security is disabled, these clients prompt for
naming lookups, but do not prompt for enterprise bean operations.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall
system integrity by checking for permissions before allowing access to certain protected system resources.
Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2
Platform, Enterprise Edition (J2EE) security guards access to web resources such as servlets, JavaServer
Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

Because Java 2 security is relatively new, many existing or even new applications might not be prepared
for the very fine-grain access control programming model that Java 2 security is capable of enforcing.
Administrators need to understand the possible consequences of enabling Java 2 security if applications
are not prepared for Java 2 security. Java 2 security places some new requirements on application
developers and administrators.

Note: The application server does not support a custom Java security manager implementation.
Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and
administrative security independently of one another. Disabling administrative security does not disable
Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.
You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace
files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security
initially to get your application installed and verify that it is working properly.

The policy embodied by these policy files cannot be made more restrictive because the product might not
have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.
You can grant additional permissions, but you cannot make the default more restrictive because
AccessControlExceptions exceptions are generated from within WebSphere Application Server. The
product does not support a more restrictive policy than the default that is defined in the policy files
previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static
(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,
Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application
Server provides dynamic policy support. The code base is dynamically calculated based on deployment
information and permissions are granted based on template policy files during runtime. Refer to the
2 security policy files” on page 85|for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files
carefully.

Chapter 4. Setting up, enabling and migrating security 81



If an application is not prepared for Java 2 security, if the application provider does not provide a
was.policy file as part of the application, or if the application provider does not communicate the expected
permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might
not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids
help troubleshoot applications that might have access control exceptions. See the Java 2 security
debugging aids for more details. See |“Hand|ing applications that are not Java 2 security ready” on page 83|
for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed
security manager does not currently check modifyThread and modifyThreadGroup permissions for
non-system threads. Allowing web and Enterprise JavaBeans (EJB) application code to create or modify a
thread can have a negative impact on other components of the container and can affect the capability of
the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy
and the permission requirements of the SDK APIs that their application calls to know whether additional
permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes
which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy
previously mentioned. Applications that access resources not covered by the default WebSphere policy are
required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere
policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is
embedded in the EAR file ensures the additional permissions are scoped to the exact application that
requires them. Scoping the permission beyond the application code that requires it can permit code that
normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than
one .ear file, then the library developer needs to document the required Java 2 permissions that are
required by the application assembler. There is no was.policy file for library-type components. The
developer must communicate the required permissions through application programming interface (API)
documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all
enterprise applications on the node in the app.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

If the permission is only used internally by the component library and the application is never granted
access to resources that are protected by the permission, it might be necessary to mark the code as
privileged. Refer to the,IAccessControIExceptionl topic for more details. However, improperly inserting a
doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a
correct judgement.

The section on Dynamic policy files in [‘Java 2 security policy files” on page 85 describes how the
permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security
awareness not previously required of application developers. Describing the Java 2 security model and the
implications on application development is beyond the scope of this section. The following URL can help
you get started: |http:/java.sun.com/j2se/1.5.0/docs/quide/security/index.html

82  securing applications and their environment


http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow
property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission
violation that causes the exception, the exception call stack, and the permissions granted to each stack
frame. This information is usually enough to determine the missing permission and the code requiring the
permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component
creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not
handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and
has a value of true, the security manager does not create the AccessControl exception. This information is
logged.

This property is intended for a sandbox or debug environment because it instructs the security manager
not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a
production environment where a relaxed Java 2 security environment weakens the integrity that Java 2

security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested
and where the system log or trace files can be inspected for AccessControl exceptions. Because this
property does not create the AccessControl exception, it does not propagate the call stack and does not
cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application
provider to have the application support Java 2 security or at least communicate the required additional
permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application
Server. The downside is that this solution applies to the entire system and the integrity of the system is not
as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization
security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional
permissions or grant all permissions to just the problematic application. Granting permissions however,
might not be a trivial thing to do. If the application provider has not communicated the required
permissions in some way, no easy way exists to determine what the required permissions are and granting
all permissions might be the only choice. You minimize this risk by locating this application on a different
node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission
in the was.policy file that is embedded in the application .ear file, for example:

grant codeBase "file:${application}" {
permission java.security.Al1Permission;
}s

The server.policy file

The server.policy file is located in the japp server root/properties/|directory.

Chapter 4. Setting up, enabling and migrating security 83



This policy defines the policy for the WebSphere Application Server classes. At present, all the server
processes on the same installation share the same server.policy file. However, you can configure this file
so that each server process can have a separate server.policy file. Define the policy file as the value of
the java.security.policy Java system properties . For details of how to define Java system properties, refer
to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.
Changes to this file are local and do not get replicated to other machines. Use the server.policy file to
define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file
(per enterprise application) to define Java 2 security policy for enterprise application resources.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to
all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

The java.policy file is located in the lapp server rootljava/lib/security directory.

Troubleshooting
Error message CWSCJ0314E
Symptom:

Error message CWSCJO314E: Current® Java 2 security policy reported a potential violation of Java 2
security permission. Refer to Problem Determination Guide for further information.{O}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a
potential violation of Java 2 Security Permission. Refer to Problem Determination Guide for further
information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject
permission with debugging information. The reported information can be different with respect to
the system configuration. This report is enabled by either configuring a Reliability Availability
Service Ability (RAS) trace into debug mode or specifying a Java property.

See [Enabling trace| for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:
java.security.debug. Valid values include:
access
Print all debug information including: required permission, code, stack, and code base
location.
stack Print debug information including: required permission, code, and stack.
failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine
the potential code that might have violated the security policy. After the violating code is
determined, verify if the attempted operation is permitted with respect to Java 2 security, by
examining all applicable Java 2 security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the
was.policy file to grant the following permissions to the application:

84  Securing applications and their environment



permission java.io.FilePermission "${user.nome}${/}.mailcap", "read";
permission java.io.FilePermission "${user.nome}${/}.mime.types", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mailcap”, "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

SecurityException - Access denied
Symptom:

If Java security is enabled, and permissions to read the jaxm.properties file is not granted, when a
SOAPFactory instance is created through a call to javax.xml.soap.SOAPFactory.newInstance(), or
a MessageFactory instance is created through a call to MessageFactory.newlinstance(), a
SecurityException exception occurs, and the following exception is written to the system log:

Permission:

/opt/1BM/WebSphere/AppServer/java/jre/1ib/jaxm.properties : access denied
(java.io.FilePermission /opt/IBM/WebSphere/AppServer/java/jre/1ib/jaxm.properties
read)

Code:

com.ibm.ws.wsfvt.test.binding.addrl.binder.AddressBinder
in {file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv0l/installedApps/
ahp6405Node01Cel1/DataBinding.ear/addressl.war/WEB-INF/1ib
/addressbinderl.jar}
Stack Trace:

Jjava.security.AccessControlException: access denied (java.io.FilePermission
/opt/IBM/WebSphere/AppServer/java/jre/1ib/jaxm.properties read)

Problem:
The Java 2 Security policy reports a potential violation of Java 2 Security permission.
Recommended response:

The SOAPFactory ignores the exception, and continues on to the next means of determining
which implementation to load. Therefore, you can ignore the log entry for this security exception.

Because this product uses the SOAPFactory to support other web services technologies, such as
WS-Addressing (WS-A), WS-Atomic Transaction (WS-AT), and WS-Notification, you can ignore
this SecurityException in any web services application where Java security is enabled.

Messages

Message: CWSCJO313E: Java 2 security manager debug message
flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},
Failure: {3}

Problem: Configured values of the valid debug message flags for
security manager.

Message: CWSCJ0307E: Unexpected exception is caught when trying
to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base
location is determined.

Java 2 security policy files

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations are
not supported in the application code because such operations interfere with the behavior and operation of
the containers. The Java 2 security manager is used in the product to enforce responsibilities of the
container and the application code.

Chapter 4. Setting up, enabling and migrating security 85



Note: The application server does not support a custom Java security manager implementation.

This product provides support for policy file management. A number of policy files in the product are either
static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative
code base is defined in the dynamic policy template. The code base is dynamically calculated from the
deployment and run-time data.

Static policy files

Table 15. Static policy files.

This table lists the location of the static policy files.

Policy file Location
java.policy java/jre/11‘b/secur1‘ty/java.po11‘cy. Default permissions are granted to all classes. The policy of this

file applies to all the processes launched by WebSphere Application Server.

server.policy

lprofilefroojfproperties/server.po] icy. Default permissions are granted to all the product servers.

client.policy

properties/c] ient.policy. Default permissions are granted for all of the product client containers and
applets on a node.

The static policy files are not manaqed by confi%uration and file replication services. Changes made in

these files are local and are not rep

Deployment cell.

icated to other nodes in the WebSphere Application Server, Network

Dynamic policy files

Table 16. Dynamic policy files.

This table lists the location of the dynamic policy files.

Policy file

Location

spi.policy

[profile_rooy/ config/cel1s/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are embedded in the product.
Examples of SPI are the Java Message Service (JMS) in MQ Series and Java database connectivity (JDBC) drivers. The
code base for the embedded resources are dynamically determined from the configuration (resources.xml file) and
run-time data, and permissions that are defined in the spi.policy files are automatically applied to these resources and
JAR files that are specified in the class path of a resource adapter. The default permission of the spi.policy file is
java.security.AllPermissions.

library.policy

|profile_rooy/ config/cells/cell_name/nodes

/node_name/1ibrary.policy

This template is for the library (Java library classes). You can define a shared library to use in multiple product
applications. The default permission of the Tibrary.policy file is empty.

app.policy

config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise applications running on
node_name in cell_name.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the app.policy file
belongs.

was.policy

[orofile_rooy/config/cells/cell_name
/applications/ear_file_name/deployments/
application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the enterprise archive (EAR)
file.

ra.xml

rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xm1 file is embedded in the RAR
file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If
grant entries are specified without a code base, the policy files are not loaded properly and the application

86  Securing applications and their environment




can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in
the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;
permission <Permission>;
permission <Permission>;

}s

<CodeBase>: A URL.
For example, "file:${java.home}/1ib/tools.jar"
When [codebase <Codebase>] is not specified, listed
permissions are applied to everything.
If URL ends with a JAR file name, only the classes in the
JAR file belong to the codebase.
If URL ends with "/", only the class files in the specified
directory belong to the codebase.
If URL ends with "x", all JAR and class files in the specified
directory belong to the codebase.
If URL ends with "-", all JAR and class files in the specified
directory and its subdirectories belong to the codebase.
<Permissions>: Consists from

Permission Type : class name of the permission
Target Name : name specifying the target
Actions : actions allowed on target

For example,
java.io.FilePermission "/tmp/xxx", "read,write"

Refer to developer kit specifications for the details of each permission.
Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise
application. This action is achieved by using product-reserved symbols. The reserved symbol scope
depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to
all the resources on all of the enterprise applications that run on node_name. If you define the permissions
in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid
symbols for the code base are listed in the following table:

Table 17. Dynamic policy syntax.

This table describes valid symbols for the code base for dynamic policy files.

Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility Java archive (JAR) files within the
application

file:${ejoComponent} Permissions apply to the Enterprise JavaBeans (EJB) resources within the
application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources within the application

You can specify the module name for a granular setting, except for these entries that are specified by the
code base symbols. For example:

grant codeBase "file:DefaultWebApplication.war" {
permission java.security.SecurityPermission "printIdentity";

b

grant codeBase "file:IncCMP11.jar" {

permission java.io.FilePermission
"${user.install.root}${/}bin${/}DefaultDB${/}-",
"read,write,delete";

Chapter 4. Setting up, enabling and migrating security ~ 87



The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative
code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to
associate the permission lists to a specific type of resources.

Table 18. Dynamic policy syntax.

This table describes several product-reserved symbols that are defined to associate the permission lists to a specific
type of resource.

Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility JAR files within the application

file:${ejpComponent} Permissions apply to the enterprise beans resources within the application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources both within the application
and in the standalone connector resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission
permission. These symbols enable flexible permission specification. The absolute file path is fixed after the
installation of the application.

Table 19. Dynamic policy syntax.

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.

Symbol Meaning

${app.installed.path} Path where the application is installed
${was.module.path} Path where the module is installed
${current.cell.name} Current cell name
${current.node.name} Current node name
${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an
AccessControlException exception. Because dynamic policy resolves the code base at runtime,
determining which policy file has a problem is difficult. Add a permission only to the necessary resources.
For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file
instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions
that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions
from the applications and an audit message is logged. However, if the permissions that are defined in the
app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,
the permission is not removed, but a warning message is written to the log file. The policy filtering only
supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the
was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask
keyword, the runtime removes the permissions from the applications no matter what permissions are
granted to the application. For example, even if a was.policy file has the java.security. AllPermission
permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission
are removed from the granted permission during runtime.

88  Securing applications and their environment




Policy file editing

Using the policy tool that is provided by the Developer Kit (app server root|/java/jre/bin/policytool), to
edit the previous policy files is recommended. For WebSphere Application Server, Network Deployment,
extract the policy files from the repository before editing. After the policy file is extracted, use the policy
tool to edit the file. Check the modified policy files into the repository and synchronize them with other
nodes.

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the
AccessControlException exception.
» Trace (Configured by RAS trace). Enables traces with the trace specification:

Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:
com.ibm.ws.security.core.SecurityManager=all=enabled

» Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the
java.security.debug property are as follows:
— Access. Print all debug information including required permission, code, stack, and code base

location.

— Stack. Print debug information including, required permission, code, and stack.
— Failure. Print debug information including required permission and code.

» ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an
Access Violation keyword in the log file.

Access control exception for Java 2 security

The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them. The
Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission
method. For the complete algorithm, refer to the Java 2 security check permission algorithm in the
Security: Resources for learning article.

i=m
while (i > 0) {
if (caller i's domain does not have the permission)
throw AccessControlException;
else if (caller i is marked as privileged)
return;
i=1i-1;

}s

The algorithm requires that all the classes or callers on the call stack have the permissions when a
java.security.AccessController.checkPermission method is performed or the request is denied and a
java.security.AccessControlException exception is created. However, if the caller is marked as privileged
and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire
call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two
possible resolutions to the java.security.AccessControlException exception are as follows:

Chapter 4. Setting up, enabling and migrating security 89



 If the application is calling a Java 2 security-protected application programming interface (API), grant the
required permission to the application Java 2 security policy. If the application is not calling a Java 2
security-protected API directly, the required permission results from the side-effect of the third-party APIs
accessing Java 2 security-protected resources.

 If the application is granted the required permission, it gains more access than it needs. In this case, it
is likely that the third party code that accesses the Java 2 security-protected resource is not properly
marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to
update the password. The following example is presented to illustrate the point. The decision of where to
mark the code as privileged is application-specific and is unique in every situation. This decision requires
great depth of domain knowledge and security expertise to make the correct judgement. A number of well
written publications and books are available on this topic. Referencing these materials for more detailed
information is recommended.

You can use the PasswordUtil utility to change the password of a user. The utility types in the old
password and the new password twice to ensure that the correct password is entered. If the old password
matches the one stored in the password file, the new password is stored and the password file updates.
Assume that none of the stack frame is marked as privileged. According to the
java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the
call stack are granted write permission to the password file. The client application does not have
permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file
as privileged, then the check permission algorithm does not check for the required permission from
classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the
PasswordUtil class is granted the permission. The client application can successfully update a password
without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall
security of the system can be compromised and security holes can be exposed. Use the ability to mark
code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException
exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm

Use this topic to enable IBM WebSphere Application Server security. You must enable administrative
security for all other security settings to function.

About this task

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality
and integrity of communications between WebSphere Application Server and other components in the
network. Cryptography is also used by Web Services Security when certain security constraints are
configured for the web services application.

90 Securing applications and their environment



WebSphere Application Server uses Java Secure Sockets Extension (JSSE) and Java Cryptography
Extension (JCE) libraries in the Software Development Kit (SDK) to perform this cryptography. The SDK
provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to perform full
strength cryptography and to improve performance.

Attention: Fix packs that include updates to the Software Development Kit (SDK) might overwrite
unrestricted policy files. Back up unrestricted policy files before you apply a fix pack and reapply these
files after the fix pack is applied.

WebSphere Application Server provides a SDK 6 that contains strong, but limited jurisdiction policy files.
You can download the unrestricted policy files from the following website: IBM developer kit: Security]

information|

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

Complete the following steps to download and install the new policy files:
1. Click Java SE 6
2. Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 6 website displays.

Click Sign in and provide your IBM.com ID and password.

Select Unrestricted JCE Policy files for SDK 6 and click Continue.

View the license and click | Agree to continue.

Click Download Now.

N O s~

Extract the unlimited jurisdiction policy files that are packaged in the compressed file. The
compressed file contains a US_export_policy.jar file and a Tocal_policy.jar file.

8. In your WebSphere Application Server installation, mount your product HFS read/write. Go to the
$JAVA HOME/jre/1ib/security directory and back up your US_export_policy.jar and
Tocal_policy.jar files.

9. Replace your US_export _policy.jar and Tocal _policy.jar files with the two files that you
downloaded from the IBM.com website.

10. Re-mount your product HFS as read/only.

The embedded Software Development Kit (SDK) ships with the unrestricted jurisdiction policy Java archive
(JAR) files. Therefore, instead of downloading these files from the website, you can symbolically link to the
files as allowed by your local country regulations. These unrestricted policy files are located in the
install_root/java/demo/jce/policy-files/unrestricted/ directory. The following UNIX-based
commands enable you to symbolically link to these files:

# Export the paths. You can find the values of the following

# variables in the joblog by searching for was.install.root,

# java.home, and so on:

export was.install.root=<was.install.root>

export java.home=<java.home>

# The previous paths apply to both 31- and 64-bit configurations
# of WebSphere Application Server for z/0S. For a 64-bit

# configuration, the java.home path points to the 64-bit embedded
# Java virtual machine (JVM).

# Delete the original policy .jar files. Because a backup is
# automatically present in the smpe.home HFS, an explicit

# backup is not needed:

cd $java.home/1ib/security

Chapter 4. Setting up, enabling and migrating security 91


http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

rm US_export_policy.jar
rm local_policy.jar

# Issue the following commands on separate lines to create

# the symbolic links to the unrestricted policy files:

In -s $java.home/demo/jce/policy-files/unrestricted/US_export_po Ticy.jar US_export_policy.jar
Tn -s $java.home/demo/jce/policy-files/unrestricted/local_policy .jar local_policy.jar

To remove the symbolic links to the unrestricted policy files in the demo directory and link to the original
files, use the following UNIX-based commands:

# Export the paths. You can find the values of the following

# variables in the joblog by searching for was.install.root,

# java.home, and so on:

export was.install.root=<was.install.root>

export java.home=<java.home>

export smpe.install.root=<smpe.install.root>

# The previous paths apply to both 31- and 64-bit configurations
# of WebSphere Application Server for z/0S. For a 64-bit

# configuration, the java.home path points to the 64-bit embedded
# Java virtual machine (JVM).

# Delete the current policy .jar files. You might want
# to back up the following files:

cd $java.home/Tib/security

rm US_export_policy.jar

rm local_policy.jar

# Issue the following commands on separate Tines to create

# symbolic links to the smpe HFS where the original files

# are kept:

Tn -s $smpe.install.root/java/lib/security/US_export_policy.jar US_export_policy.jar
Tn -s $smpe.install.root/java/lib/security/local_policy.jar local_policy.jar

Complete the following steps to enable security for the realm:

Procedure
1. Enable administrative security in WebSphere Application Server.

For more information, see [‘Enabling security” on page 66.| It is important to click Security > Global
security. Select an available realm definition from the list, and then click Set as current. Save the
configuration to the repository. Verify that the validation that occurs after you click OK on the Security
> Global security panel is successful before continuing. If the validation is not successful and you
continue with these steps, you risk the server not starting. Re-configure the security settings until
validation is successful.

2. Send a copy of the new configuration to all of the running node agents using the administrative
console. If a node agent fails to get the security-enabled configuration, communication with the
deployment manager fails, due to a lack of access. The node agent is not security-enabled. To force
synchronize a specific node, complete the following steps from the administrative console:

a. Click System administration > Nodes and select the option next to all the nodes. You do not
need to select the deployment manager node.

b. Click Full resynchronize to verify that the file synchronization has occurred. The message might
indicate that the nodes already are synchronized. This message is OK. When synchronization is
initiated, verify that the Synchronized status displays for all nodes.

3. Stop the deployment manager. Manually restart the deployment manager from the command line or
service. To stop the deployment manager, click System administration > Deployment manager and
click Stop. This action logs you out of the administrative console and stops the deployment manager
process.

4. Restart the deployment manager process.
To restart the deployment manager process, enter the following command:

START dmgr_proc_name ,JOBNAME=server_short_name
ENV=cell_short_name .node_short_name.server_short_name

You must enter this command on a single line. It is split here for illustrative purposes (refer to the
related links below for more information on using z/OS MVS system commands). After the deployment
manager initialization is complete, go back into the administrative console to complete this task.

Remember that security is enabled in the deployment manager only. If you enabled single sign-on

92  Securing applications and their environment



(SS0), specify the fully qualified domain name of your web address, for example,
http://myhost.domain:port _number/ibm/console. When you are prompted for a user ID and password,
type the one that you entered as the administrator ID in the configured user registry.

5. If the deployment manager does not start after enabling security, disable security using a script and
restart. Disable security by issuing the following command from the DeploymentManager/bin directory:

./wsadmin.sh -conntype NONE

At the prompt, enter securityoff.

6. Restart all node agents to make them security enabled. You must have restarted the deployment
manager in a previous step before completing this step. If the node agent is security-enabled before
the deployment manager is security-enabled, the deployment manager cannot query the node agent
for status or give the node agent commands. To stop all node agents, complete the following steps:

a. Go to System administration > Node agents and select the option beside all node agents. Click
Restart. A message similar to the following example is displayed at the top of the panel: The node
agent on node NODE NAME was restarted successfully.

b. Alternatively, if you previously did not stop your application servers, restart all of the servers within
any given node by clicking System administration > Node agents and by clicking the node
agents where you want to restart all the servers. Click Restart all Servers on Node. This action
restarts the node agent and any started application servers.

7. If any node agent fails to restart, perform a manual resynchronization of the configuration. This step
consists of going to the physical node and running the client syncNode command. This client logs into
the deployment manager and copies all of the configuration files to the node agent. This action
ensures that the configuration is security-enabled. If the node agent is started, but is not
communicating with the deployment manager, stop the node agent by issuing the stopServer
command.

Global security settings

Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

To view this administrative console page, click Security > Global security.

When security is configured, validate any changes to the user registry or authentication mechanism
panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID
or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user
registry settings after enabling administrative security can avoid problems when you restart the server for
the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.
This process restricts administrative tasks and applications to authorized users.

Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and
a user registry. You can configure an existing registry and enable administrative, application, and resource
security.

When you apply changes made by using the security configuration wizard, administrative security is turned
on by default.

Security configuration report:

Chapter 4. Setting up, enabling and migrating security 93



Launches a report that gathers and displays the current security settings of the application server.
Information is gathered about core security settings, administrative users and groups, CORBA naming
roles, and cookie protection. When multiple security domains are configured the report displays the
security configuration associated with each domain.

A current limitation to the report is that it does not display application level security information. The report
also does not display information on Java Message Service (JMS) security, bus security, or Web Services
Security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative
security requires users to authenticate before obtaining administrative control of the application server.

For more information, see the related links for administrative roles and administrative authentication.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and
password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies
administrators who manage the environment, and a server ID, which is used for server-to-server
communication. You do not need to enter a server ID and password when you are using the
internal server ID feature. However, optionally, you can specify a server ID and password. To
specify the server ID and password, complete the following steps:

1. Click Security > Global security.
2. Under User accounts repository, select the repository and click Configure.

You can only specify the the z/OS started task option when the user registry is Local OS.

If you have problems, such as the server not starting after enabling security within the security domain,
resynchronize all of the files from the cell to this node. To resynchronize files, run the following command
from the node: syncNode -username your_userid -password your_ password. This command connects to
the deployment manager and resynchronizes all of the files.

If your server does not restart after you enable administrative security, you can disable security. Go to your
app_server_root/bin directory and run the wsadmin -conntype NONE command. At the wsadmin> prompt,
enter securityoff and then type exit to return to a command prompt. Restart the server with security
disabled to check any incorrect settings through the administrative console.

Local OS user registry users: When you select Local OS as the active user registry, you do not need to
supply a password in the user registry configuration.

Default: Enabled

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

94  Ssecuring applications and their environment



As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Default: Disabled

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
Jjavax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification. For more information on permissions, see the related link
about Java 2 security policy files.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Consider enabling this option when both of the following conditions are true:
» Java 2 security is enforced.

» The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

Chapter 4. Setting up, enabling and migrating security 95



The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Default:

Disabled

Current realm definition:

Specifies the current setting for the active user repository.

This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

The selections appear in a drop-down list containing:
* Local operating system

+ Standalone LDAP registry

+ Stand-alone custom registry

Set as current:

Enables the user repository after it is configured.

You can configure settings for one of the following user repositories:

Federated repositories

Specify this setting to manage profiles in multiple repositories under a single realm. The realm can
consist of identities in:

» The file-based repository that is built into the system
* One or more external repositories
» Both the built-in, file-based repository and in one or more external repositories

Note: Only a user with administrator privileges can view the federated repositories configuration.

Local operating system

Specify this setting if you want your configured Resource Access Control Facility (RACF) or
System Authorization Facility (SAF)-compliant security server used as the application server user

registry.

Standalone LDAP registry

Specify this setting to use stand-alone LDAP registry settings when users and groups reside in an
external LDAP directory. When security is enabled and any of these properties change, go to the
Security > Global security panel and click Apply or OK to validate the changes.

Note: Since multiple LDAP servers are supported, this setting does not imply one LDAP registry.

Stand-alone custom registry

Specify this setting to implement your own stand-alone custom registry that implements the

96 Securing applications and their environment



com.ibm.websphere.security.UserRegistry interface. When security is enabled and any of these
properties change, go to the Global security panel and click Apply or OK to validate the changes.

Default: Disabled

Configure...:
Select to configure the global security settings.
Web and SIP security:

Under Authentication, expand Web and SIP security to view links to:
* General settings

+ Single sign-on (SSO)

+ SPNEGO web authentication

» Trust association

General settings:

Select to specify the settings for web authentication.

Single sign-on (SSO):

Select to specify the configuration values for single sign-on (SSO).

With SSO support, web users can authenticate once when accessing both WebSphere Application Server
resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans, and Lotus® Domino®
resources.

SPNEGO web authentication:

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) provides a way for web clients and the
server to negotiate the web authentication protocol that is used to permit communications.

Trust association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

You can use the global security settings or customize the settings for a domain.

Note: The use of trust association interceptors (TAls) for SPNEGO authentication is now deprecated. The
SPNEGO web authentication panels now provide a much easier way to configure SPNEGO.

RMI/IIOP security:

Under Authentication, expand RMI/IIOP security to view links to:
¢ (CSIv2 inbound communications
* CSIv2 outbound communications

CSlIv2 inbound communications:

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

Chapter 4. Setting up, enabling and migrating security 97



Authentication features include three layers of authentication that you can use simultaneously:

» CSlv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an
upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

» CSlv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

CSlIv2 outbound communications:

Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSl) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:

» CSlv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an
upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

» CSlv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

Java authentication and authorization service:

Under Authentication, expand Java authentication and authorization service to view links to:
* Application logins

* System logins

» J2C authentication data

Application logins:
Select to define login configurations that are used by JAAS.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

System logins:

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping.

J2C authentication data:

Select to specify the settings for the Java Authentication and Authorization Service (JAAS) Java 2
Connector (J2C) authentication data.

You can use the global security settings or customize the settings for a domain.

LTPA:

98  Securing applications and their environment



Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

Kerberos and LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.
Kerberos configuration:

Select to encrypt authentication information so that the application server can send data from one server
to anther in a secure manner.

The encryption of the authentication information that is exchanged between servers involves the KRB5 of
LTPA mechanism.

Authentication cache settings:

Select to set your authentication cache settings.

Enable Java Authentication SPI (JASPI):

Select to enable the use of Java Authentication SPI (JASPI) authentication.

You can then click Providers to create or edit a JASPI authentication provider and associated
authentication modules in the global security configuration.

Use realm-qualified user names:

Specifies that user names that are returned by methods, such as the getUserPrincipal() method, are
qualified with the security realm in which they reside.

Security domains:
Use the Security Domain link to configure additional security configurations for user applications.

For example, if you want use a different user registry for a set of user applications than the one used at
the global level, you can create a security configuration with that user registry and associate it with that set
of applications. These additional security configurations can be associated with various scopes (cell,
clusters/servers, SIBuses). Once the security configurations have been associated with a scope all of the
user applications in that scope use this security configuration. Read about|“MuItipIe security domains” on|
for more detailed information.

For each security attribute, you can use the global security settings or customize settings for the domain.
External authorization providers:

Select to specify whether to use the default authorization configuration or an external authorization
provider.

Chapter 4. Setting up, enabling and migrating security 99



The external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java(TM) 2 Platform, Enterprise Edition (J2EE) authorization. Do not modify
any settings on the authorization provider panels unless you have configured an external security provider
as a JACC authorization provider.

Custom properties:

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Specify extent of protection wizard settings
Use this security wizard page to determine whether to enable application security and restrict access to
local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Global security > Security configuration wizard.
Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Default: Disabled

z/OS security options
Use this page to determine which Global security options to specify for the application server for z/OS.

To view this administrative console page, click Security > Global security > z/0OS security options.

You also can view this administrative console page, by completing the following steps:
1. Click Servers > Server types > WebSphere application servers > server_name.
2. Under Security, click Server domain.

100 Securing applications and their environment



3. Click z/OS security options.

If you are configuring security for the first time, complete the steps in the Global security article prior to
making changes. After security is configured, validate any changes to the user registry or authentication
mechanism panels. Click Apply to validate the user registry settings. An attempt is made to authenticate
the server ID to the configured user registry. Validating the user registry settings after enabling Global
security can reduce potential problems when you restart the server for the first time.

Remote identity:

Specifies the System Authorization Facility (SAF) user ID that is assumed for the Internet Inter-ORB
Protocol (IIOP) unauthenticated clients that make requests of this server from another system.

Specifies whether an application remote identity is permitted.

Note: This information applies to Version 6.0.x and previous servers only that are federated in a Version
6.1 cell.

Local identity:

Specifies the SAF user ID that is assumed for the Internet Inter-ORB Protocol (IIOP) unauthenticated
clients that make requests of this server from the same system.

Specifies whether an application local identity is permitted.

Note: This information applies to Version 6.0.x and previous servers only that are federated in a Version
6.1 cell.

Enable application server and z/OS thread identity synchronization:

Specifies that application servers can process the SyncToOSThread option for application components that
specify it.

Selecting this option indicates whether an operating system thread identity is enabled for synchronization
with the Java Platform, Enterprise Edition (Java EE) identity that is used in the application server runtime
when an application is coded to request this function.

Synchronizing the operating system identity to the Java EE identity causes the operating system identity to
synchronize with the authenticated caller, or delegated RunAs identity in a servlet or Enterprise JavaBeans
(EJB) file. This synchronization or association means that the caller or security role identity, rather than the
server region identity, is used for z/OS system service requests such as access to files.

For this function to be active, the following conditions must all be true:
* The Sync to OS thread allowed value is true.

* An application includes within its deployment descriptor an env-entry of
com.ibm.websphere.security.SyncToOSThread set to true.

» The configured user account repository is the local operating system.

When these conditions are true, the OS thread identity is initially set to the authenticated caller identity of
a web or EJB request. The OS thread is modified each time the Java EE identity is modified. The Java EE
identity can be modified either by a RunAs specification on the deployment descriptor or a programmatic
WSSubject.doAs() request.

If the Sync to OS thread allowed value is false, which is the default setting, the ability to modify the
identity on the operating system thread of the deployment descriptor setting in the deployment descriptor

Chapter 4. Setting up, enabling and migrating security 101



of the installed application is disabled. If the server is not configured to accept enable synchronization and
the application deployment descriptor, com.ibm.websphere.security.SyncToOSThread, is set to true, a
BBOJ0080W warning message indicates that the EJB is requesting the SyncToOSThread option, but the
server is not enabled for the SyncToOSThread option.

Important: This option significantly increases the number of SMF 80 records used for security auditing.
When security auditing is turned on for SMF 80 records, the amount of DASD used increases significantly.

Enable the connection manager RunAs thread identity:

Sets the MVS identity associated with the Java Platform, Enterprise Edition (Java EE) identity on the
execution thread. Local Java EE Connector architecture (J2CA) connectors may honor the MVS identity
for authentication and authorization when an application requests a connection.

When you enable this setting, the method can process a request that modifies the operating system
identity to reflect the Java Platform, Enterprise Edition (Java EE) identity. This function is required to take
advantage of thread identity support. Java EE Connector architecture (J2CA) connectors that access local
resources on a z/OS system can use the thread identity support. A set of J2CA connectors that accesses
local z/OS resources defaults to the Java EE identity of the application if all of the following conditions are
true:

* Resource authorization is set to container-managed (res-auth=container).

* An alias entry is not coded when deploying the application.

» The connection manager Sync to OS thread setting is set to enabled.

For example, if you have a pre-existing DB2 for z/OS security policy that controls which users have access
to each table, you want to have that policy enforced when users access WebSphere applications that also
access DB2 for z/OS. The Java EE identity (the client identity by default) rather than the operating system
identity (server identity) is used to establish connections to DB2 for z/OS when Connection Manager
RunAs Identity Enabled is selected. DB2 for z/OS table access for the application is determined using your
preexisting DB2 for z/OS security policy.

Any J2CA connector that uses the thread identity support must support thread identity. Customer
Information Control System (CICS), Information Management System (IMS), and DATABASE 2 (DB2)
support thread identity. CICS and IMS support thread identity only if the target CICS or IMS is configured
on the same system as the application server for z/OS. DB2 always supports thread identity. If a connector
does not support thread identity, the user identity that is associated with the connection is based on the
default user identity that is supported by the particular connector.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Security custom properties
Use this page to understand the psecurity.allowCustomHTTPMethodsredefined custom properties that are
related to security.

To view this administrative console page, click Security > Global security > Custom properties. Then
click New to add a new custom property and its associated value.

The custom properties in this topic are set in the administrative console through the previously listed path
unless otherwise stated in the description.

You can use the custom properties page to define the following security custom properties:
+ [‘com.ibm.audit.field.length.limit” on page 104
+ [“‘com.ibm.audit.report.granularity” on page 104

102 Securing applications and their environment



[‘com.ibm.CSI.disablePropagationCallerList’ on page 105
[‘com.ibm.CSl.localCommDataForNonLocalOSEnabled” on page 105|
[‘com.ibm.CSl.propagateFirstCallerOnly” on page 106
“com.ibm.CSlI.rmilnboundLoginConfig” on page 106]
“com.ibm.CSl.rmilnboundMappingConfig” on page 106|
“com.ibm.CSI.rmilnboundMappingEnabled” on page 106|
“com.ibm.CSl.rmiOutboundLoginConfig” on page ﬁl
“com.ibm.CSI.rmiOutboundMappingEnabled” on page 107|
“com.ibm.CSl.supportedTargetRealms” on page 107_|
“com.ibm.security.multiDomain.setNamingReadUnprotected” on page 107|
“com.ibm.security. SAF.forceDelegation” on page 107|

“com.ibm.security. SAF.overrideStartupAPPL” on page 107|
“com.ibm.security.useFIPS” on page 107|
[‘com.ibm.websphere.crypto.config.certexp.notify.fromAddress” on page 108
[‘com.ibm.websphere.crypto.config.certexp.notify.textEncoding” on page 108
[‘com.ibm.websphere.lookupRegistryOnProcess” on page 108
[‘com.ibm.websphere.security.allowAnyLogoutExitPageHost” on page 108
[‘com.ibm.websphere.security.alwaysRestoreOriginal URL” on page 109|
[‘com.ibm.websphere.security.config.inherit.trustedRealms” on page 109
[‘com.ibm.websphere.security.console.noSSLTreePortEndpoints” on page 109
[‘com.ibm.websphere.security.customL.TPACookieName” on page 109
[‘com.ibm.websphere.security.customSSOCookieName” on page 110|
[‘com.ibm.websphere.security.displayRealm” on page 111|
[‘com.ibm.websphere.security.disableGetTokenFromMBean” on page 111|
[usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForlsCallerinRole]
[‘com.ibm.websphere.security.Invoke TAlbeforeSSO” on page 111|
[‘com.ibm.websphere.security. JAASAuthData.addNodeNameSecDomain” on page 112
[‘com.ibm.websphere.security. JAASAuthData.removeNodeNameGlobal” on page 112
[‘com.ibm.websphere.security.krb.canonical_host” on page 112|
[‘com.ibm.websphere.security.ldap.logicRealm” on page 112]
[‘com.ibm.websphere.security.ldapSSLConnectionTimeout” on page 113
[‘com.ibm.websphere.security.logoutExitPageDomainList” on page 113

“com.ibm.websphere.security.rsaCertificateAliasCache” on page 113|
“com.ibm.websphere.security.strictCredentialExpirationCheck” on page 113|
“com.ibm.websphere.security.tokenFromMBeanSoapTimeout” on page 114|
“com.ibm.websphere.security.useLoggedSecurityName” on page 114
“com.ibm.websphere.security.util.csiv2SessionCacheldleTime” on page 114|
“com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled” on page 115|
“com.ibm.websphere.security.util.csiv2SessionCacheMaxSize” on page 1ﬂ
“com.ibm.websphere.security.util.postParamMaxCookieSize” on page 116|
“com.ibm.websphere.security.webAlwaysLogin” on page 116|
“com.ibm.websphere.security.useLoggedSecurityName” on pm
“com.ibm.ws.security.addHttpOnlyAttribute ToCookies” on page 116
[‘com.ibm.ws.security.allowNonAdminToSecurityXML” on page 117

Chapter 4. Setting up, enabling and migrating security

103


usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole

[‘com.ibm.ws.security.config.SupportORBConfig” on page 117

* [‘com.ibm.ws.security.createTokenSubjectForAsynchLogin” on page 117|

* [‘com.ibm.ws.security.defaultLoginConfig” on page 117|

* [‘com.ibm.ws.security.failSSODuringCushion” on page 117|

* [‘com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA” on page 118|
* |“com.ibm.ws.security.ssolnteropModeEnabled” on page 118|

* |“com.ibm.ws.security.unprotectedUserRegistryMethods” on page 118|

* [‘com.ibm.ws.security.webChallengelfCustomSubjectNotFound” on page 119
* |“com.ibm.ws.security.weblnboundLoginConfig” on page 119|

* |‘com.ibm.ws.security.weblnboundPropagationEnabled” on page 119|

* |“com.ibm.ws.security.zOS.useSAFidForTransaction” on page 119|

+ [“com.ibm.wsspi.security.ltpa.tokenFactory” on page 120|

+ [“com.ibm.wsspi.security.token.authenticationTokenFactory” on page 120

« [“com.ibm.wsspi.security.token.authorizationTokenFactory” on page 120|

+ [“com.ibm.wsspi.security.token.propagationTokenFactory” on page 120|

+ [“com.ibm.wsspi.security.token.singleSignonTokenFactory” on page 120|

+ [‘com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken” on page 121
+ [“security.allowCustomHTTPMethods” on page 121|

+ [“security.enablePluggableAuthentication” on page 121|

+ [“security.useDefaultPolicyWhenJ2SDisabled” on page 121|

com.ibm.audit.field.length.limit:

This property only applies to the SMF Emitter implementation that IBM provides for the Security Auditing
feature. You can use this property to specify, in bytes, the length at which variable-length audit data is
truncated. By default, if this custom property is not specified, and the threshold limit of 20480 is exceeded,
variable-length audit data fields are truncated to 128 bytes.

gotcha: You must use the modifyAuditEmitter command for the AdminTask object to enable this custom
property. For a description of how to use this command, see the documentation about
AuditEmitterCommands for the AdminTask object.

The SMF relocation data has a threshold size limit of 20480 bytes. If the audit data exceeds this limit, the
audit data is truncated to prevent the loss of audit records.

Default 20480
Type An integer between 1 and 512

com.ibm.audit.report.granularity:

This property enables you to specify how much auditing data is recorded for each event type. If you only
need to record basic information about an event, such as who did what action to what resource, and
when, setting this property to high, might improve your application server performance.

You can specify values of high, medium, or Tow for this property. The default value is 1ow.

104 Securing applications and their environment



Table 20. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity. The following table indicates the type of data that is recorded for each event type
based on the setting for this property.

Event type high setting medium setting Tow setting

SessionContext sessionld sessionld, remoteHost sessionld, remoteHost, remoteAddr,
remotePort

PropagationContext (is only firstCaller (as part of the who) firstCaller, and if verbose mode is firstCaller, and if verbose mode is

reported if SAP is enabled) enabled, the callerList enabled, the callerList

RegistryContext nothing is recorded registry type registry type

ProcessContext nothing is recorded realm realm, and domain if verbose is
enabled

EventContext creationTime creationTime, globallnstanceld creationTime, globallnstanceld,

eventTrailld, and lastTrailld if
verbose mode is enabled

DelegationContext identityName delegationType, and identityName delegationType, roleName, and
identityName
AuthnContext nothing is recorded authn type authn type
ProviderContext nothing is recorded provider provider, and providerStatus
AuthnMappingContext mappedUserName mappedUserName, and mappedUserName,
mappedSecurityRealm mappedSecurityRealm, and
mappedSecurityDomain
AuthnTermContext terminateReason terminateReason terminateReason
AccessContext progName, action, appUserName, progName, action, appUserName, progName, action, appUserName,
and resourceName resourceName, registryUserName, resourceName, registryUserName,
and accessDecision accessDecision, resourceType,

permissionsChecked,
permissionsGranted, rolesChecked,
and rolesGranted

PolicyContext nothing is recorded policyName policyName, and policyType

KeyContext keyLabel keyLabel, and keyLocation keyLabel, keyLocation, and
certificateLifetime

MgmtContext nothing is recorded mgmtType, and mgmtCommand mgmtType, mgmtCommand, and

targetinfoAttributes

com.ibm.CSl.disablePropagationCallerList:

This property completely disables the caller list and will not allow the caller list to change. This property
prevents the creation of multiple sessions.

This property completely disables adding a caller or host list in the propagation token. Setting this property
can be a benefit when the caller or host list in the propagation token is not needed in the environment.

Note: If this property is set to true as well as com.ibm.CSl.propagateFirstCallerOnly, then
com.ibm.CSl.disablePropagationCallerList takes precedence.

Default false

com.ibm.CSl.localCommDataForNonLocalOSEnabled:

This property allows local communication data to be used as authentication material for the CSIv2
transport layer when the user registry is not a LocalOS user registry.

When this property is set to true, the data retrieved from the local communication transport corresponds to
the ASID of the local client connecting to a WebSphere Application Server process. A user corresponding
to the ASID must exist in the user registry. When a CSlv2 Establish Message is received by a WebSphere
Application Server process and Identity Assertion is requested, the data retrieved from the local
communication transport can be used to validate that the client has permission to assert the user specified

Chapter 4. Setting up, enabling and migrating security 105



in the Identity Token in the Attribute Layer. If the user represented by the received ASID is in the Trusted
Identities list on the CSIv2 Inbound Authentication page in the administrative console, then that ID is able
to assert the Identity Token.

Default false

com.ibm.CSl.propagateFirstCallerOnly:

This property will not allow the caller list to change and thus prevent the creation of multiple session
entries. This property specifically limits the caller list to the first caller only.

This property logs the first caller in the propagation token that stays on the thread when security attribute
propagation is enabled. Without setting this property, all caller switches get logged, which affects
performance. Typically, only the first caller is of interest.

Note: If this property is set to true as well as com.ibm.CSl.disablePropagationCallerList, then
com.ibm.CSl.disablePropagationCallerList takes precedence.

Default true

Note: New for this release, the default value of the com.ibm.CSl.propagateFirstCallerOnly security custom
property is set to true. When this custom property is set to true, the first caller in the propagation
token that stays on the thread is logged when security attribute propagation is enabled. When this
property is set to false, all of the caller switches are logged, which can affect performance.

com.ibm.CSl.rmilnboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is
used for Remote Method Invocation (RMI) requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for RMI logins.

Default system.RMI_INBOUND

com.ibm.CSl.rmilnboundMappingConfig:

This property defines the system JAAS login configuration that is used to perform application specific
principal mapping.

Default None

com.ibm.CSl.rmilnboundMappingEnabled:

This property, when set to true, enables the application specific principal mapping capability.

Default false

com.ibm.CSl.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

106 Securing applications and their environment



Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.
However, you can plug in a custom login module to perform outbound mapping.

Default system.RMI_OUTBOUND

com.ibm.CSIl.rmiOutboundMappingEnabled:

This property, when set to true, enables the original caller subject embedded in the WSSubjectWrapper
object to be restored.

Default false

com.ibm.CSl.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is
specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2
outbound authentication panel. This property enables those realms to perform inbound mapping of the
data from the current realm.

It is not recommended that you send authentication information to an unknown realm. Thus, this provides
a way to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,
complete the following steps:

1. Click Security > Global security.
2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.security.multiDomain.setNamingReadUnprotected:

This property can be set to true or false to determine if the CosNamingRead role protects all naming read
operations. Setting this property to true is the equivalent of assigning the CosNamingRead role the
Everyone special subject. If this propert is set, then it will override any assignments made to the
CosNamingRead role.

Default none

com.ibm.security.SAF.forceDelegation:

Determines whether System Authorization Facility (SAF) delegation can be used independently of SAF
authorization. When this property is set to true, SAF delegation can be used whenever the user registry is
a Federated Repository user registry, and is configured with a SAF user registry bridge.

There is no default value for this property.

com.ibm.security.SAF.overrideStartupAPPL:

This property can be used to override the value for the APPL profile, specifically for the two RACROUTE
calls that are made during server startup. For these calls the APPL value is not used for the authorization
checking process, but is made available to the installation exit routine. The APPL profile value used for

authorization checking is not controlled by this property, it is instead set to either CBS390 or the SAF
profile prefix value.

Default none

com.ibm.security.useFIPS:

Chapter 4. Setting up, enabling and migrating security 107



Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server
uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

Default false

com.ibm.websphere.crypto.config.certexp.notify.fromAddress:
This security property is used to customize the "from address" of certificate expiration notification email.

The value you assigned to this property should be an internet address, for example "Notification @ abc-
company.com" If this property is not set, WebSphere uses its email fromAddress:
"WebSphereNotification @ibm.com" .

Default None

com.ibm.websphere.crypto.config.certexp.notify.textEncoding:

This security property is used to customize the text encoding character set for certificate expiration
notification email.

WebSphere Application Server sends notification email for certificate expiration in either US-English or the
machine default character set (if non-English locale is specified). If you want a different text encoding
character set for the certificate expiration notification email, you can use this property to customize the text
encoding character set.

Default None

com.ibm.websphere.lookupRegistryOnProcess:

This property can be set when realm registry lookups are performed via an MBean on a remote server if
the realm is local OS security.

By default, the user registry tasks listRegistryUsers and listRegistryGroups perform lookups from the
current process. In the case of Network Deployment (ND), that is the dmgr.

When dealing with a local OS user registry, lookup should occur on the actual server where the registry
resides. In an ND environment that could be a remote machine. To perform lookup on the server process
where the registry resides, the com.ibm.websphere.lookupRegistryOnProcess custom property should be
set to true.

If com.ibm.websphere.lookupRegistryOnProcess is not set, or set to false, then the lookup is performed
on the current process. The custom property can be set using the setAdminActiveSecuritySettings task for
global security or the setAppActiveSecuritySettings task for a security domain.

com.ibm.websphere.security.allowAnyLogoutExitPageHost:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you want to be able
to point to any host, then you need to set this property in the security.xml file to a value of true. There is
a risk that setting this property to have a value of true may open your systems to potential URL redirect
attacks.

Default false

108 Securing applications and their environment



com.ibm.websphere.security.alwaysRestoreOriginalURL:

Use this property to indicate whether a cookie with the value WASReqURL is honored when the custom
form login processor is used.

When this property is set to true, the value of WASReqURL takes precedence over the current URL, and
the WASReqURL cookie is removed from subsequent requests.

When this property is set to false, the value of the current URL takes precedence, and the WASReqURL
cookie is not removed from subsequent requests.

Default false

com.ibm.websphere.security.config.inherit.trustedRealms:

This property is used to inherit the global trusted realm settings from the global security configuration in
the domain.

Security configuration trusted inbound and outbound realms are not inherited by default. However, there
are some cases where the configuration might want to use (inherit) the settings from the global security
configuration in the domain.

The value of this property can be either true or false.
com.ibm.websphere.security.console.noSSLTreePortEndpoints:

This property is used to improve the response time for large topology configurations.

When this property is set to true the status of the of the SSL port endpoints does not display on the
Manage endpoint security configurations page in the administrative console. Displaying the status of the

SSL port endpoints sometimes makes the administrative console seem like it is no longer functioning
because of a longer than expected response time.

Default false

com.ibm.websphere.security.customLTPACookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
(LTPA) tokens.

WebSphere Application Server Version 8.0 enables you to customize the name of the cookies used for
LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

Chapter 4. Setting up, enabling and migrating security 109



» This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

* The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8.0. This enables compatibility with products such as
Lotus Domino and WebSphere Portal which both utilize the default cookie name.

» Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

* This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8.0 might be able to create custom cookies.
However, a WebSphere Application Server Version 7.0 node or server existing in this same cell
does not understand what to do with this cookie and subsequently rejects it.

* If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.
com.ibm.websphere.security.customSSOCookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
Version 2 (LTPA2) tokens.

WebSphere Application Server Version 8.0 enables you to customize the name of the cookies used for
LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

» This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

* The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8.0. This enables compatibility with products such as
Lotus Domino and WebSphere Portal which both utilize the default cookie name.

» Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

» This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8.0 might be able to create custom cookies.
However, a WebSphere Application Server Version 7.0 node or server existing in this same cell
does not understand what to do with this cookie and subsequently rejects it.

110 Securing applications and their environment



 If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.
com.ibm.websphere.security.displayRealm:

This property specifies whether the HTTP basic authentication login window displays the realm name that
is not defined in the application web.xm1 file.

Note: If the realm name is defined in the application web.xm1 file, this property is ignored.

If the realm name is not defined in the web.xml file, one of the following occurs:
* |f the property is set to false, the WebSphere realm name display is Default Realm.

 If this property is set to true, the WebSphere realm name display is the user registry realm name
for the LTPA authentication mechanism or the Kerberos realm name for the Kerberos
authentication mechanism.

Important: If this property is set to true, and the user registry's realm name contains sensitive
information, it is displayed to the user. For example, if standalone LDAP configuration is used,
the LDAP server hostname and port are displayed. For LocalOS, the hostname is displayed.

Default false
Type string

com.ibm.websphere.security.disableGetTokenFromMBean:

Use this property to disables the outbound SOAP call to retrieve the subject from the originating server
when Single Sign-On is enabled.

Typically, when Single Sign-On is enabled, and an inbound request needs to be authenticated, the
receiving server attempts to retrieve the authentication from the originating server. The connection
between the sending and receiving servers never times out during this callback process.

When this property is set to true, the receiving server does not attempt to authenticate the inbound
request.

Default false

com.ibm.websphere.security.enableAuditForlsCallerinRole:
Use this property to enable audit for the isCallerinRole method call.

If you set this property to false, it disables auditing for the invocation of isCallerlnRole. In z/OS, SMF
records are not issued for the invocation.

Default true

com.ibm.websphere.security.InvokeTAlbeforeSSO:

Default invocation order of Trust Association Interceptors (TAls) in relation to Single Sign On (SSO) user
authentication can be changed using this property. The default order is to invoke Trust Association

Chapter 4. Setting up, enabling and migrating security 111



Interceptors after SSO. This property is used to change the default order of TAI invocation with SSO. The
property value is a comma (,) separated list of TAl class names to be invoked before SSO.

Default com.ibm.ws.security.spnego.TrustAssociationInterceptorimpl
Type string

com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain:

By default, when JAAS authentication data entries are created at the domain security level, the alias name
for the entry will be in the format aliasName. . You can enable the addition of the node name to the alias
name in order to create the alias name in the format nodeName/aliasName for the entry, by setting the
following property at the domain security level.

Note: You can set com.ibm.websphere.security. JAASAuthData.addNodeNameSecDomain=true at the
global security level, to enable the addition of the node name to the alias name of JAAS
authentication data entries for all security domains.

Default false

com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal:

By default, when JAAS authentication data entries are created at the global security level, the alias name
for the entry will be in the format nodeNamey/aliasName. You can disable the addition of the node name to
the alias name for the entry, by setting a value of true for this property at the global security level.

Default false

com.ibm.websphere.security.krb.canonical_host:

This custom property specifies whether the application server uses the canonical form of the URL/HTTP
host name in authenticating a client. This property can be used for both SPNEGO TAI and SPNEGO Web.

If you set this custom property to false, a Kerberos ticket can contain a host name that differs from the
HTTP host name header and the application server might issue the following message:

CWSPNOO11E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application server
to authenticate using the canonical form of the URL/HTTP host name.

Default true

com.ibm.websphere.security.ldap.logicRealm:
This custom property enables you to change the name of the realm that is placed in the token.

This custom property enables you to configure each cell to have its own LDAP host for interoperability and
backward compatibility. Also, it provides flexibility for adding or removing the LDAP host dynamically. If you
are migrating a previous installation, this modified realm name does not take effect until administrative
security is re-enabled. To be compatible with a previous release that does not support the logic realm, the
name must be the same name that is used by the previous installation. You must use the LDAP host
name, including a trailing colon and port humber.

Type String

112  Securing applications and their environment



This property must be set as the custom property of a stand-alone LDAP registry. To set this custom
property, in the administrative console:

1. Click Security > Global security.

2. Under User account repository, expand the Available realm definitions list, and select Standalone
LDAP registry, and then click Configure.

3. Under Custom properties, click New , and then enter com.ibm.websphere.security.ldap.logicRealm in
the Name field, and the new name of the realm that is placed in the token in the Value field.

4. Select this custom property and then click Apply or OK.
com.ibm.websphere.security.ldapSSLConnectionTimeout:

Use this property, when SSL is enabled on the LDAP server, to specify, in milliseconds, the maximum
amount of time the JVM waits for a socket connection before issuing a timeout.

If one or more standalone LDAP servers are offline when a server process starts, and LDAP-SSL is
enabled, there might be a delay of up to 3 minutes in the startup procedure even if you specify a value for
the com.sun.jndi.ldap.connect.timeout custom property. When LDAP-SSL is enabled, any value specified
for the com.sun.jndi.ldap.connect.timeout property is ignored.

When a value is specified for this property, the JVM tries to uses this connection timeout value when
attempting to complete a socket connection, instead of trying to establish a directory context. When no
value is specified for this property, the JVM tries to establish a directory context.

There will be no default value for this property.
com.ibm.websphere.security.logoutExitPageDomainList:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you need to point to

a different host, then you can populate this property in security.xml with a pipe () separated list of URLs
that are allowed for the logout page.

Default none

com.ibm.websphere.security.rsaCertificateAliasCache:

This property is used to control the size of the alias cache.

The default value is 5000 and can be increased for larger deployments.

The value must be entered into the range of 1 - N, where N is a valid positive integer that is greater than

or equal to the number of nodes registered with the Job Manager. You do not need to add this property
unless your Job Manager topology exceeds 5000 registered nodes.

Default 5000

com.ibm.websphere.security.strictCredentialExpirationCheck:
Specifies whether credential expiration check occurs for a local EJB call. Typically, when an EJB invokes

another EJB that is located in a local machine, a direct method invocation occurs even if the credentials of
the original invoker expire before the local EJB call occurs.

Chapter 4. Setting up, enabling and migrating security 113



If this property is set to true, a credential expiration check occurs on a local EJB call before the EJB is
invoked on the local machine. If the credentials have expired, the EJB call is rejected.

If this property is set to false, a credential expiration check does not occur for a local EJB call.

Default false

com.ibm.websphere.security.tokenFromMBeanSoapTimeout:

Use this property to specify the amount of time the receiving server waits for an outbound SOAP call to
retrieve the proper authentication from the originating server when Single Sign-On is enabled.

There is no default value for this property. If no value is specified, the global SOAP timeout value is used
as the timeout value for the SOAP connection.

com.ibm.websphere.security.useLoggedSecurityName:
This is a custom property of user registries. This property alters the behavior of creating WSCredential.

A setting of false indicates that the security name returned by a user registry is always used to construct
WSCredential.

A setting of true indicates that either a security name that is supplied by login module is used or a display
name that was supplied by a user registry is used. This setting is compatible with WebSphere Application
Server version 6.1 and older releases.

Default false

com.ibm.websphere.security.util.csiv2SessionCacheldleTime:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if the com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom
property is set to a true value and the maximum size of the CSIv2 session cache is exceeded.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. Consider decreasing
the value for this custom property if your environment uses Kerberos authentication and has a short clock
skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined as
less than 20 minutes.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSIv2 outbound communications
You can set the value in the Idle session timeout field. However, when you specify this value

on the CSIv2 outbound communications panel, the administrative console value is expected in
seconds and not milliseconds.

The range of values for this custom property is 60,000 to 86,400,000 milliseconds. By default, the value is
not set.

114  Securing applications and their environment



com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled:
This custom property specifies whether to limit the size of the CSIv2 session cache.

When you set this custom property value to true, you must set values for the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime and
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom properties. When you set this custom
property to false, the CSlv2 session cache is not limited. The default property value is false.

Consider setting this custom property to true if your environment uses Kerberos authentication and has a
small clock skew for the configured key distribution center (KDC). In this scenario, a small clock skew is
defined as less than 20 minutes. A small clock skew can result in a larger number of rejected CSlv2
sessions. However, with a smaller value for the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property, the application server can
clean out these rejected sessions more frequently and potentially reduce the resource shortages.

Important: This custom property only applies if you enable the stateful sessions.

Important: Although you can enable the CSIv2 session cache limit option as a custom property, it is
advisable that you enable the option on the CSIv2 outbound communications panel, which is
available in the administrative console by completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can enable the Enable CSlv2 session cache limit option. The default value is false.
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize:

This property specifies the maximum size of the session cache after which expired sessions are deleted
from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified by the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property. When you use the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property, consider setting its value
between 100 and 1000 entries.

Consider specifying a value for this custom property if your environment uses Kerberos authentication and
has a small clock skew for the configured key distribution center (KDC). In this scenario, a small clock
skew is defined as less than 20 minutes. Consider increasing the value of this custom property if the small
cache size causes the garbage collection to run so frequently that it impacts the performance of the
application server.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSlv2 outbound communications

You can set the value in the Maximum cache size field.
The range of values for this custom property is 100 to 1000 entries. By default, the value is not set.

Chapter 4. Setting up, enabling and migrating security 115



com.ibm.websphere.security.util.postParamMaxCookieSize:
This property sets a size limit for WASPostParam cookies being generated by the security code.

When the Use available authentication data when an unprotected URI is accessed option is enabled and
Form-based authentication is being used this, a WASPOSTParam is generated during the authentication
procedure of the HTTP POST request even if the target URL is unprotected. A WASPOSTParam cookie is
a temporary cookie used to store HTTP POST parameters. This results in the Web client being sent the
unnecessary cookie with an HTTP response. This might cause unexpected behavior when the size of the
cookie is larger than the browser limit. To avoid this behavior,
com.ibm.websphere.security.util.postParamMaxCookieSize can be set to cause the security code to stop
generating the cookie if the maximum size specified by this property is reached. The value of this property
must be a positive integer and represents the maximum size of the cookie in bytes.

Default none

com.ibm.websphere.security.webAlwaysLogin:

This property specifies whether the login() method will throw an exception if an identity had already been
authenticated. You can overwrite this behavior by setting this property to true.

Default false
Type string

Note: The login() method always uses the user ID and password to authenticate to the WebSphere
application server irrespective of the presence of the SSO information in the HitpServletRequest.

com.ibm.ws.security.addHttpOnlyAttributeToCookies:
This custom property enables you to set the HTTPOnly attribute for single sign-on (SSO) cookies.

You can use the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property to protect cookies
that contain sensitive values. When you set this custom property value to true, the application server sets
the HTTPOnly attribute for SSO cookies whose values are set by the server. The HTTPOnly attribute
enables the protection of sensitive values in cookies.

Also, a true value enables the application server to properly recognize, accept, and process inbound
cookies with HTTPOnly attributes and inhibit any cross-site scripting from accessing sensitive cookie
information.

A common security problem, which impacts web servers, is cross-site scripting. Cross-site scripting is a
server-side vulnerability that is often created when user input is rendered as HTML. Cross-site scripting
attacks can expose sensitive information about the users of the website. Most modern web browsers
honor the HTTPOnly attribute to prevent this attack. A cookie with this attribute is called an HTTPOnly
cookie. Information that exists in an HTTPOnly cookie is less likely to be disclosed to a hacker or a
malicious website. For more information about the HTTPOnly attribute, see the Open Web Application
Security Project (OWASP) website.

Important: When you use this custom property, HTTPOnly attribute is not added to every cookie that
passes through the application server. Also, the attribute is not added to other non-secure
cookies that are created by the application server. A list of non-HTTPOnly cookies includes:

* JSESSIONID cookies
» SSO cookies that are created by authenticators or providers from another software vendor
» Client or browser cookies that do not already contain the HTTPOnly attribute

116 Securing applications and their environment



You can set or remove this custom property from the Single sign-on panel in the administrative console by
doing the following:

1. Click Security > Global security.
2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Default true Type Boolean

com.ibm.ws.security.allowNonAdminToSecurityXML:

This property specifies whether the non-admin security roles are allowed the ability to modify the
security.xml file. Setting this property to true gives non-admin security roles the ability to modify the
security.xml file. In Version 6.1 and above, by default, non-admin security roles have the ability to modify
the security.xml file.

Default false
Type Boolean

com.ibm.ws.security.config.SupportORBConfig:

Specifies whether to check or not check the object request broker (ORB) for properties. This property
needs to be set as a system property. You set this property to true or yes so that the ORB is checked for
properties. For any other setting, the ORB is completely ignored.

The property is to be used when a pluggable application client connects to the WebSphere Application
Server. Specifically, this property is used whenever a hashmap containing security properties is passed in
a hashmap on a new InitialContext(env) call.

com.ibm.ws.security.createTokenSubjectForAsynchLogin:

In this release, the actual LTPA token data is not available from a WSCredential.getCredentialToken() call
when called from an asynchronous bean. For an existing configuration, you can add the
com.ibm.ws.security.createTokenSubjectForAsynchLogin custom property and a true value to allow the
LTPAToken to be forwarded to asynchronous beans. This property allows portlets to successfully perform
LTPA token forwarding. This custom property is case sensitive. You must restart the application server
after you add this custom property.

Note: This custom property applies only to system conditions where Server A makes EJB calls from
asynchronous beans to Server B. This property does not apply for JAAS login situations.

Default not applicable

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the
WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

Internal authentication and protocols that do not have specific JAAS plug points call the system login
configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

Default system.DEFAULT

com.ibm.ws.security.failSSODuringCushion:

Chapter 4. Setting up, enabling and migrating security 117



Use the com.ibm.ws.security.failSSODuringCushion custom property to update custom JAAS Subject data
for the LTPA token.

When you do not set this custom property to true, new JAAS Subjects might not contain the custom JAAS
Subject data.

The default value is true.
com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA:

Use the com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA custom property to correct an “invalid
library name" error when you attempt to use a PKCS11 type keystore with a Java client.

Also, use this custom property if you are using the IBMJCECCA provider because distributed and z/OS
operating systems use different provider types for hardware cryptography.

The ss1.client.props file points to a configuration file, which in turn, points to the library name for the
cryptographic device. The code for the Java client looks for a keystore type for the correct provider name.
Without this custom property, the keystore type constant for PKCS11 is not specified correctly as it
references the IBMPKCS11Impl provider instead. Also, the Lightweight Third Party Authentication (LTPA)
code uses the provider list to determine the Java Cryptography Extension (JCE) provider. This approach
causes a problem when Secure Sockets Layer (SSL) acceleration is attempted because the
IBMPKCS11Impl provider needs to be listed before the IBMJCE provider within the java.security file.

This custom property corrects both issues so that SSL and other cryptographic mechanisms can use
hardware acceleration.

Note: LTPA cannot use hardware acceleration because the software keys for LTPA do not implement the
java.security.interfaces.RSAPrivateCrtKey interface, which is required by many accelerator cards.

Set this custom property to true when you want to use a PKCS11 type keystore with a Java client.

Default false

com.ibm.ws.security.ltpa.useCRT:

Use this property to improve the CPU utilization during the sign() operation that occurs when a new LTPA2
(SSO) token is created. When this property is set to true, the product implements the Chinese Remainder
Theorem (CRT) algorithm when signing the new token. This property has no effect on the old style LTPA
token.

Default false

com.ibm.ws.security.ssolnteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a web
request (interoperable).

When this property value is false, the application server just sends the new LtpaToken2 cookie which is
stronger, but not interoperable with some other products and Application Server releases prior to Version
5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to false.

Default true

com.ibm.ws.security.unprotectedUserRegistryMethods:

118 Securing applications and their environment



Specifies the method names on the UserRegistry interface, such as getRealm, getUsers, and isValidUser,
that you do not want protected from remote access. If you specify multiple method names, separate the
names with either a space, a comma, a semi-colon, and a separator bar. See your implementation of the
UserRegistry interface file for a complete list of valid method names.

If you specify an * as the value for this property, all methods are unprotected from remote access.
If a value is not specified for this property, all methods are protected from remote access.

If an attempt is made to remotely access a protected UserRegistry interface method, the remote process
receives a CORBA NO_PERMISSION exception with minor code 49421098.

There is no default value for this property.
com.ibm.ws.security.webChallengelfCustomSubjectNotFound:
This property determines the behavior of a single sign-on LtpaToken2 login.

If the token contains a custom cache key and the custom Subject cannot be found, then the token is used
to log in directly as the custom information needs to be regathered if this property value is set to true. A
challenge also occurs so that the user is required to login again. When this property value is set to false
and the custom Subject is not found, the LtpaToken2 is used to login and gather all of the registry
attributes. However, the token might not obtain any of the special attributes that downstream applications
might expect.

Default true

com.ibm.ws.security.weblnboundLoginConfig:
This property is the JAAS login configuration that is used for web requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for web logins.

Default system.WEB_INBOUND

com.ibm.ws.security.weblnboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated
attributes locally before searching the original login server that is specified in the token. After the
propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

You can configure the data replication service (DRS) to send the propagated attributes to front-end servers

such that a local dynacache lookup can find the propagated attributes. Otherwise, an MBean request is
sent to the original login server to retrieve these attributes.

Default true

com.ibm.ws.security.z0S.useSAFidForTransaction:

This property is used to enable a server to use the user identity for the z/OS started task as the server
identity when calling transactional methods.

Chapter 4. Setting up, enabling and migrating security 119



This property is used to enable a server to use the user identity for the z/OS started task as the server
identity when calling transactional methods, such as commit(), and prepare(), that require the server
identity. This behavior occurs regardless of the server identity setting for that server.

As an example, a server can be configured to use the automatically generated server identity, which is not
the actual identity stored in a user repository. Furthermore, this server might need to communicate with
CICS 3.2, and CICS 3.2 requires the use of System Authorization Facility (SAF) identities. If
com.ibm.ws.security.z0S.useSAFidForTransaction is set to true, then the server uses a SAF identity to
communicate with CICS instead of using the automatically generated identity.

Default false

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used
to validate the LTPA tokens.

Validation occurs in the order in which the token factories are specified because LTPA tokens do not have
object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each
token factory until validation is successful. The order that is specified for this property is the most likely
order of the received tokens. Specify multiple token factories by separating them with a pipe (I) without
spaces before or following the pipe.

Default com.ibm.ws.security.ltpa.LTPATokenFactory |

com.ibm.ws.security.ltpa.LTPAToken2Factory |
com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.authenticationTokenFactory:
This property specifies the implementation that is used for an authentication token in the attribute

propagation framework. The property provides an old LTPA token implementation for use as the
authentication token.

Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory
encodes the authorization information.

Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes
the propagation token information.

The propagation token is on the thread of execution and is not associated with any specific user Subjects.
The token follows the invocation downstream wherever the process leads.
Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

120 Securing applications and their environment



This property specifies the implementation that is used for a Single Sign-on (SSO) token. This
implementation is the cookie that is set when propagation is enabled regardless of the state of the
com.ibm.ws.security.ssolnteropModeEnabled property.

By default, this implementation is the LtpaToken2 cookie.

Default com.ibm.ws.security.ltpa.LTPAToken2Factory

com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken:

Use this property to specify how you want the system to handle authentication for a request after the
Kerberos token for the request expires.

When this property is set to true, if a Kerberos token cannot be refreshed after it expires, authentication
for the request fails.

When this property is set to false, authentication for the request does not fail even if the token has
expired.

The default value for this property is false.
security.allowCustomHTTPMethods:

Use this custom property to permit custom HTTP methods. The custom HTTP methods are other than the
standard HTTP methods, which are: DELETE, GET, HEAD, OPTIONS, POST, PUT or TRACE.

When this property is set to false, which is the default, if a combination of a URI pattern and a custom
HTTP method are not listed in the security-constraint element, a search of the security constraint is
performed using an URI pattern only. If there is a match, the value of the <auth-constraints> element is
enforced. This behavior minimizes a potential security exposure.

When this property is set to true, the custom HTTP methods are treated as the standard HTTP methods.
An authorization decision is made by both the URI pattern and the HTTP method. To properly protect a
target URI, make sure that the proper HTTP methods are listed in the <web-resource-collection> element.

security.enablePluggableAuthentication:
This property is no longer used. Instead, use WEB_INBOUND login configuration.

Complete the following steps to modify the WEB_INBOUND login configuration:
1. Click Security > Global security.
2. Under Java Authentication and Authorization Service, click System logins.

Default true

security.useDefaultPolicyWhenJ2SDisabled:

The NullDynamicPolicy.getPermissions method provides an option to delegate a default policy class to
construct a Permissions object when the security.useDefaultPolicyWhenJ2SDisabled custom property is
set to true. When this property is set to false, an empty Permissions object is returned.

Default false

Chapter 4. Setting up, enabling and migrating security 121



Security custom property collection
Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key
and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of
these administrative pages, click a Custom properties link.

Name:
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several custom property settings pages that work similarly. To view
one of these administrative pages, click Custom properties.

Name:
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the product.

Data type String

Value:

Specifies the value paired with the specified name.

Data type String

Description:

Provides information about the name and value pair.

122  Securing applications and their environment



Data type String

Testing security after enabling it

Basic tests are available that show whether the fundamental security components are working properly.
Use this task to validate your security configuration.

Before you begin

After configuring administrative security and restarting all of your servers in a secure mode, validate that
security is properly enabled.

Basic tests are available that show whether the fundamental security components are working properly.
Complete the following steps to validate your security configuration:

Procedure
1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does
not appear, try accessing the administrative console by typing https://myhost.domain:9043/1bm/
console.

3. Test Java Client BasicAuth with dumpNameSpace.

Use the lapp_server root}/bin/dumpNameSpace.sh file. A login panel appears. If a login panel does not
appear, there is a problem. Type in any valid user ID and password (or password phrase) in your
configured user registry.

4. Test all of your applications in secure mode.

5. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any
problems, review the SYSOUT and SYSPRINT logs. For more information on common problems, see
[Chapter 12, “Troubleshooting security configurations,” on page 977 |

Note: Testing synchronizing of the node agent is a good test. To do so, make a small change to the
configuration and save and synchronize those changes. If there are no errors, proceed.

Results
The results of these tests, if successful, indicate that security is fully enabled and working properly.
Example

To test the Snoop application, do the following:
1. Enable security while installing the Base Application Server.
2. Log onto the administrative console with a wsadmin user ID and password.

3. Navigate to Applications > Enterprise Applications > DefaultApplication > Security role to
user/group mapping.
4. Add a user. Select the role All Role, and click Lookup User.

5. Map one of the users (for example, TESTER1) with the role All Role. For more information on
mapping, see|../ae/usec_rmapuser.dital

6. Save the configuration.

7. Run Resource Access Control Facility (RACF) commands for the role All Role to find those that are
associated with the TESTER1 user ID.

Note: In the RACF command, enter All Role as All#Role, as in the following example:

Chapter 4. Setting up, enabling and migrating security 123



RDEFINE EJBROLE S30CSA1.A11#Role UACC(NONE) APPLDATA('TESTERL')
PERMIT S30CSA1.AT1#Role CLASS(EJBROLE) ID(TESTER1) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

PE S30CSA1 CLASS(APPL) ID(TESTER1) ACCESS(READ)

8. Access the application with the user ID TESTERT1 at http://localhost:port/snoop.

Security Configuration Wizard

The Security Configuration Wizard guides you through the process of completing the basic requirements to
secure your application serving environment.

This wizard is available from the Security menu from the left pane of the admin console. To get to the
wizard, navigate to Security > Global security > Security Configuration Wizard.

Step one of the configuration wizard allows you to choose the level of security desired. application-level
security is selected by default. You also have the option of selecting Java 2 security.

Step two of the configuration wizard allows you to select a user repository. You have the following options:
+ [“Federated repository wizard settings” on page 259

+ [“Local operating system wizard settings” on page 190

+ [“Stand-alone custom registry wizard settings” on page 222|

+ [“Standalone LDAP registry wizard settings” on page 197

Step three of the configuration wizard allows you to specify the local operating system user and group
definitions as the repository, and, if necessary, to provide the name of a user with administrator privileges.

Step four of the configuration wizard provides a summary of the results of the configuration process.

Security configuration report

The security configuration report gathers and displays the current security settings of the application
server. Information is gathered about core security settings, administrative users and groups, CORBA
naming roles, and cookie protection. When multiple security domains are configured, each security domain
has it's own report with a subset of the sections shown in the global security report that apply to the
domain.

Note: The security configuration report now includes information about session security, web Attributes,
and the HttpOnly setting to enable you to get a more complete view of your server security settings.

The report is a table with four columns: Console Name, Security Configuration Name, Value and
Console Path Name. The security information gathered is divided into sections, and groups
common security information. A row highlighted in blue with a title in the first column starts a new
section.

The Security Configuration Report can be run from the administrative console by selecting Security
> Global Security and then clicking Security Configuration Report. A new window displays the
report information.

The columns

Console Name
Contains the name of the security attribute as found in the administrative console. If the value in
this column is on a row highlighted in blue, and is the only entry on the row, then it is the start of a
new section.

Security Configuration Name
Contains the security attribute as found in the configuration file.

124  Securing applications and their environment



Value Contains the value of the security attribute.

Console Path Name
Contains the path where the attribute is found on the console.

The sections

Security Settings
Displays information about the top-level security attributes. These attributes set the default for
administrative security for the server, such as whether security is enabled, the default user registry,
or if Java security is enabled.

For more information, read the Global security settings article.

Authentication Mechanisms and expirations
Contains all the attributes associated with each authentication mechanisms and trust associations
as defined in the configuration.

User Registry
Displays the attributes for the default user registry for the server.

Authorization configuration
Displays attributes configured for an external Java Authorization Contract for Containers (JACC)
provider.

Application login configuration
Displays application JAAS login entries and their login modules attributes.

For more information, read the SSL configurations collection article.

csi Displays the attributes that define the inbound and outbound information for the Common Secure
Interoperability (CSI) protocol.

SSL configuration repertoires
Displays the attributes that make up the Secure Sockets Layer (SSL) configuration used by the
server. There can be multiple SSL configurations defined, and information about each is displayed.
This object is often referenced by an SSL configuration group object used to associate it with an
inbound or an outbound connection.

For more information, read the SSL configurations collection article.

Key stores
Displays the keystore attributes for each keystore in the configuration. Keystore objects in the
configuration are often referenced by an SSL configuration object in the configuration.

For more information, read the Personal certificates collection article.

Trust managers
Displays the attributes that make up trust managers that can be used by the server. Trust manager
objects in the configuration are typically referenced by an SSL configuration object.

For the more information, read the Trust managers collection article.

Key managers
Displays the attributes that make up the key managers that are used by the server. Key manager
objects in the configuration are typically referenced by an SSL configuration object.

For more information, read the Key managers collection article.

SSL configuration group
Displays the attributes that make up an SSL configuration that are used for an outbound or an
inbound connection.

Chapter 4. Setting up, enabling and migrating security 125



Management scope
Displays the attributes that make up a management scope. The SSL configuration-related objects
in the security configuration are defined within a management scope to reference the management
scope object.

For more information, read the Management scope configurations article.

Key set groups
Displays the attributes that make up a group of key sets, which are used to manage public, private
and shared keys.

For more information, read the Key set groups collection article.

Key set
Displays the attributes that make up the key set, which is used to manage public, private, and
shared keys.

For more information, read the Key sets collection article.

Schedules
Displays the attributes that make up the scheduled process in the security configuration.

Notifications
Displays the attributes that make up notification objects in the security configuration.

Manage certificate expiration
Displays the attributes that define how startCertificateExpMonitor is run on the server.

System login configuration
Displays the attributes that define the System login entries and their login modules.

For more information, read the System login configuration entry settings for Java Authentication
and Authorization Service article.

Custom properties
Displays all the custom properties that are defined in the security configuration.

For more information, read the Custom properties article.

Web Authentication
Displays properties that are used to define web authentication used by the server.

For more information, read the web authentication settings article.

Administrative Users and Groups
Displays the attributes that define roles and the users and groups associated with them as found
in the admin-authz.xml file. The column titled Administrative Role Name contains the name of
the administrative role. A column titled Administrative Role Value contains the user ID associated
with the role (if one exists).

For more information, read the Administrative roles article.

Corba Naming Console Names
Displays the defined CORBA naming roles and the users that are assigned to the roles.

For more information, read the Administrative group roles and CORBA naming service groups
article.

Console Name for Certificate Management
Lists all the certificate in keystore that are defined in the security configuration. There is also
information about the certificates location and their validity period.

Cookie Protection
Displays attributes that pertain to HTTP Cookies. This section differs from other sections since

126 Securing applications and their environment



information is gathered from different configuration files. The HttpOnly custom property, the web
authentication com.ibm.wsspi.security.web.webAuthReq property, and the session security setting
on each server are displayed on the report.

Java Authorization SPI Configuration
Displays the attributes that are defined for the Java Authorization SPI (JASPI) configuration. If
there is a JASPI configuration object in the security configuration, information is included
concerning whether JASPI is enabled, the name of the default JASPI provider, and a list of defined
providers and their authentication modules.

Note: If JASPI has not been configured, this section is not shown in the security configuration
report.

Adding a new custom property in a global security configuration or in
a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
add new security custom properties in a security configuration or in a security domain configuration.

About this task

Adding a new custom property in a global security configuration using the administrative console
1. Click Security > Global security > Custom properties.

2. Click New,

3. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

4. Enter the property value in the Value field.
5. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
add a new custom property in a global security configuration. See the SecurityConfigurationCommands
command group for the AdminTask object article for more information about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test=false"]]")

Adding a new custom property in a security domain configuration using the administrative console
1. Click Security > Security domains.

Select the global security domain you want to add a new custom property to.

Click Custom properties.

Click New.

Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

6. Enter the property value in the Value field
7. Click Apply or Save.

ok wn

Chapter 4. Setting up, enabling and migrating security 127



You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
add a new custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[ -securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test=false"]]")

Modifying an existing custom property in a global security
configuration or in a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
modify existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Modifying an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properies.

2. Select the custom property you want to modify.

3. Click Edit In the Value field, and then enter the value you want to modify.
4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test=false"]]")

Modifying an existing custom property in a security domain configuration using the administrative
console

Click Security > Security domains.

Select the global security domain you want to modify.

Click Custom properties.

Select the custom property you want to modify.

Click Edit.In the Value field, and then enter the value you want to modify.
Click Apply or Save.

ook wn =

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[ -securityDomainName
testDomain -customProperties ["com.ibm.websphere.security.test=false"]]"

128 Securing applications and their environment



Deleting an existing custom property in a global security configuration
or in a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
delete existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Deleting an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properties.
2. Select the custom property you want to delete.

3. Click Delete.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test="]]")

Deleting an existing custom property in a security domain configuration using the administrative
console

Click Security > Security domains.

Click Custom properties.

Select the custom property you want to delete.

Click Delete.

In the Value field, enter the value you want to delete.
Click Apply or Save.

I

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. .For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[ -securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test="]]")

Securing specific application servers

You can customize security to some extent at the application server level. You can disable administrative
security on an application server.

Before you begin

Note: Server level security has been deprecated in this release of WebSphere Application Server. Multiple
security domain support has been added in its place. You can create different security
configurations and assign them to different applications in WebSphere Application Server
processes. By creating multiple security domains, you can configure different security attributes for
both administrative and user applications within a cell environment. You can configure different

Chapter 4. Setting up, enabling and migrating security 129



applications to use different security configurations by assigning the servers or clusters or SIBuses
that host these applications to the security domains. Read about|“Multiple security domains” on|

page 146|for more detailed information.

You can also modify Java 2 Security and some of the other security attributes that are found on the Global
security panel. This panel provides access to the cell-level security settings. You cannot configure a
different authentication mechanism or user registry on an individual server basis. This feature is limited to
cell-level configuration only.

By default, server security inherits all of the values that are configured for cell-level security. To override
the cell-level security configuration at the server level, click Servers > Application Servers >
server_name. Under Security, click Server Security and click any of the following links:

» CSIv2 inbound authentication
* CSIv2 outbound authentication
» CSIv2 inbound transport

» CSIv2 outbound transport

» Zz/SAS authentication

» Server-level security

Note: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

After modifying the configuration in any of these panels and clicking OK or Apply, the security
configuration for that panel or set of panels now overrides cell-level security. Other panels that are not
overridden continue to be inherited at the cell-level. However, you can always revert back to the cell-level
configuration at any time. You can revert back to the cell-level security configuration by clearing the check
box next to any of the following options on the Server security panel:

» Security settings for this server override cell settings
* RMI/IIOP security for this server overrides cell settings
» SAS security for this server overrides cell settings

A number of additional Secure Authentication Services for zZ/OS (z/SAS) attributes can be considered for
security at a server level, such as:

* Local identity

* Remote identity

* Sync to thread allowed

For more information, see [‘Server and administrative security” on page 71.|

Procedure

1. Start the administrative console for the deployment manager. To get to the administrative console, go
to http://host.domain:port_number/ibm/console. If security is disabled, you can enter any ID. If
security is enabled, you must enter a valid user ID and password, which is either the administrative 1D
that is configured for the user registry or a user ID that is entered as an administrative user. To add a
user ID as an administrative user, click System Administration > Console settings > Console
users.

2. Configure cell-level security if you have not configured it previously. Go to [‘Enabling security” on page]
@for detailed steps. After security is configured, configure server-level security.

Attention: Server-level security is not enabled when you select the Enable application security option
on the Server-level security settings of the administrative console. You also must enable cell-level
security by selecting the Enable administrative security option on the Global security settings panel of
the administrative console.

130 Securing applications and their environment



3. To configure server-level security, click Servers > Application Servers > server name. Under Security,
click Server security. The status of the security level that is in use for this application server is
displayed.

By default, you can see that your cell-level security configuration, Common Secure Interoperability
(CSlI), and z/SAS have not been overridden at the server level. CSI and z/SAS are authentication
protocols for RMI/IIOP security requests. The server-level security panel lists attributes that are on the
Global security panel and can be overridden at the server level. Not all of the attributes on the Global
security panel can be overridden at the server level, including the user account repository.

4. To enable administrative security for this application server, go to the Server-level security panel, select
the Security settings for this server override cell settings and the Enable application security
options. By modifying the Server-level security panel, these settings override the settings for cell-level
security.

5. Click Apply and Save.

6. To enable RMV/IIOP security for the application server, go to the Server-level security panel, select the
RMI/IIOP security for this server overrides cell settings option and click Apply. If you select the
RMI/IIOP security for this server overrides cell settings option, any changes that you make to the
CSlIv2 authentication or transport settings override the same settings on the cell level.

What to do next

Typically, server-level security is used to disable user security for a specific application server. However,
this can also be used to disable or enable the Java 2 security manager, and to configure the
authentication requirements for RMI/IIOP requests both incoming and outgoing from this application server.

After you modify the configuration for a particular application server, you must restart the application server
for the changes to become effective. To restart the application server, go to Servers > Application
servers and click the server name that you recently modified. Click Stop and then Start.

If you disabled security for the application server, you can typically test a web address that is protected
when security is enabled.

Server-level security settings
Use this page to enable server-level security and specify other server-level security configurations.

Note: Server level security has been deprecated in this release of WebSphere Application Server. Multiple
security domain support has been added in its place. You can create different security
configurations and assign them to different applications in WebSphere® Application Server
processes. By creating multiple security domains, you can configure different security attributes for
both administrative and user applications within a cell environment. You can configure different
applications to use different security configurations by assigning the servers or clusters or SIBuses
that host these applications to the security domains. Read about|“Multiple security domains” on|
for more detailed information.

To view this administrative console page, complete the following steps:
1. Click Servers > Server Types > WebSphere application servers > server_name.
2. Click Security > Security domain.

Security settings for this server override cell settings
Specifies that the settings on this panel override the settings on the Security > Security applications,
administration, and infrastructure panel.

Chapter 4. Setting up, enabling and migrating security 131



Enable application security

Specifies that server security is disabled, by default, when application security is enabled. Administrative
(administrative console and wsadmin) and naming security remain enabled while application security is
enabled, regardless of the status of this flag.

Default Disabled

Use Java 2 security to restrict application access to local resources

Specifies that the server enforces Java 2 security permission checking at the server level. When cleared,
the Java 2 server-level security manager is not installed and all of the Java 2 security permission checking
is disabled at the server level.

If your application policy file is not set up correctly, see r‘Configuring the was.policy file for Java 2 security”|
on page 828 in the information center.

Default Disabled

Warn if applications are granted custom permissions
Specifies whether a warning is issued during application installation when an application requires a Java 2
permission that is normally not granted to an application.

The application server provides support for policy file management. A number of policy files are included in
the application server. Some of these policy files are static and some of them are dynamic. Dynamic policy
is a template of permissions for a particular type of resource. In dynamic policy files, the code bases are
evaluated at runtime using the configuration data. You can add or remove permissions, as needed, for
each code base.

However, do not add, remove, or modify the existing code bases. The real code base is dynamically
created from the configuration and run-time data. The filter.policy file contains a list of permissions that
an application does not have, according to the J2EE 1.4 Specification. For more information on
permissions, see the documentation on the Java 2 security policy files.

Default Enabled

Restrict access to resource authentication data
Enable this option to restrict application access to sensitive Java EE Connector Architecture (JCA)
mapping authentication data.

Default Disabled

Use domain-qualified user names
Specifies whether user IDs that are returned by getUserPrincipal() are qualified with the server level
security domain within which they reside.

Default Disabled

Note that WebSphere APIs such as WSSubject.getPrincipal( ) always return the unqualified user names
irrespective of this property.

Authentication cache timeout

Specifies the time period during which the authenticated credential in the cache is valid. This time period
must be less than the time period specified for the Timeout value for forwarded credentials between
servers field.

132 Securing applications and their environment



Data type Integer

Units Minutes and seconds
Default 10 minutes and 0 seconds
Range Greater than 30 seconds. Avoid setting Authentication

cache timeout value to 30 seconds or less.

Active protocol
Specifies the active server level security authentication protocol when server level security is enabled.

You can use an Object Management Group (OMG) protocol called Common Secure Interoperability
Version 2 (CSIv2) for more vendor interoperability and additional features. If all of the servers in your
entire security domain are Version 6.1 servers, it is best to specify CSI as your protocol.

This field displays if a version 6.0.x server exists in your environment.

Data type String
Default CSl and SAS
Range CSI, CSI and SAS

RMI/IIOP security for this server overrides cell settings
Specifies that the Remote Method Invocation over Internet InterORB Protocol (RMI/IIOP) settings on this
panel override the settings on the Security > Security applications, administration, and infrastructure panel.

Default Enabled

Controlling application environments with RACF server class profiles

The Resource Access Control Facility (RACF) server class profiles are used to control dynamic application
environments. Dynamic application environments are displayed and controlled separately from static
application environments.

Before you begin

To set up both the three-part or four-part RACF server class profiles for the application server or cluster for
your dynamic application environment, the user ID for the servant must be given read access to both of
the profiles.

About this task

The Resource Access Control Facility (RACF) server class profiles are used to:
1. Permit the unauthorized WebSphere Application Server servant access to controller services

2. Control dynamic application environments, which are displayed and controlled differently from static
application environments

Choose between two SERVER class profiles. You need one of these profiles, and which profile you need
correlates to dynamic application environment (DAE) support.

Procedure
» Use the profile for dynamic application environments.

When Dynamic Application Environments are supported, use:

RDEFINE SERVER CB.<server>.<cluster>.<cell> UACC(NONE)
PERMIT <SR_userid> ACC(READ)

» Use the profile for static application environments.

Chapter 4. Setting up, enabling and migrating security 133



When Dynamic application environments are not supported (static application environments), use:

RDEFINE SERVER CB.<server>.<cluster> UACC (NONE)
PERMIT < SR_userid> ACC(READ)

Three-part profile
The existing three-part profile has the form:
<subsystem_type>.<subsystem name>.<application environment_ name>

where:
* <subsystem_type>is CB
* <subsystem name> is the application server short name.

» <application_environment_name> is the application server generic short name, as specified in the
WebSphere Application Server variables. If the server resides in a cluster, the name specified here must
match the cluster short name. If the server does not reside in a cluster, the name must match the name
specified on the ClusterTransitionName custom property for the server .

The four-part profile adds the cell name to avoid ambiguities with existing profile names. The four-part
profile has the form:

<subystem type>.<subsystem_name>.<application_environment _name>.<cell name>

where:
* <cell_name> is the short name of the cell containing this application server.

Three-part profile names:

* CB.T5SRV1.T5CL1 (the application server with the short name T5SRV1 and generic short name
T5CL1)

* CB.*.T5CL1 (all application servers in the generic short name of T5CL1)
* CB.™.” (any application server in the sysplex)

Four-part profile names:

* CB.T5SRV1.T5CL1.T5CELL (the application server with the short name T5SRV1, and generic short
name T5CL1 that resides in the cell TSCELL)

* CB.*.T5CL1.T5CELL (all servers in the generic short name of T5CL1 in the TSCELL)
* CB.*.*.T5CELL (any server in the cell named T5CELL)

If you do not want to discriminate between any of the application servers, you can eliminate all the
specified profiles and use a generic form to cover the three and four-part names for all the servers in the
sysplex:

+ CB.*.T5*

« CB.*.T5"."

Resource Access Control Facility Tools

The following tools and techniques help you to manage the security definitions used for WebSphere
Application Server for z/OS:

* RACF ISPF panels for listing all the profiles in a class
* ISHELL for listing UIDs in UID or user-id order

» EXEC for listing GIDs in GID or group-id order

« EXEC for backing out RACF definitions

134 Securing applications and their environment



RACF ISPF panels

To list all profiles in a specific class, use the RACF ISPF panels. You must have RACF SPECIAL or
AUDITOR authority to complete the following steps:

Select General Resource Profiles (option 2).
Search (option S or 9).

Type in a class name.

Press enter two more times.

RACF - SERVICES OPTION MENU
OPTION ===> 2
SELECT ONE OF THE FOLLOWING:

DATA SET PROFILES

GENERAL RESOURCE PROFILES

GROUP PROFILES AND USER-TO-GROUP CONNECTIONS
USER PROFILES AND YOUR OWN PASSWORD

SYSTEM OPTIONS

REMOTE SHARING FACILITY

DIGITAL CERTIFICATES AND KEY RINGS

9 EXIT

RACF - GENERAL RESOURCE PROFILE SERVICES
SELECT ONE OF THE FOLLOWING:

ADD Add a profile

CHANGE Change a profile

DELETE Delete a profile

ACCESS Maintain access list

AUDIT Monitor access attempts (Auditors only)

or 8 DISPLAY Display profile contents

or 9 SEARCH Search the RACF data base for profiles

RACF - GENERAL RESOURCE SERVICES - SEARCH
OPTION ===>

ENTER THE FOLLOWING PROFILE INFORMATION:
CLASS ===> STARTED

PROFILE ===>

BROWSE - RACF COMMAND OUTPUT ----
COMMAND ===>

T5ACR.* (G)

T5DMN. * (G)

T5SRVNDS.* (G)

T5SRVIS.* (

T5SRV2S.* (

T5SRV3S.* (G)
6)

G)
G)

WMQXx . % (
WSCWTRC. »

You can also obtain a list of all profiles in a class using the RACF SEARCH command: SEARCH
CLASS(class_name).

Listing all user IDs in UID order

When defining new user IDs with OMVS segments in RACF, you should assign unique UIDs. WebSphere
does not yet support the RACF AUTOUID function. To find unassigned (and duplicate) UIDs, use the ISPF
ISHELL (option 3.4) to obtain a list of all user IDs in UID order. You must be a superuser (UID=0), and you
must follow these steps:

1.

2.
3.
4

Select the Setup pull-down and the User list option.

Browse the list of users.

While browsing the list of users, select the File pull-down.

Select the Sort UID option. (Note that a UID of -1 means that the user has no OMVS segment.)

Below is an example of the panels involved:

Chapter 4. Setting up, enabling and migrating security 135



UNIX System Services ISPF Shell
Command ===>

1. User...

2. User list...

3. A1l users...

4. A11 groups...

5. Permit field access...
6. Character Special...
7. Reset UID to 847039

File Help

User List
Command ===>
User ID uID Group
ADMOORE 1024996 $GUSERS /u/admoore
AHMAD 2 DFSGRP /u/ahmad
AKILOV 125406 $GUSERS /u/akilov
ALLMOND 36 DFSGRP /u/allmond
AOPUSER 99129934 AOPOPER /u/aopuser
ASTLEY 787202 DFSGRP /u/astley
A5USR 112501 ABGRP /tmp
BAGWELL 342832 DFSGRP /u/bagwell
1. Sort name
2. Sort UID
3. Sort Group
4. Print
5. Exit User ID UID Group

User ID UID Group
CBASRUH 2336 CBASRH
CBIVPH 2337 CBIVPGH
T5GUEST 2402 T5GUESG
T5ADMIN 2403 T5CFG
T5DMNU 2411 T5CFG
T5ACRNDU 2421 T5CFG
T5DMGSU 2422 T5SVRG
T5ASRNDU 2422 T5SVRG
T5ACRU 2431 T5CFG
T5ASRU 2432 T5SVRG
WSPETSC 2701 WSCNTLG

Listing all Group IDs in GID order

You should also assign unique GIDs to new groups. There is no system-supplied tool for listing groups in
GID order (as there is for UIDs), so that you can identify duplicates and assign new GIDs that are unique.
Specify GID as the sole parameter to list them in GID order. The default is to list them in group ID order.
(You must have RACF SPECIAL, AUDITOR, or other specific authority.)

/% REXX === mm o m o mm e e o */
/* This exec uses the ishell bpxwirac service to display the group */
/* with OMVS segments and there group IDs. B. Pierce & MJ Loos */

/*
/% Syntax: LISTGRP Name (default) | GID */
T */
order = "N" /+ set default to name */

Arg parm /* get argument for sort order x/

if Abbrev("NAME",parm,1) then order = "N"

if Abbrev("GID",parm,1) then order = "I"

call bpxwirac "OMVSGROUP" /+ call the service */

Address ISPEXEC /+ using ISPF services */
if order = "N" then do /* already sorted */
do ix=1 by 1 while queued()>0
parse pull gname gid
say left(gname,8) right(gid,8)
end
end

136  Securing applications and their environment



else do /* sort the results */
"TBCREATE grptable names(tbgrpnm tbgrpid) replace nowrite"
rows = 0
do ix=1 by 1 while queued()>0 /* populate the table */
parse pull gname gid
tbgrpnm = left(gname,8)
tbgrpid = right(gid,8)
"TBADD grptable"
rows = rows + 1
end
"TBSORT grptable FIELDS(tbgrpid,C,A,tbgrpnm,C,A)" /% sort it =/
"TBTOP grptable"
do ix = 1 to rows by 1 /* display the results x/
"TBSKIP grptable"
say tbgrpnm tbgrpid
end
"TBEND grptable" /* throw out the table */
end
say
exit 0
[xxsxsxnrxkxrrxwxx end of EXEC /

Backing out RACF Definitions

When you are setting up servers, nodes and cells (and then deleting them), it would be convenient to have
a simple way to delete the RACF definitions that you create in the process.

The attached exec reads the generated RACF commands from the BBOWBRAK member of the target .DATA
partitioned data set, and creates RACF DELUSER, DELGROUP, RDELETE, and other RACF commands

(in reverse order).

Before running the resulting RACF commands, you should review the output and delete any commands
that delete users, groups, or profiles used by other servers that you want to retain.

Tip: Be very careful not to delete users and generic profiles used by others.

/* REXX - UNDO2 - Create backout RACF commands to uninstall Serverx/

Read RACF commands into linein.in, parse verb & Obj, push

"delete/undo" commands to cmdOut.out,then write out in rev order */

out = 1 /% Qutput Tine number for stem var. cmdOut. */

"EXECIO * DISKR RACFCMDS (STEM linein."

do in = 1 to Tinein.0 /* See what we read; call the appropriate rtne */
if pos('/*',linein.in) <> 0 then iterate
if pos('say',linein.in) = 1 then iterate

parse var linein.in '"' cmdVerb cmdObj '"

select
when cmdVerb
when cmdVerb
when cmdVerb
when cmdVerb

"ADDGROUP" then call DelGrp
"ADDUSER" then call DelUsr
"CONNECT" then call ConUsr
"RDEFINE" then call DelPro
when cmdVerb = "PERMIT" then call PerUsr
when cmdVerb = "RACDCERT" then call RdCert
otherwise iterate
end /* select =/
end /* in=1 to n */
call WriteCmds
exit 1
return

[xFFxwxwkxkkkkxk SUDPOULTNES s Hhkdrskkkdkshkdrsrkdx/

DelUsr: /* DelUsr: Delete User =/
parse var cmdObj user .

cmdOut.out = "DELUSER " || user
out = out + 1
return

DelGrp: /* DelGrp: Delete Group */
parse var cmdObj group .

cmdOut.out = "DELGROUP " || group
out = out + 1
return

ConUsr: /* ConUsr: Remove user from a group */

cmdOut.out = "REMOVE " || cmdObj
out = out + 1
return

DelPro: /* DelPro: Delete Profile */
parse var cmdObj class profile acc .
cmdOut.out = "RDELETE " || class profile
out = out + 1

Chapter 4. Setting up, enabling and migrating security

137



return

PerUsr: /* PerUsr: Remove permission from a profile */
parse var cmdObj profile class ID acc
parse value cmdObj with 'ID(' id ')' acc
cmdOut.out = 'PERMIT '||profile class||' ID('||ID||') DELETE
out = out + 1
return

RdCert: /* RdCert: Remove Certificates */
if pos('GENCERT',cmdObj) <> 0 then

DO
if pos('CERTAUTH',cmdObj) <> 0
then
DO
parse value cmdObj with 'WITHLABEL(' cert ')’
cmdOut.out = 'RACDCERT CERTAUTH DELETE(LABEL(' || cert || '))*
out = out + 1
END
ELSE DO
parse value cmdObj with 'WITHLABEL(' cert ')’
parse value cmdObj with 'ID (' id ')'
cmdOut.out = 'RACDCERT ID('||id||') DELETE(LABEL('||cert||"))"
out = out + 1
END
END
if pos('ADDRING',cmdObj) <> O then
DO

parse value cmdObj with 'ADDRING(' ringname ')'
parse value cmdObj with 'ID(' user ')’
cmdOut.out = 'RACDCERT DELRING('||ringname') ID('||user')’
out = out + 1
END
return

/* Finished - pull LIFO stack and Write it out sxkssxkskssrkksrinks/
WriteCmds:
DO i = out-1 to 1 by -1
QUEUE cmdOut.i
EXECIO 1 DISKW RACFUNDO
END
return

RACF keyring setup
Using Java to create a RACFInputStream for a RACF keystore

During the SSL authentication process, WebSphere Application Server considers a certificate that connects
as a PERSONAL certificate as a KeyEntry. You can use the certificate as an end-user certificate in a
Secure Sockets Layer (SSL) handshake because the private key is available.

WebSphere Application Server considers a certificate that connects as a CERTAUTH certificate as a
TrustedCertEntry and treats the certificate as a Certificate Authority (CA). Keyrings require certificates that
connect as PERSONAL and CA certificates that connect as CERTAUTH. Certificates that connect as SITE
are not supported in this release.

A RACF keyring that a Java Secure Socket Extension (JSSE) client and server can use for both trust and
key information is shown in the following sample code:
Certificate Label Name Cert Owner USAGE DEFAULT

PersonalEndUserCert ID(USERID) PERSONAL YES
PersonalEndUserCACert CERTAUTH  CERTAUTH NO

You must add the certification path provider to your Java environment to construct certificate chains from
certificates that WebSphere Application Server reads from the Resource Access Control Facility (RACF).
Add the following line to your java.security file provider list:

security.provider.X=com.ibm.security.cert.IBMCertPath

If one of the RACF certificates fails to load, the keystore is not loaded. You must remove any unwanted
certificates from the keyring.

The RACFInputStream contains three parameters:

138  Securing applications and their environment



» userid - a string containing the ID of the user that owns the keyring
* ringid - a string containing the name of the RACF key ring
» password - a character array containing the password for the keystore

The following code example shows the RACFInputStream script passing in a user ID, a ring ID, and a null
password directly:

import com.ibm.crypto.provider.RACFInputStream;

String ksfname;
char[] storePass = null;

RACFInputStream riStream = new RACFInputStream(System.getProperty("user.name"),
ksfname,
storePass);
KeyStore racfKeyStore = KeyStore.getInstance("JCERACFKS");
racfKeyStore.load(riStream, storePass);

riStream.close();

In the above example, the system property user.name is referenced to provide the userlD that WebSphere
Application Server passes to RACF. This example is not typical.

For more information about running the RACFInputStream script, see the document zZOS Unique
Considerations for the Java 2 SDK, Standard Edition, v 6.0. A link to this z/OS document is provided in the
Related Links section of this topic.

Accessing a RACFInputStream using URLStreamHandler

In this release, you can access data through user-defined classes with the URLStreamHandler object.
WebSphere Application Server can define the classes that access the data with the system property
java.protocol.handler.pkgs. To access data that resides in a Service Authorization Facility (SAF) RACF
keyring, use the safkeyring URL with the associated classes.

To use the URLStreamHandler class to create a RACFInputStream, define the following Java property :

-Djava.protocol.handler.pkgs

If you are using the IBM Java Cryptography Extension (IBMJCE) provider to provide cryptographic support,
set the property to the following value:

-Djava.protocol.handler.pkgs=com.ibm.crypto.provider

If you are using the IBMJCE4758 provider to provide cryptographic support, set the property to the
following value:

-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider

You can use a URL to specify a stream handler in the java.policy file. The jarsigner utility also accepts
a URL for the -keystore parameter. When certificates from a RACF keyring verify signed jar files, you can
specify that WebSphere Application Server must use the keyring as an input stream to the keystore in the
java.policy file, as shown in the following example code:

keystore "safkeyring://myracfid/my_key ring", " JCERACFKS";

In this example,

» safkeyring is the URL keyword that the server uses to access the URLStreamHandler code to read
data from the keyring

* myracfid is the RACF userid that has authority to read data from the keyring
* my_key_ring is the name of the keyring from which the data is read
» JCERACFKS is the keystore type defined for a SAF (RACF) keyring keystore

Chapter 4. Setting up, enabling and migrating security 139



The Java Virtual Machine (JVM) must be started with the java.protocol.handler.pkgs property set to one
of the values described previously, so that WebSphere Application Server can call the appropriate
URLStreamHandler. The following example shows the jarsigner utility using a safkeyring URL:

jarsigner -keystore safkeyring://myracfid/my_key ring -signedjar
ibmjceproviders.jar ibmjceprovider.jar ibmprovider -storetype JCERACFKS

For more information on inserting or updating information in the RACF External Security Manager, refer to
the RACDCERT command in the following publications:

+ 7/0S SecureWay™ Security Server RACF Security Administrator's Guide - SA22-7683
» z/OS SecureWay Security Server RACF Command Language Reference - SA22-7687

Controlling access to console users when using a Local OS Registry

Adding console users and authorizing them for a cell involves adjusting the user registry and authorization
settings. A user registry custom property governs the form of authorization of console users. Regardless of
the form of authorization used, the outcome is that an MVS user ID for the WebSphere administrator
identity is able to access all administrative console functions and use the administrative scripting tool when
security is first enabled.

About this task

If non-local operating system registries and System Authorization Facility (SAF) authorization are used,
you must use identity mapping to map WebSphere Application Server identities to SAF user IDs. To have
the console roles managed by SAF authorization, you must turn on SAF authorization for the cell. To
enable SAF authorization, click Security > Global security > External Authorization providers >, and
click System Authorization Facility (SAF) authorization to enable SAF authorization. If you enable the
option, the SAF EJBROLE profiles are used to authorize console users. Otherwise, the administrative
console, by default, is used to authorize console users and groups.

Regardless of which type of registry or authorization setting is chosen, the configuration process
authorizes the WebSphere configuration group (to which all WebSphere Server identities are permitted),
and an MVS user ID for the WebSphere administrator identity to do the following tasks:

» Access all administrative console functions
* Use the administrative scripting tool when security is first enabled

When SAF authorization is selected on z/OS, the special subject of server is not used as the
administrative user ID. (Note that using the WebSphere z/OS Profile Management Tool or the zpmt
command generates an administrative user, who is a member of the administrative group, which can be
used for authorization.)

Using SAF Authorization to control access to administrative functions

When SAF Authorization is selected during systems customization, administrative EJBROLE profiles for all
administrative roles are defined by the RACF jobs generated using the z/OS Profile Management Tool. If
SAF Authorization is selected subsequently, issue the following RACF commands (or equivalent security
server commands) to enable your servers and administrator to administer WebSphere Application Server:

Note: You can additionally specify a value for the SAF profile prefix (previously referred to as the z/OS
security domain).
RDEFINE EJBROLE (optionalSAFProfilePrefix.)administrator UACC(NONE

)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)monitor UACC (NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)configurator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)operator UACC (NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)deployer UACC (NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)adminsecuritymanager UACC (NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)auditor UACC (NONE)

PERMIT (optionalSAFProfilePrefix.)administrator CLASS(EJBROLE) ID(adminGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)monitor CLASS (EJBROLE) ID(monitorGroup) ACCESS(READ)

140 Securing applications and their environment



PERMIT (optionalSAFProfilePrefix.)configurator CLASS(EJBROLE) ID(configuratorGroup) ACCESS(READ)

PERMIT (optionalSAFProfilePrefix.)operator CLASS (EJBROLE) ID(operatorGroup) ACCESS(READ)

PERMIT (optionalSAFProfilePrefix.)deployer CLASS (EJBROLE) ID(deployerGroup) ACCESS(READ)

PERMIT (optionalSAFProfilePrefix.)adminsecuritymanager CLASS(EJBROLE) ID(adminSecurityGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)auditor CLASS(EJBROLE) ID(auditorGroup) ACCESS(READ)

If additional users require access to administrative functions, you can permit a user to any of the above
roles as follows by issuing the following RACF command:
PERMIT (optionalSAFProfilePrefix.)rolename  CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

You can give a user access to all administrative functions by connecting it to the configuration group:
CONNECT mvsid GROUP(configGroup)

Using WebSphere Authorization to control access to administrative functions:
To assign users to administrative roles, complete the following steps.

Procedure
1. In the administrative console, expand System Administration > Console settings.
2. Click Console Users > Add or Console Groups > Add.

3. Add the user identities as desired. For more information on console user roles, see [‘Administrative
[roles and naming service authorization” on page 540

Note:

* When SAF authorization is in effect, WebSphere Application Server authorization, as
specified in the administrative console, is ignored.

« SAF role names are case-sensitive.

Using CBIND to control access to clusters

You can use the CBIND class in RACF to restrict a client's ability to access clusters from Java Application
Clients or J2EE compliant servers. You must have READ permission to access clusters.

Before you begin
You can also use this class to specify which servers are trusted to assert identities (with no authenticator).

Remember: When using the server trusted identity, the RACF server id needs to be granted CONTROL
permission to the profile.

» z/OS Secure Authentication Services (z/SAS) identity assertion accepted
» Common Secure Interoperability Version 2 (CSIv2) identity assertion
* Web container HTTP transport

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

About this task

This validates an intermediate server to send certificates (MutualAuthCBindCheck=true). You can deactivate
the class if you do not require this kind of access control.

Servers are either clustered or not clustered. The value of cluster_name is:
1. For a clustered server, the cluster_name used in these profiles is the cluster short name.

2. For an unclustered server, instead of a cluster_name a server custom property
(ClusterTransitionName) is used.

Chapter 4. Setting up, enabling and migrating security 141



Note: When you convert a server into a clustered server the ClusterTransitionName becomes the short
name of the cluster.
The following steps explain the CBIND authorization checking by WebSphere Application Server for z/OS.

Procedure

1. You can use the CBIND class in RACF to restrict the ability of a client to access clusters, or you can
deactivate the class if you do not require this kind of access control. WebSphere Application Server for
z/OS uses two types of profiles in the CBIND class. One type of profile controls whether a local or
remote client can access clusters. The name of the profile has the following form, where cluster_name
is the name of the cluster, and SAF_profile_prefix is the prefix used for SAF profiles.

CB.BIND.<optional SAF_profile_prefix>.<cluster_name>

Note: When you add a new cluster, you must authorize all Java Client user IDs and Servers to have
read access to the CB.cluster_name and CB.BIND.cluster_name RACF profiles.

Example: WSADMIN needs read authority to the CB.BBOC001 and CB.BIND.BBOCO001
profiles:

PERMIT CB.BB0OCOO1 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)
PERMIT CB.BIND.BBOCOO1 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)

2. You can also use the System Authorization Facility (SAF) CBIND class to indicate that a process is
trusted to assert identities to WebSphere Application Server for z/OS. This usage is primarily intended
for use by trusted intermediate servers who have already authenticated their callers. The intermediate
server (or process) must establish its network identity to WebSphere Application Server for z/OS using
SSL client certificates. This network identity is mapped to an MVS user ID by SAF security service.
This mapped identity must be granted CONTROL access to the CB.BIND.<optional
SAF_profile_prefix>.<cluster_name> process to be authorized to assert identities. The use of CBIND
profiles to establish trust is used by the following authentication mechanisms:

* Web container HTTP transport (which validates unencrypted client certificates when the property:
MutualAuthCBindCheck=true is set)

« CSIv2 identity assertion for IIOP
* z/SAS identity assertion accepted

For example, WEBSERV must assert client certificates that are received from its callers: PERMIT
CB.BIND.BBOCOO1 CLASS(CBIND) ID(WEBSERV) ACCESS(CONTROL)

142  Securing applications and their environment



Chapter 5. Configuring multiple security domains

By default, all administrative and user applications in WebSphere Application Server use the global
security configuration. For example, a user registry defined in global security is used to authenticate users
for every application in the cell. Out-of-the-box, this behavior is the same as it was in previous releases of
WebSphere Application Server. You can create additional WebSphere security domains if you want to
specify different security attributes for some or all of your user applications. This section describes how to
configure a security domain by using the administrative console.

Before you begin

Only users assigned to the administrator role can configure or create new multiple security domains.
Enable global security in your environment before configuring multiple security domains.

Read about|“MuItipIe security domains” on page 146| for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains enable you to define multiple security configurations for use in your environment. For
example, you can define different security (such as a different user registry) for user applications than for
administrative applications. You can also define separate security configurations for user applications
deployed to different servers and clusters.

Perform the following steps to configure a new security domain by using the administrative console:

Procedure
1. Click Security > Security domains.

2. If you are creating a new multiple security domain, click New. Supply a unique name and description
for the domain and click Apply. If you want to configure an existing multiple security domain, select
one to edit. Once you click Apply the domain name and additional sections are displayed. One section
enables you to define the security attributes for the domain, and another section enables you to select
the scopes to which the domain applies.

3. Under Assigned Scopes, select whether you want to assign the security domain to the entire cell or if
you want to select the specific servers, clusters, and service integration buses to be included in the
security domain. The Assigned Scopes section has two views. The default view is a cell topology. To
assign the security domain to the entire cell, click the check box for the cell and then click Apply or
OK.

The name of the security domain appears next to the cell name, which indicates that the domain is
now assigned to the cell. You can expand the topology and assign the domain to one or more servers
and clusters. When an item in the topology is already assigned to another security domain, the check
box is disabled and the name of the assigned domain is displayed to the right of the scope name. If
you want to assign one of these scopes to the domain, you must first disassociate it with its current
domain.

Select All assigned scopes to view a list of only those resources that are currently assigned to the
security domain.

4. Customize your security configuration by specifying security attributes for your new domain. Attributes
that are not listed can not be customized at the domain level. Domains inherit attributes from the global
security configuration.

There are twelve individually configurable security attribute sections. You can expand and collapse
each section. In the collapsed state, the name and a summary value for the section are displayed.

© Copyright IBM Corp. 2011 143



Additionally, the summary value text indicates whether the attribute is defined in global security and is
reused by the domain (as indicated by gray text) or if it is customized for the domain (as indicated by
black text prefixed by the word “Customized”).

Initially, each security attribute is set to use the global security settings. When an attribute is set to use
global security, there is no domain-specific configuration for that attribute. Applications that use the
domain use the global configuration for these security attributes.

Only configure the security attributes that you want to change. To configure a security attribute for a
domain, expand the security attribute section. The key properties of the global configuration display
beneath the Use global security option. These properties are provided for convenience.

To customize the configuration for the domain, select Customize for this domain. Configure the
property and then click OK or Apply.

Note: In general, when you select Customize for this domain, you override all of the security
configurations that are defined for that section in global security. Application logins, system
logins, and J2C authentication data entries are some exceptions. When you define entries for a
domain, applications in the domain are able to access the global entries in addition to the
domain-specific entries.

For example, you might want to use a different user registry for applications that use the security
domain but also want to use the global security configuration for all of the other security properties. In
this case, expand the User Realm section and select Customize for this domain. Select a user
registry type, click Configure, and provide the appropriate configuration details on the subsequent
panel.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about [‘Multiple
[security domains” on page 146/ for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

144  Securing applications and their environment



Note: In WebSphere Application Server Version 6.1, a TAIl that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application
login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSlv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service

(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Note: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication
data aliases can all be configured at the domain level. By default, all of the applications
in the system have access to the JAAS logins configured at the global level. The
security runtime first checks for the JAAS logins at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure any of these
JAAS logins at a domain only when you need to specify a login that is used exclusively
by the applications in the security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider and associated authentication modules. You can use the global security settings or
customize the settings for a domain. To configure JASPI authentication providers for a domain,
select Customize for this domain and then enable JASPI. Select Providers to define
providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes
Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Chapter 5. Configuring multiple security domains 145



Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal ( ) are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

* The unauthenticated user id

* The SAF profile mapper

* Whether to enable SAF delegation

* Whether to use the APPL profile to restrict access to WebSphere Application Server

» Whether to suppress authorization failed messages

* The SMF audit record strategy

» The SAF profile prefix

For more information on the SAF authorization options, read about[‘z/OS System Authorization|
[Facility authorization” on page 573.|

z/0S security options
You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:
« Enabling application server and z/OS thread identity synchronization
* Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about [zZ/OS security options” on page]
100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

5. Once you have configured the security attributes and assigned the domain to one or more scopes,
click Apply or OK.

6. Restart all servers and clusters for your changes to take effect.

Multiple security domains

The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in
WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,
security domains. You can configure different security attributes, such as the UserRegistry, for different
applications.

146 Securing applications and their environment



Note: Multiple security domain support was introduced in WebSphere Application Server Version 7.0. You

can create different security configurations and assign them to different applications in WebSphere
Application Server processes. By creating multiple security domains, you can configure different
security attributes for both administrative and user applications within a cell environment. You can
configure different applications to use different security configurations by assigning the servers or
clusters or service integration buses that host these applications to the security domains. Only
users assigned to the administrator role can configure multiple security domains.

The following sections describe multiple security domains in more detail:

“Why security domains are useful’1

“Relationship between global security and security domains” on page 148|

“Contents of a security domain” on page 149|

“Creating security domains” on page 150|

“Configuring attributes for security domains” on page 151|

“Associating scopes to security domains” on page 152|

[“Relationship between old server level security and the new security domains” on page 153
[‘How domain level security attributes are used by security runtime and applications” on page 153]
[Client and application security programming model when using security domains” on page 157|
[‘Application deployment in multiple domains configurations” on page 159

[Cross realm communication” on page 159|

[‘Federating a node with security domains” on page 162

[Security domains in a mixed-version environment” on page 163

[“Modifying security domains” on page 163

[“Toleration PTFs required for mixed-release environments” on page 164

Why security domains are useful

WebSphere Security Domains provide two major benefits:

WebSphere Application Server administrative applications can be configured with a different set of
security configurations from those for user applications.

They enable one set of applications to have a different set of security configurations from another set of
applications.

For example, WebSphere Application Server administration can be configured to a user registry of
RACF while the applications can be configured to a user registry of LDAP.

In previous versions of WebSphere Application Server, all administrative and user applications use security
attributes different from those attributes that are defined in global security. All administrative and user
applications in WebSphere Application Server use global security attributes by default. For example, a user
registry defined in global security is used to authenticate a user for every application in the cell.

In this release of WebSphere Application Server, however, you can use multiple security attributes for user
applications other than the global security attributes, create a security domain for those security attributes

that must differ, and associate them with the servers and clusters that host those user applications. You
also can associate a security domain with the cell. All of the user applications in the cell use this security
domain if they do not have a domain previously associated with them. However, global security attributes
are still required for administrative applications such as the administrative console, naming resources and
MBeans.

If you have used server level security in previous releases of WebSphere Application Server, you should
now use multiple security domains since they are more flexible and easier to configure.

Chapter 5. Configuring multiple security domains 147



Server level security is deprecated in this release. Read [‘Relationship between global security and security|

domains”| for more information.

Relationship between global security and security domains

Global Security applies to all administrative functions and the default security configuration for user
applications. Security domains can be used to define a customized configuration for user applications.

You must have a global security configuration defined before you can create security domains. The global
security configuration is used by all of the administrative applications such as the administrative console,
naming resources, and Mbeans. If no security domains are configured, all of the applications use
information from the global security configuration. User applications such as Enterprise JavaBeans (EJBs),
servlets and administrative applications use the same security configuration.

When you create a security domain and associate it with a scope, only the user applications in that scope
use the security attributes that are defined in the security domain. The administrative applications as well
as the naming operations in that scope use the global security configuration. Define the security attributes
at the domain level that need to be different from those at the global level. If the information is common,
the security domain does not need to have the information duplicated in it. Any attributes that are missing
in the domain are obtained from the global configuration. The global security configuration data is stored in
the security.xml file, which is located in the $WAS_HOME/profiles/$ProfileName/cells/$Cel1Name
directory.

The following figure provides an example of a security multiple domain where the cell, a server and a
cluster are associated with different security domains. As shown in the figure, the user applications in
server S1.1 as well as the cluster use security attributes that are defined in Domain2 and Domain3
respectively (since these scopes are associated with these domains). Server S2.2 is not associated with a
domain. As a result, the user application in S2.2 uses the domain that is associated with the cell (Domainl)
by default . Security attributes that are missing from the domain level are obtained from the global
configuration.

148 Securing applications and their environment



Current global security
configuration (security.xml)

A

Cell

WebSphere security domains
configuration (Domain1)
(security-domain.xml)

WebSphere security domains
S1.1 configuration (Domain2)
: (security-domain.xml)

WebSphere security domains
configuration (Domain3)
(security-domain.xml)

User applications

in S1.1 will use the security attributes
defined in Domain2.

S2.1
in cluster will use the security attributes
defined in Domain3.

in S2.2 will use the security attributes
S2.2 defined in Domain1.

Any attributes that are missing in a
domain are obtained from global
security.xml

Figure 1. Scopes that can be associated to a security domain

The following figure shows the various high-level security attributes that can be defined at the global
security configuration and those that can be overridden at the domain level.

4 I
Global security configuration (security.xml) The WebSphere security domains configuration can
Application security enablement override (security-domain.xml)
Java 2 security Application security enablement
User realm (registry) Java 2 security
Trust Association Interceptor (TAI) User realm (registry)
SPNEGO Web Authentication Trust Association Interceptor (TAl)
RMI/IIOP Security (CSIv2 Protocol) SPNEGO Web Authentication
JAAS RMI/IIOP Security (CSIv2 Protocol)
Authentication mechanism attributes Java Authentication and Authorization Service (JAAS)
Authorization Provider Authentication mechanism attributes
Custom properties Authorization Provider
Web attributes (SSO) Custom properties
Secure Sockets Layer (SSL)
Audit
LTPA Authentication mechanism
Kerberos Authentication mechanism
Note: Only high-level attributes are shown.

- J

Figure 2. Security attributes that can be configured at the security domain

Contents of a security domain

A security domain is represented by two configuration files. One configuration file contains the list of
attributes that are configured in the security domain. The other configuration file contains the scopes that
use the security domain. The security domain information is stored in the $WAS_HOME/profiles/

Chapter 5. Configuring multiple security domains 149



$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory. For every
security domain that is configured, a $SecurityDomainName directory is created with two files in it: the
security-domain.xml file contains the list of security attributes configured for the security domain, and the
security-domain-map.xml file contains the scopes that use the security domain.

The following figure indicates the location of the main security domain related files and the contents of
those files.

These files are located in the

$WAS_HOME/profiles/$ProfileName/config/waspolicies/defaultsecuritydomains/$SecurityDomainName directory
security-domain.xml

security-domain-map.xml

. J

Figure 3. Location and contents of the main security domain related files

Note: You should not modify these files manually. Use administrative console tasks or scripting
commands to modify the files instead. For a complete list of administrative tasks and scripting
commands, see the links in "Related tasks" at the bottom of this document.

Creating security domains

Use the administrative console tasks or scripting commands to create security domains. In the
administrative console, access security domains by clicking Security > Security domains. Help is
available for each administrative console panel.

For a complete list of administrative console tasks and scripting commands, see the links in "Related
tasks" at the bottom of this document.

When you create a security domain you must supply a unique name for the domain, the security attributes
you want to configure for the security domain, and the scopes that need to use the security domain. Once
configured, the servers that use the security domain must be restarted. The user applications in those
scopes then use the attributes that are defined in the security domain. Any attributes that are not
configured at the domain level are obtained from the global security configuration. Administrative
applications and naming operations in the scopes always use the security attributes from the global
security configuration. You must actively manage these attributes.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain.

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The security domains panel in the administrative console enables you to assign resources and to select
the appropriate security attributes for your domain. The panel displays the key security attributes at the
global configuration; you can make the decision to override them at the domain level if necessary. Once
you have configured and saved the attributes at the domain level, the summary value on the panel
displays the customized value for the domain (tagged with the word "customized" in black text).

150 Securing applications and their environment



A scope (a server, cluster, service integration bus or a cell) can be associated with only one domain. For
example, you cannot define two domains that both have the cell-wide scope. Multiple scopes, however,
can be defined in the same security domain. For example, a domain can be scoped to Serverl and to
Server2 only within the cell.

The assigned scopes section on the security domain panel displays two views: one view that enables you
to select and assign scopes to the domain, and another view that enables you to see a list of the currently
assigned scopes. For convenience, you also have the flexibility to copy all of the security attributes from
an existing security domain or the global configuration into a new security domain, and then modify only
those attributes that must be different. You must still associate the scopes to these copied domains.

Scripting commands also provide you with the ability to create, copy and modify security domains. Once
you create a domain, you must run the appropriate commands to associate security attributes and scopes
to it.

Configuring attributes for security domains

Security attributes that can be configured at the domain level in WebSphere Application Server Version 8.0
are:

» Application security

» Java 2 security

» User realm (registry)

» Trust association

» Simple and Protected GSS-API Negotiation (SPNEGO) web authentication
* RMI/IIOP security (CSIv2)

* JAAS logins (Application, System and J2C Authentication Data)
» Java Authentication SPI

» Authentication mechanism attributes

* Authorization provider

* Federated repositories

» z/OS properties

» Custom properties

The security domains panels in the administrative console display all of these security attributes.

Some of the other well-known attributes that you cannot override at the domain level are Kerberos, Audit,
Web Single Sign-on (SSO) and Tivoli Access Manager (TAM). The Secure Socket Layer (SSL) attribute
already supports different scopes, but it is not part of the domain configuration. For all of the attributes that
are not supported at the domain level, user applications in a domain share their configuration from the
global level.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain. You must actively manage these
attributes. For example, if you customize only a JAAS configuration at the domain level you must make
sure that it works with the user registry configured at the global level (if the user registry is not customized
at the domain level).

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The Tivoli Access Manager client runtime is used to provide authentication (used by
TrustAssociationInterceptor and PDLoginModule) and authorization (used for JACC) by contacting TAM

Chapter 5. Configuring multiple security domains 151



servers. There is only one Tivoli Access Manager runtime shared by all servers in a cell. Read the Tivoli
Access Manager JACC provider configuration topic for more information.

You cannot have a different Tivoli Access Manager configuration at the security domain level to override
the configuration at the cell level. However, you can to some degree specify Trust Association Interceptor
(TAI) and JACC configuration at the security domain level. For example, you can use a different TAl or a
different authorization provider. Since TAM server connectivity can only be defined at the global level, you
can have a variety of TAls defined and configured at the security domain level. Some of these TAls might
not use the TAM user repository, while others do. The TAls that do need to connect to TAM will also
connect to the globally-defined TAM server. Similarly, for authorization, you can have a variety of external
authorization providers configured at the domain level. However, if any of these external authorization
providers require connection to TAM they end up talking to the singular globally-configured TAM server.

Associating scopes to security domains

In WebSphere Application Server Version 8.0, you can associate a security domain at the cell level, the
server level, the cluster level and the service integration bus level.

Note: For more information about the service integration bus and bus security in multiple security domains
for WebSphere Application Server Version 8.0, see |../ae/cjr_sec_dom.dita.

When a security domain is associated with a server that is not part of a cluster, all user applications in that
server use the attributes from the security domain. Any missing security attributes are obtained from the
global security configuration. If the server is part of a cluster, you can associate the security domain with
the cluster but not with the individual members in that cluster. The security behavior then remains
consistent across all of the cluster members.

If a server is to be part of a cluster, create a cluster first and associate the security domain to it. You might
have associated a domain to a server before it was a member of a cluster. If so, even though the domain
is associated with the server directly, the security runtime code does not look at the domain. When a
server is a cluster member, the security runtime disregards any security domains associated directly to the
server. Remove the server scope from the security domain and associate the cluster scope to it instead.

A security domain can also be associated to the cell. This is usually done when you want to associate all
user applications in WebSphere Application Server to a security domain. In this scenario, all of the
administrative applications and the naming operations use the global security configuration while all of the
user applications use the domain level configuration. If you want to split the security configuration
information for administrative and user applications, this is all that is needed.

If you have a mixed-version environment, or plan to have one in future, and you want to associate security
domains at the cell level, read [“Security domains in a mixed-version environment” on page 163/ for more
information.

If you are on a base profile server that has its own security domain defined, which is then federated to a
deployment manager, associate the server scope to the security domain and not the cell scope. When you
federate that node, the security domain information is propagated to the deployment manager. If the cell
scope is associated to it, the network deployment configuration uses this security configuration, which
might impact existing applications. During federation, the cell scope is changed to the server scope that is
being federated. If the server scope is associated with the security domain, only that server uses the
security domain after the federation. Other applications in other servers and clusters are not impacted.
However, if this base profile server is registered to the Administrative Agent process you can associate the
cell scope to the security domain if you want all of the servers from the base profile to use the same
security domain for all of their user applications. Read about [‘Federating a node with security domains” on|
for more information.

152 Securing applications and their environment



You can have a security domain associated at the cell level and also other security domains associated to
various clusters or individual servers (those that are not part of any clusters). In this case, the security
runtime first checks if any security domains are associated with the server or a cluster. If there is a
security domain associated with the server or a cluster, the security attributes defined in it are used for all
of the applications in that server or cluster. Any security attributes missing from this server or cluster
domain are obtained from the global security configuration, and not from the domain configuration
associated with the cell.

If the server or cluster does not have its own domain defined, the security runtime code uses the security
attributes from the domain associated with the cell (if one is defined). Any security attributes missing from
the cell domain are inherited from the global security configuration.

Relationship between old server level security and the new security domains

In previous releases of WebSphere Application Server, you could associate a small set of security
attributes at a server level. These attributes were used by all of the applications at the server level. The
previous way of configuring the security attributes was deprecated in WebSphere Application Server 7.0,
and will be removed in a future release.

You should now use the new security domains support starting in WebSphere Application Server 7.0, as
these security domains are more easily managed and much more flexible. For example, in previous
versions of WebSphere Application Server, you must manually associate the same security configuration to
all of the cluster members by configuring the same security attributes for every server in a cluster.

The migration tool migrates the existing server level security configuration information to the new security
domain configuration when the script compatibility mode is false (-scriptCompatibility="false"). A new
security domain is created for every server security configuration if it is not part of a cluster. If it is part of a
cluster, a security domain is associated with the cluster instead of with all of the servers in that cluster. In
both cases, all of the security attributes that were configured at the server level in previous releases are
migrated to the new security domain configuration, and the appropriate scope is assigned to the security
domains.

If the script compatibility mode is set to true, the server level security configuration is not migrated to the
new security domains configuration. The old server security configuration is migrated without any changes.
The security runtime detects that the old security configuration exists and uses that information, even if a
security domain is associated either directly or indirectly to the server. If the script compatibility mode is set
to true, remove the security configuration from the server level and then create a security domain with the
same set of security attributes.

How domain level security attributes are used by security runtime and
applications

This section describes how the individual attributes at the domain level are used by the security runtime
and how that impacts the user application security. Since all of these security attributes are also defined at
the global level, more information about these attributes can be obtained elsewhere. For the purposes of
this section, the emphasis is on domain level behavior.

1. Application Security:

Select Enable application security to enable or disable security for user applications. When this
selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security
domain. The J2EE security is only enforced when Global Security is enabled in the global security
configuration, (that is, you cannot enable application security without first enabling Global Security at
the global level).

2. Java 2 Security:

Chapter 5. Configuring multiple security domains 153



Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or
add properties related to Java 2 security. This choice enables or disables Java 2 security at the
process (JVM) level so that all applications (both administrative and user) can enable or disable Java
2 security.

3. User Realm (User Registry):

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level. Read about |“Configuring attributes for securiM
[domains” on page 151|for more information.

When configuring a registry at the domain level you can choose to define your own realm name for
the registry. The realm name distinguishes one user registry from another. The realm name is used in
multiple places — in the Java client login panel to prompt the user, in the authentication cache, and
when using native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous
releases of WebSphere Application Server, only one user registry is configured in the system. When
you have multiple security domains you can configure multiple registries in the system. For the realms
to be unique in these domains, configure your own realm name for a security domain. You also can
choose the system to create a unique realm name if it is certain to be unique. In the latter case, the
realm name is based on the registry that is being used.

For LDAP registries, the host:port of the LDAP server is the system-generated realm name. For
localOS, the name of the localOS machine is the realm name. For custom user registries, the realm
is the one returned by the getRealm ( ) method of the custom registry implementation.

If the system generated realm names are unique enough, you can choose the option for the system
to generate the realm name. If not, choose a unique realm name for each security domain where you
have the user registry configured. If the underlying user repository is the same, use the same realm
name in different domains. From a security runtime perspective, same realm names have the same
set of users and groups information. For example, when users and groups information is required
from a realm, the first user repository that matches the realm is used.

If a localOS registry that is not centralized is configured for any domain, and that domain is
associated with servers or clusters in nodes not on the same system as the deployment manager, the
realm name has to be provided. This realm name has to be the same as it would be if it were
generated on the node. This realm name can be obtained by calling the getRealm() method on the
SecurityAdmin MBean on that node. Typically, the realm name for localOS registries is the hostname
of the machine. In this case, you should not let the system generate the realm name but rather get
the realm name that is used by the processes in the node.

If you select the system to generate the realm for the localOS registry at the time of the user registry
configuration, it chooses the localOS registry that is used by the deployment manager. If the realm
configured does not match the realm used by the servers then there are authorization issues. Also
note that in this case, the domain using this local registry can only be associated with servers and
clusters that belong to nodes on the same machine.

Note: In WebSphere Application Server Version 7.0, the federated repositories user registry can only
be configured at the global level and have only one instance per cell, but any domain can use
it by configuring it as the active registry. In WebSphere Application Server Version 8.0, you can
configure a unique instance of a federated repository at the domain level in a multiple security
domain environment.

When a security domain is copied from the global level, the users and groups defined at the
global level are also copied to the security domain. This is also true when copying from an
existing domain. A newly-created security domain that uses the file-based VMM repository
requires that the user populate the repository with users and groups.

Also new in this release of WebSphere Application Server, a new checkbox on the Realm
configurations settings administrative console page, Use global schema for model, sets the

154 Securing applications and their environment



global schema option for the data model in a multiple security domain environment. Global
schema refers to the schema of the admin domain.

When more than one user registry is in a process, the naming lookup that uses “UserRegistry” as the
lookup name returns the user registry that is used by user applications. The user registry used by
administrative applications is bound by the lookup name, “AdminUserRegistry”.

As described in r‘Cross realm communication” on page 159,|when an application in one realm
communicates with an application in another realm using LTPA tokens, the realms have to be trusted.
The trust relationship can be established using the Trusted authentication realms — inbound link in
the user registry panel or by using the addTrustedRealms command. You can establish trust
between different realms. A user logged into one realm can access resources in another realm. If no
trust is established between the two realms the LTPA token validation fails.

Note: The realm name used in the web.xml file is not related to the user registry realm.
Trust Association:

When you configure the trust association interceptor (TAl) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify the
interceptor list at the domain level to fit your needs. Only configure those interceptors that are to be
used at the domain level.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in
the cell.

SPNEGO web authentication:

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAIl that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources was introduced. In WebSphere Application Server 7.0, this
function was deprecated. SPNEGO web authentication has taken its place to provide dynamic
reload of the SPNEGO filters and to enable fallback to the application login method.

RMI/IIOP Security (CSIv2):

The RMI/IIOP security attribute refers to the CSlv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP security
configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport layer
settings for CSIv2 inbound communications should be the same for both the global and the domain
levels. If they are different, the domain level attributes are applied to all of the application in the
process.

When a process communicates with another process with a different realm, the LTPA authentication
and the propagation tokens are not propagated to the downstream server unless that server is listed
in the outbound trusted realms list. This can be done using the Trusted authentication realms —
outbound link on the CSIv2 outbound communication panel, or by using the addTrustedRealms
command task. Read about [‘Cross realm communication” on page 159 for more information.

JAAS (Java Authentication and Authorization Service):

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases
can all be configured at the domain level. By default, all of the applications in the system have access
to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins
at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure any of these JAAS logins at a domain only when you need to specify a login
that is used exclusively by the applications in the security domain.

Chapter 5. Configuring multiple security domains 155



10.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules to be applied at the domain level.

Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain
level. By default, all of the applications in the system have access to the JASPI authentication
providers configured at the global level. The security runtime first checks for the JASPI
authentication providers at the domain level. If it does not find them, it then checks for them in
the global security configuration. Configure JASPI authentication providers at a domain only
when the provider is to be used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

a. Authentication cache settings - use to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

b. LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the
domain level, any token that is created in the security domain when accessing user applications is
created with this expiration time.

c. Use realm-qualified user names - When this selection is enabled, user names returned by
methods such as getUserPrincipal( ) are qualified with the security realm (user registry) used
by applications in the security domain.

Authorization Provider:

You can configure an external third party JACC (Java Authorization Contract for Containers) provider
at the domain level. Tivoli Access Manager's JACC provider can only be configured at the global
level. Security domains can still use it if they do not override the authorization provider with another
JACC provider.

The JACC attributes, for example the Policy object, are based at the JVM level. This implies that
there can be only be one JACC policy object in a JVM process. However, when you have multiple
JACC providers configured, the deployment manager process has to handle all these providers in the
same JVM because it has to propagate the authorization policy of applications to the respective
provider based on the application name.

If your JACC provider can handle propagating the authorization policy to multiple providers, you can
configure it at the global level. In this case, when an application is installed, this JACC provider is
called in the deployment manager process and it is the responsibility of this JACC provider to
propagate the information to the corresponding JACC provider based on the application name passed
in the contextID.

Another way to achieve this is to set the custom property,
com.ibm.websphere.security.allowMultipledaccProviders=true, at the global security level. When
this property is set, WebSphere Application Server propagates the authorization policy information to
the JACC provider associated with the domain that corresponds to the target server where the
application is installed. This property is only used at the deployment manager process since the
managed servers do not host multiple JACC providers.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based authorization at
the domain level.

You can additionally configure the SAF authorization options at the security domain level, which are
the following:

¢ The unauthenticated user id
* The SAF profile mapper

156  Securing applications and their environment



* Whether to enable SAF delegation

* Whether to use the APPL profile to restrict access to WebSphere Application Server
* Whether to suppress authorization failed messages

* The SMF audit record strategy

* The SAF profile prefix

CBIND checks are considered administrative operations, and therefore the global level value of the
SAF profile prefix that is specified, is used when determining the name of the CBIND resource to
check. For example: CB.BIND.<cluster_name or SAF_profile_prefix>.

For more information about the SAF authorization options, read about|‘z/OS System Authorizatior|
[Facility authorization” on page 573)

11. 2/OS options:

You can set z/OS specific security options at the process (JVM) level so that all applications (both
administrative and user) can enable or disable these options. These properties are:

» Enabling application server and z/OS thread identity synchronization
» Enabling the connection manager RunAs thread identity.
For more information, read about z/OS security options.

12. Custom properties:

Set custom properties at the domain level that are either new or different from those at the global
level. By default, all of the custom properties at the global security configuration can be accessed by
all of the applications in the cell. The security runtime code first checks for the custom property at the
domain level. If it does not find i, it then attempts to obtain the custom property from the global
security configuration.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

Client and application security programming model when using security domains

A Java client or an application acting as a client that accesses an EJB typically does a nhaming lookup first.
The naming resource, which is used by both administrative and the user applications, is considered an
administrative resource. It is protected by the global security configuration information. In a multiple
domain setup where the global security is using one realm (the user registry) and a domain is using a
different realm, the Java client must authenticate to two different realms. The first authentication is required
for the realm in the global security configuration for the naming operation to succeed, and the second
authentication is required to access the EJB, which uses a different realm.

The CosNamingRead role protects all naming read operations. This role is usually assigned the Everyone
special subject. This implies that any user, valid or not, can look up the name space. When a multiple
domain is defined, if the CosNamingRead role has the Everyone special subject the security runtime code in
the client side does not prompt you to log in. It uses the UNAUTHENTICATED subject to access the
naming operation instead. Once the naming lookup operation is completed, when the client attempts to
access the EJB it is prompted with a login panel that indicates the realm that is currently used by that EJB
application (that is, the realm used in the domain). The client then presents the appropriate user
credentials for that realm, which can then access the EJB. This logic applies to all variations of login
source, including properties and stdin, not just when the login source is set to prompt.

If the Everyone special subject is removed from the CosNamingRead role, you are prompted twice. If the
login source is properties, you can uncomment the com.ibom.CORBA.loginRealm property in the
$WAS_HOME/profiles/$ProfileName/properties/sas.client.props file and add the appropriate realms
using “I” as the separator. You must also enter the corresponding users and passwords in the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword properties respectively. When you are
using the programmatic logon in the Java client code you must authenticate twice with different user

Chapter 5. Configuring multiple security domains 157



credentials; once prior to do a naming lookup for the EJB (the user should be in the global realm), and
later prior to calling any method in the EJB (the user should be in the EJB domain's realm).

The CosNamingRead role defined in the z/OS security server is not referenced for determining if naming
read operations are protected in a multi-security domain environment, even when SAF authorization is
enabled. Instead, the settings in the admin-authz.xml file are used. Alternatively, you can use the custom
property com.ibm.security.multiDomain.setNamingReadUnprotected to control if naming read operations
are protected. This property will override any assignments made to the CosNamingRead role, regardless
of which authorization provider is used.

In general, when a Java client needs to authenticate to multiple and different realms it has to provide the
credential information for all of those realms. If the login source is prompt or stdin it is prompted to login
multiple times, once for each realm. If the login source is set to properties, the appropriate properties in
the sas.client.props file (or any related file) are used for authenticating to different realms.

In certain scenarios, a client might make multiple calls to the same realm. For example, the Java client
can access a resource using realml followed by access to a resource using realm2, and then come back
to access a resource in realml again. In this case, the client is prompted three times; first for realml,
secondly for realm2 and finally for realml again.

By default, the subject that is used to login at a realm is not cached by the client side code. If you have
this scenario, and you want the client to cache the subject based on the realm, set the
com.ibm.CSl.isRealmSubjectLookupEnabled property to true in the sas.client.props file. If the
com.ibm.CSl.isRealmSubjectLookupEnabled property is set, the client code caches the subject based on
the realm name. The next time the Java client needs to authenticate to this realm, the cache is located to
obtain the subject and the client is not prompted. Also, when the
com.ibm.CSl.isRealmSubjectLookupEnabled property is set, the same subject that was logged in the first
time is used for subsequent logins. If the subject information needs to change then this property should
not be set.

If the client is doing a programmatic login it can pass the realm along with the user and password that it
needs to authenticate. In this case, when the com.ibm.CORBA.validateBasicAuth property is set to true
(the default value) in the sas.client.props file, the registry that matches the realm name is used for login.
That realm must be supported in the process where the authentication takes place.

When using the WSLogin JAAS configurations, you also must set the use_realm callback option in the
wsjaas_client.config file in $WAS_HOME/profiles/$ProfileName/properties for the realm name to be
passed to the call back handler. If you want to specify a different provider URL for the name server, set the
use_appcontext_callback option and pass in the provider URL properties in a hash map to WSLogin.

If you do not know the realm name, use <default> as the realm name. The authentication is performed
against the application realm. If the naming read operation does not have the Everyone special subject
assigned, you must provide the realm that is used by the administrative applications (the registry used in
the global security configuration), as well as the appropriate user and password information in that registry
for the lookup operation to succeed.

After the lookup operation succeeds, perform another programmatic login by providing the application
realm (or <default>) and the user and password information for the appropriate user in the registry that is
used by the application. This is similar to the case where the login source is prompt. You must authenticate
twice, once for the registry used by the global security configuration (for the naming lookup operation) and
again for the registry used by the application to access the EJB.

If com.ibm.CORBA.validateBasicAuth is set to false in the $WAS_HOME/profiles/$ProfileName/
properties/sas.client.props file then the programmatic login can use <default> as the realm name for

158  Securing applications and their environment



both the lookup and the EJB operations. The actual authentication occurs only when the resource is
accessed on the server side, in which case the realm is calculated based on the resource that is
accessed.

The new security domain support starting in WebSphere Application Version 7.0 does not change the
current application security programming model. However, it provides more flexibility and capabilities such
as the following:

» User applications can still find the user registry object by using the naming lookup for “UserRegistry”.
For the registry object used by administrative applications, the naming lookup for “AdminUserRegistry”
can be used.

* The application usage of the JAAS login configuration does not change in a multiple domain setup.
However, if an application must refer to the JAAS configuration that is specified at the domain level, the
administrator and the deployer of that application must make sure that this domain is configured with
the JAAS configurations that are required by the application.

« If an application needs to communicate with other applications using different realms, trust relationship
should be established for both inbound and outbound communications when using the LTPA tokens.
Read about [‘Cross realm communication”] for more information.

* When using programmatic login in the applications, if you want to login to the realm used by the
application, use <default> as the realm name or provide the realm name that the application is using. If
you need to login to the global realm, you must provide the global realm name. If you provide any other
realm, only a basic authentication subject is created. When the request actually flows to the server
hosting that realm, the actual authentication of the user occurs if that server hosts the realm. If the
server does not host the realm, the login fails.

Application deployment in multiple domains configurations

When deploying an application in a multiple domain setup, all of the modules in the application should be
installed in the servers or clusters that belong to the same security domain. If not, depending on the
security attributes configured in these security domains, inconsistent behavior can result. For example, if
the domains contain different user registries, the users and groups information can be different, which can
cause inconsistent behavior when accessing the modules. Another example is when the JAAS data is
different between the security domains. The JAAS configurations is not accessible from all of the modules
in the application. The security runtime code and the command tasks rely on one domain being associated
with an application when dealing with attributes such as user registry, JAAS login configurations, J2C
authentication data, and authorization.

In most cases, application deployment fails when an application is deployed across different domains.
However, since this was possible in earlier releases of WebSphere Application Server when only a few
attributes were supported at the server level, the deployment tool first checks for attributes that are
configured at the domains. If the attributes in the domain are the same as those supported in previous
releases, the administrative console requests confirmation to ensure that you want to deploy application
modules across multiple security domains. Unless there is an absolute requirement to deploy the
applications across different domains, stop the deployment and select the servers and clusters in the same
security domain.

Cross realm communication

When applications communicate using the RMI/IIOP protocol and LTPA is the authentication mechanism,
the LTPA token is passed between the servers involved. The LTPA token contains the realm-qualified
uniqueld, (also called the accessld), of the user who is logging into the front-end application. When this
token is received by the downstream server it attempts to decrypt the token. If the LTPA keys are shared
between the two servers, decryption succeeds and the accessld of the user is obtained from the token.
The realm in the accessld is checked with the current realm that is used by the application. If the realms
match, the LTPA token validation succeeds and it proceeds with the authorization. If the realms do not
match, the token validation fails since the user from the foreign realm cannot be validated in the current

Chapter 5. Configuring multiple security domains 159



realm of the application. If applications are not supposed to communicate with each other when using
RMVI/IIOP and the LTPA authentication mechanism, you do not to have to do anything further.

If you do want the cross realm communication to succeed when using RMI/IIOP and LTPA tokens, you
must first establish trust between the realms involved, both for inbound and outbound communications.

For the server originating the request, its realm must have the realms that it can trust to send the token to.
This is referred to as outboundTrustedRealms. For the server receiving the request, its realm needs to
trust the realms that it can receive LTPA tokens from. This is referred to as inboundTrustedRealms.

Outbound trusted realms can be established using the addTrustedRealms command with the
—communicationType option set to outbound. It can also be established in the administrative console by
clicking Trusted authentication realms - outbound on theCSIv2 outbound communications panel.

Inbound trusted realms can be established using the same addTrustedRealms command task with the
—communicationType option set to inbound. It can also be established by using the administrative console.

The figure below shows the communication between applications that use different user realms (registries)
using RMI/IIOP. In this example, application appl (for example, a servlet) is configured to use the realml
user registry. The app2 application (for example, an EJB) is configured to use the realm2 user registry. The
user (userl) initially logs into the servlet in appl, which then attempts to access an EJB in app2. The
following must be set:

* In Domaint, realml should trust realm2 for the outbound communication.
* In Domain2, realm2 should trust realml for the inbound communication.
» The accessld for userl should be configured in the authorization table for app2.

When the LTPA token that contains the accessld of userl is received by app2, it decrypts the token. Both
of the servers share the same LTPA keys. The LTPA token then ensures that the foreign realm is a trusted
realm, and performs the authorization based on the accessld of userl. If security attribute propagation is
not disabled, then the group information of userl is also propagated to app2. The groups can be used for
the authorization check, provided that the authorization table contains the group information. You can
associate a special subject, AllAuthenticatedinTrustedRealms, to the roles instead of adding individual
users and groups to the authorization table.

If the applications in the above example are deployed in different cells, you must do the following:
» Share the LTPA keys between the cells.

* Update the authorization table for app2 with foreign users and groups accesslds by using the wsadmin
utility. The administrative console does not have access to the realms outside of the scope of the cell.

160 Securing applications and their environment



Cell

useri S1.1 (Domain1) $1.2 (Domain2)

useri
\\N LTPA Token

\\Q'M Contains accessld

user:realm1/cn=user1,
o=ibm,c=us [

user:realm1/cn=user1,
o=ibm,c=us

Application Authorization
Table

Figure 4. Cross realm communication in a multiple realm environment

Once trust has been established between the realms, when the server receives the LTPA token and the
token is decrypted, it checks to see if the foreign realm is in its inbound trusted realms list. If it is trusted,
the authentication succeeds. However, since it is a foreign realm, it does not go search the user registry to
gather information about the user. Whatever information is in the LTPA token is used to authorize the user.

The only information in the LTPA token is the unique id of the user. This unique id of the user should exist
in the authorization table for this application. If it does, authorization succeeds. However, if attribute
propagation is enabled, additional authorization attributes (groups that this user belongs to) for the user
are sent from the originating server to the receiving server. These additional attributes are used to make
the access decisions. If the groups information exists in the propagation tokens it is used when making the
authorization decision.

As previously mentioned, the information about the users and or the groups from the trusted realms should
exist in the authorization table of the receiving application. Specifically, the accessld of the users and or
groups should exist in the binding file of the application. This must be the case when the application is
deployed. In the administrative console, when an application is deployed in a domain you can add the
accesslds of the users and groups from any of its trusted realms to the authorization table.

You also have an option to associate a special subject, AllAuthenticatedIinTrustedRealms, to the roles
instead of adding individual users and groups. This is similar to the AllAuthenticated special subject that is
currently supported. The difference is that the AllAuthenticated special subject refers to users in the same
realm as the application while the AllAuthenticatedinTrustedRealms special subject applies to all of the
users in the trusted realms and in the realm of the application.

You can associate the accessld by using the $AdminApp install script. Because the accessld takes a
unique format, use the command task listRegistryUsers with displayAccesslds set to true. If an invalid
name or format is entered in this field, the authorization fails.

User and group information from the trusted realms is obtained by the deployment manager since it has

access to all of the user registry configurations in all domains. However, in certain situations it is not
possible to obtain the users and group information.

Chapter 5. Configuring multiple security domains 161



For example, if a server hosted on an external node is using localOS as the registry for its domain, the
deployment manager cannot obtain the users and groups information unless it is running in the same
operating system setup. The external operating system should be contacted to obtain this information. This
can be done by directly invoking the registry in the server associated with that domain. The servers
associated with the domain have to be started for this to work. You also must set the property,
com.ibm.websphere.allowRegistryLookupOnProcess, to true in the top-level security custom properties.
When this property is set, the deployment manager code searches one of the servers that is associated
with the security domain and obtains the users and groups information directly from it. This is possible by
calling an MBean in one of the servers.

If the MBean in any of the servers that are using that domain cannot be accessed, the administrative
console displays a panel where you can enter the user and accessld information manually for each user
and group. It is important that the correct accessld format be entered in this field. The accessld format for
the user is user:realmName/userUniqueld. The realmName is the name of the realm where the user
resides, and the userUniqueld is the uniqueld that represents the user, depending on the registry that is
used.

For example, for LDAP, the uniqueUserld is the Distinguished Name (DN), for the Windows localOS
registry and is the SID of the user. For Unix platforms, it is the UID. For custom registries, it depends on
the implementation.

Similarly, for groups, the accessld format is group:realmName/groupUniqueld. As previously mentioned,
use the listRegistryUsers and listRegistryGroups command with the —displayAccesslds option set to true
so that you can obtain the correct format for the domain or realm that you are interested in.

Once users and groups from the trusted realms or the AllAuthenticatedinTrustedRealms special subject is
added to the authorization table of the application, it is ready to accept requests from other applications
that are using any of its trusted realms. The LTPA token validation on the receiving server first checks to
make sure that the realm is trusted. The authorization engine then checks to see if the external user
and/or the groups or the AllAuthenticatedinTrustedRealms special subject are given access to the roles
needed to access the resource. If true, access is granted.

Cross realm communication is only applicable when using the WebSphere built-in authorization. If you are
using other authorization engines including SAF for z/OS, any cross realm authorization can be achieved
by implementing custom login modules that map external users to users in its own repository.

Federating a node with security domains

When a security domain is configured in the base version and is federated to a cell, the security domain
configured at the base version is also configured for that server in the cell. The same domain security
configuration can be used by the server before and after the federation. If a base server is to be federated
to a cell, the resource assigned to the security domain should be the server scope instead of the cell
scope.

If the base server is expected to be registered with an Administrative Agent process, use the cell scope as
the resource if the intention is to have all of the servers in the base profile use this security domain.

If during federation the security domain at the base already exists at the cell level, the addNode command
fails. You can use the —excludesecuritydomains option not to include the security domain during federation.

When the federated node is removed from a cell, the resources in that node should be removed from the
security domains. If security domains have clusters associated with them that span nodes, the nodes are
not removed. You can always remove resources from the security domains or any domains that are not
used by using scripting commands or the administrative console.

162 Securing applications and their environment



Security domains in a mixed-version environment

You should create security domains once all of the nodes have been migrated to the latest version. This is
especially true if there is a need to associate the cell with a domain. However, if you want to create
security domains in a mixed- version environment, be aware of the following:

» If a cell-wide domain is created in a mixed version setup, a domain called
PassThroughToGlobalSecurity is created automatically. All mixed clusters are assigned to this domain at
the time of the creation of the cell-wide domain. This PassThroughToGlobalSecurity domain is special in
the sense that attributes cannot be added to it, only resources can be assigned to it.

All resources assigned to the PassThroughToGlobalSecurity domain use the global security
configuration information. Whenever a node in the mixed version setup is migrated to the latest version,
the servers and clusters in these nodes are added to this domain. Applications in all of the servers and
clusters in these nodes do not use the cell-wide domain; they instead use the global security
configuration before and after migration.

If any of these servers need to use the cell-wide domain, you must remove these resources from this
PassThroughToGlobalSecurity domain. New servers and clusters that are created in the migrated node
use the cell-wide domain, not the PassThroughToGlobalSecurity domain. As a result, you have a mix of
servers and clusters, some of them using global security configuration and some using the cell-wide
domain.

* Once a cell-wide domain is created, adding any old version cluster members to a WebSphere
Application Server Version 8.0 cluster is restricted since this action makes it a mixed cluster. This
restriction also holds true when a WebSphere Application Server Version 8.0 cluster is associated with a
domain. and a previous version cluster member is added to this cluster. This restriction is needed to
avoid associating a security domain to a mixed cluster.

» If possible, you should create a cell-wide domain after all of the nodes have been migrated. In this case,
the cell-wide domain is applicable to the entire cell and not just to parts of it. This also eliminates the
need to create the PassThroughToGlobalSecurity domain and the mixed cluster scenario with security
domains.

Modifying security domains

Use the administrative console tasks or scripting commands to modify security domains. For a complete
list of administrative tasks and scripting commands, see the links in "Related tasks" at the bottom of this
document.

Once a security domain is created and associated to a set of scopes, the servers associated with this new
domain must be restarted. After the restart, the applications in the scopes associated with the new domain
use the security attributes defined in the domain.

Changes to any of the domain attributes requires the restart of all of the scopes assigned to it. If new
scopes are added they also need to be restarted. Any modifications to the domain configuration, either to
the security attributes or to the scopes, has impacts on those applications that are using the domain
configuration.

Before you make modifications to an existing domain, consider the following potential impacts. For
example, if a user registry that is configured at a domain is removed, and the servers restarted, the user
registry from the cell-wide domain (if one is defined), or the global security configuration is then used. This
can impact application authentication and authorization. Users and groups associated with an application
might no longer be valid in the new registry. Another example to consider is when JAAS configurations are
removed from a domain. Applications that rely on this are no longer be able to use the JAAS
configurations. Whenever a security configuration is changed it might impact your applications, so all
security configuration changes should be made with the utmost care.

Chapter 5. Configuring multiple security domains 163



Toleration PTFs required for mixed-release environments

Toleration PTFs are required for mixed-release environments in which previous versions of WebSphere
Application Server for z/OS IIOP clients inter-operate with a WebSphere Application Server Version 8.0 for
z/OS application server that hosts multiple security domains.

The pre-Version 8.0 IIOP client requires an update to its IIOP locate processing code to perform 11OP
locates across the security domains of a Version 8.0 application server.

The toleration PTFs for all affected service releases are listed below. The pre-Version 8.0 IIOP client must
be at or above the given service level to successfully inter-operate with a Version 8.0 application server
that contains multiple security domains.

WebSphere Application Server for z/OS 5.1: W510246
WebSphere Application Server for z/OS v6.0: 602.29
WebSphere Application Server for z/OS v6.1: 610.17

This requirement applies only to WebSphere for z/OS IIOP clients that invoke requests against a
WebSphere for z/OS application server with multiple security domains configured and enabled.

Creating new multiple security domains

You can create multiple security domains in your configuration. By creating multiple security domains, you
can configure different security attributes for administrative and user applications within a cell environment.

Before you begin

Only users assigned to the administrator role can create new multiple security domains. Enable global
security in your environment before creating new multiple security domains.

Read about [‘Multiple security domains” on page 146|for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

« Configure different security attributes for administrative and user applications within a cell

» Consolidate server configurations by managing different security configurations within a cell

» Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to create a new security domain using the administrative console:

Procedure
1. Click Security > Security domains.
2. On the Security domains collection page, click New.

3. Specify a unique name for the domain. A domain name must be unique within a cell and cannot
contain an invalid character. This field is required.

4. Specify a unique description for the domain. After you click Apply you are returned to the Security
domains detail page

164 Securing applications and their environment



5. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,

6.

clusters, and service integration buses to include in the security domain.

Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security

Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security

Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about [‘Multiplé
[security domains” on page 146|for more information.

Trust association

When you configure the trust association interceptor (TAl) at a domain level, the interceptors

configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAIl that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its
place to provide dynamic reload of the SPNEGO filters and to enable fallback to the
application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSlv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins

Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Chapter 5. Configuring multiple security domains 165



The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Note: For both JAAS application logins and JAAS system logins, the collections are not
populated until one is created first. You can do this by selecting customize for this
domain under JAAS application logins or JAAS system logins and then by selecting
Apply or OK.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain and
then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes
Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

166 Securing applications and their environment



Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal( ) are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

* The unauthenticated user id

* The SAF profile mapper

* Whether to enable SAF delegation

* Whether to use the APPL profile to restrict access to WebSphere Application Server

* Whether to suppress authorization failed messages

* The SMF audit record strategy

» The SAF profile prefix

For more information on the SAF authorization options, read about[‘z/OS System Authorization|
[Facility authorization” on page 573.|

2/0S security options
You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:
» Enabling application server and z/OS thread identity synchronization
* Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about [zZ/OS security options” on page]
100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.
7. Click Apply.

8. After you have saved your configuration changes, restart the server for your changes to take effect.

Deleting multiple security domains

You can delete multiple security domains from your configuration. You must remove the resources
assigned to the security domains before deleting them. Only remove those security domains that are not
needed in your security configuration.

Chapter 5. Configuring multiple security domains 167



Before you begin

Only users assigned to the administrator role can delete security domains. Enable global security in your
environment before deleting security domains.

Read about [‘Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Perform the following steps to delete an existing security domain using the administrative console:

Note: Only delete the security domains after first removing any resources associated with them. The
servers impacted should be restarted.

Procedure

1. Click Security > Security domains.

2. On the Security domains collection page, select a domain to delete.
3. Click Delete.

Copying multiple security domains

You can copy selected multiple security domains from the domain collection to create a new domain. This
is useful if you want to create a domain that is similar to a previous domain. However, you might want to
make a few slight adjustments. When copying an existing domain, you must supply a unique domain name
for the new one.

Before you begin

Only users assigned to the administrator role can copy or create new multiple security domains. Enable
global security in your environment before copying multiple security domains.

Read about [‘Multiple security domains” on page 146|for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:
» Configure different security attributes for administrative and user applications within a cell
» Consolidate server configurations by managing different security configurations within a cell

» Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to copy an existing security domain using the administrative console:

168  Securing applications and their environment



Procedure

1.
2.

Click Security > Security domains.

Optional: From Preferences, you can select the maximum number of rows to display when the
domain collection is large. The default number of rows is 20. Rows that exceed that number appear
on subsequent pages.

Select a domain to copy.

Click Copy Selected Domain... to copy an existing domain from the collection. You can optionally
select Copy Global Security.. to copy an existing domain and have it maintain its global security
settings (collection selections are ignored). A new domain name is also required if you choose this
option.

Specify a unique name for the domain. This field is required. A domain name must be unique within a
cell and cannot contain an invalid character.

Specify a unique description for the domain.
Click Apply. After you click Apply you are returned to the Security domains detail page

Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about|‘Multiple
[security domains” on page 146|for more information.

Trust association
When you configure the trust association interceptor (TAl) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was

Chapter 5. Configuring multiple security domains 169



deprecated in WebSphere Application Server 7.0. SPNEGO web authentication has
taken its place to provide dynamic reload of the SPNEGO filters and to enable fallback
to the application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSlv2 (Common Secure Interoperability version
2) protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings
for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain
and then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the

170 Securing applications and their environment



JASPI authentication providers configured at the global level. The security runtime first
checks for the JASPI authentication providers at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively
by the applications in that security domain.

Authentication Mechanism Attributes
Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is
set at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such
as getUserPrincipal ( ) are qualified with the security realm (user registry) used by
applications in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured
at the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

* The unauthenticated user id

* The SAF profile mapper

* Whether to enable SAF delegation

* Whether to use the APPL profile to restrict access to WebSphere Application Server

* Whether to suppress authorization failed messages

* The SMF audit record strategy

* The SAF profile prefix

For more information on the SAF authorization options, read about|“z/OS System
[Authorization Facility authorization” on page 573

z/0S security options
You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:
« Enabling application server and z/OS thread identity synchronization
* Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about ['z/OS security options” on|
page 100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

Chapter 5. Configuring multiple security domains 171



10. Click Apply.
11. After you have saved your configuration changes, restart the server for your changes to take effect.

Configuring inbound trusted realms for multiple security domains

You can configure which realms to grant inbound trust to for multiple security domains. The trust
relationship between realms is used when communicating with Lightweight Third-Party Authentication
(LTPA) tokens. Once a LTPA token is decrypted by the receiving server, the realm in the token is checked
to see if it is trusted. If it is not, the validation of the token fails. A realm represents a user registry in
WebSphere Application Server.

Before you begin

For information on cross realm communications, read the section in[‘Multiple security domains” on pagel

Only users assigned to the administrator role can configure multiple security domains. Enable global
security in your environment before configuring multiple security domains.

Perform the following steps to grant inbound trusted realms for multiple security domains using the
administrative console:

Procedure
1. Click Security > Security domains.

2. Select a domain to edit or create a new one. Under Security Attributes, click User realm.

3. Click Customize for this domain.

4. Under Related Items, select Trusted authentication realms - inbound.

5. Select Trust all realms (including those external to this cell) or Trust realms as indicated below.
If Kerberos authentication is enabled, and you have cross realms or trusted realms, you must add the
Kerberos trusted realm by selecting Trust realms as indicated below.

6. Click Apply.

What to do next

The realms you selected to trust accept messages from other trusted realms but do not accept messages
from untrusted realms. Select Add External Realm to add trust for realms that are external to this cell.

Configure security domains

Use this page to configure the security attributes of a domain and to assign the domain to cell resources.
For each security attribute, you can use the global security settings or customize settings for the domain.

To view this administrative console page, click Security > Security domains. On the Security domains
collection page, select an existing domain to configure, create a new one, or copy an existing domain.

Read about|“MuItipIe security domains” on page 146| for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Name
Specifies a unique name for the domain. This name can not be edited after the initial submission.

A domain name must be unique within a cell and cannot contain an invalid character.

172  Securing applications and their environment



Description
Specifies a description for the domain.

Assigned Scopes

Select to display the cell topology. You can assign the security domain to the entire cell or select the
specific clusters, nodes and service integration buses to include in the security domain.

If you select All scopes, the entire cell topology is displayed.

If you select Assigned scopes, the cell topology is displayed with those servers and clusters that are
assigned to the current domain.

The name of an explicitly assigned domain appears next to any resource. Checked boxes indicate
resources that are currently assigned to the domain. You also can select other resources and click Apply
or OK to assign them to the current domain.

A resource that is not checked (disabled) indicates that it is not assigned to the current domain and must
be removed from another domain before it can be enabled for the current domain.

If a resource does not have an explicitly-assigned domain, it uses the domain assigned to the cell. If no
domain is assigned to the cell, then the resource uses global settings.

Cluster members cannot be individually assigned to domains; the enter cluster uses the same domain.

Application Security:

Select Enable application security to enable or disable security for user applications. You can use the
global security settings or customize the settings for a domain.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Enable application security

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security were split into administrative security and application security, each of
which you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Chapter 5. Configuring multiple security domains 173



Java 2 security:

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or add
properties related to Java 2 security. You can use the global security settings or customize the settings for
a domain.

This choice enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

Use global security settings
Select to specify the global security settings that are being used.

Customize for this domain

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Use Java 2 security to restrict application access to local resources

Select to specify whether to enable or disable Java 2 security permission checking. By default, access to
local resources is not restricted. You can choose to disable Java 2 security, even when application security
is enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions.

Warn if applications are granted custom permissions

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java APl permissions. Java API permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Restrict access to resource authentication data
This option is disabled if Java 2 security has not been enabled.

Consider enabling this option when both of the following conditions are true:
» Java 2 security is enforced.

« The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

174  Securing applications and their environment



The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Default: Disabled

User Realm:

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level.

When configuring a registry at the domain level you can choose to define your own realm name for the
registry. The realm name distinguishes one user registry from another. The realm name is used in multiple
places — in the Java client login panel to prompt the user, in the authentication cache, and when using
native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous releases of
WebSphere Application Server, only one user registry is configured in the system. When you have multiple
security domains you can configure multiple registries in the system. For the realms to be unique in these
domains, configure your own realm name for a security domain. You also can choose the system to create
a unique realm name if it is certain to be unique. In the latter case, the realm name is based on the
registry that is being used.

Trust Association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in the
system.

Note: The use of trust association interceptors (TAls) for Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) authentication is deprecated. The SPNEGO web authentication panels
provide a much easier way to configure SPNEGO.

Interceptors
Select to access or to specify the trust information for reverse proxy servers.

Enable trust association

Select to enable the integration of IBM WebSphere Application Server security and third-party security

servers. More specifically, a reverse proxy server can act as a front-end authentication server while the
product applies its own authorization policy onto the resulting credentials that are passed by the proxy

server.

Chapter 5. Configuring multiple security domains 175



SPNEGO Web Authentication:

Specifies the settings for Simple and Protected GSS-API Negotiation (SPNEGO) as the web authentication
mechanism.

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests for
secured resources was introduced. In WebSphere Application Server 7.0, this function is
deprecated. SPNEGO web authentication has taken its place to provide dynamic reload of the
SPNEGO filters and to enable fallback to the application login method.

RMI/IIOP Security:

Specifies the settings for Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet
InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

When you configure these attributes at the domain level, the RMI/IIOP security configuration at the global
level is copied for convenience. You can change the attributes that need to be different at the domain
level. The Transport layer settings for CSIv2 inbound communications should be the same for both the
global and the domain levels. If they are different, the domain level attributes are applied to all of the
applications in the process.

When a process communicates with another process with a different realm, the LTPA authentication and
the propagation tokens are propagated to the downstream server unless that server is listed in the
outbound trusted realms list. This can be done using the Trusted authentication realms — outbound link
on the CSIv2 outbound communication panel.

CSIv2 inbound communications

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication.

CSIv2 outbound communications

Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSl) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

JAAS Application logins

Select to define login configurations that are used by JAAS.

176 Securing applications and their environment



The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can
all be configured at the domain level. By default, all of the applications in the system have access to the
JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the
domain level. If it does not find them, it then checks for them in the global security configuration. Configure
any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by
the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can still be
used by user applications.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

Use global and domain-specific logins

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

JAAS System Logins:

Specifies the configuration settings for the JAAS system logins. You can use the global security settings or
customize the configuration settings for a domain.

System Logins

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping

JAAS J2C Authentication Data:

Specifies the settings for the JAAS J2C authentication data. You can use the global security settings or
customize the settings for a domain.

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource
adapters and Java DataBase Connectivity (JDBC) data sources.

Use global and domain-specific entries

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules. You can use the global security settings or customize the settings for a
domain. To configure JASPI authentication providers for a domain, select Customize for this domain and
then you can enable JASPI. Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain level. By
default, all of the applications in the system have access to the JASPI authentication providers
configured at the global level. The security runtime first checks for the JASPI authentication
providers at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure JASPI authentication providers at a domain only when the provider is to be
used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

Chapter 5. Configuring multiple security domains 177



» Authentication cache settings - use to specify your authentication cache settings. The configuration
specified on this panel is applied only to this domain.

» LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the domain
level, any token that is created in the security domain when accessing user applications is created with
this expiration time.

» Use realm-qualified user names - When this selection is enabled, user names returned by methods
such as getUserPrincipal( ) are qualified with the security realm (user registry) used by applications in
the security domain.

Authorization Provider:

Specifies the settings for the authorization provider. You can use the global security settings or customize
the settings for a domain.

You can configure an external third party JACC (Java Authorization Contract for Containers) provider at
the domain level. Tivoli Access Manager's JACC provider can only be configured at the global level.
Security domains can still use it if they do not override the authorization provider with another JACC
provider or with the built-in native authorization.

Select either the Default authorization or External authorization using a JAAC provider. The
Configure button is only enabled when External authorization using a JAAC provider is selected.

For System Authorization Facility (SAF) authorization, if you set the SAF profile prefix at the domain level,
it is applied at the server level so that all applications (both administrative and user) will enable or disable
it in that server

z/OS security options:

Specifies the settings for z/OS. You can use the global security settings or customize the settings for a
domain.

Enable application server and z/OS thread identity synchronization

Select to indicate if an operating system thread identity should be enabled for synchronization with the
Java 2 Platform, Enterprise Edition (J2EE) identity that is used in the application server runtime if an
application is coded to request this function.

Synchronizing the operating system identity to the J2EE identity causes the operating system identity to
synchronize with the authenticated caller, or delegated RunAs identity in a servlet or Enterprise JavaBeans
(EJB) file. This synchronization or association means that the caller or security role identity, rather than the
server region identity, is used for z/OS system service requests such as access to files.

If this value is set at the domain level, it is applied at the server level so that all applications (both
administrative and user) will enable or disable it in that server.

Custom properties
Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Set custom properties at the domain level that are either new or different from those at the global level. By
default, all of the custom properties at the global security configuration can be accessed by all of the
applications in the system. The security runtime code first checks for the custom property at the domain
level. If it does not find it, it then attempts to obtain the custom property from the global security
configuration.

178 Securing applications and their environment



Web Services Bindings
Click Default policy set bindings to set the domain default provider and client bindings.

External realm name

Use this page to add a WebSphere Application Server realm that is external to this cell. The realm is
initially not trusted. Use the Trusted authentication realms - inbound page to establish trust.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain and then
select a Realm type. Click Configure. Under Related items, click Trusted authentication realms -
inbound or Trusted authentication realms - outbound. Click Add External Realm....

External realm name
Use to specify the name of the realm that is external to the list of realms that are available to receive trust.

Trust all realms

Use this page to configure which realms to grant inbound or outbound trust to.

The inbound trust is required to validate LTPA tokens that contain a foreign realm. The outbound trust is
required to send the credential tokens to the trusted realms. For example, if an application using realmA
needs to communicate using LTPA with an application using realmB, realmA should have realmB in its
outbound trust list and realmB should have realmA in its inbound trust list.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain. Select a
realm type and then click Configure.

Under Related items, click Trusted authentication realms - inbound or Trusted authentication realms -
outbound.

Trust all realms (including those external to this cell)
Select to trust all of the realms listed on this page, including those external to the cell.

Trust realms as indicated below

Select to trust only those realms that you have selected from the list of realms that are available to receive
inbound trust.

Add External Realm...

Select to add realms that are external to this cell to the list of realms that are available to receive inbound
trust. When an external realm is added, it is trusted by default. If it is not trusted it is removed from the list.

Security domains collection

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different application
servers can use different security attributes like user registry or login configurations.

To view this administrative console page, click Security > Security domains.

Read about [‘Multiple security domains” on page 146|for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Chapter 5. Configuring multiple security domains 179



Maximum rows

Specifies the maximum number of rows that display when the collection is large. The rows that are not
displayed appear on the next page.

The default is 20. Rows that exceed the maximum number display on subsequent pages.

Retain filter criteria

Specifies whether to use the same filter criteria entered in the show filter function to display this page the
next time you visit it.

Copy selected domain
Select to copy a selected domain from the collection (a new name is required)

Copy global security

Select to create a domain with a copy of the global security settings (collection selections are ignored). A
domain name is required.

Authentication cache settings

Use this page to specify your authentication cache settings.

To view this administrative console page, click Security > Global security > Authentication cache
settings.

Enable authentication cache
Specifies whether to disable the authentication cache.

Leave the authentication cache enabled for performance reasons. However, you can disable the
authentication cache for debug or measurement purposes. When this choice is disabled, the performance
is impacted since whenever a user is authenticated the user registry is accessed to gather information
about the user. New tokens are then created for the user.

Default: Enabled

Cache timeout:

Specifies the time period at which the authenticated credential in the cache expires. Verify that this time
period is less than the value for the Timeout value for forwarded credentials between servers field (the
LTPA timeout).

If the application server infrastructure security is enabled, the security cache timeout can influence
performance. The timeout setting specifies how often to refresh the security-related caches. Security
information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,
all cached information not accessed within the timeout period is purged from the cache. Subsequent
requests for the information result in a database lookup. On occasion, acquiring the information requires
invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations
are relatively costly operations for performance. Determine the best trade-off for the application by looking
at usage patterns and security needs for the site.

You must consider the following effects of this value on your configuration:

180 Securing applications and their environment



» Larger authentication cache timeout values can increase the security risk. For example, you might
revoke a user in the user registry or repository. However, the revoked user can log into the
administrative console using the credential that is cached in the authentication cache until the cache is
refreshed.

* Smaller authentication cache timeout values can affect performance. When this value is smaller, the
application server accesses the user registry or repository more frequently.

» Larger numbers of entries in the authentication cache, which is due to an increased number of users,
increases the memory usage by the authentication cache. Thus, the application server might slow down
and affect performance.

You can limit the size of the authentication cache by setting the maximum cache size value. Set both the
maximum cache size and the authentication cache timeout values to balance your security risk and
performance needs.

The LTPA timeout value should not be set lower than the security cache timeout value. The LTPA timeout
value should be set higher than the ORB request timeout value. However, there is no relation between the
security cache timeout value and the ORB request timeout value. For more information on the LTPA
timeout value, see the documentation about authentication mechanisms and expiration. For more
information on the ORB request timeout value, see the documentation about the Object Request Broker
service settings.

Default: 10 minutes

Initial cache size:
Specifies the initial size of the hash table caches.

A higher number of available hash values might decrease the occurrence of hash collisions. A hash
collision results in a linear search for the hash bucket, which might decrease the retrieval time. If several
entries compose a hash table cache, create a table with a larger capacity that supports more efficient hash
entries instead of allowing automatic rehashing determine the growth of the table. Rehashing causes every
entry to move each time.

Default: 50

Maximum cache size
Indicates the maximum size of the cache.

After this limit is reached, the least used entries are removed from the cache to make space for the new
entries.

Default: 25000

Use basic authentication cache keys (password one-way hashed):
Caches the userName and the one-way hashed password as the key lookup in the cache.

Disable this only if you do not want this information to be stored in the cache. If this is disabled, every time
a user logs in with userName and password, the user registry is accessed, which impacts performance.

Default: True

Chapter 5. Configuring multiple security domains 181



182 Securing applications and their environment



Chapter 6. Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,
you can define trust between WebSphere Application Server and a proxy server, configure single sign-on
capability, and specify how to propagate security attributes between application servers.

About this task

The following security topics are covered in this section:

User registries
For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom

user registries, and user repositories such as virtual member manager, see [‘Selecting a registry o
repository.”

Trust associations
For more information on trust associations, see [‘Trust associations” on page 366

Single sign-on
For more information on single sign-on, see I“Single sign-on for authentication using LTPA cookies"|

on page 370,

Security attribute propagation
For more information on propagation tokens, authorization tokens, single sign-on tokens, and
authentication tokens, see |“Security attribute propagation” on page 467.|

The following information is covered in this section:

Procedure
« Configure a user registry. For more information, see [‘Selecting a registry or repository.’]

+ Configure WebSEAL or a custom trust association interceptor. For more information see,
[third-party HTTP reverse proxy servers” on page 365.|

+ Configure single sign-on. For more information, see|“lmplementing single sign-on to minimize web user|
[authentications” on page 374.|

+ Propagate security attributes. For more information, see [‘Propagating security attributes among|
[application servers” on page 472

. Confii ure the authentication cache. For more information, see[“Configuring the authentication cache” on|

What to do next

After completing the configuring the authentication process, you must authorize access to resources. For
more information, see [Chapter 7, “Authorizing access to resources,” on page 539.|

Selecting a registry or repository

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

Before you begin
Note: During profile creation, either during installation or post-installation, administrative security is

enabled by default. The file-based federated user repository is configured as the active user
registry. Decide if you want a different user registry.

© Copyright IBM Corp. 2011 183



Before configuring the user registry or repository, decide which user registry or repository to use. You can
configure one Active default registry for the Cell.

About this task

WebSphere Application Server provides implementations that support multiple types of registries and
repositories including the local operating system registry, a stand-alone Lightweight Directory Access
Protocol (LDAP) registry, a stand-alone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as a federated repository,
authenticates a user and retrieves information about users and groups to perform security-related functions
including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:
» Authenticating a user using basic authentication, identity assertion, or client certificates

» Retrieving information about users and groups to perform security-related administrative functions, such
as mapping users and groups to security roles

WebSphere Application Server is designed with the capability to support multiple operating systems or
operating environment-based user registries, such as the z/OS SAF registry, and most of the major
Lightweight Directory Access Protocol (LDAP)-based registries. You can use the custom LDAP feature to
support any LDAP server by setting up the correct configuration information, such as user and group
filters. However, support is not extended to these custom LDAP servers because there are many
possibilities that cannot be tested.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. By default, when a user registry or repository is not configured, the local operating system
SAF-based user registry is used. If your choice of user registry or repository is not the local operating
system, you must first configure the user registry or repository. Configuring the user registry or repository
is normally done as part of enabling administrative security, restarting the servers, and then assigning
users and groups to roles for all of your applications.

In addition to local operating system, LDAP, and Federated repository registries, WebSphere Application
Server also provides a plug-in to support any registry by using the custom registry feature. The custom
registry feature enables you to configure any user registry that is not made available through the security
configuration panels of the WebSphere Application Server.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. When a user registry or repository is not configured, the local operating system registry is
used by default. If your choice of user registry is not the local operating system registry, you need to first
configure the registry or repository, which is normally done as part of enabling security, restart the servers,
and then assign users and groups to roles for all your applications.

WebSphere Application Server supports the following types of user registries:
* Federated repository

* Local operating system such as SAF-based

« Standalone Lightweight Directory Access Protocol (LDAP) registry

+ Stand-alone custom registry

The UserRegistry interface is used to implement both the custom registry and the federated repository
options for the user account repository. The interface is very helpful in situations where the current user
and group information exists in some other formats, for example, a database, and cannot move to local
operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that
WebSphere Application Server can use the existing registry for all the security-related operations. The

184 Securing applications and their environment



process of implementing a custom registry is a software implementation effort, and it is expected that the
implementation does not depend on WebSphere Application Server resource management for its
operation. For example, you cannot use an Application Server data source configuration; generally you
must invoke database connections and dictate their behavior directly in your code.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry
interface. However, the return values are little different from the interface. For example,
getUniqueUserld returns the uniquelD with the realm name wrapped. You cannot use the return
value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =
(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified
// in the NameCallback.
String uniqueid = reg.getUniqueUserId(userName);
// Strip the realm name and get real uniqueID
String uid = com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getUserFromUniqueID (uniquelD);

// Retrieves the security name from the user registry based on the uniquelD.
String securityName = reg.getUserSecurityName(uid);

You can use a Service Provider Interface (SPI) for this parsing function.

After the applications are assigned users and groups and you need to change the user registries, delete
all the users and groups, including any RunAs role, from the applications, and reassign them after
changing the registry through the administrative console or by using wsadmin scripting. The following
wsadmin command, which uses Jacl, removes all of the users and groups from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before
performing this operation. However, if both of the following conditions are true, you might be able to switch
the registries without having to delete the users and groups information:

» All of the user and group names, including the password for the RunAs role users, in all of the
applications match in both user registries.

* The application bindings file does not contain the access IDs which are unique for each user registry
even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when
the applications start. However, if you migrated an existing application from an earlier release, or if you
used the wsadmin script to add access IDs for the applications to improve performance, you have to
remove the existing user and group information and add the information after configuring the new user
registry.

For more information on updating access IDs, see updateAccess IDs in the Commands for the AdminApp
object article.

Attention: WebSphere Application Server supports a variety of user registries and repositories on
different operating systems. During the user authentication process, you might use non-alphanumeric
characters in your user name or password. Restrictions on the use of these non-alphanumeric characters
depends on both the underlying operating system and the user registry type. For more information on
which non-alphanumeric characters are not supported, see your operating system and user registry or
repository documentation.

For a comprehensive list of the non-alphanumeric characters that are not supported, see the IBM AIX
operating system documentation.

Complete one of the following steps to configure your user registry:

Chapter 6. Authenticating users 185



Procedure

« [“Configuring local operating system registries”|

- [“Configuring Lightweight Directory Access Protocol user registries” on page 191|
* [‘Configuring stand-alone custom registries” on page 218

. “‘Managing the realm in a federated repository configuration” on page 248|

What to do next

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User
account repository on the Global security panel is set to the appropriate registry or repository. As the
final step, validate the user ID and the password by clicking Apply on the Global security panel. Save,
stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking
Apply on the Global security panel. After validation, save the configuration and stop and start all
WebSphere Application Servers, including the cells, nodes and all of the application servers. To avoid
inconsistencies between the WebSphere Application Server processes, make sure that any changes to
the registry or repository are done when all of the processes are running. If any of the processes are
down, force synchronization to make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

3. If System Authorization Facility (SAF) through local operating system is selected as the registry or
repository, the values in the bindings file are ignored with the exception of the user ID and password
(or password phrase) for RunAs role users.

Configuring local operating system registries
Use these steps to configure local operating system registries.

Before you begin

For detailed information about using the local operating system user registry, see|“Local operating systemny
[registries” on page 187 These steps set up security based on the local operating system user registry on
which WebSphere Application Server is installed.

When a local operating system registry is chosen, the started task identity is chosen as the server identity.
A user ID and password are not required to configure the server.

Important: Each started task, for example, a controller, servant, or daemon might have a different identity.
Because you should give differing resource authorizations to each, you should give differing
user IDs to controllers and servants. The z/OS Profile Management Tool sets up these
identities.

About this task

When you set up a user registry for WebSphere Application Server, the System Authorization Facility
(SAF) works in conjunction with the user registry to authorize applications to run on the server. For more
information on the SAF capabilities, see I“System Authorization Facility user registries” on page 572.|
Complete the following steps to configure additional properties that are associated with the local OS user
registry and SAF configuration.

Important: The local operating system is not a valid user account repository when you have a mixed cell
environment that includes both z/OS platform and non-z/OS platform nodes.

Procedure
1. Click Security > Global security.
2. Under User account repository, select Local operating system and click Configure.

186  Securing applications and their environment



3. If SAF authorization is not enabled, enter a valid user name in the Primary administrative user name
field. This value is the name of a user with administrative privileges that is defined in the registry. This
user name is used to access the administrative console or used by wsadmin.

4. Optional: Select the Ignore case for authorization option to enable WebSphere Application Server to
perform a case insensitive authorization check when you use the default authorization.

5. Click Apply.

6. Select either the Automatically generated server identity or User identity for the z/OS started
task.

7. Optional: Enable and configure SAF authorization.

a. Click Security > Global security > External authorization provider.

b. Select the System Authorization Facility (SAF) authorization option to enable SAF as the
authorization provider.

c. Under Related items, click z/0S SAF authorization to configure SAF authorization. To see an

explanation of the SAF authorization options, see|“z/OS System Authorization Facility authorization”|
_

8. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation
is only done when you click OK or Apply in the Global security panel. First, make sure that you select
Local operating system as the available realm definition in the User account repository section, and
click Set as current. If security was already enabled and you had changed either the user or the
password information in this panel, make sure to go to the Global security panel and click OK or
Apply to validate your changes. If your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access
the administrative console with the server user ID and password that you specified. For
more information, see [‘Authorizing access to administrative roles” on page 621

Results

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,
including deployment managers, nodes and application servers. If the server comes up without any
problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local
operating system registry to identify authorized users.

What to do next

Complete any remaining steps for enabling security. For more information, see[“Enabling security” on page

Local operating system registries
With the registry implementation for the local operating system, the WebSphere Application Server
authentication mechanism can use the user accounts database of the local operating system.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

A local operating system registry is a centralized registry within a sysplex.

Chapter 6. Authenticating users 187



WebSphere Application Server uses the System Authorization Facility (SAF) interfaces. SAF interfaces are
defined by MVS to enable applications to use system authorization services or registries to control access
to resources such as data sets and MVS commands. SAF allows security authorization requests to be
processed directly through the Resource Access Control Facility (RACF) or a third party z/OS security
provider. You must provide a mapping from a user registry identity to a SAF user ID unless you select
local operating system as the user registry. For more information, see|Custom System Authorization|
[Facility mapping modules.

Web client certificate authentication is supported when using the local operating system user registry.
Digital certificates can be mapped to MVS identities by both web and Java clients when you select Local
OS. A certificate name filter can be used to simplify the mapping. If you are using RACF as the security
server, the RACDCERT MAP command creates a resource profile that maps multiple user identities to a
digital certificate to simplify administration of certificates, conserve storage space in the RACF database,
maintain accountability, or maintain access control granularity.

Using system user registries
The following notes apply when you use system user registries:
Password sensitivity using a local operating system registry:

Allowing for a larger number of password combinations benefits WebSphere Application Security.
Passwords restricted to 8 characters have limits on how secure they can be. Hacking attempts often are
successful with 8 character passwords. WebSphere Application Server expands the possible combinations
beyond the 8 character password by providing the ability to additionally use a password phrase from 9 to
100 characters long. The password phrase gives you an exponentially larger number of combinations for
securing any given user ID to an application.

z/0S Version 1.9 RACF

In z/OS Version 1.9, RACF allows you to use password phrases in securing a user ID to an application.
Password phrase support for WebSphere Application Server provides infrastructure changes that you (or
other applications) can exploit to facilitate authentication information across environments and applications.

A password phrase can be from 9 to 100 characters in length and provide a far greater number of possible
combinations of characters and numbers than do passwords. A password phrase is a character string
made up of mixed-case letters, numbers, and special characters. A user ID can have both a password and
a password phrase associated with it. The user ID uses the password for existing applications that accept
an eight-character password and the password phrase for those applications that are sensitive to the
longer character string.

If you want to also use mixed-case password phrases, or password phrases that have trailing blank
spaces, you must use the RACF mixed case password option and enable it by using the SETROPTS
PASSWORD(MIXEDCASE) RACF command. See[‘Password case sensitivity using a local operating|
|system registry” on page 189| for more information about mixed case passwords.

Remember: After initializing the use of RACF mixed case passwords, you MUST restart the WebSphere
Application Server.

To use password phrases in WebSphere Application Server, you must comply with all of the following
requirements:

1. Use z/OS Version 1.9 or higher

2. Use the local operating system registry as your active registry

3. Use the System Authorization Facility (SAF) as your authorization provider.
4. Install the WebSphere Application Server Fix Pack 6.1.0.15 or later.

188  Securing applications and their environment



5. If you want to specify a password phrase that is between 9 and 13 characters, inclusive, then you
must also install the ICHPWX11 RACF exit routine.

Important: All of these requirements must be met; otherwise, WebSphere Application Server password
phrases are not recognized and do not take effect.

For more information about password phrases in z/OS Version 1.9, see|Z/OS V1R9.0 Security Served
[RACF Security Administrator's Guide| This guide is available under "Security Server and Integrated
Security Services. Within the guide, see section 3.4.14.

Password case sensitivity using a local operating system registry:

Knowing when a password is interpreted as case sensitive or not can directly affect how you use a local
operating system registry. WebSphere Application Server exploits the mixed case password option for the
Resource Access Control Facility (RACF) and allows you to use case sensitive passwords.

z/0S Version 1.7 RACF

In z/OS Version 1.7, RACF supports the option of a mixed case password. You select this option for RACF
by using the SETROPTS PASSWORD (MIXEDCASE) command. To use case sensitive passwords in WebSphere
Application Server for a local operating system registry, you must comply with all of the following
requirements:

1. Use z/OS Version 1.7 or higher
2. Use the local operating system registry
3. Turn on the RACF mixed case option with the SETROPTS PASSWORD (MIXEDCASE) command

Important: All three of these requirements must be met; otherwise, WebSphere Application Server
password will not be sensitive to case.

If you use a Lightweight Directory Access Protocol (LDAP) configuration, you can use mixed case
passwords.

For more information on the mixed case password feature in z/OS Version 1.7, see [Z/0S V1R7.0 Security|
[Server RACF Security Administrator's Guidel. This guide is available under "Security Server and
Integrated Security Services. Within the guide, see section 5.2.1.

Local operating system settings
Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system.

3. Click Configure.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

Chapter 6. Authenticating users 189


http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r7/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r7/

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.
Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your local operating system.
The user name is used to log on to the administrative console when administrative security is enabled..
Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user

for the administrative user identity.

Important: If System Authorization Facility (SAF) authorization is enabled on the External authorization
providers panel, this field does not display.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

Local operating system wizard settings
Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.
2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

190 Securing applications and their environment



Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Important: If System Authorization Facility (SAF) authorization is enabled on the External authorization
providers panel, this field does not display.

Configuring Lightweight Directory Access Protocol user registries

To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid
user name (ID) and password, the server host and port of the registry server, the base distinguished name
(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user
registry that is searchable. You can use any user ID that has the administrative role to log in.

Before you begin

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

There are two different identities that are used for security purposes: the user ID for administrative
functions and the server identity. When administrative security is enabled, the user ID and password for
administrative functions is authenticated with the registry. If authentication fails, access to the
administrative console is not granted or tasks with wsadmin scripts are not completed. It is important to
choose an ID and password that do not expire or change often. If this user ID or password need to
change in the registry, make sure that the changes are performed when all the application servers are up
and running. When changes are to be made in the registry, review the article on [‘Standalone Lightweight
[Directory Access Protocol registries” on page 339|(LDAP) before beginning this task.

The server identity is used for internal process communication. As part of this task, you can change the
server identity from the default automatically generated ID to a server ID and password from the LDAP
repository.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Enter a valid user name in the Primary administrative user name field. Typically, the user name is
the short name of the user and is defined by the user filter in the Advanced LDAP settings panel.

4. Determine whether to specify the user identity that is used for internal process communication. Cells
that contain Version 5.1 or 6.x nodes require a server user identity that is defined in the active user
repository. By default, the Automatically generated server identity option is enabled, and the
application server generates the server identity. However, you can select the Server identity that is
stored in the repository option to specify both the server identity and its associated password.

5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the
default filters that are used by WebSphere Application Server. These default filters change the Type
field to Custom, which indicates that custom filters are used. This action occurs after you click OK or
Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the
user and group filters to use other LDAP servers, if required.

Chapter 6. Authenticating users 191



10.
11.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use
the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP
servers, see the |Supported hardware, software, and APIls| website.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in
WebSphere Application Server version 6.1.

Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP
address or domain name system (DNS) name.

Enter the LDAP server port number in the Port field. The host name and the port number represent
the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different
cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,
these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to
run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a
previous version of the WebSphere Application Server, then it is important that the port number match
all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x
configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the
version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

You can set the com.ibm.websphere.security.ldap.logicRealm custom property to change the value of
the realm name that is placed in the token. For more information, see the security custom properties
topic.

Enter the base distinguished name (DN) in the Base distinguished name field. The base DN
indicates the starting point for searches in this LDAP directory server. For example, for a user with a
DN of cn=John Doe, ou=Rochester, 0=IBM, c=US, specify the base DN as any of the following
options, assuming a suffix of c=us:

e ou=Rochester, 0=IBM, c=us
e 0=IBM, c=us
* C=usS

For authorization purposes, this field is case sensitive by default. Match the case in your directory
server. If a token is received (for example, from another cell or Lotus Domino) the base DN in the
server must match exactly the base DN from the other cell or Domino. If case sensitivity is not a
consideration for authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight
Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the
base distinguished name before or after commas and equal symbols. An example of a
non-normalized base distinguished name is o = ibm, ¢ = us or o=ibm, c=us. An example of a
normalized base distinguished name is o=ibm, c=us.

To interoperate between WebSphere Application Server Version 6.0 and later versions, you must
enter a normalized base distinguished name in the Base Distinguished Name field. In WebSphere
Application Server, Version 6.0 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base
Distinguished Name field is optional for the Domino server.

Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and group information. If the
LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the
application server binds anonymously. See the Base Distinguished Name field description for
examples of distinguished names.

Optional: Enter the password corresponding to the bind DN in the Bind password field.

Optional: Modify the Search time out value. This timeout value is the maximum amount of time that
the LDAP server waits to send a response to the product client before stopping the request. The
default is 120 seconds.

192 Securing applications and their environment


http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

12.

13.

14.

Ensure that the Reuse connection option is selected. This option specifies that the server should
reuse the LDAP connection. Clear this option only in rare situations where a router is used to send
requests to multiple LDAP servers and when the router does not support affinity. Leave this option
selected for all other situations.

Optional: Verify that the Ignore case for authorization option is enabled. When you enable this
option, the authorization check is case insensitive. Normally, an authorization check involves checking
the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when
you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP
servers, you must enable this option because the group information that is obtained from the LDAP
servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,
this field is optional and can be enabled when a case sensitive authorization check is required. For
example, you might select this option when you use certificates and the certificate contents do not
match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on
(SSO) between the product and Lotus Domino. The default is enabled.

Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications
with the LDAP server.

Important: This step will only be successful provided that the Signer certificate for the LDAP is first
added to the truststore that will be eventually used. If the Signer certificate from the
LDAP is not added to the truststore, then

* An error will be issued by the Administrative console.

» the deployment manager (DMGR) systemout.log will show the CWPKI0022E: SSL
HANDSHAKE FAILURE message indicating that the Signer certificate needs to be
added to the truststore.

To ensure an error free operation for this step, You need to first extract to a file the
Signer certificate of the LDAP and send that file to the WebSphere Application Server
machine. You can then add the certificate to the truststore being defined for the LDAP. In
this way, you are assured that the remaining actions for this step will be successful.

If you select the SSL enabled option, you can select either the Centrally managed or the Use
specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the
SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. You can click the name of an existing configuration to modify it or
complete the following steps to create a new SSL configuration:

Chapter 6. Authenticating users 193



a. Click Security > SSL certificate and key management.
b. Under Configuration settings, click Manage endpoint security configurations.
Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a
cell, node, server, or cluster.
d. Under Related items, click SSL configurations.
e. Click New.
15. Click OK and either Apply or Save until you return to the Global security panel.

Results

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling
security in the WebSphere Application Server.

What to do next

1. If you are enabling security, complete the remaining steps as specified in|“Enainng security for the|
[realm” on page 90

2. If you want to use System Authorization Facility (SAF) authorization with your LDAP registry, then read
about [‘System Authorization Facility considerations for the operating system and application levels” on|
bage 3§| for more information.

3. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems the setup is
correct.

Standalone LDAP registry settings
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups
reside in an external LDAP directory.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to

194 Securing applications and their environment



file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.

Versions 6.1 and later require an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 7.0,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Note: When you configure LDAP as a user registry and SAF is enabled, if the property
com.ibm.security.SAF.authorization, is set to true, then the Primary administrative user name
field is not displayed on the administrative console.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

Type of LDAP server:
Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is supported by the application server for z/OS as well as many other
LDAP servers.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.
Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all

Chapter 6. Authenticating users 195



configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 configuration,
and a WebSphere Application Server at Version 7.0 is going to interoperate with the Version 6.1 server,
verify that port 389 is specified explicitly for the Version 7.0 server.

Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

For example, for a user with a DN of cn=John Doe , ou=Rochester, 0=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, 0=IBM, c=US or 0=IBM c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case
for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)
directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,
where this field is optional.

Bind distinguished name (DN):
Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:
Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a
router is used to distribute requests to multiple LDAP servers and when the router does not support
affinity.

Default: Enabled
Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP
connection for every LDAP search request. This situation impacts system performance if your
environment requires extensive LDAP calls. This option is provided because the router is not

196 Securing applications and their environment



sending the request to the same LDAP server. The option is also used when the idle
connection timeout value or firewall timeout value between the application server and LDAP is
too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with
the Edge server. A TCP reset causes the connection to immediately closed and a backup
server to failover. For more information, see "Sending TCP resets when server is down" at
http://www.ibm.com/software/webservers/appserv/doc/vSO/ec/infocenter/edge/l
Bguide.htm#HDRRESETSERVER)| and the Edge Server V2 - TCP Reset feature in PTF #2
described in: Iftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/1

|updates.pdf|

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.
This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For
more information, see "Using specific directory servers as the LDAP server" in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For
example, use this option when the certificates and the certificate contents do not match the case that is
used for the entry in the LDAP server. You can enable the Ignore case for authorization option when
using single sign-on (SSO) between the application server and Lotus Domino.

Default: Enabled
Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol
(LDAP) server.

When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.
Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Default: Enabled

Use specific SSL alias:
Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings
Use this security wizard page to provide the basic settings to connect the application server to an existing
Lightweight Directory Access Protocol (LDAP) registry.

Chapter 6. Authenticating users 197


http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf

To view this security wizard page, click Security > Global security > Security configuration wizard. You
can modify your LDAP registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone
LDAP registry, and click Configure.

Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 7.0,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Note: When you configure LDAP as a user registry and SAF is enabled, if the property
com.ibm.security.SAF.authorization, is set to true, then the Primary administrative user name
field is not displayed on the administrative console.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is supported by the application server for z/OS as well as many other
LDAP servers.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.
Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all
configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 configuration,
and a WebSphere Application Server at Version 7.0 is going to interoperate with the Version 6.1 server,
verify that port 389 is specified explicitly for the Version 7.0 server.

Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

198  Securing applications and their environment



For example, for a user with a DN of cn=John Doe , ou=Rochester, 0=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, 0=IBM, c=US or 0=IBM, c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly.

Bind distinguished name (DN):
Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings
Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You
can change these values depending on your requirements. These default values are based on the type of
LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for
example from Netscape to Secureway, the default filters automatically change. When the default filter
values change, the LDAP server type changes to Custom to indicate that custom filters are used. When
security is enabled and any of these properties change, go to the Global security panel and click Apply or
OK to validate the changes.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more

Chapter 6. Authenticating users 199



information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

User filter:
Specifies the LDAP user filter that searches the user registry for users.

This option is typically used for security role-to-user assignments and specifies the property by which to
look up users in the directory service. For example, to look up users based on their user IDs, specify
(&(uid=%v) (objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

Group filter:
Specifies the LDAP group filter that searches the user registry for groups

This option is typically used for security role-to-group assignments and specifies the property by which to
look up groups in the directory service. For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

User ID map:
Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

Specifies the piece of information that represents users when users display. For example, to display
entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes
multiple objectclass:property pairs delimited by a semicolon (;).

Data type: String

Group ID map:
Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

Specifies the piece of information that represents groups when groups display. For example, to display
groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object
class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

Data type: String

Group member ID map:
Specifies the LDAP filter that identifies user-to-group relationships.

For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited
by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is
defined in the group filter, and the property is the member attribute. If the object class value does not
match the object class in the group filter, authorization might fail if groups are mapped to security roles.
For more information about this syntax, see your LDAP directory service documentation.

200 securing applications and their environment



For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member
attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a
user by enumerating all the group attributes that are possessed by a given user. For example, attribute
pair memberof :member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory
Server. This field also specifies which property of an object class stores the list of members belonging to
the group represented by the object class. For supported LDAP directory servers, see "Supported directory
services".

Data type: String

Perform a nested group search:
Specifies a recursive nested group search.

Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches and if recursive group member search is required. It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

Application server security leverages the recursive search functionality of the LDAP server to search a

user's group memberships, including recursive group memberships. For example:

« IBM Directory Server is preconfigured by the application server security to recursively calculate a user's
group memberships using the ibm-al1Group attribute.

* SunONE directory server is preconfigured to calculate nested group memberships using the nsRole
attribute.

Data type: String

Kerberos user filter:

Specifies the Kerberos user filter value. This value can be modified when Kerberos is configured and is
active as one of the preferred authentication mechanisms.

Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.
Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP reqistry.

If more than one LDAP entry matches the filter specification at runtime, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:

(&(uid=${SubjectCN}) (objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP
attribute that depends on the schema that your LDAP server is configured to use. The right side of the
filter specification is one of the public attributes in your client certificate. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:

Chapter 6. Authenticating users 201



${UniqueKey}
e ${PublicKey}
${IssuerDN}
e ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
e ${NotAfter}
* ${NotBefore}
{SerialNumber}
{SigAlgName}
{SigA1g01ID}
{SigAlgParams}
{SubjectDN}
e ${Subject<xx>}
where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.
e ${Version}

$
$
- $
$
$

Data type: String

Configuring Lightweight Directory Access Protocol search filters

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and
group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to
entries in the LDAP server.

Before you begin

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and
obtain information about users and groups from an LDAP directory server. A default set of filters is
provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP
configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone
LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can
develop filters to support any additional type of LDAP server. The effort to support additional LDAP
directories is optional and other LDAP directory types are not supported. Complete the following steps in
the administrative console.

Procedure
1. Click Security > Global security.
2. Under User account repository, select Standalone LDAP registry and click Configure.
3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.
4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is
typically used for the security role-to-user assignment. The filter is also used to authenticate a user

with the attribute that is specified in the filter. The filter specifies the property that is used to look up
users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,
specify the following syntax:

(&(uid=%v) (objectclass=inetOrgPerson)
For more information about this syntax, see the ['Using specific directory servers as the LDAP server]

documentation.

202 Securing applications and their environment



Modify the Kerberos user filter, if necessary. The Kerberos user filter name is used for searching the
registry for the Kerberos principal name. Specify the LDAP attribute that holds the Kerberos principal
name.

IBM Lotus Domino default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

IBM SecureWay Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=ePerson))

Microsoft Active Directory default krbuser filter:
(&(userprincipalname=%v)(objectcategory=user))

Sun Java System Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=inetOrgPerson))

Novell eDirectory default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

Optional: If your using Federated Repositories, modify the Kerberos attribute name if necessary. The
Kerberos attribute name is used for searching the registry for Kerberos principal. Specify the LDAP
attribute that holds the Kerberos principal name.

IBM Lotus Domino default krbuser filter:
krbPrincipalName

IBM SecureWay Directory Server default krbuser filter:
krbPrincipalName

Microsoft Active Directory default krbuser filter:
userprincipalname

Sun Java System Directory Server default krbuser filter:
krbPrincipalName

Novell eDirectory default krbuser filter:
krbPrincipalName

Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is
typically used for the security role-to-group assignment. Also, the filter is used to specify the property
by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up groups based on their common names (CN) and to use either the groupOfNames
object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v) (| (objectclass=groupOfNames) (objectclass=group0fUniqueNames)))
For more information about this syntax, see the [‘Using specific directory servers as the LDAP server]

on page 205|documentation.

Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and
specifies the piece of information that represents users when these users are displayed with their
short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify
inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).
To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal
method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,
ou=austin.ibm.com, 0=IBM, c=US user can log in using any attributes that are defined, for example,
email address, social security number, and so on, but when these methods are called, the bob user
ID is returned no matter how the user logs in.

Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP
entry and specifies the piece of information that represents groups when groups display. For example,

Chapter 6. Authenticating users 203



to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches
on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a
semicolon (;).

10. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.
For SecureWay, and Domino directory types, this field is used to query all the groups that match the
specified object classes to see if the user is contained in the specified attribute. For example, to get
all the users that belong to groups with the groupOfNames object class and the users that are
contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of
an object class, stores the list of members that belong to the group that is represented by the object
class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For
more information about this syntax, see the|“Using specific directory servers as the LDAP server” od

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all
users in a group with the information that is stored in the user object. For example, the
memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object
to obtain all the groups to which the user belongs. The member attribute is used to get all the users
in a group that use the Group object. Using the User object to obtain the group information improves
performance.

11. Select the Perform a nested group search option if your LDAP server does not support recursive
server-side searches.

12. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user
authentication when LDAP is selected as the registry. This field is used to indicate whether to map
the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If
EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP
server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make
the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete
the following steps:

a. Click Security > Global security.

b. Under User account repository, click the Available realm definitions drop-down list,
selectStandalone LDAP registry.

13. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client
certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,
authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP
attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open
bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important.

e ${UniqueKey}

e ${PublicKey}

* ${IssuerDN}

e ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer

Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
e ${NotAfter}
* ${NotBefore}
{SerialNumber}
{SigAlgName}
{SigA1g0ID}
{
{

SigAlgParams}

$
$
3
$
${SubjectDN}

204 Securing applications and their environment



e ${Subject<xx>}
where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.
e ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.
14. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.
Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP
directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone
LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.
This action overwrites any changes to the filters that you made. To avoid overwriting changes, you
can take either of the following actions:

» Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. Click Security > Global security and change the User account repository type to
Stand-alone custom registry.

« Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the
filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. After you complete your changes, click Apply or OK.

The validation of the changes does not take place in this panel. Validation is done when you click OK
or Apply on the Global security panel. If you are in the process of enabling security for the first time,
complete the remaining steps and go to the Global security panel. Select Standalone LDAP registry
as the user account repository. If security is already enabled and any information on this panel
changes, go to the Global security panel and click OK or Apply to validate your changes. If your
changes are not validated, the server might not start.

Results

These steps result in the configuration of the LDAP search filters. These steps are required to modify
existing user and group filters for a particular LDAP directory type. The steps are also used to set up
certificate filters to map certificates to entries in the LDAP server.

What to do next

1. Validate this setup by clicking OK or Apply on the Global security panel.

2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers
for any changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so
on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server
This article provides important information about the directory servers that are supported as Lightweight
Directory Access Protocol (LDAP) servers in WebSphere Application Server.

Before you begin

Microsoft Active Directory forests are not supported with the stand-alone LDAP Registry. The Federated
Repository Registry, when configured to use an Active Directory LDAP does support the use of forests.

About this task

For a list of supported LDAP servers, refer to the|Supported hardware and software website|.

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific
directory servers only. You can use any other directory server by using the custom directory type in the list
and by filling in the filters that are required for that directory.

Chapter 6. Authenticating users 205


http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,
and Active Directory are defined such that when you search for a user, the result contains all the relevant
information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP
server multiple times. This definition is possible only in these directory types, which support searches
where the complete user information is obtained.

If you use the IBM Directory Server, select the Ignore case for authorization option. This option is
required because when the group information is obtained from the user object attributes, the case is not
the same as when you get the group information directly. For the authorization to work in this case,
perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

The LDAP Security Server for the z/OS platform is supported when the DB2 Technical Database
Management (TDBM) back-end is used. Use the SecureWay Directory Server filters to connect to the
LDAP Security Server for the z/OS platform.

« Using IBM Tivoli Directory Server as the LDAP server

You can select either the IBM Tivoli Directory Server or SecureWay directory type for the IBM
Directory Server.

The difference between these two types is group membership lookup. It is recommended that you
choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli
Directory Server, the group membership is an operational attribute. With this attribute, a group
membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group
memberships, including the static groups, dynamic groups, and nested groups, can be returned with the
ibm-al1Groups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli
Directory Server using the ibm-al1Groups attribute. To utilize this attribute in a security authorization
application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute
are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the
same machine that you install Version 8.0. IBM Tivoli Directory Server Version 6.0 includes
WebSphere Application Server, Express Version 5.1.1, which the directory server uses for
its administrative console. Install the Web Administration tool Version 6.0 and WebSphere
Application Server, ExpressVersion 5.1.1, which are both bundled with IBM Tivoli Directory
Server Version 6.0, on a different machine from Version 8.0. You cannot use Version 8.0 as
the administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server
Version 6.0 and Version 8.0 are installed on the same machine, you might encounter port
conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and Version 8.0 on the same
machine, consider the following information:

— During the IBM Tivoli Directory Server installation process, you must select both the
Web Administration tool and WebSphere Application Server, Express Version 5.1.1.

— Install Version 8.0.
— When you install Version 8.0, change the port number for the application server.

— You might need to adjust the WebSphere Application Server environment variables on
Version 8.0 for WAS_HOME and WAS_INSTALL_ROOT (or APP_SERVER_ROQOT for
IBM i). To change the variables using the administrative console, click Environment >
WebSphere Variables.
» Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short

name is not defined in the schema, you can take either of the following actions:

— Change the schema to add the short name attribute.

206 Securing applications and their environment



— Change the user ID map filter to replace the short name with any other defined attribute (preferably
to UID). For example, change person:shortname to person:uid.

The userlD map filter is changed to use the uid attribute instead of the shortname attribute as the
current version of Lotus Domino does not create the shortname attribute by default. If you want to use
the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname
Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE
Directory Server, the object class is the default groupOfUniqueName when you create a group. For
better performance, WebSphere Application Server uses the User object to locate the user group
membership from the nsRole attribute. Create the group from the role. If you want to use the
groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.
Roles are designed to be more efficient and easier to use for applications. For example, an application
can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather
than selecting a group and browsing through the members list. When using roles, you can create a
group using a:

— Managed role

— Filtered role

— Nested role

All of these roles are computable by the nsRole attribute.
Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application
Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous
LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the
LDAP server using the distinguished name (DN) of an account that has the authority to search and read
the values of LDAP attributes, such as user and group information, needed by the Application Server. A
group membership search in the Active Directory is done by enumerating the memberof attribute for a
given user entry, rather than browsing through the member list in each group. If you change the default
behavior to browse each group, you can change the Group Member ID Map field from

memberof :member t0 group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

Procedure

1.
2.
3.

Determine the full distinguished name (DN) and password of an account in the administrators group.
Determine the short name and password of any account in the Microsoft Active Directory.

Use the WebSphere Application Server administrative console to set up the information that is needed
to use Microsoft Active Directory.

a. Click Security > Global security.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is
determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name
Specify the name of a user with administrative privileges that is defined in the registry. This
user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft
Active Directory.

Chapter 6. Authenticating users 207



8.
9.

Base distinguished name (DN)
Specify the domain components of the DN of the account that is chosen in the first step.
For example: dc=ibm, dc=com

Bind distinguished name (DN)
Specify the full distinguished name of the account that is chosen in the first step. For
example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password
Specify the password of the account that is chosen in the first step.
d. Click OK and Save to save the changes to the master configuration.
Click Security > Global security.

Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP
performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.
Click OK and Save to save the changes to the master configuration.
Stop and restart the administrative server so that the changes take effect.

Locating user group memberships in a Lightweight Directory Access Protocol
registry

You can configure WebSphere Application Server security to use Lightweight Directory Access Protocol
(LDAP) servers. The LDAP specifications allow for different mechanisms to define group memberships.
Depending on your LDAP server implementation, you can use methods to determine group memberships.
WebSphere Application Server can search group memberships directly or indirectly. Also, you can
configure the product to search one or more static groups, recursive or nested groups, and dynamic
groups for some Lightweight Directory Access Protocol (LDAP) servers.

Procedure

Evaluate group memberships.

— Static group membership: All LDAP server implementations support static group membership. The
group object contains a list of users or groups that are members of the group. To determine the
groups in which a user is a member, you must get the list of all groups, and then query each group
in turn to see if the user is a member of that group. This operation results in (0)zero groups and
does not scale well.

Several LDAP servers enable user objects in the LDAP server to contain information about the
groups to which they belong. Examples of LDAP servers that support direct group searches include
Microsoft Active Directory Server and the owner of eDirectory.

— Dynamic group memberships

Some user group memberships are computable from attributes within the user object. IBM Directory
Server and Sun ONE Directory Server are two examples of LDAP servers that support dynamic

208 Ssecuring applications and their environment



group membership. In some LDAP servers, you can use an attribute to include a user's dynamic
group memberships, nesting group memberships, and static group memberships to determine all the
group memberships from a single attribute.

For example, in IBM Directory Server, you can return all group memberships including the static
groups, dynamic groups, and nested groups using the ibm-allGroups attribute. In the Sun ONE
directory server you can use the nsRole attribute to calculate, all roles, including managed roles,
filtered roles, and nested roles. If an LDAP server has such an attribute in a User object to include
dynamic groups, nested groups, and static groups, you can configure WebSphere Application Server
security to use this attribute to determine these groups.

Depending on the implementation, and LDAP server can caluculate dynamic group membership. In
this case, this dynamic computation is performed entirely by the LDAP server under a single LDAP
query and is invisible to WebSphere Application Server. While this approach is not as efficient as
direct groups, server-side dynamic queries are more efficient than determining group membership
using static group queries.

Dynamic group membership, when it is supported by the LDAP server, is frequently reflected back to
the LDAP client, which is the WebSphere Application Server. In this configuration, WebSphere
Application Server is required to compose the appropriate dynamic query against LDAP for each
group. This operation results in 0(zero) groups and does not scale well.

Tips:
— Use the efficient direct group membership where possible.

— Use the relatively efficient dynamic group membership where the LDAP computes membership within
a single query.

— Use static group membership, or client side dynamic group membership as a secondary alternative.
This option only performs well on systems where the number of groups within the LDAP server is
"small”.

The configurations for the supported, listed LDAP servers are pre-defined to use the optimal group
membership mechanisms. They assume that the standard object types and schemas for that LDAP
vendor are in use on the LDAP server.

» Evaluate the LDAP registry configuration.
— Standalone LDAP registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel
using the following methods.

- If you use static group membership, you must specifiy objectclass:attribute pairs. If the objectclass
for the group object is, groupOfUniquePersons, and within that objectclass, members are listed
as persons, then the static group membership Group Member ID map is
groupOfUniquePersons:persons.

- If direct group membership is used, attributes exist in the objectclass, you must use
attribute:attribute pairs. For example, if the objectclass for the user is userand the objectclasst
contains attributes called ingroup, which contains each group membership, then the direct group
membership Group Member ID map is ingroup:member.

— LDAP Registry within a Federated Repositories Registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group attribute definition properties for the repository.

- If static group membership is used, you must specify the name of the object class, and the
attribute that is used for indicating membership in Group attribute definition -> Member
attributes. If the group objectclass for the user is, groupOfUniquePersons, and within that
objectclass, members are listed as persons, then the static group Member attributes property is
set follows:

1. In the administrative console, click Security > Global security.

Chapter 6. Authenticating users 209



2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.
6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

Set the Name of member attribute field to persons

Set the Object class field to group0fUniquePersons

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

- If direct group membership is used, then attributes exist in the objectclass for the user and you
must use the attribute. For example, if the objectclass for the user is user, and it contains
attributes called ingroup that contain each group membership, then you specify the direct group
membership in the Group attribute definition property for the repository. Perform the following
steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.
Set the Name of group membership attribute field to ingroup.

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

» Use the sample entries of objectClass:attribute pairs in the Group member ID map field.
— dominoGroup:member for Lotus Domino
— groupOfNames:member for eDirectory

» Evaluate Nested Groups.
— Nested Groups

Depending on the LDAP server implementation, groups can contain only users, or can contain other
groups, which is known as a nested group. You configure WebSphere Application Server to properly
discover all groups by following this nesting as it applies to either a stand-alone LDAP reqistry or a
LDAP Registry within a Federated Repositories Registry.

- Standalone LDAP Registry The stand-alone LDAP registry default setting performs only a single
group membership query. If the groups returned are in fact subgroups of other groups, you must
enable the Perform a nested group search property on the Advanced LDAP Settings panel of
the LDAP registry as follows:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings.

Put a check mark in the Perform a nested group search check box.

- LDAP Registry within a Federated Repositories Registry Within Federated repositories, you
must configure what you expect the results of the query to return. Based on this information, the
Federated repository makes the appropriate calls to establish all group membership. If the LDAP

210 Securing applications and their environment



server returns all nested group information within a single direct group query, then you set the
Scope of group membership attribute property in the group attribute definition to Nested. as
follows:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

Set the Scope of group membership attribute property in the group attribute definition to
Nested.

- If the LDAP server returns only the direct membership, then the registry must then make
subsequent queries to establish complete membership. To force the Federated Repository to issue
subsequent queries, set the Scope of group membership attribute property in the Group
attribute definition for the repository to Direct.

Results

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as
multiple values of a single attribute. For example, in IBM Directory Server all group memberships,
including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups
attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated
using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested
groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active
Directory server has direct group search capability using the memberOf attribute, this attribute lists the
groups beneath, which the group is directly nested only and does not contain the recursive list of nested
predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group
memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.
For LDAP servers without recursive searching capability, WebSphere Application Server security provides
a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP
user registry settings. Select this option only if your LDAP server does not provide recursive searches and
you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin
To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 6.1 or later. Refer to |“Dynamic groups and nested group support|
ffor LDAP” on page 340 for more information on this topic.

Procedure
1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.
4. Select the Ignore case for authorization option.

Chapter 6. Authenticating users 211



5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

6. Change the Group filter setting to &(cn=%v) (objectclass=Tdapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin
When creating groups, ensure that nested and dynamic group memberships work correctly.

Procedure

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

5. Change the Group filter value to (&(cn=
%v) (| (objectclass=groupOfNames) (objectclass=group0fUniqueNames) (objectclass=group0fURLs))).

6. Change the Group member ID map value to ibm-al1Groups:member;ibm-allGroups:uniqueMember.
7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory
server has the appropriate value. When you create a nested group, the Auxiliary object class value is
ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is
ibm-dynamicGroup.

Configuring multiple LDAP servers for user registry failover
WebSphere Application Server security can be configured to attempt failovers between multiple
Lightweight Directory Access Protocol (LDAP) hosts.

Before you begin

The multiple LDAP servers involved in the failover can be replicas that are replicated from the same
master LDAP server, or they can be any LDAP host with the same schema. That is any LDAP host that
contains data that is imported from the same LDAP data interchange format (LDIF) file.

Note: When WebSphere Application Server attempts failovers between multiple Lightweight Directory
Access Protocol (LDAP) hosts, system properties are exchanged. WebSphere Application Server
Version 6.1.0 manages the SSL configuration and these system properties. You cannot expect to
set system properties yourself and expect the failover to succeed.

Procedure
1. Start the deployment manager process.
a. Start the Command Prompt application.
b. Change directories to bin.
c. Enter startManager.
2. Start the wsadmin Command Prompt application.
a. Start the Command Prompt application.

212  Securing applications and their environment



b.
c.

Change directories to bin.
Enter the following command:
wsadmin —user username —password password

3. Configure a second LDAP server for failover.

4.

a.

Enter the following command to set the failover LDAP server hostname:

set 1dapServer [ldap server hostname]

Enter the following command to set the LDAP server port number:

set ldapPort [ldap server port]

Enter the following command to set the WebSphere LDAP failover variable:

set Attrs2 [list [Tist hosts [list [Tist [list host $1dapServer] [Tist port $1dapPort]]]]]
Modify the LDAP configuration to add the failover LDAP server by entering the following command:
set result [$AdminConfig Tist LDAPUserRegistry]

Find the LDAP server configID by entering the following command:

$AdminConfig modify $result $Attrs2

Enter the following command to save the configuration change:

$AdminConfig save

Enter exit to quit the Command Prompt application. The following is an example of the Command
Prompt application output:

wsadmin>set TdapServer [1ist XXXX.XXXX.XXX.com]

XXXX . XXXX . XXX . COM

wsadmin>set TdapPort [1ist NNN]

NNN

wsadmin>set Attrs2 [Tist [list hosts [Tist [list [Tist host $1dapServer] [list port $1dapPort]]]]]
{hosts {{{host xxxx.xxxx.xxx.com} {port NNN}}}}

wsadmin> set result [$AdminConfig list LDAPUserRegistry]
(cells/Father2Cel101|security.xml#LDAPUserRegistry 1)

wsadmin>$§AdminConfig modify $result $Attrs2

wsadmin>$AdminConfig save

Review the configuration change by opening the security.xml file with a text editor and review the
new entry.

5. Stop the deployment manager.
a. Start the Command Prompt application.
b. Change directories to bin.

C.

To stop the deployment manager, enter the following command:
stopManager —user username —password password

Testing an LDAP server for user registry failover
After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the
failover server by stopping the main LDAP server.

Before you begin

This task assumes the following setup:
* Deployment Manager is installed on the primary LDAP server running Application Server version 6.0.2

or higher.

» All other LDAP hosts are Active Directory machines with similar user registry designs.
» Atleast one of the other LDAP hosts has been configured for failover.

Note: This topic references one or more of the application server log files. Beginning in WebSphere

Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

Chapter 6. Authenticating users 213



SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Stop the Active Directory Server on the failover server.
2. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to bin.

c. Enter startManager.

3. Review the SystemQut.1og file to see if the LDAP failover happened. The sample text is an example of

a SystemOut.log file that records a successful failover:

[7/11/05 15:38:31:324 EDT] 0000000a LdapRegistryl A  SECJO4181:

Cannot connect to the LDAP server Tdap://xxxx.xxxxx.xxxx.com:NNN. {primary LDAP server}

[7/11/05 15:38:32:486 EDT] 0000000a UserRegistryl A SECJO1361:

Custom Registry:com.ibm.ws.security.registry.ldap.LdapRegistryImpl has been initialized

[7/11/05 15:38:53:787 EDT] 0000000a LdapRegistryl A SECJ04191:

The user registry is currently connected to the LDAP server Tdap://xxxx.xxxxx.xxxx.com:NNN. {failover LDAP server}

‘[}}11/05 15:39:35:667 EDT] 0000000a WsServerImpl A  WSVROOO1I: Server dmgr open for e-business

4. Log into the console to see working and non-working cases.

a. Start a browser.

b. Browse to http://localhost:9060/admin.

c. Type in your user ID and password and click OK.

d. Log out of the Administrative Console.

e. Type in DummyAdmin as the user ID and dummyladmin as your password and click OK. This should
fail proving WebSphere Application Server is connected to the other LDAP server. Please make
sure that on a production system the user registries are identical so this problem does not happen
when switching between LDAP servers.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to bin.
c. To stop the deployment manager, enter the following command:
stopManager —user username —password password

Deleting LDAP endpoints using wsadmin
You can delete Lightweight Directory Access Protocol (LDAP) endpoints for a user registry by using the
WebSphere Application Server administrative tool (wsadmin).

Procedure

1.
2.

Start the wsadmin scripting tool.

Set the LDAP variable and display a list of LDAP endpoint objects. Enter the following commands:
Using Jacl:

set 1dap [$AdminConfig Tist LDAPUserRegistry]

$AdminConfig Tist EndPoint $1dap
Using Jython:
1dap=AdminConfig.Tist["LDAPUserRegistry"]

print AdminConfig.show(1dap)

214  Ssecuring applications and their environment



For the Jython language, you can obtain the endpoint from the host variable after running the previous
command.

3. Display a list of LDAP endpoint objects. Enter the following command for each object:
Using Jacl:
$AdminConfig showall End Point Object
Using Jython:
AdminConfig.showall("End_Point_Object")
4. Delete an LDAP endpoint object. Enter the following command:
Using Jacl:
$AdminConfig remove End_Point_Object
Using Jython:
AdminConfig.remove ("End Point_Object")
5. Save your configuration changes: Enter the following command:
Using Jacl:
$AdminConfig save
Using Jython:
AdminConfig.save()

Updating LDAP binding information
Use this information to dynamically update security LDAP binding information by switching to a different
binding identity.

About this task

You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first
stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding
information at WebSphere Application Server security runtime, and it takes the bind distinguished name
(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind
information against the LDAP server. If validation passes, new binding information is stored in
security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

The MBean method also synchronizes the binding information change in security.xml from cell to nodes.

If the new binding information is nul1, null, the resetLdapBindinfo method first extracts LDAP binding
information, including bind DN, bind password, and target binding host from WebSphere Application Server
security configuration in security.xml. It then pushes the binding information to WebSphere Application
Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding
information using the SecurityAdmin MBean through wsadmin:

* [“Switching to a different binding identity”|
« [“Switching to a failover LDAP host” on page 216|

Switching to a different binding identity:
About this task

To dynamically update security LDAP binding information by switching to a different binding identity:

Procedure
1. In the administrative console, click Security > Global security.

Chapter 6. Authenticating users 215



2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

4. Run the SecurityAdmin MBean across all of the processes (deployment manager, nodes, and
application servers) to validate the new binding information, to save it to security.xml, and to push the
new binding information to the runtime.

Example

The following is a sample Jacl file for step 4:

proc LDAPReBind {args} {

global AdminConfig AdminControl 1dapBindDn TdapBindPassword

set 1dapBindDn [Tindex $args 0]

set 1dapBindPassword [lindex $args 1]
set secMBeans [$AdminControl queryNames type=SecurityAdmin,x]
set plist [1ist $1dapBindDn $1dapBindPassword]
foreach secMBean $secMBeans {

set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]

}

}

Switching to a failover LDAP host:
About this task

To dynamically update security LDAP binding information by switching to a failover LDAP host:

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).
4

Update the new bind DN password to WebSphere Application security runtime by calling
resetLdapBindinfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now
consistent across WebSphere Application Server and the LDAP servers.

If you call resetLdapBindInfo with nu11, null as input parameters, WebSphere Application Server
security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.
b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere Application
Server security to reconnect to the first available LDAP host in the list. For example, if three LDAP
servers are configured in the order of L1, L2, and L3, the reconnection process always starts with the
L1 server.

When LDAP failover is configured by associating a single hosthame to multiple IP addresses, entering
an invalid password can cause multiple LDAP bind retries. With the default settings, the number of
LDAP bind retries is equal to one more than the number of associated IP addresses. This means a
single invalid login attempt can cause the LDAP account to be locked. If the
com.ibm.websphere.security.ldap.retryBind custom property is set to false, LDAP bind calls are not
retried.

gotcha: Federated repository does not support failover by associating a single hostname to multiple
IP addresses. This feature is only available in stand-alone LDAP.

Configuring to secure Lightweight Directory Access Protocol user registry using
Resource Access Control Facility based on z/0S

You can secure the application server by configuring Lightweight Access Directory Protocol (LDAP) on
z/OS with an existing Resource Access Control Facility (RACF) back end. This integrates the native z/OS
security settings defined in RACF with the WebSphere Application Server security environment.

216 Securing applications and their environment



Before you begin

Th

e following requirements exist when implementing these steps:

You must have an LDAP server configured with RACF based on z/OS. See [z/0OS Internet Library| for
more information about this configuration..

You must use LDAP on z/OS v1r3 or higher. For v1r3 or v1r4, you must apply APAR 0A03857 - PTF
UA06622 before following these steps.

The user logs into WebSphere security with RACF user ID and is authenticated with the LDAP using a
password and a Distinguished Name, the Bind DN. The Bind DN incorporates the RACF user ID and
the SDBM sulffix in the LDAP server configuration file. If the RACF user is johndoe, and the suffix value
in the SDBM section of the LDAP configuration file is cn=myRACF, then the bind DN is: racfid=johndoe,
profiletype=user, cn=myRACF.

Each RACF group, including WebSphere security groups, a user belongs to is stored in a multi-value
racfconnectgroupname attribute in the LDAP entry for the user. The attribute is returned when a base
or subtree search is performed with the user's DN as the Base DN.

The Bind DN must represent an RACF user with Special or Auditor privileges. For more information
about the required RACF authority, see the z/OS Security Server RACF Command Language Reference
for your z/OS version in the [z/OS Internet Library|

You must define the racfconnectgroupname attribute in the LDAP default schema.

Remember: If you have TBDM defined in the LDAP server configuration file in addition to SDBM, the
schema in TDBM is the default schema for the LDAP server. If the TDBM schema does
not included the racfconnectgroupname attribute, remove TDBM from the LDAP server
configuration file or add the schema in the schema.user.1dif file and schema.IBM.1dif file
to the TDBM schema. For more information about TDBM and SDBM, see
lauthentication with RACF and Tivoli Access Manager

Procedure

1.

Click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and then click Configure.

3. Under the Type of LDAP server, click Custom.

4. Complete the fields for your LDAP environment. For more information, see [‘Configuring Lightweight
[Directory Access Protocol user registries” on page 191 The users and groups must be in the sub tree
of the Base DN.

5. Make sure that Ignore case for authorization is selected. RACF user names and group names are
not case-sensitive.

6. Click Apply and then click Save.

7. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry setting.

8. Change User filter and Group filter to racfid=%v.

9. Change User ID map and Group ID Map to *:racfid.

10. Change Group member ID map to racfconnectgroupname:racfgroupuserids.

11. Click Apply and click Save.

12. Assign the administrative role to a user. See |“Authorizing access to administrative roles” on page 621|
for more information.

13. Restart WebSphere Application Server.

Results

Your environment is now protected by LDAP on z/OS with a RACF back end.

Chapter 6. Authenticating users 217


http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.redbooks.ibm.com/abstracts/tips0363.html
http://www.redbooks.ibm.com/abstracts/tips0363.html

Configuring stand-alone custom registries

Use the following information to configure stand-alone custom registries through the administrative
console.

Before you begin

Before you begin this task, implement and build the UserRegistry interface. For more information on
developing stand-alone custom registries refer to f‘DeveIoping stand-alone custom registries” on page 809.|
The following steps are required to configure stand-alone custom registries through the administrative
console.

Procedure
1. Click Security > Global security.
2. Under User account repositories, select Stand-alone custom registry and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This ID is the security server
ID, which is only used for WebSphere Application Server security and is not associated with the
system process that runs the server. The server calls the local operating system registry to
authenticate and obtain privilege information about users by calling the native APIs in that particular
registry.

4. Enter the dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface in the Custom registry class name field. For the sample, this file name is
com.ibm.websphere.security.FileRegistrySample.

This file exists in all the product processes. Thus, this file exists in the cell class path and in all of the
node class paths.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.

5. Add your custom registry class name to the class path. It is recommended that you add the Java
Archive (JAR) file that contains your custom user registry implementation to the following directory:

* |app_server_rool/1ib/ext

6. Optional: Select the Ignore case for authorization option for the authorization to perform a case
insensitive check. Enabling this option is necessary only when your user registry is case insensitive
and does not provide a consistent case when queried for users and groups.

7. Click Apply if you have any other additional properties to enter for the registry initialization.
8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the
groups.props file are in the customer_sample directory under the product installation directory.
You can place these properties in any directory that you choose and reference their locations
through custom properties. However, make sure that the directory has the appropriate access
permissions.

Table 21. Additional properties.

This table lists additional custom properties when configuring stand-alone custom registries.

Property name Property value
usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props
groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in[‘users.props file” on page 240| and [‘groups.props|
file” on page 241

218 Securing applications and their environment



To use the users.props and the groups.props files on the z/OS platform, save these files in the
ASCII format before calling them from the administrative console.

The Description, Required, and Validation Expression fields are not used and can remain
blank.

In a WebSphere Application Server, Network Deployment environment where multiple WebSphere
Application Server processes exist, such as cell and multiple nodes in different machines, these
properties are available for each process. Use the USER_INSTALL_ROOT relative name to locate
any files, as this name expands to the product installation directory. If this name is not used,
ensure that the files exist in the same location in all the nodes.

WebSphere Application Server version 4-based custom user registry is migrated to the custom
user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.
d. Repeat this step to add other additional properties.
9. Click Security > Global security.

10. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

12. Click OK and complete the required steps to turn on security.
Results

This set of steps is required to set up the stand-alone custom registry and to enable security in
WebSphere Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when
enabling security. See the information about variable settings for more details.

What to do next

1. Complete the remaining steps, if you are enabling security.

2. Validate the user and password. Save and synchronize in the cell environment.

3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of
the application servers, for any changes to take effect. If the server comes up without any problems,
the setup is correct.

Stand-alone custom registries

A stand-alone custom registry is a customer-implemented registry that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented registry can support virtually any type of an
account repository from a relational database, flat file, and so on. The custom user registry provides
considerable flexibility in adapting product security to various environments where some form of a registry
or repository other than federated repositories, stand-alone Lightweight Directory Access Protocol (LDAP)
registry or local operating system registry already exists in the operational environment.

WebSphere Application Server security provides an implementation that uses various local operating
system-based registries and various stand-alone Lightweight Directory Access Protocol (LDAP)-based
registries. However, situations can exist where your user and group data resides in other repositories or
custom user registries, such as a database, and moving this information to either a local operating system
registry or a stand-alone LDAP registry implementation might not be feasible. For these situations,

Chapter 6. Authenticating users 219



WebSphere Application Server security provides a service provider interface (SPI) that you can implement
to interact with your current registry. The custom registry feature supports any user registry that is not
implemented by WebSphere Application Server.

The SPI is the UserRegistry interface. The UserRegistry interface is a collection of methods that are
required for authorization purposes. These methods authenticate individual users using either a password
or certificates and collect information about the user, which are called privilege attributes. This interface
also includes methods that obtain user and group information so that they can be given access to
resources. When implementing the methods in the interface, you must decide how to map the information
that is manipulated by the UserRegistry interface to the information in your registry.

This interface has a set of methods to implement for the product security to interact with your registries for
all security-related tasks. The local operating system and LDAP registry implementations that are provided
also implement this interface. Custom user registries are sometimes called the pluggable user registries or
custom registries for short. Your custom user registry implementation is expected to be thread-safe.

Building a custom registry is a software implementation effort. The implementation does not depend on
other WebSphere Application Server resources, for example, data sources, for its operation.

Make sure that your implementation of the custom registry does not depend on any WebSphere
Application Server components such as data sources, enterprise beans, and so on. Do not have this
dependency because security is initialized and enabled prior to most of the other WebSphere Application
Server components during startup. If your previous implementation used these components, make a
change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:
User security name
The user name is similar to the user name in the local operating system registries.

This name is used to log in when prompted by a secured application. By default, the Enterprise
JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and getUserPrincipal servlet
methods return this name. The user security name is also referred to as userSecurityName,
userName, or user name.

WAS_UseDisplayName
This is a custom property of User Registries. This property defines the returning value of the
getCallerPrincipal(), getUserPrincipal(), and RemoteUser() methods. The following shows
acceptable values for WAS_UseDisplayName:
» false This is default. Security Name is returned.
» true The display name is returned. This setting requires that the custom property

com.ibm.websphere.security.useLoggedSecurityName be set to true.

Unique user ID
This ID represents a unique identifier for the user, which is required by the UserRegistry interface.
The unique ID is similar to the system ID (SID) in Windows systems, the Unique ID (UID) in Linux
and UNIX systems, and the distinguished name (DN) in Lightweight Directory Authentication
Protocol (LDAP). This ID is also referred to as uniqueUserld. The unique ID is used to make the
authorization decisions for protected resources.

Display user name
This name is an optional string that describes a user. The implementation can use display names
for informational purposes only; these names are not required to exist or to be unique. The user
interface can use the display name to present more information about the user.

Group security name
This name, which represents the security group, is also referred to as groupSecurityName,
groupName, and group name.

Unique group ID
The unique ID is the identifier for a group. This name is also referred to as uniqueGroupld ID.

220 Securing applications and their environment



Display group name
The display name is an optional string that describes a group.

The topic on|UserRegistry interface| describes each of the methods in the interface that need
implementing. An explanation of each of the methods and their usage in the sample and any changes from
the Version 4 interface are provided. The Related references section provides links to all other custom
user registries documentation, including a file-based registry sample. The Sample provided is very simple
and is intended to familiarize you with this feature. Do not use this sample in an actual production
environment.

Stand-alone custom registry settings
Use this page to configure the stand-alone custom registry.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom
properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Global security
panel and click Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.
Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your custom user registry.
The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.
Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the

administrative user identity.

Automatically generated server identity:

Chapter 6. Authenticating users 221



Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.
* %install_root%/1ib/ext

Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

Stand-alone custom registry wizard settings

A wizard page exists in the administrative console to aid in viewing the basic settings necessary to
connect the application server to an existing stand-alone custom registry. After you have viewed the basic
settings, you can also modify the existing stand-alone customer registry configuration using the
administrative console.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.
2. Select your protection settings and click Next.

3. Select the Stand-alone custom registry option and click Next.

You can modify your stand-alone custom registry configuration by completing the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Stand-alone custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

* Click Custom properties > New.

* Enter the property name and value. For the sample, enter the following two properties. It is assumed
that the users.props file and the groups.props file are in the customer_sample directory under the
product installation directory. You can place these properties in any directory that you choose and
reference their locations through Custom properties. However, make sure that the directory has the
appropriate access permissions.

222  Securing applications and their environment



Table 22. Custom properties.

This table lists additional custom properties when changing stand-alone custom registry wizard settings.

Property name Property value
usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props
groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in reference topics for the users.props file and the
groups.props file. See the related links below for more information.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user
registry based on the com.ibm.websphere.security.UserRegistry interface.

« Click Apply.
Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your custom user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.
* %install_root%/1ib/ext

Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

FileRegistrySample.java file
This provides an example of the FileRegistrySample.java file.

The user and group information required by this sample is contained in the ["users.props file" on page]
and ["groups.props file" on page 241|files.

Attention: The samples that are provided are intended to familiarize you with this feature. Do not use
these samples in an actual production environment.

Chapter 6. Authenticating users 223



The contents of the FileRegistrySample.java file:

/!

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// A11 Rights Reserved * Licensed Materials - Property of IBM
SRS R S SR S —
// This program may be used, run, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

// This sample is for the custom user registry feature in WebSphere Application Server.

import java.util.=;

import java.io.=;

import java.security.cert.X509Certificate;
import com.ibm.websphere.security.x*;

[ *%

* The main purpose of this sample is to demonstrate the use of the
custom user registry feature available in WebSphere Application Server. This
sample is a file-based registry sample where the users and the groups
information is listed in files (users.props and groups.props). As such
simplicity and not the performance was a major factor. This
sample should be used only to get familiarized with this feature. An
actual implementation of a realistic registry should consider various
factors like performance, scalability, thread safety, and so on.

£ 0% ok ok X %k %

*%/
public class FileRegistrySample implements UserRegistry {

private static String USERFILENAME = null;
private static String GROUPFILENAME = null;

/*x Default Constructor xx/
public FileRegistrySample() throws java.rmi.RemoteException {

}
[x*
* Initializes the registry. This method is called when creating the
* registry.
*
* @param props - The registry-specific properties with which to
* initialize the custom registry
* @exception CustomRegistryException
*

if there is any registry-specific problem
*%*
/
public void initialize(java.util.Properties props)
throws CustomRegistryException {
try {
/* try getting the USERFILENAME and the GROUPFILENAME from
* properties that are passed in (For example, from the

% administrative console). Set these values in the administrative
* console. Go to the special custom settings in the custom
* user registry section of the Authentication panel.
* For example:
*= usersFile c:/temp/users.props
* groupsFile c:/temp/groups.props
*
/

if (props != null) {
USERFILENAME = props.getProperty("usersFile");
GROUPFILENAME = props.getProperty("groupsFile");
}

224  securing applications and their environment



} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
}

if (USERFILENAME == null || GROUPFILENAME == null) {
throw new CustomRegistryException("users/groups information missing");
}

b /e
* Checks the password of the user. This method is called to authenticate
* a user when the user's name and password are given.

*

* @param userSecurityName the name of user

* @param password the password of the user

* @return a valid userSecurityName. Normally this is

* the name of same user whose password was checked

* but if the implementation wants to return any other

* valid userSecurityName in the registry it can do so

* @exception CheckPasswordFailedException if userSecurityName/

* password combination does not exist

* in the registry

* @exception CustomRegistryException if there is any registry-

* specific problem

*%/

public String checkPassword(String userSecurityName, String passwd)
throws PasswordCheckFailedException,
CustomRegistryException {
String s,userName = null;
BufferedReader in = null;

try {
in = fileOpen(USERFILENAME) ;
while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {

int index = s.indexOf(":");

int indexl = s.indexOf(":",index+1);

// check if the userSecurityName:passwd combination exists

if ((s.substring(0,index)).equals(userSecurityName) &&

s.substring(index+1,index1).equals(passwd)) {

// Authentication successful, return the userID.
userName = userSecurityName;
break;

}
}
} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);
}

if (userName == null) {
throw new PasswordCheckFailedException("Password check failed for user:
+ userSecurityName);

}

return userName;
| AT
* Maps an X.509 format certificate to a valid user in the registry.
* This is used to map the name in the certificate supplied by a browser

Chapter 6. Authenticating users

225



* to a valid userSecurityName in the registry

*

* @param cert the X509 certificate chain

* @return The mapped name of the user userSecurityName

* @exception CertificateMapNotSupportedException if the

* particular certificate is not supported.

* @exception CertificateMapFailedException if the mapping of
* the certificate fails.

* @exception CustomRegistryException if there is any registry
* -specific problem

*%/

public String mapCertificate(X509Certificate[] cert)
throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException {
String name=null;
X509Certificate certl = cert[0];
try {
// map the SubjectDN in the certificate to a userID.
name = certl.getSubjectDN().getName();
} catch(Exception ex) {
throw new CertificateMapNotSupportedException(ex.getMessage(),ex);
}

if(lisValidUser(name)) {
throw new CertificateMapFailedException("user: " + name
+ " is not valid");

}

return name;
[ **

Returns the realm of the registry.

@return the realm. The realm is a registry-specific string
indicating the realm or domain for which this registry
applies. For example, for 0S/400 or AIX this would be

the host name of the system whose user registry this
object represents. If null is returned by this method,
realm defaults to the value of "customRealm". It is
recommended that you use your own value for realm.

@exception CustomRegistryException if there is any registry-
specific problem

*%/

public String getRealm()

throws CustomRegistryException {

String name = "customRealm";

return name;

LB I I R R R e

returned. This is very useful in situations where
there are thousands of users in the registry and
getting all of them at once is not practical. The
default is 100. A value of O implies get all the
users and hence must be used with care.

e
* Gets a list of users that match a pattern in the registry.

* The maximum number of users returned is defined by the Timit

* argument.

* This method is called by the administrative console and scripting
* (command line) to make the users in the registry available for

% adding them (users) to roles.

*

* @param pattern the pattern to match. (For example, a* will

* match all userSecurityNames starting with a)

* @param Timit the maximum number of users that should be

*

*

*

*

*

226 Securing applications and their environment



*
*
*
*
*

@return a Result object that contains the list of users
requested and a flag to indicate if more users
exist.

@exception CustomRegistryException if there is any registry-
specific problem

*%/

public Result getUsers(String pattern, int limit)

* % % % ok 3k X X ok kX X 3k X X X X X X X ok

throws CustomRegistryException {
String s;
BufferedReader in = null;
List allUsers = new ArraylList();
Result result = new Result();
int count = 0;
int newLimit = Timit+1;
try {
in = fileOpen(USERFILENAME) ;
while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexO0f(":");
String user = s.substring(0,index);
if (match(user,pattern)) {
allUsers.add(user);
if (1imit !'=0 && ++count == newLimit) {
allUsers.remove(user);
result.setHasMore();
break;
}
}
}

} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

result.setList(allUsers);

return result;

[**

Returns the display name for the user specified by
userSecurityName.

This method may be called only when the user information

is displayed (information purposes only, for example, in
the administrative console) and hence not used in the actual
authentication or authorization purposes. If there are no
display names in the registry return null or empty string.

In WebSphere Application Server 4.x custom registry, if you
had a display name for the user and if it was different from the
security name, the display name was returned for the EJB
methods getCallerPrincipal() and the servlet methods
getUserPrincipal() and getRemoteUser().

In WebSphere Application Server Version 5.x and later, for the
same methods, the security name will be returned by default.
This is the recommended way as the display name is not unique
and might create security holes. However, for backward
compatibility if you need the display name to be returned

set the property WAS UseDisplayName to true.

*See the Information Center documentation for more information.

*

Chapter 6. Authenticating users

227



* @param userSecurityName the name of the user.

* @return the display name for the user. The display
name is a registry-specific string that
represents a descriptive, not necessarily
unique, name for a user. If a display name
does not exist return null or empty string.

@exception EntryNotFoundException if userSecurityName
does not exist.
@exception CustomRegistryException if there is any registry-

* specific problem

*%/

public String getUserDisplayName(String userSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

* 0% 3k ok X %k %

String s,displayName = null;
BufferedReader in = null;

if(lisValidUser(userSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("user:
+ userSecurityName + " is not valid");
throw nsee;

}

try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)

{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int indexl = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {
displayName = s.substring(index1+1);
break;
}
}
}
} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(), ex);
} finally {
fileClose(in);

}

return displayName;

1
[x*

* Returns the unique ID for a userSecurityName. This method is called

* when creating a credential for a user.
*

* @param userSecurityName - The name of the user.

* @return  The unique ID of the user. The unique ID for a user

* is the stringified form of some unique, registry-specific,
* data that serves to represent the user. For example, for
* the UNIX user registry, the unique ID for a user can be
* the UID.

* @exception EntryNotFoundException if userSecurityName does not

* exist.

* @exception CustomRegistryException if there is any registry-

* specific problem

*%/

public String getUniqueUserId(String userSecurityName)
throws CustomRegistryException,

228 Securing applications and their environment



EntryNotFoundException {

String s,uniqueUsrId = null;
BufferedReader in = null;
try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int indexl = s.indexOf(":", index+1);
if ((s.substring(0,index)).equals(userSecurityName)) {
int index2 = s.indexOf(":", index1+1);
uniqueUsrlid = s.substring(index1+1,index2);
break;
}
}
}
} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);
}

if (uniqueUsrId == null) {
EntryNotFoundException nsee =
new EntryNotFoundException("Cannot obtain uniqueld for user:
+ userSecurityName);
throw nsee;

}

return uniqueUsrId;

boo/xx

* Returns the name for a user given its unique ID.

*

* @param uniqueUserId - The unique ID of the user.

* @return The userSecurityName of the user.

* @exception EntryNotFoundException if the unique user ID does not exist.
* @exception CustomRegistryException if there is any registry-specific

* problem

**
/
public String getUserSecurityName(String uniqueUserId)
throws CustomRegistryException,
EntryNotFoundException {
String s,usrSecName = null;
BufferedReader in = null;
try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int indexl = s.indexOf(":", index+1);
int index2 = s.indexOf(":", index1+1);
if ((s.substring(indexl+1,index2)).equals(uniqueUserld)) {
usrSecName = s.substring(0,index);
break;
}
}
}
} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

Chapter 6. Authenticating users 229



fileClose(in);
}

if (usrSecName == null) {
EntryNotFoundException ex =
new EntryNotFoundException("Cannot obtain the
user securityName for " + uniqueUserld);
throw ex;

}

return usrSecName;

b /e
* Determines if the userSecurityName exists in the registry

*

* @param userSecurityName - The name of the user

* @return True if the user is valid; otherwise false

* @exception CustomRegistryException if there is any registry-
* specific problem

* @exception RemoteException as this extends java.rmi.Remote

* interface

*%/

public boolean isValidUser(String userSecurityName)
throws CustomRegistryException {
String s;
boolean isValid = false;
BufferedReader in = null;
try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {
isValid=true;
break;
}
}
}
} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(), ex);
} finally {
fileClose(in);
}

return isValid;

}
[ x%
* Gets a list of groups that match a pattern in the registry
* The maximum number of groups returned is defined by the
* 1imit argument. This method is called by administrative console
* and scripting (command line) to make available the groups in
* the registry for adding them (groups) to roles.
*
* @param pattern the pattern to match. (For example, a* matches
* all groupSecurityNames starting with a)
* @param Limits the maximum number of groups to return
* This is very useful in situations where there
* are thousands of groups in the registry and getting all
* of them at once is not practical. The default is 100.
* A value of O implies get all the groups and hence must
* be used with care.
* @return A Result object that contains the Tist of groups

230 Securing applications and their environment



*
*
*

requested and a flag to indicate if more groups exist.
@exception CustomRegistryException if there is any registry-specific
problem

*%/

public Result getGroups(String pattern, int Timit)

—

throws CustomRegistryException {

String s;
BufferedReader in = null;
List allGroups = new ArraylList(); Result result = new Result();

int count = 0;
int newLimit = Timit+1;
try {
in = fileOpen(GROUPFILENAME)
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
String group = s.substring(0,index);
if (match(group,pattern)) {
allGroups.add(group);
if (1imit !'=0 && ++count == newLimit) {
allGroups.remove(group);
result.setHasMore();
break;
}
}
}
}
} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);
}

result.setList(allGroups);
return result;

[ x%

* Returns the display name for the group specified by groupSecurityName.
* For this version of WebSphere Application Server, the only usage of
* this method is by the clients (administrative console and scripting)
* to present a descriptive name of the user if it exists.

*

* @param groupSecurityName the name of the group.

* @return the display name for the group. The display name

* is a registry-specific string that represents a

* descriptive, not necessarily unique, name for a group.

* If a display name does not exist return null or empty

* string.

* @exception EntryNotFoundException if groupSecurityName does

* not exist.

* @exception CustomRegistryException if there is any registry-

* specific problem

*%/

public String getGroupDisplayName(String groupSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,displayName = null;

BufferedReader in = null;

if(!isValidGroup(groupSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("group:

Chapter 6. Authenticating users

231



+ groupSecurityName + " is not valid");
throw nsee;

}

try {
in = fileOpen(GROUPFILENAME);

while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int indexl = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName))
displayName = s.substring(index1+1);
break;
}
}

} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);

}

return displayName;

}
[ **

* Returns the Unique ID for a group.

* @param groupSecurityName the name of the group.
* @return The unique ID of the group. The unique ID for
a group is the stringified form of some unique,
registry-specific, data that serves to represent
the group. For example, for the UNIX user registry,
the unique ID might be the GID.
@exception EntryNotFoundException if groupSecurityName does
not exist.
@exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends java.rmi.Remote
*%*
/
public String getUniqueGroupId(String groupSecurityName)
throws CustomRegistryException,
EntryNotFoundException {
String s,uniqueGrpId = null;
BufferedReader in = null;
try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.index0f(":");
int indexl = s.index0f(":", index+l);
if ((s.substring(0,index)).equals(groupSecurityName))
uniqueGrpld = s.substring(index+1,indexl);
break;

EREE R

}
}
}
} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);

232 Securing applications and their environment



}

if (uniqueGrpId == null) {
EntryNotFoundException nsee =

new EntryNotFoundException("Cannot obtain the uniqueld for group:

+ groupSecurityName) ;
throw nsee;

}

return uniqueGrpld;

}
[ x*

Returns the Unique IDs for all the groups that contain the unique ID
of a user. Called during creation of a user's credential.

*
*
*
* @param uniqueUserId the unique ID of the user.
* @return A list of all the group unique IDs that the unique user
* ID belongs to. The unique ID for an entry is the
* stringified form of some unique, registry-specific, data
* that serves to represent the entry. For example, for the
* UNIX user registry, the unique ID for a group might be
* the GID and the Unique ID for the user might be the UID.
* @exception EntryNotFoundException if uniqueUserId does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
*%/
public List getUniqueGroupIds(String uniqueUserld)
throws CustomRegistryException,
EntryNotFoundException {
String s,uniqueGrpIld = null;
BufferedReader in = null;
List uniqueGrpIds=new ArrayList();
try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int indexl = s.indexOf(":", index+l1);
int index2 = s.indexOf(":", indexl+l);
if ((s.substring(indexl+1,index2)).equals(uniqueUserld)) {
int lastIndex = s.lastIndexOf(":");
String subs = s.substring(index2+1,lastIndex);
StringTokenizer stl = new StringTokenizer(subs, ",");
while (stl.hasMoreTokens())
uniqueGrplds.add(stl.nextToken());
break;
}
}
}
} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);
}

return uniqueGrplds;

}

[**

* Returns the name for a group given its unique ID.
*

Chapter 6. Authenticating users

233



* @param uniqueGroupId the unique ID of the group.

* @return The name of the group.

* @exception EntryNotFoundException if the uniqueGroupld does
* not exist.

* @exception CustomRegistryException if there is any registry-
* specific problem

*%/

public String getGroupSecurityName(String uniqueGroupId)
throws CustomRegistryException,
EntryNotFoundException {
String s,grpSecName = null;
BufferedReader in = null;
try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.index0f(":");
int indexl = s.indexOf(":", index+1);
if ((s.substring(index+1,index1)).equals(uniqueGroupld)) {
grpSecName = s.substring(0,index);
break;
}
}
}
} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);

}

if (grpSecName == null) {
EntryNotFoundException ex =
new EntryNotFoundException("Cannot obtain the group
security name for: " + uniqueGroupld);
throw ex;

}

return grpSecName;

}

[**
Determines if the groupSecurityName exists in the registry

*
*
* @param groupSecurityName the name of the group
* @return True if the groups exists; otherwise false
* @exception CustomRegistryException if there is any registry-
* specific problem
*%/
public boolean isValidGroup(String groupSecurityName)
throws CustomRegistryException {
String s;
booTean isValid = false;
BufferedReader in = null;
try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName)) ({
isValid=true;

234 Securing applications and their environment



(——

~
*
*

E O I T R R R T S

break;
}
}
}
} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);
}

return isValid;

Returns the securityNames of all the groups that contain the user

This method is called by the administrative console and scripting
(command Tine) to verify that the user entered for RunAsRole mapping
belongs to that role in the roles to user mapping. Initially, the

check is done to see if the role contains the user. If the role does
not contain the user explicitly, this method is called to get the groups
that this user belongs to so that a check can be made on the groups that
the role contains.

@param userSecurityName the name of the user

@return A Tist of all the group securityNames that the user
belongs to.

@exception EntryNotFoundException if user does not exist.

@exception CustomRegistryException if there is any registry-
specific problem

@exception RemoteException as this extends the java.rmi.Remote
interface

*% [
public List getGroupsForUser(String userName)

throws CustomRegistryException,
EntryNotFoundException {
String s;
List grpsForUser = new ArraylList();
BufferedReader in = null;
try {
in = fileOpen(GROUPFILENAME) ;
while ((s=in.readLine())!=null)
{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {
StringTokenizer st = new StringTokenizer(s, ":");
for (int i=0; i<2; i++)
st.nextToken();
String subs = st.nextToken();
StringTokenizer stl = new StringTokenizer(subs, ",");
while (stl.hasMoreTokens()) {
if((stl.nextToken()).equals(userName)) {
int index = s.index0f(":");
grpsForUser.add(s.substring(0,index));

}
}

} catch (Exception ex) {
if (!isValidUser(userName)) {
throw new EntryNotFoundException("user: " + userName
+ " is not valid");
}

throw new CustomRegistryException(ex.getMessage(),ex);

Chapter 6. Authenticating users

235



} finally {
fileClose(in);
}

return grpsForUser;

}

~
*
*

Gets a Tist of users in a group.

The maximum number of users returned is defined by the
limit argument.

This method is being used by the WebSphere Application Server
Enterprise process choreographer (Enterprise) when
staff assignments are modeled using groups.

In rare situations, if you are working with a registry where

getting all the users from any of your groups is not practical

(for example if there are a large number of users) you can create

the NotImplementedException for that particular group. Make sure

that if the process choreographer is installed (or if installed later)

the staff assignments are not modeled using these particular groups.

If there is no concern about returning the users from groups

in the registry it is recommended that this method be implemented

without creating the NotImplemented exception.

@param groupSecurityName the name of the group

@param Limits the maximum number of users that should be
returned. This is very useful in situations where there
are lots of users in the registry and getting all of
them at once is not practical. A value of O implies
get all the users and hence must be used with care.

@return A Result object that contains the Tist of users
requested and a flag to indicate if more users exist.

@deprecated This method will be deprecated in future.

@exception NotImplementedException create this exception in rare
situations if it is not practical to get this information
for any of the group or groups from the registry.

Lo R R R R I S T . N N N R R R R I N R

@exception EntryNotFoundException if the group does not exist in
the registry
@exception CustomRegistryException if there is any registry-specific
problem
*%/

public Result getUsersForGroup(String groupSecurityName, int Timit)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException {
String s, user;
BufferedReader in = null;
List usrsForGroup = new ArrayList();
int count = 0;
int newLimit = Timit+1;
Result result = new Result();

try {
in = fileOpen(GROUPFILENAME) ;
while ((s=in.readLine())!=null)

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName))
{

StringTokenizer st = new StringTokenizer(s, ":");

236  Securing applications and their environment



for (int i=0; i<2; i++)
st.nextToken();
String subs = st.nextToken();
StringTokenizer stl = new StringTokenizer(subs, ",");
while (stl.hasMoreTokens()) {
user = stl.nextToken();
usrsForGroup.add(user);
if (Timit !=0 && ++count == newLimit) {
usrsForGroup.remove (user);
result.setHasMore();
break;
1
}
}
}

} catch (Exception ex) {
if (!isValidGroup(groupSecurityName)) {
throw new EntryNotFoundException("group:
+ groupSecurityName
+ " is not valid");
}
throw new CustomRegistryException(ex.getMessage(),ex);
} finally {
fileClose(in);
}

result.setList(usrsForGroup);
return result;

* This method is implemented internally by the WebSphere Application Server
* code in this release. This method is not called for the custom

* registry implementations for this release. Return null in the

* implementation.

*

**
/
pubTic com.ibm.websphere.security.cred.WSCredential
createCredential (String userSecurityName)
throws CustomRegistryException,
NotImplementedException,
EntryNotFoundException {

// This method is not called.
return null;

}

// private methods
private BufferedReader fileOpen(String fileName)
throws FileNotFoundException {
try {
return new BufferedReader(new FileReader(fileName));
} catch(FileNotFoundException e) {
throw e;
}

}

private void fileClose(BufferedReader in) {
try {
if (in != null) in.close();
} catch(Exception e) {
System.out.printin("Error closing file" + e);

Chapter 6. Authenticating users

237



}
}

private boolean match(String name, String pattern) {
RegExpSample regexp = new RegExpSample(pattern);
booTean matches = false;
if(regexp.match(name))
matches = true;
return matches;

// The program provides the Regular Expression implementation

// used in the sample for the custom user registry (FileRegistrySample).
// The pattern matching in the sample uses this program to search for the
// pattern (for users and groups).

L —

class RegExpSample

private boolean match(String s, int i, int j, int k)

{
for(; k < expr.length; k++)
label0:
{

Object obj = expr[k];
if(obj == STAR)

if(++k >= expr.length)
return true;
if(expr[k] instanceof String)

{
String sl = (String)expr[k++];
int 1 = sl.length();
for(; (i = s.indexOf(sl, i)) >= 0; i++)
if(match(s, i + 1, j, k))
return true;
return false;
}

for(; 1 < j; i++)
if(match(s, i, j, k))
return true;

return false;
}
if(obj == ANY)
{

if(++i > §)
return false;
break Tlabel0;

}
if(obj instanceof char[][])

if(i >=J)
return false;
char ¢ = s.charAt(i++);
char ac[][] = (char[][])obj;
if(ac[0] == NOT)
{

238 Securing applications and their environment



for(int jl = 1; jl < ac.length; jl++)
if(ac[j1]1[0] <= c && c <= ac[j1][1])
return false;

break Tabel0;

}
for(int k1 = 0; k1 < ac.length; kl++)
if(ac[kl1][0] <= c && c <= ac[kl1l][1])
break Tabel0;

return false;

}
if(obj instanceof String)

String s2 = (String)obj;

int i1 = s2.length();

if(!s.regionMatches(i, s2, 0, il))
return false;

i+= il

}

return i == j;

}

public boolean match(String s)
{

}

public boolean match(String s, int i, int j)

{
}

public RegExpSample(String s)
{

return match(s, 0, s.length(), 0);

return match(s, i, j, 0);

Vector vector = new Vector();

int i = s.length();

StringBuffer stringbuffer = null;
Object obj = null;

for(int j = 0; j < iy j++)

{

char ¢ = s.charAt(j);

switch(c)

{

case 63: /x '?' %/
obj = ANY;
break;

case 42: /% 'x' %/
obj = STAR;
break;

case 91: /x '[' =/
int k = ++j;
Vector vectorl = new Vector();
for(; j < i; j++)

c = s.charAt(j);
if(j == k & c == ')
{
vectorl.addElement (NOT);

Chapter 6. Authenticating users 239



continue;

)
e = W)

if(j +1<1)
c = s.charAt(++j);
}

else

if(c =="1")
break;

char cl = c;

if(j +2 < i & s.charAt(j + 1) == '-")
cl = s.charAt(j += 2);

char acl[] = {
c, cl

b

vectorl.addElement (acl);

}

char ac[][] = new char[vectorl.size()][];
vectorl.copyInto(ac);

obj = ac;

break;

case 92: /+ "\\' %/
if(j +1<1)
c = s.charAt(++j);
break;

}
if(obj !'= null)
{

if(stringbuffer != null)

{
vector.addETement (stringbuffer.toString());

stringbuffer = null;

}

vector.addElement (obj);
obj = null;
}

else

{
if(stringbuffer == null)
stringbuffer = new StringBuffer();
stringbuffer.append(c);

}

if(stringbuffer != null)

vector.addETement (stringbuffer.toString());
expr = new Object[vector.size()];
vector.copyInto(expr);

}
static final char NOT[] = new char[2];
static final Integer ANY = new Integer(0);
static final Integer STAR = new Integer(1);
Object expr[];

}

users.props file:

240 Securing applications and their environment



This example presents the format for the users.props file.

Attention: The sample that is provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18
(C) COPYRIGHT International Business Machines Corp. 1997, 2005
A11 Rights Reserved * Licensed Materials - Property of IBM

Format:
name:passwd:uid:gids:display name
where name = userld/userName of the user
passwd = password of the user
uid uniqueld of the user
gid groupIds of the groups that the user belongs to
# display name = a (optional) display name for the user.
bob:bob1:123:567:bob
dave:davel:234:678:
jay:jayl:345:678,789:Jay-Jay
ted:ted1:456:678:Teddy G
jeff:jeff1:222:789:Jeff
vikas:vikas1:333:789:vikas
bobby :bobby1:444:789:

#
#
#
#
#
#
#
#
#
#

groups.props file:
The following example illustrates the format for the groups.props file.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this sample
in an actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2005

A11 Rights Reserved * Licensed Materials - Property of IBM

#

#

#

#

# Format:
# name:gid:users:display name
#
#
#

where name = groupld of the group
gid = uniqueld of the group
users = list of all the userlds that the group contains
# display name = a (optional) display name for the group.

admins:567:bob:Administrative group
operators:678:jay,ted,dave:Operators group
users:789:jay,jeff,vikas,bobby:

Using a DB2 database to hold custom user registry data
A custom user registry can use a DB2 database to maintain the user and password information.

About this task

However, to maintain the user and password information, you must adhere to the following configuration
requirements and restrictions:

* You must use the DB2 Universal Java database connectivity (JDBC) Driver to access the DB2 database
that is used by the custom user registry. Also, the driver must be a type 4 driver.

You cannot use the legacy DB2 for z/OS JDBC Driver or a type 2 DB2 Universal JDBC Driver because
both of these drivers use Resource Recovery Services (RRS). If you use these drivers, the custom user
registry DB2 server requests interfere with the user application processing under the same thread.

* Because you must use the DB2 Universal JDBC Driver, do not define any JDBC resources under the
server that require the legacy DB2 for z/OS JDBC Driver.

For example, do not define a DB2 for z/OS JDBC Provider (RRS) because the legacy DB2 for z/OS
JDBC Driver cannot coexist with the DB2 Universal JDBC Driver.

* You must have an unmanaged DB2 data source or connection that is used by the custom user registry.

The data source or connection must not rely on any WebSphere Application Server resource
management. For example, the data source or connection cannot rely on Java Naming and Directory
Interface (JNDI) lookup, pooling, datastore helpers, XA resource or transaction processing, connection
management, and so on.

» To connect a custom user registry to a DB2 database, you can use one of the following approaches:

Chapter 6. Authenticating users 241



— Use the Java Platform DriverManager to register an instance of the com.ibm.db2.jcc.DB2Driver
class, which is packaged in the DB2 Universal JDBC Driver. Then, invoke the DriverManager to get
a DB2 connection using a DB2 Type 4 URL that defines the target DB2 database.

— Use the com.ibm.db2.jcc.DB2DataSource class, which that is packaged in the DB2 Universal JDBC
Driver, to set up a data source. Set the data source properties to specify the target DB2 database
and other options. Then, get a connection from the data source.

Important: For more information on how to use these approaches, see [DB2 UDB for z/OS Version §
|Application Programming Guide and Reference for Javal

Complete the following steps to define the JDBC driver for WebSphere Application Server. You must set
up the following DB2 JDBC Universal Driver configuration before you define your custom user registry for
the WebSphere Application Server for z/OS security component.

Procedure

1. Define the DB2 Universal JDBC Driver in the ws.ext.dirs class path for the servant. To define the
driver, complete the following steps in the administrative console:

a. Click Servers > Application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Servant.

c. Under Additional properties, click Java Virtual Machine.
Under Additional properties, click Custom properties .
Click New and define the driver. Create the new property using the following information:

Property name
ws.ext.dirs

Property value
db2jcc.jar_directory_path/db2jcc.jar:license_jar _directory path/
db2jcc_license_cisuz.jar

2. Define the DB2 Universal JDBC Driver in the ext.dirs class path for the controller. To define the
driver, complete the following steps in the administrative console:

a. Click Servers > Application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Controller.

c. Under Additional properties, click Java Virtual Machine.
d. Under Additional properties, click Custom properties .
Click New and define the driver. Create the new property using the following information:

Property name
ws.ext.dirs

Property value
db2jcc.jar_directory_path/db2jcc.jar:license_jar_directory path/
db2jcc_license _cisuz.jar

3. Recycle the server.

Developing the UserRegistry interface for using custom registries

Implementing this interface enables WebSphere Application Server security to use custom registries. This
capability extends the java.rmi file. With a remote registry, you can complete this process remotely.
About this task

Provide implementations of the following methods.

242  Securing applications and their environment


http://www-306.ibm.com/software/data/db2/zos/v8books.html
http://www-306.ibm.com/software/data/db2/zos/v8books.html

Procedure
* Initialize the UserRegistry method, with initialize(java.util. Properties).

public void initialize(java.util.Properties props)
throws CustomRegistryException,
RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the
Custom User Registry panel propagate to this method.

For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry
files that contain the user and group information.

This method is called during server bringup to initialize the registry. This method is also called when
validation is performed by the administrative console, when security is on. This method remains the
same as in Version 4.x.

* Authenticate users with checkPassword(String,String).

public String checkPassword(String userSecurityName, String password)
throws PasswordCheckFailedException
CustomRegistryException,
RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID
and a password. This method returns a string which, in most cases, is the user security name. A
credential is created for the user for authorization purposes. This user name is also returned for the
getCallerPrincipal enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser
methods. See the getUserDisplayName method for more information if you have display names in your
registry. In some situations, if you return a user other than the one who is logged in, you must verify
that the user is valid in the registry.

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name
(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.
For the sample, the checkPassword method checks the name and password combination in the user
registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the
user information after the user registry is initialized. This method is also called when you access
protected resources in the product for authenticating the user and before proceeding with the
authorization. This method is the same as in Version 4.x.

» Obtain user names from X.509 certificates with mapCertificate(X509Certificate(]).

public String mapCertificate(X509Certificate[] cert)
throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is
supplied by the browser. The complete certificate chain is passed to this method and the
implementation can validate the chain if needed and get the user information. A credential is created for
this user for authorization purposes. If browser certificates are not supported in your configuration, you
can create the CertificateMapNotSupportedException exception. The consequence of not supporting
certificates is authentication failure if the challenge type is certificates, even if valid certificates are in the
browser.

This method is called when certificates are provided for authentication. For web applications, when the
authentication constraints are set to CLIENT-CERT in the web.xm1 file of the application, this method is
called to map a certificate to a valid user in the registry. For Java clients, this method is called to map
the client certificates in the transport layer, when using transport layer authentication. When the identity
assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is
called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In
WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of

Chapter 6. Authenticating users 243



X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for web
applications only, but in version 5.x and later, you can call this method for both web and Java clients.

* Obtain the security realm name with getRealm.

public String getRealm()
throws CustomRegistryException,
RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies
the security domain for which the registry authenticates users. If this method returns a null value, a
customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string.
One of the calls to this method occurs when the user registry information is validated. This method is
the same method as in Version 4.x.

» Obtain the list of users from the registry with getUsers(String,int).

public Result getUsers(String pattern, int limit)
throws CustomRegistryException,
RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the
pattern parameter. The number of users are limited by the limit parameter. In a registry that has many
users, getting all the users is not practical. So the limit parameter is introduced to limit the number of
users retrieved from the registry. A limit of zero (0) indicates to return all the users that match the
pattern and might cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For
example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting
with b.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are
returned and the Boolean flag indicates if more users are available in the user registry for the search
pattern. This Boolean flag is used to indicate to the client whether more users are available in the
registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
users from the user registry and sets them as a list in the Result object. To find out if more users are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports wildcard characters such as the asterisk (*) and the question mark (?).

This method is called by the administrative console to add users to roles in the various
map-users-to-roles panels. The administrative console uses the Boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.
The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to
take one additional parameter, the limit. Ideally, your implementation changes to take the limit value and
limits the users that are returned. The return is changed to return a Result object, which consists of the
list and a flag that indicates if more entries exist. When the list returns, use the Result.setList(List)
method to set the list in the Result object. If more entries exist than requested in the limit parameter, set
the Boolean attribute to true in the result object, using the Result.setHasMore method. The default for
the Boolean attribute in the result object is false.

» Obtain the display name of a user with getUserDisplayName(String).

public String getUserDisplayName(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is
an optional string that describes the user that you can set in some registries. This descriptive name is
for the user and does not have to be unique in the registry.

244  securing applications and their environment



For example in Windows systems, you can display the full name of the user.
If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were
useful for the Enterprise JavaBeans (EJB) method call getCallerPrincipal and the servlet calls
getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for
any user, the display names are returned for the previously mentioned enterprise beans and servlet
methods. Returning display names for these methods might become problematic in some situations
because the display names might not be unique in the user registry. Avoid this problem by changing the
default behavior to return the user security name instead of the user display name in this version of the
product. For more information on how to set properties for the custom registry, see the section on
Setting Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose
name matches the user name that is provided. If the display name does not exist, this method returns
an empty string.

This method can be called by the product to present the display hames in the administrative console, or
by using the command line and the wsadmin tool. Use this method for display purposes only. This
method is the same as in Version 4.x.

» Obtain the unique ID of a user with getUniqueUserld(String).

public String getUniqueUserId(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserld value of the user
whose name matches the supplied name. This method is called when forming a credential for a user
and also when creating the authorization table for the application.

+ Obtain the security name of a user with getUserSecurityName(String).

public String getUserSecurityName(String uniqueUserld)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java
sample file, this method returns the security name of the user whose unique ID matches the supplied
ID.

This method is called to make sure a valid user exists for a given uniqueUserld. This method is called
to get the security name of the user when the uniqueUserld is obtained from a token.

» Check whether a given user is a valid user in the registry with isValidUser(String).

public boolean isValidUser(String userSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,
otherwise this method returns false. This method is primarily called in situations where knowing if the
user exists in the directory prevents problems later. For example, in the mapCertificate call, when the
name is obtained from the certificate if the user is not found as a valid user in the user registry, you can
avoid trying to create the credential for the user.

* Return the list of groups from the user registry with getGroups(String,int).

public Result getGroups(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend
on the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has
many groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the

Chapter 6. Authenticating users 245



number of groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that
match the pattern and can cause problems for large user registries. Use this limit with care. The custom
registry implementations are expected to support at least the wildcard search (*). For example, a pattern
of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the groups that are returned
and the Boolean flag indicates whether more groups are available in the user registry for the pattern
searched. This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
groups from the user registry and sets them as a list in the Result object. To find out if more groups are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various
map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and
returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the
limit parameter. Change to take the limit value and limit the users that are returned. The return is
changed to return a Result object, which consists of the list and a flag that indicates whether more
entries exist. Use the Result.setList(List) method to set the list in the Result object. If more entries exist
than requested in the limit parameter, set the Boolean attribute to true in the Result object using the
Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

» Obtain the display name of a group with getGroupDisplayName(String).

public String getGroupDisplayName(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name
is an optional string that describes the group that you can set in some user registries. This name is a
descriptive name for the group and does not have to be unique in the registry. If you do not need to
have display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose

name matches the group name that is provided. If the display name does not exist, this method returns
an empty string.

The product can call this method to present the display names in the administrative console or through
the command line using the wsadmin tool. This method is used for display purposes only.

» Obtain the unique ID of a group with getUniqueGroupld(String).

public String getUniqueGroupId(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupld ID.

» Obtain the unique IDs of all groups to which a user belongs with getUniqueGrouplds(String).

public List getUniqueGroupIds(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that
contain this uniqueUserlD ID. This method is called when creating the credential for the user. As part of

246 Securing applications and their environment



creating the credential, all the groupUniquelds IDs in which the user belongs are collected and put in
the credential for authorization purposes when groups are given access to a resource.

* Obtain the security name of a group with getGroupSecurityName(String).

public String getGroupSecurityName(String uniqueGroupld)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupld ID.

» Determine whether a group is a valid group in the registry with isValidGroup(String).

public boolean isValidGroup(String groupSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the
registry, otherwise the method returns false. This method can be used in situations where knowing
whether the group exists in the directory might prevent problems later.

» Obtain all groups to which a user belongs with getGroupsForUser(String).

public List getGroupsForUser(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name.
This method is similar to the getUniqueGrouplds method with the exception that the security names are
used instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that
contain the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered
for the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is
required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role
in the users and groups-to-role mapping either directly or indirectly through a group that contains this
user. Because a group in which the user belongs can be part of the role in the users and groups-to-role
mapping, this method is called to check if any of the groups that this user belongs to mapped to that
role.

» Retrieve users from a specified group with getUsersForGroup(String,int).

public Result getUsersForGroup(String groupSecurityName, int limit)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the
limit parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not
directly called by the WebSphere Application Server security component. However, this method can be
called by other components. In rare situations, if you are working with a user registry where getting all
the users from any of your groups is not practical, you can create the NotimplementedException
exception for the particular groups. In this case, verify that if the process choreographer is installed the
staff assignments are not modeled using these particular groups. If no concern exists about returning
the users from groups in the user registry, it is recommended that you do not create the
Notimplemented exception when implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the

Chapter 6. Authenticating users 247



Boolean flag, which indicates whether more users are available in the user registry for the search
pattern. This Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the
limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag
is set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For
WebSphere Application Server Version 5.x or later, this method can create the
NotImplementedException exception in situations where it is not practical to get the requested set of
users. However, create this exception in rare situations when as other components can be affected. In
Version 4, this method accepts only the pattern parameter and returns a list. In Version 5, this method
accepts the limit parameter. Change your implementation to take the limit value and limit the users that
are returned. The return changes to return a Result object, which consists of the list and a flag that
indicates whether more entries exist. When the list is returned, use the Result.setList(List) method to set
the list in the Result object. If more entries than requested are in the limit parameter, set the Boolean
attribute to true in the Result object using Result.setHasMore method. The default for the Boolean
attribute in the Result object is false.

* Implement the createCredential(String) method.

Attention: The first two lines of the following code sample are split for illustrative purposes only.

public com.ibm.websphere.security.cred.WSCredential createCredential(String userSecurityName)
throws NotImplementedException,

EntryNotFoundException,

CustomRegistryException,

RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can
return null. In the example, a null value is returned.

What to do next

Managing the realm in a federated repository configuration
Follow this topic to manage the realm in a federated repository configuration.

Before you begin

The realm can consist of identities in:

* The file-based repository that is built into the system

* One or more external repositories

» Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review [‘Federated repositories limitations” on page 254

Procedure

1. Configure your realm by using one of the following topics. You might be configuring your realm for the
first time or changing an existing realm configuration.
+ [‘Using a single built-in, file-based repository in a new configuration under Federated repositories” or|

page 252]

+ [‘Changing a federated repository configuration to include a single built-in, file-based repository only’|

on page 262|

« [‘Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 263]

« [‘Changing a federated repository configuration to include a single, Lightweight Directory Accesg
Protocol repository only” on page 264

248 Securing applications and their environment



- [‘Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository|
configuration” on page 266

« [“Configuring a single built-in, file-based repository and one or more Lightweight Directory Access|
Protocol repositories in a federated repository configuration” on page 267|

Configure supported entity types using the steps described in [‘Configuring supported entity types in g

|federated repository configuration” on page 309.| You must configure supported entity types before you
can manage this account with Users and Groups. The Base entry for the default parent determines the
repository location where entities of the specified type are placed on a create operation.

Optional: Use one or more of the following tasks to extend the capabilities of storing data and

attributes in your realm:

a. Configure an entry mapping repository using the steps described in|“Configuring an entry mappind
|repository in a federated repository configuration” on page 306.|An entry mapping repository is
used to store data for managing profiles on multiple repositories.

b. Configure a property extension repository using the steps described in [‘Configuring a property|
[extension repository in a federated repository configuration” on page 285./A property extension
repository is used to store attributes that cannot be stored in your Lightweight Directory Access
Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in [‘Setting up an entryf

mapping repository, a property extension repository, or a custom registry database repository using|

wsadmin commands” on page 290

Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP

repositories in your realm:

+ [YIncreasing the performance of the federated repository configuration” on page 315|

« [‘Configuring Lightweight Directory Access Protocol entity types in a federated repository|
configuration” on page 329

« [“Configuring group attribute definition settings in a federated repository configuration” on page 331|
Optional: Manage repositories that are configured in your system by following the steps described in
[“Managing repositories in a federated repository configuration” on page 312

Optional: Add an external repository into your realm by following the steps described in
[external repository in a federated repository configuration” on page 284.
Optional: Change the password for the repository that is configured under federated repositories by the
following steps described in[‘Changing the password for a repository under a federated repositories|
[configuration” on page 255.|

What to do next

1.

After configuring the federated repositories, click Security > Global security to return to the Global
security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

If you are enabling security, complete the remaining steps as specified in [‘Enabling security for the]
|rea|m” on page 90.|As the final step, validate this setup by clicking Apply in the Global security panel.
Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Federated repositories

Federated repositories enable you to use multiple repositories with WebSphere Application Server. These
repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,
are defined and theoretically combined under a single realm. All of the user repositories that are
configured under the federated repository functionality are invisible to WebSphere Application Server.

Chapter 6. Authenticating users 249



When you use the federated repositories functionality, all of the configured repositories, which you specify
as part of the federated repository configuration, become active. It is required that the user ID, and the
distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are
configured under the same federated repository configuration. For example, there might be three different
repositories that are configured for the federated repositories configuration: Repository A, Repository B,
and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories
for all of the occurrences of that user. If multiple instances of that user are found in the combined
repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical
joining of entries across multiple user repositories when the Application Server searches and retrieves
entries from the repositories. For example, when an application calls for a sorted list of people whose age
is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories
configuration. The results are combined and sorted before the Application Server returns the results to the
application.

Restrictions:

* WebSphere Application Server federated repositories DO NOT support a z/OS LDAP
server with an SDBM backend (resource access control facility (RACF)).

Unlike the local operating system, stand-alone LDAP registry, or custom registry options, federated
repositories provide user and group management with read and write capabilities. When you configure
federated repositories, you can use one of the following methods to add, create, and delete users and
groups:

Important: If you configure multiple repositories under the federated repositories realm, you must also
configure supported entity types and specify a base entry for the default parent. The base
entry for the default parent determines the repository location where entities of the specified
type are placed on write operations by user and group management. See |“Configuring|
lsupported entity types in a federated repository configuration” on page 309|for details.

» Use the user management application programming interfaces (API). For more information, refer to
articles under "Developing with virtual member manager" in this information center.

» Use the administrative console. To manage users and groups within the administrative console, click
Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on
user and group management, click the Help link that displays in the upper right corner of the window.
From the left navigation pane, click Users and Groups.

* Use the wsadmin commands. For more information, see the WIMManagementCommands command
group for the AdminTask object topic.

If you do not configure the federated repositories functionality or do not enable federated repositories as
the active repository, you cannot use the user management capabilities that are associated with federated
repositories. You can configure an LDAP server as the active user registry and configure the same LDAP
server under federated repositories, but not select federated repositories as the active user repository.
With this scenario, authentication takes place using the LDAP server, and you can use the user
management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere

Application Server Version 8.0 with the registry functionality that remains unchanged from previous
versions of the Application Server.

250 Securing applications and their environment



Table 23. Federated repositories versus user registry implementations.

This table lists federated repositories versus user registry implementations.

Federated repositories User registry
Supports multiple types of repositories such as file-based, LDAP, Supports multiple types of registries such as the local operating system, a
database, and custom. In WebSphere Application Server Version 8.0, stand-alone LDAP registry, and a stand-alone custom registry.

file-based and LDAP repositories are supported by the administrative
console. However, the federated repositories functionality does not support
local operating system implementations.

With this service release, the federated repositories functionality supports
local operating system implementations.

For database and custom repositories, you can use the wsadmin
command-line interface or the configuration application programming
interfaces (API).

Restriction: WebSphere Application Server federated repositories DO
NOT support a z/OS LDAP server with an SDBM backend (resource
access control facility (RACF)).

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories that are defined in | Provides read only capability for the registries.
the federated repository configuration.

Provides account and password policy support as defined by the registry | Provides account and password policy support as defined by the registry

type. However, this support is not provided by the federated repository type.

functionality.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

Realm configuration settings

Use this page to manage the realm. The realm can consist of identities in the file-based repository that is
built into the system, in one or more external repositories, or in both the built-in, file-based repository and
one or more external repositories.

To view this administrative console page, complete the following steps:
1. In the administrative console, click Security > Security domains.

2. Under User realm, select Customize for this domain. Select Federated repositories from the Realm
type field and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store
identities in the realm. Click Add base entry to realm to specify a repository configuration and a base
entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are
not destroyed. The following restrictions apply:

* The realm must always contain at least one base entry; therefore, you cannot remove every entry.

» If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least
one user in another member repository is a console user with administrative rights. Otherwise, you must
disable security to regain access to the administrative console.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Realm name:

Chapter 6. Authenticating users 251



Specifies the name of the realm. You can change the realm name.
Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,
adminUser.

The user name is used to log on to the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Ignore case for authorization:
Specifies that a case-insensitive authorization check is performed.

If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization
option.

Allow operations if some of the repositories are down:

Specifies whether operations (such as login, search, or get) are allowed even if the repositories in the
realm are down.

Use global schema for model:

Sets the global schema option for the data model in a multiple security domain environment. Global
schema refers to the schema of the admin domain.

Note: Application domains that are set to use global schema share the same schema of the admin
domain. If you extend the schema for an application in one domain, you must also consider how
that might affect applications of other domains, as they are bound by the same schema. For
example, adding a mandatory property for one application might cause other applications to fail.

Base entry:

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

252 Securing applications and their environment



Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository type:
Specifies the repository type, such as File or LDAP.

User attribute mapping for federated repositories
Use this panel to set or to modify the mapping for a user registry's user or group attribute to a federated
repository property.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On the next panel and under Additional
Properties, click User repository attribute mapping.

Attribute mappings:

Select an attribute to set or to modify the mapping for a user registry's user or group attribute to a
federated repository property, and then click Edit.

Custom properties details for federated repositories
Use this panel to specify the configuration for access to a custom repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On the next panel and under Additional
Properties, click Manage repositories. Under Add, select Custom repository.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository adapter class name:

Specifies the implementation class name for the repository adapter. For a User Registry bridge, use
com.ibm.ws.wim.adapter.urbridge.URBridge.

Login properties:
Specifies the property names to use to log into the application server.
Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

File details for federated repositories
Use this panel to specify the configuration for access to a file repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On t