
IBM WebSphere Application Server for z/OS, Version 8.0

Securing applications and their
environment

SA23-1357-01

���

Note
Before using this information, be sure to read the general information under “Notices” on page 1035.

Compilation date: July 14, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments. xi

Changes to serve you more quickly . xiii

Chapter 1. Overview and new features for securing applications and their environment 1
Security planning overview . 1

Chapter 2. How do I secure applications and their environments? 11

Chapter 3. Task overview: Securing resources . 13

Chapter 4. Setting up, enabling and migrating security 15
Migrating, coexisting, and interoperating – Security considerations 15

Interoperating with previous product versions . 17
Interoperating with a C++ common object request broker architecture client 18
Migrating trust association interceptors . 19
Migrating Common Object Request Broker Architecture programmatic login to Java Authentication

and Authorization Service (CORBA and JAAS) . 22
Migrating from the CustomLoginServlet class to servlet filters 24
Migrating Java 2 security policy . 25
Migrating with Tivoli Access Manager for authentication enabled on a single node. 28
Migrating with Tivoli Access Manager for authentication enabled on multiple nodes 29
Migrating unrestricted jurisdiction policy files, local_policy.jar and US_export_policy.jar 31

Preparing for security at installation time . 31
Securing your environment after installation . 32
WebSphere Application Server security for z/OS . 33
Defining Secure Sockets Layer security for servers 57
Creating Secure Sockets Layer digital certificates and System Authorization Facility keyrings that

applications can use to initiate HTTPS requests 60
Creating a new System SSL repertoire alias . 62
Creating a new Java Secure Socket Extension repertoire alias 63
Setting up SSL connections for Java clients . 64

Enabling administrative security and the default application security policy 64
Disabling administrative security . 66

Enabling security . 66
Administrative security. 70
Security considerations when in a multi-node WebSphere Application Server WebSphere Application

Server, Network Deployment environment . 79
Application security . 80
Java 2 security . 81
Enabling security for the realm . 90
Testing security after enabling it. 123
Security Configuration Wizard . 124
Security configuration report . 124
Adding a new custom property in a global security configuration or in a security domain

configuration . 127
Modifying an existing custom property in a global security configuration or in a security domain

configuration . 128
Deleting an existing custom property in a global security configuration or in a security domain

configuration . 129
Securing specific application servers . 129

Server-level security settings . 131
Controlling application environments with RACF server class profiles 133

© Copyright IBM Corp. 2011 iii

Resource Access Control Facility Tools . 134
RACF keyring setup . 138

Controlling access to console users when using a Local OS Registry 140
Using CBIND to control access to clusters . 141

Chapter 5. Configuring multiple security domains 143
Multiple security domains . 146
Creating new multiple security domains . 164
Deleting multiple security domains . 167
Copying multiple security domains . 168
Configuring inbound trusted realms for multiple security domains 172
Configure security domains . 172

Name . 172
Description . 173
Assigned Scopes . 173
Application Security: . 173
Enable application security . 173
Java 2 security:. 174
Use global security settings . 174
Customize for this domain . 174
Use Java 2 security to restrict application access to local resources 174
Warn if applications are granted custom permissions 174
Restrict access to resource authentication data . 174
User Realm: . 175
Trust Association: . 175
Interceptors . 175
Enable trust association . 175
SPNEGO Web Authentication: . 176
RMI/IIOP Security: . 176
CSIv2 inbound communications . 176
CSIv2 outbound communications . 176
JAAS Application logins. 176
Use global and domain-specific logins . 177
JAAS System Logins: . 177
System Logins . 177
JAAS J2C Authentication Data: . 177
Use global and domain-specific entries . 177
Java Authentication SPI (JASPI) . 177
Authentication Mechanism Attributes: . 177
Authorization Provider: . 178
z/OS security options: . 178
Enable application server and z/OS thread identity synchronization. 178
Custom properties. 178
Web Services Bindings . 179

External realm name . 179
External realm name . 179

Trust all realms . 179
Trust all realms (including those external to this cell) 179
Trust realms as indicated below. 179
Add External Realm... 179

Security domains collection . 179
Maximum rows . 180
Retain filter criteria . 180
Copy selected domain . 180
Copy global security . 180

Authentication cache settings . 180

iv Securing applications and their environment

Enable authentication cache . 180
Cache timeout: . 180
Initial cache size: . 181
Maximum cache size. 181
Use basic authentication cache keys (password one-way hashed): 181

Chapter 6. Authenticating users . 183
Selecting a registry or repository . 183

Configuring local operating system registries . 186
Configuring Lightweight Directory Access Protocol user registries 191
Configuring stand-alone custom registries . 218
Managing the realm in a federated repository configuration. 248
Standalone Lightweight Directory Access Protocol registries 339

Selecting an authentication mechanism . 344
Lightweight Third Party Authentication . 346
Configuring LTPA and working with keys . 347
Kerberos (KRB5) authentication mechanism support for security. 348
Setting up Kerberos as the authentication mechanism for WebSphere Application Server 356
RSA token authentication mechanism . 357
Configuring the RSA token authentication mechanism 359
Simple WebSphere authentication mechanism (deprecated) 364
Message layer authentication . 364

Integrating third-party HTTP reverse proxy servers . 365
Trust associations . 366
Trust association settings . 369
Trust association interceptor collection . 369
Trust association interceptor settings . 370

Single sign-on for authentication . 370
Single sign-on for authentication using LTPA cookies 370
Using a WebSphere Application Server API to achieve downstream web single sign-on with an

LtpaToken2 cookie. 372
Global single sign-on principal mapping for authentication 373

Implementing single sign-on to minimize web user authentications 374
Single sign-on for HTTP requests using SPNEGO web authentication. 377
Creating a single sign-on for HTTP requests using SPNEGO Web authentication 381
Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated) 383
Configuring single sign-on capability with Tivoli Access Manager or WebSEAL 420

Configuring administrative authentication . 435
Job manager security . 436
Java Authentication and Authorization Service . 438

Java Authentication and Authorization Service authorization 438
Using the Java Authentication and Authorization Service programming model for web authentication 440

Developing custom login modules for a system login configuration for JAAS 442
Performing identity mapping for authorization across servers in different realms 453

Configuring inbound identity mapping. 455
Configuring outbound identity mapping to a different target realm 462
Updating system login configurations to perform a System Authorization Facility identity user

mapping . 466
Security attribute propagation . 467

Default authentication token . 471
Propagating security attributes among application servers 472

Using the default authorization token to propagate security attributes 475
Using the default propagation token to propagate security attributes 478
Using the default single sign-on token with default or custom token factory to propagate security

attributes . 483
Configuring the authentication cache . 484

Contents v

Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication
settings . 484
Configuring Common Secure Interoperability Version 2 inbound communications. 485
Configuring Common Secure Interoperability Version 2 outbound communications 493
Configuring inbound transports . 501
Configuring outbound transports . 505
Configuring inbound messages . 508
Configuring outbound messages . 509
Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client

configuration . 510
Authentication protocol for EJB security . 515

Authentication protocol support . 518
Common Secure Interoperability Version 2 features 518
Identity assertion to the downstream server . 519
Identity assertions with trust validation . 520
Message layer authentication . 521

Using Microsoft Active Directory for authentication . 522
Authentication using Microsoft Active Directory . 523
Groups spanning domains with Microsoft Active Directory 527
Microsoft Active Directory Global Catalog . 529
Options for finding group membership within a Microsoft Active Directory forest 532
Authenticating users with LDAP registries in a Microsoft Active Directory forest 535

Chapter 7. Authorizing access to resources . 539
Authorization technology . 539

Administrative roles and naming service authorization 540
Role-based authorization . 546
Administrative roles . 549
Authorization providers . 552
System Authorization Facility for role-based authorization 569
Using distributed identity mapping for SAF . 578
Delegations . 584

Authorizing access to Java EE resources using Tivoli Access Manager 586
Using the built-in authorization provider . 586
Enabling an external JACC provider . 591

Authorizing access to administrative roles . 621
Administrative user roles settings and CORBA naming service user settings 622
Administrative group roles and CORBA naming service groups 624
Assigning users to naming roles . 626
Propagating administrative role changes to Tivoli Access Manager 627
migrateEAR utility for Tivoli Access Manager . 628
Assigning users from a foreign realm to the admin-authz.xml 630

Enabling pluggable login modules to map Java EE identities to System Authorization Facility (SAF) 631
Fine-grained administrative security . 632

New Administrative Authorization Group. 637
Administrative Authorization Group collection . 638

System Authorization Facility for fine-grained administrative authorization 638
Creating a fine-grained administrative authorization group using the administrative console 639
Editing a fine-grained administrative authorization group using the administrative console 642
Fine-grained administrative security in heterogeneous and single-server environments 644
Using SCA authorization and security identity policies. 645
Using the SCA RequestContext.getSecuritySubject() API 647

Chapter 8. Securing communications . 649
Secure communications using Secure Sockets Layer (SSL) 650

SSL configurations . 656

vi Securing applications and their environment

Keystore configurations for SSL. 664
Dynamic outbound selection of Secure Sockets Layer configurations 668
Central management of SSL configurations . 669
Secure Sockets Layer node, application server, and cluster isolation 670
Certificate options during profile creation . 673
Default chained certificate configuration in SSL . 676
Dynamic configuration updates in SSL . 686
Management scope configurations. 687
Certificate management using iKeyman prior to SSL 688
Certificate management in SSL . 689
Using the retrieveSigners command in SSL to enable server to server trust 692

Creating a Secure Sockets Layer configuration . 694
SSL certificate and key management . 697
SSL configurations for selected scopes . 698
SSL configurations collection . 699
SSL configuration settings . 699
Secure Sockets Layer client certificate authentication 700
Certificate authority (CA) client configuration . 704
Certificate authority (CA) client configuration collections 706
Writable SAF Keyring settings . 706
Creating a chained personal certificate in SSL . 708
Recovering deleted certificates in SSL . 708
Renewing a certificate in SSL . 709
Revoking a CA certificate in SSL . 710
Using a CA client to create a personal certificate to be used as the default personal certificate 710
Creating a CA certificate in SSL. 712
Developing the WSPKIClient interface for communicating with a certificate authority 713
Creating a custom trust manager configuration for SSL 714
Creating a custom key manager for SSL . 719
Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and

remote secure endpoint . 724
Quality of protection (QoP) settings . 734
ssl.client.props client configuration file . 735

Creating a CA client in SSL . 744
Deleting a CA client in SSL . 745
Viewing or modifying a CA client in SSL. 745
Creating a keystore configuration for a preexisting keystore file 746

Managing keystore configurations remotely . 747
Keystores and certificates collection . 748
Key store settings . 750
Key managers collection . 752
Key managers settings . 752

Creating a self-signed certificate . 753
Replacing an existing personal certificate . 754
Creating a new SSL certificate to replace an existing one in a node 755
Creating new SSL certificates to replace existing ones in a cell 756

Creating a certificate authority request . 758
Certificate request settings . 759
Personal certificates collection . 759
Self-signed certificates settings . 761
Personal certificate requests collection . 763
Personal certificate requests settings . 764
Extract certificate request . 765
Receiving a certificate issued by a certificate authority 766
Replace a certificate . 769

Using writable SAF keyrings . 770

Contents vii

Creating writable SAF keyrings . 772
Configuring the root certificate keyring . 773
Enabling writable SAF keyrings . 775
SAF keyring support for audit signing and encryption 776

Extracting a signer certificate from a personal certificate. 778
Extract certificate . 778
Extract signer certificate . 779
Retrieving signers using the retrieveSigners utility at the client 779
Changing the signer auto-exchange prompt at the client 780
Importing a signer certificate from a truststore to a z/OS keyring. 782
Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore 783

Retrieving signers from a remote SSL port . 784
Retrieve from port . 785

Adding a signer certificate to a keystore. 786
Add signer certificate settings . 787
Signer certificates collection . 787
Signer certificate settings . 788

Adding a signer certificate to the default signers keystore 788
Exchanging signer certificates . 790

Keystores and certificates exchange signers . 791
Configuring certificate expiration monitoring . 792

Manage certificate expiration settings. 793
Notifications . 795
Notifications settings . 795

Key management for cryptographic uses . 796
Creating a key set configuration. 796

Active key history collection . 798
Add key alias reference settings . 799
Key sets collection . 799
Key sets settings . 800

Creating a key set group configuration . 801
Example: Retrieving the generated keys from a key set group 802
Example: Developing a key or key pair generation class for automated key generation 803
Key set groups collection . 806
Key set groups settings . 806

Chapter 9. Developing extensions to the WebSphere security infrastructure 809
Developing stand-alone custom registries . 809

Result.java file . 810
UserRegistry.java files . 811

Developing a custom SAF EJB role mapper . 816
Implementing custom password encryption . 817
Developing applications that use programmatic security 818

Protecting system resources and APIs (Java 2 security) for developing applications 819
Developing with programmatic security APIs for web applications 841
Developing with programmatic APIs for EJB applications 848

Customizing web application login . 852
Developing servlet filters for form login processing 856

Secure transports with JSSE and JCE programming interfaces 860
Using System Authorization Facility keyrings with Java Secure Sockets Extension 863
Configuring Federal Information Processing Standard Java Secure Socket Extension files 866
Implementing tokens for security attribute propagation 868

Implementing a custom propagation token for security attribute propagation 869
Implementing a custom authorization token for security attribute propagation 875
Implementing a custom single sign-on token for security attribute propagation. 882
Implementing a custom authentication token for security attribute propagation. 890

viii Securing applications and their environment

Propagating a custom Java serializable object for security attribute propagation 897
Developing a custom interceptor for trust associations 900

Trust association interceptor support for Subject creation 904
Enabling a plugpoint for custom password encryption 906

Plug point for custom password encryption . 907
Implementing a custom authentication provider using JASPI 908

Developing a custom JASPI authentication provider 910
Configuring a new JASPI authentication provider using the administrative console 914
Modifying an existing JASPI authentication provider using the administrative console 915
Deleting a JASPI authentication provider using the administrative console 916
Enabling JASPI authentication using the Map JASPI provider option during application deployment 916
JASPI authentication providers collection . 917
JASPI authentication provider details . 918
JASPI authentication enablement for applications 918

Chapter 10. Auditing the security infrastructure. 921
Enabling the security auditing subsystem . 922

Security Auditing detail . 923
Context object fields . 924

Creating security auditing event type filters . 927
Auditable security events . 928
Event type filter settings . 930
Event type filters collection . 930
Example: Generic Event Interface . 931
Context objects for security auditing . 932
Context object fields . 933

Configuring security audit subsystem failure notifications 936
Audit monitor collection . 937
Audit notification settings . 938

Configuring the default audit service providers for security auditing 938
Audit service provider collection. 939
Audit service provider settings . 940
Example: Base Generic Emitter Interface . 941

Configuring a third party audit service providers for security auditing 942
Example: Base Generic Emitter Interface . 943

Configuring the SMF audit service providers for security auditing 943
Example: Base Generic Emitter Interface . 944

Configuring audit event factories for security auditing 945
Audit event factory configuration collection . 946
Audit event factory settings . 946
Example: Generic Event Factory Interface . 947

Protecting your security audit data . 948
Encrypting your security audit records . 949
Signing your security audit records . 950
Audit encryption keystores and certificates collection 951
Audit record encryption configuration settings. 951
Audit record signing configuration settings . 952
Audit record keystore settings . 953

Using the audit reader . 954

Chapter 11. Tuning, hardening, and maintaining security configurations 959
Tuning security configurations . 959

Security tuning tips . 962
Tuning security performance . 966

Hardening security configurations . 967
Enablement and migration considerations of Security hardening features 968

Contents ix

Securing passwords in files . 970
Encoding passwords in files . 970
Enabling custom password encryption . 973

Chapter 12. Troubleshooting security configurations. 977
Security components troubleshooting tips . 977
Security configuration and enablement errors . 990
Security enablement followed by errors . 993
Access problems after enabling security . 1000
SSL errors for security. 1004
Single sign-on configuration troubleshooting tips for security 1007
Security authorization provider troubleshooting tips 1010
SPNEGO trust association interceptor (TAI) troubleshooting tips (deprecated) 1015
SPNEGO troubleshooting tips . 1021

Chapter 13. Directory conventions . 1031

Appendix. Directory conventions . 1033

Notices . 1035

Trademarks and service marks . 1037

Index . 1039

x Securing applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 xi

xii Securing applications and their environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 xiii

xiv Securing applications and their environment

Chapter 1. Overview and new features for securing
applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

What is new for security specialists

This topic provides an overview of new and changed features in security.

Security

This topic describes how IBM® WebSphere® Application Server provides security infrastructure and
mechanisms to protect sensitive Java Platform, Enterprise Edition (Java EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

“Security planning overview”

Several communication links are provided from a browser on the Internet, through web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configurations and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

Samples

The Samples documentation offers:

v Login - Form Login

The Form Login Sample demonstrates a very simple
example of how to use the login facilities for
WebSphere Application Server to implement and
configure login applications. The Sample uses the Java
Platform, Enterprise Edition (Java EE) form-based login
technology to customize the look and feel of the login
screens. It uses servlet filters to log the user
information and the date information. The Sample
finishes the session by using the form-based logout
function, an IBM extension to the Java EE specification.

v Login - JAAS Login

The JAAS Login Sample demonstrates how to use the
Java Authentication and Authorization Service (JAAS)
with WebSphere Application Server. The Sample uses
server-side login with JAAS to authenticate a real user
to the WebSphere security run time. Based upon a
successful login, the WebSphere security run time uses
the authenticated Subject to perform authorization
checks on a protected stateless session enterprise
bean. If the Sample runs successfully, it displays all the
principals and public credentials of the authenticated
user.

Security planning overview
When you access information on the Internet, you connect through web servers and product servers to the
enterprise data at the back end. This section examines some typical configurations and common security
practices.

© IBM Corporation 2003 1

This section also examines the security protection that is offered by each security layer and common
security practice for good quality of protection in end-to-end security. The following figure illustrates the
building blocks that comprise the operating environment for security within WebSphere Application Server:

The following information describes each of the components of WebSphere Application Server security,
Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security
WebSphere Application Server security enforces security policies and services in a unified
manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support
the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface
(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based

security policies and supports Java EE security APIs.

EJB security using Common Secure Interoperability Protocol Version 2 (CSIv2)
Common Secure Interoperability Version 2 (CSIv2) is an IIOP-based, three-tiered, security
protocol that is developed by the Object Management Group (OMG). This protocol
provides message protection, interoperable authentication, and delegation. The three
layers include a base transport security layer, a supplemental client authentication layer,
and a security attribute layer. WebSphere Application Server for z/OS® supports CSIv2,
conformance level 0.

Java 2 security
The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so
on. Application code must explicitly grant the required permission to access a protected
resource.

Java Virtual Machine (JVM) 5.0
The JVM security model provides a layer of security above the operating system layer. For
example, JVM security protects the memory from unrestricted access, creates exceptions
when errors occur within a thread, and defines array types.

Platform security

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. These services include the file system security
support that secures sensitive files in the product installation for WebSphere Application
Server. The system administrator can configure the product to obtain authentication
information directly from the operating system user registry.

Operating system security

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. The operating system identity of the servant,
controller, and daemon Started Task, as established by the STARTED profile, is the
identity that is used to control access to system resources such as files or sockets.
Optionally, the operating system security can provide authentication services using the
User Registry of local operating system, and/or authorization services using SAF
Authorization for the WebSphere Administration console and for applications running under
the application server.

2 Securing applications and their environment

In addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer Security
(TLS), the administrator must be familiar with System Authorization Facility (SAF) and
Resource Access Control Facility (RACF®), or an equivalent SAF based product.

The identity and verification of users can be managed by using a Local Operating System
as the User Registry, RACF or equivalent SAF base product. Alternatively, an LDAP,
Custom, or Federated User Registry can be used.

WebSphere can be configured to use SAF Authorization, which will use RACF or an
equivalent SAF based product to manage and protect users and group resources.
Alternatively, WebSphere can be configured to use WebSphere Authorization or a JACC
External Authorization Provider.

When using either Local Operating System as the User Registry and/or using SAF
Authorization, security auditing is an inherit feature of RACF or the equivalent SAF based
products.

Network security
The Network Security layers provide transport level authentication and message integrity
and confidentiality. You can configure the communication between separate application
servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and
Virtual Private Network (VPN) for added message protection.

WebSphere Application Server, Network Deployment installation

Important: A node agent instance exists on every computer node.

Each product application server consists of a web container, an Enterprise Java Beans (EJB) container,
and the administrative subsystem.

The WebSphere Application Server deployment manager contains only WebSphere Application Server
administrative code and the administrative console.

The administrative console is a special Java EE web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,
which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see “Encoding passwords in files” on page 970.

The administrative console web application has a setup data constraint that requires access to the
administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when
administrative security is enabled.

The following figure shows a typical multiple-tier business computing environment.

Administrative security

WebSphere Application Servers interact with each other through CSIv2 and z/OS Secure Authentication
Services (z/SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server administrative security. The WebSphere Application Server administrative subsystem in
every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and
configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP

Chapter 1. Overview and new features: Securing 3

protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,
the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you
can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that
you enable administrative security and enable SSL to protect the sensitive configuration data.

You can enable HTTPS for applications even when administrative security is disabled. You can configure
the SSL port for a particular server by adding the SSL port to the HTTP port list in the server web
container, in addition to where it is added to the virtual hosts in the Environment configuration. You can
connect to the web application using HTTPS and the correct port. Internal WebSphere Application Server
for z/OS communication does not use SSL unless you enable administrative security.

When administrative security is enabled, you can disable application security at each individual application
server by clearing the Enable administrative security option at the server level. For more information,
see “Securing specific application servers” on page 129. Disabling application server security does not
affect the administrative subsystem in that application server, which is controlled by the security
configuration only. Both administrative subsystem and application code in an application server share the
optional per server security protocol configuration.

Security for Java EE resources

Security for Java EE resources is provided by the web container and the EJB container. Each container
provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security
policy, including information that is derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use programmatic security to make access decisions. When administrative security is enabled and
application server security is not disabled at the server level, Java EE applications security is enforced.
When the security policy is specified for a web resource, the web container performs access control when
the resource is requested by a web client. The web container challenges the web client for authentication
data if none is present according to the specified authentication method, ensures that the data constraints
are met, and determines whether the authenticated user has the required security role. The web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal
has one of the required security roles. Servlets and JSP files can use the HttpServletRequest methods,
isUserInRole and getUserPrincipal.

When cell-level security is enabled, unless server security is disabled, the EJB container enforces access
control on EJB method invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods,
isCallerInRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable
business data from access by unauthorized users through the Internet and the intranet. Refer to Securing
web applications using an assembly tool, and Securing enterprise bean applications.

4 Securing applications and their environment

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources
including the JMX system management subsystem, user registries, and Java Naming and Directory
Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security
roles:

Monitor role
A monitor can view the configuration information and status but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server IDs and passwords, enable or disable administrative
security and Java 2 security, and map users and groups to the administrator role.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin
scripting only.

Deployer
A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager
An administrative security manager can map users to administrative roles. Also, when fine grained
admin security is used, users granted this role can manage authorization groups.

Auditor
An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. Certain configuration tasks exist that a configurator does not have sufficient
authority to do when administrative security is enabled, including modifying a WebSphere Application
Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and
assigning users to administrative security roles. Those sensitive configuration tasks require the
administrative role because the server ID is mapped to the administrator role.

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.
Application server security can be selectively disabled if no sensitive information is available to protect. For
securing administrative security, refer to “Authorizing access to administrative roles” on page 621 and
Assigning users and groups to roles.

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run
application code. Java 2 security provides a fine-grained and policy-based access control to protect
system resources such as files, system properties, opening socket connections, loading libraries, and so
on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that web
and EJB components expect to have.

Chapter 1. Overview and new features: Securing 5

Table 1. Java EE security permissions set for web components. The Java EE security permissions set for web
components are shown in the following table.
Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

Table 2. Java EE security permissions set for EJB components. The Java EE security permissions set for EJB
components are shown in the following table.
Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4
specification. The specification grants web components read and write file access permission to any file in
the file system, which might be too broad. The WebSphere Application Server default policy gives web
components read and write permission to the subdirectory and the subtree where the web module is
installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

${java.home}/jre/lib/security/java.policy
This file is used as the default policy for the Java virtual machine (JVM).

$WAS_HOME/properties/server.policy
This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for a WebSphere Application
Server subsystem. These policy files, which are an extension of the WebSphere Application Server
runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java
EE applications:

v $WAS_HOME/config/cells/cell_name/nodes/node_name/spi.policy

This file is used for embedded resources that are defined in the resources.xml file, such as the Java
Message Service (JMS), JavaMail API, and JDBC drivers.

v $WAS_HOME/config/cells/cell_name/nodes/node_name/library.policy

This file is used by the shared library that is defined by the WebSphere Application Server
administrative console.

v $WAS_HOME/config/cells/cell_name/nodes/node_name/app.policy

This file is used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports the packaging of a was.policy file with each
application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the
potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.
WebSphere Application Server uses a permission filtering policy file to alert you when an application

6 Securing applications and their environment

installation fails because of additional permission requirements. For example, it is recommended that you
not give the java.lang.RuntimePermission exitVM permission to an application so that application code
cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the profile_root/config/cells/cell_name/filter.policy
file. Moreover, WebSphere Application Server also performs run-time permission filtering that is based on
the run-time filtering policy to ensure that application code is not granted a permission that is considered
harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application
Server, you might temporarily give those applications the java.security.AllPermission permission in the
was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is
active. For example, identify which extra permissions, if any, are required, and grant only those
permissions to a particular application. Not granting the AllPermission permission to applications can
reduce the risk of compromising system integrity. For more information on migrating applications, refer to
“Migrating Java 2 security policy” on page 25.

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.
Applications that are granted the AllPermission permission not only have access to sensitive system
resources, but also WebSphere Application Server run-time resources and can potentially cause damage
to both. In cases where an application can be trusted as safe, WebSphere Application Server does support
having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by
default in the administrative console and clear the Java 2 security flag to disable it at the particular
application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application
access to local resources options on the Global security panel of the administrative console, the
information and other sensitive configuration data, are stored in a set of XML configuration files. Both
role-based access control and Java 2 security permission-based access control are employed to protect
the integrity of the configuration data. The example uses configuration data protection to illustrate how
system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is
the same as the Enable administrative security option in Version 8.0. Also, the Enable Java
2 security option in previous releases is the same as the Use Java 2 security to restrict
application access to local resources option in Version 8.0.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless the code is granted the required
WebSphere Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless the code is granted the required file read and write permission.

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
administrative security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

v If a user can disable Java 2 security, the user can also modify the WebSphere Application Server
configuration, including the WebSphere Application Server security identity and authentication data with
other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable administrative security, change server IDs and passwords, and
map users and groups to administrative roles, and so on.

Chapter 1. Overview and new features: Securing 7

The CSIv2 security protocol also supports client certificate authentication. SSL client authentication can
also be used to set up secure communication among a selected set of servers based on a trust
relationship.

If you start from the WebSphere Application Server plug-in at the web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the
selected two WebSphere Application Servers as shown in the following figure. Note that you can use
self-signed certificates to reduce administration and cost.

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in
WebSphere Application Server B to accept secure socket connections only from the WebSphere
Application Server plug-in W.

v To complete this task, you can generate three certificates using Resource Access Control Facility
(RACF) called certificate W, A, and B. Configure the WebSphere Application Server plug-in to use
certificate W and trust certificate A and B. Configure the HTTPS server of WebSphere Application
Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate
W.

Table 3. Trust relationships from example. The trust relationship that is depicted in the previous figure is shown in the
following table.

Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

The WebSphere Application Server Deployment Manager is a central point of administration. System
management commands are sent from the deployment manager to each individual application server.
When administrative security is enabled, you can configure WebSphere Application Servers to require SSL
and mutual authentication.

You might want to restrict WebSphere Application Server A so that it can communicate with WebSphere
Application Server C only and WebSphere Application Server B can communicate with WebSphere
Application Server D only. All WebSphere Application Servers must be able to communicate with
WebSphere Application Server deployment manager E; therefore, when using self-signed certificates, you
might configure the CSIv2 and SOAP/HTTPS Key and trust relationship, as shown in the following table.

Table 4. CSIv2 and SOAP/HTTPS Key and trust relationships from example. The CSIv2 and SOAP/HTTPS Key and
trust relationships are shown in the following table.
Server Key Trust

WebSphere Application Server A A C, E

WebSphere Application Server B B D, E

WebSphere Application Server C C A, E

WebSphere Application Server D D B, E

WebSphere Application Server Deployment
Manager E

E A, B, C, D

8 Securing applications and their environment

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)
user registry, you also can configure SSL with mutual authentication between every application server and
the LDAP server with self-signed certificates so that a password is not visible when it is passed from
WebSphere Application Server to the LDAP server.

In this example, the node agent processes are not discussed. Each node agent must communicate with
application servers on the same node and with the deployment manager. Node agents also must
communicate with LDAP servers when configured to use an LDAP user registry. It is reasonable to let the
deployment manager and the node agents use the same certificate. Suppose application server A and C
are on the same computer node. The node agent on that node needs to have certificates A and C in its
trust store.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere
Application Server you are using, review the WebSphere Application Server security architecture, and
review each of the following topics:
v “Server and administrative security” on page 71
v “Authentication protocol support” on page 518
v “Common Secure Interoperability Version 2 features” on page 518
v “Identity assertion to the downstream server” on page 519
v “Selecting an authentication mechanism” on page 344

– “Lightweight Third Party Authentication” on page 346
– “Trust associations” on page 366
– “Single sign-on for authentication using LTPA cookies” on page 370

v “Selecting a registry or repository” on page 183
– “Local operating system registries” on page 187
– “Standalone Lightweight Directory Access Protocol registries” on page 339

v “Java 2 security” on page 81
– “Java 2 security policy files” on page 85

v “Java Authentication and Authorization Service” on page 438
– Programmatic login for JAAS

v Java EE connector security
v “Access control exception for Java 2 security” on page 89

– “Role-based authorization” on page 546
– “Administrative roles and naming service authorization” on page 540

v “Implementing a custom authentication provider using JASPI” on page 908

Chapter 1. Overview and new features: Securing 9

10 Securing applications and their environment

Chapter 2. How do I secure applications and their
environments?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

Secure HTTP sessions

Develop applications that use programmatic security

Configure declarative security for EJB applications that use J2EE authorization

Develop programmatic security for EJB applications that use J2EE authorization

Apply Web Services Security (WS-Security) to applications

Enable Java 2 security with the console

Enable Java 2 security with scripting

Developing custom login modules

Enable resource security for J2C and JDBC data sources

Enable resource security for JavaMail

Implement a custom authentication provider using JASPI

Secure the application hosting environment. The counterpart of securing your applications before and
after deployment is to secure the server hosting environment into which the applications are deployed.

Assign users to roles

Configure security with wsadmin scripting

By default, security is enabled out of box. You have an opportunity to modify the default whenever you
create a profile, at installation time or any other time. If you do not deselect it, administrative security will
be enabled for a profile. Out of box security authenticates users against the file-based federated repository
powered by virtual member manager.

Enable and configure administrative security with the console

Enable and configure administrative security with scripting

Authenticate users with the local operating system user registry

Authenticate users with an LDAP user registry

Authenticate with a custom user registry

Authenticate with the file-based federated repository

© Copyright IBM Corp. 2011 11

Set up single sign-on (SSO)

Access secure resources using SSL and applet clients

Set up Secure Sockets Layer (SSL) between remote servers or clients and servers

Set up CSIv2

Configure an authorization provider

Troubleshoot security

12 Securing applications and their environment

Chapter 3. Task overview: Securing resources

WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) model for
creating, assembling, securing, and deploying applications. Applications are often created, assembled, and
deployed in different phases and by different teams.

About this task

You can secure resources in a Java EE environment by following the required high-level steps. Consult
the Java EE specifications for complete details.

Procedure
v Set up and enable security. You must address several issues prior to authenticating users, authorizing

access to resources, securing applications, and securing communications. These security issues include
migration, interoperability, and installation. After installing WebSphere Application Server, you must
determine the proper level of security that is needed for your environment. For more information, see
Chapter 4, “Setting up, enabling and migrating security,” on page 15.

v Configure multiple domains. Security domains enable you to define multiple security configurations for
use in your environment. For example, you can define different security (such as a different user
registry) for user applications than for administrative applications. You can also define separate security
configurations for user applications deployed to different servers and clusters. For more information, see
Chapter 5, “Configuring multiple security domains,” on page 143

v Authenticate users. The process of authenticating users involves a user registry and an authentication
mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,
configure single sign-on capability, and specify how to propagate security attributes between application
servers. For more information, see Chapter 6, “Authenticating users,” on page 183.

v Authorize access to resources. WebSphere Application Server provides many different methods for
authorizing accessing resources. For example, you can assign roles to users and configure a built-in or
external authorization provider. For more information, see Chapter 7, “Authorizing access to resources,”
on page 539.

v Secure communications. WebSphere Application Server provides several methods to secure
communication between a server and a client. For more information, see Chapter 8, “Securing
communications,” on page 649.

v Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides
various plug points so that you can extend the security infrastructure. For more information, see
Chapter 9, “Developing extensions to the WebSphere security infrastructure,” on page 809.

v Use the Auditing Facility to report and track auditable events to ensure the integrity of your system. For
more information, see Chapter 10, “Auditing the security infrastructure,” on page 921

v Secure various types of WebSphere applications. See Securing WebSphere applications for tasks
involving developing, deploying, and administering secure applications, including web applications, web
services, and many other types. This section highlights the security concerns and tasks that are specific
to each type of application.

v Tune, harden, and maintain security configurations. After you have installed WebSphere Application
Server, there are several considerations for tuning, strengthening, and maintaining your security
configuration. For more information, see Chapter 11, “Tuning, hardening, and maintaining security
configurations,” on page 959.

v Troubleshoot security configurations. For more information, see Chapter 12, “Troubleshooting security
configurations,” on page 977.

Results

Your applications and production environment are secured.

© IBM Corporation 2002, 2006 13

Example

See the Security: Resources for learning article for more information on the WebSphere Application Server
security architecture.

14 Securing applications and their environment

Chapter 4. Setting up, enabling and migrating security

You must address several issues prior to authenticating users, authorizing access to resources, securing
applications, and securing communications. These security issues include migration, interoperability, and
installation.

About this task

After installing WebSphere Application Server, you can determine the proper level of security that is
needed for your environment. By default, administrative security is enabled and provides the authentication
of users using the WebSphere administration functions, the use of Secure Sockets Layer (SSL), and the
choice of user account repository.

You can also use the following permissions to enhance security:

v Use the getSSLConfig permission to give your application code the ability to call several of the
JSSEHelper methods. For more information about these methods, see the description of the
com.ibm.websphere.ssl.JSSEHelper API in the Programming interfaces section of the Information
Center.

v Use the AdminPermission permission to give your application code the ability to call WebSphere
Application Server administrative APIs. See the topic Setting Java 2 security permissions for an
example of how to set this permission.

v Use the accessRuntimeClasses permission to give your application code the ability to load classes that
are included with the product. If you are operating in an environment that normally restricts access to
these classes, this permission enables your application code to bypass this restriction during class
loading. See the topic Global security settings for a description of how to set this permission.

The following information is covered in this section:

Procedure
v Determine if any migration and interoperability issues might affect your installation. For more

information, see “Migrating, coexisting, and interoperating – Security considerations.”

v Prepare your environment before and after installing WebSphere Application Server. For more
information, see “Preparing for security at installation time” on page 31.

v Enable security for all your application servers or for specific application servers in your realm.

For more information, see either “Enabling security” on page 66 or Chapter 5, “Configuring multiple
security domains,” on page 143.

What to do next

After installing WebSphere Application Server and securing your environment, you must authenticate
users. For more information, see Chapter 6, “Authenticating users,” on page 183.

Migrating, coexisting, and interoperating – Security considerations
Use this topic to migrate the security configuration of previous WebSphere Application Server releases and
its applications to the new installation of WebSphere Application Server.

Before you begin

This information addresses the need to migrate your security configurations from a previous release of
IBM WebSphere Application Server to WebSphere Application Server 8.0. Complete the following steps to
migrate your security configurations:

© IBM Corporation 2005, 2008 15

|

|
|
|
|

|
|
|

|
|
|
|

v If security is enabled in the previous release, obtain the administrative server ID and password of the
previous release. This information is needed in order to run certain migration jobs.

v You can optionally disable security in the previous release before migrating the installation. No logon is
required during the installation.

v If scriptCompatibility is false when migrating to WebSphere Application Server 8.0 on z/OS, any
SSLConfig repertoire of type System SSL (SSSL) is converted to type JSSE. The exception is when the
SSLConfig repertoire belongs to the daemon; the repertoire is not converted from type SSSL to type
JSSE in this case.

Note: In WebSphere Application Server Version 8.0, be aware of the following additional migration
requirements for security:

v When migrating from WebSphere Application Server Version 7.x to Version 8.0, if you have a
business need to preserve security audit logs from the older release you must first archive the
security audit log files in Version 7.x. WebSphere Application Server does not support the
migration of security audit log files from the older release to Version 8.0.

v When migrating from WebSphere Application Server Version 7.x to Version 8.0 on a z/OS
system, if you used a writeable System Authorization Facility (SAF) keyring setting on version 7.x
make sure that writeable SAF is also enabled on the Version 8 system. Writeable SAF is a
RACF setting.

v If your WebSphere Application Server Version 7.x environment is enabled for Kerberos, and you
are migrating to version 8.0 on a different machine, the keytab and configuration files for
Kerberos must be at the same location on the Version 8.0 machine as on the Version 7.x
machine or the configuration will not work.

Procedure

Migrate the appropriate product configuration. You can migrate the base application server node, a
deployment manager, and a federated node.

Results

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 8.0.

What to do next

You must migrate any custom class files that are not migrated.

If you are migrating a Version 6.1 environment or earlier with System Authorization Facility (SAF)
authorization enabled, be aware that the term describing the string that is prepended to the EJBROLE
profile names, which was previously referred to as the z/OS security domain, has been updated to "SAF
profile prefix". Additionally, the corresponding property name in the security.xml file has been updated to
com.ibm.security.SAF.profilePrefix The old property names are security.zOS.domainName and
security.zOS.domainType. The term has changed to more accurately describe the purpose of this property
and to avoid confusion with the WebSphere security domains feature that was introduced in Version 7.0. If
a SAF profile prefix is specified and scriptCompatiblity is a false value, further action is not necessary
during migration; the old properties are converted to the new properties.

Note: The SAF distributed identity mapping feature is not supported in a mixed-version cell (nodes prior to
WebSphere Application Server Version 8.0).

If you are migrating a Version 6.0.x environment with Sync to OS Thread enabled to a Version 8.0
environment, you should be aware of the following migration considerations:

v In addition to the application and configuration specifying the desire to use Sync to OS Thread that was
required in earlier versions of WebSphere Application Server, the RACF administrator must also define

16 Securing applications and their environment

a resource role in order for Sync to OS Thread to operate in Version 6.1 and later. A FACILITY class
profile must be defined to allow or disallow the use of Sync to OS Thread. Also, an optional
SURROGAT class profile can be used to further refine the use of Sync to OS Thread to particular
authenticated users.

See “System Authorization Facility classes and profiles” on page 43.

v In Version 6.1 and later, a FACILITY class profile must be defined to enable trusted applications.
WebSphere Applications Server checks this FACILITY class profile during initialization to ensure that
only authorized trusted applications are enabled. This FACILITY class profile expands the RACF
administrator's role in ensuring that only authorized trusted applications are enabled.

See “System Authorization Facility classes and profiles” on page 43.

Interoperating with previous product versions
IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to
configure this behavior.

Before you begin

Interoperability is achieved using the z/OS Secure Authentication Service (z/SAS) security mechanism for
local OS and System Authorization Facility (SAF)-based authorization.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Procedure
1. Configure WebSphere Application Server Version 8.0 with the same distributed user registry (that is,

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user
registry is shared by all of the product versions.

a. In the administrative console, select Security > Global security.

b. Choose an available Realm definition and click Configure.

c. If SAF authorization is disabled, enter a Primary administrative user name. This identity is the
user with administrative privileges that is defined in your local operating system. If you are not
using the local OS ad the user registry, select the Server identity that is stored in the user
repository, enter the Server user ID, and the associated password. The user name is used to log
on to the administrative console when administrative security is enabled. WebSphere Application
Server Version 6.1 requires an administrative user that is distinct from the server user identity so
that administrative actions can be audited.

Attention: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is
required for both administrative access and internal process communication. When migrating to
Version 8.0, this identity is used as the server user identity. You need to specify another user for
the administrative user identity.

d. When interoperating with Version 6.0.x or previous versions, you must select the Server identity
that is stored in the user repository. Enter the Server user id and the associated Password.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be
disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from
WebSphere Application Server Version 8.0 and import them into the previous release.

a. In the administrative console select Security > Global security.

b. From Authentication mechanisms and expiration, click LTPA.

c. Click the Key set groups link , then click the key set group that displays in the Key set groups
panel.

d. Clear the Automatically generate keys check box.

e. Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key
set groups panel.

Chapter 4. Setting up, enabling and migrating security 17

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the
LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.

h. Enter the Fully qualified key file name that contains the exported keys.

i. Click Export keys.

j. Follow the instructions provided in the previous release to import the exported LTPA keys into that
configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere
Application Server Version 8.0 common trust store. Otherwise, extract signers where necessary to
import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

b. Click Key stores and certificates.

c. Click CellDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer. For example, /tmp/signer1.arm.

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.
Repeat steps e through h to extract the other signers.

You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from
a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer
certificates that originated on the non-z/OS platform server. For more information, see Importing a
signer certificate from a truststore to a z/OS keyring.

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc
directory of the back-level product version. If the previous release is not using the dummy certificate,
the signer certificate(s) from the previous release must be extracted and added into the WebSphere
Application Server Version 8.0 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

b. Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL_ROOT}/bin directory.

c. Select Key Database File > Open.

d. Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

e. Enter WebAS for the password.

f. Select Add and enter one of the files extracted in step 2. Continue until you have added all of the
signers.

g. Repeat steps c through f for the DummyClientTrustFile.jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and
naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

Interoperating with a C++ common object request broker architecture
client
WebSphere Application Server supports security in the CORBA C++ client to access-protected enterprise
beans. If configured, C++ CORBA clients can access protected enterprise bean methods using a client
certificate to achieve mutual authentication on WebSphere Application Server applications.

18 Securing applications and their environment

About this task

Interoperability can be achieved between C++ CORBA clients and WebSphere Application Server using
the Common Secure Interoperability Version 2 (CSIv2) or by using the z/OS Secure Authentication Service
(z/SAS) protocols. CSIv2 should be used unless interoperability is required with a WebSphere Application
Server Version 4.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application
Server supports security in the CORBA C++ client to access-protected enterprise beans. If configured,
C++ CORBA clients can access protected enterprise bean methods using a client certificate to achieve
mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans, complete the following steps:

v Create an environment file for the client, such as current.env. Set the variables presented in the
following list in the file:

Table 5. Environment Variables.

This table lists the environment variables needed to support the C++ CORBA client in accessing protected enterprise
beans.
C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to authenticate at the target server.

security_sslKeyring Specifies the name of the RACF keyring for the client to use. The keyring
must be defined under the user ID that is issuing the command to run the
client.

v Point to the environment file using the fully qualified path name through the WAS_CONFIG_FILE
environment variable. For example, in the test.sh test shell script, export:
/WebSphere/V6R0M0/DeploymentManager/profiles/default/config/cells

/PLEX1Network/nodes/PLEX1Manager/servers/dmgr

Some of the environment file terms are explained below:

default
profile name

PLEX1Network
cell name

PLEX1Manager
node name

dmgr server name

Migrating trust association interceptors
Use this topic to manually migrate trust associations.

Before you begin

Note: Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources
are intended for use within J2EE applications and designed to operate within the EJB and web
containers. Trust Association Interceptors do not run within a container, and while data sources may
function in the TAI environment, they are untested and not guaranteed to function properly.

Chapter 4. Setting up, enabling and migrating security 19

The following topics are addressed in this document:
v Changes to the product-provided trust association interceptors
v Migrating product-provided trust association interceptors
v Changes to the custom trust association interceptors
v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional
com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:
HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name
Fred, is not used when matching the host names. By default, this property is not set, which implies that
any proxy host names and ports that are expected in the VIA header are listed in the host names and the
ports properties to satisfy the isTargetInterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article
in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not
migrated from previous versions of WebSphere Application Server. You must migrate the appropriate
properties to WebSphere Application Server Version 6.0.x using the trust association panels in the
administrative console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends the
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.
Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,
you can either change your implementation to match the expectations or make one of the following
changes:
Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association
interceptor custom properties. Set the property to the value that indicates the interceptor is
successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.

Method 2:
Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells

20 Securing applications and their environment

WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that
is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.
The interceptor can then use these properties to initialize itself. For example, in the product-provided
implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming
in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the
interceptor initialization is successful. Any other value implies that the initialization is not successful and
the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.
The only requirement is that you enter the file name containing the custom trust association properties
using the Custom Properties link of the interceptor in the administrative console or by using scripts. You
can enter the property using either of the following methods. The first method is used for backward
compatibility with previous versions of WebSphere Application Server.
Method 1:

The same property names used in the previous release are used to obtain the file name. The file
name is obtained by concatenating .config to the
com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is
located in the app_server_root/properties directory, set the following properties:
v com.ibm.websphere.security.trustassociation.types = myTAItype
v com.ibm.websphere.security.trustassociation.myTAItype.config = app_server_root/

properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust
association custom properties to the location of the file. For example, set the following property:
com.ibm.websphere.security.trustassociation.initPropsFile=
app_server_root/properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one
continuous line.

In a WebSphere Application Server, Network Deployment installation, where the location of the file name
can vary for different nodes, use the variable install_root to refer to the WebSphere Application Server
installation directory.

However, it is highly recommended that your implementation be changed to implement the init(Properties)
method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to WebSphere Application Server Version 8.0. You can manually migrate these trust associations
using the following steps:

Procedure
1. Recompile the implementation file, if necessary.

For more information, refer to the "Changes to the custom trust association interceptors" section
previously discussed in this document.

To recompile the implementation file, type the following code:
%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/plugins/com.ibm.ws.runtime.jar;
%WAS_HOME%/dev/JavaEE/j2ee.jar your_implementation_file.java

Chapter 4. Setting up, enabling and migrating security 21

The previous line of code is broken into two lines for illustrative purposes only. Type the code as one
continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. Copy
these class files into the %WAS_HOME%/lib/ext directory.

3. Start WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom
trust association properties file and in the trustedserver.properties file are not migrated from
previous versions of WebSphere Application Server. You must migrate the appropriate properties to
WebSphere Application Server Version 8.0 using the trust association panels in the administrative
console.

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic
login to Java Authentication and Authorization Service (CORBA and
JAAS)
Use this topic as an example of how to perform programmatic login using the CORBA-based
programmatic login APIs.

Before you begin

Common Object Request Broker Architecture (CORBA) application programming interfaces (API) are not
supported in the WebSphere Application Server for z/OS environment. If you have an application that you
are porting from another WebSphere Application Server product to WebSphere Application Server for z/OS
you must be aware that the security APIs that are deprecated in Version 6.0.x. If you want to use these
applications on WebSphere Application Server for z/OS Version 8.0, you must migrate to Java
Authentication and Authorization Service (JAAS).

The following list includes the deprecated CORBA programmatic login APIs.
v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/

LoginHelper.java.
v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/

ServerSideAuthenticator.java.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs
and a product implementation of standard JAAS interfaces.

The supported APIs that are provided in WebSphere Application Server for z/OS are a combination of
standard JAAS APIs and a product implementation of standard JAAS interfaces with some minor
extension.

The following information is only a summary; refer to the JAAS documentation for your platform located at:
http://www.ibm.com/developerworks/java/jdk/security/ .
v Programmatic login APIs:

– javax.security.auth.login.LoginContext
– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler handler when the application pushes basic
authentication data (user ID, password, and security realm) or token data to product login
modules. This API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl
Provides a stdin login prompt CallbackHandler handler to gather basic authentication data
(user ID, password, and security realm). This API is recommended for client-side login.

22 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

Note: If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.

– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side
login. Refer to the Securing applications and their environment PDF for details.

v javax.security.Subject:
com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject

An application must invoke the WSSubject.doAs method for J2EE resources access using the
subject that is generated by an explicit invocation of a WebSphere Application Server login
module.

com.ibm.websphere.security.cred.WSCredential
After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,
a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the
Subject.

com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal that is created and stored in a Subject that is authenticated by the
WebSphere Application Server LoginModules interface.

Procedure

Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs.
The following example assumes that the application code is granted for the required Java 2 security
permissions. For more information, see the Securing applications and their environment PDF and the
JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/.
public class TestClient {
...
private void performLogin() {
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext lc = null;

try {
// Use GUI prompt to gather the BasicAuth data.
lc = new javax.security.auth.login.LoginContext("WSLogin",
new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation
// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by login prompt
// and pass to the authentication mechanism implemented by the LoginModule.
} catch (javax.security.auth.login.LoginException e) {
System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "
+ e.getMessage());
e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted
// to the application, or the JAAS Login Configuration is not defined.
}

if (lc != null)
try {
lc.login(); // perform login

Chapter 4. Setting up, enabling and migrating security 23

http://www.ibm.com/developerworks/java/jdk/security/

javax.security.auth.Subject s = lc.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs(s,
new java.security.PrivilegedAction() {
public Object run() {
try {
bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {
System.out.println("ERROR: error while accessing EJB resource, exception: "
+ e.getMessage());
e.printStackTrace();
}
return null;
}
}
);

// Retrieve the name of the principal from the Subject
// so we can tell the user that login succeeded,
// should only be one WSPrincipal.
java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();
while (it.hasNext()) {
com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.println("Principal: " + p.getName());
}
} catch (javax.security.auth.login.LoginException e) {
System.err.println("ERROR: login failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin logic
}
}
...
}

Migrating from the CustomLoginServlet class to servlet filters
Use this topic to allow migration in an application that uses form-based login and servlet filters without the
use of the CustomLoginServlet class.

Before you begin

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those
applications using the CustomLoginServlet class to perform authentication now need to use form-based
login. Using the form-based login mechanism, you can control the look and feel of the login screen. In
form-based login, a login page is specified and displays when retrieving the user ID and password
information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information that is
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached
servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security_check URL. The j_security_check is posted by the form login page with

24 Securing applications and their environment

the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

Procedure
1. Develop a form login page and error page for the application.

Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application.

Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL
or for the /j_security_check URL. Use an assembly tool or development tools like Rational® Application
Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.

Results

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

What to do next

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.
Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy
Use this topic for guidance pertaining to migrating Java 2 security policy.

About this task

Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent
enterprise applications from calling the System.exit and the System.setSecurityManager methods. These
two Java application programming interfaces (API) have undesirable consequences if called by enterprise
applications. The System.exit API, for example, causes the Java virtual machine (application server
process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with
doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.
Application code is not privileged and subject to the permissions that are defined in the policy files. The
doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the
application code must be granted the permissions that are required by the server runtime. This situation is
due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the
Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere
Application Server:
v java.lang.RuntimePermission(exitVM)
v java.lang.RuntimePermission(setSecurityManager)

Chapter 4. Setting up, enabling and migrating security 25

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.
However, the server runtime is granted these permissions. All the other permission checks are not
enforced.

Only two permissions are supported:
v java.net.SocketPermission
v java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the
application code all the other permissions besides the two listed previously or the enterprise application
can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are
enforced. The default Java 2 security policy for an enterprise application is the recommended permission
set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the
profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security
policy that is granted to enterprise applications. This policy is a much more stringent compared to previous
releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.
There is an exception to this rule: enterprise applications are denied access to permissions that are
declared in the profile_root/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the
permissions are enforced in WebSphere Application Server Version 8.0. The security policy might
fail because the application code does not have the necessary permissions granted where system
resources, such as file I/O, can be programmatically accessed and are now subject to the
permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an
application uses the setSecurityManager permission, there is a conflict with the internal security manager
within WebSphere Application Server. If you must set a security manager in an application for RMI
purposes, you also must enable the Use Java 2 security to restrict application access to local
resources option on the Global security page within the WebSphere Application Server administrative
console. WebSphere Application Server then registers a security manager. The application code can verify
that this security manager is registered by using System.getSecurityManager() application programming
interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:
v java.security.policy. The absolute path of the policy file (action required). This system property

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the
product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the
enterprise application to Version 8.0. For Java 2 security policy migration, see the steps for migrating
Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system
property is deprecated; a flag in the WebSphere configuration application programming interface (API) is
used to control whether to enable Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of WebSphere Application Server (action might be
required). This system property is deprecated; superseded by the ${user.install.root} and
${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is

26 Securing applications and their environment

used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere
Application Server or the WebSphere Application Server, Network Deployment environments. See the
steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to Version 8.0 automatically because of a mixture of
system permissions and application permissions in the same policy file. Manually copy the Java 2 security
policy for enterprise applications to a was.policy or app.policy file. However, migrating the Java 2
security policy to a was.policy file is preferable because symbols or relative code base is used instead of
an absolute code base. This process has many advantages. Grant the permissions that are defined in the
was.policy to the specific enterprise application only, while permissions in the app.policy file apply to all
the enterprise applications that run on the node where the app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The
contents include the Java 2 security policy file for the app1.ear enterprise application and the system
permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product
server runtime.

The default location for the Java 2 security policy file is profile_root/properties/java.policy. Default
permissions are omitted for clarity:
// For product Samples

grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",
"read";

};

For clarity of illustration, all the permissions are migrated as the application level permissions in this
example. However, you can grant permissions at a more granular level at the component level (Web,
enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to
a particular component.

Procedure
1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated
applications in the configuration repository with the following contents:

grant codeBase "file:${application}" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "

${user.install.root}${/}temp${/}somefile.txt", "read";
};

The third and fourth lines in the previous code sample are presented on two lines for illustrative
purposes only.

The was.policy file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more
information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2
security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code
inspection, application documentation review, and sandbox testing of migrated enterprise applications
with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by

Chapter 4. Setting up, enabling and migrating security 27

Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party
libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that
the application is granted all the required permissions, or it might fail to run when Java 2 security is
enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.
Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing
environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.
This trace function can be helpful in debugging the AccessControlException exception that is created
when an application is not granted the required permission or some system code is not properly
marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes
on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,
the administrator or deployer must review their enterprise applications to see if extra
permissions are required before enabling Java 2 security. If the enterprise applications are not
granted the required permissions, they fail to run.

Migrating with Tivoli Access Manager for authentication enabled on a
single node
When Tivoli® Access Manager security is configured for your existing environment and security is enabled
for a single node, you can migrate to WebSphere Application Server, Version 8.0.

Before you begin

Your profiles must be migrated using the migration tools to migrate product configurations.

Important: Do not restart the WebSphere Application Server Version 8.0 server until after performing the
following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Note: WebSphere Application Server Version 8.0 hosts Tivoli Access Manager specific files under the
%WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Note: In the following steps, %WASX% refers to the installation root of the source WebSphere Application
Server product, and %WAS8% refers to the installation root of the target WebSphere Application
Server product (the Version 8.0 installation root).

Procedure
1. Copy the following files from the source location to target location.

Table 6. Files to copy from the source location to the target location. Files to copy from the source location to the
target location
Source Location Target Location

%WASX%\java\jre\PDPerm.properties %WAS8%\tivoli\tam\PDPerm.properties

%WASX%\java\jre\lib\security\PdPerm.ks (if found) %WAS8%\tivoli\tam\lib\security\PdPerm.ks

%WASX%\java\jre\lib\PdPerm.ks (if found) %WAS8%\tivoli\tam\PdPerm.ks

%WASX%\java\jre\PolicyDirector\PDCA.ks %WAS8%\tivoli\tam\PolicyDirector\PDCA.ks

28 Securing applications and their environment

Table 6. Files to copy from the source location to the target location (continued). Files to copy from the source
location to the target location
Source Location Target Location

%WASX%\java\jre\PolicyDirector\PD.properties %WAS8%\tivoli\tam\PolicyDirector\PD.properties

%WASX%\java\jre\PolicyDirector\etc\pdjrte_paths %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_paths

%WASX%\java\jre\PolicyDirector\etc\pdjrte_mapping %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_mapping

2. Edit the PD.properties file, and change the following configuration settings:
appsvr-plcysvrs=null\:0:\:1
config_type=standalone

Make the appropriate changes to point to your Tivoli Access Manager Policy Server, for example:
appsvr-plcysvrs=pdmgrd.test.gc.au.ibm.com\:7135\:1
config_type=full

3. Edit the following four files on the target system and make sure that all of the path references are
corrected:

v %WAS8%/tivoli/tam/PdPerm.properties

v %WAS8%/tivoli/tam/PolicyDirector/PD.properties

v %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_paths

v %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping

When you correct the paths, complete the following steps in order:

a. Ensure that all references from %WASX%/java/jre/PolicyDirector are changed to
%WAS8%/tivoli/tam/PolicyDirector.

b. Ensure that all references (in the PdPerm.properties file) from the%WASX%/java/jre/[security]/
PdPerm.ks file are changed to %WAS8%/tivoli/tam/pdPerm.ks.

c. Ensure that all remaining references from %WASX%/java/jre are changed to %WAS8%/java/jre.

d. Edit the %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping file. It contains the JRE->JRE
mapping: %WAS8%/java/jre=%WAS8%/java/jre.

Change this mapping to JRE->tivoli/tam: %WAS8%/java/jre=%WAS8%/tivoli/tam.

What to do next

Also see Migrating with Tivoli Access Manager for authentication enabled on multiple nodes for more
information.

Migrating with Tivoli Access Manager for authentication enabled on
multiple nodes
When Tivoli Access Manager security is configured for your existing environment and security is enabled
for multiple nodes, you can migrate to WebSphere Application Server, Version 8.0.

Before you begin

Your profiles must be migrated using the migration tools to migrate product configurations.

Important: Do not restart the WebSphere Application Server Version 8.0 server until after performing the
following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Chapter 4. Setting up, enabling and migrating security 29

Note: WebSphere Application Server Version 8.0 hosts Tivoli Access Manager specific files under the
%WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Note: In the following steps, %WASX% refers to the installation root of the source WebSphere Application
Server product, and %WAS8% refers to the installation root of the target WebSphere Application
Server product (the Version 8.0 installation root).

Migration in a multi-node environment involves migrating individual nodes, starting with the deployment
manager. The following procedure discuss both the overall migration steps and the host-specific migration
steps.

Procedure
1. For the overall migration steps, do the following:

a. On the deployment manager (host1) perform the host specific migration steps as described in step
2 below.

b. Start the deployment manager.

c. For each of the application server node/hosts (such as host2, host3 and so on), do the following:

v Perform the host specific migration steps as described in step 2 below.

v Start the node-agent and associated application server on the respective host.

2. For the host specific migration steps, do the following:

a. Copy the following files from the source location to the target location:

Table 7. Files to copy from the source location to the target location. Files to copy from the source location to the
target location
Source Location Target Location

%WASX%\java\jre\PDPerm.properties %WAS8%\tivoli\tam\PDPerm.properties

%WASX%\java\jre\lib\security\PdPerm.ks (if found) %WAS8%\tivoli\tam\lib\security\PdPerm.ks

%WASX%\java\jre\lib\PdPerm.ks (if found) %WAS8%\tivoli\tam\PdPerm.ks

%WASX%\java\jre\PolicyDirector\PDCA.ks %WAS8%\tivoli\tam\PolicyDirector\PDCA.ks

%WASX%\java\jre\PolicyDirector\PD.properties %WAS8%\tivoli\tam\PolicyDirector\PD.properties

%WASX%\java\jre\PolicyDirector\etc\pdjrte_paths %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_paths

%WASX%\java\jre\PolicyDirector\etc\pdjrte_mapping %WAS8%\tivoli\tam\PolicyDirector\etc\pdjrte_mapping

b. Edit the PD.properties file, and change the following configuration settings:
appsvr-plcysvrs=null\:0:\:1
config_type=standalone

Make the appropriate changes to point to your Tivoli Access Manager Policy Server, for example:
appsvr-plcysvrs=pdmgrd.test.gc.au.ibm.com\:7135\:1
config_type=full

c. Edit the following four files on the target system and make sure that all of the path references are
corrected:

v %WAS8%/tivoli/tam/PdPerm.properties

v %WAS8%/tivoli/tam/PolicyDirector/PD.properties

v %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_paths

v %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping

When you correct the paths, complete the following steps in order:

1) Ensure that all references from %WASX%/java/jre/PolicyDirector are changed to
%WAS8%/tivoli/tam/PolicyDirector.

2) Ensure that all references (in the PdPerm.properties file) from the%WASX%/java/jre/
[security]/PdPerm.ks file are changed to %WAS8%/tivoli/tam/pdPerm.ks.

30 Securing applications and their environment

3) Ensure that all remaining references from %WASX%/java/jre are changed to %WAS8%/java/jre.

4) Edit the %WAS8%/tivoli/tam/PolicyDirector/etc/pdjrte_mapping file. It contains the JRE->JRE
mapping: %WAS8%/java/jre=%WAS8%/java/jre.

Change this mapping to JRE->tivoli/tam: %WAS8%/java/jre=%WAS8%/tivoli/tam.

What to do next

Also see Migrating with Tivoli Access Manager for authentication enabled on a single node for more
information.

Migrating unrestricted jurisdiction policy files, local_policy.jar and
US_export_policy.jar
You can migrate the unrestricted jurisdiction policy files, local_policy.jar and US_export_policy.jar.

About this task

If you want to use encryption keys that are greater than 128-bits, you must use the unrestricted jurisdiction
policy files, local_policy.jar and US_export_policy.jar.

The files are located in the [WAS_HOME/java/lib/security directory.

If your back-level version of WebSphere Application Server is using the unrestricted jurisdiction policy files,
you must perform special steps to migrate these files to your new version of WebSphere Application
Server. If you are not using the unrestricted jurisdiction policy files, you do not need to take any action.

Procedure
1. Before migrating, copy the modified local_policy.jar file to a temporary location.

2. Migrate the WebSphere Application Server installation.

3. Mount the new product HFS as read/write.

4. Copy the modified local_policy.jar file from step 1 to the following directory on the new WebSphere
Application Server installation: WAS_HOME/java/lib/security.

5. Mount the new product HFS as read-only.

6. Start the new WebSphere Application Server installation as normal.

Preparing for security at installation time
Complete the following tasks to implement security before, during, and after installing WebSphere
Application Server.

Procedure
1. Install WebSphere Application Server. This step describes how to install WebSphere Application Server

on the z/OS platform. For more information, see "Installing the product and additional software" in the
InfoCenter.

2. Migrate security configurations from previous releases during installation, when you are prompted to do
so. This step describes how to migrate security configurations from a previous release of WebSphere
Application Server to WebSphere Application Server Version 8.0.

For more information, see "Migrating product configurations" in the InfoCenter.

3. If you go into the advanced profile creation, a panel is available for changing the default settings for
your certificate, a root certificate (used to sign your personal certificate) and a personal certificate
(used to sign/encrypt data over the network). Ensure that the root certificate has a long lifetime and the
personal certificate a shorter one. Import your own personal certificate and or root certificate. If your

Chapter 4. Setting up, enabling and migrating security 31

personal certificate is signed by the certificate authority (CA), it is not important to change your root
certificate. You should also change the default keystore password to something more secure.

4. Optional: During customization of a stand-alone application server or WebSphere Application Server,
Network Deployment cell, you can enable administrative security "out of the box" by using either a
z/OS security product or WebSphere Application Server to manage users, groups, and the security
policy.

5. Secure your environment after installation. This step provides information on how to protect password
information after you install WebSphere Application Server. For more information, see “Securing your
environment after installation.”

6. For information about enabling security after customization is complete, see “Enabling security” on
page 66.

Securing your environment after installation
WebSphere Application Server depends on several configuration files that are created during installation.
These files contain password information and need protection. Although the files are protected to a limited
degree during installation, this basic level of protection is probably not sufficient for your site. You should
verify that these files are protected in compliance with the policies of your site.

Before you begin

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords.
The default keytab file is krb5.keytab. It is important for hosts to protect their Kerberos keytab files
by storing them on the local disk, which makes them readable only by authorized users.

The files in the WAS_HOME/config and the WAS_HOME/properties directories need protection. For example,
give permission to the user who logs onto the system for WebSphere Application Server primary
administrative tasks. Other users or groups, such as WebSphere Application Server console users and
console groups need permissions as well.

The files in the WAS_HOME/properties directory that must be readable by everybody are:
v TraceSettings.properties
v client.policy
v client_types.xml
v ipc.client.props
v sas.client.props
v sas.stdclient.properties
v sas.tools.properties
v soap.client.props
v wsadmin.properties
v wsjaas_client.conf

The value for WAS_HOME directory is specified in the WebSphere z/OS Profile Management Tool or the
zpmt command when WebSphere Application Server for z/OS is installed, for both the base product and
WebSphere Application Server, Network Deployment.

Procedure

Secure files on WebSphere Application Server for z/OS systems.

1. Use the WebSphere z/OS Profile Management Tool or the zpmt command and follow the generated
instructions to customize your system.

The customization jobs that are generated perform the following functions:

v Create System Authorization Facility (SAF) WebSphere Application Server user IDs that are needed
for administrator and server processes.

32 Securing applications and their environment

v Create a SAF WebSphere Application Server configuration group and add the SAF WebSphere
Application Server user IDs.

v Provide a mapping from a Java 2, Enterprise Edition (J2EE) principal to SAF user ID. You can
generate a sample mapping module or you can specify one that you created yourself.

v Associate WebSphere Application Server-started tasks with the SAF user IDs and groups that are
defined previously.

v Populate the file system with the system and property files that are needed to run WebSphere
Application Server.

v Change the ownership of these files to the WebSphere Application Server administrator.

v Create the appropriate file permissions.

All files in the WAS_HOME/config directory must have write and read access by all the members of the
WebSphere Application Server configuration group, but must not be accessible by everyone (mode
770). All files in the WAS_HOME/properties directory must have write and read access by all the
members of the WebSphere Application Server configuration group. Set the access permissions for the
following files as it pertains to your security guidelines:

v TraceSettings.properties

v client.policy

v client_types.xml

v ipc.client.props

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

For example, you might issue the following command: chmod 775 file_name. file_name is the name of
the file listed previously. These files contain sensitive information such as passwords.

Note: If you enabled Kerberos authentication or SPNEGO web authentication, set the access
permissions for the following files as it pertains to your security guidelines: the Kerberos
configuration file (krb5.conf or krb5.ini) and the Kerberos keytab file.

2. Add administrators who perform full or partial WebSphere Application Server administration tasks to
the configuration group.

3. Restrict access to the /var/mqm directories and the log files that are needed for WebSphere Application
Server embedded messaging or WebSphere MQ as the JMS provider. Give write access only to the
mqm user ID or members of the mqm user group.

Results

After securing your environment, only the users with permission can access the files. Failure to adequately
secure these files can lead to a breach of security in your WebSphere Application Server applications.

What to do next

If failures occur that are caused by file accessing permissions, check the permission settings.

WebSphere Application Server security for z/OS
WebSphere Application Server for z/OS supports access to resources by clients and servers in a
distributed environment. Determine how to control access to these resources and prevent inadvertent or
malicious destruction of the system or data.

Chapter 4. Setting up, enabling and migrating security 33

These are the pieces in the distributed network that you must consider:
v You must authorize servers to the base operating system services in z/OS. These services include

System Authorization Facility (SAF) security, database management, and transaction management.
– For the server clusters, you must distinguish between controllers and servants. Controllers run

authorized system code, so they are trusted. Servants run application code and are given access to
resources, so carefully consider the authorization you give servants.

– You must also distinguish between the level of authority for run-time servers and for your own
application servers have. For example, the node needs the authority to start other clusters, while
your own application clusters do not need this authority.

v You must authorize clients (users) to servers and objects within servers. The characteristics of each
client requires special consideration:
– Is the client on the local system or is it remote? The security of the network becomes a consideration

for remote clients.
– Will you allow unidentified (unauthenticated) clients to access the system? Some resources on your

system might be intended for public access, while others you might need to protect. To access
protected resources, clients must establish their identities and have authorization to use those
resources.

v Authentication is the process of establishing the identity of a client in a particular context. A client can
be an end user, a machine, or an application. The term authentication mechanism in WebSphere
Application Server on z/OS refers more specifically to the facility in which WebSphere identifies an
authenticated identity, using HTTP and Java Management Extensions (JMX) facilities. When configuring
a cell, you must select an authentication mechanism. The choices for authentication mechanism include:
– Simple WebSphere Authorization Mechanism (SWAM) - only on Base Application Server, not

available on the Network Deployment configuration

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a
future release.

– Lightweight Third Party Authentication (LTPA)
– Kerberos

v Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization. Implementation is provided to
support multiple operating system or operating environment-based user registries. When configuring a
cell, you must select a single user registry. The user registry can be local or remote. The choices for
user registry include:
– SAF-based local registry (default when a z/OS security product is chosen for administrative security

during customization)
– Standalone Lightweight Directory Access Protocol (LDAP) registry - LDAP can be either a local or

remote registry
– Stand-alone custom user registry - A custom user registry is set up to meet unique registry needs.

WebSphere Application Server provides a simple user registry sample called the
FileBasedRegistrySample.

– Federated repositories (default when the WebSphere Application Server is chosen for administrative
security during customization)

If you need to protect resources, it is critical that you identify who accesses those resources. Thus, any
security system requires client (user) identification, also known as authentication. In a distributed network
supported by WebSphere Application Server for z/OS, clients can access resources from:
v Within the same system as a server
v Within the same sysplex as the server
v Remote z/OS systems
v Heterogeneous systems, such as WebSphere Application Server on distributed platforms, Customer

Information Control System (CICS®), or other Java Platform, Enterprise Edition-compliant systems.

34 Securing applications and their environment

Additionally, clients can request a service that requires a server to forward the request to another cluster.
In such cases, the system must handle delegation, the availability of the client identity for use by
intermediate clusters and target clusters.

Finally, in a distributed network, how do you verify that messages being passed are confidential and have
not been tampered? How do you verify that clients are who they claim to be? How do you map network
identities to z/OS identities? These issues are addressed by the following support in WebSphere
Application Server for z/OS:
v The use of Secure Sockets Layer (SSL) and digital certificates
v Kerberos
v Common Secure Interoperability, Version 2 (CSIv2)
v Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
v Distributed identity mapping feature in SAF

z/OS Profile Management Tool security settings
The z/OS Profile Management Tool allows you to specify System Authorization Facility (SAF) profile
prefixes (previously referred to as z/OS security domains) for your WebSphere Application Server for z/OS
configuration.

Note:

v You must set up a base Application Server using the WebSphere z/OS Profile Management Tool
or the zpmt command before using the Application Server to set up a WebSphere Application
Server, Network Deployment node, which is managed by the deployment manager process
(dmgr). It is critical that you LOAD saved environment variables from the base Application Server
into the deployment manager node that federates the base node. Do this before performing
security customization on the deployment manager node.

v If the APPL class is active and you have defined a profile for WebSphere Application Server,
make sure that all z/OS identities using WebSphere Application Server services have READ
permission to the WebSphere Application Server APPL profile. This includes all WebSphere
Application Server identities, WebSphere Application Server unauthenticated identities,
WebSphere Application Server administrative identities, user IDs based on role-to-user
mappings, and all user identities for system users. If you have not specified a SAF profile prefix,
the APPL profile used is CBS390 or the name used as the SAF profile prefix. If you have
specified a SAF profile prefix, the APPL profile used. When adding an administrator to the
administrative console using local operating system security, if the APPL class is activated, the
administrator's user ID must be authorized to the CBS390 (or the name specified as the SAF
profile prefix) APPL class for RACF as well. If the administrator's user ID is not authorized to
CBS390 APPL, message BBOS0108E is issued, indicating that the credential-handling function
(RunAsGetSpecCred) failed in routine because the user is not authorized.

v Once a profile is created, it is possible to control checking the APPL class profile from the
administrative console by navigating to the SAF authorization options panel and by configuring
the check box labeled "Use APPL profile to restrict access to the server".

SAF profile prefixes and the customization jobs
You can configure a System Authorization Facility (SAF) profile prefix (previously referred to as a z/OS
security domain) by using the z/OS Profile Management Tool.

An SAF profile prefix allows an installation to add a prefix to the SAF profiles that represent their roles. For
example, an installation can define SAF class EJBRole and a SAF profile of myPrefix.administrator. A SAF
profile prefix can be defined for the entire cell or it can be defined at the WebSphere security domain-level
granularity of security permissions. SAF profile prefixes:

v Provide WebSphere security domain-level granularity of roles

v Allow different administrators to be assigned for test and production

v Are used as the APPL profile for servers in the WebSphere security domain

Chapter 4. Setting up, enabling and migrating security 35

You can configure a SAF profile prefix by using the z/OS Profile Management Tool to customize your
settings or on the SAF authorization options panel in the administrative console. This provides a new
sample set of Resource Access Control Facility (RACF) customization jobs that must only be run once
when the domain is created.

The RACF profiles that are created and checked differently because of this are:

v CBIND

v EJBROLE

v APPL

Use CBIND profiles to restrict access to servers if no other specific profile is set. If there is no SAF profile
prefix, enter the following RACF commands:
/* CBIND profiles in case no server definition is set */
"RDEFINE CBIND CB.BIND.* UACC(NONE)"
"RDEFINE CBIND CB.* UACC(NONE)"

If there is a SAF profile prefix defined as TESTSYS, enter:
/* CBIND CB.BIND.domain_name. */
"RDEFINE CBIND CB.BIND.TESTSYS.* UACC(NONE)"
"RDEFINE CBIND CB.TESTSYS.* UACC(NONE)"

Use an APPL profile to protect WebSphere Application Server for z/OS. Sample profiles can grant a
certain level of APPL access to everyone if you use the universal access authority, UACC, and grant
access to the configuration group, unauthenticated user IDs, and all valid WebSphere Application Server
for z/OS user IDs. A UACC(NONE) will give a default access of NONE to everyone. You can control
whether the APPL class profile is used for authorization by setting the checkbox labeled "Use APPL profile
to restrict access to the server" on the SAF authorization options panel in the administrative console.

For example, if there is no SAF profile prefix, enter the following RACF commands:
RDEFINE APPL CB390 UACC(NONE)
PERMIT CB390 CLASS(APPL) ID(TSCLGP) ACCESS(READ)

And if there is a SAF profile prefix defined as TESTSYS, for example, enter:
RDEFINE APPL TESTSYS UACC(NONE)
PERMIT TESTSYS CLASS(APPL) ID(TSCLGP) ACCESS(READ)

The following EJBROLE profiles are defined for role-based authorization checks if there is no SAF profile
prefix and the configuration group is defined as TSTCFG. Note that these are the minimum set of users
requiring access to naming and administrative roles when System Authorization Facility (SAF)
authorization is selected.

The following roles must be defined for both operating system and application security. Enter the following
RACF commands:
RDEFINE EJBROLE administrator UACC(NONE)
RDEFINE EJBROLE monitor UACC(NONE)
RDEFINE EJBROLE configurator UACC(NONE)
RDEFINE EJBROLE operator UACC(NONE)
RDEFINE EJBROLE deployer UACC(NONE)
RDEFINE EJBROLE adminsecuritymanager UACC(NONE)
RDEFINE EJBROLE auditor UACC(NONE)

PERMIT administrator CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT auditor CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT adminsecuritymanager CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)

/* Setting up EJBRoles Profiles for Naming roles */
RDEFINE EJBROLE CosNamingRead UACC(NONE)
PERMIT CosNamingRead CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingWrite UACC(NONE)
PERMIT CosNamingWrite CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingCreate UACC(NONE)
PERMIT CosNamingCreate CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE CosNamingDelete UACC(NONE)
PERMIT CosNamingDelete CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)

36 Securing applications and their environment

If there is a SAF profile prefix defined as TESTSYS and the configuration group is defined as TSTCFG,
enter the following RACF commands:
RDEFINE EJBROLE TESTSYS.administrator UACC(NONE)
RDEFINE EJBROLE TESTSYS.monitor UACC(NONE)
RDEFINE EJBROLE TESTSYS.configurator UACC(NONE)
RDEFINE EJBROLE TESTSYS.operator UACC(NONE)
RDEFINE EJBROLE TESTSYS.deployer UACC(NONE)
RDEFINE EJBROLE TESTSYS.adminsecuritymanager UACC(NONE)
RDEFINE EJBROLE TESTSYS.auditor UACC(NONE)

PERMIT TESTSYS.administrator CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT TESTSYS.auditor CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)
PERMIT TESTSYS.adminsecuritymanager CLASS(EJBROLE) ID(TSTCFG) ACCESS(READ)

/* Setting up EJBRoles Profiles for Naming roles */
RDEFINE EJBROLE TESTSYS.CosNamingRead UACC(NONE)
PERMIT TESTSYS.CosNamingRead CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingWrite UACC(NONE)
PERMIT TESTSYS.CosNamingWrite CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingCreate UACC(NONE)
PERMIT TESTSYS.CosNamingCreate CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)
RDEFINE EJBROLE TESTSYS.CosNamingDelete UACC(NONE)
PERMIT TESTSYS.CosNamingDelete CLASS(EJBROLE) ID(TSGUEST) ACCESS(READ)

CBIND profile definitions for servers

If there is no SAF profile prefix, enter the following RACF commands:
RDEFINE CBIND CB.BIND.BBO* UACC(NONE)
RDEFINE CBIND CB.BIND.TSTC001 UACC(NONE)
PERMIT CB.BIND.BBO* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
PERMIT CB.BIND.TSTC001 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.BBO* UACC(NONE)
RDEFINE CBIND CB.TSTC001 UACC(NONE)

If there is a SAF profile prefix defined as TESTSYS, enter:
RDEFINE CBIND CB.BIND.TESTSYS.BBO* UACC(NONE)
RDEFINE CBIND CB.BIND.TESTSYS.TSTC001 UACC(NONE)
PERMIT CB.BIND.TESTSYS.BBO* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
PERMIT CB.BIND.TESTSYS.TSTC001 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TESTSYS.BBO* UACC(NONE)
RDEFINE CBIND CB.TESTSYS.TSTC001 UACC(NONE)

Note:

v If you wish to create a new specific server that has a jobname starting with a prefix other than
BBO*, define a specific CBIND profile by entering the following RACF commands:

RDEFINE CBIND CB.BIND.TSTC002 UACC(NONE)
PERMIT CB.BIND.TSTC002 CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TSTC002 UACC(NONE)

v The samples create server definitions with specific server names (but a generic profile with a
server prefix of BBO). If you have created an alternative server prefix and wish to avoid
additional CBIND definitions, add generic CBIND profiles that reflect the new name by entering
the following RACF commands, where TST is your server jobname prefix:

RDEFINE CBIND CB.BIND.TESTSYS.TST* UACC(NONE)
PERMIT CB.BIND.TESTSYS.TST* CLASS(CBIND) ID(TSTCFG) ACCESS(CONTROL)
RDEFINE CBIND CB.TESTSYS.TST* UACC(NONE)

Note:

v While the SAF profile prefix separates the RACF classes (CBIND, EJBROLE, APPL), it does not
separate the file permissions for configuration files in the Hierarchical File System (HFS). For
example, if:

– The administrator is WSADMIN in group WSCFG

– The Servant region identity is WASSRV (which must also belong to the WSCFG group)

– The user TOM has READ access to the TEST.administrator EJBROLE but not to the
PROD.administrator EJBROLE,

TOM cannot use the administration application to make changes to the PROD cell.

v A rogue application running in the TEST application server can modify HFS files in the PROD
cell. This is because the TEST server runs with the WASSRV user ID that belongs to the

Chapter 4. Setting up, enabling and migrating security 37

WSCFG group. Both the TEST and PROD HFS files can be modified by the WSCFG group. For
maximum protection, PROD should be created and associated with a different RACF group from
TEST. Also, consider enabling application server and z/OS thread identity synchronization. This
process enables that z/OS system services, such as writing to the HFS, are performed using the
Java Platform, Enterprise Edition (Java EE) identity, instead of the servant region identity. For
more information, read about z/OS security options.

System Authorization Facility considerations for the operating system and
application levels
There are a few things to consider when enabling System Authorization Facility (SAF) authorization for the
operating system and application levels.

With WebSphere Application Server for z/OS, authorization can happen at two different levels:

v Resources can be protected at the operating system level. If a program accesses a protected resource,
the resource manager uses a call to SAF to let the security manager, typically RACF, perform an
authorization check.

v Resources can be protected at the application level. If a Java Platform, Enterprise Edition (Java EE)
application has a security constraint, the container will use a SAF call to let the security manager
(RACF) perform an authorization check.

When SAF authorization is enabled, authorization on any level is always performed by the operating
system's security manager (RACF or an equivalent product). Therefore, it is essential that users are
authenticated with a security manager (RACF) user ID. Refer to “Summary of controls” on page 40 for
more information.

When SAF Authorization is selected during systems customization, administrative EJBROLE profiles for all
administrative roles are defined by the RACF jobs generated using the z/OS Profile Management Tool or
the zpmt command. SAF authorization (the use of SAF EJBROLE profiles to assign SAF users and
groups to roles) can be used as an authorization mechanism for all user registries. If SAF authorization is
selected on the administrative console it overrides any other authorization choice (such as Tivoli Access
Manager authorization).

If you do not select local operating system, you must map the distributed identity to a SAF user id using
one of two options. You can configure and install a Java Authentication and Authorization Service (JAAS)
login module to perform the mapping, or in WebSphere Application Server Version 8.0 you can use the
SAF distributed identity mapping feature.

Note that SAF authorization is also supported for non-local operating system registries. If you turn on SAF,
it becomes the default provider (will handle naming and administration functions). Enable SAF and it
becomes the native authorization provider.

For more information, refer to “Selecting a registry or repository” on page 183.

When SAF Authorization is enabled, use SAF EJBROLE profiles to enforce Java EE roles (the profile
name is the role name for the application). Additionally, you can define a SAF profile prefix, which is an
eight or less character string that is prepended to every SAF EJBROLE profile name. Refer to the
following articles for more information:

v “System Authorization Facility for role-based authorization” on page 569

v “Special considerations for controlling access to naming roles using SAF authorization” on page 576

v “Role-based authorization” on page 546

Note that when SAF Authorization is enabled, the Everyone and All Authenticated settings are ignored.
These attributes are managed in RACF. Everyone and All Authenticated are intended for WebSphere
Authorization when they are enabled.

38 Securing applications and their environment

Everyone
Because no authentication is required (any user can sign on to the Web application and subjects
or principals are not authenticated) for Everyone, RACF will return false if you do not take the
following into consideration. WebSphere Application Server for z/OS uses the default
(unauthenticated) user ID and uses an ACEE that checks for ACCESS(READ) access defined
with the RESTRICTED attribute (the universal access authority (UACC) does not apply). If you
want Everyone to be able to access a particular role, you must grant the default user ID READ
access.

All Authenticated
You can permit any name in the user registry to sign on to the web application (All user names are
authenticated when signing on). You must define UACC(READ) on the profile being accessed and
do not issue the RACF PERMIT command for the default user ID.

Note: The universal access authority does not apply to users defined with the RESTRICTED
attribute. For example, if you want the WebSphere unauthenticated identity to have READ
access to an EJBROLE, then you must explicitly grant the id READ permission, regardless
of the UACC setting.

When using a Local OS Registry, you can control access to console users .

If you decide at a future date to turn on SAF authorization, you must issue these RACF commands to
enable proper WebSphere Application Server operation. (Change the value of the configured default user
ID if you have chosen a different unauthenticated user ID.)

Authentication mechanisms
After you have your system up and running, the next step in setting up security is to select an
authentication mechanism. An authentication mechanism defines rules about security information (for
example, whether a credential is forwardable to another Java process) and the format of how security
information is stored in both credentials and tokens. Authentication is the process of establishing whether a
client is valid in a particular context. A client can be either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user
registry. The user registry is the user and groups accounts repository that the authentication mechanism
consults with when performing authentication. The authentication mechanism is responsible for creating a
credential which is an internal product representation of successfully authenticated client user. Not all
credentials are created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although this product provides several authentication mechanisms, only a single active authentication
mechanism can be configured at once. The active authentication mechanism is selected when configuring
WebSphere Application Server administrative security. WebSphere Application Server supports the
following authentication mechanisms:
v Lightweight Third Party Authentication (LTPA)
v Kerberos
v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM was deprecated in WebSphere Application Server Version 8.0 and will be removed in a
future release.

Specifics about identification and authentication
For identification, each controller and servant start procedure must have its own user ID and you must
define it in the STARTED class. Because you should give differing resource authorizations to each, you
should give differing user IDs to controllers and servants.

Chapter 4. Setting up, enabling and migrating security 39

Note: For identification, each controller and servant start procedure must have its own user ID and you
must define it in the STARTED class. Because you should give differing resource authorizations to
each, you should give differing user IDs to controllers and servants

.

Additional user IDs are required for installation. We provide the definitions for these user IDs in our RACF
sample. See the customized instructions produced when you run the z/OS Profile Management Tool.

v User IDs for controllers and servants.

v A user ID for the Installation Verification Test (IVT) and its application cluster. Our RACF sample uses
WSIVT.

v A user ID called WSADMIN used by the Administration application.

v A default local and remote user ID associated with each cluster through the administrative console. We
use WSGUEST.

Regarding authentication, an operator starts a cluster by using the START command and the controller
start procedure. Authentication of the start procedure's user ID is made by virtue of the fact that an
operator started the start procedure-that is, no password is required. If you want to restrict an operator's
ability to start clusters, do so through the OPERCMDS class in RACF.

The WAS installer automatically generates the STARTED class profile to assign the User ID to WebSphere
Application Server. If you are not using AUTO UID and AUTO GID in the OMVS segment for the
WebSphere Application Server STC User ID, make sure that you have UNIQUE UID and GID assigned to
the WebSphere Application Server STC. If they are not unique, you might either have problems starting
WebSphere Application Server or in logging in to the administrative console if admin security is enabled.

All WebSphere user ids and groups must have an OMVS segment with a valid and unique UID or GID.

Authorization checking
Each controller, servant, and client must be associated with an MVS™ user ID. When a request flows from
a client to the server or from a server to another server, WebSphere Application Server for z/OS passes
the user identity (client or server) with the request. This way, each request is performed on behalf of the
user identity and the system checks to see if the user identity has the authority to make such a request.

When security is enabled, WebSphere Application Server administrative and Java EE authorizations can
be performed using the identity authenticated with the configured user registry or repository.

When the user registry or repository is configured to be the local operating system, the operating system
and WebSphere Application Server identities are the same. You can configure authorization to use either
WebSphere Authorization, System Authorization Facility (SAF) authorization, or a Java Authorization
Contract for Containers (JACC) external provider.

Summary of controls:

Each controller, servant, and client must have its own MVS user ID. When a request flows from a client to
the cluster or from a cluster to a cluster, WebSphere Application Server for z/OS passes the user identity
(client or cluster) with the request. Thus, each request is performed on behalf of the user identity and the
system checks to see if the user identity has the authority to make such a request. The tables in this
article outline System Authorization Facility (SAF) and non-SAF authorizations.

Summary of z/OS security controls independent of administrative security setting

In a WebSphere Application Server for z/OS configuration, there are many different types of processes:

v Deployment managers

v Node agents

40 Securing applications and their environment

v Location service daemons

v WebSphere Application Servers

Each of these can be viewed as either a WebSphere Application Server for z/OS controller process or pair
of processes (a controller and servant).

Each controller and servant must run under a valid MVS user ID assigned as part of the definition of a
started task. This MVS user ID must have a valid UNIX Systems Services user identity (UID) and be
connected to WebSphere configuration group that is common to all servers in the cell with a valid MVS
and UNIX System Services group identity (GID) identity.

The following table summarizes the controls used to grant authorizations needed by these controllers and
servants to access operating system resources. By understanding and using these controls, you can
control all resource accesses in WebSphere Application Server for z/OS.

Table 8. Summary of controls and SAF authorizations.

This table contains a summary of controls and their SAF authorizations.

Control Authorization

DATASET class Access to data sets

DSNR class Access to Database 2 (DB2®)

FACILITY class (BPX.WLMSERVER) Access to the BPX.WLMSERVER profile to perform
Workload Manager (WLM) enclave management in the
servant. Without this access, classification is not
performed.

FACILITY class (IMSXCF.OTMACI) Access to Open Transaction Manager Access (OTMA) for
Information Management System (IMS™), and access to
the BPX.WLMSERVER profile

HFS file permissions Access to Hierarchical File System (HFS) files

LOGSTRM class Access to log streams

OPERCMDS class Access to startServer.sh shell script and Integral
JMSProvider

SERVER class Access to controller by a servant

STARTED class Associate user ID (and optionally group ID) to start
procedure

SURROGAT class (*.DFHEXCI) Access to EXCI for Customer Information Control System
(CICS) access

Tthe WebSphere z/OS Profile Management Tool or the zpmt command and Resource Access Control
Facility (RACF) customization jobs set these up for the initial server settings for the *'ed profiles.

Note: Examples of authorizations for the other profiles can be found in the generated exec file in
HLQ.DATA(BBOWBRAC). The selection of an identity to be used for authorization to native connector
resources (CICS, DB2,, IMS) is dependent on the:

v Type of connector

v Resource authentication (resAuth) setting of the deployed application

v Availability of an alias

v Security setting

Chapter 4. Setting up, enabling and migrating security 41

Resource managers such as DB2, IMS, and CICS have implemented their own resource controls,
which control the ability of clients to access resources. When resource controls are used by DB2,
use the DSNR RACF class (if you have RACF support) or issue the relevant DB2 GRANT
statements. You can:

v Access OTMA for IMS through the FACILITY Class (IMSXCF.OTMACI)

v Access EXCI for CICS through the SURROGAT class (*.DFHEXCI)

v Control access to data sets through the DATASET class and HFS files through file permission

Note that MVS SAF Authorization to all other MVS subsystem resources accessed by J2EE
applications is typically performed using the identity of the servant MVS user ID. Refer to “Java
Platform, Enterprise Edition identity and an operating system thread identity” on page 77 for more
information.

The BPX.WLMSERVER profile in the FACILITY class is used to authorize an address space to use
the Language Environment® (LE) run-time services that interface with workload management
(WLM) to perform workload management within a server region. These LE run-time services are by
used by WebSphere Application Server to extract classification information from enclaves and to
manage the association of work with an Enclave. Because unauthorized interfaces are used to
manipulate WLM enclaves for server region work that has not been passed from a controller to a
servant, WebSphere Application Server servants should be permitted READ access to this profile.
Without this permission, attempts to create, delete, join, or leave a WLM enclave fails with a
java.lang.SecurityException.

Summary of z/OS security controls in effect when administrative and application security are
enabled

When administrative and application security are enabled, SSL must be available for encryption and
message protection. In addition, authentication and authorization of J2EE and administrative clients is
enabled.

The FACILITY class authorization needed for SSL services and the definition of SAF keyrings are required
when administrative security is enabled.

When a request flows from a client to WebSphere Application Server or from a cluster to a cluster,
WebSphere Application Server for z/OS passes the user identity (client or cluster) with the request. Thus
each request is performed on behalf of the user identity and the system checks to see if the user identity
has the authority to make such a request. The tables in this article outline z/OS specific authorizations
using SAF.

The following table summarizes the controls used to grant authorizations to resources. By understanding
and using these controls, you can control access to all resources in WebSphere Application Server for
z/OS.

Table 9. Summary of controls and SAF authorizations.

This table contains a summary of controls and their SAF authorizations.

Control Authorization

CBIND class Access to a cluster

EJBROLE or GEJBROLE class Access to methods in enterprise beans

FACILITY class (IRR.DIGTCERT.LIST and
IRR.DIGTCERT.LISTRING)

SSL key rings, certificates, and mappings

FACILITY Class (IRR.RUSERMAP) Kerberos credentials

FACILITY Class (BBO.SYNC) Enables Synch to OS Thread Allowed

42 Securing applications and their environment

Table 9. Summary of controls and SAF authorizations (continued).

This table contains a summary of controls and their SAF authorizations.

Control Authorization

FACILITY Class (BBO.TRUSTEDAPPS) Enables trusted applications

SURROGAT Class (BBO.SYNC) Enables Synch to OS Thread Allowed

PTKTDATA class PassTicket enabling in the sysplex

Set OS Thread Identity to RunAs Identity J2EE cluster property used to enable the start identity for
non-J2EE resources

Enabling trusted applications:

From a z/OS perspective, trusted applications imply that the WebSphere Application Server started task
control (STC) is to be considered a "trusted application" and is allowed to change System Authorization
Facility (SAF) identity on the thread of execution. When a z/OS applications (such as WebSphere
Application Server) are trusted, the security infrastructure allows the creation of MVS credentials without
using a password, passticket, or certificate as an authenticator, while still preserving the integrity of the
MVS system.

Through the use of the FACILITY class and BBO.TRUSTEDAPPS class profile, trusted applications (as a
general rule) are needed when using SAF as the local operating system user registry or when you plan to
use SAF authorization. When WebSphere Application Server is configured to use: SAF security for a local
operating system user registry, SAF authorization, or Sync to Thread Allowed, trusted applications must be
enabled so that MVS system integrity remains preserved. Trusted applications meet the MVS integrity
rules so that unauthorized callers are NOT allowed to call sensitive WebSphere Application Server code to
perform authorized functions. When using SAF, you must define the trusted application within the
Resource Access Control Facility (RACF) or an equivalent product. The SAF authorization resource rules
need to define WebSphere Application Server as the trusted application with the authority to change the
identity on thread execution. In this way, WebSphere Application Server and MVS can work together
without jeopardizing each other's integrity.

Using FACILITY class profiles

You enable the trusted applications by ensuring that the WebSphere Application Server has SAF access of
READ to the RACF class of FACILITY and profile of BBO.TRUSTEDAPPS.<cell short name>.<cluster short
name>.

Once defined, the trusted applications need to be enabled. You use the FACILITY class profile to give the
RACF administrator control over the enabling of trusted applications. The following examples illustrates
how you use the FACILITY class and the BBO.TRUSTEDAPPS class profile to provide this control.

v Generic Example:
RDEF FACILITY BBO.TRUSTEDAPPS.**UACC(NONE)
PERMIT BBO.TRUSTEDAPPS.** CLASS(FACILITY) ID(MYCBGROUP) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

v Specific Example with a specific server identified by a cell short name of SY1, a cluster short name of
BBOC001, and a controller region userid of MYSTCCR.
RDEF FACILITY BBO.TRUSTEDAPPS.SY1.BBOC0001 UACC NONE
PERMIT BBO.TRUSTEDAPPS.SY1.BBOC0001 CLASS(FACILITY) ID(MYSTCCR) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

System Authorization Facility classes and profiles:

Chapter 4. Setting up, enabling and migrating security 43

When you are using Resource Access Control Facility (RACF) or System Authorization Facility (SAF) you
must consider:

1. Using roles for enterprise beans and web applications, and servlets

2. Using RACF class profiles

a. Using CBIND to access servers and objects in the servers

b. Using SERVER to access controllers using servant regions

c. Using STARTED to associate user IDs and groups with started procedures

d. Using APPL to restrict access of authenticated users to applications in the server

e. Using FACILITY to establish permission to enable Synch to OS Thread Allowed and allow mapping
of distributed identities to SAF identities using the JAAS mapping login modules.

f. Using SURROGAT to optionally establish permission to enable Synch to OS Thread Allowed

3. Creating multiple security configurations within a sysplex

4. Generating new user IDs and Profiles for a new server

5. Using minimalist profiles

Roles for Enterprise JavaBeans and web applications, and servlets

Roles are associated with Java Platform, Enterprise Edition (Java EE) applications. Modules within the
applications refer to roles using the role reference that points to the application role. Access to web
applications, servlets, or EJB methods is based upon the user or caller. Roles are associated with web
applications, and servlets or enterprise beans at assembly time. The role needed to use a servlet or EJB
method is named in the application's deployment descriptors.

Which users and groups have which roles is determined using RACF profiles in the EJBROLE class (if
SAF authorization is selected). If a user is in the access list of an EJBROLE profile, the user has that role.
If a group is in the access list of an EJBROLE profile, users in that group have that role. If the EJBROLE
profile has ACCESS(READ), all users have that role.

The SAF profile prefix (previously referred to as z/OS security domain), if specified, becomes a prefix used
by WebSphere Application Server for z/OS and RACF when checking EJBROLE profiles. This provides
WebSphere SAF profile prefix-level granularity of roles.

For example:
Test
Cell has Security Domain=TEST Production Cell has Security Domain=PROD

For example, an application using role Clerk is deployed on both cells. On the test cell, users need READ
access to the EJBROLE profile TEST.Clerk. On the production cell, users need READ access to the
EJBROLE profile PROD.Clerk.

The following profiles are defined in the RACF EJBROLE class for administrative authorization:
administrator, configurator, monitor, operator, deployer, adminsecuritymanager, and auditor.

Refer to “System Authorization Facility for role-based authorization” on page 569 for more information on
how SAF can be used for Java EE-based role authorization.

Using the RACF profiles

It is important to understand the security mechanisms used to protect the server resources using the
CBIND, SERVER, and STARTED classes in RACF (or your equivalent security product). You must also
understand the techniques for managing the security environment.

The RACF profiles that protect the WebSphere Application Server for z/OS resources use the following
classes:

44 Securing applications and their environment

1. CBIND: Use this class to access to servers, and access to objects in the servers

2. SERVER: Use this class to access to controllers by servant regions

3. STARTED: Use this class to associate user IDs and groups to started procedures

4. APPL: Use this class to restrict access of authenticated users to applications running on the server

5. FACILITY: Use this class to:

v associate user IDs and groups to the Synch to OS Thread Allowed option

v control which security configurations are allowed to map distributed identities to SAF identities using
the JAAS mapping login modules

6. SURROGAT: Use this optional class to associate user IDs and groups to the Synch to OS Thread
Allowed option

Refer to “System Authorization Facility considerations for the operating system and application levels” on
page 38 for more information.

Basic information about the RACF profiles used by WebSphere Application Server for z/OS can be found
in the SAF-based authorization. This section adds some additional details about the CBIND, SERVER,
FACILITY, SURROGAT, and STARTED class profiles.

User IDs and Group IDs

When creating a profile for an application server, the BBOCBRAK job generates the RACF commands. When
creating a profile for a cell, deployment manager, job manager, or admin agent, the job name is
BBODBRAJ. When creating a profile for a custom node, the job name is BBOMBRAJ. Enter the following
information:
CR = Controller Region SR = Servant
Region CFG = Configuration (group) server = server short name cluster = generic
server (short) name (also called cluster transition name)

Six users and six groups, defined as follows, are shown symbolically to help you understand how they are
used in the various permissions later on:
<CR_userid> <CR_groupid>, <CFG_groupid> <SR_userid> <SR_groupid>, <CFG_groupid> <demn_userid> <demn_groupid>,
<CFG_groupid> <admin_userid> <CFG_groupid> <client_userid> <client_groupid> <ctracewtr_userid> <ctracewtr_groupid>

Below are the various profiles used to protect the WebSphere Application Server for z/OS resources, along
with the permissions and access levels.

Using CBIND class profiles

There are two formats and levels of CBIND class profiles for protecting access to application servers and
objects in those servers:
CBIND Class profiles - access to generic servers CB.BIND.<cluster> UACC(READ); PERMIT <CR_group> ACC(CONTROL)
CBIND Class profiles - access to objects in servers
CB.<cluster> UACC(READ) PERMIT <CR_group> ACC(CONTROL)

If you are using “SAF profile prefix”, the CBIND profiles are qualified by the “profilePrefix” as follows:
CBIND Class profiles - access to generic servers CB.BIND.<profilePrefix>.<cluster> UACC(READ)
CBIND Class profiles - access to objects in servers
CB.<profilePrefix>.<cluster> UACC(READ)

CBIND profiles control access to WebSphere Application Server for z/OS servers, including web servers
running the WebSphere Application Server plug-in, and to objects in the servers, from Java application
clients and other WebSphere Application Server servers. For access to servers, enter:
CB.CBIND.<cluster>
CB.CBIND.<SAF profile prefix>.<cluster>

For access to objects within servers, enter:
CB.<cluster> CB.<SAF profile prefix>.<cluster>

Chapter 4. Setting up, enabling and migrating security 45

Using SERVER class profiles

There are currently two formats of the SERVER class profiles for protecting access to the server
controllers.
SERVER
class profiles – access to controllers using static Application Environments
CB.<server>.<cluster> UACC(NONE) PERMIT <SR_userid> ACC(READ)

SERVER class profiles – access to controllers using dynamic Application
Environments CB.<server>.<cluster>.<cell> UACC(NONE) PERMIT <SR_userid>
ACC(READ)

In using the WebSphere z/OS Profile Management Tool or the zpmt, both formats are predefined, and one
of these is actually required at runtime. The required format is determined dynamically by the WebSphere
Application Server for z/OS Runtime based on the availability of Dynamic Application Environment (DAE)
support. The following command provides access to controllers using static Application Environments:
RDEFINE
CB.&<server<cluster> UACC(NONE); PERMIT &<SR_userid> ACCESS(READ)

For this example, server = server name, cluster = cluster name or cluster transition name if a cluster has
not yet been created, and SR is the MVS user ID for the server region.

The following command provides access to controllers using dynamic Application:
CB.& <server>.&<cluster>.<cell>
UACC(NONE); PERMIT &<SR_userid> ACC(READ)

For this example, server = server name, cluster = cluster name or cluster transition name if a cluster has
not yet been created, cell = cell short name, and SR is the MVS user ID for the server region.

SERVER class profiles control whether a servant can call authorized routines in the associated controller.

For access to Controller using Static Application Environment, enter:
CB.<server>.<cluster>
CB.<SAF profile prefix>.<server>.<cluster>

For access to Controller using Dynamic Application Environment, enter:
CB.<server>.<cluster>.<cell>
22

Using STARTED class profiles

There are three formats of STARTED class profiles used to assign user IDs and group IDs to controllers:
STARTED Class profiles - (MGCRE) - for control regions, daemons, and Node agents
<<CR_proc>.<CR_jobname> STDATA(USER(CR_userid) GROUP(CFG_groupid))
<demn_proc>.* STDATA(USER(demn_userid) GROUP(CFG_groupid))

STARTED Class profiles - (ASCRE) - for servant regions and adjuncts
<SR_jobname>.<SR_jobname> STDATA(USER(SR_userid) GROUP(CFG_groupid))

STARTED Class profiles for IJP - (MGCRE)
<MQ_ssname>.* STDATA(USER(IJP_userid) GROUP(CFG_groupid)) - These IJPs don’t exist in WAS 6.1

STARTED class profiles are generated to assign user IDs to the various WebSphere Application Server for
z/OS regions. Regions include:

v Daemon

v Deployment Manager (controller and servant)

v Node Agent

v Application Servers (controller, servant and ajunct)

v Admin agents (controller and servant)

v Job managers (controller and servant)

Using APPL class profiles

46 Securing applications and their environment

An APPL class profile controls whether an authenticated user can use any applications in the cell. If a SAF
profile prefix is specified, the APPL class profile name will be the SAF profile prefix name. If SAF profile
prefix is not specified, the APPL class profile name will be CBS390. Refer to “System Authorization Facility
considerations for the operating system and application levels” on page 38.

The APPL class profile only takes effect when both the APPL class is active in RACF and when the option
to use the APPL profile is enabled in WebSphere. The WebSphere option can be enabled or disabled from
the administrative console by navigating to the SAF authorization options panel and setting the checkbox
"Use APPL profile to restrict access to the server". For more information on this setting, read about “z/OS
System Authorization Facility authorization” on page 573.

Creating multiple security configurations within a cell

You might require distinct sets of profiles within a given cell to separate logical WebSphere security
domains in your enterprise, (for example, test, and production users).

You can define a SAF profile prefix during customization using the z/OS Profile Management Tool, the
zpmt command, or the SAF Authorization options panel in the administration console.

Use the WebSphere Application Server for z/OS administrative console to set a SAF profile prefix under
Security > Global security > External authorization provider > System Authorization Facility (SAF)
authorization > Configure > SAF profile prefix, which creates the following property in the security.xml
file.
xmi:id="Property_47" name="com.ibm.security.SAF.profilePrefix"
value="<profile_prefix>" required="false"/>

When a SAF profile prefix identifier is set, the following profile definitions and checks are affected:

Table 10. Profile definitions and checks affected when SAF profile prefix identifier is set..

This table lists the profile definitions and checks affected when SAF profile prefix identifier is set.
Class No SAF profile prefix With a SAF profile prefix

CBIND CB.clustername

CB.BIND.clustername

CB.<profilePrefix>.clustername

CB.BIND.<profilePrefix>.clustername

EJBROLE ApplicationRoleName <profilePrefix>.ApplicationRoleName

APPL CBS390 <profilePrefix>

Generating new user IDs and Profiles for a new Server

If you want to use unique user IDs for each new application server, you must define these users, groups,
and profiles in the RACF database.

Through using the WebSphere z/OS Profile Management Tool or the zpmt command, you need to edit a
copy of the BBOWBRAK member (or BBODBRAK depending on the type of profile) job's target .DATA
partitioned data set, and change the following entries to the new users, groups, and unique New_server
name, and New_cluster name profiles:

v If unique user IDs for the new servers are desired, define three new users and connect them to the
following groups:

– <New_CR_userid> <CR_groupid>, <CFG_groupid>

– <New_SR_userid> <<SR_groupid>, <CFG_groupid>

– <New_ADJUNCT_userid> <<ADJUNCT_groupid>, <CFG_groupid>

– <New_client_userid> <client_groupid>

v CBIND class profiles for the new cluster (generic server short name):

– CB.BIND.<New_cluster>

Chapter 4. Setting up, enabling and migrating security 47

– CB.<New_cluster>

v SERVER class profiles for the new server and cluster:

– CB.<New_server>.<New_cluster>

– CB.<New_server>.<New_cluster>.<cell>

v STARTED class profiles for the new server's controller and servant's regions:

– <CR_proc>.<New_CR_jobname> STDATA(USER(New_CR_userid) GROUP(CFG_groupid))

– <New_SR_jobname>.* STDATA(USER(New_SR_userid) GROUP(CFG_groupid))

– <New_ADJUNCT_jobname>.* STDATA(USER(New_ADJUNCT_userid) GROUP(CFG_groupid))

Using FACILITY and SURROGAT class profiles (Synch to OS Thread Allowed Option)

The FACILITY and SURROGAT class profiles give the RACF administrator control over the use of Synch
to OS Thread Allowed.

Attention: If these profiles are not defined in RACF, Sync to thread will not be allowed, and the RACF
administrator will use the server ID.

v FACILTY class profile BBO.SYNC.<cell short name>.<cluster short name>

– If the WebSphere controller does not have access to the profile, Synch to OS Thread Allowed will be
disabled.

– If the WebSphere controller has READ access to profile. Sync to OS Thread Allowed can be used,
but it is limited to security environments that represent certain users. The SURROGATE class profile
(below) needs to be defined.

– The WebSphere controller has CONTROL access to the profile. Sync to OS Thread Allowed can be
used to build security environments to represent any user. The SURROGATE class profile will not be
checked.

v SURROGAT class profile BBO.SYNC.<user ID>

– If the WebSphere controller only has READ access to the FACILITY class profile of BBO.SYNC.<cell
short name>.<cluster short name> that enables Synch to OS Thread Allowed, the SURROGAT
class profile check is used to verify that the WebSphere servant is authorized to establish a security
environment for the target user.

– Class profile checks are consistent with other products that perform similar functions.

The formats and use of the FACILITY and SURROGAT class profiles is as follows:
RDEF FACILITY BBO.SYNC.<cell short name>.<cluster short name> UACC NONE
PE BBO.SYNC.<cell short name>.<cluster short name> CLASS(FACILITY)ID(<CR userid>) ACC(READ or CONTROL)
RDEF SURROGAT BBO.SYNC.<SR userid> UACC NONE
PE BBO.SYNC.<application> CLASS(SURROGAT) ID(<SR userid>)ACC(READ)

Note: The cluster short name is the server generic short name if no clustering is defined. Also, the
SURROGAT class profile needs to be placed in a (RACLISTed) memory table to improve the
performance of the access checks.

If the <CR userid> is given CONTROL access, then any individual user ids that request Synch to OS Thread
Allowed are allowed to synch. If the <CR userid> is given READ access then any individual user ids that
request Synch to OS Thread Allowed must also have READ access to a SURROGAT class profile that gives
the application user id explicit permission to Synch to OS Thread Allowed in the servant region (SR). For
example, assume a system with cell short name of SY1, a cluster short name (the server generic short
name) of BBOC001, CR userid of CBSYMCR, SR userid of CBSYMSR, and an application running under
the userid of JavaEEID. The following commands would be used to establish Synch to OS Thread Allowed
control.
RDEF FACILITY BBO.SYNC.SY1.BBOC001 UACC NONE
PE BBO.SYNC.SY1.BBOC001 CLASS(FACILITY) ID(CBSYMCR) ACC(READ)
RDEF SURROGAT BBO.SYNC.J2EEID UACCNONE
PE BBO.SYNC.J2EEID CLASS(SURROGAT) ID(CBSYMSR) ACC(READ)

Using FACILITY class profiles (Enabling Trusted Applications)

48 Securing applications and their environment

|
|

The FACILITY class profile gives the RACF administrator control over the enabling of trusted applications.
To enable trusted applications, you must define the following FACILITY class profile and give the controller
region user id READ access to it.
RDEF FACILITY BBO.TRUSTEDAPPS.<cell
short name>.<cluster short name> UACC NONE PE
BBO.TRUSTEDAPPS.<cell short name>.<cluster
short name> CLASS(FACILITY) ID(CR userid) ACC(READ)

The following generic example can be user for all servers:
RDEFINE FACILITY BBO.TRUSTEDAPPS.mycell01.**UACC(NONE)
PERMIT BBO.TRUSTEDAPPS.mycell01.** CLASS(FACILITY) ID(MYCBGROUP) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

The following example is for a specific server, that is, a system with a cell short name of SY1, a cluster
short name (the server generic short name) or BBOC001, and a controller region userid of CBSYMCR:
RDEF FACILITY BBO.TRUSTEDAPPS.SY1.BBOC001 UACC
NONE PE BBO.TRUSTEDAPPS.SY1.BBOC001 CLASS(FACILITY) ID(CBSYMCR) ACC(READ)

Using minimalist profiles

To minimize the number of users, groups, and profiles in the RACF data set, you can use one user ID,
one group ID, and very generic profiles so they cover multiple servers in the same cell. This technique can
also be used with Integral Java Message Service provider and WebSphere Application Server, Network
Deployment configurations.

The advantages of using minimalist profiles include having fewer:

v Profile definitions to define

v Digital certificates to consider for interprocess Secure Sockets Layer communication

A disadvantage is that you must more closely monitor applications because if multiple servers run with the
same user IDs or groups, an application can cause problems in one server and potentially corrupt the
configuration of its own server (for example, by turning security off) and other servers as well.

Cluster authorizations:

This section discusses the kinds of authorization checking WebSphere Application Server for z/OS does
for a clusters. Servants must have access to profiles in the RACF SERVER class. This controls whether a
servant can call authorized routines in the controller.

The following explains the kinds of authorization checking WebSphere Application Server for z/OS does for
clusters.
1. Servants must have access to profiles in the RACF SERVER class. This controls whether a servant

can call authorized routines in the controller.

Controllers do not require such access control. Only authorized programs, loaded from Authorized
Program Facility (APF) libraries, run in controllers.

2. Resource managers such as DB2, IBM Information Management System (IMS), and Customer
Information Control System (CICS) have implemented their own resource controls, which control the
ability of applications to access resources.

When resource controls are used by DB2, all controllers and servants need to be granted access to
the relevant resources. You can grant access by using the DSNR RACF class (if you have RACF
support) or by issuing the relevant DB2 GRANT statements.

Access to Open Transaction Manager Access (OTMA) for IMS access is accomplished through the
FACILITY Class (IMSXCF.OTMACI). Access to EXCI for CICS is accomplished through the
SURROGAT class (*.DFHEXCI).

You can control access to data sets through the DATASET class and hierarchical file system (HFS)
files through file permissions.

Chapter 4. Setting up, enabling and migrating security 49

Server process authorization checking:

You can specify specific access restrictions to z/OS resources.

To control access to WebSphere Application Server for z/OS resources:
v As a general rule, give greater authority to controllers and less authority to servants.

Table 11. Level of trust and authority for regions.

This table indicates the level of trust and authority for regions.
Region Level of trust and access authority

Controller Note:
v Contains WebSphere Application Server for z/OS system code.
v Trusted, runs APF-authorized
v Contains communication ports and manipulation of System Authorization Facility

(SAF) client identities

Servant Note:
v Contains WebSphere Application Server for z/OS system code, application code, and

pluggable service providers (such as jdbc drivers)
v Supports Java 2 Security to protect sensitive data and system services
v Untrusted

v Regarding the WebSphere Application Server for z/OS run-time clusters, the general rule is to give less
authority to the location service daemon, and greater authority to the node, as explained in the table
below:

Table 12. Assigning authorities to WebSphere Application Server for z/OS run-time cluster control and servants.

This table lists the required authorities for z/OS run-time cluster control and servants.

Run-time Cluster Region Required Authorities

Location service
daemon

Control v STARTED class
v Access to Workload Manager (WLM) services
v Access to DNS
v OPERCMDS access to START, STOP, CANCEL, FORCE, and

MODIFY other clusters
v IRR.DIGTCERT.LIST and IRR.DIGCERT.LISTRING in FACILITY

(SSL)

Node Control STARTED class

Controller Control v SSL
v Kerberos
v READ authority to the SERVER class,
v OPERCMDS access to START, STOP, CANCEL, FORCE and

MODIFY other servers

Servant Control The following classes:
v OTMA
v SERVER
v DSNR,
v DATASET
v SURROGATE
v STARTED
v LOGSTREEAM

v Remember to protect the Resource Recovery Services (RRS) log streams. By default, UACC is READ.
v Protect the WebSphere Application Server for z/OS properties XML files, especially if they contain

passwords. For more information, see the WebSphere Application Server variables in the administrative
console or the documentation.

v Deployment Manager also needs permission to start and stop servers.

50 Securing applications and their environment

Secure Sockets Layer security for WebSphere Application Server for z/OS
This topic assumes you understand the Secure Sockets Layer (SSL) protocol and how cryptographic
services system SSL works on z/OS. SSL is used by multiple components within WebSphere Application
Server to provide trust and privacy. Such components include the built-in HTTP transport, the Object
Request Broker (ORB) (client and server), and the secure Lightweight Directory Access Protocol (LDAP)
client. Configuring SSL is different between client and server with WebSphere Application Server. If you
want the added security of protected communications and user authentication in a network, you can use
SSL security.

SSL is an integral part of the security provided by WebSphere Application Server for z/OS. It is activated
when administrative security is enabled. When administrative security is enabled, SSL is always used by
the administrative subsystem to secure administrative commands, the administration console, and
communications between WebSphere Application Server processes.

The WebSphere Application Server for z/OS runtime can optionally use SSL when server security is
enabled in these cases:

v SSL is used to protect web application when confidentiality is specified as a Web Application Security
Constraint. A transport guarantee of CONFIDENTIAL or INTEGRAL guarantees that the communication
between the web client and the web server is secured and is transported over HTTPS (HTTP SSL). In
addition, you can use SSL to perform client authentication when the security constraint (CLIENT_CERT)
is specified during application deployment .

v SSL can be used to protect Inter-ORB Protocol (IIOP) requests when SSL/TLS is supported (or
required) in the Common Secure Interoperability version 2 (CSIv2) transport settings. These are set by
clicking Security > Global security. Under RMI/IIOP security, click CSIv2 inbound transport or CSIv2
outbound transport.

v SSL can be used to protect communications between an LDAP client and server when the active user
registry is LDAP.

When configuring SSL, there are two types of SSL repertoires on WebSphere Application Server for z/OS.
The type of repertoire relates to the underlying services used to process SSL.

v Java Secure Socket Extension (JSSE) must be selected as the SSL repertoire type for administrative
requests using the HTTP/SOAP Connector. JSSE repertoires can (with APAR PQ77586 applied) specify
either a SAF keyring for the keystore or truststore, or an hierarchical file system (HFS) file.

Note: All SSL configuration repertoires of the System Secure Sockets Layer (SSSL) type, except those
that belong to the daemon, are converted to the Java Secure Socket Extension (JSSE) type.
System SSL is now only used by the Daemon Address Space because the daemon runs without a
JVM and JSSE is only supported in Java.

This topic gives a brief explanation of the SSL protocol and how SSL works on z/OS. For information
about the SSL protocol, go to the following website: http://home.netscape.com/eng/ssl3/ssl-toc.html

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server to
provide trust and privacy. These components are the built-in HTTP Transport, the ORB (client and server),
and the secure LDAP client. Configuring SSL is different between client and server with WebSphere
Application Server. If you want the added security of protected communications and user authentication in
a network, you can use Secure Sockets Layer (SSL) security. The SSL support in WebSphere Application
Server for z/OS has several objectives:
v To provide ways accepted by the industry to protect the security of messages as they flow across the

network. This is often called transport layer security. Transport Layer Security (TLS) is a function that
provides privacy and data integrity between two communicating applications. The protection occurs in a
layer of software on top of the base transport protocol (for example, on top of TCP/IP).

SSL provides security over the communications link through encryption technology, ensuring the
integrity of messages in a network. Because communications are encrypted between two parties, a third

Chapter 4. Setting up, enabling and migrating security 51

http://home.netscape.com/eng/ssl3/ssl-toc.html

party cannot tamper with messages. SSL also provides confidentiality (ensuring the message content
cannot be read), replay detection, and out-of-sequence detection.

v To provide a secure communications medium through which various authentication protocols can
operate. A single SSL session can carry multiple authentication protocols, that is, methods to prove the
identities of the parties communicating.

SSL support always provides a mechanism by which the server proves its identity. The SSL support on
WebSphere Application Server for z/OS allows these ways for the client to prove its identity:
– Basic authentication (also known as SSL Type 1 authentication), in which a client proves its identity

to the server by passing a user identity and password (or password phrase) known by the target
server.

With SSL basic authentication:
- A z/OS client can communicate securely with WebSphere Application Server for z/OS with a user

ID and password as defined by the CSIv2 user name and password mechanism Generic Security
Services Username Password (GSSUP).

- A WebSphere Application Server client can communicate securely with a WebSphere Application
Server for z/OS server by using a MVS user ID and password (or password phrase).

- Because a password is always required on a request, only simple client-to-server connections can
be made. That is, the server cannot send a client's user ID to another server for a response to a
request.

– Client certificate support, in which both the server and client supply digital certificates to prove their
identities to each other.

When digital certificates are provided for authentication to WebSphere Application Server for z/OS
the decrypted certificate is mapped to a valid user identity in the enabled user repository. Web
applications can have thousands of clients, which makes managing client authentication an
administrative burden. When the local operating system is the enabled user repository on
WebSphere Application Server for z/OS, SAF certificate name filtering allows you to map client
certificates, without storing them, to MVS user IDs. Through certificate name filtering, you can
authorize sets of users to access servers without the administrative overhead of creating MVS user
IDs and managing client certificates for every user.

– SSL support always provides a mechanism by which the server proves its identity. A variety of
mechanisms can be used to prove the clients identity. The SSL v3 (and TLS) protocol provides for
the ability for client digital certificates to optionally be exchanged. These certificates can be used for
authentication.

– CSIv2 identity assertion, which provides support for z/OS principals, X501 distinguished names, and
X509 digital certificates.

– Identity assertion, or trusted association, in which an intermediate server can send the identities of its
clients to a target server in a secure yet efficient manner. This support uses client certificates to
establish the intermediate server as the owner of an SSL session. Through the Resource Access
Control Facility (RACF), the system can check that the intermediate server can be trusted (to confer
this level of trust, CBIND authorization is granted by administrators to RACF IDs that run secure
system code exclusively). After trust in this intermediate server is established, client identities (MVS
user IDs) need not be separately verified by the target server; those client identities are simply
asserted without requiring authentication.

v To be securely interoperable with other products, such as:
– Customer Information Control System (CICS) Transaction Server for z/OS
– Other WebSphere Application Server versions
– Common Object Request Broker Architecture (CORBA)-compliant object request brokers

SSL is disabled by default and SSL support is optional. If you are running WebSphere Application Server
for z/OS with security turned on, SSL is required by the administrative console. Java Secure Socket
Extension (JSSE) is the SSL repertoire type used.

52 Securing applications and their environment

Table 13. SSL connection sequence.

This table describes how an SSL connection works.

Stage Description

Negotiation After the client locates the server, the client and server negotiate the type of
security for communications. If SSL is to be used, the client is told to connect to a
special SSL port.

Handshake The client connects to the SSL port and the SSL handshake occurs. If successful,
encrypted communication starts. The client authenticates the server by inspecting
the server's digital certificate.

If client certificates are used during the handshake, the server authenticates the
client by inspecting the client's digital certificate.

Ongoing communication During the SSL handshake, the client and server negotiate a cipher spec to be
used to encrypt communications.

First client request The determination of client identity depends upon the client authentication
mechanism chosen, which is one of the following:
v CSIv2 user ID and password (GSSUP)
v CSIv2 asserted identity

Rules
v Either a Java or C++ client on z/OS is interoperable with a WebSphere Application Server for z/OS or

workstation Application Server, and can use SSL. CSIv2 security only supports Java clients on z/OS.
v Part of the handshake is to negotiate the cryptographic specs used by SSL for message protection.

There are two factors that determine the cipher specs and key sizes used:
– The security level of the cryptographic services installed on the system, which determines the cipher

specs and key sizes available to WebSphere Application Server for z/OS.
– The configuration of the server through the administrative console allows you to specify SSL cipher

suites.

For more information, see z/OS System Secure Sockets Layer Programming.
v For z/OS system SSL sockets you must use RACF or an equivalent to store digital certificates and

keys. Placing digital certificates and keys into a key database in the HFS is not an option.

Tip: To define SSL basic authentication security, you must first request a signed certificate for your server
and a certificate authority (CA) certificate from the certificate authority that signed your server
certificate. After you have received a signed certificate for your server and a CA certificate from the
certificate authority, you must use RACF to authorize the use of digital certificates, store server
certificates, and server key rings in RACF, create an SSL repertoire alias, and define SSL security
properties for your server through the administrative console.

For clients, you must create a key ring and attach to it the CA certificate from the certificate authority that
issued the server's certificate. For a z/OS client, you must use RACF to create a client key ring and to
attach the CA certificate to that key ring. For the client to authenticate the server, the server (actually, the
controller user ID) must possess a signed certificate created by a certificate authority. The server passes
the signed certificate to prove its identity to the client. The client must possess the CA certificate from the
same certificate authority that issued the server's certificate. The client uses the CA certificate to verify that
the server's certificate is authentic. After the certificate is verified, the client can be sure that messages are
truly coming from that server, not someone else. For the server to authenticate the client, note that there is
no client certificate that the client passes to prove its identity to the server. In the SSL basic authentication
scheme, the server authenticates the client by challenging the client for a user ID and password (or
password phrase).

See “Setting up a keyring for use by Daemon Secure Sockets Layer” on page 57 for information on
creating a keyring for the daemon's MVS user ID.

Chapter 4. Setting up, enabling and migrating security 53

SSL repertoires:

With Secure Sockets Layer (SSL) configuration repertoire, administrators can define any number of SSL
settings that can be used to make HyperText Transport Protocol SSL (HTTPS), Internet Inter-ORB Protocol
SSL (IIOPS) or Lightweight Directory Access Protocol SSL (LDAPS) connections.

Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console which allows SSL connections. This simplifies the SSL
configuration process since you can reuse many of these SSL configurations by simply specifying the alias
in multiple places. The appropriate repertoire is referenced during the configuration of a service that sends
and receives requests encrypted using SSL, such as the web and enterprise beans containers. Before
deleting SSL configurations from the repertoire, remember that if an SSL configuration alias is referenced
somewhere, and it is deleted here, an SSL connection will fail if the deleted alias is accessed.

Note: You can also create an alias, but first you must create an SSL configuration repertoire alias or
entry. You can then select the alias later when a component is configured for SSL support.

If you choose to use SSL, Java Secure Socket Extension (JSSE) is the SSL repertoire type used. An
exception to this is that System SSL (SSSL) is the SSL repertoire type used by the Daemon Address
Space as the daemon runs without a JVM, but JSSE is only supported in Java.

Daemon Secure Sockets Layer:

Use the administrative console panel to modify the port and Secure Sockets Layer (SSL) port settings and
to specify the SSL settings (the SSL repertoire). The default repertoire is the same one used for the
server, which is a SystemSSL IIOP repertoire. During daemon initialization the SSL usage initialization is
attempted if security is enabled and a valid repertoire is found. In order to turn off the daemon SSL port a
cell-level WebSphere variable (DAEMON_security_disable_daemon_ssl) must be created and set to true.
The default for this variable is false.

SSL can be used to protect locations in the SSL daemon using the Location Service Daemon if:

v Administrative security is enabled

v A daemon SSL repertoire is configured in the administrative console (the daemon SSL repertoire refers
to a valid RACF keyring that is owned by the MVS user ID associated with the daemon process)

v A certificate and keyring have been defined

On the administrative console, click System administration > Node groups >
sysplex_node_group_name. Under Additional properties, click z/OS location service.
Location service daemon

This panel specifies the configuration settings for the location service daemon for this cell.
Changes made to these settings to the entire cell and to the location service daemon instance
on each node in the cell.

Job Name BBODMNC Specifies z/OS jobname of location
service daemon.

Host Name BOSSXXXX.PLEX1.L2.IBM.COM Specifies host name to be used when
contacting location service daemon.

Port 5755 Specifies port location service daemon
listens on for unencrypted communication.

SSL Port 5756 Specifies port location service daemon
listens on for encrypted communication.

SSL Setting PLEX1Manager/DefaultIIOPSSL Specifies a list of predefined SSL
settings to choose from for connections.
These are configured at the SSL repertoire
panel.

You can use the WebSphere z/OS Profile Management Tool or the zpmt command to specify
authentication information, including the daemon's user ID, UID, and SSL port. RACF commands are
generated to create a keyring for server use (the default is WASKeyring). The z/OS Profile Management
Tool or the zpmt command generates the daemon keyring and the certificate. To generate the daemon
keyring and certificate using the z/OS Profile Management Tool, select Security Domain > SSL

54 Securing applications and their environment

Customization > Enable SSL on the Location Service Daemon. If you type Y next to this option, the
RACF commands are generated to do the following tasks:

v Create a daemon keyring and certificate

v Connect the certificate and certificate authority (CA) certificates to the keyring.

Important: This option does not control the use of the daemon SSL.
This is appropriate if the user IDs are the same, but if the daemon has a separate user ID, see Setting up
a Keyring for use by WebSphere Application Server for z/OS. The values selected are picked up by the
administrative console.

If the daemon process is assigned the same MVS user ID assigned to a secure WebSphere Application
Server, the keyring you use to secure WebSphere Application Server can also be used to secure daemon
requests. If the daemon process is not assigned the same MVS user ID assigned to a secure WebSphere
Application Server, it is recommended that you perform the daemon SSL setup similarly to the setup for
your WebSphere Application Server. Modify the customization job commands generated in BBOCBRAK (or
HLQ.DATA(BBODBRAK) on WebSphere Application Server, Network Deployment) to perform the steps in
Setting up a Keyring for use by WebSphere Application Server for z/OS.

Setting permission for files created by applications
Files created by applications running in the servant will have permission bits set according to the default
umask. To change the default umask for the servant, specify the _BPX_BATCH_UMASK environment
variable for the servant. Deployment manager and application servers require group read/write access to
the data in their config root.

Before you begin

About this task

Deployment manager and application servers require group read/write access to the data in their config
root. The server must run with a 007 umask in order to support system management functions. Do not
change this umask setting and your server will function correctly.

Use the _BPX_BATCH_UMASK environment variable for the servant to set the umask to 007. You define
_BPX_BATCH_UMASK as a new environment variable using the administrative console.

To view the administrative console page, click Environment > WebSphere variables.

To define this new variable using the administrative console, select the appropriate scope from the list of
available options and then click New to create the name _BPX_BATCH_UMASK and the desired value.
You will need to restart the server to pick up the _BPX_BATCH_UMASK setting.

Recommendation: A umask value of 007 will cause applications to create directories with permission bits
set to 770 and files with permission bits set to 660. This is the value recommended by IBM.

Note: See the documents listed in the steps below for more information.

Procedure
v z/OS Language Environment Programming Reference, for more information on ENVAR

v z/OS C/C++ Programming Guide, for more information on how to change the UMASK defaults

v z/OS UNIX System Services Command Reference

RACF protection for DB2
You can use the Resource Access Control Facility (RACF) DSNR resource class to protect DB2 resources.
This helps you centralize security management. This section gives you pointers to general information

Chapter 4. Setting up, enabling and migrating security 55

about setting up RACF protection for DB2 and specific information about the resources, groups, user IDs,
and permissions used by WebSphere Application Server for z/OS.

There are three functional areas in RACF to consider regarding protection for DB2:
v RACF DSNR class

The RACF DSNR class controls access to the DB2 subsystems. If the DSNR class is active, then
WebSphere Application Server for z/OS controllers and servants need access to the db2_ssn. RRSAF
profiles, where db2_ssn is your DB2 subsystem name. If a controller or servant does not have access,
then that region will not initialize.

v Secondary authorization IDs

DB2 identification and signon exits (DSN3@ATH and DSN3@SGN) are used to assign authorization
IDs. If you want to use secondary authorization IDs (RACF group names), then you must replace the
default exits with these two sample routines. For details on how to install these sample routines, see
DB2 Administration Guide.

v Grant statements

WebSphere Application Server for z/OS does not support the protection of DB2 objects through the
DSNX@XAC exit. To protect DB2 objects, you must use GRANT statements.

For more information on using RACF with DB2, see the documentation in the DB2 Information Centers.

System Authorization Facility (SAF) profile names
The Profile Management Tool and the zpmt command generate jobs that help you create the necessary
System Authorization Facility (SAF) profiles—such as STARTED, CBIND, or SERVER—that enable your
server to run.

At runtime, normal SAF specific and generic profile matching uses a combination of the cell short name,
cluster short name (or cluster transition name for a non-clustered server), server short name, and the SAF
profile prefix (if one is specified) to select the appropriate matching profile.

WebSphere Application Server for z/OS uses two schemes, specific and generic, in the creation of SAF
profiles:

v With the specific profile scheme, a set of fully-qualified specific profiles is created to exactly match the
short names that apply to the server you customize.

v With the generic profile scheme, a set of generic profiles is also created (the STARTED class BBO*.*
profiles for example) The purpose of these generic profiles is to provide a default profile for any server
that is created administratively and that has a default name so that the servers can operate successfully
by default.

Examples:

– An application server created through the administrative console has a default server short name of
BBOSnnn and a cluster short name (or cluster transition name for a non-clustered server) of
BBOCnnn, where nnn is a unique number. By default, this server can start using the BBO* generic
profiles.

– Node federation creates a node agent server. If the base application server that you federate is
configured with a Java Message Service (JMS) integral provider, then a standalone JMS server is
also created. The node agent has a default name of BBONnnn and the JMS server is BBOJnnn,
where nnn is a unique number. By default, these servers can start using the BBO* generic profiles.

The generic profiles that are created are not required and exist only for your convenience in case you use
the default server short names and cluster short names (or cluster transition names for non-clustered
servers) generated by WebSphere Application Server for z/OS. You can choose to delete the generic
profiles if, for example, your organization has particular naming conventions and you will not use the
default names generated by WebSphere Application Server for z/OS. In that case, ensure that you have
your own strategy for creating the required SAF profiles, either generic or specific, with your own naming
convention—WebSphere Application Server for z/OS does not create them for you.

56 Securing applications and their environment

Defining Secure Sockets Layer security for servers
Complete these steps for RACF to authorize the server to use digital certificates. SSL uses digital
certificates and public and private keys.

Before you begin

You need to request a certificate authority (CA) certificate and a signed certificate for your server. If you
plan to implement Secure Sockets Layer (SSL) client certificate support, you must also have certificate
authority certificates from each certificate authority that verifies your client certificates. You must have a
user ID with the authority to use the RACDCERT command in the Resource Access Control Facility
(RACF) (for example, SPECIAL authority).

About this task

If your application server uses SSL, you must use RACF to store digital certificates, and you must use
public and private keys for the user identities under which the server controllers run.

Procedure
1. For each server that uses SSL, create a key ring for the controller user ID of that server. Example:

Your controller is associated with the user ID called ASCR1. Issue the following command:
RACDCERT ADDRING(ACRRING) ID(ASCR1)

2. Receive the certificate for your application server from the certificate authority. Example: You
requested a certificate and the certificate authority returned the signed certificate to you, which you
stored in a file called ASCR1.CA. Issue the following command:
RACDCERT ID (ASCR1) ADD(’ASCR1.CA’) WITHLABEL(’ACRCERT’) PASSWORD(’password’)

3. Connect the signed certificate to the controller user ID's key ring and make the certificate the default
certificate. Example: Connect the certificate labeled ACRCERT to the key ring ACRRING owned by
ASCR1. Issue the following command:

RACDCERT ID(ASCR1) CONNECT (ID(ASCR1) LABEL(’ACRCERT’) RING(ACRRING) DEFAULT)

4. If you plan to have the server authenticate clients (SSL client certificate support), complete the
following steps:

a. Receive each certificate authority (CA) certificate that verifies your client certificates. Example:
Receive the CA certificate that will verify a client with user ID CLIENT1. That certificate is in a file
called USER.CLIENT1.CA. Issue the following command:
RACDCERT ADD(’USER.CLIENT1.CA’) WITHLABEL(’CLIENT1 CA’) CERTAUTH

b. Give each CA certificate the CERTAUTH attribute.

Connect each client's certificate authority (CA) certificate to the controller user ID's key ring.

Example: Connect the CLIENT1 CA certificate to the ring ACRRING owned by ASCR1.
RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL(’CLIENT1 CA’) RING(ACRRING))

5. Give read access for IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING in the RACF FACILITY
class to the controller user ID. Example: Your controller user ID is ASCR1. Issue:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(ASCR1) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(ASCR1) ACC(READ)

What to do next

You are done with the RACF phase when the RACF commands succeed.

Setting up a keyring for use by Daemon Secure Sockets Layer
Follow these steps to configure a keyring for use by Daemon Secure Sockets Layer.

Chapter 4. Setting up, enabling and migrating security 57

About this task

Modify the customization job commands generated in BBOCBRAK (or HLQ.DATA(BBODBRAK) on
WebSphere Application Server, Network Deployment) to perform these steps:

Procedure
1. Create a keyring for the daemon’s MVS user ID to own. Generally, this is the same keyring name that

was created for your application servers. Issue the following TSO command: RACDCERT
ADDRING(keyringname) ID(daemonUserid)

2. Generate a digital certificate for the daemon’s MVS user ID to own by issuing the following TSO
command:
RACDCERT ID (daemonUserid) GENCERT SUBJECTSDN(CN(’create a unique CN’) O(’IBM’))
WITHLABEL(’labelName’) SIGNWITH(CERTAUTH LABEL(’WebSphereCA’))

3. Connect the generated certificate to the daemon’s keyring by issuing the following TSO command:
RACDCERT ID(daemonUserid) CONNECT (LABEL(’labelName’) RING(keyringname) DEFAULT)

4. Connect the certificate authority (CA) certificate to the server’s keyring by issuing the following TSO
command:
RACDCERT CONNECT (CERTAUTH LABEL(WebSphereCA) RING(keyringname))

Results

Tip: The CA certificate that is generated during configuration (WAS Test CertAuth) is an example. Use the
CA you normally use to create user certificates, and connect the CA certificate to the daemon and
server keyrings.

Defining SSL security for clients and servers
Use the steps in this topic to allow the client to use digital certificates.

Before you begin

Note that this assumes you use z/OS Security Server (RACF) as your security server. You must obtain a
copy of the certificate authority (CA) certificate used to sign the server certificates. The server certificates
connect your client to the server. You must also have a user ID with the appropriate authority (such as
SPECIAL) to use the z/OS Security Server Resource Access Control Facility (RACF) RACDCERT
command. For more information on the RACDCERT command, refer to z/OS Security Server RACF
Command Language Reference (SA22-7687-05), available at http://www.ibm.com/servers/eserver/zseries/
zos/bkserv/r5pdf/secserv.html. For more information on the RACF in general, refer to z/OS Security Server
RACF Security Administrator's Guide (SA22-7683-05), available at http://www.ibm.com/servers/eserver/
zseries/zos/bkserv/r5pdf/secserv.html.

About this task

Complete the following RACF steps to allow the client to use digital certificates. SOAP, Secure Socket
Layer (SSL), and Java Secure Socket Extensions (JSSE) use digital certificates that have public and
private keys. If your client uses SOAP, SSL or JSSE, you must use RACF to store digital certificates that
have public and private keys for the user identities under which the client runs.

Procedure
1. For each administrative client program that uses SOAP, create a keyring for the client user ID. For

example, if your client is running with a user ID called CLIENTID, issue the following command:
RACDCERT ADDRING(ACRRING) ID(CLIENTID)

2. The keyring created in the step above must include the public certificate of any certificate authority
(CA) certificates that are required to establish trust in the servers to which your administrative client
connects to. For each CA certificate complete the following steps:

58 Securing applications and their environment

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html

a. Determine whether this CA certificate is currently stored in RACF. If so, record the existing
certificate label. If not you must:

1) Receive each CA certificate used to sign a server certificate. For example, to receive the CA
certificate that is stored in the USER.SERVER1.CA file and that verifies a server with the user ID
SERVER1, issue the following command:

RACDCERT ADD(’USER.SERVER1.CA’) WITHLABEL(’SERVER1 CA’) CERTAUTH

2) Connect each server's CA certificate to the client user ID's keyring. For example, to connect the
SERVER1 CA certificate to the ring ACRRING owned by CLIENTID:

RACDCERT ID(CLIENTID) CONNECT(CERTAUTH LABEL(’SERVER1 CA’) RING(ACRRING))

3. If the servers your administrative client connect to implements SSL client certificate support, you must
create certificates for your client and add them to the server keyrings. Refer to Defining SSL security
for servers for instructions on setting up keyrings for the servers.

4. Give READ access for the IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING profiles in the RACF
FACILITY class to the client user ID. For example, if your client user ID is CLIENTID, issue the
following command:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(CLIENTID) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CLIENTID) ACC(READ)

What to do next

You are done with the RACF phase when the RACF commands have run successfully.

Secure Sockets Layer (SSL) considerations for WebSphere Application Server
administrators
The Resource Access Control Facility (RACF) customization jobs create an SSL keyring owned by the
WebSphere Application Server for z/OS administrator. This SSL keyring contains the digital certificate
needed to communicate with WebSphere Application Server. Other MVS user IDs, which require
WebSphere Application Server for z/OS administration require additional customization.

Before you begin

The Resource Access Control Facility (RACF) customization jobs create an SSL keyring owned by the
WebSphere Application Server for z/OS administrator containing the digital certificate needed to
communicate with WebSphere Application Server. However, additional customization is required for
administration by other MVS user IDs.

Note that the MVS user ID in the description below is the MVS user ID under which the wsadmin process
is running, not the user ID specified in the wsadmin request.

About this task

In the example below:

v yyyyy is the user ID of the new WebSphere Application Server for z/OS administrator

v xxxxx is the name of the keyring that is specified in soap.client.props in the profile_root/properties
directory.

v zzzzz is the label name used in the BBOSBRAK jobs to specify which certificate authority certificate
was used to generate server keys

Procedure
1. If the new administrator is not a member of the WebSphere Application Server for z/OS administrative

group, make sure that the new user ID has access to the appropriate RACF keyrings and digital
certificates. For example:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(yyyyy) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(yyyyy) ACC(READ)

Chapter 4. Setting up, enabling and migrating security 59

2. Use the setup completed by the customization jobs as a model for the additional steps. This
information is in the BBOCBRAK member of the <HLQ>.DATA data set generated during the
customization process. The BBOCBRAK job contains the set of RACF commands that were used:

/* Generating SSL keyrings for WebSphere administrator */
RACDCERT ADDRING(xxxxx) ID(yyyyyy)

/* Connect WebSphere Application Server CA Certificates to Servers keyring */
"RACDCERT ID(yyyyy) CONNECT (RING(xxxxx) LABEL(’zzzzz’) CERTAUTH"

SETROPTS RACLIST(FACILITY) REFRESH"

Creating Secure Sockets Layer digital certificates and System
Authorization Facility keyrings that applications can use to initiate
HTTPS requests
You can create Secure Sockets Layer (SSL) digital certificates and System Authorization Facility (SAF)
keyrings that applications can use to initiate HTTPS requests.

About this task

The owner of the SAF keyring (and personal keys) must be the MVS user ID established by the servant
region's STARTED class profile. This user ID must be the owner because these applications run in the
WebSphere Application Server for z/OS servant region address. This user ID is different than the
WebSphere Application Server for z/OS controller user ID.

If you use keystores and trust stores in a Hierarchical File System (HFS), a file name uniquely identifies
the file within the file system.

Procedure
1. If you are using Resource Access Control Facility (RACF) as your security server, you can generate a

personal keyring to be used by your HTTPS application by specifying:
RACDCERT ID(ASSR1) GENCERT SUBJECTSDN(CN(’J2EE SERVER’) O(’Z/OS WEBSPHERE’)
L(’POUGHKEEPSIE’) SP(’NEW YORK’) C(’US’)) SIZE(512)
WITHLABEL(’ASSR1 SERVER CERTIFICATE’) SIGNWITH(CERTAUTH LABEL(’PVT CA’))

In this example, the certificate authority used to generate the unique servant region certificate is the
same one used to generate the certificates for the WebSphere Application Server for z/OS servers by
the customization job.

2. Create a keyring with the same name used for the control region user ID:
RACDCERT ADDRING(S1GRING) ID(ASSR1)

The new keyring is owned by the servant user ID for the certificate authority certificate and the servant
server certificate.

3. You must have a certificate authority certificate (a certificate from a certificate authority). You might
choose to use the same certificate authority to generate a certificate used by HTTPS applications,
which is similar to the certificate used for WebSphere Application Server runtime processing. The
certificate authority certificate that is used to create the digital certificates is used by the WebSphere
Application Server Runtime, and is created during system customization (and can be created by the
WebSphere z/OS Profile Management Tool or the zpmt command). You can connect this certificate
authority certificate to the keyring you just created by specifying:

RACDCERT ID(ASSR1) CONNECT (RING(S1GRING) LABEL(’PVT CA’) CERTAUTH)

For this example:

v S1GRING represents the RACF keyring

v ASSR1 represents the servant user ID

v PVT CA represents the certificate authority

Note that if the target of the request is another WebSphere Application Server for z/OS server, you
must also import the certificate authority certificate used by the WebSphere Application Server for z/OS

60 Securing applications and their environment

HTTPS repertoire (which is generally set up during customization) into your keyring if it is different than
the certificate signer. If authentication using client certificates is requested, you must also import the
certificate authority of your application into the HTTPS repertoire.

4. Connect the personal certificate to your keyring:
RACDCERT ID(ASSR1) CONNECT(ID(ASSR1) LABEL(’ASSR1 SERVER CERTIFICATE’) RING(S1GRING) DEFAULT)

For this example:

v S1GRING represents the RACF keyring

v ASSR1 represents the servant user ID

v ASSR1 SERVER CERTIFICATE represents the server certificate for servant user ID

5. Enter the customizable information that needs to be unique across a sysplex. This can include the:

v Subject's public key

v Subject's Distinguished Name (which uniquely identifies an entity in an X.509 certificate)

– Common Name

– Title

– Organization name

– Organizational Unit name

– Locality name

– State or Province name

– Country

v Distinguished Name of the certificate authority that is issuing the certificate

v Date from which the certificate is valid

v Expiration date of the certificate

v Version number

v Serial number

6. Verify the output of your customization jobs to see what is set up. Look at HLQ.DATA.(BBOWBRAK,
BBOSBRAK if they were saved), and record the settings of the certificate authority certificate label, the
servant region's started task identity. If you wish to use an existing repertoire definition for web
services, the keyring name created.

Results

Note:

v Consider that:

v The repertoire type that is pointed to by the SSLConfig definition must be a Java Secure Socket
Extension (JSSE) repertoire. This repertoire can be configured to refer to:

– Java Key Store (JKS) key store and trust store files in an HFS file

– SAF keyrings such as RACFJSSESettings

v The scope of the repertoire definition depends upon the type of repertoire. For example:

– When the repertoire refers to a SAF keyring, the keyring must be owned by the MVS user ID
of process that uses it. The customization jobs create keyrings that are owned by the
WebSphere Application Server for z/OS controller started task user ID. WebSphere
Application Server web services clients run using the user ID of the WebSphere Application
Server for z/OS servant region's started task user ID. This means that you must create a new
keyring to be owned by the servant region's user ID. This user ID is used by WebSphere
Application Server web services clients even if you specify an existing SSL repertoire.

– When the repertoire refers to an HFS file, all processes can share the key stores. If you use
key stores and trust stores in an HFS, a file name uniquely identifies the file within the file
system.

Chapter 4. Setting up, enabling and migrating security 61

Some digital certificate and keyring management is required to edit and use the sslConfig property, which
is one of the user-definable ibm-webservicesclient-bnd.xmi assembly properties. .

Creating a new System SSL repertoire alias
With Secure Sockets Layer (SSL) configuration repertoire, administrators can define any number of SSL
settings that can be used to make HyperText Transport Protocol SSL (HTTPS), Internet Inter-ORB Protocol
SSL (IIOPS) or Lightweight Directory Access Protocol SSL (LDAPS) connections. You can reuse many of
these SSL configurations by simply specifying an alias in multiple places.

Before you begin

You must start the administrative console.

About this task

Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console that allows SSL connections. This simplifies the SSL
configuration process because you can reuse many of these SSL configurations by simply specifying the
alias in multiple places.

Procedure
1. Click Security > SSL certificate and key management > SSL configuration to open the SSL

configuration panel.

2. To create a new SSL alias, click New SSSL Configuration.

3. Type the alias name in the Alias field.

4. Specify the SSL Resource Access Control Facility (RACF) key ring in the Key file name field. All
repertoires used by the same server (such as HTTPS, CSIV2, z/SAS) must have the same keyring
name. If the keyring names are not the same, the HTTPS keyring name is used to initialize the server.
If you specify the wrong RACF key ring, the server gets an error message at runtime.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

5. Optional: Select the Client authentication option for your authentication protocol. Client authentication
occurs if this repertoire is selected for HTTPS. However, the value is ignored if you use using Common
Secure Interoperability Version 2 (CSIv2) or z/OS Secure Authentication Services (z/SAS).

To enable client authentication for CSIv2, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click CSIv2 inbound authentication. Select the appropriate option for Client
certificate authentication.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click z/SAS authentication. Select the Client certificate option.

6. Select Strong, Medium, or Weak from the Security level menu to specify the high, medium, or low
set of cipher suites. If you add specific cipher suites on this panel, those cipher suites take precedence
over the strong, medium, or weak specification. If a cipher list is specified, WebSphere Application
Server uses the list. If the cipher list is empty, WebSphere Application Server uses the strong, medium,
weak specification. The following list explains these specifications:

Strong
128-bit cipher suites with digital signature

Medium
40-bit cipher suites with digital signature

Weak No encryption is used, but digital signature is used

7. Specify the SSL V3 timeout value in the V3 timeout field. This value is the length of time, in seconds,
that the system holds session keys. The range is 0-86400 (1 day). The default is 600 seconds.

62 Securing applications and their environment

8. Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set,
and the cipher suites available are determined by the value of the Security Level (Strong, Medium, or
Weak). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

9. Click OK when you have made all your selections.

Creating a new Java Secure Socket Extension repertoire alias
The following steps describe how to generate a new Java Secure Socket Extension (JSSE) repertoire
alias. Using the JSSE repertoire, you can pick one of the JSSE repertoire settings defined here from any
location within the administrative console.

About this task

This simplifies the JSSE repertoire configuration process because you can reuse many of these JSSE
configurations by specifying the alias in multiple places.

Procedure
1. Click Security > SSL to open the SSL Configuration Repertoires panel.

2. To create a new JSSE repertoire, click New JSSE repertoire near the top of the panel. The JSSE
Repertoire panel appears.

3. Enter the alias name in the Alias field.

4. Optional: Select the Client authentication option for your authentication protocol. This option enables
client authentication to occur if this repertoire is selected for HTTPS. However, the value is ignored if
you use using Common Secure Interoperability Version 2 (CSIv2) or z/OS Secure Authentication
Services (z/SAS).

To enable client authentication for CSIv2, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click CSIv2 inbound authentication. Select the appropriate option for Client
certificate authentication.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication,
expand RMI/IIOP, then click z/SAS authentication. Select the Client certificate option.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

5. Select Strong, Medium, or Weak from the Security level menu to specify the strong, medium, or
weak set of cipher suites. If you add specific cipher suites on this panel, those cipher suites take
precedence over the strong, medium, or weak specification. If a cipher list is specified, WebSphere
Application Server uses the list. If the cipher list is empty, WebSphere Application Server uses the
strong, medium, or weak specification. The following list is an explanation of the high, medium, and
low specifications:

Strong
128-bit cipher suites with digital signature

Medium
40-bit cipher suites with digital signature

Weak No encryption is used, but digital signature is used

6. Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set.
The set of cipher suites available is determined by the value of the Security Level (Strong, Medium,
or Weak). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

7. Select the Cryptographic token option if hardware or software cryptographic support is available.

8. Indicate which JSSE provider that you are using by selecting either Predefined JSSE provider or
Custom JSSE provider in the Provider field. WebSphere Application Server comes with the
IBMJSSE2 provider predefined.

Chapter 4. Setting up, enabling and migrating security 63

If you are not using the IBMJSSE2 provider, configure a custom provider by selecting Custom JSSE
provider. Under Additional properties, click Custom Properties > New. After specifying the custom
provider, return to the JSSE repertoire panel.

9. Select a Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol version.

Note: The protocol chosen for the server must match the protocol chosen for the client. Also, for two
servers to interoperate, they must use the same protocol.

10. Specify the name of the key file in the Key file name field. Specify the fully qualified path to the
Secure Sockets Layer (SSL) key file that contains public keys and private keys. Type safkeyring:///
if you are using a RACF key ring for the key file.

11. Specify the password needed to access the key file in the Key file password field. Type password if
you are using a RACF key ring for the key store.

12. Select the format of the key file from the Key file format menu.

13. Click OK when you have made all your selections.

Setting up SSL connections for Java clients
Follow these steps to configure SSL for use between Java clients running on a workstation and the
WebSphere Application Server for z/OS Java Platform, Enterprise Edition (Java EE) server.

Procedure
1. Determine what SSL repertoire the server is using. For example: WASKeyring.

2. Determine the user ID the server is running. For example: CBSYMSR1.

3. Export the certificate authority from RACF. For example:
RACDCERT CERTAUTH EXPORT(LABEL(’WebSphereCA’)) DSN(’IBMUSER.WAS.CA’) FORMAT(CERTDER)

4. Move the file to the workstation. (Note that the FTP transfer must use binary.) For example: \tmp
directory

5. Add the digital certificate to the TrustStore used by the client. For example, for the
DummyClientTrustFile.jks file, type:

keytool -import -file \tmp\IBMUSER.WAS.CA -keystore DummyClientTrustFile.jks]

Enabling administrative security and the default application security
policy
Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

About this task

Start the administrative console by specifying the following website:
http://server_hostname:port_number/ibm/console

Perform the following steps to enable administrative security. The options on the Global security panel
provide greater flexibility than previous releases of WebSphere Application Server in enforcing security in
your environment.

Procedure
1. Click Security > Global security.

2. Select the Enable administrative security option.

3. Optional: Clear the Enable application security option if you do not want to require WebSphere
Application Server to authenticate application users.

64 Securing applications and their environment

4. Optional: Clear the Use Java 2 security to restrict application access to local resources option if
you do not want to enable Java 2 Security permission checking.

When Java 2 Security is enabled and if an application requires more Java 2 security permissions than
are granted in the default policy, then the application might fail to run properly until the required
permissions are granted in either the app.policy file or the was.policy file of the application.
AccessControl exceptions are generated by applications that do not have all the required permissions.
Review the Java 2 Security and Dynamic Policy documentation if you are unfamiliar with Java 2
security.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

a. Optional: Select the Warn if applications are granted custom permissions option. The
filter.policy file contains a list of permissions that an application should not have according to
the J2EE 1.3 Specification. If an application is installed with a permission specified in this policy file
and this option is enabled, a warning is issued. The default is enabled.

b. Optional: Select the Restrict access to resource authentication data option if you need to
restrict application access to sensitive Java EE Connector Architecture (JCA) mapping
authentication data.

For detailed information, see “Global security settings” on page 93.

5. Select which authentication mechanism is active when security is enabled from the Authentication
mechanisms and expiration menu. In this release of WebSphere Application Server, the
authentication mechanism choices include LTPA and Kerberos.

Note: SWAM was deprecated in WebSphere Application Server Version Version 8.0 and will be
removed in a future release.

6. Use the User account repository menu to specify the repository that is active when security is enabled.
You can configure settings for one of the following user repositories:

Federated repositories
The federated repositories functionality enables you to use multiple registries with WebSphere
Application Server. These registries, which can be file-based registries, LDAP registries, or a
sub-tree of an LDAP registry, are defined and theoretically combined under a single repository.

Local operating system
The implementation is a System Authorization Facility (SAF) compliant registry such as the
Resource Access Control Facility (RACF), which is shared in an MVS sysplex.

Standalone LDAP registry
The stand-alone LDAP registry settings are used when users and groups reside in an external
LDAP directory. When security is enabled and any of these properties are changed, go to the
Global security panel and click OK or Apply to validate the changes.

Stand-alone custom registry
The stand-alone custom registry feature supports any user registry that is not implemented by
WebSphere Application Server. You can use any user registry that is used in the product
environment by implementing the UserRegistry interface.

7. Optional: Select the Use the United States Federal Information Processing Standard (FIPS)
algorithms option from the Security > SSL certificate and key management panel if you are using a
FIPS-certified JSSE. WebSphere Application Server supports a channel framework that uses
IBMJSSE2. IBMJSSE2 uses IBMJCEFIPS for cryptographic support when you enable the Use the
United States Federal Information Processing Standard (FIPS) algorithms option.

8. Click OK.

This panel performs a final validation of the security configuration. When you click OK or Apply from
this panel, the security validation routine is performed and any problems are reported at the top of the
page. When you complete all of the fields, click OK or Apply to accept the selected settings. Click
Save (at the top of the panel) to persist these settings out to a file. If you see any informational

Chapter 4. Setting up, enabling and migrating security 65

messages in red text color, then there is a problem with the security validation. Typically, the message
indicates the problem. So, review your configuration to verify that the user registry settings are
accurate and the correct registry is selected. In some cases, the LTPA configuration might not be fully
specified.

For detailed information, see “Global security settings” on page 93.

9. Optional: Configure for SAF Authorization. For more information on these settings, see “z/OS System
Authorization Facility authorization” on page 573.

Results

Configuration is successful when error messages do not display at the top of the panel.

Disabling administrative security
You can disable administrative security through the administrative console. If administrative security is not
working properly, it can cause the server to not start, or to start without providing you with the ability to log
into the administrative console.

About this task

If you cannot log into the administrative console and you must disable administrative security, locate your
profile_root/bin directory and first run the wsadmin -conntype NONE command. At the wsadmin
prompt, type securityoff and then type exit to return to a command prompt. Restart the server with
security disabled to check any incorrect settings through the administrative console.

If you can log into the administrative console, you can disable administrative security by completing the
following steps:

Procedure
1. Click Security > Global security.

2. Deselect the Enable administrative security check box.

3. Restart the server.

Results

Administrative security is disabled.

Enabling security
The following provides information on how to configure security when security was not enabled during the
WebSphere Application Sever profile creation.

Before you begin

When you are installing WebSphere Application Server, it is recommended that you install with security
enabled. By design, this option ensures that everything has been properly configured. By enabling security,
you protect your server from unauthorized users and are then able to provide application isolation and
requirements for authenticating application users.

It is helpful to understand security from an infrastructure perspective so that you know the advantages of
different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right
security components to meet your needs is a part of configuring security. The following sections help you
make these decisions.

Read the following articles before continuing with the security configuration:

66 Securing applications and their environment

v Security
v Security

After you understand the security components, you can proceed to configure security in WebSphere
Application Server.

Attention: There are some security customization tasks that are required to enable security. There tasks
require updates to the security server such as Resource Access Control Facility (RACF). You might need
to include your security administrator in this process.

Procedure
1. Start the WebSphere Application Server administrative console.

Start the deployment manager and, in your browser, type in the address of your WebSphere
Application Server, Network Deployment server. By default, the console is located at
http://your_host.your_domain:9060/ibm/console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if
security is currently enabled, you are prompted for both a user ID and a password. Log in with a
predefined administrative user ID and password.

2. Click Security > Global security.

Use the Security Configuration Wizard, or configure security manually. The configuration order is not
important.

gotcha: You must separately enable administrative security, and application security. Because of this
split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application
security is disabled, by default. Before you attempt to enable application security on the
target server, verify that administrative security is enabled on that server. Application security
can be in effect only when administrative security is enabled.

For more information on manual configuration, see Chapter 6, “Authenticating users,” on page 183.

3. Configure the user account repository. For more information, see “Selecting a registry or repository”
on page 183. On the Global security panel, you can configure user account repositories such as
federated repositories, local operating system, stand-alone Lightweight Directory Access Protocol
(LDAP) registry, and stand-alone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a
WebSphere Application Server installation to automatically generate an internal server ID. For
more information about automatically generating server IDs, see “Local operating system
settings” on page 189.

One of the details common to all user registries or repositories is the Primary administrative user
name. This ID is a member of the chosen repository, but also has special privileges in WebSphere
Application Server. The privileges for this ID and the privileges that are associated with the
administrative role ID are the same. The Primary administrative user name can access all of the
protected administrative methods.

In stand-alone LDAP registries, verify that the Primary administrative user name is a member of the
repository and not just the LDAP administrative role ID. The entry must be searchable.

When you use the stand-alone local operating system registry on WebSphere Application Server for
z/OS, the user ID for the server is not set using the administrative console, but is set through the
STARTED class in the z/OS operating system.

4. Select the Set as current option after you configure the user account repository. When you click
Apply and the Enable administrative security option is set, a verification occurs to see if an
administrative user ID has been configured and is present in the active user registry. The
administrative user ID can be specified at the active user registry panel or from the console users
link. If you do not configure an administrative ID for the active user registry, the validation fails.

Chapter 4. Setting up, enabling and migrating security 67

Note: When you switch user registries, the admin-authz.xml file should be cleared of existing
administrative ids and application names. Exceptions will occur in the logs for ids that exist in
the admin-authz.xml file but do not exist in the current user registry.

5. Optional: You can configure and change your External Authorization provider to either WebSphere
Authorization, System Authorization Facility (SAF) authorization, or an external JACC provider. For
more information, see “z/OS System Authorization Facility authorization” on page 573 and “Enabling
an external JACC provider” on page 591. To change the Authorization provider, click Security >
Global security.

6. Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA) or Kerberos, which is new to this release of
WebSphere Application Server, under Authentication mechanisms and expiration. LTPA credentials
can be forwarded to other machines. For security reasons, credential expire; however, you can
configure the expiration dates on the console. LTPA credentials enable browsers to visit different
product servers, which means you do not have to authenticate multiple times. For more information,
see Configuring the Lightweight Third Party Authentication mechanism

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your
authentication mechanism. However, SWAM was deprecated in WebSphere Application Server
Version 8.0 and will be removed in a future release. SWAM credentials are not forwardable to
other machines and for that reason do not expire.

If you want single sign-on (SSO) support, which provides the ability for browsers to visit different
product servers without having to authenticate multiple times, see “Implementing single sign-on to
minimize web user authentications” on page 374. For form-based login, you must configure SSO
when using LTPA.

7. Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For
more information, see the following articles:

v Exporting Lightweight Third Party Authentication keys.

v Importing Lightweight Third Party Authentication keys

gotcha: If one of the cells you are connecting to resides on a Version 6.0.x system, see the topic
Configuring Lightweight Third Party Authentication keys in the Version 6.0.x Information
Center for more information.

8. Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the Global
security panel. The z/OS Security Authentication Service (z/SAS) protocol is provided for backwards
compatibility with previous product releases, but is deprecated. Links to the z/SAS protocol panels
display on the Global security panel if your environment contains servers that use previous versions
of WebSphere Application Server and support the SAS protocol. For details on configuring CSIv2 or
z/SAS, see the article, “Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and
outbound communication settings” on page 484.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

Attention: IBM no longer ships or supports the z/OS Secure Authentication Service (z/SAS) IIOP
security protocol. It is recommended that you use the Common Secure Interoperability version 2
(CSIv2) protocol. CSIv2 will interoperate with previous versions of WebSphere Application Server
except for the Version 4 client.

9. Set the authorization. If you chose to use a z/OS security product during customization, then the
authorization is by default set to use System Authorization Facility (SAF) authorization (EJBROLE
profiles). Otherwise, the default is WebSphere Application Server authorization. Optionally, you can

68 Securing applications and their environment

set a Java Authorization Contract for Containers (JACC) external authorization. See “Special
considerations for controlling access to naming roles using SAF authorization” on page 576 or
“Authorization providers” on page 552.

10. Verify the Secure Sockets Layer (SSL) repertoires for WebSphere Application Server to use. The
sample customization jobs that are generated by the WebSphere z/OS Profile Management Tool or
the zpmt command generate sample jobs to create SSL key rings that are usable if RACF is your
security server. These jobs create a unique RACF certificate authority certificate for your installation
with a set of server certificates signed by this certificate authority. The Application Server
controller-started task ID has a SAF key ring that includes these certificates. Similarly in a
WebSphere Application Server, Network Deployment environment, RACF key rings that are owned by
the deployment manager user ID and the node agent user IDs are created.

A RACF key ring is uniquely identified by both the key ring name in the repertoire and the MVS user
ID of the server controller process. If different WebSphere Application Server controller processes
have unique MVS user IDs, you must be sure that a RACF key ring and a private key are generated,
even if they share the same repertoire.

Two kinds of configurable SSL repertoires exist:
v The System SSL repertoire is used for HTTPS and Internet InterORB Protocol (IIOP)

communication, and are used by the native transports. If you want to use the administrative
console after security is enabled you must define and select a System SSL type repertoire for
HTTP. You must define a System SSL repertoire and select if IIOP security requires or supports
SSL transport, or if a secure Remote Method Invocation (RMI) connector is selected for
administrative requests.

v The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL communications.

Users must configure a System SSL repertoire to use HTTP or IIOP protocols and a Java
Management Extensions (JMX) connector must be configured to use SSL. If the SOAP HTTP
connector is chosen, a JSSE repertoire must be selected for the administrative subsystem. In a
WebSphere Application Server, Network Deployment environment, click System Administration >
Deployment Manager > Administration Services > JMX Connectors > SOAP Connector >
Custom Properties > sslConfig.

A set of SSL repertoires are set up by the z/OS installation dialogs. These dialogs are configured to
refer to SAF key rings and to files that are populated by the customization process, when generating
RACF commands.

Table 14. SSL repertoires set up the z/OS installation dialogs.

This table lists the SSL repertoires that are set up by the z/OS installation dialogs.
Repertoire name Type Default use

NodeDefaultSSLSettings JSSE (Base only) configuration for SOAP JMX
connector, SOAP client, web container HTTP
transport

CellDefaultSSLSettings JSSE (Network deployment only) configuration for
SOAP JMX connector, SOAP client, web
container HTTP transport

DefaultIIOPSSL SSSL Used only if DAEMON SSL is enabled

No additional action is required if these settings are sufficient for your needs. If you want to create or
modify these settings, you must ensure that the keystore files to which they refer are created.

11. Click Security > Global security to configure the rest of the security settings and enable security.
For information about these settings, see “Global security settings” on page 93.

For additional information, see “Server and administrative security” on page 71.

12. Validate the completed security configuration by clicking OK or Apply. If problems occur, they display
at the top of the console page in red type.

13. If there are no validation problems, click Save to save the settings to a file that the server uses when
it restarts. Saving writes the settings to the configuration repository.

Chapter 4. Setting up, enabling and migrating security 69

Important: If you do not click Apply or OK in the Global security panel before you click Save, your
changes are not written to the repository. The server must be restarted for any changes
to take effect when you start the administrative console.

The save action enables the deployment manager to use the changed settings after WebSphere
Application Server is restarted. For more information, see “Enabling security for the realm” on page
90. A Deployment manager configuration differs from a stand-alone base application server. The
configuration is stored temporarily in the deployment manager until it is synchronized with all of the
node agents.

Also, verify that all of the node agents are up and running in the domain. Stop all application servers
during this process. If any of the node agents are down, run a manual file synchronization utility from
the node agent machine to synchronize the security configuration from the deployment manager.
Otherwise, the malfunctioning node agent does not communicate with the deployment manager after
security is enabled on the deployment manager.

14. Start the WebSphere Application Server administrative console.

Start the deployment manager and, in your browser, type in the address of your WebSphere
Application Server, Network Deployment server. By default, the console is located at
http://your_host.your_domain:9060/ibm/console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a
predefined administrative ID and password. This ID is typically the server user ID that is specified
when you configured the user registry.

Administrative security
Administrative security determines whether security is used at all, the type of registry against which
authentication takes place, and other values, many of which act as defaults. Proper planning is required
because incorrectly enabling administrative security can lock you out of the administrative console or
cause the server to end abnormally.

Note: It is strongly recommended that you allow the default installation to install administrative security as
on by default.

Administrative security can be thought of as a "big switch" that activates a wide variety of security settings
for WebSphere Application Server. Values for these settings can be specified, but they will not take effect
until administrative security is activated. The settings include the authentication of users, the use of Secure
Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including
authentication and role-based authorization, is not enforced unless administrative security is active.
Administrative security is enabled by default.

Note: Administrative security need not be activated in order for WebSphere applications to make use of
JSSE methods to encrypt communication to remote sites.

Administrative security represents the security configuration that is effective for the entire security domain.
A security domain consists of all of the servers that are configured with the same user registry realm
name. In some cases, the realm can be the machine name of a local operating system registry. In this
case, all of the application servers must reside on the same physical machine. In other cases, the realm
can be the machine name of a stand-alone Lightweight Directory Access Protocol (LDAP) registry.

A multiple node configuration is supported because you can access remotely user registries that support
the LDAP protocol. Therefore, you can enable authentication from anywhere.

The basic requirement for a security domain is that the access ID that is returned by the registry or
repository from one server within the security domain is the same access ID as that returned from the
registry or repository on any other server within the same security domain. The access ID is the unique
identification of a user and is used during authorization to determine if access is permitted to the resource.

70 Securing applications and their environment

The administrative security configuration applies to every server within the security domain.

Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.
Administrative security is enabled by default during the profile creation time. There might be some
environments where no security is needed such as a development system. On these systems you can
elect to disable administrative security. However, in most environments you should keep unauthorized
users from accessing the administrative console and your business applications. Administrative security
must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following
technologies:

v Authentication of HTTP clients

v Authentication of IIOP clients

v Administrative console security

v Naming security

v Use of SSL transports

v Role-based authorization checks of servlets, enterprise beans, and mbeans

v Propagation of identities (RunAs)

v CBIND checks

v The common user registry

v The authentication mechanism

v Other security information that defines the behavior of a security domain includes:

– The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) security)

– Other miscellaneous attributes

Note: It is recommended that before registering a node with an administrative agent process, that you first
have administrative security enabled in the administrative agent and base profile. Once you register
a profile with the administrative agent, the state of administrative security enablement cannot be
changed.

Server and administrative security
The term administrative security refers to providing the authentication of users using the WebSphere
administration functions, the use of Secure Sockets Layer (SSL), and the choice of user account
repository.

When you configure a Local OS user registry, it uses the Resource Access Control Facility (RACF), or
System Authorization Facility (SAF)-compliant, user database. Selecting the Local OS user registry as the
active registry enables you to take advantage of z/OS System Authorization Facility functions directly using
the WebSphere Application Server principals:
v Share identities with many other z/OS connector services
v Use SAF delegation, which minimizes the need to store user IDs and passwords in many locations in

the configuration
v Utilize additional audit capabilities

These functions are available using other registries, but require identity mapping through modifications to
the WebSphere Application Server system login configuration and Java Authentication and Authorization
Service (JAAS) login modules. Refer to “Updating system login configurations to perform a System
Authorization Facility identity user mapping” on page 466 for more information.

Chapter 4. Setting up, enabling and migrating security 71

Configuration of administrative security for a security domain consists of configuring the common user
registry, the authentication mechanism, and other security information that defines the behavior of a
security domain. The other security information that is configured includes the following components:

v Java 2 Security Manager

v Java Authentication and Authorization Service (JAAS)

v Java 2 Connector authentication data entries

v Common Secure Interoperability Version 2 (CSIv2) and z/OS Secure Authentication Service (z/SAS)
authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP)
security)

v Other miscellaneous attributes.

Where multiple nodes and multiple servers within a node are possible, you can configure certain attributes
at a server level. The attributes that are configurable at a server level include security enablement for the
server, Java 2 security manager enablement, and CSIv2 and z/SAS authentication protocol (RMI/IIOP
security). You can disable security on individual application servers while administrative security is
enabled, however, you cannot enable security on an individual application server while administrative
security is disabled.

While application server security is disabled for user requests, administrative and naming security is still
enabled for that application server so that the administrative and naming infrastructure remains secure. If
cell security is enabled, but security for individual servers is disabled, J2EE applications are not
authenticated or authorized. However, naming and administrative security is still enforced. Consequently,
because naming services can be called from user applications, grant Everyone access to the naming
functions that are required so that these functions accept unauthenticated requests. User code does not
directly access administrative security except through the supported scripting tools.

If you are using System Authorization Facility (SAF) authorization, then you should ensure that the UACC
field for the EJBROLE profile of CosNamingRead is set to READ, and that the unauthenticated id has
READ access to this profile.

Java thread identity and an operating system thread identity
You can specify options to synchronize a Java thread identity and an operating system thread identity.

Enterprise JavaBeans (EJB) support a method-level RunAs role specification that associates a Java
Platform, Enterprise Edition (Java EE) role with an EJB method invocation. The EJB method runs by using
the authority associated with the designated security role. The authority is mapped to the designated role
using a user identity. Normally, this identity is recognized by Web-based and Java EE runtime and is
associated with the current dispatch thread. This identity governs access to only those resources and
those facilities subject to Java EE security. The actual OS thread identity is unaffected by the EJB RunAs
role selection and is typically the identity of the server.

Setting the OS identity thread synchronizes the Java EE role identity and OS thread (SyncToOSThread).
This means that the OS thread identity is associated with the Java EE role identity for the duration of the
EJB method invocation (application assemblers and deployers associate the RunAs identity with the
operating system thread by setting the thread identity to the RunAs identity for specific bean methods).
This association means that the caller or security role identity (rather than the server region identity) is
used for z/OS system service requests such as access to files and database management systems. Note
that the WebSphere Application Server for z/OS Java EE server can be configured to enable or disable
this association (or synchronization). The default setting disables the ability to modify the identity on the
operating system thread, regardless of the OS thread identity to RunAs identity setting in the deployment
descriptor for the installed application. If the application installer does not enable synchronization, any
method that sets the RunAs identity to the operating system thread fails with a no_permission error.

You complete the specification of options to synchronize a Java thread identity and an operating system
thread identity by using the resource access control facility (RACF) to define FACILITY and optionally

72 Securing applications and their environment

SURROGAT class profiles for Synch to OS Thread Allowed. This gives the RACF administrator in the
WebSphere Application Server configuration the ability to control the permissions that allow the
synchronization of the Java EE role identity and the OS thread (SyncToOSThread).

Using the administrative console, you can specify the following options for thread identity synchronization
on the z/OS security options panel:

Enable WebSphere Application Server and z/OS thread identity synchronization
Specifies whether an application SynchToOSThread is permitted. When this security option is
selected (meaning true is specified) the application-specified SyncToOSThread is honored and
subsequently carried out by the EJB and web containers as indicated by EJB and web application
SyncToOSThread specifications. The default is false or disabled.

Enable the connection manager RunAs thread identity
Specifies whether the connection manager synchronizes the current Java EE principal to the OS
thread when a connection is obtained from a resource reference that specifies
res-auth=container. The default is false or disabled.

You can also select the SyncToOSThread support using a method-level extended deployment descriptor
(XDD) for Enterprise JavaBeans (EJB). Enable this support using a distinguished environment entry
defined through the EJB or web application standard deployment descriptor. During assembly or
deployment, bind a value to this variable by specifying:

v True, which specifies that the Java EE principal or identity should be synchronized to the OS thread for
all requests invoked on the EJB or web application.

v False, specifies the Java EE principal application or identity should not be synchronized to the OS
thread for all requests invoked on the EJB or web application. This value is the default.

When processing a request, the web container understands what roles, if any, are required to access the
component represented by the input URL. The container validates requestor authentication and that the
authenticated user has been granted permission to the required roles. The web container makes use of
the same System Authorization Facility (SAF)-based user registry and EJB role profiles as the EJB
container to perform this validation. Therefore, you can use the same user registry and role profiles for
administering web applications as you use for Enterprise Beans and Java EE Services. For setting thread
identity, possible active user registries include:

v Local OS

v LDAP

v Custom

Application events that modify the thread identity value include:

Initial value when the first method is set
By default, invocations of servlet service methods and EJB business methods implicitly run as
caller (RunAsCaller) unless the Run as field of a policy's attribute specifies otherwise. EJB client
applications always run as server (RunAsServer).

Note: For web applications, if security constraints are not specified, the application might run with
an unauthenticated user ID.

Method delegation changes to the Java EE identity (RunAs Specified)
The connection manager synchronizes the current Java EE identity with the OS thread when
obtaining applications from resources references that have container-managed resource
authorization (res-auth=container). EJB methods marked with SynchToOSThread cause the Java
EE role identity to be synchronized to the OS thread.

WSSubject.doAs()
This setting offers flexibility when associating the Subject with remote calls on a thread without
having to do a WSSubject.doAs() to associate the subject with the remote action.

Chapter 4. Setting up, enabling and migrating security 73

Thread identity is temporarily reset on the server in the following situations:

JavaServer Pages (JSP) Compilation
Web container JSP compilation modifies the identity of the server if SyncToOSThread is enabled
for the server (security_EnableSyncToOSThread=1).

Access of Stateful Backing Store
EJB container stateful session activation changes the identity of the server if SyncToOSThread is
enabled. Always access the EJB stateful session backing store using theidentity of the server.

Web application Reloading
When the web container reloads the web application, it changes the server identity if
SyncToOSThread is enabled for web applications.

Connection Manager Requests
When the resource reference specifies res-auth=application, the thread identity is temporarily set
to the identity of the server.

Note: When running with administrative security enabled, it is recommended that you have Java 2
security enabled. Exercise caution when enabling this support because it can cause general z/OS
system resources (such as files and sockets) to fall outside the control of the WebSphere
Application Server runtime and these system resources management to be accessible to identities
established through Java EE applications.

Considerations for setting the Synch to OS Thread Allowed option:

There are a number of options to consider when setting the Synch to OS Thread Allowed option.

With the Synch to OS Thread Allowed support:

1. The application developer or assembler requests behavior by setting the special application
environment entry env-entry in the deployment descriptor:
com.ibm.websphere.security.SyncToOSThread=true|false.

2. The system administrator grants the request made by the application developer or assembler using an
application server configuration setting.

3. The resource access control facility (RACF) administrator controls if Synch to OS Thread Allowed can
be used by defining a FACILITY class profile with an optional SURROGAT class profile to refine the
control.

You can select the Synch to OS Thread Allowed option at development time or at assembly time:

v At development time, use Rational Application Developer to add an environment entry (environment
variable) to the Enterprise JavaBeans (EJB) component or web application module.

Important: Environment entries (environment variables) can be defined on individual EJB components
but cannot be set on individual web components.

A Java Platform, Enterprise Edition (Java EE) standard deployment descriptor can be defined for each
EJB component and for each web application module. Note that a web component is either a servlet or
JavaServer Pages (JSP) files. For web components, environment entries (environment variables) can
only be set on a web application module. A web application module contains servlets and JSP files.

v At assembly time, you can add or change environment entries (environment variables) using an
assembly tool.

Application Synch to OS Thread Allowed:

Use application Sync to OS Thread Allowed to synchronize a Java thread identity (or JAAS subject) with
the OS thread identity for the duration of the current Java Platform, Enterprise Edition (Java EE)
application request.

74 Securing applications and their environment

If you do not choose this option, the OS thread identity value is the same as the servant identity value.
Refer to “Java thread identity and an operating system thread identity” on page 72 for more information.

Application Sync to OS Thread Allowed requires configuration in both the application and the application
server as well as resource access control facility (RACF) permissions:

1. The WebSphere Application Server developer must configure the application to declare that it wants to
run with application Sync to OS Thread

2. The WebSphere Application Server administrator must configure the application server to enable
application Sync to OS Thread Allowed

3. The RACF administrator must define a FACILITY class profile and optional SURROGAT class profile to
ensure that Synch to OS Thread Allowed is utilized.

The Java EE application developer configures the application for individual Enterprise JavaBeans (EJB) or
web applications by setting a special env-entry in the deployment descriptor
com.ibm.websphere.security.SyncToOSThread={true|false}. The default case in which this deployment
descriptor is not specified is equivalent to defining it with a value of false.

When an EJB or web application that requests Sync to OS Thread Allowed is dispatched, the application
server (at the request of the EJB container or the web container) synchronizes the OS thread identity
associated with the current Java thread identity so the Java thread identity is current on the native thread.
This synchronization is effective as long as the EJB or web application is running the current request.
When the EJB or web completes processing, the native thread is restored to its former state.

If the application requests Sync to OS Thread Allowed but Sync to OS Thread Allowed is not enabled in
the application server, when the application attempts to run a no permission exception is issued. If the
application does not request Sync to OS Thread Allowed but Sync to OS Thread Allowed is enabled in the
application server, no synchronization occurs and the current OS thread identity remains the same as the
server identity.

Refer to “Java Platform, Enterprise Edition identity and an operating system thread identity” on page 77 for
more information about the identities discussed above.

Connection Manager RunAs Identity Enabled and system security:

WebSphere Application Server includes connector configurations that use operating system thread
security. By enabling Connection Manager Sync to OS Thread support, the Java EE identity (the RunAs
identity, for example) can be used to obtain the EIS connection for connector configurations that use
operating system thread security.

Operating system thread security: Under certain configurations of Java EE Connector Architecture
(JCA), Java Message Service (JMS), or Java database connectivity (JDBC) connectors on WebSphere
Application Server for z/OS, the OS thread identity is the identity used to create the enterprise information
systems (EIS) connection. Refer to Connection threadfor more information on which configurations support
OS thread security.

The Connection Manager Sync to OS Thread support is enabled by selecting the Enable the connection
manager RunAs thread identity option, which is available by clicking Security > Global security > z/OS
security options. If the Enable WebSphere Application Server and z/OS thread identity
synchronization option is not enabled on the same administrative console panel, the connection to a
resource manager under a connector configuration that uses operating system thread security is obtained
using the server identity (which serves as a default in this case). Refer to the topic, z/OS security options,
for more information.

The WebSphere Connection Manager performs the operating system thread security-related functions. The
Connection Manager synchronizes the OS thread identity with the Java thread identity (this Java thread

Chapter 4. Setting up, enabling and migrating security 75

identity corresponds to the Java EE identity) before obtaining the EIS connection. Refer to the topic, Java
thread identity and an operating system thread identity, for more information. After the Connection
Manager performs the synchronization, the OS thread identity is temporarily replaced with the Java thread
identity, and the Java thread identity is the identity used to obtain the EIS connection. This means that
Connection Manager Sync to OS Thread support provides a way to obtain an EIS connection using the
Java thread identity (the RunAs identity, for example). After obtaining the connection the Connection
Manager restores the previous OS thread identity.

Note:

v The application Sync to OS Thread Allowed setting is not pertinent to determining which identity
is used to create a connection under a connector configuration that supports operating system
thread security. The topic, Using thread identity support, explains which identity is used to create
a connection in which the configuration is unchanged by the application Sync to OS Thread
Allowed support. In particular, for connector configurations that use operating system thread
security (but in which Connection Manager Sync to OS Thread is disabled), the server identity is
used to create the connection regardless of the application Sync to OS Thread Allowed setting or
the current RunAs identity.

v Connection Manager Sync to OS Thread support is only pertinent to obtaining EIS Connections
managed by WebSphere Connection Management. For example Connection Manager Sync to
OS Thread support might be pertinent to Java database connectivity (JDBC) Connections
obtained from application requests on DataSource objects configured via WebSphere Application
Server administrative console, and then looked up in Java Naming and Directory Interface
(JNDI). (This would depend on whether or not a specific DataSource instance under a specific
JDBC provider used OS thread security or not). However, Connection Manager Sync to OS
Thread support would not be pertinent for JDBC Connections obtained using the unmanaged
DriverManager.getConnection(...) API. Access to such unmanaged resources for which the
authorization is performed against the OS thread identity might be affected by the application
Sync to OS Thread Allowed support, however.

v Connection Manager Sync to OS Thread support is used (or not used) for connection requests
made by user-written code (such as JMS or JDBC calls from a stateless session bean),
connection requests made by certain components of WebSphere Application Server (such as the
Message Driven Beans (MDB) Listener), or connection requests made by tooling-generated code
(such as container-managed persistence (CMP) beans).

v Some (but not all) connector configurations that use the Java EE identity also use OS Thread
Security. Connector configurations such as the Customer Information Control System (CICS)
CTG Connector in local mode allow use of the Java EE identity using a different Connection
Manager mechanism to create the EIS connection. This configuration does not use operating
system thread security.

Refer to the topic, Connection thread identity, for details concerning connector configurations that use
operating system thread security. You can also refer to the topic, Using thread identity support.

Refer to the topic, Java Platform, Enterprise Edition identity and an operating system thread identity, for
more information about the identities discussed above.

When to use application Synch to OS Thread Allowed:

Specify application Synch to OS Thread Allowed to use the Java thread identity to access the
non-WebSphere-managed resources accessed by your application.

As a result of exploiting the application Synch to OS Thread Allowed support, access control privileges
associated with the current Java thread identity (not the access control privileges for the server identity)
are applied when accessing these resources. (An example of a non-WebSphere-managed resource is the
file system.)

76 Securing applications and their environment

Use application Synch to OS Thread Allowed to control file system access based on the Java thread
identity. The default Java thread identity is the client identity, which is the user who invoked the application.
The Java Platform, Enterprise Edition (Java EE) RunAS role deployment descriptor settings can override
this default to choose from other choices. These choices include the server identity or the specified role,
such as a user ID (chosen by the application server) configured to be in the specified role. By running with
the Java thread identity and specifying Synch to OS Thread Allowed, all file system access control
decisions are based on the access privileges of the Java thread identity.

Application Synch to OS Thread Allowed is not relevant to container managed persistence (CMP) entity
beans but Connection Management RunAs Identity Enabled might be relevant, depending on the JDBC
Provider.

Refer to the following:

v Deploying secured applications and “Developing applications that use programmatic security” on page
818 for details on WebSphere role-based security.

v “Connection Manager RunAs Identity Enabled and system security” on page 75 for more information for
CMP entity beans.

v “Java Platform, Enterprise Edition identity and an operating system thread identity” for more information
about identities.

Java Platform, Enterprise Edition identity and an operating system thread identity:

A user is identified using an identity that must be authenticated by WebSphere Application Server in order
to access a WebSphere Application Server application in a secure environment.

Understanding the different types of identities: The WebSphere Application Server authenticates the
user identity and represents the user with a Java Authentication and Authorization Service (JAAS) subject.
A subject contains one or more principals (which are technology-dependent representations of the
authenticated user identity). More detail follows:

User identities

Java EE identity
The user identity authenticated by WebSphere and used for access control decisions
made by the WebSphere Application Server at Java Platform, Enterprise Edition (Java EE)
runtime (such as the user identity associated with a Java EE application request and used
in EJB method permission access control decisions).

Operating system (OS) identity
The user identity authenticated by the underlying operating system and used for access
control decisions made by the OS and its subsystems (such as the user identity
associated with a WebSphere Application Server for z/OS servant by the SAF STARTED
class facility and used by the file system for access control decisions when the server
attempts to access files).

Thread identity

Java thread identity
The Java EE identity currently associated with a Java thread managed by the WebSphere
Java EE runtime (a Java thread is the Java Virtual Machine (JVM) representation of a
thread). The Java thread identity is associated with an operating system (OS) thread, but
the JVM manages the user identity on the Java representation of the thread - separate
from the user identity that the operating system manages on the operating system thread.
The Java EE identity is current on the Java thread for the life of the a given application
request

OS thread identity
The operating system identity currently associated with the operating system thread. The

Chapter 4. Setting up, enabling and migrating security 77

OS thread identity is typically the user identity assigned to servant and is normally not the
same as the Java thread identity. Note that Java EE maintains a Java EE identity that
corresponds to the OS thread identity assigned to the servant. This Java EE identity can
be used as a RunAs identity.

RunAs identity
The Java EE identity chosen as the Java thread identity for a given Java EE application request
(based on the RunAs deployment descriptor policy on an Enterprise JavaBeans (EJB) invoked
within the Java EE application request). The Java EE identity is normally the identity of the
authenticated user who has made the Java EE application request. WebSphere Application Server
RunAs policy allows three choices in assigning the Java thread identity for the current request:

1. Assign the client (for example, user) Java EE identity - also referred to as selecting RunAs of
"Caller"

2. Assign the server's Java EE identity

3. Assign the Java EE identity that is in the specified role

When security is enabled, each WebSphere Application Server for z/OS request that invokes a Java EE
component is authenticated to ensure that an authorized user is requesting access. A user is represented
by a Java EE identity (also called a JAAS subject). This Java EE identity contains one or more principals,
and each principal corresponds to a specific user identity. This association is managed by the WebSphere
Application Server. The Java EE identity and operating system OS thread identity are associated with each
other because they have the same name and represent the same user.

WebSphere Application Server for z/OS dispatches component requests in one of its available servant
processes. Within the servant process the component request is dispatched on a Java thread. A Java
thread is then mapped internally by the JVM to a z/OS thread control block (TCB). A TCB is an operating
system thread and is considered part of the native process infrastructure. A servant process has a OS
identity assigned to it when it starts. The z/OS security policy uses the SAF STARTED class facility to
assign the identity.

Java EE authorization decisions including role authorization and permission checking are determined using
the Java EE identity. Through a configuration setting, role authorization checking can be delegated to the
underlying operating system security manager (such as System Authorization Facility (SAF)), in which
case the associated operating system OS identity is used in the role authorization decision.

Some resource managers on z/OS use the OS thread identity to make authorization decisions. For
example, file system access control is determined entirely based on which OS thread identity is currently
on the TCB when the file is accessed. Similarly, local Java database connectivity (JDBC) connections to
DB2 for z/OS use the TCB OS thread identity as the authorization identity under certain configurations. For
resource managers that use the OS thread identity such as DB2 for z/OS (and unlike the file system) that
applications access through Java Message Service (JMS), JDBC, or Java EE Connector Architecture
(JCA) connectors managed by the WebSphere Application Server for z/OS connection management, we
say that the connectors to these z/OS resource managers "use operating system thread security".

For more information, refer to:

v “Java thread identity and an operating system thread identity” on page 72

v “Connection Manager RunAs Identity Enabled and system security” on page 75

v “Application Synch to OS Thread Allowed” on page 74

v Connection thread identity

v Using thread identity support

78 Securing applications and their environment

Security considerations when in a multi-node WebSphere Application
Server WebSphere Application Server, Network Deployment
environment
WebSphere Application Server, Network Deployment supports centralized management of distributed
nodes and application servers. This support inherently brings complexity, especially when security is
included. Because everything is distributed, security plays an even larger role in ensuring that
communications are appropriately secure between application servers and node agents, and between
node agents (a node-specific configuration manager) and the deployment manager (a domain-wide,
centralized configuration manager).

Before you begin

Because the processes are distributed, an authentication mechanism must be selected that supports an
authentication token such as Lightweight Third Party Authentication (LTPA). The tokens are encrypted,
signed and forwardable to remote processes. However, the tokens have expiration times which are set on
the WebSphere Application Server administrative console. The SOAP connector which is the default
connector, is used for administrative security and does not have retry logic for expired tokens. However,
the protocol is stateless so a new token is created for each request if there is not sufficient time to run the
request with the given time left in the token. An alternative connector is the Remote Method Invocation
(RMI) connector, which is stateful, and has some retry logic to correct expired tokens by resubmitting the
requests after the error is detected. Also, because tokens have time-specific expiration, the
synchronization of the system clocks is crucial to the proper operation of token-based validation. If the
clocks are off by too much (approximately 10-15 minutes), you can encounter unrecoverable validation
failures that can be avoided by having them in sync. Verify that the clock time, date, and time zones are all
the same between systems. It is acceptable for nodes to be across time zones, provided that the times are
correct within the time zones (for example, 5 PM CST = 6 PM EST, and so on).

You have additional considerations with Secure Sockets Layer (SSL). WebSphere Application Server for
z/OS can use Resource Access Control Facility (RACF) keyrings to store the keys and the truststores that
are used for SSL, but different SSL protocols are used internally. You must be sure to set up both:

v A system SSL repertoire for use by the web container

v A Java Secure Sockets Extension (JSSE) SSL repertoire for use by the SOAP HTTP connector if the
SOAP connector is used for administrative requests

Verify that the keystores and truststores that you configure are set up to trust only the servers to which
they communicate. Make sure they do include the necessary signer certificates from those servers in the
trust files of all servers in the domain. When using a certificate authority (CA) to create personal
certificates, it is easier to ensure that all servers trust one another by having the CA root certificate in all
the signers.

The WebSphere z/OS Profile Management Tool or the zpmt command uses the same certificate authority
to generate certificates for all servers within a given cell, including those of the node agents and the
deployment manager.

About this task

Consider the following issues when using or planning for a WebSphere Application Server, Network
Deployment environment.

Procedure
v When attempting to run system management commands such as the stopNode command, explicitly

specify administrative credentials to perform the operation. Most commands accept –user and
–password parameters to specify the user ID and password, respectively. Specify the user ID and

Chapter 4. Setting up, enabling and migrating security 79

password of an administrative user; for example, a user who is a member of the console users with
Operator or Administrator privileges or the administrative user ID that is configured in the user registry.
An example of the stopNode command follows:

stopNode.sh -username user -password pass

v Verify that the configuration at the node agents is always synchronized with the deployment manager
prior to starting or restarting a node. To manually get the configuration synchronized, issue the
syncNode command from each node that is not synchronized. To synchronize the configuration for
node agents that are started, click System Administration > Nodes. Select all the started nodes, and
then click Synchronize.

v Verify that the LTPA token expiration period is long enough to complete your longest downstream
request. Some credentials are cached and therefore the timeout does not always include the length of
the request.

v The administrative connector that is used by default for system management is SOAP. SOAP is a
stateless HTTP protocol. For most situations, this connector is sufficient. If you have a problem using
the SOAP connector, you might want to change the default connector on all the servers from SOAP to
RMI. The RMI connector uses Common Secure Interoperability Version 2 (CSIv2), a stateful,
interoperable protocol, and can be configured to use identity assertion (downstream delegation),
message-layer authentication (BasicAuth or Token), and client certificate authentication (for server trust
isolation). To change the default connector on a given server, go to Administration Services under
Additional properties for that server.

v An error message might occur within the administrative subsystem security. This error indicates that the
sending process did not supply a credential to the receiving process. Typically the cause of this problem
is the sending process has security disabled while the receiving process has security enabled. This
setup typically indicates that one of the two processes are not synchronized with the cell. Having
security disabled for a specific application server does not have any effect on administrative security.

Results

Proper understanding of the security interactions between distributed servers greatly reduces the problems
that are encountered with secure communications. Security adds complexity because additional function
must be managed. For security to work properly, it needs thorough consideration during the planning of
your infrastructure.

What to do next

When you have security problems that are related to the WebSphere Application Server, Network
Deployment environment, see Chapter 12, “Troubleshooting security configurations,” on page 977 to find
additional information about the problem. When trace is needed to solve a problem because servers are
distributed, it is often required to gather trace on all servers simultaneously while recreating the problem.
This trace can be enabled dynamically or statically, depending on the type of problem that is occurring.

Application security
Application security enables security for the applications in your environment. This type of security
provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. Before you can enable application security, you must verify that administrative security is
enabled. Application security is in effect only when administrative security is enabled.

80 Securing applications and their environment

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into
the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where
the object lives. This tag is server-specific and enables clients to know when application security is
disabled at the target server of its request.

For web resources, when application security is enabled, security constraints on those resources in
web.xml are enforced. When accessing a protected resource, a web client is prompted for authentication.

For enterprise bean resources, when application security is disabled, the client Common Secure
Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown
system objects. When pure clients see that application security is disabled, these clients prompt for
naming lookups, but do not prompt for enterprise bean operations.

Java 2 security
Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall
system integrity by checking for permissions before allowing access to certain protected system resources.
Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2
Platform, Enterprise Edition (J2EE) security guards access to web resources such as servlets, JavaServer
Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

Because Java 2 security is relatively new, many existing or even new applications might not be prepared
for the very fine-grain access control programming model that Java 2 security is capable of enforcing.
Administrators need to understand the possible consequences of enabling Java 2 security if applications
are not prepared for Java 2 security. Java 2 security places some new requirements on application
developers and administrators.

Note: The application server does not support a custom Java security manager implementation.

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and
administrative security independently of one another. Disabling administrative security does not disable
Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.
You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace
files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security
initially to get your application installed and verify that it is working properly.

The policy embodied by these policy files cannot be made more restrictive because the product might not
have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.
You can grant additional permissions, but you cannot make the default more restrictive because
AccessControlExceptions exceptions are generated from within WebSphere Application Server. The
product does not support a more restrictive policy than the default that is defined in the policy files
previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static
(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,
Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application
Server provides dynamic policy support. The code base is dynamically calculated based on deployment
information and permissions are granted based on template policy files during runtime. Refer to the “Java
2 security policy files” on page 85 for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files
carefully.

Chapter 4. Setting up, enabling and migrating security 81

If an application is not prepared for Java 2 security, if the application provider does not provide a
was.policy file as part of the application, or if the application provider does not communicate the expected
permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might
not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids
help troubleshoot applications that might have access control exceptions. See the Java 2 security
debugging aids for more details. See “Handling applications that are not Java 2 security ready” on page 83
for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed
security manager does not currently check modifyThread and modifyThreadGroup permissions for
non-system threads. Allowing web and Enterprise JavaBeans (EJB) application code to create or modify a
thread can have a negative impact on other components of the container and can affect the capability of
the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy
and the permission requirements of the SDK APIs that their application calls to know whether additional
permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes
which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy
previously mentioned. Applications that access resources not covered by the default WebSphere policy are
required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere
policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is
embedded in the EAR file ensures the additional permissions are scoped to the exact application that
requires them. Scoping the permission beyond the application code that requires it can permit code that
normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than
one .ear file, then the library developer needs to document the required Java 2 permissions that are
required by the application assembler. There is no was.policy file for library-type components. The
developer must communicate the required permissions through application programming interface (API)
documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all
enterprise applications on the node in the app.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

If the permission is only used internally by the component library and the application is never granted
access to resources that are protected by the permission, it might be necessary to mark the code as
privileged. Refer to the, AccessControlException, topic for more details. However, improperly inserting a
doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a
correct judgement.

The section on Dynamic policy files in “Java 2 security policy files” on page 85 describes how the
permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security
awareness not previously required of application developers. Describing the Java 2 security model and the
implications on application development is beyond the scope of this section. The following URL can help
you get started: http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

82 Securing applications and their environment

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow
property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission
violation that causes the exception, the exception call stack, and the permissions granted to each stack
frame. This information is usually enough to determine the missing permission and the code requiring the
permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component
creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not
handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and
has a value of true, the security manager does not create the AccessControl exception. This information is
logged.

This property is intended for a sandbox or debug environment because it instructs the security manager
not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a
production environment where a relaxed Java 2 security environment weakens the integrity that Java 2
security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested
and where the system log or trace files can be inspected for AccessControl exceptions. Because this
property does not create the AccessControl exception, it does not propagate the call stack and does not
cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application
provider to have the application support Java 2 security or at least communicate the required additional
permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application
Server. The downside is that this solution applies to the entire system and the integrity of the system is not
as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization
security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional
permissions or grant all permissions to just the problematic application. Granting permissions however,
might not be a trivial thing to do. If the application provider has not communicated the required
permissions in some way, no easy way exists to determine what the required permissions are and granting
all permissions might be the only choice. You minimize this risk by locating this application on a different
node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission
in the was.policy file that is embedded in the application .ear file, for example:
grant codeBase "file:${application}" {

permission java.security.AllPermission;
};

The server.policy file

The server.policy file is located in the app_server_root/properties/ directory.

Chapter 4. Setting up, enabling and migrating security 83

This policy defines the policy for the WebSphere Application Server classes. At present, all the server
processes on the same installation share the same server.policy file. However, you can configure this file
so that each server process can have a separate server.policy file. Define the policy file as the value of
the java.security.policy Java system properties . For details of how to define Java system properties, refer
to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.
Changes to this file are local and do not get replicated to other machines. Use the server.policy file to
define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file
(per enterprise application) to define Java 2 security policy for enterprise application resources.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to
all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

The java.policy file is located in the app_server_root/java/lib/security directory.

Troubleshooting

Error message CWSCJ0314E

Symptom:

Error message CWSCJ0314E: Current® Java 2 security policy reported a potential violation of Java 2
security permission. Refer to Problem Determination Guide for further information.{0}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a
potential violation of Java 2 Security Permission. Refer to Problem Determination Guide for further
information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject
permission with debugging information. The reported information can be different with respect to
the system configuration. This report is enabled by either configuring a Reliability Availability
Service Ability (RAS) trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:
java.security.debug. Valid values include:
access

Print all debug information including: required permission, code, stack, and code base
location.

stack Print debug information including: required permission, code, and stack.
failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine
the potential code that might have violated the security policy. After the violating code is
determined, verify if the attempted operation is permitted with respect to Java 2 security, by
examining all applicable Java 2 security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the
was.policy file to grant the following permissions to the application:

84 Securing applications and their environment

permission java.io.FilePermission "${user.home}${/}.mailcap", "read";
permission java.io.FilePermission "${user.home}${/}.mime.types", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

SecurityException - Access denied

Symptom:

If Java security is enabled, and permissions to read the jaxm.properties file is not granted, when a
SOAPFactory instance is created through a call to javax.xml.soap.SOAPFactory.newInstance(), or
a MessageFactory instance is created through a call to MessageFactory.newInstance(), a
SecurityException exception occurs, and the following exception is written to the system log:

Permission:

/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties : access denied
(java.io.FilePermission /opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties
read)

Code:

com.ibm.ws.wsfvt.test.binding.addr1.binder.AddressBinder
in {file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/
ahp6405Node01Cell/DataBinding.ear/address1.war/WEB-INF/lib
/addressbinder1.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission
/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties read)
.

Problem:

The Java 2 Security policy reports a potential violation of Java 2 Security permission.

Recommended response:

The SOAPFactory ignores the exception, and continues on to the next means of determining
which implementation to load. Therefore, you can ignore the log entry for this security exception.

Because this product uses the SOAPFactory to support other web services technologies, such as
WS-Addressing (WS-A), WS-Atomic Transaction (WS-AT), and WS-Notification, you can ignore
this SecurityException in any web services application where Java security is enabled.

Messages

Message: CWSCJ0313E: Java 2 security manager debug message
flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},
Failure: {3}

Problem: Configured values of the valid debug message flags for
security manager.

Message: CWSCJ0307E: Unexpected exception is caught when trying
to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base
location is determined.

Java 2 security policy files
The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations are
not supported in the application code because such operations interfere with the behavior and operation of
the containers. The Java 2 security manager is used in the product to enforce responsibilities of the
container and the application code.

Chapter 4. Setting up, enabling and migrating security 85

Note: The application server does not support a custom Java security manager implementation.

This product provides support for policy file management. A number of policy files in the product are either
static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative
code base is defined in the dynamic policy template. The code base is dynamically calculated from the
deployment and run-time data.

Static policy files

Table 15. Static policy files.

This table lists the location of the static policy files.
Policy file Location

java.policy app_server_root/java/jre/lib/security/java.policy. Default permissions are granted to all classes. The policy of this
file applies to all the processes launched by WebSphere Application Server.

server.policy profile_root/properties/server.policy. Default permissions are granted to all the product servers.

client.policy profile_root/properties/client.policy. Default permissions are granted for all of the product client containers and
applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in
these files are local and are not replicated to other nodes in the WebSphere Application Server, Network
Deployment cell.

Dynamic policy files

Table 16. Dynamic policy files.

This table lists the location of the dynamic policy files.
Policy file Location

spi.policy profile_root/config/cells/cell_name
/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are embedded in the product.
Examples of SPI are the Java Message Service (JMS) in MQ Series and Java database connectivity (JDBC) drivers. The
code base for the embedded resources are dynamically determined from the configuration (resources.xml file) and
run-time data, and permissions that are defined in the spi.policy files are automatically applied to these resources and
JAR files that are specified in the class path of a resource adapter. The default permission of the spi.policy file is
java.security.AllPermissions.

library.policy profile_root/config/cells/cell_name/nodes
/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in multiple product
applications. The default permission of the library.policy file is empty.

app.policy profile_root/config/cells/cell_name
/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise applications running on
node_name in cell_name.
Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the app.policy file
belongs.

was.policy profile_root/config/cells/cell_name
/applications/ear_file_name/deployments/
application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the enterprise archive (EAR)
file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file is embedded in the RAR
file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If
grant entries are specified without a code base, the policy files are not loaded properly and the application

86 Securing applications and their environment

can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in
the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:
grant [codebase <Codebase>] {
permission <Permission>;
permission <Permission>;
permission <Permission>;
};

<CodeBase>: A URL.
For example, "file:${java.home}/lib/tools.jar"

When [codebase <Codebase>] is not specified, listed
permissions are applied to everything.

If URL ends with a JAR file name, only the classes in the
JAR file belong to the codebase.
If URL ends with "/", only the class files in the specified
directory belong to the codebase.
If URL ends with "*", all JAR and class files in the specified
directory belong to the codebase.
If URL ends with "-", all JAR and class files in the specified
directory and its subdirectories belong to the codebase.

<Permissions>: Consists from
Permission Type : class name of the permission

Target Name : name specifying the target
Actions : actions allowed on target

For example,
java.io.FilePermission "/tmp/xxx", "read,write"

Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise
application. This action is achieved by using product-reserved symbols. The reserved symbol scope
depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to
all the resources on all of the enterprise applications that run on node_name. If you define the permissions
in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid
symbols for the code base are listed in the following table:

Table 17. Dynamic policy syntax.

This table describes valid symbols for the code base for dynamic policy files.
Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility Java archive (JAR) files within the
application

file:${ejbComponent} Permissions apply to the Enterprise JavaBeans (EJB) resources within the
application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources within the application

You can specify the module name for a granular setting, except for these entries that are specified by the
code base symbols. For example:
grant codeBase "file:DefaultWebApplication.war" {

permission java.security.SecurityPermission "printIdentity";
};

grant codeBase "file:IncCMP11.jar" {
permission java.io.FilePermission
"${user.install.root}${/}bin${/}DefaultDB${/}-",
"read,write,delete";
};

Chapter 4. Setting up, enabling and migrating security 87

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative
code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to
associate the permission lists to a specific type of resources.

Table 18. Dynamic policy syntax.

This table describes several product-reserved symbols that are defined to associate the permission lists to a specific
type of resource.
Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility JAR files within the application

file:${ejbComponent} Permissions apply to the enterprise beans resources within the application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources both within the application
and in the standalone connector resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission
permission. These symbols enable flexible permission specification. The absolute file path is fixed after the
installation of the application.

Table 19. Dynamic policy syntax.

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.
Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an
AccessControlException exception. Because dynamic policy resolves the code base at runtime,
determining which policy file has a problem is difficult. Add a permission only to the necessary resources.
For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file
instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions
that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions
from the applications and an audit message is logged. However, if the permissions that are defined in the
app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,
the permission is not removed, but a warning message is written to the log file. The policy filtering only
supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the
was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask
keyword, the runtime removes the permissions from the applications no matter what permissions are
granted to the application. For example, even if a was.policy file has the java.security.AllPermission
permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission
are removed from the granted permission during runtime.

88 Securing applications and their environment

Policy file editing

Using the policy tool that is provided by the Developer Kit (app_server_root/java/jre/bin/policytool), to
edit the previous policy files is recommended. For WebSphere Application Server, Network Deployment,
extract the policy files from the repository before editing. After the policy file is extracted, use the policy
tool to edit the file. Check the modified policy files into the repository and synchronize them with other
nodes.

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the
AccessControlException exception.
v Trace (Configured by RAS trace). Enables traces with the trace specification:

Attention: The following command is one continuous line
com.ibm.ws.security.policy.*=all=enabled:
com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the
java.security.debug property are as follows:
– Access. Print all debug information including required permission, code, stack, and code base

location.
– Stack. Print debug information including, required permission, code, and stack.
– Failure. Print debug information including required permission and code.

v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an
Access Violation keyword in the log file.

Access control exception for Java 2 security
The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them. The
Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission
method. For the complete algorithm, refer to the Java 2 security check permission algorithm in the
Security: Resources for learning article.

i = m;
while (i > 0) {
if (caller i's domain does not have the permission)
throw AccessControlException;
else if (caller i is marked as privileged)
return;
i = i - 1;
};

The algorithm requires that all the classes or callers on the call stack have the permissions when a
java.security.AccessController.checkPermission method is performed or the request is denied and a
java.security.AccessControlException exception is created. However, if the caller is marked as privileged
and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire
call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are
missing the required permissions during a java.security.AccessController.checkPermission method. Two
possible resolutions to the java.security.AccessControlException exception are as follows:

Chapter 4. Setting up, enabling and migrating security 89

v If the application is calling a Java 2 security-protected application programming interface (API), grant the
required permission to the application Java 2 security policy. If the application is not calling a Java 2
security-protected API directly, the required permission results from the side-effect of the third-party APIs
accessing Java 2 security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it
is likely that the third party code that accesses the Java 2 security-protected resource is not properly
marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to
update the password. The following example is presented to illustrate the point. The decision of where to
mark the code as privileged is application-specific and is unique in every situation. This decision requires
great depth of domain knowledge and security expertise to make the correct judgement. A number of well
written publications and books are available on this topic. Referencing these materials for more detailed
information is recommended.

You can use the PasswordUtil utility to change the password of a user. The utility types in the old
password and the new password twice to ensure that the correct password is entered. If the old password
matches the one stored in the password file, the new password is stored and the password file updates.
Assume that none of the stack frame is marked as privileged. According to the
java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the
call stack are granted write permission to the password file. The client application does not have
permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file
as privileged, then the check permission algorithm does not check for the required permission from
classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the
PasswordUtil class is granted the permission. The client application can successfully update a password
without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall
security of the system can be compromised and security holes can be exposed. Use the ability to mark
code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException
exception. Judge these exceptions individually to decide which of the following resolutions is best:
1. Grant the missing permission to the application.
2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm
Use this topic to enable IBM WebSphere Application Server security. You must enable administrative
security for all other security settings to function.

About this task

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality
and integrity of communications between WebSphere Application Server and other components in the
network. Cryptography is also used by Web Services Security when certain security constraints are
configured for the web services application.

90 Securing applications and their environment

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) and Java Cryptography
Extension (JCE) libraries in the Software Development Kit (SDK) to perform this cryptography. The SDK
provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to perform full
strength cryptography and to improve performance.

Attention: Fix packs that include updates to the Software Development Kit (SDK) might overwrite
unrestricted policy files. Back up unrestricted policy files before you apply a fix pack and reapply these
files after the fix pack is applied.

WebSphere Application Server provides a SDK 6 that contains strong, but limited jurisdiction policy files.
You can download the unrestricted policy files from the following website: IBM developer kit: Security
information.

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

Complete the following steps to download and install the new policy files:

1. Click Java SE 6

2. Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 6 website displays.

3. Click Sign in and provide your IBM.com ID and password.

4. Select Unrestricted JCE Policy files for SDK 6 and click Continue.

5. View the license and click I Agree to continue.

6. Click Download Now.

7. Extract the unlimited jurisdiction policy files that are packaged in the compressed file. The
compressed file contains a US_export_policy.jar file and a local_policy.jar file.

8. In your WebSphere Application Server installation, mount your product HFS read/write. Go to the
$JAVA_HOME/jre/lib/security directory and back up your US_export_policy.jar and
local_policy.jar files.

9. Replace your US_export_policy.jar and local_policy.jar files with the two files that you
downloaded from the IBM.com website.

10. Re-mount your product HFS as read/only.

The embedded Software Development Kit (SDK) ships with the unrestricted jurisdiction policy Java archive
(JAR) files. Therefore, instead of downloading these files from the website, you can symbolically link to the
files as allowed by your local country regulations. These unrestricted policy files are located in the
install_root/java/demo/jce/policy-files/unrestricted/ directory. The following UNIX-based
commands enable you to symbolically link to these files:
Export the paths. You can find the values of the following
variables in the joblog by searching for was.install.root,
java.home, and so on:
export was.install.root=<was.install.root>
export java.home=<java.home>
The previous paths apply to both 31- and 64-bit configurations
of WebSphere Application Server for z/OS. For a 64-bit
configuration, the java.home path points to the 64-bit embedded
Java virtual machine (JVM).

Delete the original policy .jar files. Because a backup is
automatically present in the smpe.home HFS, an explicit
backup is not needed:
cd $java.home/lib/security

Chapter 4. Setting up, enabling and migrating security 91

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

rm US_export_policy.jar
rm local_policy.jar

Issue the following commands on separate lines to create
the symbolic links to the unrestricted policy files:
ln -s $java.home/demo/jce/policy-files/unrestricted/US_export_po licy.jar US_export_policy.jar
ln -s $java.home/demo/jce/policy-files/unrestricted/local_policy .jar local_policy.jar

To remove the symbolic links to the unrestricted policy files in the demo directory and link to the original
files, use the following UNIX-based commands:
Export the paths. You can find the values of the following
variables in the joblog by searching for was.install.root,
java.home, and so on:
export was.install.root=<was.install.root>
export java.home=<java.home>
export smpe.install.root=<smpe.install.root>
The previous paths apply to both 31- and 64-bit configurations
of WebSphere Application Server for z/OS. For a 64-bit
configuration, the java.home path points to the 64-bit embedded
Java virtual machine (JVM).

Delete the current policy .jar files. You might want
to back up the following files:
cd $java.home/lib/security
rm US_export_policy.jar
rm local_policy.jar

Issue the following commands on separate lines to create
symbolic links to the smpe HFS where the original files
are kept:
ln -s $smpe.install.root/java/lib/security/US_export_policy.jar US_export_policy.jar
ln -s $smpe.install.root/java/lib/security/local_policy.jar local_policy.jar

Complete the following steps to enable security for the realm:

Procedure
1. Enable administrative security in WebSphere Application Server.

For more information, see “Enabling security” on page 66. It is important to click Security > Global
security. Select an available realm definition from the list, and then click Set as current. Save the
configuration to the repository. Verify that the validation that occurs after you click OK on the Security
> Global security panel is successful before continuing. If the validation is not successful and you
continue with these steps, you risk the server not starting. Re-configure the security settings until
validation is successful.

2. Send a copy of the new configuration to all of the running node agents using the administrative
console. If a node agent fails to get the security-enabled configuration, communication with the
deployment manager fails, due to a lack of access. The node agent is not security-enabled. To force
synchronize a specific node, complete the following steps from the administrative console:

a. Click System administration > Nodes and select the option next to all the nodes. You do not
need to select the deployment manager node.

b. Click Full resynchronize to verify that the file synchronization has occurred. The message might
indicate that the nodes already are synchronized. This message is OK. When synchronization is
initiated, verify that the Synchronized status displays for all nodes.

3. Stop the deployment manager. Manually restart the deployment manager from the command line or
service. To stop the deployment manager, click System administration > Deployment manager and
click Stop. This action logs you out of the administrative console and stops the deployment manager
process.

4. Restart the deployment manager process.

To restart the deployment manager process, enter the following command:
START dmgr_proc_name,JOBNAME=server_short_name,
ENV=cell_short_name.node_short_name.server_short_name

You must enter this command on a single line. It is split here for illustrative purposes (refer to the
related links below for more information on using z/OS MVS system commands). After the deployment
manager initialization is complete, go back into the administrative console to complete this task.
Remember that security is enabled in the deployment manager only. If you enabled single sign-on

92 Securing applications and their environment

(SSO), specify the fully qualified domain name of your web address, for example,
http://myhost.domain:port_number/ibm/console. When you are prompted for a user ID and password,
type the one that you entered as the administrator ID in the configured user registry.

5. If the deployment manager does not start after enabling security, disable security using a script and
restart. Disable security by issuing the following command from the DeploymentManager/bin directory:
./wsadmin.sh -conntype NONE

At the prompt, enter securityoff.

6. Restart all node agents to make them security enabled. You must have restarted the deployment
manager in a previous step before completing this step. If the node agent is security-enabled before
the deployment manager is security-enabled, the deployment manager cannot query the node agent
for status or give the node agent commands. To stop all node agents, complete the following steps:

a. Go to System administration > Node agents and select the option beside all node agents. Click
Restart. A message similar to the following example is displayed at the top of the panel: The node
agent on node NODE NAME was restarted successfully.

b. Alternatively, if you previously did not stop your application servers, restart all of the servers within
any given node by clicking System administration > Node agents and by clicking the node
agents where you want to restart all the servers. Click Restart all Servers on Node. This action
restarts the node agent and any started application servers.

7. If any node agent fails to restart, perform a manual resynchronization of the configuration. This step
consists of going to the physical node and running the client syncNode command. This client logs into
the deployment manager and copies all of the configuration files to the node agent. This action
ensures that the configuration is security-enabled. If the node agent is started, but is not
communicating with the deployment manager, stop the node agent by issuing the stopServer
command.

Global security settings
Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

To view this administrative console page, click Security > Global security.

When security is configured, validate any changes to the user registry or authentication mechanism
panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID
or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user
registry settings after enabling administrative security can avoid problems when you restart the server for
the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.
This process restricts administrative tasks and applications to authorized users.

Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and
a user registry. You can configure an existing registry and enable administrative, application, and resource
security.

When you apply changes made by using the security configuration wizard, administrative security is turned
on by default.

Security configuration report:

Chapter 4. Setting up, enabling and migrating security 93

Launches a report that gathers and displays the current security settings of the application server.
Information is gathered about core security settings, administrative users and groups, CORBA naming
roles, and cookie protection. When multiple security domains are configured the report displays the
security configuration associated with each domain.

A current limitation to the report is that it does not display application level security information. The report
also does not display information on Java Message Service (JMS) security, bus security, or Web Services
Security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative
security requires users to authenticate before obtaining administrative control of the application server.

For more information, see the related links for administrative roles and administrative authentication.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and
password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies
administrators who manage the environment, and a server ID, which is used for server-to-server
communication. You do not need to enter a server ID and password when you are using the
internal server ID feature. However, optionally, you can specify a server ID and password. To
specify the server ID and password, complete the following steps:

1. Click Security > Global security.

2. Under User accounts repository, select the repository and click Configure.

You can only specify the the z/OS started task option when the user registry is Local OS.

If you have problems, such as the server not starting after enabling security within the security domain,
resynchronize all of the files from the cell to this node. To resynchronize files, run the following command
from the node: syncNode -username your_userid -password your_password. This command connects to
the deployment manager and resynchronizes all of the files.

If your server does not restart after you enable administrative security, you can disable security. Go to your
app_server_root/bin directory and run the wsadmin -conntype NONE command. At the wsadmin> prompt,
enter securityoff and then type exit to return to a command prompt. Restart the server with security
disabled to check any incorrect settings through the administrative console.

Local OS user registry users: When you select Local OS as the active user registry, you do not need to
supply a password in the user registry configuration.

Default: Enabled

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

94 Securing applications and their environment

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Default: Disabled

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification. For more information on permissions, see the related link
about Java 2 security policy files.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

Chapter 4. Setting up, enabling and migrating security 95

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.

This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

The selections appear in a drop-down list containing:

v Local operating system

v Standalone LDAP registry

v Stand-alone custom registry

Set as current:

Enables the user repository after it is configured.

You can configure settings for one of the following user repositories:

Federated repositories
Specify this setting to manage profiles in multiple repositories under a single realm. The realm can
consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Note: Only a user with administrator privileges can view the federated repositories configuration.

Local operating system

Specify this setting if you want your configured Resource Access Control Facility (RACF) or
System Authorization Facility (SAF)-compliant security server used as the application server user
registry.

Standalone LDAP registry

Specify this setting to use stand-alone LDAP registry settings when users and groups reside in an
external LDAP directory. When security is enabled and any of these properties change, go to the
Security > Global security panel and click Apply or OK to validate the changes.

Note: Since multiple LDAP servers are supported, this setting does not imply one LDAP registry.

Stand-alone custom registry
Specify this setting to implement your own stand-alone custom registry that implements the

96 Securing applications and their environment

com.ibm.websphere.security.UserRegistry interface. When security is enabled and any of these
properties change, go to the Global security panel and click Apply or OK to validate the changes.

Default: Disabled

Configure...:

Select to configure the global security settings.

Web and SIP security:

Under Authentication, expand Web and SIP security to view links to:

v General settings

v Single sign-on (SSO)

v SPNEGO web authentication

v Trust association

General settings:

Select to specify the settings for web authentication.

Single sign-on (SSO):

Select to specify the configuration values for single sign-on (SSO).

With SSO support, web users can authenticate once when accessing both WebSphere Application Server
resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans, and Lotus® Domino®

resources.

SPNEGO web authentication:

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) provides a way for web clients and the
server to negotiate the web authentication protocol that is used to permit communications.

Trust association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

You can use the global security settings or customize the settings for a domain.

Note: The use of trust association interceptors (TAIs) for SPNEGO authentication is now deprecated. The
SPNEGO web authentication panels now provide a much easier way to configure SPNEGO.

RMI/IIOP security:

Under Authentication, expand RMI/IIOP security to view links to:

v CSIv2 inbound communications

v CSIv2 outbound communications

CSIv2 inbound communications:

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

Chapter 4. Setting up, enabling and migrating security 97

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

CSIv2 outbound communications:

Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

Java authentication and authorization service:

Under Authentication, expand Java authentication and authorization service to view links to:

v Application logins

v System logins

v J2C authentication data

Application logins:

Select to define login configurations that are used by JAAS.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

System logins:

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping.

J2C authentication data:

Select to specify the settings for the Java Authentication and Authorization Service (JAAS) Java 2
Connector (J2C) authentication data.

You can use the global security settings or customize the settings for a domain.

LTPA:

98 Securing applications and their environment

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

Kerberos and LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.

Kerberos configuration:

Select to encrypt authentication information so that the application server can send data from one server
to anther in a secure manner.

The encryption of the authentication information that is exchanged between servers involves the KRB5 of
LTPA mechanism.

Authentication cache settings:

Select to set your authentication cache settings.

Enable Java Authentication SPI (JASPI):

Select to enable the use of Java Authentication SPI (JASPI) authentication.

You can then click Providers to create or edit a JASPI authentication provider and associated
authentication modules in the global security configuration.

Use realm-qualified user names:

Specifies that user names that are returned by methods, such as the getUserPrincipal() method, are
qualified with the security realm in which they reside.

Security domains:

Use the Security Domain link to configure additional security configurations for user applications.

For example, if you want use a different user registry for a set of user applications than the one used at
the global level, you can create a security configuration with that user registry and associate it with that set
of applications. These additional security configurations can be associated with various scopes (cell,
clusters/servers, SIBuses). Once the security configurations have been associated with a scope all of the
user applications in that scope use this security configuration. Read about “Multiple security domains” on
page 146 for more detailed information.

For each security attribute, you can use the global security settings or customize settings for the domain.

External authorization providers:

Select to specify whether to use the default authorization configuration or an external authorization
provider.

Chapter 4. Setting up, enabling and migrating security 99

The external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java(TM) 2 Platform, Enterprise Edition (J2EE) authorization. Do not modify
any settings on the authorization provider panels unless you have configured an external security provider
as a JACC authorization provider.

Custom properties:

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Specify extent of protection wizard settings
Use this security wizard page to determine whether to enable application security and restrict access to
local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Global security > Security configuration wizard.

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Default: Disabled

z/OS security options
Use this page to determine which Global security options to specify for the application server for z/OS.

To view this administrative console page, click Security > Global security > z/OS security options.

You also can view this administrative console page, by completing the following steps:

1. Click Servers > Server types > WebSphere application servers > server_name.

2. Under Security, click Server domain.

100 Securing applications and their environment

3. Click z/OS security options.

If you are configuring security for the first time, complete the steps in the Global security article prior to
making changes. After security is configured, validate any changes to the user registry or authentication
mechanism panels. Click Apply to validate the user registry settings. An attempt is made to authenticate
the server ID to the configured user registry. Validating the user registry settings after enabling Global
security can reduce potential problems when you restart the server for the first time.

Remote identity:

Specifies the System Authorization Facility (SAF) user ID that is assumed for the Internet Inter-ORB
Protocol (IIOP) unauthenticated clients that make requests of this server from another system.

Specifies whether an application remote identity is permitted.

Note: This information applies to Version 6.0.x and previous servers only that are federated in a Version
6.1 cell.

Local identity:

Specifies the SAF user ID that is assumed for the Internet Inter-ORB Protocol (IIOP) unauthenticated
clients that make requests of this server from the same system.

Specifies whether an application local identity is permitted.

Note: This information applies to Version 6.0.x and previous servers only that are federated in a Version
6.1 cell.

Enable application server and z/OS thread identity synchronization:

Specifies that application servers can process the SyncToOSThread option for application components that
specify it.

Selecting this option indicates whether an operating system thread identity is enabled for synchronization
with the Java Platform, Enterprise Edition (Java EE) identity that is used in the application server runtime
when an application is coded to request this function.

Synchronizing the operating system identity to the Java EE identity causes the operating system identity to
synchronize with the authenticated caller, or delegated RunAs identity in a servlet or Enterprise JavaBeans
(EJB) file. This synchronization or association means that the caller or security role identity, rather than the
server region identity, is used for z/OS system service requests such as access to files.

For this function to be active, the following conditions must all be true:

v The Sync to OS thread allowed value is true.

v An application includes within its deployment descriptor an env-entry of
com.ibm.websphere.security.SyncToOSThread set to true.

v The configured user account repository is the local operating system.

When these conditions are true, the OS thread identity is initially set to the authenticated caller identity of
a web or EJB request. The OS thread is modified each time the Java EE identity is modified. The Java EE
identity can be modified either by a RunAs specification on the deployment descriptor or a programmatic
WSSubject.doAs() request.

If the Sync to OS thread allowed value is false, which is the default setting, the ability to modify the
identity on the operating system thread of the deployment descriptor setting in the deployment descriptor

Chapter 4. Setting up, enabling and migrating security 101

of the installed application is disabled. If the server is not configured to accept enable synchronization and
the application deployment descriptor, com.ibm.websphere.security.SyncToOSThread, is set to true, a
BBOJ0080W warning message indicates that the EJB is requesting the SyncToOSThread option, but the
server is not enabled for the SyncToOSThread option.

Important: This option significantly increases the number of SMF 80 records used for security auditing.
When security auditing is turned on for SMF 80 records, the amount of DASD used increases significantly.

Enable the connection manager RunAs thread identity:

Sets the MVS identity associated with the Java Platform, Enterprise Edition (Java EE) identity on the
execution thread. Local Java EE Connector architecture (J2CA) connectors may honor the MVS identity
for authentication and authorization when an application requests a connection.

When you enable this setting, the method can process a request that modifies the operating system
identity to reflect the Java Platform, Enterprise Edition (Java EE) identity. This function is required to take
advantage of thread identity support. Java EE Connector architecture (J2CA) connectors that access local
resources on a z/OS system can use the thread identity support. A set of J2CA connectors that accesses
local z/OS resources defaults to the Java EE identity of the application if all of the following conditions are
true:
v Resource authorization is set to container-managed (res-auth=container).
v An alias entry is not coded when deploying the application.
v The connection manager Sync to OS thread setting is set to enabled.

For example, if you have a pre-existing DB2 for z/OS security policy that controls which users have access
to each table, you want to have that policy enforced when users access WebSphere applications that also
access DB2 for z/OS. The Java EE identity (the client identity by default) rather than the operating system
identity (server identity) is used to establish connections to DB2 for z/OS when Connection Manager
RunAs Identity Enabled is selected. DB2 for z/OS table access for the application is determined using your
preexisting DB2 for z/OS security policy.

Any J2CA connector that uses the thread identity support must support thread identity. Customer
Information Control System (CICS), Information Management System (IMS), and DATABASE 2 (DB2)
support thread identity. CICS and IMS support thread identity only if the target CICS or IMS is configured
on the same system as the application server for z/OS. DB2 always supports thread identity. If a connector
does not support thread identity, the user identity that is associated with the connection is based on the
default user identity that is supported by the particular connector.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Security custom properties
Use this page to understand the psecurity.allowCustomHTTPMethodsredefined custom properties that are
related to security.

To view this administrative console page, click Security > Global security > Custom properties. Then
click New to add a new custom property and its associated value.

The custom properties in this topic are set in the administrative console through the previously listed path
unless otherwise stated in the description.

You can use the custom properties page to define the following security custom properties:

v “com.ibm.audit.field.length.limit” on page 104

v “com.ibm.audit.report.granularity” on page 104

102 Securing applications and their environment

v “com.ibm.CSI.disablePropagationCallerList” on page 105

v “com.ibm.CSI.localCommDataForNonLocalOSEnabled” on page 105

v “com.ibm.CSI.propagateFirstCallerOnly” on page 106

v “com.ibm.CSI.rmiInboundLoginConfig” on page 106

v “com.ibm.CSI.rmiInboundMappingConfig” on page 106

v “com.ibm.CSI.rmiInboundMappingEnabled” on page 106

v “com.ibm.CSI.rmiOutboundLoginConfig” on page 106

v “com.ibm.CSI.rmiOutboundMappingEnabled” on page 107

v “com.ibm.CSI.supportedTargetRealms” on page 107

v “com.ibm.security.multiDomain.setNamingReadUnprotected” on page 107

v “com.ibm.security.SAF.forceDelegation” on page 107

v “com.ibm.security.SAF.overrideStartupAPPL” on page 107

v “com.ibm.security.useFIPS” on page 107

v “com.ibm.websphere.crypto.config.certexp.notify.fromAddress” on page 108

v “com.ibm.websphere.crypto.config.certexp.notify.textEncoding” on page 108

v “com.ibm.websphere.lookupRegistryOnProcess” on page 108

v “com.ibm.websphere.security.allowAnyLogoutExitPageHost” on page 108

v “com.ibm.websphere.security.alwaysRestoreOriginalURL” on page 109

v “com.ibm.websphere.security.config.inherit.trustedRealms” on page 109

v “com.ibm.websphere.security.console.noSSLTreePortEndpoints” on page 109

v “com.ibm.websphere.security.customLTPACookieName” on page 109

v “com.ibm.websphere.security.customSSOCookieName” on page 110

v “com.ibm.websphere.security.displayRealm” on page 111

v “com.ibm.websphere.security.disableGetTokenFromMBean” on page 111

v usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole

v “com.ibm.websphere.security.InvokeTAIbeforeSSO” on page 111

v “com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain” on page 112

v “com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal” on page 112

v “com.ibm.websphere.security.krb.canonical_host” on page 112

v “com.ibm.websphere.security.ldap.logicRealm” on page 112

v “com.ibm.websphere.security.ldapSSLConnectionTimeout” on page 113

v “com.ibm.websphere.security.logoutExitPageDomainList” on page 113

v

v “com.ibm.websphere.security.rsaCertificateAliasCache” on page 113

v “com.ibm.websphere.security.strictCredentialExpirationCheck” on page 113

v “com.ibm.websphere.security.tokenFromMBeanSoapTimeout” on page 114

v “com.ibm.websphere.security.useLoggedSecurityName” on page 114

v “com.ibm.websphere.security.util.csiv2SessionCacheIdleTime” on page 114

v “com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled” on page 115

v “com.ibm.websphere.security.util.csiv2SessionCacheMaxSize” on page 115

v “com.ibm.websphere.security.util.postParamMaxCookieSize” on page 116

v “com.ibm.websphere.security.webAlwaysLogin” on page 116

v “com.ibm.websphere.security.useLoggedSecurityName” on page 114

v “com.ibm.ws.security.addHttpOnlyAttributeToCookies” on page 116

v “com.ibm.ws.security.allowNonAdminToSecurityXML” on page 117

Chapter 4. Setting up, enabling and migrating security 103

usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole

v “com.ibm.ws.security.config.SupportORBConfig” on page 117

v “com.ibm.ws.security.createTokenSubjectForAsynchLogin” on page 117

v “com.ibm.ws.security.defaultLoginConfig” on page 117

v “com.ibm.ws.security.failSSODuringCushion” on page 117

v “com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA” on page 118

v “com.ibm.ws.security.ssoInteropModeEnabled” on page 118

v “com.ibm.ws.security.unprotectedUserRegistryMethods” on page 118

v “com.ibm.ws.security.webChallengeIfCustomSubjectNotFound” on page 119

v “com.ibm.ws.security.webInboundLoginConfig” on page 119

v “com.ibm.ws.security.webInboundPropagationEnabled” on page 119

v “com.ibm.ws.security.zOS.useSAFidForTransaction” on page 119

v

v

v “com.ibm.wsspi.security.ltpa.tokenFactory” on page 120

v “com.ibm.wsspi.security.token.authenticationTokenFactory” on page 120

v “com.ibm.wsspi.security.token.authorizationTokenFactory” on page 120

v “com.ibm.wsspi.security.token.propagationTokenFactory” on page 120

v “com.ibm.wsspi.security.token.singleSignonTokenFactory” on page 120

v “com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken” on page 121

v “security.allowCustomHTTPMethods” on page 121

v “security.enablePluggableAuthentication” on page 121

v “security.useDefaultPolicyWhenJ2SDisabled” on page 121

com.ibm.audit.field.length.limit:

This property only applies to the SMF Emitter implementation that IBM provides for the Security Auditing
feature. You can use this property to specify, in bytes, the length at which variable-length audit data is
truncated. By default, if this custom property is not specified, and the threshold limit of 20480 is exceeded,
variable-length audit data fields are truncated to 128 bytes.

gotcha: You must use the modifyAuditEmitter command for the AdminTask object to enable this custom
property. For a description of how to use this command, see the documentation about
AuditEmitterCommands for the AdminTask object.

The SMF relocation data has a threshold size limit of 20480 bytes. If the audit data exceeds this limit, the
audit data is truncated to prevent the loss of audit records.

Default 20480
Type An integer between 1 and 512

com.ibm.audit.report.granularity:

This property enables you to specify how much auditing data is recorded for each event type. If you only
need to record basic information about an event, such as who did what action to what resource, and
when, setting this property to high, might improve your application server performance.

You can specify values of high, medium, or low for this property. The default value is low.

104 Securing applications and their environment

Table 20. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity. The following table indicates the type of data that is recorded for each event type
based on the setting for this property.
Event type high setting medium setting low setting

SessionContext sessionId sessionId, remoteHost sessionId, remoteHost, remoteAddr,
remotePort

PropagationContext (is only
reported if SAP is enabled)

firstCaller (as part of the who) firstCaller, and if verbose mode is
enabled, the callerList

firstCaller, and if verbose mode is
enabled, the callerList

RegistryContext nothing is recorded registry type registry type

ProcessContext nothing is recorded realm realm, and domain if verbose is
enabled

EventContext creationTime creationTime, globalInstanceId creationTime, globalInstanceId,
eventTrailId, and lastTrailId if
verbose mode is enabled

DelegationContext identityName delegationType, and identityName delegationType, roleName, and
identityName

AuthnContext nothing is recorded authn type authn type

ProviderContext nothing is recorded provider provider, and providerStatus

AuthnMappingContext mappedUserName mappedUserName, and
mappedSecurityRealm

mappedUserName,
mappedSecurityRealm, and
mappedSecurityDomain

AuthnTermContext terminateReason terminateReason terminateReason

AccessContext progName, action, appUserName,
and resourceName

progName, action, appUserName,
resourceName, registryUserName,
and accessDecision

progName, action, appUserName,
resourceName, registryUserName,
accessDecision, resourceType,
permissionsChecked,
permissionsGranted, rolesChecked,
and rolesGranted

PolicyContext nothing is recorded policyName policyName, and policyType

KeyContext keyLabel keyLabel, and keyLocation keyLabel, keyLocation, and
certificateLifetime

MgmtContext nothing is recorded mgmtType, and mgmtCommand mgmtType, mgmtCommand, and
targetInfoAttributes

com.ibm.CSI.disablePropagationCallerList:

This property completely disables the caller list and will not allow the caller list to change. This property
prevents the creation of multiple sessions.

This property completely disables adding a caller or host list in the propagation token. Setting this property
can be a benefit when the caller or host list in the propagation token is not needed in the environment.

Note: If this property is set to true as well as com.ibm.CSI.propagateFirstCallerOnly, then
com.ibm.CSI.disablePropagationCallerList takes precedence.

Default false

com.ibm.CSI.localCommDataForNonLocalOSEnabled:

This property allows local communication data to be used as authentication material for the CSIv2
transport layer when the user registry is not a LocalOS user registry.

When this property is set to true, the data retrieved from the local communication transport corresponds to
the ASID of the local client connecting to a WebSphere Application Server process. A user corresponding
to the ASID must exist in the user registry. When a CSIv2 Establish Message is received by a WebSphere
Application Server process and Identity Assertion is requested, the data retrieved from the local
communication transport can be used to validate that the client has permission to assert the user specified

Chapter 4. Setting up, enabling and migrating security 105

in the Identity Token in the Attribute Layer. If the user represented by the received ASID is in the Trusted
Identities list on the CSIv2 Inbound Authentication page in the administrative console, then that ID is able
to assert the Identity Token.

Default false

com.ibm.CSI.propagateFirstCallerOnly:

This property will not allow the caller list to change and thus prevent the creation of multiple session
entries. This property specifically limits the caller list to the first caller only.

This property logs the first caller in the propagation token that stays on the thread when security attribute
propagation is enabled. Without setting this property, all caller switches get logged, which affects
performance. Typically, only the first caller is of interest.

Note: If this property is set to true as well as com.ibm.CSI.disablePropagationCallerList, then
com.ibm.CSI.disablePropagationCallerList takes precedence.

Default true

Note: New for this release, the default value of the com.ibm.CSI.propagateFirstCallerOnly security custom
property is set to true. When this custom property is set to true, the first caller in the propagation
token that stays on the thread is logged when security attribute propagation is enabled. When this
property is set to false, all of the caller switches are logged, which can affect performance.

com.ibm.CSI.rmiInboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is
used for Remote Method Invocation (RMI) requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for RMI logins.

Default system.RMI_INBOUND

com.ibm.CSI.rmiInboundMappingConfig:

This property defines the system JAAS login configuration that is used to perform application specific
principal mapping.

Default None

com.ibm.CSI.rmiInboundMappingEnabled:

This property, when set to true, enables the application specific principal mapping capability.

Default false

com.ibm.CSI.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

106 Securing applications and their environment

Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.
However, you can plug in a custom login module to perform outbound mapping.

Default system.RMI_OUTBOUND

com.ibm.CSI.rmiOutboundMappingEnabled:

This property, when set to true, enables the original caller subject embedded in the WSSubjectWrapper
object to be restored.

Default false

com.ibm.CSI.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is
specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2
outbound authentication panel. This property enables those realms to perform inbound mapping of the
data from the current realm.

It is not recommended that you send authentication information to an unknown realm. Thus, this provides
a way to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,
complete the following steps:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.security.multiDomain.setNamingReadUnprotected:

This property can be set to true or false to determine if the CosNamingRead role protects all naming read
operations. Setting this property to true is the equivalent of assigning the CosNamingRead role the
Everyone special subject. If this propert is set, then it will override any assignments made to the
CosNamingRead role.

Default none

com.ibm.security.SAF.forceDelegation:

Determines whether System Authorization Facility (SAF) delegation can be used independently of SAF
authorization. When this property is set to true, SAF delegation can be used whenever the user registry is
a Federated Repository user registry, and is configured with a SAF user registry bridge.

There is no default value for this property.

com.ibm.security.SAF.overrideStartupAPPL:

This property can be used to override the value for the APPL profile, specifically for the two RACROUTE
calls that are made during server startup. For these calls the APPL value is not used for the authorization
checking process, but is made available to the installation exit routine. The APPL profile value used for
authorization checking is not controlled by this property, it is instead set to either CBS390 or the SAF
profile prefix value.

Default none

com.ibm.security.useFIPS:

Chapter 4. Setting up, enabling and migrating security 107

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server
uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

Default false

com.ibm.websphere.crypto.config.certexp.notify.fromAddress:

This security property is used to customize the "from address" of certificate expiration notification email.

The value you assigned to this property should be an internet address, for example "Notification@abc-
company.com" If this property is not set, WebSphere uses its email fromAddress:
"WebSphereNotification@ibm.com" .

Default None

com.ibm.websphere.crypto.config.certexp.notify.textEncoding:

This security property is used to customize the text encoding character set for certificate expiration
notification email.

WebSphere Application Server sends notification email for certificate expiration in either US-English or the
machine default character set (if non-English locale is specified). If you want a different text encoding
character set for the certificate expiration notification email, you can use this property to customize the text
encoding character set.

Default None

com.ibm.websphere.lookupRegistryOnProcess:

This property can be set when realm registry lookups are performed via an MBean on a remote server if
the realm is local OS security.

By default, the user registry tasks listRegistryUsers and listRegistryGroups perform lookups from the
current process. In the case of Network Deployment (ND), that is the dmgr.

When dealing with a local OS user registry, lookup should occur on the actual server where the registry
resides. In an ND environment that could be a remote machine. To perform lookup on the server process
where the registry resides, the com.ibm.websphere.lookupRegistryOnProcess custom property should be
set to true.

If com.ibm.websphere.lookupRegistryOnProcess is not set, or set to false, then the lookup is performed
on the current process. The custom property can be set using the setAdminActiveSecuritySettings task for
global security or the setAppActiveSecuritySettings task for a security domain.

com.ibm.websphere.security.allowAnyLogoutExitPageHost:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you want to be able
to point to any host, then you need to set this property in the security.xml file to a value of true. There is
a risk that setting this property to have a value of true may open your systems to potential URL redirect
attacks.

Default false

108 Securing applications and their environment

com.ibm.websphere.security.alwaysRestoreOriginalURL:

Use this property to indicate whether a cookie with the value WASReqURL is honored when the custom
form login processor is used.

When this property is set to true, the value of WASReqURL takes precedence over the current URL, and
the WASReqURL cookie is removed from subsequent requests.

When this property is set to false, the value of the current URL takes precedence, and the WASReqURL
cookie is not removed from subsequent requests.

Default false

com.ibm.websphere.security.config.inherit.trustedRealms:

This property is used to inherit the global trusted realm settings from the global security configuration in
the domain.

Security configuration trusted inbound and outbound realms are not inherited by default. However, there
are some cases where the configuration might want to use (inherit) the settings from the global security
configuration in the domain.

The value of this property can be either true or false.

com.ibm.websphere.security.console.noSSLTreePortEndpoints:

This property is used to improve the response time for large topology configurations.

When this property is set to true the status of the of the SSL port endpoints does not display on the
Manage endpoint security configurations page in the administrative console. Displaying the status of the
SSL port endpoints sometimes makes the administrative console seem like it is no longer functioning
because of a longer than expected response time.

Default false

com.ibm.websphere.security.customLTPACookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
(LTPA) tokens.

WebSphere Application Server Version 8.0 enables you to customize the name of the cookies used for
LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

Chapter 4. Setting up, enabling and migrating security 109

v This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

v The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8.0. This enables compatibility with products such as
Lotus Domino and WebSphere Portal which both utilize the default cookie name.

v Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

v This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8.0 might be able to create custom cookies.
However, a WebSphere Application Server Version 7.0 node or server existing in this same cell
does not understand what to do with this cookie and subsequently rejects it.

v If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.

com.ibm.websphere.security.customSSOCookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
Version 2 (LTPA2) tokens.

WebSphere Application Server Version 8.0 enables you to customize the name of the cookies used for
LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

v This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

v The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8.0. This enables compatibility with products such as
Lotus Domino and WebSphere Portal which both utilize the default cookie name.

v Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

v This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8.0 might be able to create custom cookies.
However, a WebSphere Application Server Version 7.0 node or server existing in this same cell
does not understand what to do with this cookie and subsequently rejects it.

110 Securing applications and their environment

v If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.

com.ibm.websphere.security.displayRealm:

This property specifies whether the HTTP basic authentication login window displays the realm name that
is not defined in the application web.xml file.

Note: If the realm name is defined in the application web.xml file, this property is ignored.

If the realm name is not defined in the web.xml file, one of the following occurs:

v If the property is set to false, the WebSphere realm name display is Default Realm.

v If this property is set to true, the WebSphere realm name display is the user registry realm name
for the LTPA authentication mechanism or the Kerberos realm name for the Kerberos
authentication mechanism.

Important: If this property is set to true, and the user registry's realm name contains sensitive
information, it is displayed to the user. For example, if standalone LDAP configuration is used,
the LDAP server hostname and port are displayed. For LocalOS, the hostname is displayed.

Default false
Type string

com.ibm.websphere.security.disableGetTokenFromMBean:

Use this property to disables the outbound SOAP call to retrieve the subject from the originating server
when Single Sign-On is enabled.

Typically, when Single Sign-On is enabled, and an inbound request needs to be authenticated, the
receiving server attempts to retrieve the authentication from the originating server. The connection
between the sending and receiving servers never times out during this callback process.

When this property is set to true, the receiving server does not attempt to authenticate the inbound
request.

Default false

com.ibm.websphere.security.enableAuditForIsCallerInRole:

Use this property to enable audit for the isCallerInRole method call.

If you set this property to false, it disables auditing for the invocation of isCallerInRole. In z/OS, SMF
records are not issued for the invocation.

Default true

com.ibm.websphere.security.InvokeTAIbeforeSSO:

Default invocation order of Trust Association Interceptors (TAIs) in relation to Single Sign On (SSO) user
authentication can be changed using this property. The default order is to invoke Trust Association

Chapter 4. Setting up, enabling and migrating security 111

Interceptors after SSO. This property is used to change the default order of TAI invocation with SSO. The
property value is a comma (,) separated list of TAI class names to be invoked before SSO.

Default com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl
Type string

com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain:

By default, when JAAS authentication data entries are created at the domain security level, the alias name
for the entry will be in the format aliasName. . You can enable the addition of the node name to the alias
name in order to create the alias name in the format nodeName/aliasName for the entry, by setting the
following property at the domain security level.

Note: You can set com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain=true at the
global security level, to enable the addition of the node name to the alias name of JAAS
authentication data entries for all security domains.

Default false

com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal:

By default, when JAAS authentication data entries are created at the global security level, the alias name
for the entry will be in the format nodeName/aliasName. You can disable the addition of the node name to
the alias name for the entry, by setting a value of true for this property at the global security level.

Default false

com.ibm.websphere.security.krb.canonical_host:

This custom property specifies whether the application server uses the canonical form of the URL/HTTP
host name in authenticating a client. This property can be used for both SPNEGO TAI and SPNEGO Web.

If you set this custom property to false, a Kerberos ticket can contain a host name that differs from the
HTTP host name header and the application server might issue the following message:
CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application server
to authenticate using the canonical form of the URL/HTTP host name.

Default true

com.ibm.websphere.security.ldap.logicRealm:

This custom property enables you to change the name of the realm that is placed in the token.

This custom property enables you to configure each cell to have its own LDAP host for interoperability and
backward compatibility. Also, it provides flexibility for adding or removing the LDAP host dynamically. If you
are migrating a previous installation, this modified realm name does not take effect until administrative
security is re-enabled. To be compatible with a previous release that does not support the logic realm, the
name must be the same name that is used by the previous installation. You must use the LDAP host
name, including a trailing colon and port number.

Type String

112 Securing applications and their environment

|
|

|||
|

This property must be set as the custom property of a stand-alone LDAP registry. To set this custom
property, in the administrative console:

1. Click Security > Global security.

2. Under User account repository, expand the Available realm definitions list, and select Standalone
LDAP registry, and then click Configure.

3. Under Custom properties, click New , and then enter com.ibm.websphere.security.ldap.logicRealm in
the Name field, and the new name of the realm that is placed in the token in the Value field.

4. Select this custom property and then click Apply or OK.

com.ibm.websphere.security.ldapSSLConnectionTimeout:

Use this property, when SSL is enabled on the LDAP server, to specify, in milliseconds, the maximum
amount of time the JVM waits for a socket connection before issuing a timeout.

If one or more standalone LDAP servers are offline when a server process starts, and LDAP-SSL is
enabled, there might be a delay of up to 3 minutes in the startup procedure even if you specify a value for
the com.sun.jndi.ldap.connect.timeout custom property. When LDAP-SSL is enabled, any value specified
for the com.sun.jndi.ldap.connect.timeout property is ignored.

When a value is specified for this property, the JVM tries to uses this connection timeout value when
attempting to complete a socket connection, instead of trying to establish a directory context. When no
value is specified for this property, the JVM tries to establish a directory context.

There will be no default value for this property.

com.ibm.websphere.security.logoutExitPageDomainList:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you need to point to
a different host, then you can populate this property in security.xml with a pipe (|) separated list of URLs
that are allowed for the logout page.

Default none

com.ibm.websphere.security.rsaCertificateAliasCache:

This property is used to control the size of the alias cache.

The default value is 5000 and can be increased for larger deployments.

The value must be entered into the range of 1 - N, where N is a valid positive integer that is greater than
or equal to the number of nodes registered with the Job Manager. You do not need to add this property
unless your Job Manager topology exceeds 5000 registered nodes.

Default 5000

com.ibm.websphere.security.strictCredentialExpirationCheck:

Specifies whether credential expiration check occurs for a local EJB call. Typically, when an EJB invokes
another EJB that is located in a local machine, a direct method invocation occurs even if the credentials of
the original invoker expire before the local EJB call occurs.

Chapter 4. Setting up, enabling and migrating security 113

|
|

|

|
|

|
|

|

If this property is set to true, a credential expiration check occurs on a local EJB call before the EJB is
invoked on the local machine. If the credentials have expired, the EJB call is rejected.

If this property is set to false, a credential expiration check does not occur for a local EJB call.

Default false

com.ibm.websphere.security.tokenFromMBeanSoapTimeout:

Use this property to specify the amount of time the receiving server waits for an outbound SOAP call to
retrieve the proper authentication from the originating server when Single Sign-On is enabled.

There is no default value for this property. If no value is specified, the global SOAP timeout value is used
as the timeout value for the SOAP connection.

com.ibm.websphere.security.useLoggedSecurityName:

This is a custom property of user registries. This property alters the behavior of creating WSCredential.

A setting of false indicates that the security name returned by a user registry is always used to construct
WSCredential.

A setting of true indicates that either a security name that is supplied by login module is used or a display
name that was supplied by a user registry is used. This setting is compatible with WebSphere Application
Server version 6.1 and older releases.

Default false

com.ibm.websphere.security.util.csiv2SessionCacheIdleTime:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if the com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom
property is set to a true value and the maximum size of the CSIv2 session cache is exceeded.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. Consider decreasing
the value for this custom property if your environment uses Kerberos authentication and has a short clock
skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined as
less than 20 minutes.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can set the value in the Idle session timeout field. However, when you specify this value
on the CSIv2 outbound communications panel, the administrative console value is expected in
seconds and not milliseconds.

The range of values for this custom property is 60,000 to 86,400,000 milliseconds. By default, the value is
not set.

114 Securing applications and their environment

com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled:

This custom property specifies whether to limit the size of the CSIv2 session cache.

When you set this custom property value to true, you must set values for the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime and
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom properties. When you set this custom
property to false, the CSIv2 session cache is not limited. The default property value is false.

Consider setting this custom property to true if your environment uses Kerberos authentication and has a
small clock skew for the configured key distribution center (KDC). In this scenario, a small clock skew is
defined as less than 20 minutes. A small clock skew can result in a larger number of rejected CSIv2
sessions. However, with a smaller value for the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property, the application server can
clean out these rejected sessions more frequently and potentially reduce the resource shortages.

Important: This custom property only applies if you enable the stateful sessions.

Important: Although you can enable the CSIv2 session cache limit option as a custom property, it is
advisable that you enable the option on the CSIv2 outbound communications panel, which is
available in the administrative console by completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can enable the Enable CSIv2 session cache limit option. The default value is false.

com.ibm.websphere.security.util.csiv2SessionCacheMaxSize:

This property specifies the maximum size of the session cache after which expired sessions are deleted
from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified by the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property. When you use the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property, consider setting its value
between 100 and 1000 entries.

Consider specifying a value for this custom property if your environment uses Kerberos authentication and
has a small clock skew for the configured key distribution center (KDC). In this scenario, a small clock
skew is defined as less than 20 minutes. Consider increasing the value of this custom property if the small
cache size causes the garbage collection to run so frequently that it impacts the performance of the
application server.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can set the value in the Maximum cache size field.

The range of values for this custom property is 100 to 1000 entries. By default, the value is not set.

Chapter 4. Setting up, enabling and migrating security 115

com.ibm.websphere.security.util.postParamMaxCookieSize:

This property sets a size limit for WASPostParam cookies being generated by the security code.

When the Use available authentication data when an unprotected URI is accessed option is enabled and
Form-based authentication is being used this, a WASPOSTParam is generated during the authentication
procedure of the HTTP POST request even if the target URL is unprotected. A WASPOSTParam cookie is
a temporary cookie used to store HTTP POST parameters. This results in the Web client being sent the
unnecessary cookie with an HTTP response. This might cause unexpected behavior when the size of the
cookie is larger than the browser limit. To avoid this behavior,
com.ibm.websphere.security.util.postParamMaxCookieSize can be set to cause the security code to stop
generating the cookie if the maximum size specified by this property is reached. The value of this property
must be a positive integer and represents the maximum size of the cookie in bytes.

Default none

com.ibm.websphere.security.webAlwaysLogin:

This property specifies whether the login() method will throw an exception if an identity had already been
authenticated. You can overwrite this behavior by setting this property to true.

Default false
Type string

Note: The login() method always uses the user ID and password to authenticate to the WebSphere
application server irrespective of the presence of the SSO information in the HttpServletRequest.

com.ibm.ws.security.addHttpOnlyAttributeToCookies:

This custom property enables you to set the HTTPOnly attribute for single sign-on (SSO) cookies.

You can use the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property to protect cookies
that contain sensitive values. When you set this custom property value to true, the application server sets
the HTTPOnly attribute for SSO cookies whose values are set by the server. The HTTPOnly attribute
enables the protection of sensitive values in cookies.

Also, a true value enables the application server to properly recognize, accept, and process inbound
cookies with HTTPOnly attributes and inhibit any cross-site scripting from accessing sensitive cookie
information.

A common security problem, which impacts web servers, is cross-site scripting. Cross-site scripting is a
server-side vulnerability that is often created when user input is rendered as HTML. Cross-site scripting
attacks can expose sensitive information about the users of the website. Most modern web browsers
honor the HTTPOnly attribute to prevent this attack. A cookie with this attribute is called an HTTPOnly
cookie. Information that exists in an HTTPOnly cookie is less likely to be disclosed to a hacker or a
malicious website. For more information about the HTTPOnly attribute, see the Open Web Application
Security Project (OWASP) website.

Important: When you use this custom property, HTTPOnly attribute is not added to every cookie that
passes through the application server. Also, the attribute is not added to other non-secure
cookies that are created by the application server. A list of non-HTTPOnly cookies includes:

v JSESSIONID cookies

v SSO cookies that are created by authenticators or providers from another software vendor

v Client or browser cookies that do not already contain the HTTPOnly attribute

116 Securing applications and their environment

You can set or remove this custom property from the Single sign-on panel in the administrative console by
doing the following:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Default true Type Boolean

com.ibm.ws.security.allowNonAdminToSecurityXML:

This property specifies whether the non-admin security roles are allowed the ability to modify the
security.xml file. Setting this property to true gives non-admin security roles the ability to modify the
security.xml file. In Version 6.1 and above, by default, non-admin security roles have the ability to modify
the security.xml file.

Default false
Type Boolean

com.ibm.ws.security.config.SupportORBConfig:

Specifies whether to check or not check the object request broker (ORB) for properties. This property
needs to be set as a system property. You set this property to true or yes so that the ORB is checked for
properties. For any other setting, the ORB is completely ignored.

The property is to be used when a pluggable application client connects to the WebSphere Application
Server. Specifically, this property is used whenever a hashmap containing security properties is passed in
a hashmap on a new InitialContext(env) call.

com.ibm.ws.security.createTokenSubjectForAsynchLogin:

In this release, the actual LTPA token data is not available from a WSCredential.getCredentialToken() call
when called from an asynchronous bean. For an existing configuration, you can add the
com.ibm.ws.security.createTokenSubjectForAsynchLogin custom property and a true value to allow the
LTPAToken to be forwarded to asynchronous beans. This property allows portlets to successfully perform
LTPA token forwarding. This custom property is case sensitive. You must restart the application server
after you add this custom property.

Note: This custom property applies only to system conditions where Server A makes EJB calls from
asynchronous beans to Server B. This property does not apply for JAAS login situations.

Default not applicable

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the
WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

Internal authentication and protocols that do not have specific JAAS plug points call the system login
configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

Default system.DEFAULT

com.ibm.ws.security.failSSODuringCushion:

Chapter 4. Setting up, enabling and migrating security 117

Use the com.ibm.ws.security.failSSODuringCushion custom property to update custom JAAS Subject data
for the LTPA token.

When you do not set this custom property to true, new JAAS Subjects might not contain the custom JAAS
Subject data.

The default value is true.

com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA:

Use the com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA custom property to correct an "invalid
library name" error when you attempt to use a PKCS11 type keystore with a Java client.

Also, use this custom property if you are using the IBMJCECCA provider because distributed and z/OS
operating systems use different provider types for hardware cryptography.

The ssl.client.props file points to a configuration file, which in turn, points to the library name for the
cryptographic device. The code for the Java client looks for a keystore type for the correct provider name.
Without this custom property, the keystore type constant for PKCS11 is not specified correctly as it
references the IBMPKCS11Impl provider instead. Also, the Lightweight Third Party Authentication (LTPA)
code uses the provider list to determine the Java Cryptography Extension (JCE) provider. This approach
causes a problem when Secure Sockets Layer (SSL) acceleration is attempted because the
IBMPKCS11Impl provider needs to be listed before the IBMJCE provider within the java.security file.

This custom property corrects both issues so that SSL and other cryptographic mechanisms can use
hardware acceleration.

Note: LTPA cannot use hardware acceleration because the software keys for LTPA do not implement the
java.security.interfaces.RSAPrivateCrtKey interface, which is required by many accelerator cards.

Set this custom property to true when you want to use a PKCS11 type keystore with a Java client.

Default false

com.ibm.ws.security.ltpa.useCRT:

Use this property to improve the CPU utilization during the sign() operation that occurs when a new LTPA2
(SSO) token is created. When this property is set to true, the product implements the Chinese Remainder
Theorem (CRT) algorithm when signing the new token. This property has no effect on the old style LTPA
token.

Default false

com.ibm.ws.security.ssoInteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a web
request (interoperable).

When this property value is false, the application server just sends the new LtpaToken2 cookie which is
stronger, but not interoperable with some other products and Application Server releases prior to Version
5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to false.

Default true

com.ibm.ws.security.unprotectedUserRegistryMethods:

118 Securing applications and their environment

Specifies the method names on the UserRegistry interface, such as getRealm, getUsers, and isValidUser,
that you do not want protected from remote access. If you specify multiple method names, separate the
names with either a space, a comma, a semi-colon, and a separator bar. See your implementation of the
UserRegistry interface file for a complete list of valid method names.

If you specify an * as the value for this property, all methods are unprotected from remote access.

If a value is not specified for this property, all methods are protected from remote access.

If an attempt is made to remotely access a protected UserRegistry interface method, the remote process
receives a CORBA NO_PERMISSION exception with minor code 49421098.

There is no default value for this property.

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound:

This property determines the behavior of a single sign-on LtpaToken2 login.

If the token contains a custom cache key and the custom Subject cannot be found, then the token is used
to log in directly as the custom information needs to be regathered if this property value is set to true. A
challenge also occurs so that the user is required to login again. When this property value is set to false
and the custom Subject is not found, the LtpaToken2 is used to login and gather all of the registry
attributes. However, the token might not obtain any of the special attributes that downstream applications
might expect.

Default true

com.ibm.ws.security.webInboundLoginConfig:

This property is the JAAS login configuration that is used for web requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for web logins.

Default system.WEB_INBOUND

com.ibm.ws.security.webInboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated
attributes locally before searching the original login server that is specified in the token. After the
propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

You can configure the data replication service (DRS) to send the propagated attributes to front-end servers
such that a local dynacache lookup can find the propagated attributes. Otherwise, an MBean request is
sent to the original login server to retrieve these attributes.

Default true

com.ibm.ws.security.zOS.useSAFidForTransaction:

This property is used to enable a server to use the user identity for the z/OS started task as the server
identity when calling transactional methods.

Chapter 4. Setting up, enabling and migrating security 119

This property is used to enable a server to use the user identity for the z/OS started task as the server
identity when calling transactional methods, such as commit(), and prepare(), that require the server
identity. This behavior occurs regardless of the server identity setting for that server.

As an example, a server can be configured to use the automatically generated server identity, which is not
the actual identity stored in a user repository. Furthermore, this server might need to communicate with
CICS 3.2, and CICS 3.2 requires the use of System Authorization Facility (SAF) identities. If
com.ibm.ws.security.zOS.useSAFidForTransaction is set to true, then the server uses a SAF identity to
communicate with CICS instead of using the automatically generated identity.

Default false

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used
to validate the LTPA tokens.

Validation occurs in the order in which the token factories are specified because LTPA tokens do not have
object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each
token factory until validation is successful. The order that is specified for this property is the most likely
order of the received tokens. Specify multiple token factories by separating them with a pipe (|) without
spaces before or following the pipe.

Default com.ibm.ws.security.ltpa.LTPATokenFactory |
com.ibm.ws.security.ltpa.LTPAToken2Factory |
com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.authenticationTokenFactory:

This property specifies the implementation that is used for an authentication token in the attribute
propagation framework. The property provides an old LTPA token implementation for use as the
authentication token.

Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory
encodes the authorization information.

Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes
the propagation token information.

The propagation token is on the thread of execution and is not associated with any specific user Subjects.
The token follows the invocation downstream wherever the process leads.

Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

120 Securing applications and their environment

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This
implementation is the cookie that is set when propagation is enabled regardless of the state of the
com.ibm.ws.security.ssoInteropModeEnabled property.

By default, this implementation is the LtpaToken2 cookie.

Default com.ibm.ws.security.ltpa.LTPAToken2Factory

com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken:

Use this property to specify how you want the system to handle authentication for a request after the
Kerberos token for the request expires.

When this property is set to true, if a Kerberos token cannot be refreshed after it expires, authentication
for the request fails.

When this property is set to false, authentication for the request does not fail even if the token has
expired.

The default value for this property is false.

security.allowCustomHTTPMethods:

Use this custom property to permit custom HTTP methods. The custom HTTP methods are other than the
standard HTTP methods, which are: DELETE, GET, HEAD, OPTIONS, POST, PUT or TRACE.

When this property is set to false, which is the default, if a combination of a URI pattern and a custom
HTTP method are not listed in the security-constraint element, a search of the security constraint is
performed using an URI pattern only. If there is a match, the value of the <auth-constraints> element is
enforced. This behavior minimizes a potential security exposure.

When this property is set to true, the custom HTTP methods are treated as the standard HTTP methods.
An authorization decision is made by both the URI pattern and the HTTP method. To properly protect a
target URI, make sure that the proper HTTP methods are listed in the <web-resource-collection> element.

security.enablePluggableAuthentication:

This property is no longer used. Instead, use WEB_INBOUND login configuration.

Complete the following steps to modify the WEB_INBOUND login configuration:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click System logins.

Default true

security.useDefaultPolicyWhenJ2SDisabled:

The NullDynamicPolicy.getPermissions method provides an option to delegate a default policy class to
construct a Permissions object when the security.useDefaultPolicyWhenJ2SDisabled custom property is
set to true. When this property is set to false, an empty Permissions object is returned.

Default false

Chapter 4. Setting up, enabling and migrating security 121

Security custom property collection
Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key
and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of
these administrative pages, click a Custom properties link.

Name:

Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings
Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. Defining a new
property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several custom property settings pages that work similarly. To view
one of these administrative pages, click Custom properties.

Name:

Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the product.

Data type String

Value:

Specifies the value paired with the specified name.

Data type String

Description:

Provides information about the name and value pair.

122 Securing applications and their environment

Data type String

Testing security after enabling it
Basic tests are available that show whether the fundamental security components are working properly.
Use this task to validate your security configuration.

Before you begin

After configuring administrative security and restarting all of your servers in a secure mode, validate that
security is properly enabled.

Basic tests are available that show whether the fundamental security components are working properly.
Complete the following steps to validate your security configuration:

Procedure
1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does
not appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/
console.

3. Test Java Client BasicAuth with dumpNameSpace.

Use the app_server_root/bin/dumpNameSpace.sh file. A login panel appears. If a login panel does not
appear, there is a problem. Type in any valid user ID and password (or password phrase) in your
configured user registry.

4. Test all of your applications in secure mode.

5. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any
problems, review the SYSOUT and SYSPRINT logs. For more information on common problems, see
Chapter 12, “Troubleshooting security configurations,” on page 977.

Note: Testing synchronizing of the node agent is a good test. To do so, make a small change to the
configuration and save and synchronize those changes. If there are no errors, proceed.

Results

The results of these tests, if successful, indicate that security is fully enabled and working properly.

Example

To test the Snoop application, do the following:

1. Enable security while installing the Base Application Server.

2. Log onto the administrative console with a wsadmin user ID and password.

3. Navigate to Applications > Enterprise Applications > DefaultApplication > Security role to
user/group mapping.

4. Add a user. Select the role All Role, and click Lookup User.

5. Map one of the users (for example, TESTER1) with the role All Role. For more information on
mapping, see ../ae/usec_rmapuser.dita.

6. Save the configuration.

7. Run Resource Access Control Facility (RACF) commands for the role All Role to find those that are
associated with the TESTER1 user ID.

Note: In the RACF command, enter All Role as All#Role, as in the following example:

Chapter 4. Setting up, enabling and migrating security 123

RDEFINE EJBROLE S30CSA1.All#Role UACC(NONE) APPLDATA(’TESTER1’)
PERMIT S30CSA1.All#Role CLASS(EJBROLE) ID(TESTER1) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH
PE S30CSA1 CLASS(APPL) ID(TESTER1) ACCESS(READ)

8. Access the application with the user ID TESTER1 at http://localhost:port/snoop.

Security Configuration Wizard
The Security Configuration Wizard guides you through the process of completing the basic requirements to
secure your application serving environment.

This wizard is available from the Security menu from the left pane of the admin console. To get to the
wizard, navigate to Security > Global security > Security Configuration Wizard.

Step one of the configuration wizard allows you to choose the level of security desired. application-level
security is selected by default. You also have the option of selecting Java 2 security.

Step two of the configuration wizard allows you to select a user repository. You have the following options:

v “Federated repository wizard settings” on page 259

v “Local operating system wizard settings” on page 190

v “Stand-alone custom registry wizard settings” on page 222

v “Standalone LDAP registry wizard settings” on page 197

Step three of the configuration wizard allows you to specify the local operating system user and group
definitions as the repository, and, if necessary, to provide the name of a user with administrator privileges.

Step four of the configuration wizard provides a summary of the results of the configuration process.

Security configuration report
The security configuration report gathers and displays the current security settings of the application
server. Information is gathered about core security settings, administrative users and groups, CORBA
naming roles, and cookie protection. When multiple security domains are configured, each security domain
has it's own report with a subset of the sections shown in the global security report that apply to the
domain.

Note: The security configuration report now includes information about session security, web Attributes,
and the HttpOnly setting to enable you to get a more complete view of your server security settings.

The report is a table with four columns: Console Name, Security Configuration Name, Value and
Console Path Name. The security information gathered is divided into sections, and groups
common security information. A row highlighted in blue with a title in the first column starts a new
section.

The Security Configuration Report can be run from the administrative console by selecting Security
> Global Security and then clicking Security Configuration Report. A new window displays the
report information.

The columns

Console Name
Contains the name of the security attribute as found in the administrative console. If the value in
this column is on a row highlighted in blue, and is the only entry on the row, then it is the start of a
new section.

Security Configuration Name
Contains the security attribute as found in the configuration file.

124 Securing applications and their environment

Value Contains the value of the security attribute.

Console Path Name
Contains the path where the attribute is found on the console.

The sections

Security Settings
Displays information about the top-level security attributes. These attributes set the default for
administrative security for the server, such as whether security is enabled, the default user registry,
or if Java security is enabled.

For more information, read the Global security settings article.

Authentication Mechanisms and expirations
Contains all the attributes associated with each authentication mechanisms and trust associations
as defined in the configuration.

User Registry
Displays the attributes for the default user registry for the server.

Authorization configuration
Displays attributes configured for an external Java Authorization Contract for Containers (JACC)
provider.

Application login configuration
Displays application JAAS login entries and their login modules attributes.

For more information, read the SSL configurations collection article.

CSI Displays the attributes that define the inbound and outbound information for the Common Secure
Interoperability (CSI) protocol.

SSL configuration repertoires
Displays the attributes that make up the Secure Sockets Layer (SSL) configuration used by the
server. There can be multiple SSL configurations defined, and information about each is displayed.
This object is often referenced by an SSL configuration group object used to associate it with an
inbound or an outbound connection.

For more information, read the SSL configurations collection article.

Key stores
Displays the keystore attributes for each keystore in the configuration. Keystore objects in the
configuration are often referenced by an SSL configuration object in the configuration.

For more information, read the Personal certificates collection article.

Trust managers
Displays the attributes that make up trust managers that can be used by the server. Trust manager
objects in the configuration are typically referenced by an SSL configuration object.

For the more information, read the Trust managers collection article.

Key managers
Displays the attributes that make up the key managers that are used by the server. Key manager
objects in the configuration are typically referenced by an SSL configuration object.

For more information, read the Key managers collection article.

SSL configuration group
Displays the attributes that make up an SSL configuration that are used for an outbound or an
inbound connection.

Chapter 4. Setting up, enabling and migrating security 125

Management scope
Displays the attributes that make up a management scope. The SSL configuration-related objects
in the security configuration are defined within a management scope to reference the management
scope object.

For more information, read the Management scope configurations article.

Key set groups
Displays the attributes that make up a group of key sets, which are used to manage public, private
and shared keys.

For more information, read the Key set groups collection article.

Key set
Displays the attributes that make up the key set, which is used to manage public, private, and
shared keys.

For more information, read the Key sets collection article.

Schedules
Displays the attributes that make up the scheduled process in the security configuration.

Notifications
Displays the attributes that make up notification objects in the security configuration.

Manage certificate expiration
Displays the attributes that define how startCertificateExpMonitor is run on the server.

System login configuration
Displays the attributes that define the System login entries and their login modules.

For more information, read the System login configuration entry settings for Java Authentication
and Authorization Service article.

Custom properties
Displays all the custom properties that are defined in the security configuration.

For more information, read the Custom properties article.

Web Authentication
Displays properties that are used to define web authentication used by the server.

For more information, read the web authentication settings article.

Administrative Users and Groups
Displays the attributes that define roles and the users and groups associated with them as found
in the admin-authz.xml file. The column titled Administrative Role Name contains the name of
the administrative role. A column titled Administrative Role Value contains the user ID associated
with the role (if one exists).

For more information, read the Administrative roles article.

Corba Naming Console Names
Displays the defined CORBA naming roles and the users that are assigned to the roles.

For more information, read the Administrative group roles and CORBA naming service groups
article.

Console Name for Certificate Management
Lists all the certificate in keystore that are defined in the security configuration. There is also
information about the certificates location and their validity period.

Cookie Protection
Displays attributes that pertain to HTTP Cookies. This section differs from other sections since

126 Securing applications and their environment

information is gathered from different configuration files. The HttpOnly custom property, the web
authentication com.ibm.wsspi.security.web.webAuthReq property, and the session security setting
on each server are displayed on the report.

Java Authorization SPI Configuration
Displays the attributes that are defined for the Java Authorization SPI (JASPI) configuration. If
there is a JASPI configuration object in the security configuration, information is included
concerning whether JASPI is enabled, the name of the default JASPI provider, and a list of defined
providers and their authentication modules.

Note: If JASPI has not been configured, this section is not shown in the security configuration
report.

Adding a new custom property in a global security configuration or in
a security domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
add new security custom properties in a security configuration or in a security domain configuration.

About this task

Adding a new custom property in a global security configuration using the administrative console

1. Click Security > Global security > Custom properties.

2. Click New,

3. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

4. Enter the property value in the Value field.

5. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
add a new custom property in a global security configuration. See the SecurityConfigurationCommands
command group for the AdminTask object article for more information about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test=false"]]’)

Adding a new custom property in a security domain configuration using the administrative console

1. Click Security > Security domains.

2. Select the global security domain you want to add a new custom property to.

3. Click Custom properties.

4. Click New.

5. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

6. Enter the property value in the Value field

7. Click Apply or Save.

Chapter 4. Setting up, enabling and migrating security 127

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
add a new custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[-securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test=false"]]’)

Modifying an existing custom property in a global security
configuration or in a security domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
modify existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Modifying an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properies.

2. Select the custom property you want to modify.

3. Click Edit In the Value field, and then enter the value you want to modify.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test=false"]]’)

Modifying an existing custom property in a security domain configuration using the administrative
console

1. Click Security > Security domains.

2. Select the global security domain you want to modify.

3. Click Custom properties.

4. Select the custom property you want to modify.

5. Click Edit.In the Value field, and then enter the value you want to modify.

6. Click Apply or Save.

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[-securityDomainName
testDomain -customProperties ["com.ibm.websphere.security.test=false"]]’

128 Securing applications and their environment

Deleting an existing custom property in a global security configuration
or in a security domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
delete existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Deleting an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properties.

2. Select the custom property you want to delete.

3. Click Delete.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test="]]’)

Deleting an existing custom property in a security domain configuration using the administrative
console

1. Click Security > Security domains.

2. Click Custom properties.

3. Select the custom property you want to delete.

4. Click Delete.

5. In the Value field, enter the value you want to delete.

6. Click Apply or Save.

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. .For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[-securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test="]]’)

Securing specific application servers
You can customize security to some extent at the application server level. You can disable administrative
security on an application server.

Before you begin

Note: Server level security has been deprecated in this release of WebSphere Application Server. Multiple
security domain support has been added in its place. You can create different security
configurations and assign them to different applications in WebSphere Application Server
processes. By creating multiple security domains, you can configure different security attributes for
both administrative and user applications within a cell environment. You can configure different

Chapter 4. Setting up, enabling and migrating security 129

applications to use different security configurations by assigning the servers or clusters or SIBuses
that host these applications to the security domains. Read about “Multiple security domains” on
page 146 for more detailed information.

You can also modify Java 2 Security and some of the other security attributes that are found on the Global
security panel. This panel provides access to the cell-level security settings. You cannot configure a
different authentication mechanism or user registry on an individual server basis. This feature is limited to
cell-level configuration only.

By default, server security inherits all of the values that are configured for cell-level security. To override
the cell-level security configuration at the server level, click Servers > Application Servers >
server_name. Under Security, click Server Security and click any of the following links:

v CSIv2 inbound authentication

v CSIv2 outbound authentication

v CSIv2 inbound transport

v CSIv2 outbound transport

v z/SAS authentication

v Server-level security

Note: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

After modifying the configuration in any of these panels and clicking OK or Apply, the security
configuration for that panel or set of panels now overrides cell-level security. Other panels that are not
overridden continue to be inherited at the cell-level. However, you can always revert back to the cell-level
configuration at any time. You can revert back to the cell-level security configuration by clearing the check
box next to any of the following options on the Server security panel:

v Security settings for this server override cell settings

v RMI/IIOP security for this server overrides cell settings

v SAS security for this server overrides cell settings

A number of additional Secure Authentication Services for z/OS (z/SAS) attributes can be considered for
security at a server level, such as:
v Local identity
v Remote identity
v Sync to thread allowed

For more information, see “Server and administrative security” on page 71.

Procedure
1. Start the administrative console for the deployment manager. To get to the administrative console, go

to http://host.domain:port_number/ibm/console. If security is disabled, you can enter any ID. If
security is enabled, you must enter a valid user ID and password, which is either the administrative ID
that is configured for the user registry or a user ID that is entered as an administrative user. To add a
user ID as an administrative user, click System Administration > Console settings > Console
users.

2. Configure cell-level security if you have not configured it previously. Go to “Enabling security” on page
66 for detailed steps. After security is configured, configure server-level security.

Attention: Server-level security is not enabled when you select the Enable application security option
on the Server-level security settings of the administrative console. You also must enable cell-level
security by selecting the Enable administrative security option on the Global security settings panel of
the administrative console.

130 Securing applications and their environment

3. To configure server-level security, click Servers > Application Servers > server name. Under Security,
click Server security. The status of the security level that is in use for this application server is
displayed.

By default, you can see that your cell-level security configuration, Common Secure Interoperability
(CSI), and z/SAS have not been overridden at the server level. CSI and z/SAS are authentication
protocols for RMI/IIOP security requests. The server-level security panel lists attributes that are on the
Global security panel and can be overridden at the server level. Not all of the attributes on the Global
security panel can be overridden at the server level, including the user account repository.

4. To enable administrative security for this application server, go to the Server-level security panel, select
the Security settings for this server override cell settings and the Enable application security
options. By modifying the Server-level security panel, these settings override the settings for cell-level
security.

5. Click Apply and Save.

6. To enable RMI/IIOP security for the application server, go to the Server-level security panel, select the
RMI/IIOP security for this server overrides cell settings option and click Apply. If you select the
RMI/IIOP security for this server overrides cell settings option, any changes that you make to the
CSIv2 authentication or transport settings override the same settings on the cell level.

What to do next

Typically, server-level security is used to disable user security for a specific application server. However,
this can also be used to disable or enable the Java 2 security manager, and to configure the
authentication requirements for RMI/IIOP requests both incoming and outgoing from this application server.

After you modify the configuration for a particular application server, you must restart the application server
for the changes to become effective. To restart the application server, go to Servers > Application
servers and click the server name that you recently modified. Click Stop and then Start.

If you disabled security for the application server, you can typically test a web address that is protected
when security is enabled.

Server-level security settings
Use this page to enable server-level security and specify other server-level security configurations.

Note: Server level security has been deprecated in this release of WebSphere Application Server. Multiple
security domain support has been added in its place. You can create different security
configurations and assign them to different applications in WebSphere® Application Server
processes. By creating multiple security domains, you can configure different security attributes for
both administrative and user applications within a cell environment. You can configure different
applications to use different security configurations by assigning the servers or clusters or SIBuses
that host these applications to the security domains. Read about “Multiple security domains” on
page 146 for more detailed information.

To view this administrative console page, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Click Security > Security domain.

Security settings for this server override cell settings
Specifies that the settings on this panel override the settings on the Security > Security applications,
administration, and infrastructure panel.

Chapter 4. Setting up, enabling and migrating security 131

Enable application security
Specifies that server security is disabled, by default, when application security is enabled. Administrative
(administrative console and wsadmin) and naming security remain enabled while application security is
enabled, regardless of the status of this flag.

Default Disabled

Use Java 2 security to restrict application access to local resources
Specifies that the server enforces Java 2 security permission checking at the server level. When cleared,
the Java 2 server-level security manager is not installed and all of the Java 2 security permission checking
is disabled at the server level.

If your application policy file is not set up correctly, see “Configuring the was.policy file for Java 2 security”
on page 828 in the information center.

Default Disabled

Warn if applications are granted custom permissions
Specifies whether a warning is issued during application installation when an application requires a Java 2
permission that is normally not granted to an application.

The application server provides support for policy file management. A number of policy files are included in
the application server. Some of these policy files are static and some of them are dynamic. Dynamic policy
is a template of permissions for a particular type of resource. In dynamic policy files, the code bases are
evaluated at runtime using the configuration data. You can add or remove permissions, as needed, for
each code base.

However, do not add, remove, or modify the existing code bases. The real code base is dynamically
created from the configuration and run-time data. The filter.policy file contains a list of permissions that
an application does not have, according to the J2EE 1.4 Specification. For more information on
permissions, see the documentation on the Java 2 security policy files.

Default Enabled

Restrict access to resource authentication data
Enable this option to restrict application access to sensitive Java EE Connector Architecture (JCA)
mapping authentication data.

Default Disabled

Use domain-qualified user names
Specifies whether user IDs that are returned by getUserPrincipal() are qualified with the server level
security domain within which they reside.

Default Disabled

Note that WebSphere APIs such as WSSubject.getPrincipal() always return the unqualified user names
irrespective of this property.

Authentication cache timeout
Specifies the time period during which the authenticated credential in the cache is valid. This time period
must be less than the time period specified for the Timeout value for forwarded credentials between
servers field.

132 Securing applications and their environment

Data type Integer
Units Minutes and seconds
Default 10 minutes and 0 seconds
Range Greater than 30 seconds. Avoid setting Authentication

cache timeout value to 30 seconds or less.

Active protocol
Specifies the active server level security authentication protocol when server level security is enabled.

You can use an Object Management Group (OMG) protocol called Common Secure Interoperability
Version 2 (CSIv2) for more vendor interoperability and additional features. If all of the servers in your
entire security domain are Version 6.1 servers, it is best to specify CSI as your protocol.

This field displays if a version 6.0.x server exists in your environment.

Data type String
Default CSI and SAS
Range CSI, CSI and SAS

RMI/IIOP security for this server overrides cell settings
Specifies that the Remote Method Invocation over Internet InterORB Protocol (RMI/IIOP) settings on this
panel override the settings on the Security > Security applications, administration, and infrastructure panel.

Default Enabled

Controlling application environments with RACF server class profiles
The Resource Access Control Facility (RACF) server class profiles are used to control dynamic application
environments. Dynamic application environments are displayed and controlled separately from static
application environments.

Before you begin

To set up both the three-part or four-part RACF server class profiles for the application server or cluster for
your dynamic application environment, the user ID for the servant must be given read access to both of
the profiles.

About this task

The Resource Access Control Facility (RACF) server class profiles are used to:

1. Permit the unauthorized WebSphere Application Server servant access to controller services

2. Control dynamic application environments, which are displayed and controlled differently from static
application environments

Choose between two SERVER class profiles. You need one of these profiles, and which profile you need
correlates to dynamic application environment (DAE) support.

Procedure
v Use the profile for dynamic application environments.

When Dynamic Application Environments are supported, use:
RDEFINE SERVER CB.<server>.<cluster>.<cell> UACC(NONE)
PERMIT <SR_userid> ACC(READ)

v Use the profile for static application environments.

Chapter 4. Setting up, enabling and migrating security 133

When Dynamic application environments are not supported (static application environments), use:
RDEFINE SERVER CB.<server>.<cluster> UACC(NONE)
PERMIT < SR_userid> ACC(READ)

Three-part profile

The existing three-part profile has the form:

<subsystem_type>.<subsystem_name>.<application_environment_name>

where:

v <subsystem_type> is CB

v <subsystem_name> is the application server short name.

v <application_environment_name> is the application server generic short name, as specified in the
WebSphere Application Server variables. If the server resides in a cluster, the name specified here must
match the cluster short name. If the server does not reside in a cluster, the name must match the name
specified on the ClusterTransitionName custom property for the server .

The four-part profile adds the cell name to avoid ambiguities with existing profile names. The four-part
profile has the form:

<subystem_type>.<subsystem_name>.<application_environment_name>.<cell_name>

where:

v <cell_name> is the short name of the cell containing this application server.

Three-part profile names:

v CB.T5SRV1.T5CL1 (the application server with the short name T5SRV1 and generic short name
T5CL1)

v CB.*.T5CL1 (all application servers in the generic short name of T5CL1)

v CB.*.* (any application server in the sysplex)

Four-part profile names:

v CB.T5SRV1.T5CL1.T5CELL (the application server with the short name T5SRV1, and generic short
name T5CL1 that resides in the cell T5CELL)

v CB.*.T5CL1.T5CELL (all servers in the generic short name of T5CL1 in the T5CELL)

v CB.*.*.T5CELL (any server in the cell named T5CELL)

If you do not want to discriminate between any of the application servers, you can eliminate all the
specified profiles and use a generic form to cover the three and four-part names for all the servers in the
sysplex:

v CB.*.T5*

v CB.*.T5*.*

Resource Access Control Facility Tools

The following tools and techniques help you to manage the security definitions used for WebSphere
Application Server for z/OS:

v RACF ISPF panels for listing all the profiles in a class

v ISHELL for listing UIDs in UID or user-id order

v EXEC for listing GIDs in GID or group-id order

v EXEC for backing out RACF definitions

134 Securing applications and their environment

RACF ISPF panels

To list all profiles in a specific class, use the RACF ISPF panels. You must have RACF SPECIAL or
AUDITOR authority to complete the following steps:

v Select General Resource Profiles (option 2).

v Search (option S or 9).

v Type in a class name.

v Press enter two more times.
--
RACF - SERVICES OPTION MENU
OPTION ===> 2
SELECT ONE OF THE FOLLOWING:
1 DATA SET PROFILES
2 GENERAL RESOURCE PROFILES
3 GROUP PROFILES AND USER-TO-GROUP CONNECTIONS
4 USER PROFILES AND YOUR OWN PASSWORD
5 SYSTEM OPTIONS
6 REMOTE SHARING FACILITY
7 DIGITAL CERTIFICATES AND KEY RINGS
99 EXIT
--

RACF - GENERAL RESOURCE PROFILE SERVICES
SELECT ONE OF THE FOLLOWING:
1 ADD Add a profile
2 CHANGE Change a profile
3 DELETE Delete a profile
4 ACCESS Maintain access list
5 AUDIT Monitor access attempts (Auditors only)
D or 8 DISPLAY Display profile contents
S or 9 SEARCH Search the RACF data base for profiles

--
RACF - GENERAL RESOURCE SERVICES - SEARCH
OPTION ===>
ENTER THE FOLLOWING PROFILE INFORMATION:
CLASS ===> STARTED
PROFILE ===>
--

BROWSE - RACF COMMAND OUTPUT ----
COMMAND ===>
T5ACR.* (G)
T5DMN.* (G)
T5SRVNDS.* (G)
T5SRV1S.* (G)
T5SRV2S.* (G)
T5SRV3S.* (G)
WMQX*.* (G)
WSCWTRC.*

You can also obtain a list of all profiles in a class using the RACF SEARCH command: SEARCH
CLASS(class_name).

Listing all user IDs in UID order

When defining new user IDs with OMVS segments in RACF, you should assign unique UIDs. WebSphere
does not yet support the RACF AUTOUID function. To find unassigned (and duplicate) UIDs, use the ISPF
ISHELL (option 3.4) to obtain a list of all user IDs in UID order. You must be a superuser (UID=0), and you
must follow these steps:

1. Select the Setup pull-down and the User list option.

2. Browse the list of users.

3. While browsing the list of users, select the File pull-down.

4. Select the Sort UID option. (Note that a UID of -1 means that the user has no OMVS segment.)

Below is an example of the panels involved:

Chapter 4. Setting up, enabling and migrating security 135

--
File Directory Special_file Tools File_systems Options Setup Help
--
UNIX System Services ISPF Shell
Command ===> _______________
--

1. User...
2. User list...
3. All users...
4. All groups...
5. Permit field access...
6. Character Special...
7. Reset UID to 847039

--
File Help
--

User List
Command ===>
--
User ID UID Group
--
ADMOORE 1024996 $GUSERS /u/admoore
AHMAD 2 DFSGRP /u/ahmad
AKILOV 125406 $GUSERS /u/akilov
ALLMOND 36 DFSGRP /u/allmond
AOPUSER 99129934 AOPOPER /u/aopuser
ASTLEY 787202 DFSGRP /u/astley
A5USR 112501 A5GRP /tmp
BAGWELL 342832 DFSGRP /u/bagwell

1. Sort name
2. Sort UID
3. Sort Group
4. Print
5. Exit User ID UID Group

User ID UID Group

CBASRUH 2336 CBASRH
CBIVPH 2337 CBIVPGH
T5GUEST 2402 T5GUESG
T5ADMIN 2403 T5CFG
T5DMNU 2411 T5CFG
T5ACRNDU 2421 T5CFG
T5DMGSU 2422 T5SVRG
T5ASRNDU 2422 T5SVRG
T5ACRU 2431 T5CFG
T5ASRU 2432 T5SVRG
WSPETSC 2701 WSCNTLG

Listing all Group IDs in GID order

You should also assign unique GIDs to new groups. There is no system-supplied tool for listing groups in
GID order (as there is for UIDs), so that you can identify duplicates and assign new GIDs that are unique.
Specify GID as the sole parameter to list them in GID order. The default is to list them in group ID order.
(You must have RACF SPECIAL, AUDITOR, or other specific authority.)
/* Rexx -- */
/* This exec uses the ishell bpxwirac service to display the group */
/* with OMVS segments and there group IDs. B. Pierce & MJ Loos */
/* --- */
/* Syntax: LISTGRP Name (default) | GID */
/* --- */
order = "N" /* set default to name */
Arg parm /* get argument for sort order */
if Abbrev("NAME",parm,1) then order = "N"
if Abbrev("GID",parm,1) then order = "I"

call bpxwirac "OMVSGROUP" /* call the service */

Address ISPEXEC /* using ISPF services */
if order = "N" then do /* already sorted */

do ix=1 by 1 while queued()>0
parse pull gname gid
say left(gname,8) right(gid,8)

end
end

136 Securing applications and their environment

else do /* sort the results */
"TBCREATE grptable names(tbgrpnm tbgrpid) replace nowrite"
rows = 0
do ix=1 by 1 while queued()>0 /* populate the table */

parse pull gname gid
tbgrpnm = left(gname,8)
tbgrpid = right(gid,8)
"TBADD grptable"
rows = rows + 1

end
"TBSORT grptable FIELDS(tbgrpid,C,A,tbgrpnm,C,A)" /* sort it */
"TBTOP grptable"
do ix = 1 to rows by 1 /* display the results */

"TBSKIP grptable"
say tbgrpnm tbgrpid

end
"TBEND grptable" /* throw out the table */

end
say
exit 0
/***************** end of EXEC ****************************/

Backing out RACF Definitions

When you are setting up servers, nodes and cells (and then deleting them), it would be convenient to have
a simple way to delete the RACF definitions that you create in the process.

The attached exec reads the generated RACF commands from the BBOWBRAK member of the target .DATA
partitioned data set, and creates RACF DELUSER, DELGROUP, RDELETE, and other RACF commands
(in reverse order).

Before running the resulting RACF commands, you should review the output and delete any commands
that delete users, groups, or profiles used by other servers that you want to retain.

Tip: Be very careful not to delete users and generic profiles used by others.
/* REXX - UNDO2 - Create backout RACF commands to uninstall Server*/
Read RACF commands into linein.in, parse verb & Obj, push
"delete/undo" commands to cmdOut.out,then write out in rev order */
out = 1 /* Output line number for stem var. cmdOut. */
"EXECIO * DISKR RACFCMDS (STEM linein."
do in = 1 to linein.0 /* See what we read; call the appropriate rtne */
if pos(’/*’,linein.in) <> 0 then iterate
if pos(’say’,linein.in) = 1 then iterate
parse var linein.in ’"’ cmdVerb cmdObj ’"’
select
when cmdVerb = "ADDGROUP" then call DelGrp
when cmdVerb = "ADDUSER" then call DelUsr
when cmdVerb = "CONNECT" then call ConUsr
when cmdVerb = "RDEFINE" then call DelPro
when cmdVerb = "PERMIT" then call PerUsr
when cmdVerb = "RACDCERT" then call RdCert
otherwise iterate

end /* select */
end /* in=1 to n */
call WriteCmds
exit 1
return

/*************** Subroutines: ********************/

DelUsr: /* DelUsr: Delete User */
parse var cmdObj user .
cmdOut.out = "DELUSER " || user
out = out + 1

return

DelGrp: /* DelGrp: Delete Group */
parse var cmdObj group .
cmdOut.out = "DELGROUP " || group
out = out + 1

return

ConUsr: /* ConUsr: Remove user from a group */
cmdOut.out = "REMOVE " || cmdObj
out = out + 1

return

DelPro: /* DelPro: Delete Profile */
parse var cmdObj class profile acc .
cmdOut.out = "RDELETE " || class profile
out = out + 1

Chapter 4. Setting up, enabling and migrating security 137

return

PerUsr: /* PerUsr: Remove permission from a profile */
parse var cmdObj profile class ID acc
parse value cmdObj with ’ID(’ id ’)’ acc
cmdOut.out = ’PERMIT ’||profile class||’ ID(’||ID||’) DELETE’
out = out + 1

return

RdCert: /* RdCert: Remove Certificates */
if pos(’GENCERT’,cmdObj) <> 0 then
DO
if pos(’CERTAUTH’,cmdObj) <> 0
then
DO
parse value cmdObj with ’WITHLABEL(’ cert ’)’
cmdOut.out = ’RACDCERT CERTAUTH DELETE(LABEL(’ || cert || ’))’
out = out + 1
END
ELSE DO
parse value cmdObj with ’WITHLABEL(’ cert ’)’
parse value cmdObj with ’ID (’ id ’)’
cmdOut.out = ’RACDCERT ID(’||id||’) DELETE(LABEL(’||cert||’))’
out = out + 1
END

END
if pos(’ADDRING’,cmdObj) <> 0 then
DO
parse value cmdObj with ’ADDRING(’ ringname ’)’
parse value cmdObj with ’ID(’ user ’)’
cmdOut.out = ’RACDCERT DELRING(’||ringname’) ID(’||user’)’
out = out + 1
END

return

/* Finished - pull LIFO stack and Write it out *******************/
WriteCmds:
DO i = out-1 to 1 by -1
QUEUE cmdOut.i
EXECIO 1 DISKW RACFUNDO

END
return

RACF keyring setup

Using Java to create a RACFInputStream for a RACF keystore

During the SSL authentication process, WebSphere Application Server considers a certificate that connects
as a PERSONAL certificate as a KeyEntry. You can use the certificate as an end-user certificate in a
Secure Sockets Layer (SSL) handshake because the private key is available.

WebSphere Application Server considers a certificate that connects as a CERTAUTH certificate as a
TrustedCertEntry and treats the certificate as a Certificate Authority (CA). Keyrings require certificates that
connect as PERSONAL and CA certificates that connect as CERTAUTH. Certificates that connect as SITE
are not supported in this release.

A RACF keyring that a Java Secure Socket Extension (JSSE) client and server can use for both trust and
key information is shown in the following sample code:
Certificate Label Name Cert Owner USAGE DEFAULT
---------------------- ---------- -------- -------
PersonalEndUserCert ID(USERID) PERSONAL YES
PersonalEndUserCACert CERTAUTH CERTAUTH NO

You must add the certification path provider to your Java environment to construct certificate chains from
certificates that WebSphere Application Server reads from the Resource Access Control Facility (RACF).
Add the following line to your java.security file provider list:
security.provider.X=com.ibm.security.cert.IBMCertPath

If one of the RACF certificates fails to load, the keystore is not loaded. You must remove any unwanted
certificates from the keyring.

The RACFInputStream contains three parameters:

138 Securing applications and their environment

v userid - a string containing the ID of the user that owns the keyring

v ringid - a string containing the name of the RACF key ring

v password - a character array containing the password for the keystore

The following code example shows the RACFInputStream script passing in a user ID, a ring ID, and a null
password directly:
import com.ibm.crypto.provider.RACFInputStream;

String ksfname;
char[] storePass = null;

RACFInputStream riStream = new RACFInputStream(System.getProperty("user.name"),
ksfname,
storePass);

KeyStore racfKeyStore = KeyStore.getInstance("JCERACFKS");
racfKeyStore.load(riStream, storePass);

riStream.close();

In the above example, the system property user.name is referenced to provide the userID that WebSphere
Application Server passes to RACF. This example is not typical.

For more information about running the RACFInputStream script, see the document z/OS Unique
Considerations for the Java 2 SDK, Standard Edition, v 6.0. A link to this z/OS document is provided in the
Related Links section of this topic.

Accessing a RACFInputStream using URLStreamHandler

In this release, you can access data through user-defined classes with the URLStreamHandler object.
WebSphere Application Server can define the classes that access the data with the system property
java.protocol.handler.pkgs. To access data that resides in a Service Authorization Facility (SAF) RACF
keyring, use the safkeyring URL with the associated classes.

To use the URLStreamHandler class to create a RACFInputStream, define the following Java property :
-Djava.protocol.handler.pkgs

If you are using the IBM Java Cryptography Extension (IBMJCE) provider to provide cryptographic support,
set the property to the following value:
-Djava.protocol.handler.pkgs=com.ibm.crypto.provider

If you are using the IBMJCE4758 provider to provide cryptographic support, set the property to the
following value:
-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider

You can use a URL to specify a stream handler in the java.policy file. The jarsigner utility also accepts
a URL for the -keystore parameter. When certificates from a RACF keyring verify signed jar files, you can
specify that WebSphere Application Server must use the keyring as an input stream to the keystore in the
java.policy file, as shown in the following example code:
keystore "safkeyring://myracfid/my_key_ring", " JCERACFKS";

In this example,

v safkeyring is the URL keyword that the server uses to access the URLStreamHandler code to read
data from the keyring

v myracfid is the RACF userid that has authority to read data from the keyring

v my_key_ring is the name of the keyring from which the data is read

v JCERACFKS is the keystore type defined for a SAF (RACF) keyring keystore

Chapter 4. Setting up, enabling and migrating security 139

The Java Virtual Machine (JVM) must be started with the java.protocol.handler.pkgs property set to one
of the values described previously, so that WebSphere Application Server can call the appropriate
URLStreamHandler. The following example shows the jarsigner utility using a safkeyring URL:
jarsigner -keystore safkeyring://myracfid/my_key_ring -signedjar
ibmjceproviders.jar ibmjceprovider.jar ibmprovider -storetype JCERACFKS

For more information on inserting or updating information in the RACF External Security Manager, refer to
the RACDCERT command in the following publications:

v z/OS SecureWay™ Security Server RACF Security Administrator's Guide - SA22-7683

v z/OS SecureWay Security Server RACF Command Language Reference - SA22-7687

Controlling access to console users when using a Local OS Registry
Adding console users and authorizing them for a cell involves adjusting the user registry and authorization
settings. A user registry custom property governs the form of authorization of console users. Regardless of
the form of authorization used, the outcome is that an MVS user ID for the WebSphere administrator
identity is able to access all administrative console functions and use the administrative scripting tool when
security is first enabled.

About this task

If non-local operating system registries and System Authorization Facility (SAF) authorization are used,
you must use identity mapping to map WebSphere Application Server identities to SAF user IDs. To have
the console roles managed by SAF authorization, you must turn on SAF authorization for the cell. To
enable SAF authorization, click Security > Global security > External Authorization providers >, and
click System Authorization Facility (SAF) authorization to enable SAF authorization. If you enable the
option, the SAF EJBROLE profiles are used to authorize console users. Otherwise, the administrative
console, by default, is used to authorize console users and groups.

Regardless of which type of registry or authorization setting is chosen, the configuration process
authorizes the WebSphere configuration group (to which all WebSphere Server identities are permitted),
and an MVS user ID for the WebSphere administrator identity to do the following tasks:

v Access all administrative console functions

v Use the administrative scripting tool when security is first enabled

When SAF authorization is selected on z/OS, the special subject of server is not used as the
administrative user ID. (Note that using the WebSphere z/OS Profile Management Tool or the zpmt
command generates an administrative user, who is a member of the administrative group, which can be
used for authorization.)

Using SAF Authorization to control access to administrative functions

When SAF Authorization is selected during systems customization, administrative EJBROLE profiles for all
administrative roles are defined by the RACF jobs generated using the z/OS Profile Management Tool. If
SAF Authorization is selected subsequently, issue the following RACF commands (or equivalent security
server commands) to enable your servers and administrator to administer WebSphere Application Server:

Note: You can additionally specify a value for the SAF profile prefix (previously referred to as the z/OS
security domain).

RDEFINE EJBROLE (optionalSAFProfilePrefix.)administrator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)monitor UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)configurator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)operator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)deployer UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)adminsecuritymanager UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)auditor UACC(NONE)

PERMIT (optionalSAFProfilePrefix.)administrator CLASS(EJBROLE) ID(adminGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)monitor CLASS(EJBROLE) ID(monitorGroup) ACCESS(READ)

140 Securing applications and their environment

PERMIT (optionalSAFProfilePrefix.)configurator CLASS(EJBROLE) ID(configuratorGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)operator CLASS(EJBROLE) ID(operatorGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)deployer CLASS(EJBROLE) ID(deployerGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)adminsecuritymanager CLASS(EJBROLE) ID(adminSecurityGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)auditor CLASS(EJBROLE) ID(auditorGroup) ACCESS(READ)

If additional users require access to administrative functions, you can permit a user to any of the above
roles as follows by issuing the following RACF command:
PERMIT (optionalSAFProfilePrefix.)rolename CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

You can give a user access to all administrative functions by connecting it to the configuration group:
CONNECT mvsid GROUP(configGroup)

Using WebSphere Authorization to control access to administrative functions:

To assign users to administrative roles, complete the following steps.

Procedure
1. In the administrative console, expand System Administration > Console settings.

2. Click Console Users > Add or Console Groups > Add.

3. Add the user identities as desired. For more information on console user roles, see “Administrative
roles and naming service authorization” on page 540.

Note:

v When SAF authorization is in effect, WebSphere Application Server authorization, as
specified in the administrative console, is ignored.

v SAF role names are case-sensitive.

Using CBIND to control access to clusters
You can use the CBIND class in RACF to restrict a client's ability to access clusters from Java Application
Clients or J2EE compliant servers. You must have READ permission to access clusters.

Before you begin

You can also use this class to specify which servers are trusted to assert identities (with no authenticator).

Remember: When using the server trusted identity, the RACF server id needs to be granted CONTROL
permission to the profile.

v z/OS Secure Authentication Services (z/SAS) identity assertion accepted

v Common Secure Interoperability Version 2 (CSIv2) identity assertion

v Web container HTTP transport

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

About this task

This validates an intermediate server to send certificates (MutualAuthCBindCheck=true). You can deactivate
the class if you do not require this kind of access control.

Servers are either clustered or not clustered. The value of cluster_name is:

1. For a clustered server, the cluster_name used in these profiles is the cluster short name.

2. For an unclustered server, instead of a cluster_name a server custom property
(ClusterTransitionName) is used.

Chapter 4. Setting up, enabling and migrating security 141

Note: When you convert a server into a clustered server the ClusterTransitionName becomes the short
name of the cluster.

The following steps explain the CBIND authorization checking by WebSphere Application Server for z/OS.

Procedure
1. You can use the CBIND class in RACF to restrict the ability of a client to access clusters, or you can

deactivate the class if you do not require this kind of access control. WebSphere Application Server for
z/OS uses two types of profiles in the CBIND class. One type of profile controls whether a local or
remote client can access clusters. The name of the profile has the following form, where cluster_name
is the name of the cluster, and SAF_profile_prefix is the prefix used for SAF profiles.

CB.BIND.<optional SAF_profile_prefix>.<cluster_name>

Note: When you add a new cluster, you must authorize all Java Client user IDs and Servers to have
read access to the CB.cluster_name and CB.BIND.cluster_name RACF profiles.

Example: WSADMIN needs read authority to the CB.BBOC001 and CB.BIND.BBOC001
profiles:

PERMIT CB.BBOC001 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)
PERMIT CB.BIND.BBOC001 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)

2. You can also use the System Authorization Facility (SAF) CBIND class to indicate that a process is
trusted to assert identities to WebSphere Application Server for z/OS. This usage is primarily intended
for use by trusted intermediate servers who have already authenticated their callers. The intermediate
server (or process) must establish its network identity to WebSphere Application Server for z/OS using
SSL client certificates. This network identity is mapped to an MVS user ID by SAF security service.
This mapped identity must be granted CONTROL access to the CB.BIND.<optional
SAF_profile_prefix>.<cluster_name> process to be authorized to assert identities. The use of CBIND
profiles to establish trust is used by the following authentication mechanisms:

v Web container HTTP transport (which validates unencrypted client certificates when the property:
MutualAuthCBindCheck=true is set)

v CSIv2 identity assertion for IIOP

v z/SAS identity assertion accepted

For example, WEBSERV must assert client certificates that are received from its callers: PERMIT
CB.BIND.BBOC001 CLASS(CBIND) ID(WEBSERV) ACCESS(CONTROL)

142 Securing applications and their environment

Chapter 5. Configuring multiple security domains

By default, all administrative and user applications in WebSphere Application Server use the global
security configuration. For example, a user registry defined in global security is used to authenticate users
for every application in the cell. Out-of-the-box, this behavior is the same as it was in previous releases of
WebSphere Application Server. You can create additional WebSphere security domains if you want to
specify different security attributes for some or all of your user applications. This section describes how to
configure a security domain by using the administrative console.

Before you begin

Only users assigned to the administrator role can configure or create new multiple security domains.
Enable global security in your environment before configuring multiple security domains.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains enable you to define multiple security configurations for use in your environment. For
example, you can define different security (such as a different user registry) for user applications than for
administrative applications. You can also define separate security configurations for user applications
deployed to different servers and clusters.

Perform the following steps to configure a new security domain by using the administrative console:

Procedure
1. Click Security > Security domains.

2. If you are creating a new multiple security domain, click New. Supply a unique name and description
for the domain and click Apply. If you want to configure an existing multiple security domain, select
one to edit. Once you click Apply the domain name and additional sections are displayed. One section
enables you to define the security attributes for the domain, and another section enables you to select
the scopes to which the domain applies.

3. Under Assigned Scopes, select whether you want to assign the security domain to the entire cell or if
you want to select the specific servers, clusters, and service integration buses to be included in the
security domain. The Assigned Scopes section has two views. The default view is a cell topology. To
assign the security domain to the entire cell, click the check box for the cell and then click Apply or
OK.

The name of the security domain appears next to the cell name, which indicates that the domain is
now assigned to the cell. You can expand the topology and assign the domain to one or more servers
and clusters. When an item in the topology is already assigned to another security domain, the check
box is disabled and the name of the assigned domain is displayed to the right of the scope name. If
you want to assign one of these scopes to the domain, you must first disassociate it with its current
domain.

Select All assigned scopes to view a list of only those resources that are currently assigned to the
security domain.

4. Customize your security configuration by specifying security attributes for your new domain. Attributes
that are not listed can not be customized at the domain level. Domains inherit attributes from the global
security configuration.

There are twelve individually configurable security attribute sections. You can expand and collapse
each section. In the collapsed state, the name and a summary value for the section are displayed.

© Copyright IBM Corp. 2011 143

Additionally, the summary value text indicates whether the attribute is defined in global security and is
reused by the domain (as indicated by gray text) or if it is customized for the domain (as indicated by
black text prefixed by the word “Customized”).

Initially, each security attribute is set to use the global security settings. When an attribute is set to use
global security, there is no domain-specific configuration for that attribute. Applications that use the
domain use the global configuration for these security attributes.

Only configure the security attributes that you want to change. To configure a security attribute for a
domain, expand the security attribute section. The key properties of the global configuration display
beneath the Use global security option. These properties are provided for convenience.

To customize the configuration for the domain, select Customize for this domain. Configure the
property and then click OK or Apply.

Note: In general, when you select Customize for this domain, you override all of the security
configurations that are defined for that section in global security. Application logins, system
logins, and J2C authentication data entries are some exceptions. When you define entries for a
domain, applications in the domain are able to access the global entries in addition to the
domain-specific entries.

For example, you might want to use a different user registry for applications that use the security
domain but also want to use the global security configuration for all of the other security properties. In
this case, expand the User Realm section and select Customize for this domain. Select a user
registry type, click Configure, and provide the appropriate configuration details on the subsequent
panel.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 146 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

144 Securing applications and their environment

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application
login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Note: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication
data aliases can all be configured at the domain level. By default, all of the applications
in the system have access to the JAAS logins configured at the global level. The
security runtime first checks for the JAAS logins at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure any of these
JAAS logins at a domain only when you need to specify a login that is used exclusively
by the applications in the security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider and associated authentication modules. You can use the global security settings or
customize the settings for a domain. To configure JASPI authentication providers for a domain,
select Customize for this domain and then enable JASPI. Select Providers to define
providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Chapter 5. Configuring multiple security domains 145

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal() are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

v The unauthenticated user id

v The SAF profile mapper

v Whether to enable SAF delegation

v Whether to use the APPL profile to restrict access to WebSphere Application Server

v Whether to suppress authorization failed messages

v The SMF audit record strategy

v The SAF profile prefix

For more information on the SAF authorization options, read about “z/OS System Authorization
Facility authorization” on page 573.

z/OS security options

You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:

v Enabling application server and z/OS thread identity synchronization

v Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about “z/OS security options” on page
100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

5. Once you have configured the security attributes and assigned the domain to one or more scopes,
click Apply or OK.

6. Restart all servers and clusters for your changes to take effect.

Multiple security domains
The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in
WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,
security domains. You can configure different security attributes, such as the UserRegistry, for different
applications.

146 Securing applications and their environment

Note: Multiple security domain support was introduced in WebSphere Application Server Version 7.0. You
can create different security configurations and assign them to different applications in WebSphere
Application Server processes. By creating multiple security domains, you can configure different
security attributes for both administrative and user applications within a cell environment. You can
configure different applications to use different security configurations by assigning the servers or
clusters or service integration buses that host these applications to the security domains. Only
users assigned to the administrator role can configure multiple security domains.

The following sections describe multiple security domains in more detail:

v “Why security domains are useful”

v “Relationship between global security and security domains” on page 148

v “Contents of a security domain” on page 149

v “Creating security domains” on page 150

v “Configuring attributes for security domains” on page 151

v “Associating scopes to security domains” on page 152

v “Relationship between old server level security and the new security domains” on page 153

v “How domain level security attributes are used by security runtime and applications” on page 153

v “Client and application security programming model when using security domains” on page 157

v “Application deployment in multiple domains configurations” on page 159

v “Cross realm communication” on page 159

v “Federating a node with security domains” on page 162

v “Security domains in a mixed-version environment” on page 163

v “Modifying security domains” on page 163

v “Toleration PTFs required for mixed-release environments” on page 164

Why security domains are useful

WebSphere Security Domains provide two major benefits:

v WebSphere Application Server administrative applications can be configured with a different set of
security configurations from those for user applications.

v They enable one set of applications to have a different set of security configurations from another set of
applications.

For example, WebSphere Application Server administration can be configured to a user registry of
RACF while the applications can be configured to a user registry of LDAP.

In previous versions of WebSphere Application Server, all administrative and user applications use security
attributes different from those attributes that are defined in global security. All administrative and user
applications in WebSphere Application Server use global security attributes by default. For example, a user
registry defined in global security is used to authenticate a user for every application in the cell.

In this release of WebSphere Application Server, however, you can use multiple security attributes for user
applications other than the global security attributes, create a security domain for those security attributes
that must differ, and associate them with the servers and clusters that host those user applications. You
also can associate a security domain with the cell. All of the user applications in the cell use this security
domain if they do not have a domain previously associated with them. However, global security attributes
are still required for administrative applications such as the administrative console, naming resources and
MBeans.

If you have used server level security in previous releases of WebSphere Application Server, you should
now use multiple security domains since they are more flexible and easier to configure.

Chapter 5. Configuring multiple security domains 147

Server level security is deprecated in this release. Read “Relationship between global security and security
domains” for more information.

Relationship between global security and security domains

Global Security applies to all administrative functions and the default security configuration for user
applications. Security domains can be used to define a customized configuration for user applications.

You must have a global security configuration defined before you can create security domains. The global
security configuration is used by all of the administrative applications such as the administrative console,
naming resources, and Mbeans. If no security domains are configured, all of the applications use
information from the global security configuration. User applications such as Enterprise JavaBeans (EJBs),
servlets and administrative applications use the same security configuration.

When you create a security domain and associate it with a scope, only the user applications in that scope
use the security attributes that are defined in the security domain. The administrative applications as well
as the naming operations in that scope use the global security configuration. Define the security attributes
at the domain level that need to be different from those at the global level. If the information is common,
the security domain does not need to have the information duplicated in it. Any attributes that are missing
in the domain are obtained from the global configuration. The global security configuration data is stored in
the security.xml file, which is located in the $WAS_HOME/profiles/$ProfileName/cells/$CellName
directory.

The following figure provides an example of a security multiple domain where the cell, a server and a
cluster are associated with different security domains. As shown in the figure, the user applications in
server S1.1 as well as the cluster use security attributes that are defined in Domain2 and Domain3
respectively (since these scopes are associated with these domains). Server S2.2 is not associated with a
domain. As a result, the user application in S2.2 uses the domain that is associated with the cell (Domain1)
by default . Security attributes that are missing from the domain level are obtained from the global
configuration.

148 Securing applications and their environment

The following figure shows the various high-level security attributes that can be defined at the global
security configuration and those that can be overridden at the domain level.

Contents of a security domain

A security domain is represented by two configuration files. One configuration file contains the list of
attributes that are configured in the security domain. The other configuration file contains the scopes that
use the security domain. The security domain information is stored in the $WAS_HOME/profiles/

Current global security
configuration (security.xml)

Cell

Node 1

Node 2

WebSphere ecurity omains
configuration (Domain3)

s d

(security-domain.xml)

WebSphere ecurity omains
configuration (Domain1)

s d

(security-domain.xml)

User applications

in S1.1 will use the security attributes
defined in Domain2.

in cluster will use the security attributes
defined in Domain3.

in S2.2 will use the security attributes
defined in Domain1.

Any attributes that are missing in a
domain are obtained from global
security.xml

WebSphere ecurity omains
configuration (Domain2)

s d

(security-domain.xml)

Cluster

S1.1

S1.2

S2.1

S2.2

Figure 1. Scopes that can be associated to a security domain

Global security configuration (security.xml)

RMI/IIOP Security (CSIv2 Protocol)

Authentication mechanism attributes

Custom properties
Web attributes (SSO)
Secure Sockets Layer (SSL)
Audit
LTPA Authentication mechanism
Kerberos Authentication mechanism

Application security enablement
Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication

JAAS

Authorization Provider

The configuration can
override (security-domain.xml)

WebSphere security domains

Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication
RMI/IIOP Security (CSIv2 Protocol)
Java Authentication and Authorization Service (JAAS)
Authentication mechanism attributes
Authorization Provider
Custom properties

Application security enablement

Note: Only high-level attributes are shown.

Figure 2. Security attributes that can be configured at the security domain

Chapter 5. Configuring multiple security domains 149

$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory. For every
security domain that is configured, a $SecurityDomainName directory is created with two files in it: the
security-domain.xml file contains the list of security attributes configured for the security domain, and the
security-domain-map.xml file contains the scopes that use the security domain.

The following figure indicates the location of the main security domain related files and the contents of
those files.

Note: You should not modify these files manually. Use administrative console tasks or scripting
commands to modify the files instead. For a complete list of administrative tasks and scripting
commands, see the links in "Related tasks" at the bottom of this document.

Creating security domains

Use the administrative console tasks or scripting commands to create security domains. In the
administrative console, access security domains by clicking Security > Security domains. Help is
available for each administrative console panel.

For a complete list of administrative console tasks and scripting commands, see the links in "Related
tasks" at the bottom of this document.

When you create a security domain you must supply a unique name for the domain, the security attributes
you want to configure for the security domain, and the scopes that need to use the security domain. Once
configured, the servers that use the security domain must be restarted. The user applications in those
scopes then use the attributes that are defined in the security domain. Any attributes that are not
configured at the domain level are obtained from the global security configuration. Administrative
applications and naming operations in the scopes always use the security attributes from the global
security configuration. You must actively manage these attributes.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain.

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The security domains panel in the administrative console enables you to assign resources and to select
the appropriate security attributes for your domain. The panel displays the key security attributes at the
global configuration; you can make the decision to override them at the domain level if necessary. Once
you have configured and saved the attributes at the domain level, the summary value on the panel
displays the customized value for the domain (tagged with the word "customized" in black text).

Figure 3. Location and contents of the main security domain related files

150 Securing applications and their environment

A scope (a server, cluster, service integration bus or a cell) can be associated with only one domain. For
example, you cannot define two domains that both have the cell-wide scope. Multiple scopes, however,
can be defined in the same security domain. For example, a domain can be scoped to Server1 and to
Server2 only within the cell.

The assigned scopes section on the security domain panel displays two views: one view that enables you
to select and assign scopes to the domain, and another view that enables you to see a list of the currently
assigned scopes. For convenience, you also have the flexibility to copy all of the security attributes from
an existing security domain or the global configuration into a new security domain, and then modify only
those attributes that must be different. You must still associate the scopes to these copied domains.

Scripting commands also provide you with the ability to create, copy and modify security domains. Once
you create a domain, you must run the appropriate commands to associate security attributes and scopes
to it.

Configuring attributes for security domains

Security attributes that can be configured at the domain level in WebSphere Application Server Version 8.0
are:

v Application security

v Java 2 security

v User realm (registry)

v Trust association

v Simple and Protected GSS-API Negotiation (SPNEGO) web authentication

v RMI/IIOP security (CSIv2)

v JAAS logins (Application, System and J2C Authentication Data)

v Java Authentication SPI

v Authentication mechanism attributes

v Authorization provider

v Federated repositories

v z/OS properties

v Custom properties

The security domains panels in the administrative console display all of these security attributes.

Some of the other well-known attributes that you cannot override at the domain level are Kerberos, Audit,
Web Single Sign-on (SSO) and Tivoli Access Manager (TAM). The Secure Socket Layer (SSL) attribute
already supports different scopes, but it is not part of the domain configuration. For all of the attributes that
are not supported at the domain level, user applications in a domain share their configuration from the
global level.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain. You must actively manage these
attributes. For example, if you customize only a JAAS configuration at the domain level you must make
sure that it works with the user registry configured at the global level (if the user registry is not customized
at the domain level).

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The Tivoli Access Manager client runtime is used to provide authentication (used by
TrustAssociationInterceptor and PDLoginModule) and authorization (used for JACC) by contacting TAM

Chapter 5. Configuring multiple security domains 151

servers. There is only one Tivoli Access Manager runtime shared by all servers in a cell. Read the Tivoli
Access Manager JACC provider configuration topic for more information.

You cannot have a different Tivoli Access Manager configuration at the security domain level to override
the configuration at the cell level. However, you can to some degree specify Trust Association Interceptor
(TAI) and JACC configuration at the security domain level. For example, you can use a different TAI or a
different authorization provider. Since TAM server connectivity can only be defined at the global level, you
can have a variety of TAIs defined and configured at the security domain level. Some of these TAIs might
not use the TAM user repository, while others do. The TAIs that do need to connect to TAM will also
connect to the globally-defined TAM server. Similarly, for authorization, you can have a variety of external
authorization providers configured at the domain level. However, if any of these external authorization
providers require connection to TAM they end up talking to the singular globally-configured TAM server.

Associating scopes to security domains

In WebSphere Application Server Version 8.0, you can associate a security domain at the cell level, the
server level, the cluster level and the service integration bus level.

Note: For more information about the service integration bus and bus security in multiple security domains
for WebSphere Application Server Version 8.0, see ../ae/cjr_sec_dom.dita.

When a security domain is associated with a server that is not part of a cluster, all user applications in that
server use the attributes from the security domain. Any missing security attributes are obtained from the
global security configuration. If the server is part of a cluster, you can associate the security domain with
the cluster but not with the individual members in that cluster. The security behavior then remains
consistent across all of the cluster members.

If a server is to be part of a cluster, create a cluster first and associate the security domain to it. You might
have associated a domain to a server before it was a member of a cluster. If so, even though the domain
is associated with the server directly, the security runtime code does not look at the domain. When a
server is a cluster member, the security runtime disregards any security domains associated directly to the
server. Remove the server scope from the security domain and associate the cluster scope to it instead.

A security domain can also be associated to the cell. This is usually done when you want to associate all
user applications in WebSphere Application Server to a security domain. In this scenario, all of the
administrative applications and the naming operations use the global security configuration while all of the
user applications use the domain level configuration. If you want to split the security configuration
information for administrative and user applications, this is all that is needed.

If you have a mixed-version environment, or plan to have one in future, and you want to associate security
domains at the cell level, read “Security domains in a mixed-version environment” on page 163 for more
information.

If you are on a base profile server that has its own security domain defined, which is then federated to a
deployment manager, associate the server scope to the security domain and not the cell scope. When you
federate that node, the security domain information is propagated to the deployment manager. If the cell
scope is associated to it, the network deployment configuration uses this security configuration, which
might impact existing applications. During federation, the cell scope is changed to the server scope that is
being federated. If the server scope is associated with the security domain, only that server uses the
security domain after the federation. Other applications in other servers and clusters are not impacted.
However, if this base profile server is registered to the Administrative Agent process you can associate the
cell scope to the security domain if you want all of the servers from the base profile to use the same
security domain for all of their user applications. Read about “Federating a node with security domains” on
page 162 for more information.

152 Securing applications and their environment

You can have a security domain associated at the cell level and also other security domains associated to
various clusters or individual servers (those that are not part of any clusters). In this case, the security
runtime first checks if any security domains are associated with the server or a cluster. If there is a
security domain associated with the server or a cluster, the security attributes defined in it are used for all
of the applications in that server or cluster. Any security attributes missing from this server or cluster
domain are obtained from the global security configuration, and not from the domain configuration
associated with the cell.

If the server or cluster does not have its own domain defined, the security runtime code uses the security
attributes from the domain associated with the cell (if one is defined). Any security attributes missing from
the cell domain are inherited from the global security configuration.

Relationship between old server level security and the new security domains

In previous releases of WebSphere Application Server, you could associate a small set of security
attributes at a server level. These attributes were used by all of the applications at the server level. The
previous way of configuring the security attributes was deprecated in WebSphere Application Server 7.0,
and will be removed in a future release.

You should now use the new security domains support starting in WebSphere Application Server 7.0, as
these security domains are more easily managed and much more flexible. For example, in previous
versions of WebSphere Application Server, you must manually associate the same security configuration to
all of the cluster members by configuring the same security attributes for every server in a cluster.

The migration tool migrates the existing server level security configuration information to the new security
domain configuration when the script compatibility mode is false (-scriptCompatibility="false"). A new
security domain is created for every server security configuration if it is not part of a cluster. If it is part of a
cluster, a security domain is associated with the cluster instead of with all of the servers in that cluster. In
both cases, all of the security attributes that were configured at the server level in previous releases are
migrated to the new security domain configuration, and the appropriate scope is assigned to the security
domains.

If the script compatibility mode is set to true, the server level security configuration is not migrated to the
new security domains configuration. The old server security configuration is migrated without any changes.
The security runtime detects that the old security configuration exists and uses that information, even if a
security domain is associated either directly or indirectly to the server. If the script compatibility mode is set
to true, remove the security configuration from the server level and then create a security domain with the
same set of security attributes.

How domain level security attributes are used by security runtime and
applications

This section describes how the individual attributes at the domain level are used by the security runtime
and how that impacts the user application security. Since all of these security attributes are also defined at
the global level, more information about these attributes can be obtained elsewhere. For the purposes of
this section, the emphasis is on domain level behavior.

1. Application Security:

Select Enable application security to enable or disable security for user applications. When this
selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security
domain. The J2EE security is only enforced when Global Security is enabled in the global security
configuration, (that is, you cannot enable application security without first enabling Global Security at
the global level).

2. Java 2 Security:

Chapter 5. Configuring multiple security domains 153

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or
add properties related to Java 2 security. This choice enables or disables Java 2 security at the
process (JVM) level so that all applications (both administrative and user) can enable or disable Java
2 security.

3. User Realm (User Registry):

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level. Read about “Configuring attributes for security
domains” on page 151 for more information.

When configuring a registry at the domain level you can choose to define your own realm name for
the registry. The realm name distinguishes one user registry from another. The realm name is used in
multiple places – in the Java client login panel to prompt the user, in the authentication cache, and
when using native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous
releases of WebSphere Application Server, only one user registry is configured in the system. When
you have multiple security domains you can configure multiple registries in the system. For the realms
to be unique in these domains, configure your own realm name for a security domain. You also can
choose the system to create a unique realm name if it is certain to be unique. In the latter case, the
realm name is based on the registry that is being used.

For LDAP registries, the host:port of the LDAP server is the system-generated realm name. For
localOS, the name of the localOS machine is the realm name. For custom user registries, the realm
is the one returned by the getRealm () method of the custom registry implementation.

If the system generated realm names are unique enough, you can choose the option for the system
to generate the realm name. If not, choose a unique realm name for each security domain where you
have the user registry configured. If the underlying user repository is the same, use the same realm
name in different domains. From a security runtime perspective, same realm names have the same
set of users and groups information. For example, when users and groups information is required
from a realm, the first user repository that matches the realm is used.

If a localOS registry that is not centralized is configured for any domain, and that domain is
associated with servers or clusters in nodes not on the same system as the deployment manager, the
realm name has to be provided. This realm name has to be the same as it would be if it were
generated on the node. This realm name can be obtained by calling the getRealm() method on the
SecurityAdmin MBean on that node. Typically, the realm name for localOS registries is the hostname
of the machine. In this case, you should not let the system generate the realm name but rather get
the realm name that is used by the processes in the node.

If you select the system to generate the realm for the localOS registry at the time of the user registry
configuration, it chooses the localOS registry that is used by the deployment manager. If the realm
configured does not match the realm used by the servers then there are authorization issues. Also
note that in this case, the domain using this local registry can only be associated with servers and
clusters that belong to nodes on the same machine.

Note: In WebSphere Application Server Version 7.0, the federated repositories user registry can only
be configured at the global level and have only one instance per cell, but any domain can use
it by configuring it as the active registry. In WebSphere Application Server Version 8.0, you can
configure a unique instance of a federated repository at the domain level in a multiple security
domain environment.

When a security domain is copied from the global level, the users and groups defined at the
global level are also copied to the security domain. This is also true when copying from an
existing domain. A newly-created security domain that uses the file-based VMM repository
requires that the user populate the repository with users and groups.

Also new in this release of WebSphere Application Server, a new checkbox on the Realm
configurations settings administrative console page, Use global schema for model, sets the

154 Securing applications and their environment

global schema option for the data model in a multiple security domain environment. Global
schema refers to the schema of the admin domain.

When more than one user registry is in a process, the naming lookup that uses “UserRegistry” as the
lookup name returns the user registry that is used by user applications. The user registry used by
administrative applications is bound by the lookup name, “AdminUserRegistry”.

As described in “Cross realm communication” on page 159, when an application in one realm
communicates with an application in another realm using LTPA tokens, the realms have to be trusted.
The trust relationship can be established using the Trusted authentication realms – inbound link in
the user registry panel or by using the addTrustedRealms command. You can establish trust
between different realms. A user logged into one realm can access resources in another realm. If no
trust is established between the two realms the LTPA token validation fails.

Note: The realm name used in the web.xml file is not related to the user registry realm.

4. Trust Association:

When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify the
interceptor list at the domain level to fit your needs. Only configure those interceptors that are to be
used at the domain level.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in
the cell.

5. SPNEGO web authentication:

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources was introduced. In WebSphere Application Server 7.0, this
function was deprecated. SPNEGO web authentication has taken its place to provide dynamic
reload of the SPNEGO filters and to enable fallback to the application login method.

6. RMI/IIOP Security (CSIv2):

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP security
configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport layer
settings for CSIv2 inbound communications should be the same for both the global and the domain
levels. If they are different, the domain level attributes are applied to all of the application in the
process.

When a process communicates with another process with a different realm, the LTPA authentication
and the propagation tokens are not propagated to the downstream server unless that server is listed
in the outbound trusted realms list. This can be done using the Trusted authentication realms –
outbound link on the CSIv2 outbound communication panel, or by using the addTrustedRealms
command task. Read about “Cross realm communication” on page 159 for more information.

7. JAAS (Java Authentication and Authorization Service):

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases
can all be configured at the domain level. By default, all of the applications in the system have access
to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins
at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure any of these JAAS logins at a domain only when you need to specify a login
that is used exclusively by the applications in the security domain.

Chapter 5. Configuring multiple security domains 155

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

8. Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules to be applied at the domain level.

Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain
level. By default, all of the applications in the system have access to the JASPI authentication
providers configured at the global level. The security runtime first checks for the JASPI
authentication providers at the domain level. If it does not find them, it then checks for them in
the global security configuration. Configure JASPI authentication providers at a domain only
when the provider is to be used exclusively by the applications in that security domain.

9. Authentication Mechanism Attributes:

Specifies the various cache settings that must be applied at the domain level.

a. Authentication cache settings - use to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

b. LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the
domain level, any token that is created in the security domain when accessing user applications is
created with this expiration time.

c. Use realm-qualified user names - When this selection is enabled, user names returned by
methods such as getUserPrincipal() are qualified with the security realm (user registry) used
by applications in the security domain.

10. Authorization Provider:

You can configure an external third party JACC (Java Authorization Contract for Containers) provider
at the domain level. Tivoli Access Manager's JACC provider can only be configured at the global
level. Security domains can still use it if they do not override the authorization provider with another
JACC provider.

The JACC attributes, for example the Policy object, are based at the JVM level. This implies that
there can be only be one JACC policy object in a JVM process. However, when you have multiple
JACC providers configured, the deployment manager process has to handle all these providers in the
same JVM because it has to propagate the authorization policy of applications to the respective
provider based on the application name.

If your JACC provider can handle propagating the authorization policy to multiple providers, you can
configure it at the global level. In this case, when an application is installed, this JACC provider is
called in the deployment manager process and it is the responsibility of this JACC provider to
propagate the information to the corresponding JACC provider based on the application name passed
in the contextID.

Another way to achieve this is to set the custom property,
com.ibm.websphere.security.allowMultipleJaccProviders=true, at the global security level. When
this property is set, WebSphere Application Server propagates the authorization policy information to
the JACC provider associated with the domain that corresponds to the target server where the
application is installed. This property is only used at the deployment manager process since the
managed servers do not host multiple JACC providers.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based authorization at
the domain level.

You can additionally configure the SAF authorization options at the security domain level, which are
the following:

v The unauthenticated user id

v The SAF profile mapper

156 Securing applications and their environment

v Whether to enable SAF delegation

v Whether to use the APPL profile to restrict access to WebSphere Application Server

v Whether to suppress authorization failed messages

v The SMF audit record strategy

v The SAF profile prefix

CBIND checks are considered administrative operations, and therefore the global level value of the
SAF profile prefix that is specified, is used when determining the name of the CBIND resource to
check. For example: CB.BIND.<cluster_name or SAF_profile_prefix>.

For more information about the SAF authorization options, read about “z/OS System Authorization
Facility authorization” on page 573.

11. z/OS options:

You can set z/OS specific security options at the process (JVM) level so that all applications (both
administrative and user) can enable or disable these options. These properties are:

v Enabling application server and z/OS thread identity synchronization

v Enabling the connection manager RunAs thread identity.

For more information, read about z/OS security options.

12. Custom properties:

Set custom properties at the domain level that are either new or different from those at the global
level. By default, all of the custom properties at the global security configuration can be accessed by
all of the applications in the cell. The security runtime code first checks for the custom property at the
domain level. If it does not find it, it then attempts to obtain the custom property from the global
security configuration.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

Client and application security programming model when using security domains

A Java client or an application acting as a client that accesses an EJB typically does a naming lookup first.
The naming resource, which is used by both administrative and the user applications, is considered an
administrative resource. It is protected by the global security configuration information. In a multiple
domain setup where the global security is using one realm (the user registry) and a domain is using a
different realm, the Java client must authenticate to two different realms. The first authentication is required
for the realm in the global security configuration for the naming operation to succeed, and the second
authentication is required to access the EJB, which uses a different realm.

The CosNamingRead role protects all naming read operations. This role is usually assigned the Everyone
special subject. This implies that any user, valid or not, can look up the name space. When a multiple
domain is defined, if the CosNamingRead role has the Everyone special subject the security runtime code in
the client side does not prompt you to log in. It uses the UNAUTHENTICATED subject to access the
naming operation instead. Once the naming lookup operation is completed, when the client attempts to
access the EJB it is prompted with a login panel that indicates the realm that is currently used by that EJB
application (that is, the realm used in the domain). The client then presents the appropriate user
credentials for that realm, which can then access the EJB. This logic applies to all variations of login
source, including properties and stdin, not just when the login source is set to prompt.

If the Everyone special subject is removed from the CosNamingRead role, you are prompted twice. If the
login source is properties, you can uncomment the com.ibm.CORBA.loginRealm property in the
$WAS_HOME/profiles/$ProfileName/properties/sas.client.props file and add the appropriate realms
using “|” as the separator. You must also enter the corresponding users and passwords in the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword properties respectively. When you are
using the programmatic logon in the Java client code you must authenticate twice with different user

Chapter 5. Configuring multiple security domains 157

credentials; once prior to do a naming lookup for the EJB (the user should be in the global realm), and
later prior to calling any method in the EJB (the user should be in the EJB domain's realm).

The CosNamingRead role defined in the z/OS security server is not referenced for determining if naming
read operations are protected in a multi-security domain environment, even when SAF authorization is
enabled. Instead, the settings in the admin-authz.xml file are used. Alternatively, you can use the custom
property com.ibm.security.multiDomain.setNamingReadUnprotected to control if naming read operations
are protected. This property will override any assignments made to the CosNamingRead role, regardless
of which authorization provider is used.

In general, when a Java client needs to authenticate to multiple and different realms it has to provide the
credential information for all of those realms. If the login source is prompt or stdin it is prompted to login
multiple times, once for each realm. If the login source is set to properties, the appropriate properties in
the sas.client.props file (or any related file) are used for authenticating to different realms.

In certain scenarios, a client might make multiple calls to the same realm. For example, the Java client
can access a resource using realm1 followed by access to a resource using realm2, and then come back
to access a resource in realm1 again. In this case, the client is prompted three times; first for realm1,
secondly for realm2 and finally for realm1 again.

By default, the subject that is used to login at a realm is not cached by the client side code. If you have
this scenario, and you want the client to cache the subject based on the realm, set the
com.ibm.CSI.isRealmSubjectLookupEnabled property to true in the sas.client.props file. If the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the client code caches the subject based on
the realm name. The next time the Java client needs to authenticate to this realm, the cache is located to
obtain the subject and the client is not prompted. Also, when the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the same subject that was logged in the first
time is used for subsequent logins. If the subject information needs to change then this property should
not be set.

If the client is doing a programmatic login it can pass the realm along with the user and password that it
needs to authenticate. In this case, when the com.ibm.CORBA.validateBasicAuth property is set to true
(the default value) in the sas.client.props file, the registry that matches the realm name is used for login.
That realm must be supported in the process where the authentication takes place.

When using the WSLogin JAAS configurations, you also must set the use_realm_callback option in the
wsjaas_client.config file in $WAS_HOME/profiles/$ProfileName/properties for the realm name to be
passed to the call back handler. If you want to specify a different provider URL for the name server, set the
use_appcontext_callback option and pass in the provider URL properties in a hash map to WSLogin.

If you do not know the realm name, use <default> as the realm name. The authentication is performed
against the application realm. If the naming read operation does not have the Everyone special subject
assigned, you must provide the realm that is used by the administrative applications (the registry used in
the global security configuration), as well as the appropriate user and password information in that registry
for the lookup operation to succeed.

After the lookup operation succeeds, perform another programmatic login by providing the application
realm (or <default>) and the user and password information for the appropriate user in the registry that is
used by the application. This is similar to the case where the login source is prompt. You must authenticate
twice, once for the registry used by the global security configuration (for the naming lookup operation) and
again for the registry used by the application to access the EJB.

If com.ibm.CORBA.validateBasicAuth is set to false in the $WAS_HOME/profiles/$ProfileName/
properties/sas.client.props file then the programmatic login can use <default> as the realm name for

158 Securing applications and their environment

both the lookup and the EJB operations. The actual authentication occurs only when the resource is
accessed on the server side, in which case the realm is calculated based on the resource that is
accessed.

The new security domain support starting in WebSphere Application Version 7.0 does not change the
current application security programming model. However, it provides more flexibility and capabilities such
as the following:

v User applications can still find the user registry object by using the naming lookup for “UserRegistry”.
For the registry object used by administrative applications, the naming lookup for “AdminUserRegistry”
can be used.

v The application usage of the JAAS login configuration does not change in a multiple domain setup.
However, if an application must refer to the JAAS configuration that is specified at the domain level, the
administrator and the deployer of that application must make sure that this domain is configured with
the JAAS configurations that are required by the application.

v If an application needs to communicate with other applications using different realms, trust relationship
should be established for both inbound and outbound communications when using the LTPA tokens.
Read about “Cross realm communication” for more information.

v When using programmatic login in the applications, if you want to login to the realm used by the
application, use <default> as the realm name or provide the realm name that the application is using. If
you need to login to the global realm, you must provide the global realm name. If you provide any other
realm, only a basic authentication subject is created. When the request actually flows to the server
hosting that realm, the actual authentication of the user occurs if that server hosts the realm. If the
server does not host the realm, the login fails.

Application deployment in multiple domains configurations

When deploying an application in a multiple domain setup, all of the modules in the application should be
installed in the servers or clusters that belong to the same security domain. If not, depending on the
security attributes configured in these security domains, inconsistent behavior can result. For example, if
the domains contain different user registries, the users and groups information can be different, which can
cause inconsistent behavior when accessing the modules. Another example is when the JAAS data is
different between the security domains. The JAAS configurations is not accessible from all of the modules
in the application. The security runtime code and the command tasks rely on one domain being associated
with an application when dealing with attributes such as user registry, JAAS login configurations, J2C
authentication data, and authorization.

In most cases, application deployment fails when an application is deployed across different domains.
However, since this was possible in earlier releases of WebSphere Application Server when only a few
attributes were supported at the server level, the deployment tool first checks for attributes that are
configured at the domains. If the attributes in the domain are the same as those supported in previous
releases, the administrative console requests confirmation to ensure that you want to deploy application
modules across multiple security domains. Unless there is an absolute requirement to deploy the
applications across different domains, stop the deployment and select the servers and clusters in the same
security domain.

Cross realm communication

When applications communicate using the RMI/IIOP protocol and LTPA is the authentication mechanism,
the LTPA token is passed between the servers involved. The LTPA token contains the realm-qualified
uniqueId, (also called the accessId), of the user who is logging into the front-end application. When this
token is received by the downstream server it attempts to decrypt the token. If the LTPA keys are shared
between the two servers, decryption succeeds and the accessId of the user is obtained from the token.
The realm in the accessId is checked with the current realm that is used by the application. If the realms
match, the LTPA token validation succeeds and it proceeds with the authorization. If the realms do not
match, the token validation fails since the user from the foreign realm cannot be validated in the current

Chapter 5. Configuring multiple security domains 159

realm of the application. If applications are not supposed to communicate with each other when using
RMI/IIOP and the LTPA authentication mechanism, you do not to have to do anything further.

If you do want the cross realm communication to succeed when using RMI/IIOP and LTPA tokens, you
must first establish trust between the realms involved, both for inbound and outbound communications.

For the server originating the request, its realm must have the realms that it can trust to send the token to.
This is referred to as outboundTrustedRealms. For the server receiving the request, its realm needs to
trust the realms that it can receive LTPA tokens from. This is referred to as inboundTrustedRealms.

Outbound trusted realms can be established using the addTrustedRealms command with the
–communicationType option set to outbound. It can also be established in the administrative console by
clicking Trusted authentication realms - outbound on theCSIv2 outbound communications panel.

Inbound trusted realms can be established using the same addTrustedRealms command task with the
–communicationType option set to inbound. It can also be established by using the administrative console.

The figure below shows the communication between applications that use different user realms (registries)
using RMI/IIOP. In this example, application app1 (for example, a servlet) is configured to use the realm1
user registry. The app2 application (for example, an EJB) is configured to use the realm2 user registry. The
user (user1) initially logs into the servlet in app1, which then attempts to access an EJB in app2. The
following must be set:

v In Domain1, realm1 should trust realm2 for the outbound communication.

v In Domain2, realm2 should trust realm1 for the inbound communication.

v The accessId for user1 should be configured in the authorization table for app2.

When the LTPA token that contains the accessId of user1 is received by app2, it decrypts the token. Both
of the servers share the same LTPA keys. The LTPA token then ensures that the foreign realm is a trusted
realm, and performs the authorization based on the accessId of user1. If security attribute propagation is
not disabled, then the group information of user1 is also propagated to app2. The groups can be used for
the authorization check, provided that the authorization table contains the group information. You can
associate a special subject, AllAuthenticatedInTrustedRealms, to the roles instead of adding individual
users and groups to the authorization table.

If the applications in the above example are deployed in different cells, you must do the following:

v Share the LTPA keys between the cells.

v Update the authorization table for app2 with foreign users and groups accessIds by using the wsadmin
utility. The administrative console does not have access to the realms outside of the scope of the cell.

160 Securing applications and their environment

Once trust has been established between the realms, when the server receives the LTPA token and the
token is decrypted, it checks to see if the foreign realm is in its inbound trusted realms list. If it is trusted,
the authentication succeeds. However, since it is a foreign realm, it does not go search the user registry to
gather information about the user. Whatever information is in the LTPA token is used to authorize the user.

The only information in the LTPA token is the unique id of the user. This unique id of the user should exist
in the authorization table for this application. If it does, authorization succeeds. However, if attribute
propagation is enabled, additional authorization attributes (groups that this user belongs to) for the user
are sent from the originating server to the receiving server. These additional attributes are used to make
the access decisions. If the groups information exists in the propagation tokens it is used when making the
authorization decision.

As previously mentioned, the information about the users and or the groups from the trusted realms should
exist in the authorization table of the receiving application. Specifically, the accessId of the users and or
groups should exist in the binding file of the application. This must be the case when the application is
deployed. In the administrative console, when an application is deployed in a domain you can add the
accessIds of the users and groups from any of its trusted realms to the authorization table.

You also have an option to associate a special subject, AllAuthenticatedInTrustedRealms, to the roles
instead of adding individual users and groups. This is similar to the AllAuthenticated special subject that is
currently supported. The difference is that the AllAuthenticated special subject refers to users in the same
realm as the application while the AllAuthenticatedInTrustedRealms special subject applies to all of the
users in the trusted realms and in the realm of the application.

You can associate the accessId by using the $AdminApp install script. Because the accessId takes a
unique format, use the command task listRegistryUsers with displayAccessIds set to true. If an invalid
name or format is entered in this field, the authorization fails.

User and group information from the trusted realms is obtained by the deployment manager since it has
access to all of the user registry configurations in all domains. However, in certain situations it is not
possible to obtain the users and group information.

Cell

Node1 Node2

S1.1 (Domain1) S1.2 (Domain2)

user1
LTPA Token

Contains accessId
user:realm1/cn=user1,

o=ibm,c=us

app1 app2

user1
user:realm1/cn=user1,

o=ibm,c=us

realm1
realm2

Application Authorization
Table

realm1 trusts realm2 for outbound
communication using RMI/IIOP

realm2 trusts realm1 for inbound
communication using RMI/IIOP

user1

Figure 4. Cross realm communication in a multiple realm environment

Chapter 5. Configuring multiple security domains 161

For example, if a server hosted on an external node is using localOS as the registry for its domain, the
deployment manager cannot obtain the users and groups information unless it is running in the same
operating system setup. The external operating system should be contacted to obtain this information. This
can be done by directly invoking the registry in the server associated with that domain. The servers
associated with the domain have to be started for this to work. You also must set the property,
com.ibm.websphere.allowRegistryLookupOnProcess, to true in the top-level security custom properties.
When this property is set, the deployment manager code searches one of the servers that is associated
with the security domain and obtains the users and groups information directly from it. This is possible by
calling an MBean in one of the servers.

If the MBean in any of the servers that are using that domain cannot be accessed, the administrative
console displays a panel where you can enter the user and accessId information manually for each user
and group. It is important that the correct accessId format be entered in this field. The accessId format for
the user is user:realmName/userUniqueId. The realmName is the name of the realm where the user
resides, and the userUniqueId is the uniqueId that represents the user, depending on the registry that is
used.

For example, for LDAP, the uniqueUserId is the Distinguished Name (DN), for the Windows localOS
registry and is the SID of the user. For Unix platforms, it is the UID. For custom registries, it depends on
the implementation.

Similarly, for groups, the accessId format is group:realmName/groupUniqueId. As previously mentioned,
use the listRegistryUsers and listRegistryGroups command with the –displayAccessIds option set to true
so that you can obtain the correct format for the domain or realm that you are interested in.

Once users and groups from the trusted realms or the AllAuthenticatedInTrustedRealms special subject is
added to the authorization table of the application, it is ready to accept requests from other applications
that are using any of its trusted realms. The LTPA token validation on the receiving server first checks to
make sure that the realm is trusted. The authorization engine then checks to see if the external user
and/or the groups or the AllAuthenticatedInTrustedRealms special subject are given access to the roles
needed to access the resource. If true, access is granted.

Cross realm communication is only applicable when using the WebSphere built-in authorization. If you are
using other authorization engines including SAF for z/OS, any cross realm authorization can be achieved
by implementing custom login modules that map external users to users in its own repository.

Federating a node with security domains

When a security domain is configured in the base version and is federated to a cell, the security domain
configured at the base version is also configured for that server in the cell. The same domain security
configuration can be used by the server before and after the federation. If a base server is to be federated
to a cell, the resource assigned to the security domain should be the server scope instead of the cell
scope.

If the base server is expected to be registered with an Administrative Agent process, use the cell scope as
the resource if the intention is to have all of the servers in the base profile use this security domain.

If during federation the security domain at the base already exists at the cell level, the addNode command
fails. You can use the –excludesecuritydomains option not to include the security domain during federation.

When the federated node is removed from a cell, the resources in that node should be removed from the
security domains. If security domains have clusters associated with them that span nodes, the nodes are
not removed. You can always remove resources from the security domains or any domains that are not
used by using scripting commands or the administrative console.

162 Securing applications and their environment

Security domains in a mixed-version environment

You should create security domains once all of the nodes have been migrated to the latest version. This is
especially true if there is a need to associate the cell with a domain. However, if you want to create
security domains in a mixed- version environment, be aware of the following:

v If a cell-wide domain is created in a mixed version setup, a domain called
PassThroughToGlobalSecurity is created automatically. All mixed clusters are assigned to this domain at
the time of the creation of the cell-wide domain. This PassThroughToGlobalSecurity domain is special in
the sense that attributes cannot be added to it, only resources can be assigned to it.

All resources assigned to the PassThroughToGlobalSecurity domain use the global security
configuration information. Whenever a node in the mixed version setup is migrated to the latest version,
the servers and clusters in these nodes are added to this domain. Applications in all of the servers and
clusters in these nodes do not use the cell-wide domain; they instead use the global security
configuration before and after migration.

If any of these servers need to use the cell-wide domain, you must remove these resources from this
PassThroughToGlobalSecurity domain. New servers and clusters that are created in the migrated node
use the cell-wide domain, not the PassThroughToGlobalSecurity domain. As a result, you have a mix of
servers and clusters, some of them using global security configuration and some using the cell-wide
domain.

v Once a cell-wide domain is created, adding any old version cluster members to a WebSphere
Application Server Version 8.0 cluster is restricted since this action makes it a mixed cluster. This
restriction also holds true when a WebSphere Application Server Version 8.0 cluster is associated with a
domain. and a previous version cluster member is added to this cluster. This restriction is needed to
avoid associating a security domain to a mixed cluster.

v If possible, you should create a cell-wide domain after all of the nodes have been migrated. In this case,
the cell-wide domain is applicable to the entire cell and not just to parts of it. This also eliminates the
need to create the PassThroughToGlobalSecurity domain and the mixed cluster scenario with security
domains.

Modifying security domains

Use the administrative console tasks or scripting commands to modify security domains. For a complete
list of administrative tasks and scripting commands, see the links in "Related tasks" at the bottom of this
document.

Once a security domain is created and associated to a set of scopes, the servers associated with this new
domain must be restarted. After the restart, the applications in the scopes associated with the new domain
use the security attributes defined in the domain.

Changes to any of the domain attributes requires the restart of all of the scopes assigned to it. If new
scopes are added they also need to be restarted. Any modifications to the domain configuration, either to
the security attributes or to the scopes, has impacts on those applications that are using the domain
configuration.

Before you make modifications to an existing domain, consider the following potential impacts. For
example, if a user registry that is configured at a domain is removed, and the servers restarted, the user
registry from the cell-wide domain (if one is defined), or the global security configuration is then used. This
can impact application authentication and authorization. Users and groups associated with an application
might no longer be valid in the new registry. Another example to consider is when JAAS configurations are
removed from a domain. Applications that rely on this are no longer be able to use the JAAS
configurations. Whenever a security configuration is changed it might impact your applications, so all
security configuration changes should be made with the utmost care.

Chapter 5. Configuring multiple security domains 163

Toleration PTFs required for mixed-release environments

Toleration PTFs are required for mixed-release environments in which previous versions of WebSphere
Application Server for z/OS IIOP clients inter-operate with a WebSphere Application Server Version 8.0 for
z/OS application server that hosts multiple security domains.

The pre-Version 8.0 IIOP client requires an update to its IIOP locate processing code to perform IIOP
locates across the security domains of a Version 8.0 application server.

The toleration PTFs for all affected service releases are listed below. The pre-Version 8.0 IIOP client must
be at or above the given service level to successfully inter-operate with a Version 8.0 application server
that contains multiple security domains.

WebSphere Application Server for z/OS 5.1: W510246
WebSphere Application Server for z/OS v6.0: 602.29
WebSphere Application Server for z/OS v6.1: 610.17

This requirement applies only to WebSphere for z/OS IIOP clients that invoke requests against a
WebSphere for z/OS application server with multiple security domains configured and enabled.

Creating new multiple security domains
You can create multiple security domains in your configuration. By creating multiple security domains, you
can configure different security attributes for administrative and user applications within a cell environment.

Before you begin

Only users assigned to the administrator role can create new multiple security domains. Enable global
security in your environment before creating new multiple security domains.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to create a new security domain using the administrative console:

Procedure
1. Click Security > Security domains.

2. On the Security domains collection page, click New.

3. Specify a unique name for the domain. A domain name must be unique within a cell and cannot
contain an invalid character. This field is required.

4. Specify a unique description for the domain. After you click Apply you are returned to the Security
domains detail page

164 Securing applications and their environment

5. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

6. Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 146 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its
place to provide dynamic reload of the SPNEGO filters and to enable fallback to the
application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Chapter 5. Configuring multiple security domains 165

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Note: For both JAAS application logins and JAAS system logins, the collections are not
populated until one is created first. You can do this by selecting customize for this
domain under JAAS application logins or JAAS system logins and then by selecting
Apply or OK.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain and
then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

166 Securing applications and their environment

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal() are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

v The unauthenticated user id

v The SAF profile mapper

v Whether to enable SAF delegation

v Whether to use the APPL profile to restrict access to WebSphere Application Server

v Whether to suppress authorization failed messages

v The SMF audit record strategy

v The SAF profile prefix

For more information on the SAF authorization options, read about “z/OS System Authorization
Facility authorization” on page 573.

z/OS security options

You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:

v Enabling application server and z/OS thread identity synchronization

v Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about “z/OS security options” on page
100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

7. Click Apply.

8. After you have saved your configuration changes, restart the server for your changes to take effect.

Deleting multiple security domains
You can delete multiple security domains from your configuration. You must remove the resources
assigned to the security domains before deleting them. Only remove those security domains that are not
needed in your security configuration.

Chapter 5. Configuring multiple security domains 167

Before you begin

Only users assigned to the administrator role can delete security domains. Enable global security in your
environment before deleting security domains.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Perform the following steps to delete an existing security domain using the administrative console:

Note: Only delete the security domains after first removing any resources associated with them. The
servers impacted should be restarted.

Procedure
1. Click Security > Security domains.

2. On the Security domains collection page, select a domain to delete.

3. Click Delete.

Copying multiple security domains
You can copy selected multiple security domains from the domain collection to create a new domain. This
is useful if you want to create a domain that is similar to a previous domain. However, you might want to
make a few slight adjustments. When copying an existing domain, you must supply a unique domain name
for the new one.

Before you begin

Only users assigned to the administrator role can copy or create new multiple security domains. Enable
global security in your environment before copying multiple security domains.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to copy an existing security domain using the administrative console:

168 Securing applications and their environment

Procedure
1. Click Security > Security domains.

2. Optional: From Preferences, you can select the maximum number of rows to display when the
domain collection is large. The default number of rows is 20. Rows that exceed that number appear
on subsequent pages.

3. Select a domain to copy.

4. Click Copy Selected Domain... to copy an existing domain from the collection. You can optionally
select Copy Global Security.. to copy an existing domain and have it maintain its global security
settings (collection selections are ignored). A new domain name is also required if you choose this
option.

5. Specify a unique name for the domain. This field is required. A domain name must be unique within a
cell and cannot contain an invalid character.

6. Specify a unique description for the domain.

7. Click Apply. After you click Apply you are returned to the Security domains detail page

8. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

9. Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 146 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was

Chapter 5. Configuring multiple security domains 169

deprecated in WebSphere Application Server 7.0. SPNEGO web authentication has
taken its place to provide dynamic reload of the SPNEGO filters and to enable fallback
to the application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version
2) protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings
for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain
and then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the

170 Securing applications and their environment

JASPI authentication providers configured at the global level. The security runtime first
checks for the JASPI authentication providers at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively
by the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is
set at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such
as getUserPrincipal() are qualified with the security realm (user registry) used by
applications in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured
at the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

On z/OS, you can enable or disable the System Authorization Facility (SAF) based
authorization at the domain level.

You can additionally configure the SAF authorization options at the security domain level,
which are the following:

v The unauthenticated user id

v The SAF profile mapper

v Whether to enable SAF delegation

v Whether to use the APPL profile to restrict access to WebSphere Application Server

v Whether to suppress authorization failed messages

v The SMF audit record strategy

v The SAF profile prefix

For more information on the SAF authorization options, read about “z/OS System
Authorization Facility authorization” on page 573.

z/OS security options

You can set z/OS specific security options at the process (JVM) level so that all applications
(both administrative and user) can enable or disable these options. These properties are:

v Enabling application server and z/OS thread identity synchronization

v Enabling the connection manager RunAs thread identity.

For more information on the z/OS security options, read about “z/OS security options” on
page 100

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

Chapter 5. Configuring multiple security domains 171

10. Click Apply.

11. After you have saved your configuration changes, restart the server for your changes to take effect.

Configuring inbound trusted realms for multiple security domains
You can configure which realms to grant inbound trust to for multiple security domains. The trust
relationship between realms is used when communicating with Lightweight Third-Party Authentication
(LTPA) tokens. Once a LTPA token is decrypted by the receiving server, the realm in the token is checked
to see if it is trusted. If it is not, the validation of the token fails. A realm represents a user registry in
WebSphere Application Server.

Before you begin

For information on cross realm communications, read the section in “Multiple security domains” on page
146.

Only users assigned to the administrator role can configure multiple security domains. Enable global
security in your environment before configuring multiple security domains.

Perform the following steps to grant inbound trusted realms for multiple security domains using the
administrative console:

Procedure
1. Click Security > Security domains.

2. Select a domain to edit or create a new one. Under Security Attributes, click User realm.

3. Click Customize for this domain.

4. Under Related Items, select Trusted authentication realms - inbound.

5. Select Trust all realms (including those external to this cell) or Trust realms as indicated below.
If Kerberos authentication is enabled, and you have cross realms or trusted realms, you must add the
Kerberos trusted realm by selecting Trust realms as indicated below.

6. Click Apply.

What to do next

The realms you selected to trust accept messages from other trusted realms but do not accept messages
from untrusted realms. Select Add External Realm to add trust for realms that are external to this cell.

Configure security domains
Use this page to configure the security attributes of a domain and to assign the domain to cell resources.
For each security attribute, you can use the global security settings or customize settings for the domain.

To view this administrative console page, click Security > Security domains. On the Security domains
collection page, select an existing domain to configure, create a new one, or copy an existing domain.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Name
Specifies a unique name for the domain. This name can not be edited after the initial submission.

A domain name must be unique within a cell and cannot contain an invalid character.

172 Securing applications and their environment

Description
Specifies a description for the domain.

Assigned Scopes
Select to display the cell topology. You can assign the security domain to the entire cell or select the
specific clusters, nodes and service integration buses to include in the security domain.

If you select All scopes, the entire cell topology is displayed.

If you select Assigned scopes, the cell topology is displayed with those servers and clusters that are
assigned to the current domain.

The name of an explicitly assigned domain appears next to any resource. Checked boxes indicate
resources that are currently assigned to the domain. You also can select other resources and click Apply
or OK to assign them to the current domain.

A resource that is not checked (disabled) indicates that it is not assigned to the current domain and must
be removed from another domain before it can be enabled for the current domain.

If a resource does not have an explicitly-assigned domain, it uses the domain assigned to the cell. If no
domain is assigned to the cell, then the resource uses global settings.

Cluster members cannot be individually assigned to domains; the enter cluster uses the same domain.

Application Security:
Select Enable application security to enable or disable security for user applications. You can use the
global security settings or customize the settings for a domain.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Enable application security
Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security were split into administrative security and application security, each of
which you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Chapter 5. Configuring multiple security domains 173

Java 2 security:
Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or add
properties related to Java 2 security. You can use the global security settings or customize the settings for
a domain.

This choice enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

Use global security settings
Select to specify the global security settings that are being used.

Customize for this domain
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Use Java 2 security to restrict application access to local resources
Select to specify whether to enable or disable Java 2 security permission checking. By default, access to
local resources is not restricted. You can choose to disable Java 2 security, even when application security
is enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions.

Warn if applications are granted custom permissions
Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Restrict access to resource authentication data
This option is disabled if Java 2 security has not been enabled.

Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

174 Securing applications and their environment

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Default: Disabled

User Realm:
This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level.

When configuring a registry at the domain level you can choose to define your own realm name for the
registry. The realm name distinguishes one user registry from another. The realm name is used in multiple
places – in the Java client login panel to prompt the user, in the authentication cache, and when using
native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous releases of
WebSphere Application Server, only one user registry is configured in the system. When you have multiple
security domains you can configure multiple registries in the system. For the realms to be unique in these
domains, configure your own realm name for a security domain. You also can choose the system to create
a unique realm name if it is certain to be unique. In the latter case, the realm name is based on the
registry that is being used.

Trust Association:
Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in the
system.

Note: The use of trust association interceptors (TAIs) for Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) authentication is deprecated. The SPNEGO web authentication panels
provide a much easier way to configure SPNEGO.

Interceptors
Select to access or to specify the trust information for reverse proxy servers.

Enable trust association
Select to enable the integration of IBM WebSphere Application Server security and third-party security
servers. More specifically, a reverse proxy server can act as a front-end authentication server while the
product applies its own authorization policy onto the resulting credentials that are passed by the proxy
server.

Chapter 5. Configuring multiple security domains 175

SPNEGO Web Authentication:
Specifies the settings for Simple and Protected GSS-API Negotiation (SPNEGO) as the web authentication
mechanism.

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests for
secured resources was introduced. In WebSphere Application Server 7.0, this function is
deprecated. SPNEGO web authentication has taken its place to provide dynamic reload of the
SPNEGO filters and to enable fallback to the application login method.

RMI/IIOP Security:
Specifies the settings for Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet
InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

When you configure these attributes at the domain level, the RMI/IIOP security configuration at the global
level is copied for convenience. You can change the attributes that need to be different at the domain
level. The Transport layer settings for CSIv2 inbound communications should be the same for both the
global and the domain levels. If they are different, the domain level attributes are applied to all of the
applications in the process.

When a process communicates with another process with a different realm, the LTPA authentication and
the propagation tokens are propagated to the downstream server unless that server is listed in the
outbound trusted realms list. This can be done using the Trusted authentication realms – outbound link
on the CSIv2 outbound communication panel.

CSIv2 inbound communications
Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication.

CSIv2 outbound communications
Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

JAAS Application logins
Select to define login configurations that are used by JAAS.

176 Securing applications and their environment

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can
all be configured at the domain level. By default, all of the applications in the system have access to the
JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the
domain level. If it does not find them, it then checks for them in the global security configuration. Configure
any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by
the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can still be
used by user applications.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

Use global and domain-specific logins
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

JAAS System Logins:
Specifies the configuration settings for the JAAS system logins. You can use the global security settings or
customize the configuration settings for a domain.

System Logins
Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping

JAAS J2C Authentication Data:
Specifies the settings for the JAAS J2C authentication data. You can use the global security settings or
customize the settings for a domain.

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource
adapters and Java DataBase Connectivity (JDBC) data sources.

Use global and domain-specific entries
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Java Authentication SPI (JASPI)
Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules. You can use the global security settings or customize the settings for a
domain. To configure JASPI authentication providers for a domain, select Customize for this domain and
then you can enable JASPI. Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain level. By
default, all of the applications in the system have access to the JASPI authentication providers
configured at the global level. The security runtime first checks for the JASPI authentication
providers at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure JASPI authentication providers at a domain only when the provider is to be
used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

Chapter 5. Configuring multiple security domains 177

v Authentication cache settings - use to specify your authentication cache settings. The configuration
specified on this panel is applied only to this domain.

v LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the domain
level, any token that is created in the security domain when accessing user applications is created with
this expiration time.

v Use realm-qualified user names - When this selection is enabled, user names returned by methods
such as getUserPrincipal() are qualified with the security realm (user registry) used by applications in
the security domain.

Authorization Provider:
Specifies the settings for the authorization provider. You can use the global security settings or customize
the settings for a domain.

You can configure an external third party JACC (Java Authorization Contract for Containers) provider at
the domain level. Tivoli Access Manager's JACC provider can only be configured at the global level.
Security domains can still use it if they do not override the authorization provider with another JACC
provider or with the built-in native authorization.

Select either the Default authorization or External authorization using a JAAC provider. The
Configure button is only enabled when External authorization using a JAAC provider is selected.

For System Authorization Facility (SAF) authorization, if you set the SAF profile prefix at the domain level,
it is applied at the server level so that all applications (both administrative and user) will enable or disable
it in that server

z/OS security options:
Specifies the settings for z/OS. You can use the global security settings or customize the settings for a
domain.

Enable application server and z/OS thread identity synchronization
Select to indicate if an operating system thread identity should be enabled for synchronization with the
Java 2 Platform, Enterprise Edition (J2EE) identity that is used in the application server runtime if an
application is coded to request this function.

Synchronizing the operating system identity to the J2EE identity causes the operating system identity to
synchronize with the authenticated caller, or delegated RunAs identity in a servlet or Enterprise JavaBeans
(EJB) file. This synchronization or association means that the caller or security role identity, rather than the
server region identity, is used for z/OS system service requests such as access to files.

If this value is set at the domain level, it is applied at the server level so that all applications (both
administrative and user) will enable or disable it in that server.

Custom properties
Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Set custom properties at the domain level that are either new or different from those at the global level. By
default, all of the custom properties at the global security configuration can be accessed by all of the
applications in the system. The security runtime code first checks for the custom property at the domain
level. If it does not find it, it then attempts to obtain the custom property from the global security
configuration.

178 Securing applications and their environment

Web Services Bindings
Click Default policy set bindings to set the domain default provider and client bindings.

External realm name
Use this page to add a WebSphere Application Server realm that is external to this cell. The realm is
initially not trusted. Use the Trusted authentication realms - inbound page to establish trust.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain and then
select a Realm type. Click Configure. Under Related items, click Trusted authentication realms -
inbound or Trusted authentication realms - outbound. Click Add External Realm....

External realm name
Use to specify the name of the realm that is external to the list of realms that are available to receive trust.

Trust all realms
Use this page to configure which realms to grant inbound or outbound trust to.

The inbound trust is required to validate LTPA tokens that contain a foreign realm. The outbound trust is
required to send the credential tokens to the trusted realms. For example, if an application using realmA
needs to communicate using LTPA with an application using realmB, realmA should have realmB in its
outbound trust list and realmB should have realmA in its inbound trust list.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain. Select a
realm type and then click Configure.

Under Related items, click Trusted authentication realms - inbound or Trusted authentication realms -
outbound.

Trust all realms (including those external to this cell)
Select to trust all of the realms listed on this page, including those external to the cell.

Trust realms as indicated below
Select to trust only those realms that you have selected from the list of realms that are available to receive
inbound trust.

Add External Realm...
Select to add realms that are external to this cell to the list of realms that are available to receive inbound
trust. When an external realm is added, it is trusted by default. If it is not trusted it is removed from the list.

Security domains collection
Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different application
servers can use different security attributes like user registry or login configurations.

To view this administrative console page, click Security > Security domains.

Read about “Multiple security domains” on page 146 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Chapter 5. Configuring multiple security domains 179

Maximum rows
Specifies the maximum number of rows that display when the collection is large. The rows that are not
displayed appear on the next page.

The default is 20. Rows that exceed the maximum number display on subsequent pages.

Retain filter criteria
Specifies whether to use the same filter criteria entered in the show filter function to display this page the
next time you visit it.

Copy selected domain
Select to copy a selected domain from the collection (a new name is required)

Copy global security
Select to create a domain with a copy of the global security settings (collection selections are ignored). A
domain name is required.

Authentication cache settings
Use this page to specify your authentication cache settings.

To view this administrative console page, click Security > Global security > Authentication cache
settings.

Enable authentication cache
Specifies whether to disable the authentication cache.

Leave the authentication cache enabled for performance reasons. However, you can disable the
authentication cache for debug or measurement purposes. When this choice is disabled, the performance
is impacted since whenever a user is authenticated the user registry is accessed to gather information
about the user. New tokens are then created for the user.

Default: Enabled

Cache timeout:
Specifies the time period at which the authenticated credential in the cache expires. Verify that this time
period is less than the value for the Timeout value for forwarded credentials between servers field (the
LTPA timeout).

If the application server infrastructure security is enabled, the security cache timeout can influence
performance. The timeout setting specifies how often to refresh the security-related caches. Security
information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,
all cached information not accessed within the timeout period is purged from the cache. Subsequent
requests for the information result in a database lookup. On occasion, acquiring the information requires
invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations
are relatively costly operations for performance. Determine the best trade-off for the application by looking
at usage patterns and security needs for the site.

You must consider the following effects of this value on your configuration:

180 Securing applications and their environment

v Larger authentication cache timeout values can increase the security risk. For example, you might
revoke a user in the user registry or repository. However, the revoked user can log into the
administrative console using the credential that is cached in the authentication cache until the cache is
refreshed.

v Smaller authentication cache timeout values can affect performance. When this value is smaller, the
application server accesses the user registry or repository more frequently.

v Larger numbers of entries in the authentication cache, which is due to an increased number of users,
increases the memory usage by the authentication cache. Thus, the application server might slow down
and affect performance.

You can limit the size of the authentication cache by setting the maximum cache size value. Set both the
maximum cache size and the authentication cache timeout values to balance your security risk and
performance needs.

The LTPA timeout value should not be set lower than the security cache timeout value. The LTPA timeout
value should be set higher than the ORB request timeout value. However, there is no relation between the
security cache timeout value and the ORB request timeout value. For more information on the LTPA
timeout value, see the documentation about authentication mechanisms and expiration. For more
information on the ORB request timeout value, see the documentation about the Object Request Broker
service settings.

Default: 10 minutes

Initial cache size:
Specifies the initial size of the hash table caches.

A higher number of available hash values might decrease the occurrence of hash collisions. A hash
collision results in a linear search for the hash bucket, which might decrease the retrieval time. If several
entries compose a hash table cache, create a table with a larger capacity that supports more efficient hash
entries instead of allowing automatic rehashing determine the growth of the table. Rehashing causes every
entry to move each time.

Default: 50

Maximum cache size
Indicates the maximum size of the cache.

After this limit is reached, the least used entries are removed from the cache to make space for the new
entries.

Default: 25000

Use basic authentication cache keys (password one-way hashed):
Caches the userName and the one-way hashed password as the key lookup in the cache.

Disable this only if you do not want this information to be stored in the cache. If this is disabled, every time
a user logs in with userName and password, the user registry is accessed, which impacts performance.

Default: True

Chapter 5. Configuring multiple security domains 181

182 Securing applications and their environment

Chapter 6. Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,
you can define trust between WebSphere Application Server and a proxy server, configure single sign-on
capability, and specify how to propagate security attributes between application servers.

About this task

The following security topics are covered in this section:

User registries
For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom
user registries, and user repositories such as virtual member manager, see “Selecting a registry or
repository.”

Trust associations
For more information on trust associations, see “Trust associations” on page 366.

Single sign-on
For more information on single sign-on, see “Single sign-on for authentication using LTPA cookies”
on page 370.

Security attribute propagation
For more information on propagation tokens, authorization tokens, single sign-on tokens, and
authentication tokens, see “Security attribute propagation” on page 467.

The following information is covered in this section:

Procedure
v Configure a user registry. For more information, see “Selecting a registry or repository.”

v Configure WebSEAL or a custom trust association interceptor. For more information see, “Integrating
third-party HTTP reverse proxy servers” on page 365.

v Configure single sign-on. For more information, see “Implementing single sign-on to minimize web user
authentications” on page 374.

v Propagate security attributes. For more information, see “Propagating security attributes among
application servers” on page 472.

v Configure the authentication cache. For more information, see “Configuring the authentication cache” on
page 484.

What to do next

After completing the configuring the authentication process, you must authorize access to resources. For
more information, see Chapter 7, “Authorizing access to resources,” on page 539.

Selecting a registry or repository
Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

Before you begin

Note: During profile creation, either during installation or post-installation, administrative security is
enabled by default. The file-based federated user repository is configured as the active user
registry. Decide if you want a different user registry.

© Copyright IBM Corp. 2011 183

Before configuring the user registry or repository, decide which user registry or repository to use. You can
configure one Active default registry for the Cell.

About this task

WebSphere Application Server provides implementations that support multiple types of registries and
repositories including the local operating system registry, a stand-alone Lightweight Directory Access
Protocol (LDAP) registry, a stand-alone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as a federated repository,
authenticates a user and retrieves information about users and groups to perform security-related functions
including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:

v Authenticating a user using basic authentication, identity assertion, or client certificates

v Retrieving information about users and groups to perform security-related administrative functions, such
as mapping users and groups to security roles

WebSphere Application Server is designed with the capability to support multiple operating systems or
operating environment-based user registries, such as the z/OS SAF registry, and most of the major
Lightweight Directory Access Protocol (LDAP)-based registries. You can use the custom LDAP feature to
support any LDAP server by setting up the correct configuration information, such as user and group
filters. However, support is not extended to these custom LDAP servers because there are many
possibilities that cannot be tested.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. By default, when a user registry or repository is not configured, the local operating system
SAF-based user registry is used. If your choice of user registry or repository is not the local operating
system, you must first configure the user registry or repository. Configuring the user registry or repository
is normally done as part of enabling administrative security, restarting the servers, and then assigning
users and groups to roles for all of your applications.

In addition to local operating system, LDAP, and Federated repository registries, WebSphere Application
Server also provides a plug-in to support any registry by using the custom registry feature. The custom
registry feature enables you to configure any user registry that is not made available through the security
configuration panels of the WebSphere Application Server.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. When a user registry or repository is not configured, the local operating system registry is
used by default. If your choice of user registry is not the local operating system registry, you need to first
configure the registry or repository, which is normally done as part of enabling security, restart the servers,
and then assign users and groups to roles for all your applications.

WebSphere Application Server supports the following types of user registries:

v Federated repository

v Local operating system such as SAF-based

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Stand-alone custom registry

The UserRegistry interface is used to implement both the custom registry and the federated repository
options for the user account repository. The interface is very helpful in situations where the current user
and group information exists in some other formats, for example, a database, and cannot move to local
operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that
WebSphere Application Server can use the existing registry for all the security-related operations. The

184 Securing applications and their environment

process of implementing a custom registry is a software implementation effort, and it is expected that the
implementation does not depend on WebSphere Application Server resource management for its
operation. For example, you cannot use an Application Server data source configuration; generally you
must invoke database connections and dictate their behavior directly in your code.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry
interface. However, the return values are little different from the interface. For example,
getUniqueUserId returns the uniqueID with the realm name wrapped. You cannot use the return
value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =

(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified
// in the NameCallback.

String uniqueid = reg.getUniqueUserId(userName);
// Strip the realm name and get real uniqueID
String uid = com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Retrieves the security name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

You can use a Service Provider Interface (SPI) for this parsing function.

After the applications are assigned users and groups and you need to change the user registries, delete
all the users and groups, including any RunAs role, from the applications, and reassign them after
changing the registry through the administrative console or by using wsadmin scripting. The following
wsadmin command, which uses Jacl, removes all of the users and groups from any application:
$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before
performing this operation. However, if both of the following conditions are true, you might be able to switch
the registries without having to delete the users and groups information:

v All of the user and group names, including the password for the RunAs role users, in all of the
applications match in both user registries.

v The application bindings file does not contain the access IDs which are unique for each user registry
even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when
the applications start. However, if you migrated an existing application from an earlier release, or if you
used the wsadmin script to add access IDs for the applications to improve performance, you have to
remove the existing user and group information and add the information after configuring the new user
registry.

For more information on updating access IDs, see updateAccess IDs in the Commands for the AdminApp
object article.

Attention: WebSphere Application Server supports a variety of user registries and repositories on
different operating systems. During the user authentication process, you might use non-alphanumeric
characters in your user name or password. Restrictions on the use of these non-alphanumeric characters
depends on both the underlying operating system and the user registry type. For more information on
which non-alphanumeric characters are not supported, see your operating system and user registry or
repository documentation.

For a comprehensive list of the non-alphanumeric characters that are not supported, see the IBM AIX
operating system documentation.

Complete one of the following steps to configure your user registry:

Chapter 6. Authenticating users 185

Procedure
v “Configuring local operating system registries”

v “Configuring Lightweight Directory Access Protocol user registries” on page 191

v “Configuring stand-alone custom registries” on page 218.

v “Managing the realm in a federated repository configuration” on page 248

What to do next
1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User

account repository on the Global security panel is set to the appropriate registry or repository. As the
final step, validate the user ID and the password by clicking Apply on the Global security panel. Save,
stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking
Apply on the Global security panel. After validation, save the configuration and stop and start all
WebSphere Application Servers, including the cells, nodes and all of the application servers. To avoid
inconsistencies between the WebSphere Application Server processes, make sure that any changes to
the registry or repository are done when all of the processes are running. If any of the processes are
down, force synchronization to make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.
3. If System Authorization Facility (SAF) through local operating system is selected as the registry or

repository, the values in the bindings file are ignored with the exception of the user ID and password
(or password phrase) for RunAs role users.

Configuring local operating system registries
Use these steps to configure local operating system registries.

Before you begin

For detailed information about using the local operating system user registry, see “Local operating system
registries” on page 187. These steps set up security based on the local operating system user registry on
which WebSphere Application Server is installed.

When a local operating system registry is chosen, the started task identity is chosen as the server identity.
A user ID and password are not required to configure the server.

Important: Each started task, for example, a controller, servant, or daemon might have a different identity.
Because you should give differing resource authorizations to each, you should give differing
user IDs to controllers and servants. The z/OS Profile Management Tool sets up these
identities.

About this task

When you set up a user registry for WebSphere Application Server, the System Authorization Facility
(SAF) works in conjunction with the user registry to authorize applications to run on the server. For more
information on the SAF capabilities, see “System Authorization Facility user registries” on page 572.
Complete the following steps to configure additional properties that are associated with the local OS user
registry and SAF configuration.

Important: The local operating system is not a valid user account repository when you have a mixed cell
environment that includes both z/OS platform and non-z/OS platform nodes.

Procedure
1. Click Security > Global security.

2. Under User account repository, select Local operating system and click Configure.

186 Securing applications and their environment

3. If SAF authorization is not enabled, enter a valid user name in the Primary administrative user name
field. This value is the name of a user with administrative privileges that is defined in the registry. This
user name is used to access the administrative console or used by wsadmin.

4. Optional: Select the Ignore case for authorization option to enable WebSphere Application Server to
perform a case insensitive authorization check when you use the default authorization.

5. Click Apply.

6. Select either the Automatically generated server identity or User identity for the z/OS started
task.

7. Optional: Enable and configure SAF authorization.

a. Click Security > Global security > External authorization provider.

b. Select the System Authorization Facility (SAF) authorization option to enable SAF as the
authorization provider.

c. Under Related items, click z/OS SAF authorization to configure SAF authorization. To see an
explanation of the SAF authorization options, see “z/OS System Authorization Facility authorization”
on page 573.

8. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation
is only done when you click OK or Apply in the Global security panel. First, make sure that you select
Local operating system as the available realm definition in the User account repository section, and
click Set as current. If security was already enabled and you had changed either the user or the
password information in this panel, make sure to go to the Global security panel and click OK or
Apply to validate your changes. If your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access
the administrative console with the server user ID and password that you specified. For
more information, see “Authorizing access to administrative roles” on page 621.

Results

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,
including deployment managers, nodes and application servers. If the server comes up without any
problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local
operating system registry to identify authorized users.

What to do next

Complete any remaining steps for enabling security. For more information, see “Enabling security” on page
66.

Local operating system registries
With the registry implementation for the local operating system, the WebSphere Application Server
authentication mechanism can use the user accounts database of the local operating system.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

A local operating system registry is a centralized registry within a sysplex.

Chapter 6. Authenticating users 187

WebSphere Application Server uses the System Authorization Facility (SAF) interfaces. SAF interfaces are
defined by MVS to enable applications to use system authorization services or registries to control access
to resources such as data sets and MVS commands. SAF allows security authorization requests to be
processed directly through the Resource Access Control Facility (RACF) or a third party z/OS security
provider. You must provide a mapping from a user registry identity to a SAF user ID unless you select
local operating system as the user registry. For more information, see Custom System Authorization
Facility mapping modules.

Web client certificate authentication is supported when using the local operating system user registry.
Digital certificates can be mapped to MVS identities by both web and Java clients when you select Local
OS. A certificate name filter can be used to simplify the mapping. If you are using RACF as the security
server, the RACDCERT MAP command creates a resource profile that maps multiple user identities to a
digital certificate to simplify administration of certificates, conserve storage space in the RACF database,
maintain accountability, or maintain access control granularity.

Using system user registries

The following notes apply when you use system user registries:

Password sensitivity using a local operating system registry:

Allowing for a larger number of password combinations benefits WebSphere Application Security.
Passwords restricted to 8 characters have limits on how secure they can be. Hacking attempts often are
successful with 8 character passwords. WebSphere Application Server expands the possible combinations
beyond the 8 character password by providing the ability to additionally use a password phrase from 9 to
100 characters long. The password phrase gives you an exponentially larger number of combinations for
securing any given user ID to an application.

z/OS Version 1.9 RACF

In z/OS Version 1.9, RACF allows you to use password phrases in securing a user ID to an application.
Password phrase support for WebSphere Application Server provides infrastructure changes that you (or
other applications) can exploit to facilitate authentication information across environments and applications.

A password phrase can be from 9 to 100 characters in length and provide a far greater number of possible
combinations of characters and numbers than do passwords. A password phrase is a character string
made up of mixed-case letters, numbers, and special characters. A user ID can have both a password and
a password phrase associated with it. The user ID uses the password for existing applications that accept
an eight-character password and the password phrase for those applications that are sensitive to the
longer character string.

If you want to also use mixed-case password phrases, or password phrases that have trailing blank
spaces, you must use the RACF mixed case password option and enable it by using the SETROPTS
PASSWORD(MIXEDCASE) RACF command. See “Password case sensitivity using a local operating
system registry” on page 189 for more information about mixed case passwords.

Remember: After initializing the use of RACF mixed case passwords, you MUST restart the WebSphere
Application Server.

To use password phrases in WebSphere Application Server, you must comply with all of the following
requirements:

1. Use z/OS Version 1.9 or higher

2. Use the local operating system registry as your active registry

3. Use the System Authorization Facility (SAF) as your authorization provider.

4. Install the WebSphere Application Server Fix Pack 6.1.0.15 or later.

188 Securing applications and their environment

5. If you want to specify a password phrase that is between 9 and 13 characters, inclusive, then you
must also install the ICHPWX11 RACF exit routine.

Important: All of these requirements must be met; otherwise, WebSphere Application Server password
phrases are not recognized and do not take effect.

For more information about password phrases in z/OS Version 1.9, see Z/OS V1R9.0 Security Server
RACF Security Administrator's Guide. This guide is available under "Security Server and Integrated
Security Services. Within the guide, see section 3.4.14.

Password case sensitivity using a local operating system registry:

Knowing when a password is interpreted as case sensitive or not can directly affect how you use a local
operating system registry. WebSphere Application Server exploits the mixed case password option for the
Resource Access Control Facility (RACF) and allows you to use case sensitive passwords.

z/OS Version 1.7 RACF

In z/OS Version 1.7, RACF supports the option of a mixed case password. You select this option for RACF
by using the SETROPTS PASSWORD(MIXEDCASE) command. To use case sensitive passwords in WebSphere
Application Server for a local operating system registry, you must comply with all of the following
requirements:

1. Use z/OS Version 1.7 or higher

2. Use the local operating system registry

3. Turn on the RACF mixed case option with the SETROPTS PASSWORD(MIXEDCASE) command

Important: All three of these requirements must be met; otherwise, WebSphere Application Server
password will not be sensitive to case.

If you use a Lightweight Directory Access Protocol (LDAP) configuration, you can use mixed case
passwords.

For more information on the mixed case password feature in z/OS Version 1.7, see Z/OS V1R7.0 Security
Server RACF Security Administrator's Guide. This guide is available under "Security Server and
Integrated Security Services. Within the guide, see section 5.2.1.

Local operating system settings
Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system.

3. Click Configure.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

Chapter 6. Authenticating users 189

http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r7/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r7/

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Important: If System Authorization Facility (SAF) authorization is enabled on the External authorization
providers panel, this field does not display.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

Local operating system wizard settings
Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

190 Securing applications and their environment

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Important: If System Authorization Facility (SAF) authorization is enabled on the External authorization
providers panel, this field does not display.

Configuring Lightweight Directory Access Protocol user registries
To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid
user name (ID) and password, the server host and port of the registry server, the base distinguished name
(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user
registry that is searchable. You can use any user ID that has the administrative role to log in.

Before you begin

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

There are two different identities that are used for security purposes: the user ID for administrative
functions and the server identity. When administrative security is enabled, the user ID and password for
administrative functions is authenticated with the registry. If authentication fails, access to the
administrative console is not granted or tasks with wsadmin scripts are not completed. It is important to
choose an ID and password that do not expire or change often. If this user ID or password need to
change in the registry, make sure that the changes are performed when all the application servers are up
and running. When changes are to be made in the registry, review the article on “Standalone Lightweight
Directory Access Protocol registries” on page 339 (LDAP) before beginning this task.

The server identity is used for internal process communication. As part of this task, you can change the
server identity from the default automatically generated ID to a server ID and password from the LDAP
repository.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Enter a valid user name in the Primary administrative user name field. Typically, the user name is
the short name of the user and is defined by the user filter in the Advanced LDAP settings panel.

4. Determine whether to specify the user identity that is used for internal process communication. Cells
that contain Version 5.1 or 6.x nodes require a server user identity that is defined in the active user
repository. By default, the Automatically generated server identity option is enabled, and the
application server generates the server identity. However, you can select the Server identity that is
stored in the repository option to specify both the server identity and its associated password.

5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the
default filters that are used by WebSphere Application Server. These default filters change the Type
field to Custom, which indicates that custom filters are used. This action occurs after you click OK or
Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the
user and group filters to use other LDAP servers, if required.

Chapter 6. Authenticating users 191

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use
the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP
servers, see the Supported hardware, software, and APIs website.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in
WebSphere Application Server version 6.1.

6. Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP
address or domain name system (DNS) name.

7. Enter the LDAP server port number in the Port field. The host name and the port number represent
the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different
cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,
these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to
run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a
previous version of the WebSphere Application Server, then it is important that the port number match
all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x
configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the
version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

You can set the com.ibm.websphere.security.ldap.logicRealm custom property to change the value of
the realm name that is placed in the token. For more information, see the security custom properties
topic.

8. Enter the base distinguished name (DN) in the Base distinguished name field. The base DN
indicates the starting point for searches in this LDAP directory server. For example, for a user with a
DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base DN as any of the following
options, assuming a suffix of c=us:

v ou=Rochester, o=IBM, c=us

v o=IBM, c=us

v c=us

For authorization purposes, this field is case sensitive by default. Match the case in your directory
server. If a token is received (for example, from another cell or Lotus Domino) the base DN in the
server must match exactly the base DN from the other cell or Domino. If case sensitivity is not a
consideration for authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight
Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the
base distinguished name before or after commas and equal symbols. An example of a
non-normalized base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a
normalized base distinguished name is o=ibm,c=us.

To interoperate between WebSphere Application Server Version 6.0 and later versions, you must
enter a normalized base distinguished name in the Base Distinguished Name field. In WebSphere
Application Server, Version 6.0 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base
Distinguished Name field is optional for the Domino server.

9. Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and group information. If the
LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the
application server binds anonymously. See the Base Distinguished Name field description for
examples of distinguished names.

10. Optional: Enter the password corresponding to the bind DN in the Bind password field.

11. Optional: Modify the Search time out value. This timeout value is the maximum amount of time that
the LDAP server waits to send a response to the product client before stopping the request. The
default is 120 seconds.

192 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

12. Ensure that the Reuse connection option is selected. This option specifies that the server should
reuse the LDAP connection. Clear this option only in rare situations where a router is used to send
requests to multiple LDAP servers and when the router does not support affinity. Leave this option
selected for all other situations.

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this
option, the authorization check is case insensitive. Normally, an authorization check involves checking
the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when
you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP
servers, you must enable this option because the group information that is obtained from the LDAP
servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,
this field is optional and can be enabled when a case sensitive authorization check is required. For
example, you might select this option when you use certificates and the certificate contents do not
match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on
(SSO) between the product and Lotus Domino. The default is enabled.

14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications
with the LDAP server.

Important: This step will only be successful provided that the Signer certificate for the LDAP is first
added to the truststore that will be eventually used. If the Signer certificate from the
LDAP is not added to the truststore, then

v An error will be issued by the Administrative console.

v the deployment manager (DMGR) systemout.log will show the CWPKI0022E: SSL
HANDSHAKE FAILURE message indicating that the Signer certificate needs to be
added to the truststore.

To ensure an error free operation for this step, You need to first extract to a file the
Signer certificate of the LDAP and send that file to the WebSphere Application Server
machine. You can then add the certificate to the truststore being defined for the LDAP. In
this way, you are assured that the remaining actions for this step will be successful.

If you select the SSL enabled option, you can select either the Centrally managed or the Use
specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the
SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. You can click the name of an existing configuration to modify it or
complete the following steps to create a new SSL configuration:

Chapter 6. Authenticating users 193

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a
cell, node, server, or cluster.

d. Under Related items, click SSL configurations.

e. Click New.

15. Click OK and either Apply or Save until you return to the Global security panel.

Results

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling
security in the WebSphere Application Server.

What to do next
1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 90.
2. If you want to use System Authorization Facility (SAF) authorization with your LDAP registry, then read

about “System Authorization Facility considerations for the operating system and application levels” on
page 38 for more information.

3. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems the setup is
correct.

Standalone LDAP registry settings
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups
reside in an external LDAP directory.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to

194 Securing applications and their environment

file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 7.0,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Note: When you configure LDAP as a user registry and SAF is enabled, if the property
com.ibm.security.SAF.authorization, is set to true, then the Primary administrative user name
field is not displayed on the administrative console.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is supported by the application server for z/OS as well as many other
LDAP servers.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all

Chapter 6. Authenticating users 195

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 configuration,
and a WebSphere Application Server at Version 7.0 is going to interoperate with the Version 6.1 server,
verify that port 389 is specified explicitly for the Version 7.0 server.

Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, o=IBM, c=US or o=IBM c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case
for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)
directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,
where this field is optional.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a
router is used to distribute requests to multiple LDAP servers and when the router does not support
affinity.

Default: Enabled
Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP
connection for every LDAP search request. This situation impacts system performance if your
environment requires extensive LDAP calls. This option is provided because the router is not

196 Securing applications and their environment

sending the request to the same LDAP server. The option is also used when the idle
connection timeout value or firewall timeout value between the application server and LDAP is
too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with
the Edge server. A TCP reset causes the connection to immediately closed and a backup
server to failover. For more information, see "Sending TCP resets when server is down" at
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/
LBguide.htm#HDRRESETSERVER and the Edge Server V2 - TCP Reset feature in PTF #2
described in: ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/
updates.pdf.

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For
more information, see "Using specific directory servers as the LDAP server" in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For
example, use this option when the certificates and the certificate contents do not match the case that is
used for the entry in the LDAP server. You can enable the Ignore case for authorization option when
using single sign-on (SSO) between the application server and Lotus Domino.

Default: Enabled
Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol
(LDAP) server.

When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings
Use this security wizard page to provide the basic settings to connect the application server to an existing
Lightweight Directory Access Protocol (LDAP) registry.

Chapter 6. Authenticating users 197

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf

To view this security wizard page, click Security > Global security > Security configuration wizard. You
can modify your LDAP registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone
LDAP registry, and click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 7.0,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Note: When you configure LDAP as a user registry and SAF is enabled, if the property
com.ibm.security.SAF.authorization, is set to true, then the Primary administrative user name
field is not displayed on the administrative console.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is supported by the application server for z/OS as well as many other
LDAP servers.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all
configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 configuration,
and a WebSphere Application Server at Version 7.0 is going to interoperate with the Version 6.1 server,
verify that port 389 is specified explicitly for the Version 7.0 server.

Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

198 Securing applications and their environment

For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, o=IBM, c=US or o=IBM, c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings
Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You
can change these values depending on your requirements. These default values are based on the type of
LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for
example from Netscape to Secureway, the default filters automatically change. When the default filter
values change, the LDAP server type changes to Custom to indicate that custom filters are used. When
security is enabled and any of these properties change, go to the Global security panel and click Apply or
OK to validate the changes.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more

Chapter 6. Authenticating users 199

information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

User filter:

Specifies the LDAP user filter that searches the user registry for users.

This option is typically used for security role-to-user assignments and specifies the property by which to
look up users in the directory service. For example, to look up users based on their user IDs, specify
(&(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

This option is typically used for security role-to-group assignments and specifies the property by which to
look up groups in the directory service. For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

Specifies the piece of information that represents users when users display. For example, to display
entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes
multiple objectclass:property pairs delimited by a semicolon (;).

Data type: String

Group ID map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

Specifies the piece of information that represents groups when groups display. For example, to display
groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object
class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user-to-group relationships.

For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited
by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is
defined in the group filter, and the property is the member attribute. If the object class value does not
match the object class in the group filter, authorization might fail if groups are mapped to security roles.
For more information about this syntax, see your LDAP directory service documentation.

200 Securing applications and their environment

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member
attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a
user by enumerating all the group attributes that are possessed by a given user. For example, attribute
pair memberof:member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory
Server. This field also specifies which property of an object class stores the list of members belonging to
the group represented by the object class. For supported LDAP directory servers, see "Supported directory
services".

Data type: String

Perform a nested group search:

Specifies a recursive nested group search.

Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive
server-side group member searches and if recursive group member search is required. It is not
recommended that you select this option to locate recursive group memberships for LDAP servers.
Application server security leverages the recursive search functionality of the LDAP server to search a
user's group memberships, including recursive group memberships. For example:

v IBM Directory Server is preconfigured by the application server security to recursively calculate a user's
group memberships using the ibm-allGroup attribute.

v SunONE directory server is preconfigured to calculate nested group memberships using the nsRole
attribute.

Data type: String

Kerberos user filter:

Specifies the Kerberos user filter value. This value can be modified when Kerberos is configured and is
active as one of the preferred authentication mechanisms.

Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the
mapping.

Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP registry.

If more than one LDAP entry matches the filter specification at runtime, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:
(&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP
attribute that depends on the schema that your LDAP server is configured to use. The right side of the
filter specification is one of the public attributes in your client certificate. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:

Chapter 6. Authenticating users 201

v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

Data type: String

Configuring Lightweight Directory Access Protocol search filters
Use this topic to configure the LDAP search filters. These steps are required to modify existing user and
group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to
entries in the LDAP server.

Before you begin

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and
obtain information about users and groups from an LDAP directory server. A default set of filters is
provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP
configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone
LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can
develop filters to support any additional type of LDAP server. The effort to support additional LDAP
directories is optional and other LDAP directory types are not supported. Complete the following steps in
the administrative console.

Procedure
1. Click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is
typically used for the security role-to-user assignment. The filter is also used to authenticate a user
with the attribute that is specified in the filter. The filter specifies the property that is used to look up
users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,
specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the “Using specific directory servers as the LDAP server”
on page 205 documentation.

202 Securing applications and their environment

5. Modify the Kerberos user filter, if necessary. The Kerberos user filter name is used for searching the
registry for the Kerberos principal name. Specify the LDAP attribute that holds the Kerberos principal
name.

IBM Lotus Domino default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

IBM SecureWay Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=ePerson))

Microsoft Active Directory default krbuser filter:
(&(userprincipalname=%v)(objectcategory=user))

Sun Java System Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=inetOrgPerson))

Novell eDirectory default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

6. Optional: If your using Federated Repositories, modify the Kerberos attribute name if necessary. The
Kerberos attribute name is used for searching the registry for Kerberos principal. Specify the LDAP
attribute that holds the Kerberos principal name.

IBM Lotus Domino default krbuser filter:
krbPrincipalName

IBM SecureWay Directory Server default krbuser filter:
krbPrincipalName

Microsoft Active Directory default krbuser filter:
userprincipalname

Sun Java System Directory Server default krbuser filter:
krbPrincipalName

Novell eDirectory default krbuser filter:
krbPrincipalName

7. Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is
typically used for the security role-to-group assignment. Also, the filter is used to specify the property
by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up groups based on their common names (CN) and to use either the groupOfNames
object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the “Using specific directory servers as the LDAP server”
on page 205 documentation.

8. Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and
specifies the piece of information that represents users when these users are displayed with their
short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify
inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).
To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal
method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,
ou=austin.ibm.com, o=IBM, c=US user can log in using any attributes that are defined, for example,
email address, social security number, and so on, but when these methods are called, the bob user
ID is returned no matter how the user logs in.

9. Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP
entry and specifies the piece of information that represents groups when groups display. For example,

Chapter 6. Authenticating users 203

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches
on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a
semicolon (;).

10. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.
For SecureWay, and Domino directory types, this field is used to query all the groups that match the
specified object classes to see if the user is contained in the specified attribute. For example, to get
all the users that belong to groups with the groupOfNames object class and the users that are
contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of
an object class, stores the list of members that belong to the group that is represented by the object
class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For
more information about this syntax, see the “Using specific directory servers as the LDAP server” on
page 205.

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all
users in a group with the information that is stored in the user object. For example, the
memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object
to obtain all the groups to which the user belongs. The member attribute is used to get all the users
in a group that use the Group object. Using the User object to obtain the group information improves
performance.

11. Select the Perform a nested group search option if your LDAP server does not support recursive
server-side searches.

12. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user
authentication when LDAP is selected as the registry. This field is used to indicate whether to map
the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If
EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP
server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make
the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete
the following steps:

a. Click Security > Global security.

b. Under User account repository, click the Available realm definitions drop-down list,
selectStandalone LDAP registry.

13. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client
certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,
authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP
attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open
bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important.
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}

204 Securing applications and their environment

v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

14. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.
Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP
directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone
LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.
This action overwrites any changes to the filters that you made. To avoid overwriting changes, you
can take either of the following actions:
v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. Click Security > Global security and change the User account repository type to
Stand-alone custom registry.

v Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the
filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. After you complete your changes, click Apply or OK.

The validation of the changes does not take place in this panel. Validation is done when you click OK
or Apply on the Global security panel. If you are in the process of enabling security for the first time,
complete the remaining steps and go to the Global security panel. Select Standalone LDAP registry
as the user account repository. If security is already enabled and any information on this panel
changes, go to the Global security panel and click OK or Apply to validate your changes. If your
changes are not validated, the server might not start.

Results

These steps result in the configuration of the LDAP search filters. These steps are required to modify
existing user and group filters for a particular LDAP directory type. The steps are also used to set up
certificate filters to map certificates to entries in the LDAP server.

What to do next
1. Validate this setup by clicking OK or Apply on the Global security panel.
2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers

for any changes in this panel to become effective.
3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server
This article provides important information about the directory servers that are supported as Lightweight
Directory Access Protocol (LDAP) servers in WebSphere Application Server.

Before you begin

Microsoft Active Directory forests are not supported with the stand-alone LDAP Registry. The Federated
Repository Registry, when configured to use an Active Directory LDAP does support the use of forests.

About this task

For a list of supported LDAP servers, refer to the Supported hardware and software website.

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific
directory servers only. You can use any other directory server by using the custom directory type in the list
and by filling in the filters that are required for that directory.

Chapter 6. Authenticating users 205

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,
and Active Directory are defined such that when you search for a user, the result contains all the relevant
information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP
server multiple times. This definition is possible only in these directory types, which support searches
where the complete user information is obtained.

If you use the IBM Directory Server, select the Ignore case for authorization option. This option is
required because when the group information is obtained from the user object attributes, the case is not
the same as when you get the group information directly. For the authorization to work in this case,
perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

The LDAP Security Server for the z/OS platform is supported when the DB2 Technical Database
Management (TDBM) back-end is used. Use the SecureWay Directory Server filters to connect to the
LDAP Security Server for the z/OS platform.

v Using IBM Tivoli Directory Server as the LDAP server

You can select either the IBM Tivoli Directory Server or SecureWay directory type for the IBM
Directory Server.

The difference between these two types is group membership lookup. It is recommended that you
choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli
Directory Server, the group membership is an operational attribute. With this attribute, a group
membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group
memberships, including the static groups, dynamic groups, and nested groups, can be returned with the
ibm-allGroups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli
Directory Server using the ibm-allGroups attribute. To utilize this attribute in a security authorization
application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute
are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the
same machine that you install Version 8.0. IBM Tivoli Directory Server Version 6.0 includes
WebSphere Application Server, Express Version 5.1.1, which the directory server uses for
its administrative console. Install the Web Administration tool Version 6.0 and WebSphere
Application Server, ExpressVersion 5.1.1, which are both bundled with IBM Tivoli Directory
Server Version 6.0, on a different machine from Version 8.0. You cannot use Version 8.0 as
the administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server
Version 6.0 and Version 8.0 are installed on the same machine, you might encounter port
conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and Version 8.0 on the same
machine, consider the following information:

– During the IBM Tivoli Directory Server installation process, you must select both the
Web Administration tool and WebSphere Application Server, Express Version 5.1.1.

– Install Version 8.0.

– When you install Version 8.0, change the port number for the application server.

– You might need to adjust the WebSphere Application Server environment variables on
Version 8.0 for WAS_HOME and WAS_INSTALL_ROOT (or APP_SERVER_ROOT for
IBM i). To change the variables using the administrative console, click Environment >
WebSphere Variables.

v Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short
name is not defined in the schema, you can take either of the following actions:
– Change the schema to add the short name attribute.

206 Securing applications and their environment

– Change the user ID map filter to replace the short name with any other defined attribute (preferably
to UID). For example, change person:shortname to person:uid.

The userID map filter is changed to use the uid attribute instead of the shortname attribute as the
current version of Lotus Domino does not create the shortname attribute by default. If you want to use
the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname

v Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE
Directory Server, the object class is the default groupOfUniqueName when you create a group. For
better performance, WebSphere Application Server uses the User object to locate the user group
membership from the nsRole attribute. Create the group from the role. If you want to use the
groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.
Roles are designed to be more efficient and easier to use for applications. For example, an application
can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather
than selecting a group and browsing through the members list. When using roles, you can create a
group using a:

– Managed role

– Filtered role

– Nested role

All of these roles are computable by the nsRole attribute.

v Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application
Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous
LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the
LDAP server using the distinguished name (DN) of an account that has the authority to search and read
the values of LDAP attributes, such as user and group information, needed by the Application Server. A
group membership search in the Active Directory is done by enumerating the memberof attribute for a
given user entry, rather than browsing through the member list in each group. If you change the default
behavior to browse each group, you can change the Group Member ID Map field from
memberof:member to group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

Procedure
1. Determine the full distinguished name (DN) and password of an account in the administrators group.

2. Determine the short name and password of any account in the Microsoft Active Directory.

3. Use the WebSphere Application Server administrative console to set up the information that is needed
to use Microsoft Active Directory.

a. Click Security > Global security.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is
determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name
Specify the name of a user with administrative privileges that is defined in the registry. This
user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft
Active Directory.

Chapter 6. Authenticating users 207

Base distinguished name (DN)
Specify the domain components of the DN of the account that is chosen in the first step.
For example: dc=ibm, dc=com

Bind distinguished name (DN)
Specify the full distinguished name of the account that is chosen in the first step. For
example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password
Specify the password of the account that is chosen in the first step.

d. Click OK and Save to save the changes to the master configuration.

4. Click Security > Global security.

5. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

6. Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

7. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP
performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

8. Click OK and Save to save the changes to the master configuration.

9. Stop and restart the administrative server so that the changes take effect.

Locating user group memberships in a Lightweight Directory Access Protocol
registry
You can configure WebSphere Application Server security to use Lightweight Directory Access Protocol
(LDAP) servers. The LDAP specifications allow for different mechanisms to define group memberships.
Depending on your LDAP server implementation, you can use methods to determine group memberships.
WebSphere Application Server can search group memberships directly or indirectly. Also, you can
configure the product to search one or more static groups, recursive or nested groups, and dynamic
groups for some Lightweight Directory Access Protocol (LDAP) servers.

Procedure
v Evaluate group memberships.

– Static group membership: All LDAP server implementations support static group membership. The
group object contains a list of users or groups that are members of the group. To determine the
groups in which a user is a member, you must get the list of all groups, and then query each group
in turn to see if the user is a member of that group. This operation results in (0)zero groups and
does not scale well.

Several LDAP servers enable user objects in the LDAP server to contain information about the
groups to which they belong. Examples of LDAP servers that support direct group searches include
Microsoft Active Directory Server and the owner of eDirectory.

– Dynamic group memberships

Some user group memberships are computable from attributes within the user object. IBM Directory
Server and Sun ONE Directory Server are two examples of LDAP servers that support dynamic

208 Securing applications and their environment

group membership. In some LDAP servers, you can use an attribute to include a user's dynamic
group memberships, nesting group memberships, and static group memberships to determine all the
group memberships from a single attribute.

For example, in IBM Directory Server, you can return all group memberships including the static
groups, dynamic groups, and nested groups using the ibm-allGroups attribute. In the Sun ONE
directory server you can use the nsRole attribute to calculate, all roles, including managed roles,
filtered roles, and nested roles. If an LDAP server has such an attribute in a User object to include
dynamic groups, nested groups, and static groups, you can configure WebSphere Application Server
security to use this attribute to determine these groups.

Depending on the implementation, and LDAP server can caluculate dynamic group membership. In
this case, this dynamic computation is performed entirely by the LDAP server under a single LDAP
query and is invisible to WebSphere Application Server. While this approach is not as efficient as
direct groups, server-side dynamic queries are more efficient than determining group membership
using static group queries.

Dynamic group membership, when it is supported by the LDAP server, is frequently reflected back to
the LDAP client, which is the WebSphere Application Server. In this configuration, WebSphere
Application Server is required to compose the appropriate dynamic query against LDAP for each
group. This operation results in 0(zero) groups and does not scale well.

Tips:

– Use the efficient direct group membership where possible.

– Use the relatively efficient dynamic group membership where the LDAP computes membership within
a single query.

– Use static group membership, or client side dynamic group membership as a secondary alternative.
This option only performs well on systems where the number of groups within the LDAP server is
"small".

The configurations for the supported, listed LDAP servers are pre-defined to use the optimal group
membership mechanisms. They assume that the standard object types and schemas for that LDAP
vendor are in use on the LDAP server.

v Evaluate the LDAP registry configuration.

– Standalone LDAP registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel
using the following methods.

- If you use static group membership, you must specifiy objectclass:attribute pairs. If the objectclass
for the group object is, groupOfUniquePersons, and within that objectclass, members are listed
as persons, then the static group membership Group Member ID map is
groupOfUniquePersons:persons.

- If direct group membership is used, attributes exist in the objectclass, you must use
attribute:attribute pairs. For example, if the objectclass for the user is userand the objectclasst
contains attributes called ingroup, which contains each group membership, then the direct group
membership Group Member ID map is ingroup:member.

– LDAP Registry within a Federated Repositories Registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group attribute definition properties for the repository.

- If static group membership is used, you must specify the name of the object class, and the
attribute that is used for indicating membership in Group attribute definition -> Member
attributes. If the group objectclass for the user is, groupOfUniquePersons, and within that
objectclass, members are listed as persons, then the static group Member attributes property is
set follows:

1. In the administrative console, click Security > Global security.

Chapter 6. Authenticating users 209

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

Set the Name of member attribute field to persons

Set the Object class field to groupOfUniquePersons

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

- If direct group membership is used, then attributes exist in the objectclass for the user and you
must use the attribute. For example, if the objectclass for the user is user, and it contains
attributes called ingroup that contain each group membership, then you specify the direct group
membership in the Group attribute definition property for the repository. Perform the following
steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

Set the Name of group membership attribute field to ingroup.

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

v Use the sample entries of objectClass:attribute pairs in the Group member ID map field.

– dominoGroup:member for Lotus Domino

– groupOfNames:member for eDirectory

v Evaluate Nested Groups.

– Nested Groups

Depending on the LDAP server implementation, groups can contain only users, or can contain other
groups, which is known as a nested group. You configure WebSphere Application Server to properly
discover all groups by following this nesting as it applies to either a stand-alone LDAP registry or a
LDAP Registry within a Federated Repositories Registry.

- Standalone LDAP Registry The stand-alone LDAP registry default setting performs only a single
group membership query. If the groups returned are in fact subgroups of other groups, you must
enable the Perform a nested group search property on the Advanced LDAP Settings panel of
the LDAP registry as follows:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings.

Put a check mark in the Perform a nested group search check box.

- LDAP Registry within a Federated Repositories Registry Within Federated repositories, you
must configure what you expect the results of the query to return. Based on this information, the
Federated repository makes the appropriate calls to establish all group membership. If the LDAP

210 Securing applications and their environment

server returns all nested group information within a single direct group query, then you set the
Scope of group membership attribute property in the group attribute definition to Nested. as
follows:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

Set the Scope of group membership attribute property in the group attribute definition to
Nested.

- If the LDAP server returns only the direct membership, then the registry must then make
subsequent queries to establish complete membership. To force the Federated Repository to issue
subsequent queries, set the Scope of group membership attribute property in the Group
attribute definition for the repository to Direct.

Results

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as
multiple values of a single attribute. For example, in IBM Directory Server all group memberships,
including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups
attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated
using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested
groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active
Directory server has direct group search capability using the memberOf attribute, this attribute lists the
groups beneath, which the group is directly nested only and does not contain the recursive list of nested
predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group
memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.
For LDAP servers without recursive searching capability, WebSphere Application Server security provides
a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP
user registry settings. Select this option only if your LDAP server does not provide recursive searches and
you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin

To use dynamic and nested groups with WebSphere Application Server security, you must be running
WebSphere Application Server Version 6.1 or later. Refer to “Dynamic groups and nested group support
for LDAP” on page 340 for more information on this topic.

Procedure

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.

4. Select the Ignore case for authorization option.

Chapter 6. Authenticating users 211

5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

6. Change the Group filter setting to &(cn=%v)(objectclass=ldapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin

When creating groups, ensure that nested and dynamic group memberships work correctly.

Procedure

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

5. Change the Group filter value to (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs))).

6. Change the Group member ID map value to ibm-allGroups:member;ibm-allGroups:uniqueMember.

7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory
server has the appropriate value. When you create a nested group, the Auxiliary object class value is
ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is
ibm-dynamicGroup.

Configuring multiple LDAP servers for user registry failover
WebSphere Application Server security can be configured to attempt failovers between multiple
Lightweight Directory Access Protocol (LDAP) hosts.

Before you begin

The multiple LDAP servers involved in the failover can be replicas that are replicated from the same
master LDAP server, or they can be any LDAP host with the same schema. That is any LDAP host that
contains data that is imported from the same LDAP data interchange format (LDIF) file.

Note: When WebSphere Application Server attempts failovers between multiple Lightweight Directory
Access Protocol (LDAP) hosts, system properties are exchanged. WebSphere Application Server
Version 6.1.0 manages the SSL configuration and these system properties. You cannot expect to
set system properties yourself and expect the failover to succeed.

Procedure
1. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root\bin.

c. Enter startManager.

2. Start the wsadmin Command Prompt application.

a. Start the Command Prompt application.

212 Securing applications and their environment

b. Change directories to profile_root\bin.

c. Enter the following command:
wsadmin –user username –password password

3. Configure a second LDAP server for failover.

a. Enter the following command to set the failover LDAP server hostname:
set ldapServer [ldap server hostname]

b. Enter the following command to set the LDAP server port number:
set ldapPort [ldap server port]

c. Enter the following command to set the WebSphere LDAP failover variable:
set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]

d. Modify the LDAP configuration to add the failover LDAP server by entering the following command:
set result [$AdminConfig list LDAPUserRegistry]

e. Find the LDAP server configID by entering the following command:
$AdminConfig modify $result $Attrs2

f. Enter the following command to save the configuration change:
$AdminConfig save

g. Enter exit to quit the Command Prompt application. The following is an example of the Command
Prompt application output:
wsadmin>set ldapServer [list xxxx.xxxx.xxx.com]
xxxx.xxxx.xxx.com
wsadmin>set ldapPort [list NNN]
NNN
wsadmin>set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]
{hosts {{{host xxxx.xxxx.xxx.com} {port NNN}}}}
wsadmin> set result [$AdminConfig list LDAPUserRegistry]
(cells/Father2Cell01|security.xml#LDAPUserRegistry_1)
wsadmin>$AdminConfig modify $result $Attrs2

wsadmin>$AdminConfig save

4. Review the configuration change by opening the security.xml file with a text editor and review the
new entry.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root\bin.

c. To stop the deployment manager, enter the following command:
stopManager –user username –password password

Testing an LDAP server for user registry failover
After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the
failover server by stopping the main LDAP server.

Before you begin

This task assumes the following setup:

v Deployment Manager is installed on the primary LDAP server running Application Server version 6.0.2
or higher.

v All other LDAP hosts are Active Directory machines with similar user registry designs.

v Atleast one of the other LDAP hosts has been configured for failover.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

Chapter 6. Authenticating users 213

SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Stop the Active Directory Server on the failover server.

2. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root\bin.

c. Enter startManager.

3. Review the SystemOut.log file to see if the LDAP failover happened. The sample text is an example of
a SystemOut.log file that records a successful failover:
[7/11/05 15:38:31:324 EDT] 0000000a LdapRegistryI A SECJ0418I:
Cannot connect to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {primary LDAP server}
[7/11/05 15:38:32:486 EDT] 0000000a UserRegistryI A SECJ0136I:
Custom Registry:com.ibm.ws.security.registry.ldap.LdapRegistryImpl has been initialized
[7/11/05 15:38:53:787 EDT] 0000000a LdapRegistryI A SECJ0419I:
The user registry is currently connected to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {failover LDAP server}
...
[7/11/05 15:39:35:667 EDT] 0000000a WsServerImpl A WSVR0001I: Server dmgr open for e-business

4. Log into the console to see working and non-working cases.

a. Start a browser.

b. Browse to http://localhost:9060/admin.

c. Type in your user ID and password and click OK.

d. Log out of the Administrative Console.

e. Type in DummyAdmin as the user ID and dummy1admin as your password and click OK. This should
fail proving WebSphere Application Server is connected to the other LDAP server. Please make
sure that on a production system the user registries are identical so this problem does not happen
when switching between LDAP servers.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root\bin.

c. To stop the deployment manager, enter the following command:
stopManager –user username –password password

Deleting LDAP endpoints using wsadmin
You can delete Lightweight Directory Access Protocol (LDAP) endpoints for a user registry by using the
WebSphere Application Server administrative tool (wsadmin).

Procedure
1. Start the wsadmin scripting tool.

2. Set the LDAP variable and display a list of LDAP endpoint objects. Enter the following commands:

Using Jacl:
set ldap [$AdminConfig list LDAPUserRegistry]

$AdminConfig list EndPoint $ldap

Using Jython:
ldap=AdminConfig.list["LDAPUserRegistry"]

print AdminConfig.show(ldap)

214 Securing applications and their environment

For the Jython language, you can obtain the endpoint from the host variable after running the previous
command.

3. Display a list of LDAP endpoint objects. Enter the following command for each object:

Using Jacl:
$AdminConfig showall End_Point_Object

Using Jython:
AdminConfig.showall("End_Point_Object")

4. Delete an LDAP endpoint object. Enter the following command:

Using Jacl:
$AdminConfig remove End_Point_Object

Using Jython:
AdminConfig.remove ("End_Point_Object")

5. Save your configuration changes: Enter the following command:

Using Jacl:
$AdminConfig save

Using Jython:
AdminConfig.save()

Updating LDAP binding information
Use this information to dynamically update security LDAP binding information by switching to a different
binding identity.

About this task

You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first
stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding
information at WebSphere Application Server security runtime, and it takes the bind distinguished name
(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind
information against the LDAP server. If validation passes, new binding information is stored in
security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

The MBean method also synchronizes the binding information change in security.xml from cell to nodes.

If the new binding information is null, null, the resetLdapBindInfo method first extracts LDAP binding
information, including bind DN, bind password, and target binding host from WebSphere Application Server
security configuration in security.xml. It then pushes the binding information to WebSphere Application
Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding
information using the SecurityAdmin MBean through wsadmin:

v “Switching to a different binding identity”

v “Switching to a failover LDAP host” on page 216

Switching to a different binding identity:
About this task

To dynamically update security LDAP binding information by switching to a different binding identity:

Procedure

1. In the administrative console, click Security > Global security.

Chapter 6. Authenticating users 215

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

4. Run the SecurityAdmin MBean across all of the processes (deployment manager, nodes, and
application servers) to validate the new binding information, to save it to security.xml, and to push the
new binding information to the runtime.

Example

The following is a sample Jacl file for step 4:
proc LDAPReBind {args} {
global AdminConfig AdminControl ldapBindDn ldapBindPassword
set ldapBindDn [lindex $args 0]
set ldapBindPassword [lindex $args 1]

set secMBeans [$AdminControl queryNames type=SecurityAdmin,*]
set plist [list $ldapBindDn $ldapBindPassword]
foreach secMBean $secMBeans {

set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]
}

}

Switching to a failover LDAP host:
About this task

To dynamically update security LDAP binding information by switching to a failover LDAP host:

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).

4. Update the new bind DN password to WebSphere Application security runtime by calling
resetLdapBindInfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now
consistent across WebSphere Application Server and the LDAP servers.

If you call resetLdapBindInfo with null, null as input parameters, WebSphere Application Server
security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.

b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere Application
Server security to reconnect to the first available LDAP host in the list. For example, if three LDAP
servers are configured in the order of L1, L2, and L3, the reconnection process always starts with the
L1 server.

When LDAP failover is configured by associating a single hostname to multiple IP addresses, entering
an invalid password can cause multiple LDAP bind retries. With the default settings, the number of
LDAP bind retries is equal to one more than the number of associated IP addresses. This means a
single invalid login attempt can cause the LDAP account to be locked. If the
com.ibm.websphere.security.ldap.retryBind custom property is set to false, LDAP bind calls are not
retried.

gotcha: Federated repository does not support failover by associating a single hostname to multiple
IP addresses. This feature is only available in stand-alone LDAP.

Configuring to secure Lightweight Directory Access Protocol user registry using
Resource Access Control Facility based on z/OS
You can secure the application server by configuring Lightweight Access Directory Protocol (LDAP) on
z/OS with an existing Resource Access Control Facility (RACF) back end. This integrates the native z/OS
security settings defined in RACF with the WebSphere Application Server security environment.

216 Securing applications and their environment

Before you begin

The following requirements exist when implementing these steps:

v You must have an LDAP server configured with RACF based on z/OS. See z/OS Internet Library for
more information about this configuration..

v You must use LDAP on z/OS v1r3 or higher. For v1r3 or v1r4, you must apply APAR 0A03857 - PTF
UA06622 before following these steps.

v The user logs into WebSphere security with RACF user ID and is authenticated with the LDAP using a
password and a Distinguished Name, the Bind DN. The Bind DN incorporates the RACF user ID and
the SDBM suffix in the LDAP server configuration file. If the RACF user is johndoe, and the suffix value
in the SDBM section of the LDAP configuration file is cn=myRACF, then the bind DN is: racfid=johndoe,
profiletype=user, cn=myRACF.

v Each RACF group, including WebSphere security groups, a user belongs to is stored in a multi-value
racfconnectgroupname attribute in the LDAP entry for the user. The attribute is returned when a base
or subtree search is performed with the user's DN as the Base DN.

v The Bind DN must represent an RACF user with Special or Auditor privileges. For more information
about the required RACF authority, see the z/OS Security Server RACF Command Language Reference
for your z/OS version in the z/OS Internet Library.

v You must define the racfconnectgroupname attribute in the LDAP default schema.

Remember: If you have TBDM defined in the LDAP server configuration file in addition to SDBM, the
schema in TDBM is the default schema for the LDAP server. If the TDBM schema does
not included the racfconnectgroupname attribute, remove TDBM from the LDAP server
configuration file or add the schema in the schema.user.ldif file and schema.IBM.ldif file
to the TDBM schema. For more information about TDBM and SDBM, see Native
authentication with RACF and Tivoli Access Manager.

Procedure
1. Click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and then click Configure.

3. Under the Type of LDAP server, click Custom.

4. Complete the fields for your LDAP environment. For more information, see “Configuring Lightweight
Directory Access Protocol user registries” on page 191. The users and groups must be in the sub tree
of the Base DN.

5. Make sure that Ignore case for authorization is selected. RACF user names and group names are
not case-sensitive.

6. Click Apply and then click Save.

7. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry setting.

8. Change User filter and Group filter to racfid=%v.

9. Change User ID map and Group ID Map to *:racfid.

10. Change Group member ID map to racfconnectgroupname:racfgroupuserids.

11. Click Apply and click Save.

12. Assign the administrative role to a user. See “Authorizing access to administrative roles” on page 621
for more information.

13. Restart WebSphere Application Server.

Results

Your environment is now protected by LDAP on z/OS with a RACF back end.

Chapter 6. Authenticating users 217

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.redbooks.ibm.com/abstracts/tips0363.html
http://www.redbooks.ibm.com/abstracts/tips0363.html

Configuring stand-alone custom registries
Use the following information to configure stand-alone custom registries through the administrative
console.

Before you begin

Before you begin this task, implement and build the UserRegistry interface. For more information on
developing stand-alone custom registries refer to “Developing stand-alone custom registries” on page 809.
The following steps are required to configure stand-alone custom registries through the administrative
console.

Procedure
1. Click Security > Global security.

2. Under User account repositories, select Stand-alone custom registry and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This ID is the security server
ID, which is only used for WebSphere Application Server security and is not associated with the
system process that runs the server. The server calls the local operating system registry to
authenticate and obtain privilege information about users by calling the native APIs in that particular
registry.

4. Enter the dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface in the Custom registry class name field. For the sample, this file name is
com.ibm.websphere.security.FileRegistrySample.

This file exists in all the product processes. Thus, this file exists in the cell class path and in all of the
node class paths.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.

5. Add your custom registry class name to the class path. It is recommended that you add the Java
Archive (JAR) file that contains your custom user registry implementation to the following directory:

v app_server_root/lib/ext

6. Optional: Select the Ignore case for authorization option for the authorization to perform a case
insensitive check. Enabling this option is necessary only when your user registry is case insensitive
and does not provide a consistent case when queried for users and groups.

7. Click Apply if you have any other additional properties to enter for the registry initialization.

8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the
groups.props file are in the customer_sample directory under the product installation directory.
You can place these properties in any directory that you choose and reference their locations
through custom properties. However, make sure that the directory has the appropriate access
permissions.

Table 21. Additional properties.

This table lists additional custom properties when configuring stand-alone custom registries.
Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in “users.props file” on page 240 and “groups.props
file” on page 241.

218 Securing applications and their environment

To use the users.props and the groups.props files on the z/OS platform, save these files in the
ASCII format before calling them from the administrative console.

The Description, Required, and Validation Expression fields are not used and can remain
blank.

In a WebSphere Application Server, Network Deployment environment where multiple WebSphere
Application Server processes exist, such as cell and multiple nodes in different machines, these
properties are available for each process. Use the USER_INSTALL_ROOT relative name to locate
any files, as this name expands to the product installation directory. If this name is not used,
ensure that the files exist in the same location in all the nodes.

WebSphere Application Server version 4-based custom user registry is migrated to the custom
user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.

d. Repeat this step to add other additional properties.

9. Click Security > Global security.

10. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

12. Click OK and complete the required steps to turn on security.

Results

This set of steps is required to set up the stand-alone custom registry and to enable security in
WebSphere Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when
enabling security. See the information about variable settings for more details.

What to do next
1. Complete the remaining steps, if you are enabling security.
2. Validate the user and password. Save and synchronize in the cell environment.
3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of

the application servers, for any changes to take effect. If the server comes up without any problems,
the setup is correct.

Stand-alone custom registries
A stand-alone custom registry is a customer-implemented registry that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented registry can support virtually any type of an
account repository from a relational database, flat file, and so on. The custom user registry provides
considerable flexibility in adapting product security to various environments where some form of a registry
or repository other than federated repositories, stand-alone Lightweight Directory Access Protocol (LDAP)
registry or local operating system registry already exists in the operational environment.

WebSphere Application Server security provides an implementation that uses various local operating
system-based registries and various stand-alone Lightweight Directory Access Protocol (LDAP)-based
registries. However, situations can exist where your user and group data resides in other repositories or
custom user registries, such as a database, and moving this information to either a local operating system
registry or a stand-alone LDAP registry implementation might not be feasible. For these situations,

Chapter 6. Authenticating users 219

WebSphere Application Server security provides a service provider interface (SPI) that you can implement
to interact with your current registry. The custom registry feature supports any user registry that is not
implemented by WebSphere Application Server.

The SPI is the UserRegistry interface. The UserRegistry interface is a collection of methods that are
required for authorization purposes. These methods authenticate individual users using either a password
or certificates and collect information about the user, which are called privilege attributes. This interface
also includes methods that obtain user and group information so that they can be given access to
resources. When implementing the methods in the interface, you must decide how to map the information
that is manipulated by the UserRegistry interface to the information in your registry.

This interface has a set of methods to implement for the product security to interact with your registries for
all security-related tasks. The local operating system and LDAP registry implementations that are provided
also implement this interface. Custom user registries are sometimes called the pluggable user registries or
custom registries for short. Your custom user registry implementation is expected to be thread-safe.

Building a custom registry is a software implementation effort. The implementation does not depend on
other WebSphere Application Server resources, for example, data sources, for its operation.

Make sure that your implementation of the custom registry does not depend on any WebSphere
Application Server components such as data sources, enterprise beans, and so on. Do not have this
dependency because security is initialized and enabled prior to most of the other WebSphere Application
Server components during startup. If your previous implementation used these components, make a
change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:
User security name

The user name is similar to the user name in the local operating system registries.

This name is used to log in when prompted by a secured application. By default, the Enterprise
JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and getUserPrincipal servlet
methods return this name. The user security name is also referred to as userSecurityName,
userName, or user name.

WAS_UseDisplayName
This is a custom property of User Registries. This property defines the returning value of the
getCallerPrincipal(), getUserPrincipal(), and RemoteUser() methods. The following shows
acceptable values for WAS_UseDisplayName:
v false This is default. Security Name is returned.
v true The display name is returned. This setting requires that the custom property

com.ibm.websphere.security.useLoggedSecurityName be set to true.
Unique user ID

This ID represents a unique identifier for the user, which is required by the UserRegistry interface.
The unique ID is similar to the system ID (SID) in Windows systems, the Unique ID (UID) in Linux
and UNIX systems, and the distinguished name (DN) in Lightweight Directory Authentication
Protocol (LDAP). This ID is also referred to as uniqueUserId. The unique ID is used to make the
authorization decisions for protected resources.

Display user name
This name is an optional string that describes a user. The implementation can use display names
for informational purposes only; these names are not required to exist or to be unique. The user
interface can use the display name to present more information about the user.

Group security name
This name, which represents the security group, is also referred to as groupSecurityName,
groupName, and group name.

Unique group ID
The unique ID is the identifier for a group. This name is also referred to as uniqueGroupId ID.

220 Securing applications and their environment

Display group name
The display name is an optional string that describes a group.

The topic on UserRegistry interface describes each of the methods in the interface that need
implementing. An explanation of each of the methods and their usage in the sample and any changes from
the Version 4 interface are provided. The Related references section provides links to all other custom
user registries documentation, including a file-based registry sample. The Sample provided is very simple
and is intended to familiarize you with this feature. Do not use this sample in an actual production
environment.

Stand-alone custom registry settings
Use this page to configure the stand-alone custom registry.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom
properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Global security
panel and click Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: Any settings that are related to the System Authorization Facility (SAF) might not be visible on this
panel. To modify these settings:

1. Go to the panel for SAF by clicking Security > Global security > External authorization
providers.

2. Select System Authorization Facility (SAF) from the drop-down list under the Authorization
provider option.

3. Click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Chapter 6. Authenticating users 221

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.

v %install_root%/lib/ext

Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

Stand-alone custom registry wizard settings
A wizard page exists in the administrative console to aid in viewing the basic settings necessary to
connect the application server to an existing stand-alone custom registry. After you have viewed the basic
settings, you can also modify the existing stand-alone customer registry configuration using the
administrative console.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Stand-alone custom registry option and click Next.

You can modify your stand-alone custom registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

v Click Custom properties > New.

v Enter the property name and value. For the sample, enter the following two properties. It is assumed
that the users.props file and the groups.props file are in the customer_sample directory under the
product installation directory. You can place these properties in any directory that you choose and
reference their locations through Custom properties. However, make sure that the directory has the
appropriate access permissions.

222 Securing applications and their environment

Table 22. Custom properties.

This table lists additional custom properties when changing stand-alone custom registry wizard settings.
Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in reference topics for the users.props file and the
groups.props file. See the related links below for more information.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user
registry based on the com.ibm.websphere.security.UserRegistry interface.

v Click Apply.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.

v %install_root%/lib/ext

Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Default: Disabled
Range: Enabled or Disabled

FileRegistrySample.java file
This provides an example of the FileRegistrySample.java file.

The user and group information required by this sample is contained in the “users.props file” on page
240 and “groups.props file” on page 241 files.

Attention: The samples that are provided are intended to familiarize you with this feature. Do not use
these samples in an actual production environment.

Chapter 6. Authenticating users 223

The contents of the FileRegistrySample.java file:

//
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
////--
// This program may be used, run, copied, modified and distributed
// without royalty for the purpose of developing, using, marketing, or
// distributing.
//--
//

// This sample is for the custom user registry feature in WebSphere Application Server.

import java.util.*;
import java.io.*;
import java.security.cert.X509Certificate;
import com.ibm.websphere.security.*;
/**
* The main purpose of this sample is to demonstrate the use of the
* custom user registry feature available in WebSphere Application Server. This
* sample is a file-based registry sample where the users and the groups
* information is listed in files (users.props and groups.props). As such
* simplicity and not the performance was a major factor. This
* sample should be used only to get familiarized with this feature. An
* actual implementation of a realistic registry should consider various
* factors like performance, scalability, thread safety, and so on.
**/
public class FileRegistrySample implements UserRegistry {

private static String USERFILENAME = null;
private static String GROUPFILENAME = null;

/** Default Constructor **/
public FileRegistrySample() throws java.rmi.RemoteException {
}

/**
* Initializes the registry. This method is called when creating the
* registry.
*
* @param props - The registry-specific properties with which to
* initialize the custom registry
* @exception CustomRegistryException
* if there is any registry-specific problem
**/
public void initialize(java.util.Properties props)

throws CustomRegistryException {
try {

/* try getting the USERFILENAME and the GROUPFILENAME from
* properties that are passed in (For example, from the
* administrative console). Set these values in the administrative
* console. Go to the special custom settings in the custom
* user registry section of the Authentication panel.
* For example:
* usersFile c:/temp/users.props
* groupsFile c:/temp/groups.props
*/
if (props != null) {

USERFILENAME = props.getProperty("usersFile");
GROUPFILENAME = props.getProperty("groupsFile");

}

224 Securing applications and their environment

} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

}

if (USERFILENAME == null || GROUPFILENAME == null) {
throw new CustomRegistryException("users/groups information missing");

}

} /**
* Checks the password of the user. This method is called to authenticate
* a user when the user’s name and password are given.
*
* @param userSecurityName the name of user
* @param password the password of the user
* @return a valid userSecurityName. Normally this is
* the name of same user whose password was checked
* but if the implementation wants to return any other
* valid userSecurityName in the registry it can do so
* @exception CheckPasswordFailedException if userSecurityName/
* password combination does not exist
* in the registry
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String checkPassword(String userSecurityName, String passwd)

throws PasswordCheckFailedException,
CustomRegistryException {

String s,userName = null;
BufferedReader in = null;

try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":",index+1);
// check if the userSecurityName:passwd combination exists
if ((s.substring(0,index)).equals(userSecurityName) &&

s.substring(index+1,index1).equals(passwd)) {
// Authentication successful, return the userID.
userName = userSecurityName;
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (userName == null) {
throw new PasswordCheckFailedException("Password check failed for user: "
+ userSecurityName);

}

return userName;
} /**
* Maps an X.509 format certificate to a valid user in the registry.
* This is used to map the name in the certificate supplied by a browser

Chapter 6. Authenticating users 225

* to a valid userSecurityName in the registry
*
* @param cert the X509 certificate chain
* @return The mapped name of the user userSecurityName
* @exception CertificateMapNotSupportedException if the
* particular certificate is not supported.
* @exception CertificateMapFailedException if the mapping of
* the certificate fails.
* @exception CustomRegistryException if there is any registry
* -specific problem
**/
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException {

String name=null;
X509Certificate cert1 = cert[0];
try {

// map the SubjectDN in the certificate to a userID.
name = cert1.getSubjectDN().getName();

} catch(Exception ex) {
throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

}

if(!isValidUser(name)) {
throw new CertificateMapFailedException("user: " + name
+ " is not valid");

}
return name;

} /**
* Returns the realm of the registry.
*
* @return the realm. The realm is a registry-specific string
* indicating the realm or domain for which this registry
* applies. For example, for OS/400 or AIX this would be
* the host name of the system whose user registry this
* object represents. If null is returned by this method,
* realm defaults to the value of "customRealm". It is
* recommended that you use your own value for realm.
*
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getRealm()

throws CustomRegistryException {
String name = "customRealm";
return name;

} /**
* Gets a list of users that match a pattern in the registry.
* The maximum number of users returned is defined by the limit
* argument.
* This method is called by the administrative console and scripting
* (command line) to make the users in the registry available for
* adding them (users) to roles.
*
* @param pattern the pattern to match. (For example, a* will
* match all userSecurityNames starting with a)
* @param limit the maximum number of users that should be
* returned. This is very useful in situations where
* there are thousands of users in the registry and
* getting all of them at once is not practical. The
* default is 100. A value of 0 implies get all the
* users and hence must be used with care.

226 Securing applications and their environment

* @return a Result object that contains the list of users
* requested and a flag to indicate if more users
* exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public Result getUsers(String pattern, int limit)

throws CustomRegistryException {
String s;
BufferedReader in = null;
List allUsers = new ArrayList();
Result result = new Result();
int count = 0;
int newLimit = limit+1;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
String user = s.substring(0,index);
if (match(user,pattern)) {

allUsers.add(user);
if (limit !=0 && ++count == newLimit) {

allUsers.remove(user);
result.setHasMore();
break;

}
}

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(allUsers);
return result;

} /**
* Returns the display name for the user specified by
* userSecurityName.
*
* This method may be called only when the user information
* is displayed (information purposes only, for example, in
* the administrative console) and hence not used in the actual
* authentication or authorization purposes. If there are no
* display names in the registry return null or empty string.
*
* In WebSphere Application Server 4.x custom registry, if you
* had a display name for the user and if it was different from the
* security name, the display name was returned for the EJB
* methods getCallerPrincipal() and the servlet methods
* getUserPrincipal() and getRemoteUser().
* In WebSphere Application Server Version 5.x and later, for the
* same methods, the security name will be returned by default.
* This is the recommended way as the display name is not unique
* and might create security holes. However, for backward
* compatibility if you need the display name to be returned
* set the property WAS_UseDisplayName to true.
*
*See the Information Center documentation for more information.
*

Chapter 6. Authenticating users 227

* @param userSecurityName the name of the user.
* @return the display name for the user. The display
* name is a registry-specific string that
* represents a descriptive, not necessarily
* unique, name for a user. If a display name
* does not exist return null or empty string.
* @exception EntryNotFoundException if userSecurityName
* does not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getUserDisplayName(String userSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,displayName = null;
BufferedReader in = null;

if(!isValidUser(userSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("user: "
+ userSecurityName + " is not valid");
throw nsee;

}

try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {

displayName = s.substring(index1+1);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

fileClose(in);
}

return displayName;
}

/**
* Returns the unique ID for a userSecurityName. This method is called
* when creating a credential for a user.
*
* @param userSecurityName - The name of the user.
* @return The unique ID of the user. The unique ID for a user
* is the stringified form of some unique, registry-specific,
* data that serves to represent the user. For example, for
* the UNIX user registry, the unique ID for a user can be
* the UID.
* @exception EntryNotFoundException if userSecurityName does not
* exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getUniqueUserId(String userSecurityName)

throws CustomRegistryException,

228 Securing applications and their environment

EntryNotFoundException {

String s,uniqueUsrId = null;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(0,index)).equals(userSecurityName)) {

int index2 = s.indexOf(":", index1+1);
uniqueUsrId = s.substring(index1+1,index2);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (uniqueUsrId == null) {
EntryNotFoundException nsee =
new EntryNotFoundException("Cannot obtain uniqueId for user: "
+ userSecurityName);
throw nsee;

}

return uniqueUsrId;
} /**
* Returns the name for a user given its unique ID.
*
* @param uniqueUserId - The unique ID of the user.
* @return The userSecurityName of the user.
* @exception EntryNotFoundException if the unique user ID does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public String getUserSecurityName(String uniqueUserId)

throws CustomRegistryException,
EntryNotFoundException {

String s,usrSecName = null;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
int index2 = s.indexOf(":", index1+1);
if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

usrSecName = s.substring(0,index);
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

Chapter 6. Authenticating users 229

fileClose(in);
}

if (usrSecName == null) {
EntryNotFoundException ex =

new EntryNotFoundException("Cannot obtain the
user securityName for " + uniqueUserId);

throw ex;
}

return usrSecName;

} /**
* Determines if the userSecurityName exists in the registry
*
* @param userSecurityName - The name of the user
* @return True if the user is valid; otherwise false
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends java.rmi.Remote
* interface
**/
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException {
String s;
boolean isValid = false;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {

isValid=true;
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

fileClose(in);
}

return isValid;
}
/**
* Gets a list of groups that match a pattern in the registry
* The maximum number of groups returned is defined by the
* limit argument. This method is called by administrative console
* and scripting (command line) to make available the groups in
* the registry for adding them (groups) to roles.
*
* @param pattern the pattern to match. (For example, a* matches
* all groupSecurityNames starting with a)
* @param Limits the maximum number of groups to return
* This is very useful in situations where there
* are thousands of groups in the registry and getting all
* of them at once is not practical. The default is 100.
* A value of 0 implies get all the groups and hence must
* be used with care.
* @return A Result object that contains the list of groups

230 Securing applications and their environment

* requested and a flag to indicate if more groups exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public Result getGroups(String pattern, int limit)

throws CustomRegistryException {
String s;
BufferedReader in = null;
List allGroups = new ArrayList(); Result result = new Result();
int count = 0;
int newLimit = limit+1;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
String group = s.substring(0,index);
if (match(group,pattern)) {

allGroups.add(group);
if (limit !=0 && ++count == newLimit) {

allGroups.remove(group);
result.setHasMore();
break;

}
}

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(allGroups);
return result;

}

/**
* Returns the display name for the group specified by groupSecurityName.
* For this version of WebSphere Application Server, the only usage of
* this method is by the clients (administrative console and scripting)
* to present a descriptive name of the user if it exists.
*
* @param groupSecurityName the name of the group.
* @return the display name for the group. The display name
* is a registry-specific string that represents a
* descriptive, not necessarily unique, name for a group.
* If a display name does not exist return null or empty
* string.
* @exception EntryNotFoundException if groupSecurityName does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getGroupDisplayName(String groupSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,displayName = null;
BufferedReader in = null;

if(!isValidGroup(groupSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("group: "

Chapter 6. Authenticating users 231

+ groupSecurityName + " is not valid");
throw nsee;

}

try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName)) {

displayName = s.substring(index1+1);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

return displayName;
}

/**
* Returns the Unique ID for a group.

* @param groupSecurityName the name of the group.
* @return The unique ID of the group. The unique ID for
* a group is the stringified form of some unique,
* registry-specific, data that serves to represent
* the group. For example, for the UNIX user registry,
* the unique ID might be the GID.
* @exception EntryNotFoundException if groupSecurityName does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueGroupId(String groupSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,uniqueGrpId = null;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(0,index)).equals(groupSecurityName)) {

uniqueGrpId = s.substring(index+1,index1);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);

232 Securing applications and their environment

}

if (uniqueGrpId == null) {
EntryNotFoundException nsee =
new EntryNotFoundException("Cannot obtain the uniqueId for group: "
+ groupSecurityName);
throw nsee;

}

return uniqueGrpId;
}

/**
* Returns the Unique IDs for all the groups that contain the unique ID
* of a user. Called during creation of a user’s credential.
*
* @param uniqueUserId the unique ID of the user.
* @return A list of all the group unique IDs that the unique user
* ID belongs to. The unique ID for an entry is the
* stringified form of some unique, registry-specific, data
* that serves to represent the entry. For example, for the
* UNIX user registry, the unique ID for a group might be
* the GID and the Unique ID for the user might be the UID.
* @exception EntryNotFoundException if uniqueUserId does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public List getUniqueGroupIds(String uniqueUserId)

throws CustomRegistryException,
EntryNotFoundException {

String s,uniqueGrpId = null;
BufferedReader in = null;
List uniqueGrpIds=new ArrayList();
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
int index2 = s.indexOf(":", index1+1);
if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

int lastIndex = s.lastIndexOf(":");
String subs = s.substring(index2+1,lastIndex);
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens())

uniqueGrpIds.add(st1.nextToken());
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

return uniqueGrpIds;
}

/**
* Returns the name for a group given its unique ID.
*

Chapter 6. Authenticating users 233

* @param uniqueGroupId the unique ID of the group.
* @return The name of the group.
* @exception EntryNotFoundException if the uniqueGroupId does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getGroupSecurityName(String uniqueGroupId)

throws CustomRegistryException,
EntryNotFoundException {

String s,grpSecName = null;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

grpSecName = s.substring(0,index);
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (grpSecName == null) {
EntryNotFoundException ex =

new EntryNotFoundException("Cannot obtain the group
security name for: " + uniqueGroupId);

throw ex;
}

return grpSecName;

}

/**
* Determines if the groupSecurityName exists in the registry
*
* @param groupSecurityName the name of the group
* @return True if the groups exists; otherwise false
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException {
String s;
boolean isValid = false;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName)) {

isValid=true;

234 Securing applications and their environment

break;
}

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

return isValid;
}

/**
* Returns the securityNames of all the groups that contain the user
*
* This method is called by the administrative console and scripting
* (command line) to verify that the user entered for RunAsRole mapping
* belongs to that role in the roles to user mapping. Initially, the
* check is done to see if the role contains the user. If the role does
* not contain the user explicitly, this method is called to get the groups
* that this user belongs to so that a check can be made on the groups that
* the role contains.
*
* @param userSecurityName the name of the user
* @return A list of all the group securityNames that the user
* belongs to.
* @exception EntryNotFoundException if user does not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends the java.rmi.Remote
* interface
**/
public List getGroupsForUser(String userName)

throws CustomRegistryException,
EntryNotFoundException {

String s;
List grpsForUser = new ArrayList();
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
StringTokenizer st = new StringTokenizer(s, ":");
for (int i=0; i<2; i++)

st.nextToken();
String subs = st.nextToken();
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens()) {

if((st1.nextToken()).equals(userName)) {
int index = s.indexOf(":");
grpsForUser.add(s.substring(0,index));

}
}

}
}

} catch (Exception ex) {
if (!isValidUser(userName)) {

throw new EntryNotFoundException("user: " + userName
+ " is not valid");

}
throw new CustomRegistryException(ex.getMessage(),ex);

Chapter 6. Authenticating users 235

} finally {
fileClose(in);

}

return grpsForUser;
}

/**
* Gets a list of users in a group.
*
* The maximum number of users returned is defined by the
* limit argument.
*
* This method is being used by the WebSphere Application Server
* Enterprise process choreographer (Enterprise) when
* staff assignments are modeled using groups.
*
* In rare situations, if you are working with a registry where
* getting all the users from any of your groups is not practical
* (for example if there are a large number of users) you can create
* the NotImplementedException for that particular group. Make sure
* that if the process choreographer is installed (or if installed later)
* the staff assignments are not modeled using these particular groups.
* If there is no concern about returning the users from groups
* in the registry it is recommended that this method be implemented
* without creating the NotImplemented exception.
* @param groupSecurityName the name of the group
* @param Limits the maximum number of users that should be
* returned. This is very useful in situations where there
* are lots of users in the registry and getting all of
* them at once is not practical. A value of 0 implies
* get all the users and hence must be used with care.
* @return A Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @deprecated This method will be deprecated in future.
* @exception NotImplementedException create this exception in rare
* situations if it is not practical to get this information
* for any of the group or groups from the registry.
* @exception EntryNotFoundException if the group does not exist in
* the registry
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException {

String s, user;
BufferedReader in = null;
List usrsForGroup = new ArrayList();
int count = 0;
int newLimit = limit+1;
Result result = new Result();

try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0)) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName))
{

StringTokenizer st = new StringTokenizer(s, ":");

236 Securing applications and their environment

for (int i=0; i<2; i++)
st.nextToken();

String subs = st.nextToken();
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens()) {

user = st1.nextToken();
usrsForGroup.add(user);
if (limit !=0 && ++count == newLimit) {

usrsForGroup.remove(user);
result.setHasMore();
break;

}
}

}
}

}
} catch (Exception ex) {

if (!isValidGroup(groupSecurityName)) {
throw new EntryNotFoundException("group: "
+ groupSecurityName
+ " is not valid");

}
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(usrsForGroup);
return result;

}

/**
* This method is implemented internally by the WebSphere Application Server
* code in this release. This method is not called for the custom
* registry implementations for this release. Return null in the
* implementation.
*
**/
public com.ibm.websphere.security.cred.WSCredential

createCredential(String userSecurityName)
throws CustomRegistryException,

NotImplementedException,
EntryNotFoundException {

// This method is not called.
return null;

}

// private methods
private BufferedReader fileOpen(String fileName)

throws FileNotFoundException {
try {

return new BufferedReader(new FileReader(fileName));
} catch(FileNotFoundException e) {

throw e;
}

}

private void fileClose(BufferedReader in) {
try {

if (in != null) in.close();
} catch(Exception e) {

System.out.println("Error closing file" + e);

Chapter 6. Authenticating users 237

}
}

private boolean match(String name, String pattern) {
RegExpSample regexp = new RegExpSample(pattern);
boolean matches = false;
if(regexp.match(name))

matches = true;
return matches;

}
}

//--
// The program provides the Regular Expression implementation
// used in the sample for the custom user registry (FileRegistrySample).
// The pattern matching in the sample uses this program to search for the
// pattern (for users and groups).
//--

class RegExpSample
{

private boolean match(String s, int i, int j, int k)
{

for(; k < expr.length; k++)
label0:

{
Object obj = expr[k];
if(obj == STAR)
{

if(++k >= expr.length)
return true;

if(expr[k] instanceof String)
{

String s1 = (String)expr[k++];
int l = s1.length();
for(; (i = s.indexOf(s1, i)) >= 0; i++)

if(match(s, i + l, j, k))
return true;

return false;
}
for(; i < j; i++)

if(match(s, i, j, k))
return true;

return false;
}
if(obj == ANY)
{

if(++i > j)
return false;

break label0;
}
if(obj instanceof char[][])
{

if(i >= j)
return false;

char c = s.charAt(i++);
char ac[][] = (char[][])obj;
if(ac[0] == NOT)
{

238 Securing applications and their environment

for(int j1 = 1; j1 < ac.length; j1++)
if(ac[j1][0] <= c && c <= ac[j1][1])

return false;

break label0;
}
for(int k1 = 0; k1 < ac.length; k1++)

if(ac[k1][0] <= c && c <= ac[k1][1])
break label0;

return false;
}
if(obj instanceof String)
{

String s2 = (String)obj;
int i1 = s2.length();
if(!s.regionMatches(i, s2, 0, i1))

return false;
i += i1;

}
}

return i == j;
}

public boolean match(String s)
{

return match(s, 0, s.length(), 0);
}

public boolean match(String s, int i, int j)
{

return match(s, i, j, 0);
}

public RegExpSample(String s)
{

Vector vector = new Vector();
int i = s.length();
StringBuffer stringbuffer = null;
Object obj = null;
for(int j = 0; j < i; j++)
{

char c = s.charAt(j);
switch(c)
{
case 63: /* ’?’ */

obj = ANY;
break;

case 42: /* ’*’ */
obj = STAR;
break;

case 91: /* ’[’ */
int k = ++j;
Vector vector1 = new Vector();
for(; j < i; j++)
{

c = s.charAt(j);
if(j == k && c == ’^’)
{

vector1.addElement(NOT);

Chapter 6. Authenticating users 239

continue;
}
if(c == ’\\’)
{

if(j + 1 < i)
c = s.charAt(++j);

}
else
if(c == ’]’)

break;
char c1 = c;
if(j + 2 < i && s.charAt(j + 1) == ’-’)

c1 = s.charAt(j += 2);
char ac1[] = {

c, c1
};
vector1.addElement(ac1);

}

char ac[][] = new char[vector1.size()][];
vector1.copyInto(ac);
obj = ac;
break;

case 92: /* ’\\’ */
if(j + 1 < i)

c = s.charAt(++j);
break;

}
if(obj != null)
{

if(stringbuffer != null)
{

vector.addElement(stringbuffer.toString());
stringbuffer = null;

}
vector.addElement(obj);
obj = null;

}
else
{

if(stringbuffer == null)
stringbuffer = new StringBuffer();

stringbuffer.append(c);
}

}

if(stringbuffer != null)
vector.addElement(stringbuffer.toString());

expr = new Object[vector.size()];
vector.copyInto(expr);

}

static final char NOT[] = new char[2];
static final Integer ANY = new Integer(0);
static final Integer STAR = new Integer(1);
Object expr[];

}

users.props file:

240 Securing applications and their environment

This example presents the format for the users.props file.

Attention: The sample that is provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.
5639-D57, 5630-A36, 5630-A37, 5724-D18
(C) COPYRIGHT International Business Machines Corp. 1997, 2005
All Rights Reserved * Licensed Materials - Property of IBM
#
Format:
name:passwd:uid:gids:display name
where name = userId/userName of the user
passwd = password of the user
uid = uniqueId of the user
gid = groupIds of the groups that the user belongs to
display name = a (optional) display name for the user.
bob:bob1:123:567:bob
dave:dave1:234:678:
jay:jay1:345:678,789:Jay-Jay
ted:ted1:456:678:Teddy G
jeff:jeff1:222:789:Jeff
vikas:vikas1:333:789:vikas
bobby:bobby1:444:789:

groups.props file:

The following example illustrates the format for the groups.props file.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this sample
in an actual production environment.
5639-D57, 5630-A36, 5630-A37, 5724-D18
(C) COPYRIGHT International Business Machines Corp. 1997, 2005
All Rights Reserved * Licensed Materials - Property of IBM
#
Format:
name:gid:users:display name
where name = groupId of the group
gid = uniqueId of the group
users = list of all the userIds that the group contains
display name = a (optional) display name for the group.
admins:567:bob:Administrative group
operators:678:jay,ted,dave:Operators group
users:789:jay,jeff,vikas,bobby:

Using a DB2 database to hold custom user registry data
A custom user registry can use a DB2 database to maintain the user and password information.

About this task

However, to maintain the user and password information, you must adhere to the following configuration
requirements and restrictions:

v You must use the DB2 Universal Java database connectivity (JDBC) Driver to access the DB2 database
that is used by the custom user registry. Also, the driver must be a type 4 driver.

You cannot use the legacy DB2 for z/OS JDBC Driver or a type 2 DB2 Universal JDBC Driver because
both of these drivers use Resource Recovery Services (RRS). If you use these drivers, the custom user
registry DB2 server requests interfere with the user application processing under the same thread.

v Because you must use the DB2 Universal JDBC Driver, do not define any JDBC resources under the
server that require the legacy DB2 for z/OS JDBC Driver.

For example, do not define a DB2 for z/OS JDBC Provider (RRS) because the legacy DB2 for z/OS
JDBC Driver cannot coexist with the DB2 Universal JDBC Driver.

v You must have an unmanaged DB2 data source or connection that is used by the custom user registry.

The data source or connection must not rely on any WebSphere Application Server resource
management. For example, the data source or connection cannot rely on Java Naming and Directory
Interface (JNDI) lookup, pooling, datastore helpers, XA resource or transaction processing, connection
management, and so on.

v To connect a custom user registry to a DB2 database, you can use one of the following approaches:

Chapter 6. Authenticating users 241

– Use the Java Platform DriverManager to register an instance of the com.ibm.db2.jcc.DB2Driver
class, which is packaged in the DB2 Universal JDBC Driver. Then, invoke the DriverManager to get
a DB2 connection using a DB2 Type 4 URL that defines the target DB2 database.

– Use the com.ibm.db2.jcc.DB2DataSource class, which that is packaged in the DB2 Universal JDBC
Driver, to set up a data source. Set the data source properties to specify the target DB2 database
and other options. Then, get a connection from the data source.

Important: For more information on how to use these approaches, see DB2 UDB for z/OS Version 8
Application Programming Guide and Reference for Java.

Complete the following steps to define the JDBC driver for WebSphere Application Server. You must set
up the following DB2 JDBC Universal Driver configuration before you define your custom user registry for
the WebSphere Application Server for z/OS security component.

Procedure
1. Define the DB2 Universal JDBC Driver in the ws.ext.dirs class path for the servant. To define the

driver, complete the following steps in the administrative console:

a. Click Servers > Application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Servant.

c. Under Additional properties, click Java Virtual Machine.

d. Under Additional properties, click Custom properties .

e. Click New and define the driver. Create the new property using the following information:

Property name
ws.ext.dirs

Property value
db2jcc.jar_directory_path/db2jcc.jar:license_jar_directory_path/
db2jcc_license_cisuz.jar

2. Define the DB2 Universal JDBC Driver in the ext.dirs class path for the controller. To define the
driver, complete the following steps in the administrative console:

a. Click Servers > Application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Controller.

c. Under Additional properties, click Java Virtual Machine.

d. Under Additional properties, click Custom properties .

e. Click New and define the driver. Create the new property using the following information:

Property name
ws.ext.dirs

Property value
db2jcc.jar_directory_path/db2jcc.jar:license_jar_directory_path/
db2jcc_license_cisuz.jar

3. Recycle the server.

Developing the UserRegistry interface for using custom registries
Implementing this interface enables WebSphere Application Server security to use custom registries. This
capability extends the java.rmi file. With a remote registry, you can complete this process remotely.

About this task

Provide implementations of the following methods.

242 Securing applications and their environment

http://www-306.ibm.com/software/data/db2/zos/v8books.html
http://www-306.ibm.com/software/data/db2/zos/v8books.html

Procedure
v Initialize the UserRegistry method, with initialize(java.util.Properties).
public void initialize(java.util.Properties props)

throws CustomRegistryException,
RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the
Custom User Registry panel propagate to this method.

For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry
files that contain the user and group information.

This method is called during server bringup to initialize the registry. This method is also called when
validation is performed by the administrative console, when security is on. This method remains the
same as in Version 4.x.

v Authenticate users with checkPassword(String,String).
public String checkPassword(String userSecurityName, String password)

throws PasswordCheckFailedException
CustomRegistryException,
RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID
and a password. This method returns a string which, in most cases, is the user security name. A
credential is created for the user for authorization purposes. This user name is also returned for the
getCallerPrincipal enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser
methods. See the getUserDisplayName method for more information if you have display names in your
registry. In some situations, if you return a user other than the one who is logged in, you must verify
that the user is valid in the registry.

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name
(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.
For the sample, the checkPassword method checks the name and password combination in the user
registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the
user information after the user registry is initialized. This method is also called when you access
protected resources in the product for authenticating the user and before proceeding with the
authorization. This method is the same as in Version 4.x.

v Obtain user names from X.509 certificates with mapCertificate(X509Certificate[]).
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is
supplied by the browser. The complete certificate chain is passed to this method and the
implementation can validate the chain if needed and get the user information. A credential is created for
this user for authorization purposes. If browser certificates are not supported in your configuration, you
can create the CertificateMapNotSupportedException exception. The consequence of not supporting
certificates is authentication failure if the challenge type is certificates, even if valid certificates are in the
browser.

This method is called when certificates are provided for authentication. For web applications, when the
authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is
called to map a certificate to a valid user in the registry. For Java clients, this method is called to map
the client certificates in the transport layer, when using transport layer authentication. When the identity
assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is
called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In
WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of

Chapter 6. Authenticating users 243

X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for web
applications only, but in version 5.x and later, you can call this method for both web and Java clients.

v Obtain the security realm name with getRealm.
public String getRealm()

throws CustomRegistryException,
RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies
the security domain for which the registry authenticates users. If this method returns a null value, a
customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string.
One of the calls to this method occurs when the user registry information is validated. This method is
the same method as in Version 4.x.

v Obtain the list of users from the registry with getUsers(String,int).
public Result getUsers(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the
pattern parameter. The number of users are limited by the limit parameter. In a registry that has many
users, getting all the users is not practical. So the limit parameter is introduced to limit the number of
users retrieved from the registry. A limit of zero (0) indicates to return all the users that match the
pattern and might cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For
example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting
with b.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are
returned and the Boolean flag indicates if more users are available in the user registry for the search
pattern. This Boolean flag is used to indicate to the client whether more users are available in the
registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
users from the user registry and sets them as a list in the Result object. To find out if more users are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports wildcard characters such as the asterisk (*) and the question mark (?).

This method is called by the administrative console to add users to roles in the various
map-users-to-roles panels. The administrative console uses the Boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.
The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to
take one additional parameter, the limit. Ideally, your implementation changes to take the limit value and
limits the users that are returned. The return is changed to return a Result object, which consists of the
list and a flag that indicates if more entries exist. When the list returns, use the Result.setList(List)
method to set the list in the Result object. If more entries exist than requested in the limit parameter, set
the Boolean attribute to true in the result object, using the Result.setHasMore method. The default for
the Boolean attribute in the result object is false.

v Obtain the display name of a user with getUserDisplayName(String).
public String getUserDisplayName(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is
an optional string that describes the user that you can set in some registries. This descriptive name is
for the user and does not have to be unique in the registry.

244 Securing applications and their environment

For example in Windows systems, you can display the full name of the user.

If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were
useful for the Enterprise JavaBeans (EJB) method call getCallerPrincipal and the servlet calls
getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for
any user, the display names are returned for the previously mentioned enterprise beans and servlet
methods. Returning display names for these methods might become problematic in some situations
because the display names might not be unique in the user registry. Avoid this problem by changing the
default behavior to return the user security name instead of the user display name in this version of the
product. For more information on how to set properties for the custom registry, see the section on
Setting Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose
name matches the user name that is provided. If the display name does not exist, this method returns
an empty string.

This method can be called by the product to present the display names in the administrative console, or
by using the command line and the wsadmin tool. Use this method for display purposes only. This
method is the same as in Version 4.x.

v Obtain the unique ID of a user with getUniqueUserId(String).
public String getUniqueUserId(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserId value of the user
whose name matches the supplied name. This method is called when forming a credential for a user
and also when creating the authorization table for the application.

v Obtain the security name of a user with getUserSecurityName(String).
public String getUserSecurityName(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java
sample file, this method returns the security name of the user whose unique ID matches the supplied
ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called
to get the security name of the user when the uniqueUserId is obtained from a token.

v Check whether a given user is a valid user in the registry with isValidUser(String).
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException,
RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,
otherwise this method returns false. This method is primarily called in situations where knowing if the
user exists in the directory prevents problems later. For example, in the mapCertificate call, when the
name is obtained from the certificate if the user is not found as a valid user in the user registry, you can
avoid trying to create the credential for the user.

v Return the list of groups from the user registry with getGroups(String,int).
public Result getGroups(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend
on the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has
many groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the

Chapter 6. Authenticating users 245

number of groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that
match the pattern and can cause problems for large user registries. Use this limit with care. The custom
registry implementations are expected to support at least the wildcard search (*). For example, a pattern
of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the groups that are returned
and the Boolean flag indicates whether more groups are available in the user registry for the pattern
searched. This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
groups from the user registry and sets them as a list in the Result object. To find out if more groups are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various
map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and
returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the
limit parameter. Change to take the limit value and limit the users that are returned. The return is
changed to return a Result object, which consists of the list and a flag that indicates whether more
entries exist. Use the Result.setList(List) method to set the list in the Result object. If more entries exist
than requested in the limit parameter, set the Boolean attribute to true in the Result object using the
Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

v Obtain the display name of a group with getGroupDisplayName(String).
public String getGroupDisplayName(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name
is an optional string that describes the group that you can set in some user registries. This name is a
descriptive name for the group and does not have to be unique in the registry. If you do not need to
have display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose
name matches the group name that is provided. If the display name does not exist, this method returns
an empty string.

The product can call this method to present the display names in the administrative console or through
the command line using the wsadmin tool. This method is used for display purposes only.

v Obtain the unique ID of a group with getUniqueGroupId(String).
public String getUniqueGroupId(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupId ID.

v Obtain the unique IDs of all groups to which a user belongs with getUniqueGroupIds(String).
public List getUniqueGroupIds(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that
contain this uniqueUserID ID. This method is called when creating the credential for the user. As part of

246 Securing applications and their environment

creating the credential, all the groupUniqueIds IDs in which the user belongs are collected and put in
the credential for authorization purposes when groups are given access to a resource.

v Obtain the security name of a group with getGroupSecurityName(String).
public String getGroupSecurityName(String uniqueGroupId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupId ID.

v Determine whether a group is a valid group in the registry with isValidGroup(String).
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException,
RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the
registry, otherwise the method returns false. This method can be used in situations where knowing
whether the group exists in the directory might prevent problems later.

v Obtain all groups to which a user belongs with getGroupsForUser(String).
public List getGroupsForUser(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name.
This method is similar to the getUniqueGroupIds method with the exception that the security names are
used instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that
contain the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered
for the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is
required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role
in the users and groups-to-role mapping either directly or indirectly through a group that contains this
user. Because a group in which the user belongs can be part of the role in the users and groups-to-role
mapping, this method is called to check if any of the groups that this user belongs to mapped to that
role.

v Retrieve users from a specified group with getUsersForGroup(String,int).
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the
limit parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not
directly called by the WebSphere Application Server security component. However, this method can be
called by other components. In rare situations, if you are working with a user registry where getting all
the users from any of your groups is not practical, you can create the NotImplementedException
exception for the particular groups. In this case, verify that if the process choreographer is installed the
staff assignments are not modeled using these particular groups. If no concern exists about returning
the users from groups in the user registry, it is recommended that you do not create the
NotImplemented exception when implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the

Chapter 6. Authenticating users 247

Boolean flag, which indicates whether more users are available in the user registry for the search
pattern. This Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the
limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag
is set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For
WebSphere Application Server Version 5.x or later, this method can create the
NotImplementedException exception in situations where it is not practical to get the requested set of
users. However, create this exception in rare situations when as other components can be affected. In
Version 4, this method accepts only the pattern parameter and returns a list. In Version 5, this method
accepts the limit parameter. Change your implementation to take the limit value and limit the users that
are returned. The return changes to return a Result object, which consists of the list and a flag that
indicates whether more entries exist. When the list is returned, use the Result.setList(List) method to set
the list in the Result object. If more entries than requested are in the limit parameter, set the Boolean
attribute to true in the Result object using Result.setHasMore method. The default for the Boolean
attribute in the Result object is false.

v Implement the createCredential(String) method.

Attention: The first two lines of the following code sample are split for illustrative purposes only.
public com.ibm.websphere.security.cred.WSCredential createCredential(String userSecurityName)
throws NotImplementedException,

EntryNotFoundException,
CustomRegistryException,
RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can
return null. In the example, a null value is returned.

What to do next

Managing the realm in a federated repository configuration
Follow this topic to manage the realm in a federated repository configuration.

Before you begin

The realm can consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review “Federated repositories limitations” on page 254.

Procedure
1. Configure your realm by using one of the following topics. You might be configuring your realm for the

first time or changing an existing realm configuration.

v “Using a single built-in, file-based repository in a new configuration under Federated repositories” on
page 257

v “Changing a federated repository configuration to include a single built-in, file-based repository only”
on page 262

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 263

v “Changing a federated repository configuration to include a single, Lightweight Directory Access
Protocol repository only” on page 264

248 Securing applications and their environment

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository
configuration” on page 266

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access
Protocol repositories in a federated repository configuration” on page 267

2. Configure supported entity types using the steps described in “Configuring supported entity types in a
federated repository configuration” on page 309. You must configure supported entity types before you
can manage this account with Users and Groups. The Base entry for the default parent determines the
repository location where entities of the specified type are placed on a create operation.

3. Optional: Use one or more of the following tasks to extend the capabilities of storing data and
attributes in your realm:

a. Configure an entry mapping repository using the steps described in “Configuring an entry mapping
repository in a federated repository configuration” on page 306. An entry mapping repository is
used to store data for managing profiles on multiple repositories.

b. Configure a property extension repository using the steps described in “Configuring a property
extension repository in a federated repository configuration” on page 285. A property extension
repository is used to store attributes that cannot be stored in your Lightweight Directory Access
Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in “Setting up an entry
mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands” on page 290

4. Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP
repositories in your realm:

v “Increasing the performance of the federated repository configuration” on page 315

v “Configuring Lightweight Directory Access Protocol entity types in a federated repository
configuration” on page 329

v “Configuring group attribute definition settings in a federated repository configuration” on page 331

5. Optional: Manage repositories that are configured in your system by following the steps described in
“Managing repositories in a federated repository configuration” on page 312.

6. Optional: Add an external repository into your realm by following the steps described in “Adding an
external repository in a federated repository configuration” on page 284.

7. Optional: Change the password for the repository that is configured under federated repositories by the
following steps described in “Changing the password for a repository under a federated repositories
configuration” on page 255.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Federated repositories
Federated repositories enable you to use multiple repositories with WebSphere Application Server. These
repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,
are defined and theoretically combined under a single realm. All of the user repositories that are
configured under the federated repository functionality are invisible to WebSphere Application Server.

Chapter 6. Authenticating users 249

When you use the federated repositories functionality, all of the configured repositories, which you specify
as part of the federated repository configuration, become active. It is required that the user ID, and the
distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are
configured under the same federated repository configuration. For example, there might be three different
repositories that are configured for the federated repositories configuration: Repository A, Repository B,
and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories
for all of the occurrences of that user. If multiple instances of that user are found in the combined
repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical
joining of entries across multiple user repositories when the Application Server searches and retrieves
entries from the repositories. For example, when an application calls for a sorted list of people whose age
is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories
configuration. The results are combined and sorted before the Application Server returns the results to the
application.

Restrictions:

v WebSphere Application Server federated repositories DO NOT support a z/OS LDAP
server with an SDBM backend (resource access control facility (RACF)).

Unlike the local operating system, stand-alone LDAP registry, or custom registry options, federated
repositories provide user and group management with read and write capabilities. When you configure
federated repositories, you can use one of the following methods to add, create, and delete users and
groups:

Important: If you configure multiple repositories under the federated repositories realm, you must also
configure supported entity types and specify a base entry for the default parent. The base
entry for the default parent determines the repository location where entities of the specified
type are placed on write operations by user and group management. See “Configuring
supported entity types in a federated repository configuration” on page 309 for details.

v Use the user management application programming interfaces (API). For more information, refer to
articles under "Developing with virtual member manager" in this information center.

v Use the administrative console. To manage users and groups within the administrative console, click
Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on
user and group management, click the Help link that displays in the upper right corner of the window.
From the left navigation pane, click Users and Groups.

v Use the wsadmin commands. For more information, see the WIMManagementCommands command
group for the AdminTask object topic.

If you do not configure the federated repositories functionality or do not enable federated repositories as
the active repository, you cannot use the user management capabilities that are associated with federated
repositories. You can configure an LDAP server as the active user registry and configure the same LDAP
server under federated repositories, but not select federated repositories as the active user repository.
With this scenario, authentication takes place using the LDAP server, and you can use the user
management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere
Application Server Version 8.0 with the registry functionality that remains unchanged from previous
versions of the Application Server.

250 Securing applications and their environment

Table 23. Federated repositories versus user registry implementations.

This table lists federated repositories versus user registry implementations.
Federated repositories User registry

Supports multiple types of repositories such as file-based, LDAP,
database, and custom. In WebSphere Application Server Version 8.0,
file-based and LDAP repositories are supported by the administrative
console. However, the federated repositories functionality does not support
local operating system implementations.

With this service release, the federated repositories functionality supports
local operating system implementations.

For database and custom repositories, you can use the wsadmin
command-line interface or the configuration application programming
interfaces (API).
Restriction: WebSphere Application Server federated repositories DO
NOT support a z/OS LDAP server with an SDBM backend (resource
access control facility (RACF)).

Supports multiple types of registries such as the local operating system, a
stand-alone LDAP registry, and a stand-alone custom registry.

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories that are defined in
the federated repository configuration.

Provides read only capability for the registries.

Provides account and password policy support as defined by the registry
type. However, this support is not provided by the federated repository
functionality.

Provides account and password policy support as defined by the registry
type.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

Realm configuration settings
Use this page to manage the realm. The realm can consist of identities in the file-based repository that is
built into the system, in one or more external repositories, or in both the built-in, file-based repository and
one or more external repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Security domains.

2. Under User realm, select Customize for this domain. Select Federated repositories from the Realm
type field and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store
identities in the realm. Click Add base entry to realm to specify a repository configuration and a base
entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are
not destroyed. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least
one user in another member repository is a console user with administrative rights. Otherwise, you must
disable security to regain access to the administrative console.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Realm name:

Chapter 6. Authenticating users 251

Specifies the name of the realm. You can change the realm name.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,
adminUser.

The user name is used to log on to the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Default: Enabled

User identity for the z/OS started task:

Specifies the user identity that is associated with the z/OS system started task. Each controller and server
can have its own identity.

Ignore case for authorization:

Specifies that a case-insensitive authorization check is performed.

If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization
option.

Allow operations if some of the repositories are down:

Specifies whether operations (such as login, search, or get) are allowed even if the repositories in the
realm are down.

Use global schema for model:

Sets the global schema option for the data model in a multiple security domain environment. Global
schema refers to the schema of the admin domain.

Note: Application domains that are set to use global schema share the same schema of the admin
domain. If you extend the schema for an application in one domain, you must also consider how
that might affect applications of other domains, as they are bound by the same schema. For
example, adding a mandatory property for one application might cause other applications to fail.

Base entry:

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

252 Securing applications and their environment

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository type:

Specifies the repository type, such as File or LDAP.

User attribute mapping for federated repositories
Use this panel to set or to modify the mapping for a user registry's user or group attribute to a federated
repository property.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On the next panel and under Additional
Properties, click User repository attribute mapping.

Attribute mappings:

Select an attribute to set or to modify the mapping for a user registry's user or group attribute to a
federated repository property, and then click Edit.

Custom properties details for federated repositories
Use this panel to specify the configuration for access to a custom repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On the next panel and under Additional
Properties, click Manage repositories. Under Add, select Custom repository.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository adapter class name:

Specifies the implementation class name for the repository adapter. For a User Registry bridge, use
com.ibm.ws.wim.adapter.urbridge.URBridge.

Login properties:

Specifies the property names to use to log into the application server.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

File details for federated repositories
Use this panel to specify the configuration for access to a file repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure. On the next panel and under Additional
Properties, click Manage repositories. Under Add, select File repository.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Chapter 6. Authenticating users 253

Repository adapter class name:

Specifies the implementation class name for the repository adapter. For a User Registry bridge, use
com.ibm.ws.wim.adapter.urbridge.URBridge.

Base directory:

The base directory where the files are to be created. This directory must already exist.

File name:

The file name for the repository.

The default value is fileRegistry.xml.

Salt length:

Specifies the salt length of the randomly generated salt for password hashing.

The default value is 12.

Message digest algorithm:

Specifies the message digest algorithm to use for hashing the password.

Select one of the following: SHA-1, SHA-256, SHA-384 or SHA-512.

The default value is SHA-1.

Login properties:

Specifies the property names to use to log into the application server.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

Federated repositories limitations
This topic outlines known limitations and important information for configuring federated repositories.

Configuring federated repositories in a mixed-version environment

In a mixed-version deployment manager cell that contains both Version 6.1.x and Version 5.x or 6.0.x
nodes, the following limitations apply for configuring federated repositories:
v You can configure only one Lightweight Directory Access Protocol (LDAP) repository under federated

repositories, and the repository must be supported by Version 5.x or 6.0.x.
v You can specify a realm name that is compatible with prior versions only. The host name and the port

number represent the realm for the LDAP server in a mixed-version nodes cell. For example,
machine1.austin.ibm.com:389.

v You must configure a stand-alone LDAP registry; the LDAP information in both the stand-alone LDAP
registry and the LDAP repository under the federated repositories configuration must match. During
node synchronization, the LDAP information from the stand-alone LDAP registry propagates to the
Version 5.x or 6.0.x nodes.

Important: Before node synchronization, verify that Federated repositories is identified in the Current
realm definition field. If Federated repositories is not identified, select Federated

254 Securing applications and their environment

repositories from the Available realm definitions field and click Set as current. Do not set
the stand-alone LDAP registry as the current realm definition.

v You cannot configure an entry mapping repository or a property extension repository in a mixed-version
deployment manager cell.

Configuring LDAP servers in a federated repository

The LDAP connection connectTimeout default value is 20 seconds. LDAP should respond within 20
seconds for any request from WebSphere Application Server. If you cannot connect to your LDAP within
this time, make sure that your LDAP is running. A connection error displays at the top of the LDAP
configuration panel when the connection timeout exceeds 20 seconds.

Coexisting with Tivoli Access Manager

For Tivoli Access Manager to coexist with a federated repositories configuration, the following limitations
apply:
v You can configure only one LDAP repository under federated repositories, and that LDAP repository

configuration must match the LDAP server configuration under Tivoli Access Manager.
v The distinguished name for the realm base entry must match the LDAP distinguished name (DN) of the

base entry within the repository. In WebSphere Application Server, Tivoli Access Manager recognizes
the LDAP user ID and LDAP DN for both authentication and authorization. The federated repositories
configuration does not include additional mappings for the LDAP user ID and DN.

v The federated repositories functionality does not recognize the metadata that is specified by Tivoli
Access Manager. When users and groups are created under user and group management, they are not
formatted using the Tivoli Access Manager metadata. The users and groups must be manually imported
into Tivoli Access Manager before you use them for authentication and authorization.

Limitation for configuring active directories with their own federated repository realms

In order to use the administrative console to perform a wildcard search for all available users on two Active
Directories, and to prevent multiple entries exceptions with all built-in IDs, you must first configure each
Active Directory with it's own federated repository realm.

However, you cannot use the administrative console to configure each Active Directory with it's own
federated repository realm. You can instead use a wsadmin script similar to the following:
$AdminTask createIdMgrRealm {-name AD1realm}
$AdminTask addIdMgrRealmBaseEntry {-name AD1realm -baseEntry o=AD1}

$AdminTask createIdMgrRealm {-name AD2realm}
$AdminTask addIdMgrRealmBaseEntry {-name AD2realm -baseEntry o=AD2}

$AdminConfig save

Changing the password for a repository under a federated repositories
configuration
Passwords allow security control over the repositories under a federated repositories configuration. As part
of managing the realm in a federated repository configuration, one of the optional tasks you can perform is
to change the password of an individual repository that is under a federated repositories configuration.

Before you begin

Before you change the password for the repository that is configured under federated repositories, ensure
that the WebSphere Application Server is running and the target repository for the password change is
configured under the federated repositories configuration. In a WebSphere Application Server, Network
Deployment environment, you must complete these steps on the deployment manager.

Chapter 6. Authenticating users 255

Procedure
v Changing the password for a repository using the dynamic updateIdMgrLDAPBindInfo command Use

the following steps to change the Lightweight Directory Access Protocol (LDAP) bind distinguished
name (DN) or bind password of an LDAP repository.

From a wsadmin prompt, you can enter the following command to display a list of arguments for the
updateIdMgrLDAPBindInfo command: $AdminTask help updateIdMgrLDAPBindInfo

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The WebSphere Application Server and wsadmin must remaining running.

2. Use an LDAP tool to change the password of the LDAP repository. Some LDAP repositories require
a stop and start of the LDAP server to change the password.

3. From the wsadmin prompt, enter the updateIdMgrLDAPBindInfo command to update the LDAP
password under the federated repository. The change is also reflected in the wimconfig.xml file.

v Changing the password for a repository using the updateIdMgrDBRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in the app_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode. wsadmin -conntype none

gotcha: If you are starting the wsadmin command session in local mode, you must ensure that the
location of the database driver is specified in the class path using the –wsadmin_classpath
option. For information on using this option, see the topic, wsadmin scripting tool in the
WebSphere Application Server information center.

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources >data_source> JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the updateIdMgrDBRepository command to update the password in
the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrPropertyExtensionRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources > data_source > JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the setIdMgrPropertyExtensionRepository command to update
the password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrEntryMappingRepository command

256 Securing applications and their environment

|
|
|
|

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources >data_source > JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the setIdMgrEntryMappingRepository command to update the
password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the updateIdMgrLDAPServer command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Change the password for the repository.

3. From the wsadmin prompt, use the updateIdMgrLDAPServer command to update the password in
the wimconfig.xml file.

4. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

5. Restart the WebSphere Application Server.

Results

The password for the repository has been changed.

Using a single built-in, file-based repository in a new configuration under
Federated repositories
Follow this task to use a single built-in, file-based repository in a new configuration under Federated
repositories.

Before you begin

To use the default configuration under Federated repositories that includes a single built-in, file-based
repository only, you need to know the primary administrative user name of the user who manages
WebSphere Application Server resources and user accounts.

Restriction:

Client certificate login is not supported in a realm that includes a single built-in, file-based
repository or a single built-in, file-based repository with other repositories.

WebSphere Application Server federated repositories DO NOT support a z/OS LDAP server
with an SDBM backend (resource access control facility (RACF)).

Procedure
1. In the administrative console, click Security > Global security.

Chapter 6. Authenticating users 257

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Leave the Realm name field value as defaultWIMFileBasedRealm.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Leave the Ignore case for authorization option enabled.

6. Click OK.

7. Provide an administrative user password. This panel displays only when a built-in, file-based repository
is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is
included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your new configuration under Federated repositories includes a single
built-in, file-based repository only.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Administrative user password settings:

Use this page to set a password for the administrative user who manages the product resources and user
accounts.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. If your federated repository configuration includes a built-in, file-based repository, then the
Administrative user password panel displays when changes are applied.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

258 Securing applications and their environment

Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Federated repository wizard settings:

Use this security wizard page to complete the basic requirements to connect the application server to a
federated repository.

To view this security wizard page, complete the following steps

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Federated repositories option and click Next.

You can modify your federated repository configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, select Federated repository and click Configure.

Note: This wizard is used for the initial configuration of a built-in, file-based repository. The user name
and password do not have to be in the federated repository because they will be created. If you
have previously configured federated repositories, do not use the Security configuration wizard to
modify your configuration. Instead, modify your configuration using the Federated repositories
selection under User account repository on the Global security panel.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,
adminUser.

The user name is used to log on to the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Configuring a single built-in, file-based repository in a new configuration under
federated repositories using wsadmin
You can use the Jython or Jacl scripting language with the wsadmin tool to configure a single built-in,
file-based repository in a new configuration under Federated repositories.

Before you begin

Shut down the application server and ensure you have the primary administrator id and password.

Chapter 6. Authenticating users 259

About this task

The federated repositories configuration file, wimconfig.xml, is supported by WebSphere Application
Server 6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/
config directory.

Use the following steps to configure for use a single built-in, file-based repository in a new configuration for
federated repositories.

Procedure
1. Start the wsadmin scripting tool.

2. Create the fileRegistry.xml file, which is the user registry itself, if it does not already exist. If the
fileRegistry.xml file does exist, this step just adds the user to registry.

Using Jython:
AdminTask.addFileRegistryAccount(’-userId isoet01s01 -password oets01’)

Using Jacl:
$AdminTask addFileRegistryAccount {-userId isoet01s01 -password oets01}

For more information on the addFileRegistryAccount command, see the documentation about the
FileRegistryCommands command group for the AdminTask object.

3. Update the security.xml file to enable administrative security, set the activeUserRegistry to use
federated repositories, and update the primaryAdmin and its password.

Using Jython:

AdminTask applyWizardSettings(’-secureApps false
-secureLocalResources false
-userRegistryType WIMUserRegistry
-customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry
-adminName isoet01s01 -adminPassword oets01’)

Using Jacl:

$AdminTask applyWizardSettings {-secureApps false
-secureLocalResources false
-userRegistryType WIMUserRegistry
-customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry
-adminName isoet01s01
-adminPassword oets01}

For more information on the applyWizardSettings command, see the documentation about the
WizardCommands command group for the AdminTask object.

4. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin tool:

Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

5. Restart the application server.

FileRegistryCommands command group for the AdminTask object:

Federated repositories provides a file registry. Use the commands in the FileRegistryCommands command
group to administer the file registry using the wsadmin tool.

Note: If the Use global security settings option is selected for the user realm or the Global federated
repositories option is selected as the realm type for the specified domain, the user and group
management commands are executed on the federated repository of the admin domain. For

260 Securing applications and their environment

example, if you run the createUser command for the specified domain, the user is created in the
admin domain. However, configuration changes that are performed on the domain are applied to
the security domain-specific configuration.

Use the following commands in the FileRegistryCommands group to modify the federated repository file
registry:

v “addFileRegistryAccount command”

v “changeFileRegistryAccountPassword command”

addFileRegistryAccount command

The addFileRegistryAccount command adds an account to the file registry. You must save your
configuration changes after running this command to save the new account to the master repository.

Target object

None

Required parameters

-userId
Specifies the ID of the user to add to the file registry. (String, required)

-password
Specifies the password of the user to add to the file registry. (String, required)

Optional parameters

-securityDomainName
Specifies the name that uniquely identifies the security domain. The default value is admin. (String,
optional)

-parent
Specifies the parent of the entity. (String, optional)

.

Return value

This command returns a message that indicates that the command ran successfully, as the following
example displays:
’CWWIM4544I Account newAcct(uid=newAcct,o=defaultWIMFileBasedRealm) is stored in the
file registry in the temporary workspace. You must use the "$AdminConfig save"
command to save it in the master repository.’

Batch mode example usage

v Using Jython string:
AdminTask.addFileRegistryAccount(’[-userId newAcct -password new22password]’)

Interactive mode example usage

v Using Jython string:
AdminTask.addFileRegistryAccount([’-userId’, ’newAcct’, ’-password’, ’new22password’])

changeFileRegistryAccountPassword command

The changeFileRegistryAccountPassword changes the password for the file registry account.

Target object

Chapter 6. Authenticating users 261

None.

Required parameters

-userId
Specifies the user ID of interest. (String, required)

-password
Specifies the new password. (String, required)

Optional parameters

-securityDomainName
Specifies the name that uniquely identifies the security domain. The default value is admin. (String,
optional)

-uniqueName
Specifies the fully-qualified unique name of the administrator. (String, optional)

Return value

This command returns a message that indicates that the command ran successfully, as the following
example displays:
’CWWIM4545I The password is changed for newAcct(uid=newAcct,o=defaultWIMFileBasedRealm)
in the file registry in the temporary workspace. You must use the "$AdminConfig save"
command to save it in the master repository.’

Batch mode example usage

v Using Jython string:
AdminTask.changeFileRegistryAccountPassword(’[-userId newAcct -password newPassword -uniqueName
uid=newAcct,o=defaultWIMFileBasedRealm]’)

Interactive mode example usage

v Using Jython string:
AdminTask.changeFileRegistryAccountPassword([’-userId’, ’newAcct’, ’-password’, ’newPassword’,
’-uniqueName’, ’uid=newAcct,o=defaultWIMFileBasedRealm’])

Changing a federated repository configuration to include a single built-in,
file-based repository only
Follow this task to change your federated repository configuration to include a single built-in, file-based
repository only.

Before you begin

To change your federated repository configuration to include a single built-in, file-based repository only,
you need to know the primary administrative user name of the user who manages WebSphere Application
Server resources and user accounts.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based
repository or a single built-in, file-based repository with other repositories.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Enter the name of the realm in the Realm name field. If the realm contains a single built-in, file-based
repository only, you must specify defaultWIMFileBasedRealm as the realm name.

262 Securing applications and their environment

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Enable the Ignore case for authorization option.

6. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

7. Select all repositories in the collection that are not of type File and click Remove.

8. Click OK.

9. Provide an administrative user password. This panel displays only when a built-in, file-based repository
is included in the realm. Otherwise, it does not display. If a built-in, file-based repository is included,
complete the following steps:

a. Supply a password for the primary administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single built-in,
file-based repository only, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a single, Lightweight Directory Access Protocol repository in a new
configuration under Federated repositories
Follow this task to configure a single, Lightweight Directory Access Protocol (LDAP) repository in a new
configuration under Federated repositories.

Before you begin

To configure an LDAP repository in a new configuration under Federated repositories, you must know a
valid user name (ID), the user password, the server host and port and, if necessary, the bind distinguished
name (DN) and the bind password. You can choose any valid user in the repository that is searchable. In
some LDAP servers, administrative users are not searchable and cannot be used (for example, cn=root in
SecureWay). This user is referred to as the WebSphere Application Server administrative user name or
administrative ID in the documentation. Being an administrative ID means a user has special privileges
when calling some protected internal methods. Normally, this ID and password are used to log in to the
administrative console after you turn on security. You can use other users to log in, if those users are part
of the administrative roles.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

Chapter 6. Authenticating users 263

3. On the Federated repositories panel, complete the following steps:

a. Enter the name of the realm in the Realm name field. You can change the existing realm name.

b. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

c. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when
all of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories
contain data that is case-insensitive only. Do not include both case-sensitive and
case-insensitive repositories in the realm. For example, do not include case-sensitive
repositories in the realm with a built-in, file-based repository.

d. Click Add base entry to realm to add a base entry that uniquely identifies the external repository
in the realm. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 284.

4. On the Federated repositories panel, complete the following steps:

a. Select the built-in, file-based repository in the collection, and click Remove.

Restriction: Before you remove the built-in, file-based repository from the administrative realm,
verify that at least one user in another member repository is a console user with
administrative rights. Otherwise, you must disable security to regain access to the
administrative console.

b. Click OK.

Results

After completing these steps, your new configuration under Federated repositories includes a single, LDAP
repository only.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global secuity to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Changing a federated repository configuration to include a single, Lightweight
Directory Access Protocol repository only
Follow this task to change your federated repository configuration to include a single, Lightweight Directory
Access Protocol repository (LDAP) repository only.

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

264 Securing applications and their environment

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some
protected internal methods. Normally, this ID and password are used to log into the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all
of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain
data that is case-insensitive only. Do not include both case-sensitive and case-insensitive
repositories in the realm. For example, do not include case-sensitive repositories in the
realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 284.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove
every entry.

b. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single LDAP
repository only, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Chapter 6. Authenticating users 265

Configuring multiple Lightweight Directory Access Protocol repositories in a
federated repository configuration
Follow this task to configure multiple Lightweight Directory Access Protocol (LDAP) repositories in a
federated repository configuration.

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and
the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some
protected internal methods. Normally, this ID and password are used to log into the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all
of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain
data that is case-insensitive only. Do not include both case-sensitive and case-insensitive
repositories in the realm. For example, do not include case-sensitive repositories in the
realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not listed in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 284.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every
entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that
at least one user in another member repository is a console user with administrative rights.
Otherwise, you must disable security to regain access to the administrative console.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes multiple LDAP
repositories, is configured.

266 Securing applications and their environment

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a single built-in, file-based repository and one or more Lightweight
Directory Access Protocol repositories in a federated repository configuration
Follow this task to configure a single built-in, file-based repository and multiple Lightweight Directory
Access Protocol (LDAP) repositories in a federated repository configuration.

Before you begin

To configure a built-in, file-based repository in a federated repository configuration, you must know the
primary administrative user name of the user who manages WebSphere Application Server resources and
user accounts.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and
the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some
protected internal methods. Normally, this ID and password are used to log in to the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based
repository or a single built-in, file-based repository with other repositories.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

Restriction: When you configure multiple repositories that includes a single built-in, file-based
repository, the primary administrative user name must exist in the file-based repository. If
the primary administrative user name does not exist in the file-based repository, then the
name is created in the file-based repository. The primary administrative user name
cannot exist in other repositories.

5. Select the Ignore case for authorization option.

Attention: When the realm includes a built-in, file-based repository, you must enable the Ignore
case for authorization option.

Chapter 6. Authenticating users 267

When you enable this option, the authorization check is case-insensitive. Normally, an authorization
check involves checking the complete DN of a user, which is unique in the realm and is
case-insensitive. Clear this option when all of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain
data that is case-insensitive only. Do not include both case-sensitive and case-insensitive
repositories in the realm. For example, do not include case-sensitive repositories in the
realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 284.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

c. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove
every entry.

d. Click OK.

8. Provide an administrative user password. This panel displays only when a built-in, file-based repository
is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is
included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single built-in,
file-based repository and one or more LDAP repositories, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Manually configuring an Lightweight Directory Access Protocol repository in a
federated repository configuration
Follow this topic to manually configure Lightweight Directory Access Protocol (LDAP) repository in a
federated repository configuration.

268 Securing applications and their environment

Before you begin

As a prerequisite, you need to add a LDAP repository to your WebSphere Application Server configuration,
where you define the following information:

Table 24. Prerequisite LDAP repository information.

This table lists prerequisite LDAP repository information,
Item Name Example

Repository identifier ldaprepo1

Directory type IBM Tivoli Directory Server

Primary host name localhost

Port 389

Bind distinguished name cn=ldapadmin

Bind password yourpwd

Login properties uid (a property containing login information)

See “Lightweight Directory Access Protocol repository configuration settings” on page 274 for the specific
steps you must perform to establish this LDAP repository.

About this task

At this point, you have a valid LDAP repository ready to be manually configured in a federated repository
configuration.

Procedure
1. Map the federated repository entity types to the LDAP object classes.

a. Configure the LDAP repository to match the used LDAP object class for users.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select the repository (for example, ldaprepo1).

5) Click LDAP entity types.

6) Click PersonAccount.

7) Insert the objectclass name used in our LDAP server, for example, inetOrgPerson.

8) Click Apply.

9) Click Save.

See “Configuring supported entity types in a federated repository configuration” on page 309 for an
explanation of the supported entity types.

See http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/
ldap.html for a description of the LDAP default mappings.

b. Configure the LDAP repository to match the used LDAP objectclass for groups

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1.

5) Click LDAP entity types.

6) Click Group.

Chapter 6. Authenticating users 269

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html

7) Insert the objectclass name used for your LDAP server, for example, groupOfUniqueNames.

8) Click Apply.

9) Click Save.

See “Group attribute definition settings” on page 332 for an explanation of group attribute
definitions.

2. Map the federated repository property names to the LDAP attribute names.

a. Configure the LDAP repository to match the used LDAP attributes for a user.

1) Edit the file
{WAS_HOME}\profiles\{profileName}\config\cells\{cellName}\wim\config\wimconfig.xml

2) Look for the section in this file containing the LDAP repository configuration, For example,
a)

<config:repositories
xsi:type="config:LdapRepositoryType"
adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAda
pter" id="ldaprepo1" ...>

b)
<config:attributeConfiguration>

c)
...

d)
<config:attributes name="anLDAPattribute"
propertyName="aVMMattribute"/>

e)
...
<config:attributeConfiguration>

3) Add an element of type config:attributes to define the mapping between a given federated
depository property name, such as departmentNumber, to a desired LDAP attribute name, such
as warehouseSection.

Note: For all given federated depository properties, a one-to-one mapping is assumed. If no
explicit mapping of the above type is defined, for example the federated repository
property departmentNumber, the underlying LDAP attribute name, departmentNumber is
assumed.

b. Configure the unsupported properties of the federated repository.

To indicate that a given federated repository property, such as departmentNumber is not supported
by any LDAP attributes, you need to define the following type of element:

<config:repositories xsi:type="config:LdapRepositoryType"
adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"
id="ldaprepo1" ...>
<config:attributeConfiguration>
...
<config:propertiesNotSupported name=" departmentNumber"/>
...
<config:attributeConfiguration>

c. Configure the LDAP repository to match the used LDAP user membership attribute in the groups.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1

5) Click Group attribute defintions.

6) Click Member attributes.

7) Check if your LDAP attributes (for example, uniqueMember) is specified for your LDAP
objectclass (for example, groupOfUniqueNames).

v If not specified, click New and add the pair (objectclass / member attribute name) that
applies to your LDAP schema (for example, uniqueMember / groupOfUniqueNames

v If specified, proceed.

270 Securing applications and their environment

8) Click Apply.

9) Click Save.

3. Map other LDAP settings by configuring a new base entry for the new LDAP repository.

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure.

c. Click Add Base Entry to Realm.

d. Select ldaprepo1.

e. Specifiy:

v The base entry within the federated repository realm, for example, o=Default Organization

v The base entry within the LDAP repository, for example, o=Default Organization

f. Click Apply.

g. Click Save.

For an explanation of base entries, see the Configuring supported entity types in a federated repository
configuration topic.

Results

After completing these steps, your federated repository matches the LDAP server settings.

What to do next

Configuring Lightweight Directory Access Protocol in a federated repository
configuration
Follow this topic to configure Lightweight Directory Access Protocol (LDAP) settings in a federated
repository configuration.

Before you begin

You have chosen among various ways to configure LDAP:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 263

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol
repository only” on page 264

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository
configuration” on page 266

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access
Protocol repositories in a federated repository configuration” on page 267

v “Managing repositories in a federated repository configuration” on page 312

About this task

At this point, you are viewing the LDAP repository configuration page of the administrative console.

Procedure
1. Enter a unique identifier for the repository in the Repository identifier field. This identifier uniquely

identifies the repository within the cell, for example: LDAP1.

2. Select the type of LDAP server that is used from the Directory type list. The type of LDAP server
determines the default filters that are used by WebSphere Application Server.

Chapter 6. Authenticating users 271

IBM Tivoli Directory Server users can choose either IBM Tivoli Directory Server or SecureWay as the
directory type. Use the IBM Tivoli Directory Server directory type for better performance. For a list of
supported LDAP servers, see “Using specific directory servers as the LDAP server” on page 205.

3. Enter the fully qualified host name of the primary LDAP server in the Primary host name field. You
can enter either the IP address or the domain name system (DNS) name.

4. Enter the server port of the LDAP directory in the Port field. The host name and the port number
represent the realm for this LDAP server in a mixed version nodes cell. If servers in different cells are
communicating with each other using Lightweight Third Party Authentication (LTPA) tokens, these
realms must match exactly in all the cells.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for
a non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server
administrator.

If multiple WebSphere Application Servers are installed and configured to run in the same single
sign-on domain, or if WebSphere Application Server interoperates with a previous version of
WebSphere Application Server, then it is important that the port number match all configurations. For
example, if the LDAP port is explicitly specified as 389 in a Version 5.x or 6.0.x configuration, and
WebSphere Application Server at Version 6.1 is going to interoperate with the Version 5.x or 6.0.x
server, then verify that port 389 is specified explicitly for the Version 6.1 server.

5. Optional: Enter the host name of the failover LDAP server in the Failover host name field. You can
specify a secondary directory server to be used in the event that your primary directory server
becomes unavailable. After switching to a secondary directory server, LDAP repository attempts to
reconnect to the primary directory server every 15 minutes.

6. Optional: Enter the port of the failover LDAP server in the Port field and click Add. The default value
is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a Secure Sockets
Layer (SSL) connection. For some LDAP servers, you can specify a different port for a non-SSL or
SSL connection. If you do not know the port to use, contact your LDAP server administrator.

7. Optional: Select the type of referral. A referral is an entity that is used to redirect a client request to
another LDAP server. A referral contains the names and locations of other objects. It is sent by the
server to indicate that the information that the client requested can be found at another location,
possibly at another server or several servers. The default value is ignore.

ignore
Referrals are ignored.

follow Referrals are followed automatically.

8. Optional: Enter the bind DN name in the Bind distinguished name field, for example, cn=root. The
bind DN is required if anonymous binds are not possible on the LDAP server to obtain user and
group information or for write operations. In most cases, bind DN and bind password are needed.
However, when anonymous bind can satisfy all of the required functions, bind DN and bind password
are not needed. If the LDAP server is set up to use anonymous binds, leave this field blank. If a
name is not specified, the application server binds anonymously.

Note: To create LDAP queries or to browse, an LDAP client must bind to the LDAP server using the
distinguished name (DN) of an account that has the authority to search and read the values of
LDAP attributes, such as user and group information. The LDAP administrator ensures that
read access privileges are set for the bind DN. Read access privileges allow access to the
subtree of the base DN and ensure that searches of user and group information are
successful.

The directory server provides an operational attribute in each directory entry (for example, the
IBM Directory Server uses ibm-entryUuid as the operational attribute). The value of this
attribute is a universally unique identifier (UUID), which is chosen automatically by the
directory server when the entry is added, and is expected to be unique: no other entry with the
same or different name would have this same value. Directory clients may use this attribute to

272 Securing applications and their environment

distinguish objects identified by a distinguished name or to locate an object after renaming.
Ensure that the bind credentials have the authority to read this attribute.

9. Optional: Enter the password that corresponds to the bind DN in the Bind password field.

10. Optional: Enter the property names to use to log into WebSphere Application Server in the Login
properties field. This field takes multiple login properties, delimited by a semicolon (;). For example,
uid;mail.

All login properties are searched during login. If multiple entries or no entries are found, an exception
is thrown. For example, if you specify the login properties as uid;mail and the login ID as Bob, the
search filter searches for uid=Bob or mail=Bob. When the search returns a single entry, then
authentication can proceed. Otherwise, an exception is thrown.

Note: If you define multiple login properties, then the first login property is programmatically mapped
to the federated repositories principalName property. For example, if you set uid;mail as the
login properties, the LDAP attribute uid value is mapped to the federated repositories
principalName property. If you define multiple login properties, after login, the first login
property is returned as the value of the principalName property. For example, if you pass
joe@yourco.com as the principalName value and the login properties are configured as
uid;mail, the principalName is returned as joe.

11. Optional: Select the certificate map mode in the Certificate mapping field. You can use the X.590
certificates for user authentication when LDAP is selected as the repository. The Certificate mapping
field is used to indicate whether to map the X.509 certificates into an LDAP directory user by
EXACT_DN or CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate must
exactly match the user entry in the LDAP server, including case and spaces.

12. If you select CERTIFICATE_FILTER in the Certificate mapping field, specify the LDAP filter for
mapping attributes in the client certificate to entries in LDAP.

If more than one LDAP entry matches the filter specification at run time, authentication fails because
the result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. The right side must begin with a dollar sign ($) and open bracket
({) and end with a close bracket (}). You can use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important:
v ${UniqueKey}
v ${PublicKey}
v ${PublicKey}
v ${Issuer}
v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectCN}
v ${Version}

13. Optional: Select the Require SSL communications option if you want to use Secure Sockets Layer
communications with the LDAP server.

If you select the Require SSL communications option, you can select either the Centrally
managed or Use specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for a particular scope, such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the

Chapter 6. Authenticating users 273

SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu that follows the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. To modify or create a new SSL configuration, complete the following
steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations and trust
zones > configuration_name.

c. Under Related items, click SSL configurations.

14. Click OK.

Results

After completing these steps, your LDAP repository settings are configured.

What to do next

Return to the appropriate task to complete the steps for your federated repository configuration:
v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 263
v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 264
v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 266
v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 267
v “Managing repositories in a federated repository configuration” on page 312

Lightweight Directory Access Protocol repository configuration settings:

Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository
with optional failover servers.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

274 Securing applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the LDAP repository. This identifier uniquely identifies the repository within
the cell, for example: LDAP1.

Directory type:

Specifies the type of LDAP server to which you connect.

Expand the drop-down list to display a list of LDAP directory types.

Primary host name:

Specifies the host name of the primary LDAP server. This host name is either an IP address or a domain
name service (DNS) name.

Port:

Specifies the LDAP server port.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a
non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

Data type: Integer
Default: 389
Range: 389, which is not a Secure Sockets

Layer (SSL) connection
636, which is a Secure Sockets Layer
(SSL) connection

Failover host name:

Specifies the host name of the failover LDAP server.

You can specify a secondary directory server to be used in the event that your primary directory server
becomes unavailable. After switching to a secondary directory server, the LDAP repository attempts to
reconnect to the primary directory server every 15 minutes.

Port:

Specifies the port of the failover LDAP server.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a
non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

Data type: Integer
Range: 389, which is not a Secure Sockets

Layer (SSL) connection
636, which is a Secure Sockets Layer
(SSL) connection

Support referrals to other LDAP servers:

Specifies how referrals that are encountered by the LDAP server are handled.

Chapter 6. Authenticating users 275

A referral is an entity that is used to redirect a client request to another LDAP server. A referral contains
the names and locations of other objects. It is sent by the server to indicate that the information that the
client requested can be found at another location, possibly at another server or several servers. The
default value is ignore.

Default: ignore
Range:

ignore Referrals are ignored.

follow Referrals are followed automatically.

Support for repository change tracking:

Specifies the type of support for repository change tracking, wih is one of the following:

none Specifies there is no change tracking support for this repository.

native Specifies that the repository's native change tracking mechanism is used by virtual member
manager to return changed entities.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

Defining a new property enables you to configure a setting beyond that which is available in the
administrative console.

Bind distinguished name:

Specifies the distinguished name (DN) for the application server to use when binding to the LDAP
repository.

If no name is specified, the application server binds anonymously. In most cases, bind DN and bind
password are needed. However, when anonymous bind can satisfy all of the required functions, bind DN
and bind password are not needed.

Bind password:

Specifies the password for the application server to use when binding to the LDAP repository.

Login properties:

Specifies the property names to use to log into the application server.

This field takes multiple login properties, delimited by a semicolon (;). For example, uid;mail. All login
properties are searched during login. If multiple entries or no entries are found, an exception is thrown. For
example, if you specify the login properties as uid;mail and the login ID as Bob, the search filter searches
for uid=Bob or mail=Bob. When the search returns a single entry, then authentication can proceed.
Otherwise, an exception is thrown.

Note: If you define multiple login properties, then the first login property is programmatically mapped to
the federated repositories principalName property. For example, if you set uid;mail as the login
properties, the LDAP attribute uid value is mapped to the federated repositories principalName
property. If you define multiple login properties, after login, the first login property is returned as the
value of the principalName property. For example, if you pass joe@yourco.com as the principalName
value and the login properties are configured as uid;mail, the principalName is returned as joe.

276 Securing applications and their environment

LDAP attribute for Kerberos principal name:

Specifies the LDAP attribute for Kerberos principal name. This field can be modified when Kerberos is
configured and it is one of the active or preferred authentication mechanisms.

Certificate mapping:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the
mapping.

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP repository.

If more than one LDAP entry matches the filter specification at run time, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

An example of a simple certificate filter is: uid=${SubjectCN}.

You can also specify multiple properties and values as part of the certificate filter. Two examples of
complex certificate filters are:

(&(cn=${IssuerCN}) (employeeNumber=${SerialNumber})

(& (issuer=${IssuerDN}) (serial=${SerialNumber}) (subjectdn=${SubjectDN}))

The left side of the filter specification is an LDAP attribute that depends on the schema that your LDAP
server is configured to use. The right side of the filter specification is one of the public attributes in your
client certificate. You can also use the UniqueKey certificate variable, which consists of the
base64-encoding of the MD5 hash of the subject DN and issuer DN. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuerxx} where xx is replaced by the characters that represent any valid component of the Issuer

Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subjectxx} where xx is replaced by the characters that represent any valid component of the Subject

Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.
v ${Version}

Require SSL communications:

Specifies whether secure socket communication is enabled to the LDAP server.

Chapter 6. Authenticating users 277

When enabled, the Secure Sockets Layer (SSL) settings for LDAP are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations, rather than
spreading them across the configuration documents.

Default: Enabled
Range: Enabled or Disabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Migrating a stand-alone LDAP repository to a federated repositories LDAP
repository configuration
When configuring the security for your application server, you might need to migrate a stand-alone LDAP
registry to a federated repositories LDAP repository configuration.

Before you begin

Note the specifications of your stand-alone LDAP repository that you want to migrate, for reference when
configuring the LDAP repository in federated repositories. To access these fields, on the administrative
console, click Security > Global security. To access these fields in a multiple security domain
environment, click Security > Security domains > DomainName, and then, under Security Attributes,
expand User Realm, and click Customize for this domain. Select a Realm type. and then click
Configure.

The following table shows the administrative console panels and fields of the stand-alone LDAP repository
configuration and their corresponding fields in a federated repositories LDAP repository configuration for
mapping.

Table 25. Mapping between a stand-alone LDAP repository configuration and a federated repositories LDAP
repository configuration. This table illustrates the mapping between a stand-alone LDAP repository configuration and
a federated repositories LDAP repository configuration.

Stand-alone LDAP repository configuration
LDAP repository in a federated repositories
configuration

Global security > Standalone LDAP registry

General properties – Primary administrative user name

Global security > Federated repositories

General properties – Primary administrative user name

Global security > Standalone LDAP registry

LDAP server – Type of LDAP server

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Directory Type

Global security > Standalone LDAP registry

LDAP server – Host

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Primary host name

278 Securing applications and their environment

|
|
|
|
|
|

Table 25. Mapping between a stand-alone LDAP repository configuration and a federated repositories LDAP
repository configuration (continued). This table illustrates the mapping between a stand-alone LDAP repository
configuration and a federated repositories LDAP repository configuration.

Stand-alone LDAP repository configuration
LDAP repository in a federated repositories
configuration

Global security > Standalone LDAP registry

LDAP server – Port

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Port

Global security > Standalone LDAP registry

LDAP server – Failover hosts

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Failover server used when primary is not
available

Global security > Standalone LDAP registry

LDAP server – Base distinguished name (DN)

Global security > Federated repositories > Repository
reference (Click Add Base entry to realm)

General properties – Distinguished name of a base entry
that uniquely identifies this set of entries in the realm

and

General properties – Distinguished name of a base entry
in this repository

Global security > Standalone LDAP registry

LDAP server – Search timeout

Global security > Federated repositories > Manage
repositories > repository_ID > Performance

General properties - Limit search time

Global security > Standalone LDAP registry

LDAP server – Custom properties

Global security > Federated repositories > Custom
properties

Global security > Standalone LDAP registry

LDAP server – Server user identity

Global security > Federated repositories

General properties – Server user identity

Global security > Standalone LDAP registry

Security – Bind distinguished name (DN)

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Bind distinguished name

Global security > Standalone LDAP registry

Security – Bind password

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Bind password

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Kerberos user filter

Global security > Federated repositories > Manage
repositories > repository_ID

Security – LDAP attribute used for Kerberos principal
name

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Certificate map mode

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Certificate mapping

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Certificate filter

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Certificate filter

Chapter 6. Authenticating users 279

The Realm name field under General Properties on the federated repositories LDAP configuration panel is
not listed in the previous table because it does not have a one-to-one correspondence with a field in the
stand-alone LDAP configuration panel. The host name and the port number represent the realm name for
the standalone LDAP server in the WebSphere Application Server cell. For information on changing the
realm name, see the topic Realm configuration settings.

The User Filter, Group Filter, User ID map, Group ID map, and Group member ID map fields also are not
listed in the previous table as they do not have a one-to-one correspondence with fields in the federated
repositories LDAP repository configuration panel. These LDAP attributes are set differently in the federated
repositories LDAP repository configuration and involve multiple steps. These settings are explained in
detail in the following sections and procedure.

About this task

Migrating from a stand-alone LDAP repository configuration to a federated repositories LDAP repository
configuration involves migrating the configuration parameters, most of which are straight forward as shown
in Table 1 in the previous section. Migrating the search filters is an important part of migrating a
stand-alone LDAP repository configuration to a federated repository LDAP configuration; therefore, the
concept and migration of LDAP search filters is described here in detail.

Stand-alone LDAP registry search filters follow the LDAP filter syntax, where you specify the attribute on
which the search is based and its value.

The user filter is used for searching the registry for users. It is used to authenticate a user by using the
attribute specified in the filter.

The group filter is used for searching the registry for groups. It specifies the property by which to look up
groups.

Examples of commonly used LDAP user filters: In the following examples of search filters, %v is
replaced with the corresponding search pattern of the
user or group at run time.

(&(uid=%v)(objectclass=ePerson))

Searches for users where the uid attribute matches the specified search pattern of the ePerson object
class.

(&(cn=%v)(objectclass=user))

Searches for users where the cn attribute matches the specified search pattern of the user object class.

(&(sAMAccountName=%v)(objectcategory=user))

Searches for users where the sAMAccountName attribute matches the specified search pattern of the user
object category.

(&(userPrincipalName=%v)(objectcategory=user))

Searches for users where the userPrinciplalName attribute matches the specified search pattern of the
user object category.

(&(mail=%v)(objectcategory=user))

Searches for users where the mail attribute matches the specified search pattern of the user object
category.

280 Securing applications and their environment

(&(|(sAMAccountName=%v)(userPrincipalName=%v))(objectcategory=user))

Searches for users where the sAMAccountName or the userPrincipalName matches the specified search
pattern of the user object category.

Examples of commonly used group filters:

(&cn=%v)(objectCategory=group)

Looks up groups based on their common names (cn).

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

Looks up groups based on their common names (cn) and by using the object class of either
groupOfNames or groupOfUniqueNames.

As shown in these examples, a stand-alone LDAP registry search filter consists of LDAP attributes and
object classes, based on which the search or login is performed.

You can also specify the LDAP attributes and object classes in the LDAP adapter configuration of
federated repositories, but they are configured differently and provide more flexibility. In federated
repositories the user is represented as PersonAccount entity type and group as Group entity type. Each
entity type can have its own RDN (Relative Distinguished Name) property (rdnProperties) and object class.
For example, the default RDN property of PersonAccount is uid, and the default RDN property of Group is
cn. The default object class mapping depends on the LDAP server type. For example, for Tivoli Directory
Server, the object class for PersonAccount is inetOrgPerson and object class for Group is groupOfNames.
PersonAccount can also have login properties. When a user logs in or a search is performed for a user in
a user registry, these login properties are matched with the pattern. For example, if the login properties are
uid and mail, then for the search pattern, a*, all the users who match uid=a* or mail=a* are returned.

gotcha: You can specify the value of User ID Map property (userIdMap) of the stand-alone LDAP
repository as the RDN property (rdnProperties) or the first login property (loginProperties) in
federated repositories. Though you can set both the RDN property and the login property in
federated repositories, it is sufficient if you set only the RDN property. The login property is
optional and you need to set it only if the login property is different from RDN property or if there
are more than one login properties. If both the RDN property and login property are set, the login
property takes precedence over RDN property.

Migrating search filters involves one or more of the following steps: setting the correct login properties,
mapping the attributes of the back-end repository to the federated repositories properties, setting the
object class, setting the search filter by using object class or object category, and setting the member or
membership attribute. This mapping and configuration for federated repositories is maintained in the
wimconfig.xml file.

The stand-alone LDAP registry search filter can be split into two parts:

v User or group attributes filter

v User or group object class or object category filter

For example, in the search filter, (&(cn=%v)(objectclass=user)):

v The attribute filter is (cn=%v)

v The object class filter is (objectclass=user)

These two filters are mapped separately in a federated repositories configuration:

v The attribute filter is mapped to the RDN properties or login properties configuration for user and to
RDN properties configuration for group.

Chapter 6. Authenticating users 281

|
|
|
|
|
|
|

v The object class filter is mapped to the entity type configuration of the LDAP adapter.

The default attribute and object class mapping is set based on the LDAP server type but additional steps
might be required to migrate these two filters:

v attribute filter:

– Setting either or both the RDN property and login properties (if applicable)

– Mapping the federated repository property to the LDAP attribute (if applicable)

v object class filter:

– Setting the object class for entity type (if applicable)

– Setting the search filter of entity type (if applicable)

Some of the steps in the following procedure include two examples. In these steps:

v Example 1 is applicable to the scenario where you are migrating the search filter (&(cn=
%v)(objectclass=ePerson)) from a stand-alone IBM Tivoli Directory Server LDAP repository to a
federated repositories LDAP repository with the identifier LDAPTDS.

v Example 2 is applicable to the scenario where you are migrating the search filter (&(|(sAMAccountName=
%v)(userPrincipalName=%v))(objectcategory=user)) from a stand-alone Microsoft Active Directory
LDAP repository to a federated repositories LDAP repository with the identifier LDAPAD.
sAMAccountName and userPrincipalName attributes are not defined in federated repositories, so these
attributes must be mapped to federated repository properties.

Procedure
1. Add the LDAP repository that you want to migrate to the federated repositories configuration.

See Table 1 in the Before you begin section of this topic, and follow the steps described in the topic
Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories. These steps include links to other procedures that you must complete such as:

v Adding an external repository in a federated repository configuration.

v Configuring supported entity types in a federated repository configuration.

v Configuring Lightweight Directory Access Protocol in a federated repository configuration.

After you complete these steps, the LDAP repository that you want to migrate will be successfully
configured in the federated repository configuration.

2. Set the login properties (if applicable).

Login properties are the property names that are used to log on to the WebSphere Application Server.
You can specify multiple login properties by using the semicolon (;) as a delimiter. The federated
repositories properties commonly used as login properties are uid, cn, sn, givenName, mail, and so on.

To set login properties on the administrative console, follow the steps in the topic Lightweight Directory
Access Protocol repository configuration settings, and apply the settings under the section, Login
properties.

Example 1: In the Login properties field, enter cn.

Example 2: In the Login properties field, enter uid;cn.

Complete Step 3 to map these properties to LDAP attributes.

3. Map the federated repository property to the LDAP attribute (if applicable).

If the LDAP attribute is not a federated repository property, then the login property that you defined
must be mapped to the LDAP attribute.

a. In the administrative console, click Global security > Federated repositories > Manage
repositories > repository_ID, and then, under Additional properties, click the LDAP attributes link.

282 Securing applications and their environment

b. If the attribute mapping exists, you must first delete the existing mapping for the LDAP attribute,
and then add a new mapping for the attribute. Select the checkbox next to the LDAP attribute
name and click Delete.

c. To add an attribute mapping, click Add, and select Supported from the drop-down menu. Enter the
LDAP attribute name in the Name field, the federated repositories property name in the Property
name field, and the entity type which applies the attribute mapping in the Entity types field.

Example 1: Because the federated repository property cn is implicitly mapped to the cn LDAP
attribute, no additional mapping is required.

Example 2: Here the search filter includes two LDAP attributes, sAMAccountName and
userPrincipalName.

v For the LDAP server type, Active Directory, the LDAP attribute sAMAccountName is
mapped by default to the federated repositories property, uid, as shown in the list of
attributes on LDAP attributes panel. Therefore, you do not have to execute the
addIdMgrLDAPAttr command to add an attribute configuration for sAMAccountName.

v If an attribute mapping for the LDAP attribute userPrincipalName exists, then delete the
existing attribute mapping before adding a new configuration.

a. Select the checkbox next to userPrincalName and click Delete.

b. Click Add, and select Supported from the drop-down menu.

c. In the Name field, enter userPrincipalName.

d. In the Property name field, enter cn.

e. In the Entity types field, enter PersonAccount.

4. Set the object class for an entity type (if applicable).

gotcha: Before executing this step, check the current mapping . If the object class mapping is already
set, skip this step.

To set the object class for an entity type on the administrative console, follow the steps in the topic
Lightweight Directory Access Protocol entity types settings, and apply the following settings under the
section, Object classes:

v Specify PersonAccount as the entity type name for user filters

v Specify Group as the entity type name for group filters.

Example 1: In the Entity type field, enter PersonAccount.

In the Object classes field, enter ePerson.

Example 2: In the Entity type field, enter PersonAccount.

In the Object classes field, enter user.

5. Set the search filter for the entity type (if applicable).

Federated repositories performs the search based on the object class setting. To change this default
setting and use object category as the filter, follow the steps in topic Lightweight Directory Access
Protocol entity types settings, and apply the settings under the section, Search Filter.

Example 1: Because the search is based on object class, no additional configuration is required.

Example 2: In the Search filter field, enter (objectcategory=user).

6. To migrate group filters, you must also configure the group attribute definition settings.

The steps to configure the group attribute definition settings through the administrative console are
specified in the topic Locating user group memberships in a Lightweight Directory Access Protocol
registry, under the section, LDAP Registry within a Federated Repositories Registry. You can also use

Chapter 6. Authenticating users 283

the wsadmin commands addIdMgrLDAPGroupDynamicMemberAttr or addIdMgrLDAPGroupMemberAttr
that are described in the topic IdMgrRepositoryConfig command group for the AdminTask object.

7. Save your configuration changes

8. Restart the application server.

Results

After completing these steps, your LDAP repository is configured for use within the federated repositories
configuration.

Adding an external repository in a federated repository configuration
Follow this task to add an external repository into a federated repository configuration.

Procedure
1. If the Lightweight Directory Access Protocol (LDAP) repository that you want to add to your federated

repository configuration is previously configured, select the corresponding Repository on the Repository
reference panel. To access the Repository reference panel, complete the following steps:

a. Click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure.

c. Click Add base entry to realm.

2. Enter a distinguished name for the realm base entry in the Distinguished name that uniquely
identifies... field. This base entry must uniquely identify the external repository in the realm. If multiple
repositories are included in the realm, use this field to define an additional distinguished name (DN)
that uniquely identifies this set of entries within the realm. For example, repositories LDAP1 and
LDAP2 might both use o=ibm,c=us as the base entry in the repository. Use the DN in this field to
uniquely identify this set of entries in the realm. For example: o=ibm,c=us for LDAP1 and o=ibm2,c=us
for LDAP2. The specified DN in this field maps to the LDAP DN of the base entry within the repository.

3. Enter the LDAP DN of the base entry within the repository in the Distinguished name of a base entry...
field. The base entry indicates the starting point for searches in this LDAP directory server. This entry
and its descendents are mapped to the subtree that is identified by this unique base name entry field.
For example, for a user with a DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the LDAP
base entry as any of the following options:

ou=Rochester, o=IBM, c=us or o=IBM, c=us or c=us

In most cases, this LDAP DN is the same as the distinguished name for the realm base entry.

If this field is left blank, then the subtree defaults to the root of the LDAP repository. Consult your
LDAP administrator to determine if your LDAP repository provides support to search from the root, or
create users and groups under the root without defining a suffix beforehand.

In WebSphere Application Server, the distinguished name is normalized according to the LDAP
specification. Normalization consists of removing spaces in the base distinguished name before or after
commas and equal symbols. An example of a non-normalized base distinguished name is o = ibm, c =
us or o=ibm, c=us. An example of a normalized base distinguished name is o=ibm,c=us.

4. If the LDAP repository that you want to add to your realm is not previously configured, complete the
following steps:

a. Click Add Repository on the Repository reference panel to configure the LDAP repository. See
step 1 to access the Repository reference panel.

b. Configure LDAP on the LDAP configuration panel, as described in “Configuring Lightweight
Directory Access Protocol in a federated repository configuration” on page 271.

c. Select the new Repository on the Repository reference panel.

5. Click OK.

284 Securing applications and their environment

Results

You have added a new or previously configured external repository into your federated repository
configuration.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 309.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a property extension repository in a federated repository
configuration
Follow this task to configure a property extension repository to store attributes that cannot be stored in
your Lightweight Directory Access Protocol (LDAP) server.

About this task

For security and business reasons, you might want to prohibit write operations to your repositories.
However, applications calling the federated repository configuration might need to store additional
properties for the entities. A federated repository configuration provides a property extension repository,
which is a database regardless of the type of main profile repositories, for a propertylevel join
configuration. For example, a company that uses an LDAP directory for its internal employees and a
database for external customers and business partners might not allow write access to its LDAP and its
database. The company can use the property extension repository in a federated repository configuration
to store additional properties for the people in those repositories, excluding the user ID. When an
application uses the federated repository configuration to retrieve an entry for a person, the federated
repository configuration transparently joins the properties of the person that is retrieved from either the
LDAP or the customer's database with the properties of the person that is retrieved from the property
extension repository into a single logical person entry.

When you configure a property extension repository, you can supply a valid data source, a direct
connection configuration, or both. The system first tries to connect by way of the data source. If the data
source is not available, then the system uses the direct access configuration.

Restriction: You cannot configure a property extension repository in a mixed version deployment
manager cell.

Procedure
1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 305.

2. If you are adding new properties (including properties that are stored in the property extension
repository) to the schema, you must do the following before you create the property extension
repository.

a. Open or create the wimxmlextension.xml file under the profile_root\config\cells\cell_name\
wim\model directory.

Chapter 6. Authenticating users 285

Attention: Make sure the editor is on the deployment manager node.

b. Add the schema definition of the new property. The following sample wimxmlextension.xml file
adds a new property called ibmotherEmail to both the Person and PersonAccount entity types. This
new property type is "String" and it is multiplevalued.

<sdo:datagraph xmlns:sdo="commonj.sdo"
xmlns:wim="http://www.ibm.com/websphere/wim">

<wim:schema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-otherEmail">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-personalTitle">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-middleName">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String" multiValued="true"
propertyName="ibm-generationQualifier">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-regionalLocale">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-timeZone">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-preferredCalendar">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

286 Securing applications and their environment

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-alternativeCalendar">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-firstDayOfWeek">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-firstWorkDayOfWeek">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-gender">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-hobby">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
</wim:schema>
</sdo:datagraph>

Available data types are defined in com.ibm.websphere.wim.SchemaConstants. For example:
/**
* Instance Class: java.lang.String
*/
String DATA_TYPE_STRING = "String";
/**
* Instance Class: int
*/
String DATA_TYPE_INT = "Int";
/**
* Instance Class: java.lang.Object
*/
String DATA_TYPE_DATE = "Date";
/**
* Instance Class: dobjava.lang.Object
*/
String DATA_TYPE_ANY_SIMPLE_TYPE = "AnySimpleType";
/**
* Instance Class: java.lang.String
*/
String DATA_TYPE_ANY_URI = "AnyURI";
/**
* Instance Class: java.lang.boolean
*/
String DATA_TYPE_BOOLEAN = "Boolean";
/**
* Instance Class: long
*/
String DATA_TYPE_LONG = "Long";

Chapter 6. Authenticating users 287

/**
* Instance Class: double
*/
String DATA_TYPE_DOUBLE = "Double";
/**
* Instance Class: short
*/
String DATA_TYPE_SHORT = "Short";

c. Follow the example inside this file to define the new property definitions. The schema file for
wimlaproperties.xml is wimdbproperty.xsd and is in the same directory. It can be used for
reference.

3. Run the setupIdMgrPropertyExtensionRepositoryTables command to create the property extension
repository and to add the new properties.

4. Set up the property extension repository using wsadmin by following the procedure discussed in
“Setting up an entry mapping repository, a property extension repository, or a custom registry database
repository using wsadmin commands” on page 290; ignore the "Before you begin" options.

5. Configure the property extension repository by completing the following steps:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories, and click Configure.

c. Click Property extension repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

Oracle
oracle.jdbc.driver.OracleDriver

Informix®

com.informix.jdbc.IfxDriver

Microsoft SQL Server
com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

g. Supply the database URL that is used to access the property extension repository with JDBC in the
Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL
syntax.

Values include:

DB2 jdbc:db2://<hostname>:<port>/<DB2location>

Oracle
jdbc:oracle:thin:@<hostname>:<port>:<dbname>

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server
jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix
jdbc:informixsqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Specify the entity retrieval limit in the Entity retrieval limit field. The entity retrieval limit is the
maximum number of entities that the system can retrieve from the property extension repository
with a single database query. The default value is 200.

k. Click OK.

288 Securing applications and their environment

Results

After completing these steps, your federated repository configuration, which includes a property extension
repository, is configured.

What to do next
1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 90. As the final step, validate this setup by clicking Apply on the Global security panel.
2. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Property extension repository settings:

Use this page to configure a property extension repository that is used to store attributes that cannot be
stored in existing repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Additional properties, click Property extension repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access
the property extension repository.

Default: jdbc/wimDS

Database type:

Specifies the type of database that is used for the property extension repository.

Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping
repository.

Values include:

DB2 COM.ibm.db2.jcc.DB2Driver

Oracle
oracle.jdbc.driver.OracleDriver

Informix
com.informix.jdbc.IfxDriver

DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Chapter 6. Authenticating users 289

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Database URL:

Specifies the web address for the property extension repository.

Values include:

DB2 jdbc:db2:wim

DB2 for z/OS
jdbc:db2://hostname:port/DB2location

Informix
jdbc:informix-sqli://host_name:port/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect
jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Derby jdbc:derby:c:\derby\wim

Oracle
jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the property extension
repository.

Password:

Specifies the password that is used to enable the database administrator to access the property extension
repository.

Entity retrieval limit:

Specifies the maximum number of entities that the system can retrieve from the property extension
repository with a single database query.

Data type: Integer
Default: 200

Setting up an entry mapping repository, a property extension repository, or a custom registry
database repository using wsadmin commands:

You can set up an entry mapping repository, a property extension repository, or a custom registry database
repository using wsadmin commands.

Before you begin

If you are setting up an entry mapping repository, begin with the steps described in “Configuring an entry
mapping repository in a federated repository configuration” on page 306.

290 Securing applications and their environment

If you are setting up a property extension repository, begin with the steps described in “Configuring a
property extension repository in a federated repository configuration” on page 285.

About this task

When you create a repository, use the appropriate wsadmin commands to define the database schema
and to populate the database property definitions.

Procedure

1. Create the database. You can use any relational database product. The following examples give you
tips for specific vendors.

a. For DB2, open a DB2 command window or command center and enter the following:
db2 create database <name> using codeset UTF-8 territory US

Enter the following database tuning commands:
db2 update database configuration for <name> using applheapsz 1024
db2 update database configuration for <name> using stmtheap 4096
db2 update database configuration for <name> using app_ctl_heap_sz 2048
db2 update database configuration for <name> using locklist 1024
db2 update database configuration for <name> using indexrec RESTART
db2 update database configuration for <name> using logfilsiz 1000
db2 update database configuration for <name> using logprimary 12
db2 update database configuration for <name> using logsecond 10
db2 update database configuration for <name> using sortheap 2048
db2set DB2_RR_TO_RS=yes

b. Optional: For Informix databases using dbaccess, enter the following command:
CREATE DATABASE <name> WITH BUFFERED LOG

c. Optional: For Oracle databases, the database should already exist during Oracle installation (for
example, orcl).

2. Run the setupIdMgrEntryMappingRepositoryTables command, the
setupIdMgrPropertyExtensionRepositoryTables command, or the setupIdMgrDBTables command (for
custom registry repositories) by doing the following:

a. Start WebSphere Application Server.

b. Open a command window and go to the <WAS>/Profiles/<PROFILE_NAME>bin directory.

c. Start wsadmin.

d. Type the necessary commands as described below.

What to do next

Using these commands, you can:

v Specify the arguments on the command line.

v Specify the arguments in a file.

The -file option enables you to specify a file in which some or all of the parameters are specified. To use
the -file argument on the command line, enter the full path to the file. Parameters in the file must be
specified in key=value pairs and each must be on its own line. If a parameter is specified on both the
command line and in the file, the value on the command line takes precedence.

Tips for diagnosing argument errors:

v If an argument is not properly specified on the command line or in the file, a message is returned which
states that the argument was not properly specified. This might mean that the argument was not
specified at all or was required for a given configuration but was not specified.

v If the argument was not specified at all, check that the parameter is specified on the command line or in
the file, and that it is properly spelled and has matching case.

v If the argument was required for a given configuration but was not specified, it is possible that a value is
not required solely by the command but is required for the type of database and configuration you are
setting.

Chapter 6. Authenticating users 291

For example, if you set the dn, wasAdminId, or wasAdminPassword parameters, you must also specify the
dbDriver parameter.

Additionally, if the dn, wasAdminId or wasAdminPassword parameters are specified, and the databaseType
is not a Apache Derby v10.2 database, then the dbAdminId and dbAdminPassword parameters must also
be specified.

Important: To use Apache Derby v10.2 for your repository, you must run the Apache Derby Network
Server framework. This framework supports multiple concurrent JVM connections with the
database, whereas the embedded framework works with only a single JVM, which cannot fulfill
most workload-balancing requirements. Running the Network Server framework for Apache
Derby v10.2 requires the Derby Client driver files and classes.

The setupIdMgrDBTables command:

The setupIdMgrDBTables command creates, and populates the tables in the database that you previously
created. Arguments are case-sensitive, both through the command line and the file.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

dbPropXML (String)
The location of database repository property definition XML file.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

dn (String)
The default organization uniqueName to replace. For example: o=yourco. If it is not set, o=Default
Organization is used.

wasAdminId (String)
The WebSphere Application Server admin user ID. The ID should be a short name, not a
uniqueName. For example: wasadmin. After creation, the uniqueName is uid=wasadmin,
<defaultOrg>.

wasAdminPassword (String)
The WebSphere Application Server admin user password. If wasAdminId is set, then this parameter
is mandatory.

saltLength (Integer)
The salt length of the randomly generated salt for password hashing.

292 Securing applications and their environment

encryptionKey (String)
The password encryption key. Set the password encryption key to match the encryption key in the
wimconfig.xml file for the repository. If the encryption key is not set, the default is used.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

tablesBufferPool (String)
The buffer pool variable of default tables in DB2 for z/OS. The default value is BP0.

LOBtablesBufferPool (String)
The buffer pool variable of auxiliary LOB tables in DB2 for z/OS. The default value is BP0.

indextablesBufferPool (String)
The buffer pool variable of unique index tables in DB2 for z/OS. The default value is BP0.

dbSchema (String)
The database schema where you want to create the federated repository tables. The default value
is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

The deleteIdMgrDBTables command:

The deleteIdMgrDBTables command deletes the tables in the database.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

Chapter 6. Authenticating users 293

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The default
value is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

The setupIdMgrPropertyExtensionRepositoryTables command:

The setupIdMgrPropertyExtensionRepositoryTables command sets up the property extension repository.
The default behavior includes creating and populating the tables in the database.

This command is available in connected or local mode.

Parameters:

schemaLocation (String, Required)
The location of the app_server_root/etc/wim/setup directory.

laPropXML (String)
The location of the property extension repository definition XML file.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

294 Securing applications and their environment

skipDBCreation (Boolean)
Specifies whether to create the tables in the property extension repository.

If you set this parameter value to false or do not specify a value, then the command follows the
default behavior of creating and populating the tables in the database.

If you set this parameter value to true, manually set up the property extension repository before
running this command so that the tables get populated. For more information on this manual
process, see the appropriate topic on manually setting up the property extension repository for
your database.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

tablesBufferPool (String)
The buffer pool variable of default tables in DB2 for z/OS. The default value is BP0.

LOBtablesBufferPool (String)
The buffer pool variable of auxiliary LOB tables in DB2 for z/OS. The default value is BP0.

indextablesBufferPool (String)
The buffer pool variable of unique index tables in DB2 for z/OS. The default value is BP0.

dbSchema (String)
The database schema where you want to create the federated repository tables. The default value
is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

The deleteIdMgrPropertyExtensionRepositoryTables command:

The deleteIdMgrPropertyExtensionRepositoryTables command deletes the tables in the property extension
database.

This command is available in the connected or local mode.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

Chapter 6. Authenticating users 295

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The default
value is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

The setupIdMgrEntryMappingRepositoryTables command:

The setupIdMgrEntryMappingRepositoryTables command sets up the entry mapping repository, which
includes creating and populating the tables of the repository.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

296 Securing applications and their environment

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

tablesBufferPool (String)
The buffer pool variable of default tables in DB2 for z/OS. The default value is BP0.

dbSchema (String)
The database schema where you want to create the federated repository tables. The default value
is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

The deleteIdMgrEntryMappingRepositoryTables command:

The deleteIdMgrEntryMappingRepositoryTables command deletes the tables in the entry mapping
repository.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

Chapter 6. Authenticating users 297

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The default
value is the default schema of the database according to the database type. Typically, the default
schema is the namespace of the current database user.

tablespacePrefix (String)
The tablespace prefix. The maximum length allowed for this string is 3 characters. The value of
tablespacePrefix parameter is required when you use the dbSchema parameter. It is specific to
DB2 for z/OS and will be ignored for any other database type.

Sample command line usage:

To set up a database using the command line, enter the following:
$AdminTask setupIdMgrDBTables {-schemaLocation "C:/WAS/etc/wim/setup" -dbPropXML
"C:/WAS/etc/wim/setup/wimdbproperties.xml" -databaseType db2
-dbURL jdbc:db2:wim -dbAdminId db2admin
-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd
-reportSqlError true}

To delete database tables using the command line, enter the following:
$AdminTask deleteIdMgrDBTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin
-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd
-reportSqlError true}

To set up a property extension repository using the command line, enter the following:
$AdminTask setupIdMgrPropertyExtensionRepositoryTables {-schemaLocation
"C:/WAS/etc/wim/setup"
-laPropXML "C:/WAS/etc/wim/setup/wimlaproperties.xml" -databaseType db2
-dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver com.ibm.db2.jcc.DB2Driver
-dbAdminPassword db2adminPwd -reportSqlError true}

To delete a property extension repository using the command line, enter the following:
$AdminTask deleteIdMgrPropertyExtensionRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup "
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To set up an entry mapping repository using the command line, enter the following:
$AdminTask setupIdMgrEntryMappingRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To delete an entry mapping repository using the command line, enter the following:
$AdminTask deleteIdMgrEntryMappingRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

Sample CLI Usage using -file option:

To set up a database with the -file option using the example params.txt file below, enter the following:
$AdminTask setupIdMgrDBTables {–file C:/params.txt -dbPropXML
"C:/OverrideDBPropParam/wimdbproperties.xml"}

Params.txt
schemaLocation=C:/WAS/etc/wim/setup
dbPropXML=C:/Program Files/IBM/WebSphere/AppServer/profiles/default
/config/cells/mycell/wim/config/wimdbproperties.xml
laPropXML=C:/Program Files/IBM/WebSphere/AppServer/profiles/default
/config/cells/mycell/wim/config/wimlaproperties.xml
databaseType=db2
dbURL=jdbc:db2:wim
dbDriver=com.ibm.db2.jcc.DB2Driver
reportSqlError=true
dn=o=db.com
dbAdminId=db2admin
dbAdminPassword=dbPassword
wasAdminId=wasadmin
wasAdminPassword=wasadmin1

298 Securing applications and their environment

To set up a database with the -file option using a file only, enter the following:
$AdminTask setupIdMgrDBTables {-file C:/params.txt}

Note: The use of a file only works if -file is the only parameter specified on the command line. If other
parameters are specified then the file is completely ignored, and only the parameters on the
command line are used to execute the command.

Manually setting up the property extension repository for federated repositories:

You can use the createIdMgrPropExtDbTables script to create tables in the property extension repository
for federated repositories.

Before you begin

The following databases are supported by the script when the database exists on a distributed operating
system:

v IBM DB2

v Apache Derby

v IBM Informix Dynamic Server

v Oracle 11g

v Microsoft SQL Server

For a list of the supported database versions, see the IBM WebSphere Application Server detailed system
requirements.

To use the IBM DB2 on z/OS or IBM DB2 on iSeries® database, read about manually setting up the
property extension repository in DB2.

If you do not have WebSphere Application Server installed on the same system on which you are setting
up the database, you must copy the following files from a system where WebSphere Application Server is
installed to the system on which you are setting up the database. Ensure that you replicate the same
directory structure within the setup directory. The db_type variable represents one of the following directory
names: db2, oracle, informix, derby, or sqlserver.
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.sh
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.bat
app_server_root\etc\wim\setup\lookaside\db_type\dbclean.sql
app_server_root\etc\wim\setup\lookaside\db_type\schema.sql
app_server_root\etc\wim\setup\lookaside\db_type\primarykeys.sql
app_server_root\etc\wim\setup\lookaside\db_type\indexes.sql
app_server_root\etc\wim\setup\lookaside\db_type\references.sql
app_server_root\etc\wim\setup\lookaside\keys.sql
app_server_root\etc\wim\setup\lookaside\bootstrap.sql

Specifying the database schema:

You can specify the database schema where you want to create the federated repository tables when you
are manually setting up the property extension repository.

If you want to use the default schema of the database, you must execute the following commands without
specifying the DBSCHEMA parameter. Typically, the default schema is the namespace of the current
database user.

Complete these steps to replace the schema variable in the SQL files with the actual database schema
name. If WebSphere Application Server and the database are not on the same system, set the
SCHEMA_LOCATION value to the location where you copied the SQL files.

Chapter 6. Authenticating users 299

Windows operating systems:

1. Open a command window.

2. Change to the app_server_root\etc\wim\setup directory.

3. Enter the following commands:
set SCHEMA_LOCATION=app_server_root\etc\wim\setup\lookaside
set DBTYPE=<db_type>
set DBSCHEMA=dbschemaname
set SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
ws_ant.bat -f app_server_root\etc\wim\setup\filterbuild.xml

where the value of <db_type> is db2, derby, informix, oracle, or sqlserver.

Note: : If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with the
name as the value not substituted under the current directory. The output shows where the files are
copied.

AIX®, HP-UX, Linux, and Solaris operating systems:

1. Open a command window

2. Change to the app_server_root/etc/wim/setup directory.

3. Enter the following commands:
export SCHEMA_LOCATION=app_server_root/etc/wim/setup/lookaside
export DBTYPE=<db_type>
export DBSCHEMA=dbschemaname
export SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
ws_ant.sh -f app_server_root/etc/wim/setup/filterbuild.xml

where the value of <db_type> is db2, derby, informix, oracle, or sqlserver.

Note: If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with the
name as the value not substituted under the current directory. The output shows where the files are
copied.

About this task

The following notes apply to specific databases:

v Oracle 11g

– If you did not create the default database when you installed Oracle product, you must manually
create the database before you run the createIdMgrPropExtDbTables script. The value of the
ORACLE_SID variable is the same value as the name of the database.

– If you want to create the tables in the schema that you specified using DBSCHEMA (described in the
previous section, Specifying the database schema) ensure that you create the specified schema in
this database before you run the createIdMgrPropExtDbTables script.

– On the AIX, HP-UX, Linux, and Solaris operating systems, run the createIdMgrPropExtDbTables
script either as an Oracle user or as a root user with database administrator (dba) rights and
appropriate permissions to run SQL queries as a system database administrator (sysdba).

v IBM DB2

– On the Windows operating systems, you must initialize the DB2 environment before you run the
createIdMgrPropExtDbTables script. At the Windows command prompt, enter db2cmd to open a new
DB2 command window and run the createIdMgrPropExtDbTables batch file from this prompt.

v Microsoft SQL Server

– Open a command window, change to the app_server_root\bin directory, and enter the following
commands to replace the variables in the SQL files. If WebSphere Application Server and the
database are not on the same system, set the SCHEMA_LOCATION value to the location where
you copied the SQL files.

300 Securing applications and their environment

set SCHEMA_LOCATION=app_server_root\etc\wim\setup\lookaside
set DBTYPE=sqlserver
set SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
set DBOWNER=dbo
ws_ant.bat -f app_server_root\etc\wim\setup\filterbuild.xml

Note: If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with
the name as the value not substituted under the current directory. The output shows where the
files are copied.

The following default instance is created as a part of the database installation:

v DB2: DB2

v Informix: demo_on

v SQL Server: %computername%

The Informix database is created with the following environment:
CLIENT_LOCALE=EN_US.CP1252
DB_LOCALE=EN_US.8859-1
SERVER_LOCALE=EN_US.CP1252
DBLANG=EN_US.CP125

Procedure

Run the createIdMgrPropExtDbTables.sh script or createIdMgrPropExtDbTables.bat script to create the
tables in the property extension repository.
Run the script from the following location or from the directory to which you previously copied the script
file:

AIX, HP-UX, Linux, and Solaris operating systems
app_server_root/etc/wim/setup/bin/createIdMgrPropExtDbTables.sh

Windows
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.bat

Use the following parameters to specify the values that you require when you run the script:

-b Use this parameter to specify the home directory of the database.

This value is a string value that is required for all database types.

-d Use this parameter to specify the schema of the database.

The value of this parameter should be the same value that you specified for DBSCHEMA
(described in the previous section, Specifying the database schema).

This value is a string value that is optional for DB2, Derby, and SQL Server databases, if you want
to specify the database schema where you want to create the federated repository tables. This
value is not required for Oracle and Informix databases.

-h Use this parameter to display the help information. (Optional)

-i Use this parameter to specify the home directory of the database instance.

This value is a string value that is required for a DB2 database only; do not specify a value for
other database types.

This parameter applies to the AIX, HP-UX, Linux, and Solaris operating systems.

-n Use this parameter to specify the name of the database to which you are connecting.

For an Oracle database, the value of the ORACLE_SID variable is the same as the name of the
database.

Chapter 6. Authenticating users 301

This value is a string value that is required for all database types.

-p Use this parameter to specify the password of the database administrator.

This value is a string value that is required for DB2, Oracle, Informix, and SQL Server databases
only; do not specify a value for a Derby database.

-s On AIX, HP-UX, Linux, and Solaris operating systems, this parameter specifies the location of the
app_server_root/etc/wim/setup directory, or the location to which the updated files are copied
according to the steps in the previous section, Specifying the database schema.

On Windows operating systems, this parameter specifies the location of the app_server_root\etc\
wim\setup directory, or the location to which the updated files are copied according to the steps in
the previous section, Specifying the database schema.

This value is a string value that is required for all database types.

-t Use this parameter to specify a database type.

v On the AIX, HP-UX, Linux, and Solaris operating systems, specify one of the following valid
values: db2, oracle, informix, derby.

v On the Windows operating systems, specify one of the following valid values: db2, oracle,
informix, derby, or sqlserver.

This value is a string value that is required for all database types.

-u Use this parameter to specify the user ID of the database administrator.

This value is a string value that is required for DB2, Oracle, Informix, and SQL Server databases
only; do not specify a value for a Derby database.

Example

Run the appropriate script for your database and operating system to create tables in the property
extension repository. Use the sample values to specify database parameters. If the database exists on a
system where WebSphere Application Server is not installed, the following examples assume that your
PATH variable includes an entry for the location to which you copied the script files. For the AIX, HP-UX,
Linux, and Solaris operating systems, the entry might be the app_server_root/etc/wim/setup/bin/ or the
/setup/bin/ directory. For Windows operating systems, the entry might be the app_server_root\etc\wim\
setup\bin\ or the \setup\bin\ directory.

The examples in the following section are organized into multiple lines for illustration purposes only.

On the AIX, HP-UX, Linux, and Solaris operating systems:

Oracle databases
createIdMgrPropExtDbTables.sh
-b /space/oracle/product/10.2.0/Db_1/
-n orcl
-u system
-p manager
-s /opt/IBM/WebSphere/AppServer1/etc/wim/setup
-t oracle

Informix databases
createIdMgrPropExtDbTables.sh
-b /opt/IBM/informix/
-n demo_on
-u informix
-p informix
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t informix

302 Securing applications and their environment

DB2 databases
createIdMgrPropExtDbTables.sh
-b /opt/ibm/db2/V9.1/
-n db2inst1
-p db2inst1
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t DB2
-u db2inst1
-i /home/db2inst1/

Derby databases
createIdMgrPropExtDbTables.sh
-b /opt/ibm/derby/
-n test11
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t derby

On the Windows operating systems:

Oracle databases
createIdMgrPropExtDbTables.bat
-b "c:\oracle\product\10.2.0\Db_1"
-n orcl
-u system
-p manager
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"
-t oracle

Informix databases
createIdMgrPropExtDbTables.bat
-b "c:\Program Files\IBM\informix"
-n demo_on
-u informix
-p informix
-s "c:\Program Files\IBM\WebSphere\AppServer\etc\wim\setup"
-t informix

DB2 databases
createIdMgrPropExtDbTables.bat
-t db2
-u db2admin
-p sec001ret#
-n test23
-b "c:\Program Files\IBM\SQLLIB"
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"

Derby databases
createIdMgrPropExtDbTables.bat
-t derby
-b "c:\Derby"
-n test11
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"

Microsoft SQL Server databases
createIdMgrPropExtDbTables.bat
-t sqlserver
-u sa
-p sec001ret#
-n sqlsrv
-b "c:\Progra~1\Micros~1\90\Tools"
-s "C:\Progra~1\IBM\WebSphere\AppServer1\etc\wim\setup"

What to do next

Run the setupIdMgrPropertyExtensionRepositoryTables command with the skipDBCreation parameter set
to true to populate the tables that are created. For more information, read about setting up an entry

Chapter 6. Authenticating users 303

mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands.

Manually setting up the property extension repository for DB2 for iSeries or DB2 for z/OS:

Use this task to set up the property extension repository for DB2 for iSeries or DB2 for z/OS.

Before you begin

The information in this topic applies in the following scenarios:

v The application server and the database both exist on the IBM i operating system.

v The application server and the database both exist on the z/OS operating system.

v The application server exists on a distributed operating system, but the database exists on either the
IBM i or z/OS operating system.

If you do not have WebSphere Application Server installed in the system on which you are setting up the
database, copy the following files from a system where WebSphere Application Server is installed to the
system on which you are setting up the database:

DB2 for iSeries
app_server_root/etc/wim/setup/lookaside/db2iseries/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/schema.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

DB2 for z/OS
app_server_root/etc/wim/setup/lookaside/db2zos/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2zos/schema.sql
app_server_root/etc/wim/setup/lookaside/db2zos/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2zos/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2zos/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

About this task

For information about how to create a database and run SQL queries in DB2 for iSeries, see the DB2
Universal Database™ for iSeries in the IBM iSeries Information Center.

For information about how to create a database and run SQL queries in DB2 for z/OS, see the Information
Management Software for z/OS Solutions Information Center.

Procedure

1. Open a command window.

2. Change to the app_server_root/bin directory

3. Enter the following commands to replace the variables in the SQL files:

a. export SCHEMA_LOCATION=app_server_root/etc/wim/setup/lookaside

Set the SCHEMA_LOCATION value to the location where you copied the SQL files if you do not
have WebSphere Application Server installed on the same system on which you are setting up the
database.

b. export DBTYPE=<db_type>

where the value of <db_type> is db2iseries or db2zos

304 Securing applications and their environment

c. To specify the database schema where you want to create the federated repository tables use the
DBSCHEMA command. If you want to use the default schema, which is typically the namespace of
the current database user, do not specify the DBSCHEMA command.
export DBSCHEMA=dbschemaname

d. export SCHEMA_DEST_LOCATION=<schema_dest_location>

where <schema_dest_location> is the location where the updated SQL files with replaced variables
should be copied. If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a
directory with the name as the unsubstituted value under the current directory. The output indicates
where the files are copied to.

e. Specify the buffer pool to use for creating the federated repository tables. The buffer pool value
that you specify should exist in the database. The default buffer pool value in the database is BP0.
Even if you want to use the default buffer pool value, you must still execute the following
commands and specify the default value of BP0 explicitly:
export DEFAULT_TABLE=<buffer pool value for default tables>
export LOB_TABLE=<buffer pool value for LOB tables>
export INDEX_TABLE=<buffer pool value for unique index tables>

f. export DBNAME=zos

g. ./ws_ant.sh -f app_server_root/etc/wim/setup/filterbuild.xml

4. Start the DB2 server.

5. Create a database.

6. Run the SQL files, which were previously referenced, to create the tables for the property extension
repository. If you are setting up the database on the same system on which the application server is
installed, the files are located in the following locations:

DB2 for iSeries
app_server_root/etc/wim/setup/lookaside/db2iseries/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/schema.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

DB2 for z/OS
app_server_root/etc/wim/setup/lookaside/db2zos/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2zos/schema.sql
app_server_root/etc/wim/setup/lookaside/db2zos/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2zos/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2zos/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

Otherwise, run the SQL files from the location to which you copied the files. If you executed the
commands to substitute variables according to the steps in the previous section, Specifying the
database schema, the SQL files are copied to the location you specified for
SCHEMA_DEST_LOCATION. If SCHEMA_DEST_LOCATION is not set, the updated SQL files are
copied to a directory with the name as the unsubstituted value under the current directory. The output
shows where the files are copied.

What to do next

Run the setupIdMgrPropertyExtensionRepositoryTables command with the skipDBCreation parameter set
to true to populate the tables that are created. For more information, read about setting up an entry
mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands.

Configuring the WebSphere Application Server data source:

Chapter 6. Authenticating users 305

Installed applications use data sources as resources to obtain connection to relational databases. To
create these connections between an application and a relational database, WebSphere Application Server
uses the driver implementation classes that are encapsulated by the JDBC provider, which is an object
that represents vendor-specific JDBC driver classes to WebSphere Application Server. For access to a
relational databases, applications use the JDBC drivers and data sources that you configure for
WebSphere Application Server.

Procedure

1. Start the WebSphere Application Server administrative console.

2. Click Security -> Global security.

3. On the Configuration panel, expand Java Authentication and Authorization Service and click J2C
authentication data.

4. Click New and enter the Alias, User ID and Password.

5. Click Ok.

6. On the WebSphere Application Server administrative console, expand Resources. Expand JDBC
then click JDBC Providers.

7. In the Scope section, choose the Node level from the drop-down list.

8. Click New to create a new JDBC driver.

9. Select, in this order, the Database type, Provider type, Implementation type and Name. The Name
automatically fills based on the implementation type you choose.

10. Click Next and configure the database class path. Click Next.

11. On the Summary page, click Finish.

12. Click Save to save your selections. The JDBC providers page then appears.

13. On the WebSphere Application Server administrative console, click Data sources.

14. Click New to create a new data source. Enter the Data source name and the JNDI name, and choose
the authentication alias from the drop-down list in Component-managed authentication alias. The
JNDI name should match the datasourceName value set in wimconfig.xml. By default, it is
jdbc/wimDS.

Note: For Apache Derby v10.2 embedded databases, leave the Component-managed authentication
alias field set to NONE.

15. Click Next.

16. Enter the Database name and deselect the checkbox, Use this data source in container managed
persistence (CMP). Click Next.

17. On the Summary page, click Finish.

18. The Data sources page displays. Click Save, Then select the check box for the authentication alias
previously created. Click Test Connection. The message should indicate that the connection is
successful. Ignore any warnings, and then click Next.

19. Save the configurations, and restart WebSphere Application Server.

Configuring an entry mapping repository in a federated repository configuration
Follow this task to configure an entry mapping repository that is used to store data for managing profiles
on multiple repositories.

About this task

An entry-level join means that the federated repository configuration uses multiple repositories
simultaneously and recognizes the entries in the different repositories as entries representing distinct
entities. For example, a company might have a Lightweight Directory Access Protocol (LDAP) directory
that contains entries for its employees and a database that contains entries for business partners and
customers. By configuring an entry mapping repository, a federated repository configuration can use both

306 Securing applications and their environment

the LDAP and the database at the same time. The federated repository configuration hierarchy and
constraints for identifiers provide the aggregated namespace for both of those repositories and prevent
identifiers from colliding.

When you configure an entry mapping repository, you can supply a valid data source, a direct connection
configuration, or both. The system first tries to connect by way of the data source. If the data source is not
available, then the system uses the direct access configuration.

Restriction: You cannot configure an entry mapping repository in a mixed-version deployment manager
cell.

Procedure
1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 305.

2. Set up the entry mapping repository using wsadmin. See “Setting up an entry mapping repository, a
property extension repository, or a custom registry database repository using wsadmin commands” on
page 290; ignore the "Before you begin" options.

3. Configure the entry mapping repository into the federated repository by doing the following:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure.

c. Click Entry mapping repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for z/OS
com.ibm.db2.jcc.DB2Driver

Informix
com.informix.jdbc.IfxDriver

DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Oracle
oracle.jdbc.driver.OracleDriver

g. Supply the database URL that is used to access the property extension repository with JDBC in the
Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL
syntax.

Values include:

DB2 jdbc:db2:wim

Informix
jdbc:informix-sqli://host_name:1526/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect
jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Chapter 6. Authenticating users 307

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Oracle
jdbc:oracle:thin:@host_name:port:dbname

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Click OK.

Results

After completing these steps, your federated repository configuration, which includes an entry mapping
repository, is configured.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Entry mapping repository settings:

Use this page to configure an entry mapping repository that is used to store data for managing profiles on
multiple repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Additional properties, click Entry mapping repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access
the entry mapping repository.

Default: jdbc/wimDS

Database type:

Specifies the type of database that is used to access the entry mapping repository.

Default: DB2

308 Securing applications and their environment

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping
repository.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for z/OS
com.ibm.db2.jcc.DB2Driver

DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Informix
com.informix.jdbc.IfxDriver

Oracle
oracle.jdbc.driver.OracleDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Database URL:

Specifies the web address for the entry mapping repository.

Values include:

DB2 jdbc:db2:wim

Derby jdbc:derby:c:\derby\wim

DataDirect Connect
datadirect:sqlserver://:host_name1433;databaseName=wim;selectMethod=cursor;

Oracle
jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Informix
jdbc:informix-sqli://host_name:port/wim:INFORMIXSERVER=IFXServerName;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the entry mapping repository.

Password:

Specifies the password that is used to enable the database administrator to access the entry mapping
repository.

Configuring supported entity types in a federated repository configuration
Follow this task to configure supported entity types for user and group management.

Chapter 6. Authenticating users 309

About this task

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The supported entity types are Group, OrgContainer, and PersonAccount. A
Group entity represents a simple collection of entities that might not have any relational context. An
OrgContainer entity represents an organization, such as a company or an enterprise, a subsidiary, or an
organizational unit, such as a division, a location, or a department. A PersonAccount entity represents a
human being. You cannot add or delete the supported entity types, because these types are predefined.

The Base entry for the default parent determines the repository location where entities of the specified
type are placed on write operations by user and group management.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click either
Manage Users or Manage Groups.

Note: You must restart the server or dmgr if the federated repository has changed before using the
Manage Users option. Otherwise, user or group changes made to the repository could be lost after
restart.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Click Supported entity types to view a list of predefined entity types.

4. Click the name of a predefined entity type to change its configuration.

5. Supply the distinguished name of a base entry in the repository in the Base entry for the default parent
field. This entry determines the default location in the repository where entities of this type are placed
on write operations by user and group management.

6. Supply the relative distinguished name (RDN®) properties for the specified entity type in the Relative
Distinguished Name properties field. Possible values are cn for Group, uid or cn for PersonAccount,
and o, ou, dc, and cn for OrgContainer. Delimit multiple properties for the OrgContainer entity with a
semicolon (;).

The following list outlines known requirements and limitations that apply to specific Lightweight
Directory Access Protocol (LDAP) servers:

Using Microsoft Active Directory as the LDAP server

v Unless you modify the LDAP schema to use uid, you must specify cn in the Relative
Distinguished Name (RDN) properties field for the PersonAccount entity type.

v Secure Sockets Layer communications must be enabled to create users with passwords. To
select the Require SSL communications option, see the topic “Configuring Lightweight
Directory Access Protocol in a federated repository configuration” on page 271.

v Typically the value of user is specified as the value in the Object classes field for the
PersonAccount entity type and the value of group is specified as the value in the Object
classes field for the Group entity type.

Using a Lotus Domino Enterprise Server as the LDAP server

v Typically, the value of cn is specified in the Relative Distinguished Name (RDN) properties
field for the PersonAccount entity type. The value of uid is also acceptable.

v Typically, both inetOrgPerson and dominoPerson are used as values in the Object classes
field for the PersonAccount entity type.

Using Sun ONE Directory Server as the LDAP server

v Typically, groupOfUniqueNames is specified as the value in the Object classes field for the
Group entity type.

310 Securing applications and their environment

7. Click OK.

Results

After completing these steps, your federated repository configuration, which uses supported entity types, is
configured.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply on the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Supported entity types collection:

Use this page to list entity types that are supported by the member repositories or to select an entity type
to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Chapter 6. Authenticating users 311

Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Managing repositories in a federated repository configuration
Follow this topic to manage repositories in a federated repository configuration.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories. Repositories that are configured in the system are
listed in the collection panel. This list includes repositories that are configured using the federated
repository functionality as well as repositories that are created using wsadmin commands described in
the topic IdMgrRepositoryConfig command group for the AdminTask object.

4. Optional: Click Add to configure a new external repository. The Lightweight Directory Access Protocol
(LDAP) repository configuration settings are described in detail in “Configuring Lightweight Directory
Access Protocol in a federated repository configuration” on page 271.

Restriction: You cannot add a database repository using the administrative console. This repository
configuration is supported by using wsadmin commands only.

312 Securing applications and their environment

5. Optional: Click Delete to delete a repository that you specified previously using the administrative
console or wsadmin commands.

Restriction: You cannot delete the built-in, file-based repository from the collection panel.

6. Optional: Select one of the LDAP repository identifier entries to view or update an external repository
that is configured in the system previously. The steps to configure LDAP settings are described in
detail in “Configuring Lightweight Directory Access Protocol in a federated repository configuration” on
page 271.

Restriction: While database repositories that are configured in the system are listed in the collection
panel, you cannot update a database repository using the administrative console.
Updates to a database repository are supported by using wsadmin commands only.

7. Click OK.

Results

After completing these steps, the collection panel under Managing repositories reflects a current list of
repositories that are configured in your system.

What to do next
1. To add one or more external repositories that are listed on this collection panel into the realm, see

“Managing the realm in a federated repository configuration” on page 248.

2. After configuring the federated repositories, click Security > Global security to return to the Global
security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Important: Be aware of any changes made to built-in, file-based repositories that are part of the federated
repositories configuration. You must replicate these changes to the managed nodes to ensure
that your network deployment configuration is synchronized. See “Replicating changes to a
built-in, file-based repository” for the steps needed to perform this replication.

Replicating changes to a built-in, file-based repository:

Changes to built-in, file-based repositories are not automatically replicated to managed nodes in a
federated repositories configuration. You need to use the administrative console to replicate the changes
you make to a built-in, file-based repository.

About this task

The network deployment support in a federated repositories configuration only updates the in-memory
state of the processes that are running on the managed nodes. Because WebSphere Application Server
synchronizes the file systems, the network deployment support does not attempt to update the file systems
of the managed nodes.

You must synchronize the node configuration to replicate the changes to the built-in, file-based repository.

Chapter 6. Authenticating users 313

Procedure

1. In the administrative console, click System Administration > Nodes. to access the nodes panel.

2. On the Nodes panel, select all the relevant nodes for which the changes to the built-in, file-based
repository need to be made.

3. Click Full Resynchronize. The resynchronize operation resolves conflicts among configuration files
and can take several minutes to complete.

Results

After completing these steps, your federated repository configuration of managed nodes reflects the
changes to the built-in, file-based repository.

Manage repositories collection:

Use this page to list repositories that are configured in the system or to select a repository to view or
change its configuration properties. You can add or delete external repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Add:

Select to add a new LDAP, custom or file repository.

Repository reference settings:

Use this page to configure a repository reference. A repository reference is a single repository that
contains a set of identity entries that are referenced by a base entry into the directory information tree.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Click Add base entry to realm.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository:

314 Securing applications and their environment

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Expand the drop-down list to display a list of previously defined repository identifiers.

Distinguished name that uniquely identifies this set of entries in the realm:

Specifies the distinguished name (DN) that uniquely identifies this set of entries in the realm.

If multiple repositories are included in the realm, it is necessary to define an additional distinguished name
that uniquely identifies this set of entries within the realm. Overlapping base entries are not supported. You
should not define two base entries where one is c=us, and the other is o=myorg,c=us in the same realm;
otherwise a search returns duplicate results.

Distinguished name of a base entry in this repository:

Specifies the Lightweight Directory Access Protocol (LDAP) distinguished name (DN) of the base entry
within the repository. The entry and its descendents are mapped to the subtree that is identified by the
unique base name entry field.

If this field is left blank, then the subtree defaults to the root of the LDAP repository.

Increasing the performance of the federated repository configuration
Follow this page to manage the realm in a federated repository configuration.

Before you begin

The settings that are available on the Performance panel are independent options that pertain specifically
to the federated repositories functionality. These options do not affect your entire WebSphere Application
Server configuration.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure.

3. Under Related items, click Manage repositories > repository_name.

4. Under Additional properties, click Performance.

5. Optional: Select the Limit search time option and enter the maximum number of milliseconds that
the Application Server can use to search through your Lightweight Directory Access Protocol (LDAP)
entries.

6. Optional: Select the Limit search returns option and enter the maximum number of entries to return
that match the search criteria.

7. Optional: Select the Use connection pooling option to specify whether the Application Server can
store separate connections to the LDAP server for reuse.

8. Optional: Select the Enable context pool option to specify whether multiple applications can use the
same connection to the LDAP server. If you select the option, specify the initial, preferred, and
maximum number of entries that can use the same connection. The Enable context pool option can
be enabled either in conjunction with the Use connection pool option or separately. If this option is
disabled, a new connection is created for each context. You can also select the Context pool times
out option and specify the number of seconds after which the entries in the context pool expire.

9. Optional: Set the Maximum size value of the context pool to zero (0).

10. Optional: Select the Cache the attributes option and specify the maximum number of search
attribute entries. This option enables WebSphere Application Server to save the LDAP entries so that
it can search the entries locally rather than making multiple calls to the LDAP server. Click the Cache

Chapter 6. Authenticating users 315

times out option that is associated with the Cache the attributes option to specify the maximum
number of seconds that the Application Server can save these entries.

11. Optional: Select the Cache the search results option and specify the maximum number of search
result entries. This option enables WebSphere Application Server to save the results of a search
inquiry instead of making multiple calls to the LDAP server to search and retrieve the results of that
search. Click the Cache times out option that is associated with the Cache the search results
option to specify the maximum number of seconds that the Application Server can save the results.

12. Optional: Create the root DataObject object locally using the
com.ibm.websphere.wim.util.SDOHelper.createRootDataObject method instead of the
com.ibm.websphere.wim.ServiceProvider.createRootDataObject method.

Results

These options are available to potentially increase the performance of your federated repositories
configuration. However, the any increase in performance is dependant upon your specific configuration.

Lightweight Directory Access Protocol performance settings:

Use this page to minimize impacts to performance by adding opened connections and contexts to
internally maintained pools and reusing them. Also minimize performance impacts by maintaining internal
caches of retrieved data.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Performance.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Limit search time:

Specifies the timeout value in milliseconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Data type: Integer
Units: Milliseconds
Default: 0
Range: Equal to or greater than 0. A value of 0 specifies that no

search time limit exists.

Limit search returns:

Specifies the maximum number of entries that are returned in a search result.

Data type: Integer
Units: Entries
Default: 0
Range: Equal to or greater than 0. A value of 0 specifies that no

search return limit exists.

316 Securing applications and their environment

Use connection pooling:

Specifies whether to utilize the connection pooling function, which is provided in the Software Development
Kit (SDK).

Connection pooling is maintained by the Java run time. It is configured by system properties.

Default: Disabled
Range: Enabled or Disabled

Enable context pool:

Specifies whether context pooling is enabled to the LDAP server. To improve performance, use the context
pool in combination with connection pooling.

Default: Enabled
Range: Enabled or Disabled

Initial size:

Specifies the number of context instances in the pool when the pool is initially created by the LDAP
repository.

Data type: Integer
Default: 1
Range: 1 to 50

Preferred size:

Specifies the preferred number of context instances that the context pool maintains. Both in-use and idle
context instances contribute to this number.

Data type: Integer
Default: 3
Range: 0 to 100

Maximum size:

Specifies the maximum number of context instances that can be maintained concurrently by the context
pool. Both in-use and idle context instances contribute to this number.

When the pool size reaches the maximum size, no new context instances can be created for a new
request. The new request is blocked until a context instance is released or removed. The request
periodically checks for context instances that are available in the pool. A request for a pooled context
instance uses an existing pooled and idle context instance or a newly created pooled context instance.

A maximum pool size of 0 indicates that the context pool can maintain an infinite number of context
instances.

Data type: Integer
Default: 0

Context pool times out:

Chapter 6. Authenticating users 317

Specifies the number of seconds for the context pool to time out and remove idle context instances.

A timeout value of 0 indicates that the context pool does not time out context instances.

Data type: Integer
Default: 0

Distribution policy:

Specifies the distribution policy for the cache in a clustered environment, which is one of the following:

None Sends out new entries, both ID and data, and updates to those entries.

Push Requests data from other servers in the cluster when that data is not locally present.

Push and pull
Sends out IDs for new entries and requests from other servers in the cluster entries for IDs that
were previously broadcast. The dynamic cache always sends out cache entry invalidations.

Cache the attributes:

Specifies whether to cache the attributes that are returned from the LDAP server.

Default: Enabled
Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

Data type: Integer
Default: 4000
Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

A timeout value of 0 indicates that the cached search results stay in the cache until update operations are
made.

Data type: Integer
Units: Seconds
Default: 1200
Range: Equal to or greater than 0

Cache the search results:

Specifies whether to cache the search results that are returned from the LDAP server.

Default: Enabled
Range: Enabled or Disabled

Cache size:

318 Securing applications and their environment

Specifies the maximum size of the cache.

Data type: Integer
Default: 2000
Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

A timeout value of 0 indicates that the cached search results stay in the cache until update operations are
made.

Data type: Integer
Units: Seconds
Default: 600
Range: Equal to or greater than 0

Using custom adapters for federated repositories
When the custom adapters for federated repositories are part of the default realm, the users and groups
can be managed using wsadmin commands or the administrative console.

About this task

If custom adapters for federated repositories are part of the default realm, you use the administrative
console to manage the users and groups in the realm.

Note: The default parent for PersonAccount and Group entities needs to be the same as the base entry
of the custom adapter.

To view this administrative console page, complete the following steps:

v In the administrative console, click Security > Global security.

v Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

v Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

Procedure
1. In the administrative console, click Users and Groups to access users and groups panel.

2. Click Manage Groups to test the basic functions of the custom adapter with respect to custom
adapters for federated repositories.

3. Click Manage Users to test the basic functions of the custom adapter with respect to custom adapters
for federated repositories.

Note: You must restart the server or dmgr if the federated repository has changed before using the
Manage Users option. Otherwise, user or group changes made to the repository could be lost
after restart.

Chapter 6. Authenticating users 319

Results

After completing these steps, you will have ensured that the custom adapter is being used properly.

What to do next

Adjustments to the custom adapter can be made by using the wsadmin tool to make configuration
changes. See “Configuring custom adapters for federated repositories using wsadmin” on page 322 for
more details.

Sample custom adapters for federated repositories examples:

Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.
These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A
virtual member manager custom adapter needs to implement the same SPI.

Developing custom adapters for federated repositories

Out of the box adapters for federated repositories provide File, LDAP and Database adapters for your use.
All these adapters implement the com.ibm.wsspi.wim.Repository SPI. See the
com.ibm.wsspi.wim.Repository SPI for more information. As you develop a virtual member manager
custom adapter, you need to implement the same SPI.

Custom adapters for federated repositories must not depend on any WebSphere Application Server
components, such as data sources and enterprise beans. These WebSphere Application Server
components require that security is initialized and enabled prior to startup. If your implementation of
custom adapters for federated repositories needs to use data sources to connect to a database, you need
to use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later
time, switch to using the data sources when the data source is available.

There are examples of suggested behavior and requirements of custom adapters for federated repositories
that you can find in the sample code.

A sample custom adapter for federated repositories

A sample custom adapter implementation has been provided as an example. The custom adapter is based
on file repository. The sample source code and class files are bundled in vmmsampleadapter.jar. The
vmmsampleadapter.jar can be downloaded at this location: http://www.ibm.com/developerworks/websphere/
downloads/samples/vmmsampleadapter.html.

Contents of the vmmsampleadapter.jar file are as follows:

v Class files for the sample adapter:

– com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.class

– com/ibm/ws/wim/adapter/sample/SampleFileAdapter.class

– com/ibm/ws/wim/adapter/sample/XPathHelper.class

v Source code for the sample adapter:

– src/com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.java

– src/com/ibm/ws/wim/adapter/sample/SampleFileAdapter.java

– src/com/ibm/ws/wim/adapter/sample/XPathHelper.java

Note: The sample files should not be used in the production environment. You should make a copy of
these files, rename them, and update them based on your specific adapter implementation. Refer to
the Javadoc in the source code for more information.

320 Securing applications and their environment

http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html

com/ibm/ws/wim/sample/adapter/AbstractAdapterImpl.java
Provides an abstract implementation class which handles most of the repository independent
internal operations for the adapter and defines some simple abstract methods that should be
implemented by the custom adapter. For most cases, you may not need to change this file.

com/ibm/ws/wim/sample/adapter/SampleFileAdapter.java
Extends from the AbstractAdapterImpl class and implements the abstracts method. This class
implements the abstract methods using file as the repository. Adapter providers can use this class
as a reference to implement these methods specific to their adapters.

com/ibm/ws/wim/sample/adapter/XPathHelper.java
Defines a helper class to parse the XPath search expression and build the search tree. This
helper class also contains the method to evaluate the search expression. If your repository
supports a search expression, then you need to convert XPath expression to an expression that
your repository can process and let your repository evaluate the expression. This helper class
evaluates the search expression based on the use of dataobjects. You can overwrite the
evaluate() method to perform the evaluation using other objects, such as java.util.Map.

Some utility classes have been provided to help adapter providers. Most of these utility methods are used
in the sample adapter. Refer to http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html for more details.

Establishing custom adapters for federated repositories
Out of the box adapters for federated repositories provide File, LDAP, and Database adapter for your use.
These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI).
Custom adapters for federated repositories need to implement the same SPI.

Before you begin

Refer to the Repository SPI implementation information in the related references for information about the
custom adapters for federated repositories SPI.

Refer to the sample custom adapter code that is available in the vmmsampleadapter.jar file. The JAR file
contains the sample customer adapter code in the src/ directory. The vmmsampleadapter.jar can be
downloaded at this location: http://www.ibm.com/developerworks/websphere/library/samples/
vmmsampleadapter.html

Note:

v The sample that is provided is intended to familiarize you with the features of custom adapters
for federated repositories and the handling of various types of dataobjects. Do not use this
sample in an actual production environment.

v Copy the AbstractAdapterImpl class and rename it before making changes. Make sure that the
new name is appropriate for your adapter.

Custom adapters for federated repositories must not depend on any WebSphere Application Server
components, such as data sources and enterprise beans. These WebSphere Application Server
components require that security is initialized and enabled prior to startup. If your implementation of the
virtual member manager custom adapter needs to use data sources to connect to a database, you need to
use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later
time, switch to using the data sources when the data source is available.

Procedure
1. Build your implementation.

Chapter 6. Authenticating users 321

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html

Note: EMF JAR files contain version number in their names, such as v200607270021. Make sure to
change the version number to reflect your installation.

To compile your code, you need the following JAR files in the classpath:

v app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar

v app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.common_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.sdo_2.2.0.v200607270021.jar

Here is an example:
app_server_root/java/bin/javac -classpath
app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar;
app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.
v200607270021.jar;app_server_root
/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar;
app_server_root/plugins/org.eclipse.emf.common_2.2.1.
v200607270021.jar;app_server_root/plugins/org.
eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar;
app_server_root/plugins/org.eclipse.emf.ecore.sdo_2.2.0.v200607270021.jar
your_implementation_file.java

2. Copy the generated class files or the packaged JAR file to the product classpath. The preferred
location is the app_server_root/lib/ext directory. This should be copied to the classpaths of all the
product processes (cell and all NodeAgents).

3. Configure your custom adapter by following the steps in “Configuring custom adapters for federated
repositories using wsadmin.”

4. Test your custom adapter by following the steps in “Using custom adapters for federated repositories”
on page 319

What to do next

“Configuring custom adapters for federated repositories using wsadmin” provides details about configuring
your custom adapter with the wsadmin tool.

Configuring custom adapters for federated repositories using wsadmin
You can use the Jython or Jacl scripting language with the wsadmin tool to define custom adapters in the
federated repositories configuration file.

Before you begin

Shut down the WebSphere Application Server and the wsadmin command window.

About this task

The federated repositories configuration file, wimconfig.xml, is shipped with WebSphere Application Server
6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/config
directory.

Note: For additional information about the commands to use for this topic, see the IdMgrRepositoryConfig
command group for the AdminTask object topic.

Use the following steps to add a custom adapter to any federated repositories configuration file and to any
realm defined within the configuration file.

322 Securing applications and their environment

Procedure
1. Open the wimconfig.xml file with a text editor.

2. Add a new config:repositories element to the file. This element should be placed before the
config:realmConfiguration element.

The following example configures a custom repository to use the
com.ibm.ws.wim.adapter.sample.SampleFileAdapter class and sets the SampleFileRepository
repository as the identifier:

<config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"
id="SampleFileRepository"/>

3. Save the wimconfig.xml file and close the text editor.

4. Copy the vmmsampleadapter.jar file that is provided to app_server_root/lib.

5. Enter the following command to start the wsadmin tool:
wsadmin –conntype none

6. Disable paging in the common repository configuration. Set the supportPaging parameter for the
updateIdMgrRepository command to false to disable paging.

Note: You must perform this step because the sample adapter does not support paging.

The following examples use the SampleFileRepository repository as the identifier for the custom
repository.

Using Jython:
AdminTask.updateIdMgrRepository(’-id SampleFileRepository -supportPaging false’)

Using Jacl:
$AdminTask updateIdMgrRepository {-id SampleFileRepository -supportPaging
false}

Note: A warning will appear until the configuration of the sample repository is complete.

7. Add the necessary custom properties for the adapter. Use the setIdMgrCustomProperty command
repeatedly to add multiple properties. Use this command once per property to add multiple properties
to your configuration. You must use both the name and value parameters to add the custom property
for the specified repository. For example, to add a custom property of fileName, enter the following
command.

Using Jython:
AdminTask.setIdMgrCustomProperty(’-id SampleFileRepository -name fileName
-value "c:\sampleFileRegistry.xml"’)

Using Jacl:
$AdminTask setIdMgrCustomProperty {-id SampleFileRepository -name fileName
-value "c:\sampleFileRegistry.xml"}

8. Add a base entry to the adapter configuration. Use the addIdMgrRepositoryBaseEntry command to
specify the name of the base entry for the specified repository. For example:

Using Jython:
AdminTask.addIdMgrRepositoryBaseEntry(’-id SampleFileRepository -name
o=sampleFileRepository’)

Using Jacl:
$AdminTask addIdMgrRepositoryBaseEntry {-id SampleFileRepository -name
o=sampleFileRepository}

9. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the
realm with the repository:

Using Jython:
AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository’)

Using Jacl:
$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository}

10. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin tool.

Chapter 6. Authenticating users 323

Using Jython:
AdminConfig.save()
exit

Using Jacl:
$AdminConfig save
exit

The following example displays the complete text of the newly-revised wimconfig.xml file:
<!--
Begin Copyright

Licensed Materials - Property of IBM

virtual member manager

(C) Copyright IBM Corp. 2005 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

End Copyright
-->
<sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:config="http://www.ibm.com/websphere/wim
/config" xmlns:sdo="commonj.sdo">
<config:configurationProvider maxPagingResults="500" maxSearchResults="4500"

maxTotalPagingResults="1000"
pagedCacheTimeOut="900" pagingEntityObject="true" searchTimeOut="600000">

<config:dynamicModel xsdFileName="wimdatagraph.xsd"/>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="Group">
<config:rdnProperties>cn</config:rdnProperties>

</config:supportedEntityTypes>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="OrgContainer">
<config:rdnProperties>o</config:rdnProperties>
<config:rdnProperties>ou</config:rdnProperties>
<config:rdnProperties>dc</config:rdnProperties>
<config:rdnProperties>cn</config:rdnProperties>

</config:supportedEntityTypes>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="PersonAccount">
<config:rdnProperties>uid</config:rdnProperties>

</config:supportedEntityTypes>
<config:repositories xsi:type="config:FileRepositoryType" adapterClassName="com.ibm.
ws.wim.adapter.file.was.FileAdapter"

id="InternalFileRepository" supportPaging="false" supportSorting="false" messageDigestAlgorithm="SHA-1">
<config:baseEntries name="o=defaultWIMFileBasedRealm"/>

</config:repositories>
<config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"
id="SampleFileRepository">
<config:CustomProperties name="fileName" value="c:\sampleFileRegistry.xml"/>
<config:baseEntries name="o=sampleFileRepository"/>

</config:repositories>
<config:realmConfiguration defaultRealm="defaultWIMFileBasedRealm">
<config:realms delimiter="@" name="defaultWIMFileBasedRealm" securityUse="active">
<config:participatingBaseEntries name="o=defaultWIMFileBasedRealm"/>
<config:participatingBaseEntries name="o=sampleFileRepository"/>
<config:uniqueUserIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>
<config:userSecurityNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>
<config:userDisplayNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>
<config:uniqueGroupIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>
<config:groupSecurityNameMapping propertyForInput="cn" propertyForOutput="cn"/>
<config:groupDisplayNameMapping propertyForInput="cn" propertyForOutput="cn"/>

</config:realms>
</config:realmConfiguration>

</config:configurationProvider></sdo:datagraph>

11. Restart the application server.

Configuring the user registry bridge for federated repositories using wsadmin
scripting
The user registry bridge is configured like other custom adapters. You can use the Jython or Jacl scripting
language with the wsadmin scripting tool to define the user registry bridge in the federated repositories
configuration.

Before you begin

Shut down WebSphere Application Server and the wsadmin command window.

324 Securing applications and their environment

Important: If you are migrating from the stand-alone user registry on the local operating system to
federated repositories on the local operating system, you must first configure the current user
registry under federated repositories. For more information, see Managing the realm in a
federated repository configuration.

Authorization failures might occur if users or groups are mapped to roles before migration and you use
those users or groups after migrating to user registry bridge. This situation occurs because the mapping
contains registry-specific information. After migration, re-map the users or groups to avoid authorization
failures.

About this task

For additional information about the commands to use for this topic, see IdMgrRepositoryConfig command
group for the AdminTask object.

Use the following steps to add a user registry bridge to any federated repositories configuration and to any
realm that is defined within the configuration.

Procedure
1. Start the wsadmin scripting tool. You can use the following command to start the wsadmin scripting

tool:
wsadmin –conntype none

2. Use the createIdMgrCustomRepository command to add a new repository configuration for the user
registry bridge.

The following example configures a custom repository to use the
com.ibm.ws.wim.adapter.urbridge.URBridge class and sets urbRACF as the identifier:

Using Jython:
AdminTask.createIdMgrCustomRepository(’-id urbRACF
-adapterClassName com.ibm.ws.wim.adapter.urbridge.URBridge’)

Using Jacl:
$AdminTask createIdMgrCustomRepository {-id urbRACF
-adapterClassName com.ibm.ws.wim.adapter.urbridge.URBridge}

gotcha: The user registry bridge handles requests to one user registry only. Therefore, if you define
multiple repositories, each user registry implementation must have a separate instance of the
user registry bridge and you must define each implementation as a separate repository with a
unique repository ID..

The Resource Access Control Facility (RACF) manages all the RACF attributes; therefore,
you do not need to add any custom properties to use the user registry bridge adapter with
RACF.

3. Add a base entry to the user registry bridge configuration. Use the addIdMgrRepositoryBaseEntry
command to specify the name of the base entry for the specified repository. For example:

Using Jython:
AdminTask.addIdMgrRepositoryBaseEntry(’-id urbRACF
-name o=local’)

Using Jacl:
$AdminTask addIdMgrRepositoryBaseEntry {-id urbRACF
-name o=local}

4. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the
realm with the repository.

Note: The default realm name is defaultWIMFileBasedRealm. If this realm name was previously
renamed, use the new realm name instead of defaultWIMFileBasedRealm. For example, to

Chapter 6. Authenticating users 325

ensure consistency, you can set the realm name of the federated repository configuration to be
the same name as the local operating system user registry as specified in the security.xml file.
For information about how to set the realm name, see Realm configuration settings.

Use the following command:

Using Jython:
AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm
-baseEntry o=local’)

Using Jacl:
$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm
-baseEntry o=local}

5. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin scripting tool:

Using Jython:
AdminConfig.save()
exit

Using Jacl:
$AdminConfig save
exit

6. Configure the System Authorization Facility (SAF) mapping module to ensure the property availability
of SAF authorization.

For more information about how to configure a SAF mapping module, see Installing and configuring a
custom System Authorization Facility mapping module for WebSphere Application Server, where a
sample SAF mapping module is provided for you to install and use. If you want to customize the
sample SAF mapping module for federated repositories, see Configuring a custom System
Authorization Facility (SAF) mapping module for federated repositories.

Note: Some additional steps might be required if RACF is configured in a realm other than the
defaultWIMFileBasedRealm. When a new realm is created, some properties take defaults that
are not the same as those used by defaultWIMFileBasedRealm and are not appropriate for use
with a federated RACF user registry. You must use the setIdMgrRealmURAttrMapping command
to set the following values:

v The value of userSecurityNameMapping property, propertyForOutput parameter must be set
to principalName.

v The value of groupSecurityNameMapping property, propertyForOutput parameter must be set
to cn.

For more information on how to use the setIdMgrRealmURAttrMapping command, see
IdMgrRealmConfig command group for the AdminTask object.

7. Restart the application server.

Results

The following code is an example from a wimconfig.xml file configured for a user registry bridge accessing
the local operating system registry using RACF:
<config:repositories xsi:type="config:FileRepositoryType"

adapterClassName="com.ibm.ws.wim.adapter.file.was.FileAdapter"
id="InternalFileRepository" supportPaging="false"
messageDigestAlgorithm="SHA-1">

<config:baseEntries name="o=defaultWIMFileBasedRealm"/>
</config:repositories>
<config:repositories adapterClassName="com.ibm.ws.wim.adapter.urbridge.URBridge"

id="urbRACF" supportPaging="false">
<config:baseEntries name="o=local"/>

</config:repositories>
<config:realmConfiguration defaultRealm="defaultWIMFileBasedRealm">

<config:realms delimiter="/" name="defaultWIMFileBasedRealm" securityUse="active">
<config:participatingBaseEntries name="o=defaultWIMFileBasedRealm"/>
<config:participatingBaseEntries name="o=local"/>
<config:uniqueUserIdMapping propertyForInput="uniqueName"
propertyForOutput="uniqueName"/>

326 Securing applications and their environment

<config:userSecurityNameMapping propertyForInput="principalName"
propertyForOutput="principalName"/>

<config:userDisplayNameMapping propertyForInput="principalName"
propertyForOutput="principalName"/>

<config:uniqueGroupIdMapping propertyForInput="uniqueName"
propertyForOutput="uniqueName"/>

<config:groupSecurityNameMapping propertyForInput="cn"
propertyForOutput="cn"/>

<config:groupDisplayNameMapping propertyForInput="cn" propertyForOutput="cn"/>
</config:realms>

</config:realmConfiguration>

User registry bridge for federated repositories:

The user registry bridge is a read-only adapter that provides an interface between federated repositories
and an underlying user registry implementation, which can be either a local operating system user registry
or a custom user registry implementation.

The user registry bridge enables IBM WebSphere Application Server applications to use your user registry
implementation. It can work with any user registry that implements the
com.ibm.websphere.security.UserRegistry interface, without knowing the details of its implementation. This
capability makes the bridge versatile and allows it to connect to, and use, various registries.

The user registry bridge allows access to the same repository information without any platform-specific
implementation. Thus, it eliminates the need to have a specialized user registry bridge for each operating
system.

You can federate and configure the local operating system user registry, a custom user registry, or both, as
a federated repository. The user registry bridge handles user registry-related requests from federated
repositories, makes appropriate calls to the underlying user registry implementation, and returns data that
is formatted according to the federated repositories specifications.

Therefore, to use the user registry bridge you must configure your user registry under federated
repositories. This configuration can map the properties in the underlying user registry to the properties for
the federated repository. You can also configure any user registry specific information, if required. For
information about how to configure the user registry bridge, see Configuring the user registry bridge for
federated repositories using wsadmin scripting.

The following figure illustrates the difference between configuring a federated repository user registry with
and without the user registry bridge.

IBM
WebSphere
Application

Server

Local operating system
(Windows NT/SAF/UNIX)

LDAP user registry

Federated repositories
user registry

WebSphere
Application Server

custom user registry

LDAP adapter

File adapter

Database adapter

LDAP repository

File repository
(in-built)

Federated repositories
database repository

Figure 5. Configuring a federated repository user registry without the user registry bridge

Chapter 6. Authenticating users 327

As shown in the previous figure, using the same adapter, which is the user registry bridge, you can
configure multiple user registries under federated repositories. For example, you can configure a local
operating system user registry and one or more custom user registries.

Limitations

The following limitations exist:

v You can use the user registry bridge only for read-only operations, such as authentication and search
functions. You cannot perform write operations such as create, delete, or modify users and groups. An
attempt to perform write operations results in an exception, which notifies the user that the operation is
not supported by the bridge. This limitation exists because the user registry bridge does not have direct
access to the repository. Instead, the bridge uses an underlying existing user registry implementation
that is read-only; hence, it might not be able to fulfill requests for certain properties that exist in the
federated repositories.

v The user registry bridge does not support a stand-alone Lightweight Directory Access Protocol (LDAP)
user registry. LDAP repositories are supported as a standard federated repositories adapter with read
and write capabilities.

v Some of the properties that are placed in control data objects are not relevant to the user registry bridge
as they are not applicable in the underlying repository.

– The properties ignored for GroupMembershipControl and GroupMemberControl data objects are
searchBases, timeLimit, treeView, expression, and level.

– The properties ignored for SearchControl data objects are searchBases and timeLimit. The property
part of the expression, such as uid and mail, is ignored as you can search WebSphere Application
Server user registry entities with security names only. The expression is parsed to get the entity type
and the pattern with which the search must be performed.

Supported user registries

WebSphere Application Server applications can access the user registry properties of the following user
registry implementations as a read-only repository:

v Local operating system user registry

v Custom user registry

IBM
WebSphere
Application

Server

Local operating system
(Windows NT/SAF/UNIX)

LDAP user registry

Federated repositories
user registry

WebSphere
Application Server

custom user registry

LDAP adapter

File adapter

Database adapter

LDAP repository

File repository
(in-built)

Federated repositories
database repository

User registry
bridge

Local operating system
(Windows NT/SAF/UNIX)

WebSphere
Application Server

custom user registry

User registry
bridge

Figure 6. Configuring a federated repository user registry with the user registry bridge

328 Securing applications and their environment

Configuring Lightweight Directory Access Protocol entity types in a federated
repository configuration
Follow this task to configure Lightweight Directory Access Protocol (LDAP) entity types in a federated
repository configuration.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.
During LDAP configuration, based on the selected LDAP server type, some defaults and mappings are
set in the configuration. When the selected LDAP server type is custom, no default is set, and you
must set all of the mappings manually. To avoid setting all of the mappings manually, choose a
non-custom LDAP server type (for example, IBM Directory Server or SunOne) which matches closely
to your LDAP server.

Note:

v If you click Add to specify a new external repository, you must first complete the required
fields and click Apply before you can proceed to the next step.

v If you decide to use a custom LDAP server type, you must use the command-line interface to
create the entity types. Read about IdMgrRepositoryConfig command group for the
AdminTask object for more information.

After you create the entity types, you can use the administrative console to modify these
entities. You cannot use the administrative console to create entity types for a custom LDAP
server type.

5. Under Additional properties, click LDAP entity types.

6. View the entity types that are supported by the member repositories, or select an entity type to view or
change its configuration properties.

7. Supply the object classes that are mapped to this entity type in the Object classes field. LDAP entries
that contain one or more of the object classes belong to this entity type.

8. Supply the search bases that are used to search this entity type. The search bases specified must be
subtrees of the base entry in the repository. For example, you can specify the following search bases,
where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

9. Supply the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or
(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external
LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN)
properties are used to generate the search filter. For information on RDN properties, see “Configuring
supported entity types in a federated repository configuration” on page 309.

Results

After completing these steps, LDAP entity types are configured for your LDAP repository.

Chapter 6. Authenticating users 329

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the
member repositories or to select an LDAP entity type to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported
by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

330 Securing applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

The search bases specified must be subtrees of the base entry in the repository. For example, you can
specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an
external LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties
are used to generate the search filter.

Configuring group attribute definition settings in a federated repository
configuration
Follow this task to configure group definition settings in a federated repository configuration.

Before you begin

Because group attribute definition settings apply only to a Lightweight Directory Access Protocol (LDAP)
repository, you must first configure an LDAP repository. For more information, see “Managing repositories
in a federated repository configuration” on page 312.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

Chapter 6. Authenticating users 331

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields
and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Supply the name of the group membership attribute in the Name of group membership attribute field.
Only one membership attribute can be defined for each LDAP repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For
example, memberOf is the name of the membership attribute that is used in Active Directory. The
group membership attribute contains values that reference groups to which this entry belongs. If UserA
belongs to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished
name of GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this
attribute. The LDAP repository can look up groups by searching the group member attributes, though
the performance might be slower.

7. Select the scope of the group membership attribute. The default value is Direct.

Direct The membership attribute contains direct groups only. Direct groups are the groups that
contain the member. For example, if Group1 contains Group2 and Group2 contains User1,
then Group2 is a direct group of User1, but Group1 is not a direct group of User1.

Nested
The membership attribute contains both direct groups and nested groups.

All The membership attribute contains direct groups, nested groups, and dynamic members.

Results

After completing these steps, group attribute definition settings are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Group attribute definition settings:

Use this page to specify the name of the group membership attribute. Every Lightweight Directory Access
Protocol (LDAP) entry includes this attribute to indicate the group to which this entry belongs.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

332 Securing applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of group membership attribute:

Specifies the name of the group membership attribute. Only one membership attribute can be defined for
each Lightweight Directory Access Protocol (LDAP) repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For
example, memberOf is the name of the membership attribute that is used in Active Directory. The group
membership attribute contains values that reference groups to which this entry belongs. If UserA belongs
to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished name of
GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this attribute.
The LDAP repository can look up groups by searching the group member attributes, though the
performance might be slower.

Scope of group membership attribute:

Specifies the scope of the group membership attribute.

Default: Direct
Range:

Direct The membership attribute contains direct groups
only. Direct groups are the groups that contain
the member. For example, if Group1 contains
Group2 and Group2 contains User1, then Group2
is a direct group of User1, but Group1 is not a
direct group of User1.

Nested The membership attribute contains both direct
groups and nested groups.

All The membership attribute contains direct groups,
nested groups, and dynamic members.

Configuring member attributes in a federated repository configuration
Follow this task to configure member attributes in a federated repository configuration.

Before you begin

Because member attributes apply only to a Lightweight Directory Access Protocol (LDAP) repository, you
must first configure an LDAP repository. For more information, see “Managing repositories in a federated
repository configuration” on page 312.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required
fields and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

Chapter 6. Authenticating users 333

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute or Delete to remove a preconfigured member attribute.

8. Accept the default, or supply the name of the member attribute in the Name of member attribute field.
For example, member and uniqueMember are two commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member;
group type with object class groupOfUniqueNames has a member attribute named uniqueMember. An
LDAP repository supports multiple group types if multiple member attributes and their associated
group object classes are specified.

9. Supply the object class of the group that uses this member attribute in the Object class field. If this
field is not defined, this member attribute applies to all group object classes.

10. Select the scope of the member attribute. The default value is Direct.

Direct The member attribute contains direct members only. Direct members are members that are
directly contained by the group. For example, if Group1 contains Group2 and Group2
contains User1, then User1 is a direct member of Group2, but User1 is not a direct member
of Group1.

Nested
The member attribute contains both direct members and nested members.

All The member attribute contains direct members, nested members, and dynamic members.

Results

After completing these steps, member attributes are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Member attributes collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) member attributes or to select a
member attribute to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

334 Securing applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two
commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member; group
type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP
repository supports multiple group types if multiple member attributes and their associated group object
classes are specified.

Scope:

Specifies the scope of the member attribute.

Default: Direct
Range:

Direct The member attribute contains direct members
only. Direct members are members that are
directly contained by the group. For example, if
Group1 contains Group2 and Group2 contains
User1, then User1 is a direct member of Group2,
but User1 is not a direct member of Group1.

Nested The member attribute contains both direct
members and nested members.

All The member attribute contains direct members,
nested members, and dynamic members.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this
member attribute applies to all group object classes.

Member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is pre-configured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of member attribute:

Chapter 6. Authenticating users 335

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two
commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member; group
type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP
repository supports multiple group types if multiple member attributes and their associated group object
classes are specified.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this
member attribute applies to all group object classes.

Scope:

Specifies the scope of the member attribute.

Default: Direct
Range:

Direct The member attribute contains direct members
only. Direct members are members that are
directly contained by the group. For example, if
Group1 contains Group2 and Group2 contains
User1, then User1 is a direct member of Group2,
but User1 is not a direct member of Group1.

Nested The member attribute contains both direct
members and nested members.

All The member attribute contains direct members,
nested members, and dynamic members.

Configuring dynamic member attributes in a federated repository configuration
Follow this task to configure dynamic member attributes in a federated repository configuration.

Before you begin

Because dynamic member attributes apply only to a Lightweight Directory Access Protocol (LDAP)
repository, you must first configure an LDAP repository. For more information, see “Managing repositories
in a federated repository configuration” on page 312.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields
and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute or Delete to remove a preconfigured dynamic
member attribute.

336 Securing applications and their environment

8. Accept the default, or supply the name of the dynamic member attribute in the Name of dynamic
member attribute field. The name of the dynamic member attribute defines the filter for dynamic group
members in LDAP, for example, memberURL is the name of a commonly used dynamic member
attribute.

If both member and dynamic member attributes are specified for the same group type, this group type
is a hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is
defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

9. Supply the object class of the group that contains the dynamic member attribute in the Dynamic object
class field, for example, groupOfURLs. If this property is not defined, the dynamic member attribute
applies to all group object classes.

Results

After completing these steps, dynamic member attributes are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 90. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Dynamic member attributes collection:

Use this page to manage Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Chapter 6. Authenticating users 337

Name:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For
example, memberURL is the name of a commonly used dynamic member attribute.

If both member and dynamic member attributes are specified for the same group type, this group type is a
hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is
defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,
groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object
classes.

Dynamic member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of dynamic member attribute:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For
example, memberURL is the name of a commonly used dynamic member attribute.

If both member and dynamic member attributes are specified for the same group type, this group type is a
hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is

338 Securing applications and their environment

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Dynamic object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,
groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object
classes.

Standalone Lightweight Directory Access Protocol registries
A Standalone Lightweight Directory Access Protocol (LDAP) registry performs authentication using an
LDAP binding.

WebSphere Application Server security provides and supports the implementation of most major LDAP
directory servers, which can act as the repository for user and group information. These LDAP servers are
called by the product processes for authenticating a user and other security-related tasks. For example,
the servers are used to retrieve user or group information. This support is provided by using different user
and group filters to obtain the user and group information. These filters have default values that you can
modify to fit your needs. The custom LDAP feature enables you to use any other LDAP server, which is
not in the product-supported list of LDAP servers, for its user registry by using the appropriate filters.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

To use LDAP as the user registry, you need to know an administrative user name that is defined in the
registry, the server host and port, the base distinguished name (DN) and, if necessary, the bind DN and
the bind password. You can choose any valid user in the registry that is searchable and have
administrative privileges. In some LDAP servers, the administrative users are not searchable and cannot
be used, for example, cn=root in SecureWay. This user is referred to as WebSphere Application Server
security server ID, server ID, or server user ID in the documentation. Being a server ID means a user has

Chapter 6. Authenticating users 339

special privileges when calling some protected internal methods. Normally, this ID and password are used
to log into the administrative console after security is turned on. You can use other users to log in if those
users are part of the administrative roles.

When security is enabled in the product, the primary administrative user name and password are
authenticated with the registry during the product startup. If authentication fails, the server does not start. It
is important to choose an ID and password that do not expire or change often. If the product server user
ID or password need to change in the registry, make sure that the changes are performed when all the
product servers are up and running.

When the changes are done in the registry, use the steps that are described in “Configuring Lightweight
Directory Access Protocol user registries” on page 191. Change the ID, password, and other configuration
information, save, stop, and restart all the servers so that the new ID or password is used by the product.
If any problems occur starting the product when security is enabled, disable security before the server can
start up. To avoid these problems, make sure that any changes in this panel are validated in the Global
security panel. When the server is up, you can change the ID, password, and other configuration
information and then enable security.

You can use the custom Lightweight Directory Access Protocol (LDAP) feature to support any LDAP server
by setting up the correct configuration. However, support is not extended to these custom LDAP servers
because many configuration possibilities exist.

The users and groups and security role mapping information is used by the configured authorization
engine to perform access control decisions.

If you are configuring an LDAP registry as the active registry, you can configure one of the following
authorization mechanisms:

v System Authorization Facility (SAF) authorization using EJBROLE or GEJBROLE profiles. SAF
overrides any other authorization mechanism.

v Tivoli Access Manager as a Java Contract for Containers (JACC) provider. For more information, see
“Tivoli Access Manager integration as the JACC provider” on page 560.

v User-to-role bindings, which are created by the application assembler or the WebSphere Application
Server security administrator.

SAF authorization, which is the use of SAF EJBROLE profiles to assign SAF users and groups to roles,
can be used as an authorization mechanism for all user registries. If SAF authorization is selected on the
administrative console:

v SAF overrides any other authorization choice, such as Tivoli Access Manager.

v You must configure and install a Java Authentication and Authorization Service (JAAS) login mapping
module that maps LDAP or a custom registry identity to a SAF user ID. For more information, see
Installing and configuring a custom System Authorization Facility mapping module for WebSphere
Application Server.

Dynamic groups and nested group support for LDAP
Dynamic and nested groups simplify WebSphere Application Server security management and increase its
effectiveness and flexibility.

Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed so an application does not need a large amount of information from the
directory to find out if someone is a member of a group.

340 Securing applications and their environment

Nested groups enable the creation of hierarchical relationships that are used to define inherited group
membership. A nested group is defined as a child group entry whose distinguished name (DN) is
referenced by a parent group entry attribute.

You only need to assign a larger parent group if all nested groups share the same privilege. Assigning a
role to a single parent group simplifies the run-time authorization table.

Dynamic groups and nested group support for the IBM Tivoli Directory Server

WebSphere Application Server supports all Lightweight Directory Access Protocol (LDAP) dynamic and
nested groups when using IBM Tivoli Directory Server. This function is enabled by default by taking
advantage of a new feature in IBM Tivoli Directory Server. IBM Tivoli Directory Server uses the
ibm-allGroups forward-reference group attribute that automatically calculates all the group memberships
including dynamic and recursive memberships for a user. Security directly locates a user group
membership from a user object rather than indirectly search all the groups to match group members.

For more information, see “Configuring dynamic and nested group support for the IBM Tivoli Directory
Server” on page 212.

Dynamic and nested group support for the SunONE or iPlanet Directory Server

The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups
Entries that name other entries as a list of members or as a filter for members.

Roles Entries that name other entries as a list of members or as a filter for members. Additional
functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles
Depends upon the attributes that are contained in each entry. Entries are members, if they match
a specified Lightweight Directory Access Protocol (LDAP) filter. This role is equivalent to a dynamic
group.

Nested roles
Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles
Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” on
page 211 for more information.

Security failover among multiple LDAP servers
WebSphere Application Server security can be configured to attempt failovers between multiple
Lightweight Directory Access Protocol (LDAP) hosts.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

If the current active LDAP server is unavailable, WebSphere Application Server security attempts a failover
to the first available LDAP host in the specified host list. The multiple LDAP servers can be replicas of the

Chapter 6. Authenticating users 341

same master LDAP server, or they can be any LDAP host with the same schema, which contain data that
is imported from the same LDAP Data Interchange Format (LDIF) file.

Whenever a failover occurs, WebSphere Application Server security always uses the first available LDAP
server in the specified host list. For example, if there are four LDAP servers configured in the order of L1,
L2, L3, and L4, L1 is treated as the primary LDAP server. The preference of connection is from L1 to L4.
If, for example, WebSphere Application Server security is currently connected to L4, and failover or
reconnection is necessary, WebSphere Application Server security first attempts to connect to L1, L2, and
then L3 in that order until the connection is successful.

The current LDAP host name is logged in message CWSCJ0419I in the WebSphere Application Server log
file, SystemOut.log. If you want to reconnect to the primary LDAP host, run the WebSphere Application
Server MBean method, resetLDAPBindInfo, with null,null as the input.

To configure LDAP failover among multiple LDAP hosts, you must use wsadmin or ConfigService to
include the backup LDAP host, which does not have a number limitation. The LDAP host that is displayed
in the administrative console is the primary LDAP host, and is the first item listed in the LDAP host list in
security.xml.

The WebSphere Application Server security realm name defaults to the primary LDAP host name that is
displayed in the administrative console. It includes a trailing colon and a port number (if one exists).
However, the custom property, com.ibm.websphere.security.ldap.logicRealm, can be added to override the
default security realm name. Use the logicRealm name to configure each cell to have its own LDAP host
for interoperability and backward compatibility, and to provide flexibility for adding or removing the LDAP
host dynamically. If migrating from a previous installation, the new logicRealm name does not take effect
until administrative security is enabled again. To be compatible with a previous release that does not
support logic realm, the logicRealm name has to be the same as that used by the previous installation (the
LDAP host name, including a trailing colon and port number).

When LDAP failover is configured by associating a single hostname to multiple IP addresses through the
use of a load balancer (which does that translation transparently to WebSphere Application Server),
entering an invalid password can cause multiple LDAP bind retries. WebSphere Application Server retries
and the load balancer routes requests to multiple replicas. With the default settings, the number of LDAP
bind retries is equal to one more than the number of associated IP addresses. This means a single invalid
login attempt can cause the LDAP account to be locked. If the com.ibm.websphere.security.ldap.retryBind
custom property is set to false, LDAP bind calls are not retried.

The following Jacl example shows how to use wsadmin to add a backup LDAP host for failover:
#---
Main
This is a bi-modal script: it can be included in the wsadmin
command invocation like this:
wsadmin -f LDAPAdd.jacl ldaphost 800
#
or the script can be sourced from the wsadmin command line:
wsadmin> source LDAPAdd.jacl
wsadmin> LDAPAdd ldaphost 800
#
The script expects some parameters:
arg1 - LDAP Server host name
arg2 - LDAP Server port number
#---
if { !($argc == 2)} {

puts ""
puts "LDAPAdd: This script requires 2 parameters: LDAP server host name and LDAP server port number"
puts "For example: LDAPAdd ldaphost 389"
puts ""
return;

}
else {

set ldapServer [lindex $argv 0]
set ldapPort [lindex $argv 1]
LDAPAdd $ldapServer $ldapPort
return;

}
proc LDAPAdd {ldapServer ldapPort args} {

342 Securing applications and their environment

global AdminConfig AdminControl ldapServer ldapPort
set ldapServer lindex $args 0
set ldapPort lindex $args 1
global ldapUserRegistryId
Get the LDAP user registry object from the security configuration
if { catch {$AdminConfig list LDAPUserRegistry} result } {

puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"
return

}
else {

if {$result != {}} {
set ldapUserRegistryId lindex $result 0

}
else {

puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"
return;

}
}
Set the host and port values in Attrs2
set Attrs2 list list hosts list list list host
$ldapServer
list port $ldapPort

Modify the LDAP configuration host object
$AdminConfig modify $ldapUserRegistryId $Attrs2
$AdminConfig save

}

The following Jython example shows how to use wsadmin to add a backup LDAP host for failover:
#---
Add ldap hostname and port
wsadmin -f LDAPAdd.py arg1 arg2
#
The script expects some parameters:
arg1 - LDAP Server hostname
arg2 - LDAP Server portnumber
#---
import java

#---
get the line separator and use to do the parsing
since the line separator on different platform are different
lineSeparator = java.lang.System.getProperty(’line.separator’)

#---
add LDAP host
#---
def LDAPAdd (ldapServer, ldapPort):

global AdminConfig, lineSeparator, ldapUserRegistryId
try:

ldapObject = AdminConfig.list("LDAPUserRegistry")
if len(ldapObject) == 0:

print "LDAPUserRegistry ConfigId was not found\n"
return

ldapUserRegistryId = ldapObject.split(lineSeparator)[0]
print "Got LDAPUserRegistry ConfigId is " + ldapUserRegistryId + "\n"

except:
print "AdminConfig.list(’LDAPUserRegistry’) caught an exception\n"

try:
secMbeans = AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’)
if len(secMbeans) == 0:

print "Security Mbean was not found\n"
return

secMbean = secMbeans.split(lineSeparator)[0]
print "Got Security Mbean is " + secMbean + "\n"

except:
print "AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’) caught an exception\n"

attrs2 = [["hosts", [[["host", ldapServer], ["port", ldapPort]]]]]
try:

AdminConfig.modify(ldapUserRegistryId, attrs2)
try:

AdminConfig.save()
print "Done setting up attributes values for LDAP User Registry"
print "Updated was saved successfully\n"

except:
print "AdminConfig.save() caught an exception\n"

except:
print "AdminConfig.modify(" + ldapUserRegistryId + ", " + attrs2 + ") caught an exception\n"

return

#---
Main entry point
#---

Chapter 6. Authenticating users 343

if len(sys.argv) < 2 or len(sys.argv) > 3:
print("LDAPAdd: this script requires 2 parameters: LDAP server hostname and LDAP server port number\n")
print("e.g.: LDAPAdd ldaphost 389\n")
sys.exit(1)

else:
ldapServer = sys.argv[0]
ldapPort = sys.argv[1]
LDAPAdd(ldapServer, ldapPort)
sys.exit(0)

Selecting an authentication mechanism
An authentication mechanism defines rules about security information, such as whether a credential is
forwardable to another Java process, and the format of how security information is stored in both
credentials and tokens. You can select and configure an authentication mechanism by using the
administrative console.

About this task

Authentication is the process of establishing whether a client is who or what it claims to be in a particular
context. A client can be either an end user, a machine, or an application. An authentication mechanism in
WebSphere Application Server typically collaborates closely with a user registry. The user registry is the
user and groups account repository that the authentication mechanism consults with when performing
authentication. The authentication mechanism is responsible for creating a credential, which is an internal
product representation of a successfully authenticated client user. Not all credentials are created equally.
The abilities of the credential are determined by the configured authentication mechanism.

WebSphere Application Server provides three authentication mechanisms: Lightweight Third Party
Authentication (LTPA), Kerberos, and RSA token authentication mechanism.

Security support for Kerberos as the authentication mechanism has been added for this release of
WebSphere Application Server. Kerberos (KRB5) is a mature, flexible, open, and very secure network
authentication protocol. Kerberos includes authentication, mutual authentication, message integrity and
confidentiality and delegation features. KRB5 is used for Kerberos in the administrative console and in the
sas.client.props, soap.client.props and ipc.client.props files.

The RSA token authentication mechanism is new to this release of WebSphere Application Server. It aids
the flexible management objective to preserve the base profiles configurations and isolate them from a
security perspective. This mechanism permits the base profiles managed by an administrative agent to
have different Lightweight Third-Party Authentication (LTPA) keys, different user registries, and different
administrative users.

Note: Simple WebSphere Authentication Mechanism (SWAM) is deprecated in this release. SWAM does
not provide authenticated communication between different servers.

Authentication is required for enterprise bean clients and web clients when they access protected
resources. Enterprise bean clients, like a servlet or other enterprise beans or a pure client, send the
authentication information to a web application server using one of the following protocols:

v Common Secure Interoperability Version 2 (CSIv2)

v z/OS Secure Authentication Service (z/SAS)

Note: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Web clients use the HTTP or HTTPS protocol to send the authentication information.

The authentication information can be basic authentication (user ID and password), a credential token, or
a client certificate. The web authentication is performed by the web authentication module.

344 Securing applications and their environment

You can configure web authentication for a web client by using the administrative console. Click Security
> Global security. Under Authentication, expand Web and SIP security and click General settings. The
following options exist for Web authentication:

Authenticate only when the URI is protected
Specifies that the web client can retrieve an authenticated identity only when it accesses a
protected Uniform Resource Identifier (URI). WebSphere Application Server challenges the web
client to provide authentication data when the web client accesses a URI that is protected by a
J2EE role. This default option is also available in previous versions of WebSphere Application
Server.

Use available authentication data when an unprotected URI is accessed
Specifies that the web client is authorized to call the getRemoteUser, isUserInRole, and
getUserPrincipal methods; retrieves an authenticated identity from either a protected or an
unprotected URI. Although the authentication data is not used when you access an unprotected
URI, the authentication data is retained for future use. This option is available when you select the
Authentication only when the URI is protected check box.

Authenticate when any URI is accessed
Specifies that the web client must provide authentication data regardless of whether the URI is
protected.

Default to basic authentication when certificate authentication for the HTTPS client fails.
Specifies that WebSphere Application Server challenges the web client for a user ID and password
when the required HTTPS client certificate authentication fails.

The enterprise bean authentication is performed by the Enterprise JavaBeans (EJB) authentication
module.

The EJB authentication module resides in the CSIv2 and z/SAS layer.

The authentication module is implemented using the Java Authentication and Authorization Service (JAAS)
login module. The web authenticator and the EJB authenticator pass the authentication data to the login
module, which can use the following mechanisms to authenticate the data:

v Kerberos

v LTPA

v RSA token

v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM was deprecated in WebSphere Application Server Version 6.1 and will be removed in a
future release.

The authentication module uses the registry that is configured on the system to perform the authentication.
Four types of registries are supported:

v Federated repositories

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Stand-alone custom registry

External registry implementation following the registry interface that is specified by IBM can replace either
the local operating system or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the credential that is derived from
the authentication data in the public credentials list of the subject. The credential is returned to the web
authenticator or to the enterprise beans authenticator.

Chapter 6. Authenticating users 345

The web authenticator and the enterprise beans authenticator store the received credentials for the
authorization service to use in performing further access control checks.

You can configure authentication mechanisms in the administrative console by doing the following:

Procedure
1. Click Security > Global security.

2. Under Authentication mechanisms and expiration, select an authentication mechanism to configure.

Lightweight Third Party Authentication
Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and
machine environments. LTPA supports forwardable credentials and single sign-on (SSO). LTPA can
support security in a distributed environment through cryptography. This support permits LTPA to encrypt,
digitally sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA
protocol. It also provides the single sign-on (SSO) feature wherein a user is required to authenticate only
once in a domain name system (DNS) domain and can access resources in other WebSphere Application
Server cells without getting prompted. The realm names on each system in the DNS domain are case
sensitive and must match identically.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port value of the LDAP
server.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the
servers. These keys must be shared between the different cells for the resources in one cell to access
resources in other cells, assuming that all the cells involved use the same LDAP or custom registry.

When using LTPA, a token is created with the user information and an expiration time and is signed by the
keys. The LTPA token is time sensitive. All product servers that participate in a protection domain must
have their time and date synchronized. If not, LTPA tokens appear prematurely expired and cause
authentication or validation failures. Coordinated Universal Time (UTC) is used by default, and all other
machines must have the same UTC time. Consult your operating system documentation for information
regarding how to ensure this.

This token passes to other servers, in the same cell or in a different cell through cookies, for web
resources when SSO is enabled, or through the authentication protocol layer for enterprise beans.

If the receiving servers share the same keys as the originating server, the token can be decrypted to
obtain the user information, which then is validated to make sure that it has not expired and that the user
information in the token is valid in its registry. On successful validation, the resources in the receiving
servers are accessible after the authorization check.

Each server must have valid credentials. When the credentials expire, the server is required to
communicate to the user registry to authenticate. User registry outages can cause server processes to
hang, requiring them to be restarted to recover. Extending the time the LTPA token remains cached
reduces this risk, but does present a slightly increased security risk to be considered when defining your
security policies.

All of the WebSphere Application Server processes in a cell (deployment manager, nodes, application
servers) share the same set of keys. If key sharing is required between different cells, export them from
one cell and import them to the other. For security purposes, the exported keys are encrypted with a
random generated key and a user-defined password is used to protect the keys. This same password is
needed when importing the keys into another cell. The password is only used to protect the keys and is
not used to generate the keys.

346 Securing applications and their environment

WebSphere Application Server supports the LTPA and Kerberos protocols.

When security is enabled during profile creation time, LTPA is configured by default.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a
Windows domain-type registry so that users and groups are the same, regardless of the machine.

Lightweight Third Party Authentication key sets and key set groups
Key set groups contain lists of key sets and Lightweight Third Party Authentication (LTPA) key generation
schedules. Each key set contains key references to keys in key stores.

Note: It is not recommended that you choose to generate new keys automatically . Keys should only be
generated during off hours. Once keys are generated, you might need to export the keys and to
import the keys to other WebSphere cells or IBM products in which the keys are required to be
sync to communicate with each other.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in one
key set while the secret or private key is in a separate key set. When the key set group is created, the two
key sets are added as members of the key set group. Key set group settings determine whether the keys
for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Configuring LTPA and working with keys
You must configure Lightweight Third Party Authentication (LTPA) when you set up security for the first
time. LTPA is the default authentication mechanism for WebSphere Application Server. After you have
configured LTPA you can generate LTPA keys manually or automatically.

Procedure
1. Configure LTPA and generate the first LTPA keys. Use the administrative console to configure LTPA or

Kerberos when you set up security for the first time. The LTPA keys are generated automatically the
first time. Read the Configuring the Lightweight Third Party Authentication mechanism article for more
information.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA
protocol. Key set groups contain lists of key sets and LTPA authentication key generation schedules.
Each key set contains key references to keys in key stores. To generate keys automatically, each key
set must be a member of a key set group.

Read the Lightweight Third Party Authentication key sets and key set groups article for more
information.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in
one key set while the secret or private key is in a separate key set. When the key set group is created,
the two key sets are added as members of the key set group. Key set group settings determine
whether the keys for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Chapter 6. Authenticating users 347

2. Generate keys manually or automatically, and control the number of active keys. WebSphere
Application Server generates Lightweight Third Party Authentication (LTPA) keys automatically during
the first server startup. You can generate additional keys as you need them in the Authentication
mechanisms and expiration panel.

You can disable the automatic generation of new LTPA keys for key sets that are members of a key
set group. Automatic generation creates new keys on a schedule that you specify when you configure
a key set group, which manages one or more key sets. WebSphere Application Server uses key set
groups to automatically generate cryptographic keys or multiple synchronized key sets.

Generating keys manually or enabling or disabling the generation of keys are tasks that require you to
recycle the node agents and application servers to accept the new keys. If any of the node agents are
down, run a manual file synchronization utility from the node agent machine to synchronize the security
configuration from the deployment manager.

Key sets manage LTPA keys in a key store that is based on a key alias prefix. A key alias prefix is
automatically generated when you generate a new key and store it in a key store. Key stores can
contain multiple versions of keys for any given key alias prefix. You can specify a maximum number of
active keys in the key set configuration.

Read the Generating Lightweight Third Party Authentication keys article for more information.

3. Import and export keys. To support single sign-on (SSO) in WebSphere® Application Server across
multiple WebSphere Application Server domains or cells, you must share the LTPA keys and the
password among the domains. You can import LTPA keys from other domains and export keys to other
domains.

Note: You should disable automatic key generation if you import or export keys to or from another
cell. This disabling causes the imported keys to get lost and the exported keys to no longer
interoperate with this cell over time

You must recycle the node agents and application servers to accept the new keys. If any of the node
agents are down, run a manual file synchronization utility from the node agent machine to synchronize
the security configuration from the deployment manager.

Read the Importing Lightweight Third Party Authentication keys and Exporting Lightweight Third Party
Authentication keys articles for more information.

4. Manage keys from multiple cells. You can specify the shared keys and configure the authentication
mechanism that is used to exchange information between servers to import and export LTPA keys
across multiple WebSphere® Application Server cells.

You must start the server again for any changes you make to become active.

Read the Managing LTPA keys from multiple WebSphere Application Server cells article for more
information.

Kerberos (KRB5) authentication mechanism support for security
The Kerberos authentication mechanism enables interoperability with other applications (such as .NET,
DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end
interoperable solutions and preserves the original requester identity.

Note: Security support for Kerberos as the authentication mechanism was added for WebSphere
Application Server Version 7.0. Kerberos is a mature, flexible, open, and very secure network
authentication protocol. Kerberos includes authentication, mutual authentication, message integrity
and confidentiality and delegation features. You can enable Kerberos on the server side. Support is
provided to enable the rich Java client to use the Kerberos token for authentication to the
WebSphere Application Server.

The following sections describe Kerberos authentication in more detail:

v “What is Kerberos?” on page 349

v “The benefits of having Kerberos as an authentication mechanism” on page 349

348 Securing applications and their environment

v “Kerberos authentication in a single Kerberos realm environment” on page 350

v “Kerberos authentication in a cross or trusted Kerberos realm environment” on page 350

v “Things to consider before setting up Kerberos as the authentication mechanism for WebSphere
Application Server” on page 354

v “Support information for Kerberos authentication” on page 355

v “Setting up Kerberos as the authentication mechanism for WebSphere Application Server” on page 356

v “Setting up Kerberos as the authentication mechanism for the pure Java client” on page 356

What is Kerberos?

Kerberos has withstood the test of time and is now at version 5.0. Kerberos enjoys wide spread platform
support (for example, for Windows, Linux, Solaris, AIX, and z/OS) partly because the Kerberos source
code is freely downloadable from the Massachusetts Institute of Technology (MIT) where it was originally
created.

Kerberos is composed of three parts: a client, a server, and a trusted third party known as the Kerberos
Key Distribution Center (KDC). The KDC provides authentication and ticket granting services.

The KDC maintains a database or repository of user accounts for all of the security principals in its realm.
Many Kerberos distributions use file-based repositories for the Kerberos principal and policy DB and others
use Lightweight Directory Access Protocol (LDAP) as the repository.

Kerberos does not support any notion of groups (that is, iKeys groups or groups of users or principals).
The KDC maintains a long-term key for each principal in its accounts database. This long-term key is
derived from the password of the principal. Only the KDC and the user that the principal represents should
know what the long-term key or password is.

The benefits of having Kerberos as an authentication mechanism

The benefits of having Kerberos as the authentication mechanism for WebSphere Application Server
include the following:

v The Kerberos protocol is a standard. This enables interoperability with other applications (such as .NET,
DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end
interoperable solutions and preserves the original requester identity.

v When using Kerberos authentication, the user clear text password never leaves the user machine. The
user authenticates and obtains a Kerberos ticket granting ticket (TGT) from a KDC by using a one-way
hash value of the user password. The user also obtains a Kerberos service ticket from the KDC by
using the TGT. The Kerberos service ticket that represents the client identity is sent to WebSphere
Application Server for authentication.

v A Java client can participate in Kerberos SSO using the Kerberos credential cache to authenticate to
WebSphere Application Server.

v J2EE, web service, .NET and web browser clients that use the HTTP protocol can use the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) token to authenticate to the WebSphere
Application Server and participate in SSO by using SPNEGO web authentication. Support for SPNEGO
as the web authentication service is new to this release of WebSphere Application Server.

Read about “Single sign-on for HTTP requests using SPNEGO web authentication” on page 377 for
more information.

v WebSphere Application Server can support both Kerberos and Lightweight Third-Party Authentication
(LTPA) authentication mechanisms at the same time.

v Server-to-server communication using Kerberos authentication is provided.

Chapter 6. Authenticating users 349

Kerberos authentication in a single Kerberos realm environment

WebSphere Application Server supports Kerberos authentication in a single Kerberos realm environment
as shown in the following figure:

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses
the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is
established, the WebSphere Kerberos login module extracts a client GSS delegation credential, creates a
Kerberos authentication token base on the Kerberos credential, and places them in the client subject with
other tokens.

If the server must use a downstream server or back-end resources, it uses the client GSS delegation
credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA
token instead of the Kerberos token. If a client does not include a GSS delegation credential in the
request, the server uses the LTPA token for the downstream server . The Kerberos authentication token
and principal are propagated to the downstream server as part of the security attributes propagation
feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom
login module might be required to map the Kerberos principal name to the WebSphere user name.

Kerberos authentication in a cross or trusted Kerberos realm environment

WebSphere Application Server also supports Kerberos authentication in a cross or trusted Kerberos realm
environment as shown in the following figure:

Web services client

Web browser client

.NET client

Administrative
client

J2EE aplication/EJB client

Web services client

Administrative
client

A client

WAS

S
P
N
E
G
O

in
H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA

token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WebSphere
Application

Server

WebSphere
Application

Server

Figure 7. Kerberos authentication in a single Kerberos realm environment

350 Securing applications and their environment

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses
the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is
established, the WebSphere Kerberos login module always extracts a client GSS delegation credential and
Kerberos ticket and places them in the client subject with other tokens.

If the server must use a downstream server or backend resources, it uses the client GSS delegation
credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA
token instead of the Kerberos token. If a client does not include a GSS delegation credential in the
request, the server uses the LTPA token for the downstream server . The Kerberos authentication token
and principal are propagated to the downstream server as part of the security attributes propagation
feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom
login module might be required to map the Kerberos principal name to the WebSphere user name.

In this release of WebSphere Application Server, the new security multiple domains only support Kerberos
at the cell level. All WebSphere Application Servers must be used by the same Kerberos realm. However,
the clients and or backend resources (such as DB2, .NET server, and others) that support Kerberos
authentication can have their own Kerberos realm. Only peer-to-peer and transitive trust cross-realm
authentication are supported. The following steps must be performed for trusted Kerberos realms:

v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos
Administrator and User's guide for more information about how to set up a Kerberos trusted realm.

v The Kerberos configuration file might need to list the trusted realm.

v Add Kerberos trusted realms in the administrative console by clicking Global security > CSIv2
outbound communications > Trusted authentication realms - outbound.

Web services client

Web browser client

.NET client

Administrative
client

Java EE application/EJB client

Web services client

Administrative
client

A client

S
P
N
E
G
O

in
H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA

token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WASKDC
Realm2

Trusted

WebSphere
Application

Server

WebSphere
Application

Server

Figure 8. Kerberos authentication in a cross or trusted Kerberos realm environment

Chapter 6. Authenticating users 351

The following figure shows a Java and administrative client that uses a Kerberos credential cache to
authenticate to WebSphere Application Server with a Kerberos token in a trusted Kerberos realm:

In the figure above, the following events occur:

1. The client uses the Kerberos credential cache if it exists.

2. The client requests a cross realm ticket (TGS_REQ) for Realm A from the Realm B KDC using the
Kerberos credential cache.

3. The client uses a cross realm ticket to request Kerberos service ticket for server1 (TGS_REQ) from
the Realm A KDC.

4. The Kerberos token returned from the KDC (TGS_REP) is added to the CSIv2 message
authentication token and sent to server1 for authentication.

5. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server
Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully
establishes a security context with the client, it always extracts the client GSS delegation credential
and tickets and places them in the client subject.

6. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application
Server do not use the same user registry.

7. The user is validated with the user registry for WebSphere Application Server.

8. The results (success or failure) are returned to the client.

The following figure shows a Java and administrative client that uses a Kerberos principal name and
password to authenticate to WebSphere Application Server with a Kerberos token:

Krb5LoginModule
ClientWrapper

Client machine

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

4.

8.
6.

5.Java Client
RMI/IIOP

KRB5
cache

krb5.conf

Realm B
KDC

2.

1.

Realm A
KDC

Trusted

3.

7.

Figure 9. Using a Kerberos credential cache to authenticate to WebSphere Application Server with a Kerberos token in
a trusted Kerberos realm

352 Securing applications and their environment

In the figure above, the following events occur:

1. The client obtains the Kerberos granting ticket (TGT) from the KDC.

2. The client obtains a Kerberos service ticket for server1 (TGS_REQ) using the TGT.

3. The Kerberos token returned from the KDC (TGS_REP) is added to the CSIv2 message
authentication token and sent to server1 for authentication.

4. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server
Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully
establishes a security context with the client, it always extracts the client GSS delegation credential
and tickets and places them in the client subject.

5. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application
Server do not use the same user registry.

6. The user is validated with the user registry for WebSphere Application Server.

7. The results are returned to the client.

The following figure shows server-to-server communications:

Krb5LoginModule
ClientWrapper

Client machine

Realm A
KDC

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

3.

7.

6.

5.

4.Java Client
RMI/IIOP

krb5.conf

Realm A
KDC

2.1.

Figure 10. Using a Kerberos principal name and password to authenticate to WebSphere Application Server with a
Kerberos token

Chapter 6. Authenticating users 353

When a WebSphere Application Server starts up, it uses the server ID and password to login to the KDC
and then obtains the TGT. It then uses the TGT to request a service ticket to communicate with another
server. If a WebSphere Application Server uses the internal server ID instead of the server ID and
password, server-to-server communication is done using an LTPA token. In the figure above, the following
events occur:

1. WebSphere Application Server 1 invokes a method, foo(), on an Enterprise JavaBeans (EJB) running
in WebSphere Application Server 2.

2. Server1 obtains a Kerberos service ticket for Server2 (TGS_REQ) using the Server1 TGT.

3. Same as step 2.

4. The Kerberos token returned from a KDC (TGS_REP) is added to the CSIv2 message authentication
token and sent to Server2 for authentication.

5. Server2 calls the acceptSecContext() method to establish security context with server1 using the
server2 Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If server2
successfully establishes a security context with server1, it always extracts the server1 GSS delegation
credential and tickets and places them in the subject.

6. The server id is validated with the WebSphere user registry.

Note: If a Java client application and the application server exist on the same machine and they use
different Kerberos realm names, the run time uses the default realm name from the Kerberos
configuration file. Alternatively, you can specify the realm name during the login process.

Things to consider before setting up Kerberos as the authentication mechanism
for WebSphere Application Server

WebSphere Application Server now supports SPNEGO tokens in the HTTP header, Kerberos tokens, LTPA
tokens and BasicAuth (GSSUP) for authentication.

To provide end-to-end Kerberos and end-to-end SPNEGO to Kerberos solutions, be aware of the following:

v The Enabled delegation of Kerberos credentials option must be selected. Read about Configuring
Kerberos as the authentication mechanism using the administrative console for more information about
this option.

WebSphere Application Server 1

Servlet, JSP, EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
initSecContext()

JGSS

2.

WebSphere Application Server 2

EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
acceptSecContext()

JGSS

5.

User Registry

6.

KDC

3.

4.

CSIv2/RMI/IIOP
Kerberos

GSS initial context token

1.

foo()

Figure 11. Server to server communications

354 Securing applications and their environment

v A client must obtain a ticket-granting ticket (TGT) with forwardable, address-less and renewable flags so
that a target server can extract a client delegation Kerberos credential and use it for going to the
downstream server.

v A client TGT that has an address can not be used for a downstream server, Data replication service
(DRS) cache and cluster environments.

v See your Kerberos KDC platforms to make sure that it allows for client delegation Kerberos.

v For a long running application, a client should request a TGT with a renewable flag so that a target
server can renew the delegation Kerberos.

v For a long-running application, ensure that the Kerberos ticket is valid for a period of time that is at least
as long as the application runs. For example, if the application processes a transaction that takes 5
minutes, the Kerberos ticket must be valid for at least 5 minutes.

v Kerberos authentication and SPNEGO web authentication are both supported for Active Directory cross
domain trusts within the same forest.

v In order for an administrative agent to use the Kerberos authentication mechanism, it must exchange an
LTPA key with an administrative subsystem profile.

The following security custom property should be set to true:
com.ibm.websphere.security.krb.longLivedTicket.

v If you plan to use the client delegation Kerberos credential for downstream authentication, make sure
the client can request a service ticket that is greater than 10 minutes. If the client delegation Kerberos
credential lifetime is less than 10 minutes, then the server attempts to renew it.

Note: The client, WebSphere Application Server and KDC machines must keep the clock synchronized.
The best practice is to use a time server to keep all of the systems synchronized.

For this release of WebSphere Application Server, be aware of the following:

v Complete end-to-end Kerberos support with Tivoli Access Manager is available using the following
KDCs:

– z/OS

– Microsoft (single or multi-realm)

– AIX

– Linux

v You can now configure and enable Kerberos cross realms for WebSphere Application Server and the
thin client.

v WebSphere Application Server administrative function with Kerberos is limited by the following:

– The preferred authentication mechanism for flexible management activities is the Rivest Shamir
Adleman (RSA) authentication mechanism (by default).

– Job Manager configured with Kerberos as the administrative authentication does not support
Cross-Kerberos realms. They must be in the same Kerberos realm as registered nodes, or have the
administrative authentication set to RSA

– While Kerberos authentication is supported for administrative clients (wsadmin or Java clients) you
should use the same KDC realm as the WebSphere Application Server it administers. Otherwise, a
user id and password are recommended.

– Mixed cell Kerberos and LTPA configuration is not supported when some of the nodes are
WebSphere Application Server Release 6.x nodes or earlier.

Support information for Kerberos authentication

The following scenarios are supported:

v External domain trusts that are not on the same forests

v Domain trust within the same forest

Chapter 6. Authenticating users 355

v Kerberos realm trust

The following scenarios are not supported:

v Cross-forest trust

v Forest external trusts

Setting up Kerberos as the authentication mechanism for WebSphere Application
Server

You must perform the steps in order as listed in “Setting up Kerberos as the authentication mechanism for
WebSphere Application Server” to set up Kerberos as the authentication mechanism for WebSphere
Application Server.

Note: Kerberos authentication mechanism on the server side must be done by the system administrator
and on the Java client side by end users. The Kerberos keytab file must to be protected.

Setting up Kerberos as the authentication mechanism for the pure Java client

End users can optionally set up Kerberos authentication mechanism for the pure Java client. Read about
Configuring a Java client for Kerberos authentication for more information.

Setting up Kerberos as the authentication mechanism for WebSphere
Application Server
You must perform steps in this article in order to set up Kerberos as the authentication mechanism for
WebSphere Application Server.

About this task

Note: Kerberos authentication mechanism on the server side must be done by the system administrator
and on the Java client side by end users. The Kerberos keytab file must to be protected.

You must first ensure that the KDC is configured. See your Kerberos Administrator and User's guide for
more information.

To configure a KDC on z/OS, you must activate the APPL class in RACF. This action has the effect of
enabling the APPL class profile defined for WebSphere and might restrict the ability of authenticated users
to access applications running on WebSphere. If your security configuration is using an SAF profile prefix,
the profile name is the SAF profile prefix. Otherwise, the profile name is CBS390. To control whether the
APPL profile is checked for WebSphere authorization, you can configure the checkbox labeled "Use APPL
profile to restrict access to the server" on the SAF authorization panel in the administrative console. This
setting can be configured at a WebSphere security domain level.

gotcha: When configuring the envar file for a z/OS KDC, order the encryption types from most secure to
least secure for the SKDC_TKT_ENCTYPES environment variable. The z/OS KDC prefers to use
the encryption types that are first in the list, from left to right.

You must perform the following steps in order to set up Kerberos as the authentication mechanism for
WebSphere Application Server.

Procedure
1. Create a Kerberos service principal name and keytab file You can create a Kerberos service principal

name and keytab file using Microsoft Windows, iSeries, Linux, Solaris, Massachusetts Institute of
Technology (MIT) and z/OS operating systems key distribution centers (KDCs).

356 Securing applications and their environment

Kerberos prefers servers and services to have a host-based service ID. The format of this ID is
<service name>/<fully qualified hostname>. The default service name is WAS. For Kerberos
authentication, the service name can be any strings that are allowed by the KDC. However, for
SPNEGO web authentication, the service name must be HTTP. An example of a WebSphere
Application Sever server ID is WAS/myhost.austin.ibm.com.

Each host must have a server ID unique to the hostname. All processes on the same node share the
same host-based service ID.

A Kerberos administrator creates a Kerberos service principal name (SPN) for each node in the
WebSphere cell. For example, for a cell with 3 nodes (such as server1.austin.ibm.com,
server2.austin.ibm.com and server3.austin.ibm.com), the Kerberos administrator must create the
following Kerberos service principals: WAS/server1.austin.ibm.com, WAS/server2.austin.ibm.com and
WAS/server3.austin.ibm.com.

The Kerberos keytab file (krb5.keytab) contains all of the SPNs for the node and must be protected.
This file can be placed in the config/cells/<cell_name> directory

Read the Creating a Kerberos principal and keytab article for more information.

2. Create a Kerberos configuration file The IBM implementation of the Java Generic Security Service
(JGSS) and KRB5 require a Kerberos configuration file (krb5.conf or krb5.ini) on each node or Java
virtual machine (JVM). In this release of WebSphere Application Server, this configuration file should
be placed in the config/cells/<cell_name> directory so that all application servers can access this file.
If you do not have a Kerberos configuration file, use a wsadmin command to create one.

Read the Creating a Kerberos configuration article for more information.

3. Configure Kerberos as the authentication mechanism for WebSphere Application Sever using the
administrative console Use the administrative console to configure Kerberos as the authentication
mechanism for the application server. When you have entered and applied the required information to
the configuration, the Kerberos service principal name is formed as <service name>/<fully qualified
hostname>@KerberosRealm, and is used to verify incoming Kerberos token requests.

Read the Configuring Kerberos as the authentication mechanism using the administrative console
article for more information.

4. Map a client Kerberos principal name to the WebSphere user registry ID You can map the Kerberos
client principal name to the WebSphere user registry ID for both Simple and Protected GSS-API
Negotiation (SPNEGO) web authentication and Kerberos authentication.

Read the Mapping of a client Kerberos principal name to the WebSphere user registry ID article for
more information.

You can optionally map a Kerberos principal to a System Authorization Facility (SAF) identity on z/OS.

If you choose the Use the KERB segment of an SAF user profile radio button on the Kerberos panel
of the WebSphere Application Server administrative console, you must have your Local OS users
mapped to a specific Kerberos principal. Read Mapping a Kerberos principal to a System Authorization
Facility (SAF) identity on z/OS for more information.

5. Set up Kerberos as the authentication mechanism for the pure Java client (optional) A Java client can
authenticate with WebSphere Application server with a Kerberos principal name and password or with
the Kerberos credential cache (krb5Ccache).

Read the Configuring a Java client for Kerberos authentication article for more information.

RSA token authentication mechanism
The Rivest Shamir Adleman (RSA) Authentication Mechanism is used to simplify the security environment
for the Flexible Management Topology. It supports the ability to securely and easily register new servers to
the Flexible Management topology. With the Flexible Management topology, you can submit and manage
administrative jobs, locally or remotely, by using a job manager that manages applications, performs
product maintenance, modifies configurations, and controls the application server runtime. The RSA
authentication mechanism is only used for server-to-server administrative authentication, such as admin
connector and file transfer requests. The RSA authentication mechanism does not replace LTPA or
Kerboros for use by applications.

Chapter 6. Authenticating users 357

Note: The RSA token authentication mechanism aids the flexible management objective to preserve the
base profiles configurations and isolate them from a security perspective. This mechanism permits
the base profiles managed by an administrative agent to have different Lightweight Third-Party
Authentication (LTPA) keys, different user registries, and different administrative users.

Important: The RSA token is not related to the RSA SecureId token. Please note that the application
server does not provide support for SecureId.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular
context. A client can be either an end user, a machine, or an application. An authentication mechanism in
WebSphere Application Server typically collaborates closely with a user registry. The user registry is the
user and groups account repository that the authentication mechanism consults with when performing
authentication. The authentication mechanism is responsible for creating a credential, which is an internal
product representation of a successfully authenticated client user. Not all credentials are created equally.
The abilities of the credential are determined by the configured authentication mechanism.

Authentication process

The RSA token authentication mechanism ensures that after the RSA root signer certificate (15 year
lifetime) is exchanged between two administrative processes, there is no need to synchronize security
information among disparate profiles for administrative requests. The RSA personal certificate (1 year
lifetime) is used to perform the cryptographic operations on the RSA tokens and can be verified by the
long-lived RSA root. RSA token authentication is different from LTPA where keys are shared and if one
side changes, all sides need to change. Since RSA token authentication is based on a PKI infrastructure, it
benefits from the scalability and manageability of this technology in a large topology.

An RSA token has more advanced security features than LTPA; this includes a nonce value that makes it
a one-time use token, a short expiration period (since it's a one-time use token), and trust, which is
established based on certificates in the target RSA trust store.

RSA token authentication does not use the same certificates as used by Secure Sockets Layer (SSL). This
is the reason RSA has it's own keystores. In order to isolate the trust established for RSA, the trust store,
keystore, and root keystore, need to be different from the SSL configuration.

Note: SSL personal certificates given to pure clients are often signed by the same SSL root certificate
used by servers, and this allows a pure client to send an RSA token to a server and act as an
administrator. This should be avoided for the RSA token authentication mechanism. The RSA token
authentication mechanism has its own root certificate which signs personal certificates that are used
to encrypt and sign parts of the token.

The data stored in an RSA token is based on the identity of the client subject. The client subject can be
based on LTPA or Kerberos, but the RSA token does not use this protection for administrative requests.
The RSA token is easier to use while still maintaining a secure transportation of the identity. The data in
an RSA token includes:

v Version

v Nonce

v Expiration

v Realm

v Principal

v Access ID

v Roles (not currently used)

v Groups

v Custom data

358 Securing applications and their environment

Custom data can be added to the WSCredential on the sending side (prior to going outbound) by creating
a properties object, adding custom attributes, and adding this to the WSCredential in the following way.
import com.ibm.websphere.security.cred.WSCredential;

java.util.Properties props = new java.util.Properties();
props.setProperty("myAttribute", "myValue");
WSCredential.put ("customRSAProperties", props);

Once the Subject is created at the target process, you can get access to these attributes in the following
way.
java.util.Properties props = (java.util.Properties) WSCredential.get("customRSAProperties");

This data is placed into a hash table at the target side and the hash table is used in a Java™

Authentication and Authorization Service (JAAS) login to obtain a subject at the target that contains the
same attributes from the RSA token. With the target containing the same attributes from the RSA token,
you can have a subject at the target side that is not from the same realm used by the target. For this
authorization to succeed, a cross-realm mapping is required within the administrative authorization table
unless the identity is a trusted server ID.

The figure (below) is an overview of the RSA token authentication mechanism and describes the process
that takes place when a request is sent from a server-as-client to a target server. The server-as-client has
an administrative subject on the thread that is used as input to create the RSA token. The other
information needed is RSA public certificate of the target server. This certificate must be retrieved by
making a “bootstrap” MBean request to the target process prior to sending any real requests. The target
bootstrap request retrieves the public certificate from the target process. When creating an RSA token, the
primary purpose of obtaining the target's public certificate is to encrypt the secret key. Only the target can
decrypt the secret key, which is used to encrypt the user data.

The client's private key is used to sign both the secret key and the user data. The client's public key is
embedded in the RSA token and validated at the target. If the client's public key is not trusted when calling
the CertPath APIs at the target, the RSA token validation cannot continue. If the client's public key is
trusted, it can be used to verify the secret key and user data signatures.

The basic goal is to convert the client subject into a subject at the target by securely propagating the
required information. After the subject is generated at the target, the RSA authentication mechanism
process is complete.

Configuring the RSA token authentication mechanism
You use the WebSphere Application Server administrative console to configure the Rivest Shamir Adleman
(RSA) token authentication mechanism. The RSA token authentication mechanism can only be used for
administrative requests. As such, the authentication mechanism choices for administrative authentication
are part of the Global Security panel of the administrative console.

Before you begin

RSA token authentication mechanism is the default selection for the application server, administrative
agent, and job manager profiles. LTPA is still the default for the deployment manager profile to preserve
the same behavior for the existing topology.

About this task

You configure Lightweight Third-Party Authentication (LTPA) and Kerberos on the main authentication
mechanism panels of the administrative console as well as configure RSA token authentication. During

Chapter 6. Authenticating users 359

registration of a base profile with the administrative agent, the trusted certificates on both sides are
updated with the root signer for the other. The same process occurs during registration of an
administrative agent or deployment manager with a job manager. When removing the registration, the
trusted signers are removed from both sides so that trust is no longer established.

By default, the RSA mechanism is set up correctly during the registration tasks, such as registerNode or
registerWithJobManager. No further actions are necessary to establish trust within these environments.
However, if you need to establish trust between two base servers or between two admin agents, for
example, you can use the following steps to further configure the RSA token authentication mechanism:

Procedure
1. Click Security > Global security . Under Administrative security click the link to Administrative

authentication.

2. Select the RSA token radio button. Select a data encryption keystore from the drop-down list. The
option is recommend for flexible systems administration.

3. Optional: To exchange the root signers between two base servers:

a. Select the root keystore from the Data encryption keystore drop-down list (such as
NodeRSATokenRootStore).

b. Click Extract Signer.

c. Enter a fully-qualified name in the Certificate file name field.

d. Click OK.

4. Optional: Transfer the extracted root signer to the other server, and add it to that server's trusted
signers keystore:

a. Select the trusted keystore from the drop-down list (such as NodeRSATokenTrustedStore).

b. Click Add Signer.

c. Enter a unique name for the Alias.

d. Enter a fully-qualified name for the signer key file.

e. Click OK.

5. Enter the nonce cache timeout value.

6. Enter token timeout value.

7. Click Apply and Save.

Results

You have configured the RSA token authentication mechanism.

RSA token authentication settings
Use this panel to configure RSA token authentication.

To view this administrative console page, click Security > Global security. Under Administrative security
click Administrative authentication.

The administrative authentication method is used when an administrative process on this profile connects
to another profile. If the primary authentication method is set to RSA token and that primary method fails,
the system attempts to use the current application authentication method (which could be SWAM,
Kerberos, or LTPA for example).

Note: SWAM is deprecated and will be removed in a future release.

RSA token (recommended for flexible systems administration):

360 Securing applications and their environment

RSA token is an authentication mechanism using certificates for signing and encryption portions of the
security information being propagated.

Default: Enabled

Data encryption keystore:

This is the keystore that contains the personal certificate used to encrypt and sign RSA tokens.

Data type: text

Personal certificate for encryption:

This is the alias found in the Data encryption keystore that is used to encrypt and sign RSA tokens.

Data type: text

Trusted signers keystore:

This is the keystore used to contain signer certificates that can validate RSA tokens sent by other servers.
The RSA token contains a sending certificate that needs to be validated by this trust store using a
CertPath validation.

Data type: text

Nonce cache timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Data type: Integer
Default: 20
Minimum: 10
Maximum: Integer.MAX_VALUE

Token timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Data type: Integer
Default: 10
Minimum: 10
Maximum: Integer.MAX_VALUE

Only use the active application authentication mechanism (currently LTPA):

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

Chapter 6. Authenticating users 361

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

Kerberos:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.

RSA token certificate use
The Rivest Shamir Adleman (RSA) token uses certificates in a similar way that Secure Sockets Layer
(SSL) uses them. However, the trust established for SSL and RSA are different, and RSA certificates
should not use SSL certificates and vice versa. The SSL certificates can be used by pure clients, and
when used for the RSA mechanism would allow the client to send an RSA token to the server. The RSA
token authentication mechanism is purely for server-to-server requests and should not be used by pure
clients. The way to prevent this is to control the certificates used by RSA in such as a way so they are
never distributed to any clients. There is a different root certificate for RSA that prevents trust being
established with clients who only need SSL certificates.

RSA root certificate

For each profile there is a root certificate stored in the rsatoken-root-key.p12 keystore. The sole purpose
of this RSA root certificate is to sign the RSA personal certificate which is stored in the rsatoken-key.p12
keystore. The RSA root certificate has a default lifetime of 15 years. The signer from the RSA root
certificate is shared with other processes to establish trust.

The keytool utility is available using the QShell Interpreter. Using the keytool utility, you can list the
contents of these keystores and display the keyEntry (personal certificate). The example below illustrated
how this is accomplished for the rsatoken-root-key.p12 (RSA root certificate) and rsatoken-key.p12 (RSA
personal certificate).
${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-root-key.p12
–storepass WebAS -storetype PKCS12

Alias name: root
Entry type: keyEntry
Certificate[1]:
Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD
SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-key.p12
–storepass WebAS -storetype PKCS12

Alias name: default
Entry type: keyEntry
Certificate[1]:
Owner: CN=9.41.62.64, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3475073488921
Valid from: 11/12/07 2:50 PM until: 11/11/08 2:50 PM
Certificate fingerprints:

MD5: FF:1C:42:E3:DA:FF:DC:A4:35:B2:33:30:D1:6E:E0:19

362 Securing applications and their environment

SHA1: A4:FB:9D:7B:A1:5B:6A:37:9F:20:BD:B2:BD:98:FA:68:71:57:28:62
Certificate[2]:
Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode
04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD
SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

The purpose of the RSA personal certificate is to sign and encrypt information in the RSA token. The RSA
personal certificate has a default lifetime of one year because it is used to sign and encrypt data that is
transmitted over the wire. Refreshing the certificate is performed by the certificate expiration monitor, which
is used for any other certificate in the system including SSL certificates.

RSA token trust is established when the rsatoken-trust.p12 of the target process contains the signer of
the root certificate of the client process that sends a token. Inside the RSA token is the public certificate of
the client, which must be validated at the target before being used to decrypt data. The validation of the
client's public certificate is performed using the CertPath APIs, which use the rsatoken-trust.p12 as the
source of certificates used during the validation.

The following example shows the use of the keytool utility to list the rsatoken-trust.p12 keystore.

Note: This trust store contains three trustedCertEntry (public certificate) entries. The root public certificate
from the administrative agent, a root public certificate from a job manager to which it is registered,
and a root public certificate from a base profile to which it is registered.

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-trust.p12
–storepass WebAS -storetype PKCS12

Alias name: root
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD
SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

Alias name: cn=9.41.62.64, ou=root certificate, ou=birkt60jobmgrcell02, ou=birkt
60jobmgr02, o=ibm, c=us
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US
Serial number: 34cc4c5d71740
Valid from: 11/12/07 4:30 PM until: 11/7/27 4:30 PM
Certificate fingerprints:

MD5: AB:65:3A:04:5B:C7:6D:A8:B1:98:B9:7B:65:A8:FA:F8
SHA1: C0:83:FE:D0:B6:30:FB:A1:10:41:4B:8E:50:4B:78:40:0F:E5:E3:35

Alias name: birkt60node19_signer
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US
Serial number: 34825d997fda3
Valid from: 11/12/07 3:06 PM until: 11/7/27 3:06 PM

Chapter 6. Authenticating users 363

Certificate fingerprints:
MD5: 66:61:CE:7C:C7:44:8B:A7:23:FF:1B:68:E4:AC:24:55
SHA1: 25:E0:6B:D9:60:BB:67:5B:C6:67:BD:02:2C:54:E3:DA:24:E5:31:A3

You can use the WebSphere Application Server certificate management tools to create a new personal
certificate, and then replace the RSA personal certificate in the rsa-key.p12 and the public key in the
rsa-trust.p12 with this newly created personal certificate. If you replace the RSA personal certificate prior to
federation to an administrative agent or job manager, the exchange of certificates is done for you. If you
change the certificate after federation, you need to make sure the rsa-trust.p12 on the administrative agent
or job manager is updated with the signer for your new certificate to establish trust.

Simple WebSphere authentication mechanism (deprecated)
The Simple WebSphere authentication mechanism (SWAM) defines rules about security information and
the format of how security information is stored in both credentials and tokens. SWAM is intended for
simple, non-distributed, single application server runtime environments.

Note: SWAM was deprecated in WebSphere Application Server Version 8.0 and will be removed in a
future release.

The single application server restriction is due to the fact that SWAM does not support forwardable
credentials. If a servlet or enterprise bean in application server process 1, invokes a remote method on an
enterprise bean living in another application server process 2, the identity of the caller identity in process 1
is not transmitted to server process 2. What is transmitted is an unauthenticated credential, which,
depending on the security permissions configured on the EJB methods, can cause authorization failures.

Because SWAM is intended for a single application server process, single sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development
environments, or other environments that do not require a distributed security solution.

Message layer authentication
Defines the credential information and sends that information across the network so that a receiving server
can interpret it.

When you send authentication information across the network using a token the transmission is
considered message layer authentication because the data is sent with the message inside a service
context.

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username
Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the
server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send security information in
the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic authentication
credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The
way that the token is interpreted is only known by the authentication mechanism. Therefore, each
authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to
the server, so that the server knows which mechanism to use when reading and validating the token. The
following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1
KRB5: OID: 1.2.840.113554.1.2.2

364 Securing applications and their environment

LTPA: oid:1.3.18.0.2.30.2
SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a future
release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can
authenticate basic authentication data from the client, and create a credential. Either way, the created
credential is the received credential that the authorization check uses to determine if the user has access
to invoke the method. You can specify the authentication mechanism by using the following property on
the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the
server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does
not pass a credential such as a user ID and password).

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password
incorrectly or you want a method to retry when a particular error occurs back at the client. If you can
correct the error by information at the client side, the system automatically performs a retry without the
client seeing the failure, if the system is configured appropriately.

Some of these errors include:
v Entering a user ID and password that are not valid
v Having an expired credential on the server
v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the
client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable
authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number
of retry attempts.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 6.x, a behavior is defined during request_login for a BasicAuth
login. In releases prior to Version 5, a BasicAuth login takes the user ID and password entered through the
loginSource method and creates a BasicAuth credential. If either the user ID or the password is not valid,
the client program does not find out until the first method request is attempted. When the user ID or
password is specified during a prompt or programmatic login, the user ID and password are authenticated
by default with the security server, with a True or False returned as the result. If False, an
org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating that the user ID and
password are not valid. If True, then the BasicAuth credential is returned to the caller of the request_login.
To disable this feature on the pure client, specify com.ibm.CORBA.validateBasicAuth=false. By default, this
feature is set to True. On the server side, specify this property in the security dynamic properties.

Note: Set com.ibm.CORBA.validateBasicAuth=false whenever connecting to a z/OS server. This function
does not currently work from a distributed client to a z/OS server since the SecurityServer is
located using the "UNAUTHENTICATED" principal, which is not accepted on a z/OS system.

Integrating third-party HTTP reverse proxy servers
These steps are required to use a trust association interceptor with a reverse proxy security server.

Chapter 6. Authenticating users 365

About this task

WebSphere Application Server enables you to use multiple trust association interceptors. The application
server uses the first interceptor that can handle the request.

Procedure
1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console in a web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,
however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web and SIP security, click Trust association.

4. Select the Enable trust association option.

5. Under Additional properties, click Interceptors. The default value appears.

6. Verify that the appropriate trust association interceptors are listed.

Results

Trust association is enabled.

What to do next
1. If you are enabling security, make sure that you complete the remaining steps for enabling security.
2. Save, stop and restart all of the product servers (deployment managers, nodes and application

servers) for the changes to take effect.

Trust associations
Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Demand for such an integrated configuration has become more compelling, especially when a single
product cannot meet all of the customer needs or when migration is not a viable solution. This article
provides a conceptual background behind the approach.

In this setup, WebSphere Application Server is used as a back-end server to further exploit its fine-grained
access control. The reverse proxy server passes the HTTP request to WebSphere Application Server that
includes the credentials of the authenticated user. WebSphere Application Server then uses these
credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product
application security recognizes and processes HTTP requests that are received from a reverse proxy
server. WebSphere Application Server and the proxy server engage in a contract in which the product
gives its full trust to the proxy server and the proxy server applies its authentication policies on every web
request that is dispatched to WebSphere Application Server. This trust is validated by the interceptors that
reside in the product environment for every request received. The method of validation is agreed upon by
the proxy server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting
requests that did not pass through the proxy server. In this case, no interceptor is needed for validating
trust.

366 Securing applications and their environment

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus
This TAI interceptor implementation that implements the new WebSphere Application Server
interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports
WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security
attribute propagation, see “Security attribute propagation” on page 467.

Note: The TAI interceptor implementation also supports WebSphere Application Server Version
5.1.0.2 for z/OS.

com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl
This interceptor is new to this release. SPNEGO has replaced SPNEGO TAI as the web
authenticator for WebSphere Application Server.

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the
WebSEAL server at the front-end as a reverse proxy server. From a WebSEAL management perspective,
a junction is created with WebSEAL on one end, and the product web server on the other end. A junction
is a logical connection that is created to establish a path from the WebSEAL server to another server.

In this setup, a request for web resources that are stored in a protected domain of the product is submitted
to the WebSEAL server where it is authenticated against the WebSEAL security realm. If the requesting
user has access to the junction, the request is transmitted to the WebSphere Application Server HTTP
server through the junction, and then to the application server.

Meanwhile, WebSphere Application Server validates every request that comes through the junction to
ensure that the source is a trusted party. This process is referenced as validating the trust and it is
performed by a WebSEAL product-designated interceptor. If the validation is successful, WebSphere
Application Server authorizes the request by checking whether the client user has the required
permissions to access the web resource. If so, the web resource is delivered to the WebSEAL server
through the web server, which then gives the resource to the client user.

WebSEAL server

The policy director delegates all of the web requests to its web component, the WebSEAL server. One of
the major functions of the server is to perform authentication of the requesting user. The WebSEAL server
consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to
another user ID, such as when global single sign-on (GSO) is used.

For successful authentication, the server plays the role of a client to WebSphere Application Server when
channeling the request. The server needs its own user ID and password to identify itself to WebSphere
Application Server. This identity must be valid in the security realm of WebSphere Application Server. The
WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID
and password. In addition, WebSphere Application Server must determine the credentials of the requesting
client so that the application server has an identity to use as a basis for its authorization decisions. This
information is transmitted through the HTTP request by creating a header called iv-creds, with the Tivoli
Access Manager user credentials as its value.

Chapter 6. Authenticating users 367

HTTP server

The junction that is created in the WebSEAL server must get to the HTTP server that serves as the
product front end. However, the HTTP server is shielded from knowing that trust association is used. As
far as it is concerned, the WebSEAL product is just another HTTP client, and as part of its normal
routines, it sends the HTTP request to the product. The only requirement on the HTTP server is a Secure
Sockets Layer (SSL) configuration using server authentication only. This requirement protects the requests
that flow within the junction.

Web collaborator

When trust association is enabled, the web collaborator manages the interceptors that are configured in
the system. The web collaborator loads and initializes these interceptors when you restart your servers.
When a request is passed to WebSphere Application Server by the Web server, the web collaborator
eventually receives the request for a security check. Two actions must take place:
1. The request must be authenticated.
2. The request must be authorized.

The web authenticator is called to authenticate the request by passing the HTTP request. If successful, a
good credential record is returned by the authenticator, which the web collaborator uses to base its
authorization for the requested resource. If the authorization succeeds, the web collaborator indicates to
WebSphere Application Server that the security check has succeeded and that the requested resource can
be served.

Web authenticator

The web authenticator is asked by the web collaborator to authenticate a given HTTP request. Knowing
that trust association is enabled, the task of the web authenticator is to find the appropriate trust
association interceptor to direct the request for processing. The web authenticator queries every available
interceptor. If no target interceptor is found, the web authenticator processes the request as though trust
association is not enabled.

Note:

WebSphere Application Server Version 4 through WebSphere Application Server Version 6.x
support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface. WebSphere
Application Server Version 7.0.x and later supports the
com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl interface.

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)
exist as the exposed entry points to perform authentication and coarse-grained authorization, while
WebSphere Application Server enforces further fine-grained access control. Trust associations improve
security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of web application
servers, web servers, existing systems, and one or more RPSS, such as the Tivoli WebSEAL product.
Such reverse proxy servers, front-end security servers, or security plug-ins registered within web servers,
guard the HTTP access requests to the web servers and the web application servers. While protecting
access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication, coarse-grained
authorization, and request routing to the target application server.

368 Securing applications and their environment

When a web server, such as an IBM HTTP Server, uses a TAI to communicate with WebSphere
Application Server, sometimes it is essential for the TAI to know whether a request came through a web
server or came directly to WebSphere Application Sever. Therefore the WebSphere Application Server
Web container uses three HttpServletRequest attributes to provide the TAI with the certificate information
for a request:

v The com.ibm.websphere.ssl.direct_connection_peer_certificates attribute contains a X509Certificate[]
object of the certificate for a direct peer.

v The com.ibm.websphere.ssl.direct_connection_cipher_suite attribute contains a string object of a direct
cipher suite.

v The com.ibm.websphere.webcontainer.is_direct_connection attribute contains a boolean object that
indicates whether the connection was made through a web server, or was made directly to WebSphere
Application Server.

See the topic Web container request attributes for more information about these attributes.

Trust association settings
Use this page to enable trust association, which integrates application server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web security and click Trust association.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

Enable trust association
Specifies whether trust association is enabled.

Data type: Boolean
Default: Disable
Range: Enable or Disable

Trust association interceptor collection
Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click Trust association.

3. Under Additional Properties, click Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and
click Apply to validate the changes.

Interceptor class name
Specifies the trust association interceptor class name.

Data type
String

Chapter 6. Authenticating users 369

Trust association interceptor settings
Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security.

3. Click Trust association.

4. Under Additional Properties, click Interceptors > New.

Interceptor class name
Specifies the trust association interceptor class name.

Data type
String

Single sign-on for authentication
With single sign-on (SSO) support, web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

There are various ways to accomplish SSO, with the most common in WebSphere using LTPA cookies.
LTPA cookies do not require any particular client and allow SSO across different cells provide the registry
and LTPA keys are the same.

There are other flavors of SSO, including Simple and Protected GSS-API Negotiation (SPNEGO), which is
a way to use the token from a Kerberos login (typically Windows) to authenticate to WebSphere
Application Server. This prevents the user from having to type in their userid and passwords again.

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated In
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to provide
dynamic reload of the SPNEGO filters and to enable fallback to the application login method.

TAIs are also a form of single sign-on when used in combination with a Proxy server that does the
front-end authentication. The TAI allows the credentials to flow to WebSphere from the Proxy server and to
be used to login without the need to re-authenticate the user.

Single sign-on for authentication using LTPA cookies
With single sign-on (SSO) support, web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

Application servers distributed in multiple nodes and cells can securely communicate using the Lightweight
Third Party Authentication (LTPA) protocol. LTPA is intended for distributed, multiple application server and
machine environments. LTPA can support security in a distributed environment through cryptography. This
support permits LTPA to encrypt, digitally sign, and securely transmit authentication-related data, and later
decrypt and verify the signature.

LTPA also provides the SSO feature wherein a user is required to authenticate only once in a domain
name system (DNS) domain and can access resources in other WebSphere Application Server cells

370 Securing applications and their environment

without getting prompted. Web users can authenticate once to a WebSphere Application Server or to a
Domino server. This authentication is accomplished by configuring WebSphere Application Servers and the
Domino servers to share authentication information.

Without logging in again, web users can access other WebSphere Application Servers or Domino servers
in the same DNS domain that are enabled for SSO. You can enable SSO among WebSphere Application
Servers by configuring SSO for WebSphere Application Server. To enable SSO between WebSphere
Application Servers and Domino servers, you must configure SSO for both WebSphere Application Server
and for Domino.

Prerequisites and conditions

To take advantage of support for SSO between WebSphere Application Servers or between WebSphere
Application Server and a Domino server, applications must meet the following prerequisites and conditions:
v Verify that all servers are configured as part of the same DNS domain. The realm names on each

system in the DNS domain are case sensitive and must match identically. For example, if the DNS
domain is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere
Application Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com
and b.mycompany.com.

v Verify that all servers share the same registry. Domino servers do not support stand-alone custom
registries, but you can use a Domino-supported registry as a stand-alone custom registry within
WebSphere Application Server.

You can use a Domino directory that is configured for LDAP access or other LDAP directories for the
registry. The LDAP directory product must have WebSphere Application Server support. Supported
products include both Domino and LDAP servers, such as IBM Tivoli Directory Server. Regardless of
the choice to use an LDAP or a stand-alone custom registry, the SSO configuration is the same. The
difference is in the configuration of the registry.

v Define all users in a single LDAP directory. Using multiple Domino directory assistance documents to
access multiple directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the
server is transported to the browser in a cookie. The cookie is used to propagate the authentication
information for the user to other servers, exempting the user from entering the authentication
information for every request to a different server.

v For a Domino server:
– Domino Release 6.5.4 for iSeries and other platforms are supported.
– A Lotus Notes® client Release 5.0.5 or later is required for configuring the Domino server for SSO.
– You can share authentication information across multiple Domino domains.

v For WebSphere Application Server:
– WebSphere Application Server Version 3.5 or later for all platforms are supported.
– You can use any HTTP web server that is supported by WebSphere Application Server.
– You can share authentication information across multiple product administrative domains.
– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

Note: Form-login mechanisms for web applications require that SSO is enabled.
– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including
the base distinguished name) in the WebSphere Application Server authorization table. If case
sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user
registry settings.

Chapter 6. Authenticating users 371

Using a WebSphere Application Server API to achieve downstream
web single sign-on with an LtpaToken2 cookie
You can programmatically perform downstream Single Sign On (SSO) web propagation of a Lightweight
Third Party Authentication (LTPA) cookie without the need for an application to store and send user
credentials.

WebSphere Application Server provides API support to propagate an LtpaToken2 cookie to downstream
web single sign-on applications.

Note:

Web applications running in mid-tier WebSphere servers might need to propagate LtpaToken2
cookies on downstream web invocations. In this release of WebSphere Application Server, a new
Application Programming Interface (API) is provided for application developers to programmatically
perform downstream SSO without the need for an application to store and send user credentials.

This function is a public API in package com.ibm.websphere.security.WSSecurityHelper, and is defined as
follows:
/**

* Extracts an LTPA sso token from the subject of current
* thread and builds a ltpa cookie out of it for use on
* downstream web invocations.
* When the returned value is not null use Cookie methods
* getName() and getValue() to set the Cookie header
* on an http request with header value of
* Cookie.getName()=Cookie.getValue()
*
* @return an object of type javax.servlet.http.Cookie.
*
*/

The following is an example of how you can use the new WSSecurityHelper API:
import javax.servlet.http.Cookie;
import com.ibm.websphere.security.WSSecurityHelper;

Cookie ltpaCookie = WSSecurityHelper.getLTPACookieFromSSOToken()

Subsequently, the LTPA cookie can be set on an HTTP request header. In this case, the value of the
cookie header is the string:

WebSphere Cell

browser
agent, or
programming
client

secure
web application

secure
web application

Use of the LTPA Cookie API for
downstream authentication

Figure 12. Use of the LTPA Cookie API for downstream authentication

372 Securing applications and their environment

ltpaCookie.getName()=ltpaCookie.getValue()

For example, if you use org.apache.commons.httpclient.HttpMethod to build your HTTP request, the LTPA
cookie can be set as follows:
HttpMethod method = .; // new your HttpMethod based on the

// target URL for the web application
if (ltpaCookie != null)

method.setRequestHeader(“Cookie”, ltpaCookie.getName()+”=”+ltpaCookie.getValue());

Note: You should only send LTPA cookies over SSL connections.

Note: You must check whether the LTPA cookie that is returned from calling
WSSecurityHelper.getLTPACookieFromSSOToken() in the example above is not null before you
issue any getter methods. Also, to successfully retrieve a LTPA cookie object, and to ensure an
SSO token on the thread of execution, make sure that the user has established a successful
authentication with the mid-tier server.

Note: WebSphere Application Server does not ship supporting jars for HTTP programming, such as the
Apache httpclient. You must provide your own supporting functions for HTTP programming.

Global single sign-on principal mapping for authentication
You can use the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager to
manage authentication to enterprise information systems (EIS) such as databases, transaction processing
systems, and message queue systems that are located within the WebSphere Application Server security
domain. Such authentication is achieved using the global single sign-on (GSO) principal mapper Java
Authentication and Authorization Service (JAAS) login module for Java Platform, Enterprise Edition (Java
EE) Connector Architecture resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject
header. This credential is used by the resource adapter to authenticate to the EIS. The JAAS login module
used is configured on a per-connection factory basis. The default principal mapping module retrieves the
user name and password information from XML configuration files. The JACC provider for Tivoli Access
Manager bypasses the credential that is stored in the Extensible Markup Language (XML) configuration
files and uses the Tivoli Access Manager global sign-on (GSO) database instead to provide the
authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that associates user credential
information with EIS resources. The default mapping module is defined in the WebSphere Application
Server administrative console on the Application login panel. To access the panel, click Security > Global
security. Under Java Authentication and Authorization Service, click Application logins. The mapping
module name is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an
authDataAlias attribute. The authDataAlias attribute does not contain the user name and password; this
attribute contains an alias that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager principal mapping module uses the authDataAlias attribute to determine the
GSO resource name and the user name that is required to perform the lookup on the Tivoli Access
Manager GSO database. The Tivoli Access Manager Policy Server retrieves the GSO data from the user
registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database
against a resource and user name pair.

GSO principal mapping architecture

Chapter 6. Authenticating users 373

Implementing single sign-on to minimize web user authentications
With single sign-on (SSO) support, web users can authenticate once when accessing web resources
across multiple WebSphere Application Servers. Form login mechanisms for web applications require that
SSO is enabled. Use this topic to configure single sign-on for the first time.

Before you begin

SSO is supported when Lightweight Third Party Authentication (LTPA) is the authentication mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP
response. When the user accesses other web resources in any other WebSphere Application Server
process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA
token is then extracted from the cookie and validated. If the request is between different cells of
WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for
SSO to work. The realm names on each system in the SSO domain are case sensitive and must match
identically.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the
LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the web
applications have form login as the authentication method.

Because single sign-on is a subset of LTPA, it is recommended that you read “Lightweight Third Party
Authentication” on page 346 for more information.

When you enable security attribute propagation, the following cookie is always added to the response:

LtpaToken2
LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.
This token contains the authentication identity and additional information such as the attributes that
are used for contacting the original login server and the unique cache key for looking up the
Subject when considering more than just the identity in determining uniqueness.

Note: The following cookie is optionally added to the response when the Interoperability mode
flag is enabled:

LtpaToken
LtpaToken is used for inter-operating with previous releases of WebSphere Application Server.
This token contains the authentication identity attribute only.

Note: LtpaToken is generated for releases prior to WebSphere Application Server Version 5.1.0.2.
LtpaToken2 is generated for WebSphere Application Server Version 5.1.0.2 and beyond.

Table 26. LTPA token types. This table describes the LTPA token types.
Token type Purpose How to specify

LtpaToken2 only This is the default token type. It uses the
AES-CBC-PKCS5 padding encryption strength
(128-bit key size). This token is stronger than the
older LtpaToken used prior to WebSphere
Application Server Version 6.02. This is the
recommended option when interoperability with
older releases is not necessary.

Disable the Interoperability mode option in the
SSO configuration panel within the
administrative console. To access this panel,
complete the following steps:

1. Click Security > Global security.

2. Under Web security, click Single sign-on
(SSO).

374 Securing applications and their environment

Table 26. LTPA token types (continued). This table describes the LTPA token types.
Token type Purpose How to specify

LtpaToken and LtpaToken2 Use to interoperate with releases prior to
WebSphere Application Server Version 5.1.1.
The older LtpaToken cookie is present along
with the new LtpaToken2 cookie. Provided the
LTPA keys are correctly shared, you should be
able to interoperate with any version of
WebSphere using this option.

Enable the Interoperability mode option in the
SSO configuration panel within the
administrative console. To access this panel,
complete the following steps:

1. Click Security > Global security.

2. Under Web security, click Single sign-on
(SSO).

About this task

The following steps are required to configure SSO for the first time.

Procedure
1. Open the administrative console.

Type http://localhost:port_number/ibm/console to access the administrative console in a web
browser.

Port 9060 is the default port number for accessing the administrative console. During installation,
however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web security, click Single sign-on (SSO).

4. Click the Enabled option if SSO is disabled. After you click the Enabled option, make sure that you
complete the remaining steps to enable security.

5. Click Requires SSL if all of the requests are expected to use HTTPS.

6. Enter the fully qualified domain names in the Domain name field where SSO is effective. If you specify
domain names, they must be fully qualified. If the domain name is not fully qualified, WebSphere
Application Server does not set a domain name value for the LtpaToken cookie and SSO is valid only
for the server that created the cookie.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),
a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order from
left to right. Each domain is compared with the host name of the HTTP request until the first match is
located. For example, if you specify ibm.com®; austin.ibm.com and a match is found in the ibm.com
domain first, WebSphere Application Server does not continue to search for a match in the
austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com
domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

Table 27. Values to configure the Domain name field.

This table describes the values to configure the Domain name field.
Domain name value type Example Purpose

Blank The domain is not set. This causes the browser to
set the domain to the request host name. The
sign-on is valid on that single host only.

Single domain name austin.ibm.com If the request is to a host within the configured
domain, the sign-on is valid for all hosts within
that domain. Otherwise, it is valid on the request
host name only.

UseDomainFromURL UseDomainFromURL If the request is to a host within the configured
domain, the sign-on is valid for all hosts within
that domain. Otherwise, it is valid on the request
host name only.

Multiple domain names austin.ibm.com;raleigh.ibm.com The sign-on is valid for all hosts within the domain
of the request host name.

Multiple domain names and
UseDomainFromURL

v austin.ibm.com;raleigh.ibm.com;
UseDomainFromURL

The sign-on is valid for all hosts within the domain
of the request host name.

Chapter 6. Authenticating users 375

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name
value to the domain of the host that makes the request. For example, if an HTTP request comes from
server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to
raleigh.ibm.com .

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this
value.

For more information, see “Single sign-on settings” on page 421.

7. Optional: Enable the Interoperability mode option if you want to support SSO connections in
WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the
application server.

This option sets the old-style LtpaToken token into the response so it can be sent to other servers that
work only with this token type. Otherwise, only the LtpaToken2 token is added to the response.

If performance is a consideration, and you are only connecting to Version 6.1 or later servers that and
are not running products that depend on the LtpaToken, do not enable Interoperability mode. When
Interoperability mode is not enabled, an LtpaToken is not returned in a response.

8. Optional: Enable the Web inbound security attribute propagation option if you want information
added during the login at a specific front-end server to propagate to other front-end servers. The SSO
token does not contain any sensitive attributes, but does understand where the original login server
exists in cases where it needs to contact that server to retrieve serialized information. It also contains
the cache look-up value for finding the serialized information in DynaCache, if both front-end servers
are configured in the same DRS replication domain. For more information, see “Security attribute
propagation” on page 467.

Important: If the following statements are true, it is recommended that you disable the Web inbound
security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that
cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken token using
WSSecurityHelper application programming interfaces (APIs).

If you find that you are missing custom information in the Subject, re-enable the Web
inbound security attribute propagation option to see if the information is propagated
successfully to other front-end application servers.

The following two custom properties might help to improve performance when security
attribute propagation is enabled:

v com.ibm.CSI.propagateFirstCallerOnly

The default value of this property is true. When this custom property is set to true the
first caller in the propagation token that stays on the thread is logged when security
attribute propagation is enabled. When this property is set to false, all of the caller
switches are logged, which can affect performance.

v com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the
propagation token is completely disabled. This function is beneficial when the caller or
host list in the propagation token is not needed in the environment.

9. Click OK.

What to do next

For the changes to take effect, save, stop, and restart all the product deployment managers, nodes, and
servers.

376 Securing applications and their environment

Single sign-on for HTTP requests using SPNEGO web authentication
You can securely negotiate and authenticate HTTP requests for secured resources in WebSphere
Application Server by using the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) as the
web authentication service for WebSphere Application Server.

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its place to
provide the following enhancements:

v You can configure and enable SPNEGO web authentication and filters on WebSphere Application
Server by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart WebSphere
Application Server.

v Fallback to an application login method is provided if the SPNEGO web authentication fails.

v SPNEGO can be customized at the WebSphere security domain level. Read about “Multiple
security domains” on page 146 for more information.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

The following sections describe SPNEGO web authentication in more detail:

v “What is SPNEGO?”

v “The benefits of SPNEGO web authentication” on page 378

v “SPNEGO web authentication in a single Kerberos realm” on page 378

v “SPNEGO web authentication in a trusted Kerberos realm” on page 379

v “Support information for SPNEGO web authentication with a Java client using the HTTP protocol” on
page 380

v “Support information for SPNEGO web authentication with a browser client” on page 381

v “Setting up SPNEGO as the web authentication mechanism for WebSphere Application Server” on page
381

What is SPNEGO?

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation
Mechanism (IETF RFC 2478).

When WebSphere Application Server global and application security are enabled, and SPNEGO web
authentication is enabled, SPNEGO is initialized when processing a first inbound HTTP request. The web
authenticator component then interacts with SPNEGO, which is defined and enabled in the security
configuration repository. When the filter criteria is met, SPNEGO is responsible for authenticating access to
the secured resource that is identified in the HTTP request.

In addition to WebSphere Application Server security runtime services, some external components are
required to enable the operation of SPNEGO. These external components include:
v A client application, for example, Microsoft .NET, or web service and J2EE client that supports the

SPNEGO web authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer
Version 5.5 or later and Mozilla Firefox Version 1.0 are browser examples. Any browser must be
configured to use the SPNEGO web authentication mechanism. For more information on performing this
configuration, see Configuring the client browser to use SPNEGO.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a
SPNEGO token. WebSphere Application Server receives this token. Specifically, the SPNEGO web

Chapter 6. Authenticating users 377

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

authentication decodes and retrieves the requester's identity from the SPNEGO token. The identity is used
to establish a secure context between the requester and the application server.

SPNEGO web authentication is a server-side solution in WebSphere Application Server. Client-side
applications are responsible for generating the SPNEGO token for use by SPNEGO web authentication.
The requester's identity in the WebSphere Application Server security registry must be identical to the
identity that the SPNEGO web authentication retrieves. An identical match does occur when Microsoft
Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server that is used in
WebSphere Application Server. A custom login module is available as a plug-in to support custom mapping
of the identity from the Active Directory to the WebSphere Application Server security registry.

WebSphere Application Server validates the identity against its security registry. If the validation is
successful, the client Kerberos ticket and GSS delegation credential are retrieved and placed in the client
subject, which then produces a Lightweight Third Party Authentication (LTPA) security token. It then places
and returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same
requester to access additional secured resources in WebSphere Application Server use the LTPA security
token previously created to avoid repeated login challenges.

The web administrator has access to the following SPNEGO security components and associated
configuration data, as shown in the following figure:

The benefits of SPNEGO web authentication

The benefits of having WebSphere Application Server use SPNEGO as the web authentication service for
WebSphere Application Server include the following:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the web browser or
Microsoft .NET clients is established.

v Interoperability with web services and Microsoft .NET, or web service applications that use SPNEGO
authentication at the transport level is achieved.

v With Kerberos authentication support, SPNEGO web authentication can provide an end-to-end
SPNEGO to Kerberos solution and preserve the Kerberos credential from the client.

SPNEGO web authentication in a single Kerberos realm

SPNEGO web authentication is supported in a single Kerberos realm. The challenge-response handshake
process is shown in the following figure:

Web
Authentication

Module

Security Config
Module

SPNEGO JGSS/KRB5

krb5.conf
krb5.keytab

Figure 13. SPNEGO web authentication and security configuration elements

378 Securing applications and their environment

In the figure above, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate.

3. The client obtains a Ticket Granting Ticket (TGT).

4. The client requests a Service Ticket (TGS_REQ).

5. The client obtains a Service Ticket (TGS_REP).

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere
Application Server.

7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves
the user ID and the GSS delegation credential from the SPNEGO token. Create a KRBAuthnToken
with a client Kerberos credential.

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an
LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

Note: Other clients (for example, web services, .NET and J2EE) that support SPNEGO do not have to
follow the challenge-response handshake process as shown above. Those clients can obtain a
ticket-granting ticket (TGT) and a Kerberos service ticket for the target server, create a SPNEGO
token, insert it in the HTTP header, and then follow the normal process for creating an HTTP
request.

SPNEGO web authentication in a trusted Kerberos realm

SPNEGO web authentication is also supported in a trusted Kerberos realm. The challenge-response
handshake process is shown in the following figure:

Active Directory REALM1 KDC

Windows 2003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

WebSphere Application Server

krb5.conf krb5.keytab

REALM1 KDC

5.

3.

4.

1.

6.

2.

9.

8.

7.

Figure 14. SPNEGO web authentication in a single Kerberos realm

Chapter 6. Authenticating users 379

In the figure above, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate

3. The client obtains a Ticket Granting Ticket (TGT).

4. The client requests a cross realm ticket (TGS_REQ) for REALM2 from the REALM1 KDC.

5. The client uses the cross-realm ticket from step 4 to request a Service Ticket from the REALM2 KDC.

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere
Application Server.

7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves
the user ID and the GSS delegation credential from the SPNEGO token. Create a KRBAuthnToken
with a client Kerberos credential.

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an
LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

In the trusted Kerberos realms environment, be aware of the following:

v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos
Administrator and User's guide for more information about how to set up Kerberos trusted realms.

v The Kerberos client principal name from the SPNEGO token might not exist in the WebSphere user
registry; the Kerberos principal mapping to the WebSphere user registry might require it.

Support information for SPNEGO web authentication with a Java client using the
HTTP protocol

The following scenarios are supported:

v Domain trust within the same forest

v External domain trust directly between domains within different forests.

v Kerberos realm trust

The following scenarios are not supported:

v Cross-forest trust

v Forest external trust

Active Directory REALM1 KDC

Windows 20003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

krb5.conf krb5.keytab

Realm2 KDC
Trusted

3.

WebSphere Application Server

4. 5.

1.

6.

2.

9.

8.

7.

Figure 15. SPNEGO web authentication in a trusted Kerberos realm

380 Securing applications and their environment

Support information for SPNEGO web authentication with a browser client

The following scenarios are supported:

v Cross-forest trusts

v Domain trust within the same forest

v Kerberos realm trust

The following scenarios are not supported:

v Forest external trusts

v Domain external trusts

Setting up SPNEGO as the web authentication mechanism for WebSphere
Application Server

Before you set up SPNEGO web authentication in the administrative console or by using wsadmin
commands, you must perform the steps as listed in “Creating a single sign-on for HTTP requests using
SPNEGO Web authentication” to set up SPNEGO web authentication for WebSphere Application Server.

Note: SPNEGO web authentication on the server side must be done by the system administrator. The
Kerberos keytab file must be protected.

Creating a single sign-on for HTTP requests using SPNEGO Web
authentication
Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) web authentication for WebSphere Application Server requires the performance of
several distinct, yet related functions that when completed, allow HTTP users to log in and authenticate to
the Microsoft domain controller only once at their desktop and to receive automatic authentication from the
WebSphere Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its place to
provide the following enhancements:

v You can configure and enable SPNEGO web authentication and filters on the WebSphere
Application Server server side by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart the WebSphere
Application Server server.

v Fallback to an application login method is provided if the SPNEGO web authentication fails.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

Read about “Single sign-on for HTTP requests using SPNEGO web authentication” on page 377 for a
better understanding of what SPNEGO Web Authentication is and how it is supported in this version of
WebSphere Application Server.

Before starting this task, complete the following checklist:

Chapter 6. Authenticating users 381

v The domain member has users who can log on to the domain. Specifically, you need to have a
functioning Microsoft Windows active directory domain that includes:
– Domain controller
– Client workstation
– Users who can login to the client workstation

v A server platform with WebSphere Application Server running and application security enabled.
v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.
v The domain controller and the host of WebSphere Application Server should have the same local time.
v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.
v Be aware that client browsers must be SPNEGO enabled, which you perform on the client application

machine (with details explained in procedure 4, "Configure the client application on the client application
machine").

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere
Application Server resources without having to authenticate again and thus achieve Microsoft Windows
desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves
specific activities that are performed on three distinct machines:

v A Microsoft Windows server running the Active Directory Domain Controller and associated Kerberos
Key Distribution Center (KDC).

v A Microsoft Windows domain member (client application), such as a browser or Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Continue with the following steps to create a single sign-on for HTTP requests using SPNEGO Web
authentication:

Procedure
1. Create a Kerberos service principal (SPN) and keytab file on your Microsoft domain controller machine

You must configure your domain controller machine to create single sign-ons for HTTP requests using
the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) web authentication for
WebSphere® Application Server. Configure the Microsoft Windows Server running the Active Directory
Domain Controller and associated Kerberos Key Distribution Center (KDC).

Read the Configuring your domain controller machine to create single sign-ons for HTTP requests
using SPNEGO article for more information.

2. Create a Kerberos configuration file The IBM implementation of the Java Generic Security Service
(JGSS) and KRB5 require a Kerberos configuration file (krb5.conf or krb5.ini) on each node or Java
virtual machine (JVM). In this release of WebSphere Application Server, this configuration file should
be placed in the config/cells/<cell_name> directory so that all application servers can access this file.
If you do not have a Kerberos configuration file, use a wsadmin command to create one.

Read the Creating a Kerberos configuration article for more information.

3. Configure and enable SPNEGO web authentication using the administrative console on your
WebSphere Application Server machine You can enable and configure the Simple and Protected
GSS-API Negotiation (SPNEGO) as the web authenticator for the application server by using the
administrative console on the WebSphere Application Server machine.

Read the Enabling and configuring SPNEGO web authentication using the administrative console
article for more information.

382 Securing applications and their environment

4. Configure the client application on the client application machine Client-side applications are
responsible for generating the SPNEGO token. You begin this configuration process by configuring
your web browser to use SPNEGO authentication.

Read the Configuring the client browser to use SPNEGO article for more information.

5. Create SPNEGO tokens for J2EE, .NET, Java, web service clients for HTTP requests (optional) You
can create a Simple and Protected GSS-API Negotiation (SPNEGO) token for your applications and
insert this token into the HTTP headers to authenticate to the WebSphere Application Server.

Read the Creating SPNEGO tokens for J2EE, .NET, Java, web service clients for HTTP requests
article for more information.

Creating a single sign-on for HTTP requests using the SPNEGO TAI
(deprecated)
Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server requires the
performance of several distinct, yet related functions that when completed, allow HTTP users to log in and
authenticate only once at their desktop and receive automatic authentication from the WebSphere
Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Before starting this task, complete the following checklist:
v The domain member has users who can log on to the domain. Specifically, you need to have a

functioning Microsoft Windows active directory domain that includes:
– Domain controller
– Client workstation
– Users who can login to the client workstation

v A server platform with WebSphere Application Server running and application security enabled.
v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.
v The domain controller and the host of WebSphere Application Server should have the same local time.
v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.
v Be aware that client browsers have to be SPNEGO enabled, which you perform on the client application

machine (with details explained in step 2 of this task).

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere
Application Server resources without having to reauthenticate and thus achieve Microsoft Windows
desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves
specific activities that are performed on three distinct machines:

v Microsoft Windows Server running the Active Directory Domain Controller and associated Kerberos Key
Distribution Center (KDC)

Chapter 6. Authenticating users 383

v A Microsoft Windows domain member (client application), such as a browser or Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Perform the following steps on the indicated machines to create single sign-on for HTTP requests using
SPNEGO

Procedure
1. Domain Controller Machine - Configure the Microsoft Windows Server running the Active Directory

Domain Controller and associated Kerberos Key Distribution Center (KDC) This configuration activity
has the following steps:

v Create a user account for the WebSphere Application Server in a Microsoft Active Directory. This
account will be eventually mapped to the Kerberos service principal name (SPN).

v On the Microsoft Active Directory machine where the Kerberos key distribution center (KDC) is
active, map the user account to the Kerberos service principal name (SPN). This user account
represents the WebSphere Application Server as being a Kerberize'd service with the KDC. Use the
setspn command to map the Kerberos service principal name to a Microsoft user account. The
topic, “Creating a Kerberos service principal and keytab file that is used by the WebSphere
Application Server SPNEGO TAI (deprecated)” on page 388 has more details about using the
setspn command.

v Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the
ktpass tool to create the Kerberos keytab file (krb5.keytab). The topic, “Creating a Kerberos service
principal and keytab file that is used by the WebSphere Application Server SPNEGO TAI
(deprecated)” on page 388 has more details about using the ktpass command. to create the keytab
file.

Note: You make the keytab file available to WebSphere Application Server by copying the
krb5.keytab file from the Domain Controller (LDAP machine) to the WebSphere Application
Server machine. See “Using the ktab command to manage the Kerberos keytab file” on page
392 for more details.

Important: Your domain controller operations must lead to the following results:

v A user account is created in the Microsoft Active Directory and mapped to a Kerberos
service principal name.

v A Kerberos keytab file (krb5.keytab) is created and made available to the WebSphere
Application Server. The Kerberos keytab file contains the Kerberos service principal
keys WebSphere Application Server uses to authenticate the user in the Microsoft
Active Directory and the Kerberos account.

2. Client Application Machine - Configure the client application. Client-side applications are responsible
for generating the SPNEGO token for use by the SPNEGO TAI. You begin this configuration process
by configuring your web browser to use SPNEGO authentication. See “Configuring the client browser
to use SPNEGO TAI (deprecated)” on page 407 for the detailed steps required for your browser.

3. WebSphere Application Server Machine - Configure and enable the Application Server and the
associated SPNEGO TAI by performing the following tasks:

v Ensure that LTPA is enabled. See Configuring the Lightweight Third Party Authentication mechanism
for more details.

v Enable the SPNEGO TAI. See “Configuring WebSphere Application Server and enabling the
SPNEGO TAI (deprecated)” on page 393 for more details.

v Create SPNEGO TAI properties using either the wsadmin command task or the administrative
console.

– For using the wsadmin command task, see

- SpnegoTAICommands group for the AdminTask object (deprecated)

384 Securing applications and their environment

– For using the administrative console, see “Configuring WebSphere Application Server and
enabling the SPNEGO TAI (deprecated)” on page 393 for more details.

v Configure JVM properties and enable the SPNEGO TAI in Application Server in which it is defined.
See “Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in
WebSphere Application Server (deprecated)” on page 408 or “Enabling the SPNEGO TAI as JVM
custom property using scripting (deprecated)” on page 409 for more details.

v Install the Kerberos keytab file (created in step 1) on the WebSphere Application Server machine.
“Creating a Kerberos service principal and keytab file that is used by the WebSphere Application
Server SPNEGO TAI (deprecated)” on page 388 provides the details.

v Create a basic Kerberos configuration file (krb5.ini or krb5.conf). See The Kerberos configuration file
for details.

v Map the client Kerberos principal name to the WebSphere user registry ID, but only if the
WebSphere Application Server does not use Micorsoft Active Directory. See “Mapping Kerberos
client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)” on page 413 for
more details.

4. Optional: Using a remote HTTP server - To use a remote server, you must complete the following
steps, which assume that you have already configured the JVM properties and enabled the SPNEGO
TAI in the Application Server in which it is defined (as described in the previous three steps).

a. Complete the steps in “Creating a Kerberos service principal and keytab file that is used by the
WebSphere Application Server SPNEGO TAI (deprecated)” on page 388 for the remote proxy
server.

b. Merge the previous keytab file created in step 1 with the keytab file created in step 4a. See “Using
the ktab command to manage the Kerberos keytab file” on page 392 for more information.

c. Create the SPN for the remote proxy server using the addSpnegoTAIProperties wsadmin command
task. For more information, see SpnegoTAICommands group for the AdminTask object
(deprecated).

d. Restart the WebSphere Application Server.

Single sign-on for HTTP requests using SPNEGO TAI (deprecated)
WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources in WebSphere Application Server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Read about “Creating a single sign-on for HTTP requests using SPNEGO Web authentication” on
page 381 for more information.

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation
Mechanism (IETF RFC 2478).

When WebSphere Application Server administrative security is enabled, the SPNEGO TAI is initialized.
While processing inbound HTTP requests, the web authenticator component interacts with the SPNEGO
TAI, which is defined and enabled in the security configuration repository. One interceptor is selected and
is responsible for authenticating access to the secured resource that is identified in the HTTP request.

Chapter 6. Authenticating users 385

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

Important: The use of TAIs is an optional feature. If no TAI is selected, the authentication process
continues normally.

HTTP users log in and authenticate only once at their desktop and are subsequently authenticated
(internally) with WebSphere Application Server. The SPNEGO TAI is invisible to the end-user of
WebSphere applications. The SPNEGO TAI is only visible to the web administrator who is responsible for
ensuring a proper configuration, capacity, and maintenance of the web environment.

In addition to WebSphere Application Server security runtime services, some external components are
required to completely enable operation of the SPNEGO TAI. The external components include:
v A client application, for example, a browser or Microsoft .NET client, that supports the SPNEGO

authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer Version 5.5 or later
and Mozilla Firefox Version 1.0 are browser examples. Any browser needs to be configured to use the
SPNEGO mechanism. For more information on performing this configuration, see “Configuring the client
browser to use SPNEGO TAI (deprecated)” on page 407.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a
SPNEGO token. WebSphere Application Server receives this token and validates trust between the
requester and WebSphere Application Server. Specifically, the SPNEGO TAI decodes and retrieves the
requester's identity from the SPNEGO token. The identity is used to establish a secure context between
the requester and the application server.

Remember: The SPNEGO TAI is a server-side solution in WebSphere Application Server. Client-side
applications are responsible for generating the SPNEGO token for use by the SPNEGO TAI.
The requester's identity in WebSphere Application Server security registry must be identical
to that identity the SPNEGO TAI retrieves. An identical match does occur when Microsoft
Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server
that is used in WebSphere Application Server. A custom login module is available as a
plug-in to support custom mapping of the identity from the Active Directory to the WebSphere
Application Server security registry. See “Mapping Kerberos client principal name to
WebSphere user registry ID for SPNEGO TAI (deprecated)” on page 413 for details on using
this custom login module.

WebSphere Application Server validates the identity against its security registry and, if the validation is
successful, produces a Lightweight Third Party Authentication (LTPA) security token and places and
returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same
requester to access additional secured resources in WebSphere Application Server use the LTPA security
token previously created, to avoid repeated login challenges.

The challenge-response handshake process is illustrated in the following graphic:

The SPNEGO TAI can be enabled for all or for selected WebSphere Application Servers in a WebSphere
Application Server cell configuration. Also, the behavior of each SPNEGO TAI instance is controlled by
custom configuration properties that are used to identify, for example, the criteria used to filter HTTP
requests, such as the host name and security realm name used to construct the Kerberos Service
Principal Name (SPN). For more information regarding establishing and setting the SPNEGO TAI custom
configuration properties, see the following topics:

v Setting up the Kerberos configuration properties. See The Kerberos configuration file.

v Setting or adjusting the SPNEGO TAI custom properties. See “SPNEGO TAI custom properties
configuration (deprecated)” on page 402.

v Adjusting the SPNEGO TAI filter settings. See “Configuring JVM custom properties, filtering HTTP
requests, and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 408

Figure 16. HTTP request processing, WebSphere Application Server - SPNEGO TAI

386 Securing applications and their environment

v Using the custom login module to map the identity from the Active Directory to the WebSphere
Application Server registry. See Mapping user Ids from client to server for SPNEGO.

v Setting the major and additional Java virtual machine (JVM) custom properties. See “SPNEGO TAI JVM
configuration custom properties (deprecated)” on page 411

The web administrator has access to the following SPNEGO TAI security components and associated
configuration data, as illustrated in the following graphic.

v The web authentication module and the Lightweight Third Party Authentication (LTPA) mechanism
provide the plug-in runtime framework for trust association interceptors. See Configuring the Lightweight
Third Party Authentication mechanism for more detail is configuring the LTPA mechanism for use with
the SPNEGO TAI.

v The Java Generic Security Service (JGSS) provider is included in the Java SDK (jre/lib/
ibmjgssprovider.jar) and used to obtain the Kerberos security context and credentials that are used
for authentication. IBM JGSS 1.0 is a Java Generic Security Service Application Programming Interface
(GSSAPI) framework with Kerberos V5 as the underlying default security mechanism. GSSAPI is a
standardized abstract interface under which can be plugged different security mechanisms based on
private-key, public-key and other security technologies. GSSAPI shields secure applications from the
complexities and peculiarities of the different underlying security mechanisms. GSSAPI provides identity
and message origin authentication, message integrity, and message confidentiality. For more
information, see JGSS.

v The Kerberos configuration properties (krb5.conf or krb5.ini) and Kerberos encryption keys (stored in
a Kerberos keytab file) are used to establish secure mutual authentication.

The Kerberos key table manager (Ktab), which is part of JGSS, allows you to manage the principal
names and service keys stored in a local Kerberos keytab file. Principal name and key pairs listed in the
Kerberos keytab file allow services running on a host to authenticate themselves to the Kerberos Key
Distribution Center (KDC). Before a server can use Kerberos, a Kerberos keytab file must be initialized
on the host that runs the server.

“Using the ktab command to manage the Kerberos keytab file” on page 392 highlights the Kerberos
configuration requirements for the SPNEGO TAI as well as the use of Ktab.

v The SPNEGO provider supplies the implementation of the SPNEGO authentication mechanism, located
at /$WAS_HOME/java/jre/lib/ext/ibmspnego.jar.

v The custom configuration properties control the runtime behavior of the SPNEGO TAI. Configuration
operations are performed with the administrative console or scripting facilities. Refer to “SPNEGO TAI
custom properties configuration (deprecated)” on page 402 for more information about these custom
configuration properties.

v Java virtual machine (JVM) custom properties control diagnostic trace information for problem
determination of the JGSS security provider and use of the property reload feature.“SPNEGO TAI JVM
configuration custom properties (deprecated)” on page 411 describes these JVM custom properties

The benefits of having WebSphere Application Server use the SPNEGO TAI include:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the web browser or
Microsoft .NET clients is established.

v Interoperability with web services and Microsoft .NET applications that use SPNEGO authentication at
the transport level is achieved.

Figure 17. SPNEGO TAI security and configuration elements

Chapter 6. Authenticating users 387

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

Using the SPNEGO TAI in your WebSphere Application Server environment requires planning then
implementation. See “Single sign-on capability with SPNEGO TAI - checklist (deprecated)” on page 418 in
planning for SPNEGO TAI. Implementing the use of the SPNEGO TAI is divided into the following areas of
responsibility:

End browser user
The end user must configure the web browser or Microsoft .NET application to issue HTTP
requests that are processed by the SPNEGO TAI.

Web administrator
The web administrator is responsible for configuring the SPNEGO TAI of WebSphere Application
Server to respond to HTTP requests of the client.

WebSphere Application Server administrator
The WebSphere Application Server administrator is responsible for configuring WebSphere
Application Server and the SPNEGO TAI for optimum installation performance.

See “Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)” on page 383 for
an explanation of the tasks required to use the SPNEGO TAI and how the responsible party performs
these tasks.

Creating a Kerberos service principal and keytab file that is used by the
WebSphere Application Server SPNEGO TAI (deprecated)
You perform this configuration task on the Microsoft Active Directory domain controller machine. This task
is a necessary part of preparing to process single sign on browser requests to WebSphere Application
Server and thee SPNEGO trust association interceptor (TAI).

Before you begin

You need to have a running domain controller and at least one client machine in that domain.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

This task is performed on the active directory domain controller machine. Complete the following
steps to ensure that the Microsoft Windows Server that is running the active directory domain controller is
configured properly to the associated key distribution center (KDC). For information on the supported
Microsoft Windows Servers, see the System Requirements for WebSphere Application Server Version 8.0
on Windows.

Procedure
1. Create a user account in the Microsoft Active Directory for the WebSphere Application Server.

Click Start->Programs->Administrative Tools->Active Directory Users and Computers

Use the name for the WebSphere Application Server. For example, if the Application Server you are
running on the WebSphere Application Server machine is called myappserver.austin.ibm.com, create a
new user in Active Directory called myappserver.

Important: Do not select "User must change password at next logon."

388 Securing applications and their environment

Important: Make sure that you do not have the computer name myappserver under Computers and
Domain Controllers (You check for this condition as illustrated below.). If you already have
a computer name myappserver, then you need to create a different user account name.

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and
Computers->Computers

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and
Computers->Domain Controllers

2. Use the setspn command to map the Kerberos service principal name, HTTP/<host name>, to a
Microsoft user account. An example of setspn usage is as follows:
C:\Program Files\Support Tools>
setspn -A HTTP/myappserver.austin.ibm.com myappserver

Note: There may already be some SPNs related to the Microsoft Windows hosts that have been
added to the domain. You can display those that exist by using the setspn -L command, but
you still have to add an HTTP SPN for WebSphere Application Server. For example, setspn -L
myappserver would list the SPNs.

Important: Make sure that you do not have the same SPNs mapping to more than one Microsoft user
account. If you map the same SPN to more than one user account, the web browser client
can send a NTLM instead of SPNEGO token to WebSphere Application Server.

More information about the setspn command can be found here, Windows 2003 Technical Reference
(setspn command)

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the
ktpass command to create the Kerberos keytab file (krb5.keytab).

Use the ktpass tool from the Windows Server toolkit to create the Kerberos keytab file for the service
principal name (SPN). Use the latest version of the ktpass tool that matches the Windows server level
that you are using. For example, use the Windows 2003 version of the tool for a Windows 2003 server.

To determine the appropriate parameter values for the ktpass tool, run the ktpass -? command from
the command line. This command lists whether the ktpass tool, which corresponds to the particular
operating system, uses the -crypto RC4-HMAC or -crypto RC4-HMAC-NT parameter value. To avoid
warning messages from the toolkit, you must specify the -ptype KRB5_NT_PRINCIPAL parameter value.

The Windows 2003 server version of the ktpass tool supports the encryption type, RC4-HMAC, and
Single data encryption standard (DES). For more information about the ktpass tool, see Windows
2003 Technical Reference (Kerberos keytab file and ktpass command).

The following code shows the functions that are available when you enter ktpass -? command on the
command line. This information might be different depending on the version of the toolkit that you are
using.
C:\Program Files\Support Tools>ktpass -?
Command line options:

---------------------most useful args
[- /] out : Keytab to produce
[- /] princ : Principal name (user@REALM)
[- /] pass : password to use

use "*" to prompt for password.
[- +] rndPass : ... or use +rndPass to generate a random password
[- /] minPass : minimum length for random password (def:15)
[- /] maxPass : maximum length for random password (def:256)
---------------------less useful stuff
[- /] mapuser : map princ (above) to this user account (default:
don’t)
[- /] mapOp : how to set the mapping attribute (default: add it)
[- /] mapOp : is one of:
[- /] mapOp : add : add value (default)
[- /] mapOp : set : set value
[- +] DesOnly : Set account for des-only encryption (default:don’t)
[- /] in : Keytab to read/digest
---------------------options for key generation
[- /] crypto : Cryptosystem to use

Chapter 6. Authenticating users 389

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

[- /] crypto : is one of:
[- /] crypto : DES-CBC-CRC : for compatibility
[- /] crypto : DES-CBC-MD5 : for compatibliity
[- /] crypto : RC4-HMAC-NT : default 128-bit encryption
[- /] ptype : principal type in question
[- /] ptype : is one of:
[- /] ptype : KRB5_NT_PRINCIPAL : The general ptype-- recommended
[- /] ptype : KRB5_NT_SRV_INST : user service instance
[- /] ptype : KRB5_NT_SRV_HST : host service instance
[- /] kvno : Override Key Version Number

Default: query DC for kvno. Use /kvno 1 for Win2K
compat.
[- +] Answer : +Answer answers YES to prompts. -Answer answers
NO.
[- /] Target : Which DC to use. Default:detect
---------------------options for trust attributes (Windows Server 2003
Sp1 Only
[- /] MitRealmName : MIT Realm which we want to enable RC4 trust on.
[- /] TrustEncryp : Trust Encryption to use; DES is default
[- /] TrustEncryp : is one of:
[- /] TrustEncryp : RC4 : RC4 Realm Trusts (default)
[- /] TrustEncryp : DES : go back to DES

Important: Do not use the -pass switch on the ktpass command to reset a password for a Microsoft
Windows server account.

See Windows 2003 Technical Reference (Kerberos keytab file and ktpass command) for more
information. You must use the -mapUser option with ktpass command to enable the KDC to create an
encryption key. Otherwise, when the SPENGO token is received, it fails the validation process and the
application server challenges the user for a user name and password.

Depending on the encryption type, you use the ktpass tool in one of the following ways to create the
Kerberos keytab file. The following section shows the different types of encryption that are used by the
ktpass tool. It is important that you run the ktpass -? command to determine which -crypto parameter
value is expected by the particular toolkit in your Microsoft Windows environment.

v For a single DES encryption type

From a command prompt, run the ktpass command:
ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserv
-mapOp set
-pass was1edu
-crypto DES-CBC-MD5
-pType KRB5_NT_PRINCIPAL
+DesOnly

Table 28. Using ktpass for a single DES encryption type.

This table describes how to use ktpass for a single DES encryption type.
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto DES-CBC-MD5 This option uses the single DES encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

+DesOnly This option generates only DES encryptions.

v For the RC4-HMAC encryption type

Important: RC4-HMAC encryption is only supported when using a Windows 2003 Server as KDC.
From a command prompt, run the ktpass command.

390 Securing applications and their environment

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserver
-mapOp set
–pass was1edu
-crypto RC4-HMAC
-pType KRB5_NT_PRINCIPAL

Table 29. Using ktpass for the RC4-HMAC encryption type.

This table identifies and describes the ktpass options for RC4-HMAC encryption
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC This option chooses the RC4-HMAC encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

v For the RC4-HMAC-NT encryption type

From a command prompt, run the ktpass command.
ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserver
-mapOp set
-pass was1edu
-crypto RC4-HMAC-NT
-pType KRB5_NT_PRINCIPAL

Table 30. Using ktpass for the RC4-HMAC encryption type. This table describes the use of ktpass for RC4-HMAC
encryption types.
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC-NT This option chooses the RC4-HMAC-NT encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

The Kerberos keytab file is created for use with the SPNEGO TAI.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user
passwords. It is important for hosts to protect their Kerberos keytab files by storing them on the
local disk, which makes them readable only be authorized users.

You make the keytab file available to WebSphere Application Server by copying the krb5.keytab file
from the Domain Controller (LDAP machine) to the WebSphere Application Server machine.
ftp> bin
ftp> put c:\temp\KRB5_NT_SEV_HST\krb5.keytab

Results

Your active directory domain controller is properly configured to process single sign on requests to
WebSphere Application Server and the SPNEGO TAI

Chapter 6. Authenticating users 391

Using the ktab command to manage the Kerberos keytab file:

The Kerberos key table manager command (Ktab) allows the product administrator to manage the
Kerberos service principal names and keys stored in a local Kerberos keytab file. With the IBM Software
Development Kit (SDK) or Sun Java Development Kit (JDK) 1.6 or later, you can use the ktab command to
merge two Kerberos keytab files.

Kerberos service principal (SPN) name and keys listed in the Kerberos keytab file allow services running
on the host to validate the incoming Kerberos or SPNEGO token request. Before configuring Kerberos or
SPNEGO web authentication, the WebSphere Application Server administrator must setup a Kerberos
keytab file on the host that is running WebSphere Application Server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server Version 7.0, this function is now deprecated.

SPNEGO web authentication has taken its place to provide the following enhancements:

v Configure and enable SPNEGO Web Authentication and filters on the WebSphere Application
Server side by using the administrative console.

v Provide dynamic reload of SPNEGO without having to stop and restart the WebSphere
Application Server.

v Provide fallback to an application login method if the SPNEGO web authentication fails.

Important:

v It is important to protect the keytab files and make them readable only by authorized
product users.

v Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If
you change the keys in the Kerberos keytab file, you must also make the corresponding
changes to the Kerberos database.

The syntax of Ktab is illustrated below by using Ktab with the -help operand.
$ ktab -help

Usage: java com.ibm.security.krb5.internal.tools.Ktab [options]
Available options:
-l list the keytab name and entries
-a <principal_name> [password] add an entry to the keytab
-d <principal_name> delete an entry from the keytab
-k <keytab_name> specify keytab name and path with FILE: prefix
-m <source_keytab_name> <destination_keytab_name> specify merging source keytab file name and destination keytab file name

Below is an example of how Ktab is used to merge the krb5Host1.keytab file to the krb5.keytab file:
[root@wssecjibe bin]# ./ktab -m /etc/krb5Host1.keytab /etc/krb5.keytab
Merging keytab files: source=krb5Host1.keytab destination=krb5.keytab
Done!
[root@wssecjibe bin]# ls /etc/krb5.*
/etc/krb5Host1.keytab/etc/krb5.keytab
/etc/krb5.keytab

Below is an example of how Ktab is used on a LINUX platform to add new principal names to the
Kerberos keytab file, where ot56prod is the password for the Kerberos principal name:
[root@wssecjibe bin]# ./ktab -a
HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab
Done!
Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

392 Securing applications and their environment

Below is an example of how Ktab is used on a Linux platform to list Kerberos keytab file content.
[root@wssecjibe bin]# ./ktab

KVNO Principal
---- ---------

1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

[root@wssecjibe bin]# ls /etc/krb5.*
/etc/krb5.conf
/etc/krb5.keytab

Tip: You can run the ktab command from the install_root/java/J5.0/bin or install_root/java64/
J5.0_64/bin directory.

Configuring WebSphere Application Server and enabling the SPNEGO TAI
(deprecated)
Performing this task helps you, as web administrator, to ensure that WebSphere Application Server is
properly configured to enable the operation of the Simple and Protected GSS-API Negotiation (SPNEGO)
trust association interceptor (TAI).

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the
security configuration and have the proper authority to modify the security configuration of the application
server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Complete the following steps to enable the operation of the SPNEGO TAI.

Procedure
1. Log on to the WebSphere Application Server administrative console.

2. Click Security > Global security.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association check box, then click
Interceptors.

5. Select the SPNEGO TAI in the list of interceptors.

6. Then click Custom properties.

7. Click New and then fill in the Name and Value fields. Click OK. Repeat this step for each custom
property that you want to apply to the SPNEGO TAI. See “SPNEGO TAI custom properties
configuration (deprecated)” on page 402 for a complete list of SPNEGO TAI custom properties.

Note: It is recommended that you use the wsadmin utility to manage the SPNEGO TAI properties.
You can add, modify, and delete SPNEGO TAI properties as well as display them using
wsadmin. See “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” on page
395

Chapter 6. Authenticating users 393

395 to add, “Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page
398 to modify, and “Deleting SPNEGO TAI properties using the wsadmin utility (deprecated)” on
page 400 to delete SPNEGO TAI properties.

8. After you finish defining your custom properties, click Save to store the updated SPNEGO TAI
configuration.

9. Optional: If an alias for a connecting host name is added dynamically after the application server is
started, you need to configure the alias. Refer to the “Using an alias host name for SPNEGO TAI or
SPENGO web authentication using the administrative console (deprecated)” topic.

Results

Your SPNEGO TAI configuration is now configured for WebSphere Application Server.

Using an alias host name for SPNEGO TAI or SPENGO web authentication using the administrative
console (deprecated):

When you use the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association
interceptor (TAI) for authentication, and you would like to use alias host name as the host name for the
application server, you must configure a custom property to resolve the alias host name to the actual
hostname for SPNEGO single sign-on. Then, you can dynamically add or modify an alias name in the
DNS without changing the application server's configuration. If you enable this custom property you
will no longer need to set alias host names through the SPNEGO configuration.

Before you begin

You must have completed the steps as described in “Creating a single sign-on for HTTP requests using
the SPNEGO TAI (deprecated)” on page 383 and “Configuring WebSphere Application Server and
enabling the SPNEGO TAI (deprecated)” on page 393 before these settings will have an effect. This
configuration requires a working SPNEGO-TAI single sign-on environment.

About this task

The application server will perform a DNS lookup as an HTTP request comes in, and if the alias host
name is resolved as a host name that is already configured for SPNEGO single sign-on, the application
server will continue to process it. It is usually not required to add alias hostname to a SPNEGO account.

Procedure

1. Define the actual host name for the com.ibm.ws.security.spnego.SPNx.hostName variable.

a. From administration console, click Global security > Web and SIP security > Trust association
> Interceptors > com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl > Custom
Properties

b. Add or modify the com.ibm.ws.security.spnego.SPNx.hostName variable. For example:

Name com.ibm.ws.security.spnego.SPNx.hostName

Value real_host_name

This custom property specifies the actual host name to which the application server can resolve an
alias host name for SPNEGO single sign-on. You can then dynamically add or modify an alias
name in the DNS without changing the configuration for the application server.

You can optionally define the alias host name, but you are only required to define the real host
name. The application server resolves the alias host name to real host name as the HTTP request
is received.

2. Turn on the Canonical support flag.

a. From administration console, click Global security > Custom properties

b. Add or modify the com.ibm.websphere.security.krb.canonical_host variable and set it to "true".

394 Securing applications and their environment

Name com.ibm.websphere.security.krb.canonical_host

Value true

This custom property specifies whether the application server uses the canonical form of the
URL/HTTP host name in authenticating a client. If you set this custom property to false, a
Kerberos ticket can contain a host name that differs from the HTTP host name header and the
application server might issue the following message:

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application
server to authenticate using the canonical form of the URL/HTTP host name.

3. Configure the browser. On the browser for the client machine, the alias host name needs to be
configured as a trusted host.

v For Internet Explorer:

a. Select Tools > Internet options.

b. Select the Security tab.

c. Click Local intranet > Sites > Advanced

d. Add the alias host name in this panel.

v For Mozilla Firefox:

a. Type About:config in the address bar and press ENTER to access configuration options.

b. Locate the network.negotiate-auth.trusted-uris preference name, right-click on the preference,
and select Modify. If you do not have this preference, right-click within the panel, and select
New > string.

c. Add alias host names in the text box, separating host names with a comma.

4. Ensure that the real host name is added to the keytab file.

config: You can configure the keytab file in two ways:

v If com.ibm.websphere.security.krb.canonical_host is set to "true", the application server
expects the real host name to be in the keytab files. Aliases are not necessary.

v If com.ibm.websphere.security.krb.canonical_host is set to false and aliases are defined,
aliases need to be present in the keytab file.

Adding SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere
Application Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Verify that end-user desktop browsers are configured to support SPNEGO authentication, that the
SPNEGO TAI is enabled, that the Java virtual machine (JVM) property is set and, that WebSphere
Application Server is configured to enable the operation of the SPNEGO TAI.

Chapter 6. Authenticating users 395

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin
directory.

3. At the wsadmin prompt, enter the following command:
$AdminTask addSpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This parameter is optional. It is the SPN identifier for the
group of custom properties that are to be defined with this
command. If you do not specify this parameter, an
unused SPN identifier is assigned.

<host> This parameter is required. It specifies the host name
portion in the SPN used by the SPNEGO TAI to establish
a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria
used by the class specified with the above attribute. If
you do not specify this parameter, all HTTP requests are
subject to SPNEGO authentication.

<filterClass> This parameter is optional. It specifies the name of the
Java class used by the SPNEGO TAI to select which
HTTP requests will be subject to SPNEGO authentication.
If you do not specify this paramter, the default filter class,
com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<noSpnegoPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response to be displayed by the
(browser) client application if it does not support
SPNEGO authentication.

If you do not specify the noSpnegoPage paramter then
the default is used:

"<html><head><title>SPNEGO
authentication is not supported.
</title></head>" +
"<body>SPNEGO authentication is
not supported on this client.
</body></html>";

396 Securing applications and their environment

Option Description

<ntlmTokenPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response that is to be displayed by
the (browser) client application when the SPNEGO token
received by the interceptor (after the challenge-response
handshake) contains a NT LAN manager (NTLM) token
instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage parameter then
the default is used:

"<html><head><title>An NTLM
Token was received.</title></head>"
+ "<body>Your browser configuration
is correct, but you have not
logged into a supported Windows
Domain."
+ "<p>Please login to the application
using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whetheror not the
SPNEGO TAI is to remove the suffix of the principal user
name, starting from the "@" that precedes the Kerberos
realm name. If this parameter is set to true, the suffix of
the principal user name is removed. If this paramter is set
to false, the suffix of the principal name is retained. The
default value used is true.

Results

SPNEGO TAI properties have been added for this WebSphere Application Server.

Example

Example 1
The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in
the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator.
$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

Example 2

The following is an example of adding SPNEGOTAIProperties for SPN1 to use the default filterClass
and to intercept all requests for the host, central01.austin.ibm.com.
wsadmin>$AdminTask addSpnegoTAIProperties -interactive
Add SPNEGO TAI properties

Add SPNEGO TAI configuration properties.

*Host name in Service Principal Name (host): central01.austin.ibm.com
Service Principal Name identifier (spnId): 1
HTTP header filter rule (filter):
Name of class used to filter HTTP requests (filterClass):
SPNEGO not supported browser response (noSpnegoPage):
NTLM Token received browser response (ntlmTokenPage):
Trim User Name browser response (trimUserName):

Add SPNEGO TAI properties

F (Finish)
C (Cancel)

Chapter 6. Authenticating users 397

Select [F, C]: [F] f
WASX7278I: Generated command line: $AdminTask addSpnegoTAIProperties {-host central01.austin.ibm.com}
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
wsadmin>

Modifying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application
Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Verify that end-user desktop browsers are configured to support SPNEGO authentication, that the
SPNEGO TAI is enabled, that the Java virtual machine (JVM) property is set and, that WebSphere
Application Server is configured to enable the operation of the SPNEGO TAI.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin
directory.

3. At the wsadmin prompt, enter the following command:
$AdminTask modifySpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This parameter is required. It is the SPN identifier for the
group of custom properties that are to be defined with this
command.

<host> This parameter is optional. It specifies the host name
portion in the SPN used by the SPNEGO TAI to establish
a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria
used by the class specified with the above attribute.

<filterClass> This parameter is optional. It specifies the name of the
Java class used by the SPNEGO TAI to select which
HTTP requests will be subject to SPNEGO authentication.
If no class is specified, all HTTP requests will be subject
to SPNEGO authentication.

398 Securing applications and their environment

Option Description

<noSpnegoPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response to be displayed by the
(browser) client application if it does not support
SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the
default is used:

"<html><head><title>SPNEGO
authentication is not supported.
</title></head>" +
"<body>SPNEGO authentication is
not supported on this client.
</body></html>";

<ntlmTokenPage> This parameter is optional. The ntlmTokenPage
parameter specifies the URL of a resource that contains
the content the SPNEGO TAI will include in the HTTP
response, which will be displayed by the (browser) client
application. The (browser) client application displays this
HTTP response when the browser client sends a NT LAN
manager (NTLM) token instead of the expected SPNEGO
token during the challange-response handshake.

If you do not specify the ntlmTokenPage attribute then the
default is used:

"<html><head><title>An NTLM Token
was received.</title></head>"
+ "<body>Your browser configuration
is correct, but you have not
logged into a supported Windows
Domain."
+ "<p>Please login to the application
using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or
not (false) the SPNEGO TAI is to remove the suffix of
the principal user name, starting from the "@" that
precedes the Kerberos realm name. If this attribute is set
to true, the suffix of the principal user name is removed.
If this attribute is set to false, the suffix of the principal
name is retained. The default value used is true.

Results

SPNEGO TAI properties are modified for this WebSphere Application Server.

Example

Example 1
The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in
the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator. Then the example modifies
the value of the filter custom property that was defined and changes it from user-agent%=IE 6 to
host==myhost.company.com.
$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6
$AdminTask modifySpnegoTAIProperties -spnId 1 -filter host==myhost.company.com

Chapter 6. Authenticating users 399

Example 2
This is an example of modifying the SPNEGO TAI for SPN1 properties to add a filter for host
central01.austin.ibm.com.

wsadmin>$AdminTask modifySpnegoTAIProperties -interactive
Modify SPNEGO TAI properties

Modify SPNEGO TAI configuration properties

*Service Principal Name identifier (spnId): 1
Host name in Service Principal Name (host): central01.austin.ibm.com
HTTP header filter rule (filter): request-url!=noSPNEGO;request-url%=snoop
Name of class used to filter HTTP requests (filterClass):
SPNEGO not supported browser response (noSpnegoPage):
NTLM Token received browser response (ntlmTokenPage):
Trim User Name browser response (trimUserName):

Modify SPNEGO TAI properties

F (Finish)
C (Cancel)

Select [F, C]: [F] f
WASX7278I: Generated command line: $AdminTask modifySpnegoTAIProperties {-spnId
1 -host w2003secdev.austin.ibm.com -filter request-url!=noSPNEGO;request-url%=sn
oop}
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
wsadmin>

Deleting SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to delete properties in the configuration of the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Verify that end-user desktop browsers are configured to support SPNEGO authentication, that the
SPNEGO TAI is enabled, that the Java virtual machine (JVM) property is set and, that WebSphere
Application Server is configured to enable the operation of the SPNEGO TAI.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin
directory.

3. At the wsadmin prompt, enter the following command:
$AdminTask deleteSpnegoTAIProperties

400 Securing applications and their environment

You can use the following parameters with this command:

Option Description

<spnId> This is an optional parameter. It is the SPN identifier for
the group of custom properties that are to be deleted with
this command. If you do not specify this parameter, all
SPNEGO TAI custom properties are deleted.

Results

SPNEGO TAI properties are deleted for this WebSphere Application Server.

Example

Example 1
The following example deletes all the SPNEGO TAI properties for SPN2
wsadmin>$AdminTask deleteSpnegoTAIProperties {-spnId 2}

Example 2
The following example deletes all SPNEGO TAI properties
wsadmin>$AdminTask deleteSpnegoTAIProperties
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com
wsadmin>

Displaying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to display the properties in the configuration of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application
Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Verify that end-user desktop browsers are configured to support SPNEGO authentication, that the
SPNEGO TAI is enabled, that the Java virtual machine (JVM) property is set and, that WebSphere
Application Server is configured to enable the operation of the SPNEGO TAI.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin
directory.

3. At the wsadmin prompt, enter the following command:
$AdminTask showSpnegoTAIProperties

Chapter 6. Authenticating users 401

You can use the following parameters with this command:

Option Description

<spnId> This is an optional parameter. It is the service principal
name (SPN) identifier for the group of custom properties
that are to be displayed with this command. If you do not
specify this parameter, all SPNEGO TAI custom
properties are displayed.

Results

SPNEGO TAI properties are displayed for this WebSphere Application Server.

Example

Example 1
The following example displays all SPNEGO TAI properties.
wsadmin>$AdminTask showSpnegoTAIProperties
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com
wsadmin>

Example 2
The following example displays SPNEGO TAI properties for SPN1 and host, central01.austin.ibm.com.

wsadmin>$AdminTask showSpnegoTAIProperties -interactive
Show SPNEGO TAI configuration properties.

Display SPNEGO TAI configuration properties.

Service Principal Name identifier (spnId): 1

Show SPNEGO TAI configuration properties.

F (Finish)
C (Cancel)

Select [F, C]: [F]
WASX7278I: Generated command line: $AdminTask showSpnegoTAIProperties {-spnId 1}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN1.trimUserName=true
wsadmin>

SPNEGO TAI custom properties configuration (deprecated):

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)
custom configuration properties control different operational aspects of the SPNEGO TAI. You can specify
different property values for each application server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application

402 Securing applications and their environment

Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Each of the properties defined in the following table is specified in the Custom Properties panel for the
SPNEGO TAI using the administrative console facility. For convenience, you can optionally place these
properties in a properties file. In this case, the SPNEGO TAI loads the configuration properties from the file
instead of the Custom Properties panel definition. Refer to com.ibm.ws.security.spnego.propertyReloadFile
property as defined in “SPNEGO TAI JVM configuration custom properties (deprecated)” on page 411.

To assign unique property names that identify each possible SPN, an SPN<id> is embedded in the
property name and used to group the properties that are associated with each SPN. The SPN<id>s are
numbered sequentially for each property group.

Table 31. SPNEGO TAI custom properties.

This table lists the SPNEGO TAI custom properties.

Property Name Required Default Value

“com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate” No false

“com.ibm.ws.security.spnego.SPN<id>.filter” No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.filterClass” on page 405 No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.hostName” on page 405 Yes None

“com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage” on page
405

No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage” on page
405

No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.trimUserName” on page 405 No true

Note: The following commands tasks can be used to operate on these SPNEGO TAI properties:

v “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 395

v “Deleting SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 400

v “Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 398

v “Displaying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 401

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate:

This property is optional. It indicates whether or not the Kerberos delegated credentials are stored by the
SPNEGO TAI. This property enables the capability for an application to retrieve the stored credentials and
propagate them to other applications downstream for additional SPNEGO authentication.

This property requires use of the advanced Kerberos credential delegation feature and requires
development of custom logic by the application developer. The developer must interact directly with the
Kerberos Ticket Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated
Kerberos credentials on behalf of the end-user who originated the request. The developer must also
construct the appropriate Kerberos SPNEGO token and include it in the HTTP request to continue the
downstream SPNEGO authentication process, including handling additional SPNEGO challenge-response
exchange, if necessary.

com.ibm.ws.security.spnego.SPN<id>.filter:

Chapter 6. Authenticating users 403

This property is optional. It defines the filtering criteria that is used by the specified class with the
com.ibm.ws.security.spnego.SPN<id>.filterClass property. It defines arbitrary criteria that is meaningful to
the implementation class used.

The com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this property to
define a list of selection rules that represent conditions that are matched against the HTTP request
headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

Each condition is specified with a key-value pair, separated from each other by a semicolon. The
conditions are evaluated from left to right, as they display in the specified property. If all conditions are
met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that defines which condition is
checked. The key identifies an HTTP request header to extract from the request and its value is compared
with the value that is specified in the key-value pair according to the operator specification. If the header
that is identified by the key is not present in the HTTP request, the condition is treated as not being met.

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the
HTTP specification for the list of valid headers. In addition, two keys are defined to extract information
from the request, also useful as a selection criterion, which is not available through standard HTTP
request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP
address of the client application that sent the HTTP request. The request-URL key is used as a pseudo
header to retrieve the URL that is used by the client application to make the request. The interceptor uses
the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest interface to
construct the web address. If a query string is present, the result of the getQueryString operation in the
same interface is also used. In this case, the complete URL is constructed as follows:
String url = request.getRequestURL() + '?’ + request.getQueryString();

The following operators and conditions are defined:

Table 32. Filter conditions and operations.

This table defines the conditions and operators used in filtering and gives examples.

Condition Operator Example

Match exactly = =

Arguments are compared as
equal.

host=host.my.company.com

Match partially (includes) %=

Arguments are compared with a
partial match being valid.

user-agent%=IE 6

Match partially (includes one of
many)

^=

Arguments are compared with a
partial match being valid for one
of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not
equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared
lexogaphically as greater than.

remote-address>192.168.255.130

404 Securing applications and their environment

Table 32. Filter conditions and operations (continued).

This table defines the conditions and operators used in filtering and gives examples.

Condition Operator Example

Less than <

Arguments are compared
lexographically as less than.

remote-address<192.168.255.135

com.ibm.ws.security.spnego.SPN<id>.filterClass:

This property is optional. It specifies the name of the Java class that is used by the SPNEGO TAI to select
which HTTP requests are subject to SPNEGO authentication.

If no class is specified, the default com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is
used. The Java class that is specified must implement the com.ibm.wsspi.security.spnego.SpnegoFilter
interface. A default implementation of this interface is provided. Specify the
com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default implementation. This class uses
the selection rules specified with the com.ibm.ws.security.spnego.SPN<id>.filter property.

com.ibm.ws.security.spnego.SPN<id>.hostName:

This property is required. It specifies the hostname in the SPN used by the SPNEGO TAI to establish a
Kerberos secure context. It has no default value.

Note: The hostname is the long form of hostname. For example, myHostName.austin.ibm.com.
The Kerberos SPN is a string of the form HTTP/hostname@realm. The complete SPN is used with the Java
Generic Security Service (JGSS) by the SPNEGO provider to obtain the security credential and security
context that are used in the authentication process.

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage:

This property is optional. It specifies the web address of a resource that contains the content that the
SPNEGO TAI includes in the HTTP response that the (browser) client application displays when the
SPNEGO token is received by the interceptor when the challenge-response handshake contains a NT LAN
Manager (NTLM) token instead of the expected SPNEGO token.

It can specify a web (http://) or a file (file://) resource. If this property is not specified or the interceptor
cannot find the specified resource, the following content is used:
<html><head><title>An NTLM Token was received.</title></head>
<body>Your browser configuration is correct, but you have not logged into a supported
Microsoft(R) Windows(R) Domain.
<p>Please login to the application using the normal login page.</html>

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage:

This property is optional. It specifies the web address of a resource that contains the content that the
SPNEGO TAI includes in the HTTP response that the (browser) client application displays if it does not
support SPNEGO authentication. It can specify a Web (http://) or a file (file://) resource.

If this property is not specified or the interceptor cannot find the specified resource, the following content is
used:
<html><head><title>SPNEGO authentication is not supported</title></head>
<body>SPNEGO authentication is not supported on this client</body></html>;

com.ibm.ws.security.spnego.SPN<id>.trimUserName:

Chapter 6. Authenticating users 405

This property is optional. It specifies whether (true) or not (false) the SPNEGO TAI is to remove the suffix
of the principal user name, starting from the "@" that precedes the Kerberos realm name.

If this property is set to true, the suffix of the principal user name is removed. If this property is set to
false, the suffix of the principal name is retained. The default value used is true. For example,

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = true
bobsmith@myKerberosRealm becomes bobsmith

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = false
bobsmith@myKerberosRealm remains bobsmith@myKerberosRealm

SPNEGO TAI configuration requirements (deprecated):

The configuration that is used by the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
trust association interceptor (TAI) on each selected application server is governed by various system
requirements.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, the SPNEGO TAI was deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

The following list of configuration requirements highlights those attributes, properties, qualities, restrictions,
exclusions, inclusions, and dependencies that you need to be aware of when planning a WebSphere
Application Server configuration that incorporates the use of the SPNEGO TAI.

Table 33. SPNEGO TAI requirements.

This table lists the SPNEGO TAI configuration requirements.

Function item Description

SPNEGO TAI The SPNEGO TAI is a server side solution in WebSphere Application Server.
Client-side applications are responsible for generating the SPNEGO token for
use by the SPNEGO TAI.

Microsoft Windows Microsoft Windows Servers with Active Directory domain and its associated
Kerberos key distribution center (KDC) is required. For information on the
supported Microsoft Windows Servers, see the System Requirements for
WebSphere Application Server Version 8.0 on Windows.

Client application (browser or .NET
client)

A browser (client application) or .NET client that supports the SPNEGO
authentication mechanism, as defined in IETF RFC 2478 is required.

Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO)

SPNEGO authentication, as defined in IETF RFC 2478 is used.

Internet browsers v Use Microsoft Internet Explorer version 5.5 or higher

v Use Mozilla Firefox version 1.0

Kerberos Level Kerberos version 5 is required.

WebSphere Application Server Version 7.0 is required.

Java SDK level Java 6.0 SDK is required.

Encryption Types RC4-HMAC encryption is only supported when using a Windows 2003 Server
as Kerberos key distribution center (KDC).

406 Securing applications and their environment

Table 33. SPNEGO TAI requirements (continued).

This table lists the SPNEGO TAI configuration requirements.

Function item Description

J2EE client Client application (browser or .NET client) A browser (client application) or .NET
client that supports the SPNEGO authentication mechanism, as defined in IETF
RFC 2478 is required.

Configuring the client browser to use SPNEGO TAI (deprecated)
You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)
mechanism. Authentication of your browser requests are processed by the SPNEGO trust association
interceptor (TAI) in the WebSphere Application Server.

Before you begin

You need to know how to display and set options in the Microsoft Internet Explorer browser or any other
browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform
SPNEGO authentication.

Procedure
1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

5. In the Local intranet window, ensure that the "check box" to include all local (intranet) not listed in
other zones is selected, then click Advanced.

6. In the Local intranet window, fill in the Add this web site to the zone field with the web address of the
host name so that the single sign-on (SSO) can be enabled for the list of websites shown in the
websites field. Your site information technology staff provides this information. Click OK to complete
this step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that
the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Results

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO
authentication.

1. At the desktop, log in to the windows active directory domain.

Chapter 6. Authenticating users 407

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. Double click on network.negotiate-auth.trusted-uris. This preference lists the sites that are permitted
to engage in SPNEGO Authentication with the browser. Enter a comma-delimited list of trusted
domains or URLs.

Note: You must set the value for network.negotiate-auth.trusted-uris.

6. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation
double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the
browser may delegate user authorization to the server. Enter a comma-delimited list of trusted domains
or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are
deployed in WebSphere Application Server that use secured resources without being repeatedly requested
for an ID and password.

Configuring JVM custom properties, filtering HTTP requests, and enabling
SPNEGO TAI in WebSphere Application Server (deprecated)
Performing this task helps you, as web administrator, to ensure that WebSphere Application Server is
configured to enable the operation of the Simple and Protected GSS-API Negotiation mechanism
(SPNEGO) trust association interceptor (TAI) with the required Java virtual machine (JVM) property and
with the appropriate filtering of HTTP requests.

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the
security configuration and have the proper authority to modify the security configuration of the application
server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single
WebSphere Application Server system on which a single application is running to a large multinode
WebSphere Application Server, Network Deployment (ND) cell, with dozens of application servers, hosting
many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular
SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures
that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and
not change any other application servers in the cell. Other WebSphere Application Servers can run exactly
as before within a given configuration.

408 Securing applications and their environment

Decide whether or not to use the sample SPN<id>.filterClass and determine the exact filter properties to
use.

Note: The default behavior of the SPNEGO TAI is to use the
com.ibm.ws.security.spnego.SPN<id>.filterClass and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the
sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter
allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.
With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in
selecting which HTTP requests to intercept.

Note: For an alternative to the steps below for enabling the SPNEGO TAI, you can use scripting to
perform the operation. See “Enabling the SPNEGO TAI as JVM custom property using scripting
(deprecated)” for the details.

Complete the following steps to enable the operation of the SPNEGO TAI with your selected filtering and
with the JVM required property.

Procedure
1. Log on to WebSphere Application Server administrative console.

2. Click Servers > Application servers.

3. Select the appropriate server. Under Server Infrastructure, expand Java and process management >
Process Definition. Select Servant.

4. Click Java virtual machine. Under Additional Properties, click Custom Properties. Create a new
custom property, if required, by clicking New, then code com.ibm.ws.security.spnego.isEnabled in the
name field and true in the value field.

5. Click Apply > OK to save the configuration

6. Repeat step 3, but Select Control. Then repeat steps 4 and 5.

7. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you
must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filterClass
accordingly.

Results

The application server is configured and ready to provide a single sign-on environment for end users who
have successfully authenticated in a Microsoft Active Directory domain. You must restart each application
server that is configured for SPNEGO web authentication. Then your SPNEGO TAI is set to filter HTTP
request when it is operating.

Enabling the SPNEGO TAI as JVM custom property using scripting (deprecated):

You use the wsadmin utility to enable the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

Before you begin

Before starting this task, the wsadmin tool must be running. See the information about starting the
wsadmin scripting client using wsadmin scripting.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Chapter 6. Authenticating users 409

Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Perform the following steps to enable the SPNEGO TAI:

Procedure

1. Identify the server and assign it to the server1 variable:

v Using Jacl:
set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:
server1 = AdminConfig.getid("/Cell:mycell/Node:mynode/Server:server1/")
print server1

Example output:
server1(cells/mycell/nodes/mynode|servers/seerver1|server.xml#Server_1)

2. Identify the Java virtual machine (JVM) belonging to this server and assign it to the jvm variable:

v Using Jacl:
set jvm [$AdminConfig list JavaVirtualMachine $server1]

v Using Jython:
jvm = AdminConfig.list(’JavaVirtualMachine’,server1)

Example output:
(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)
(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

3. Identify the controller JVM of the server:

v Using Jacl:
set cjvm [lindex $jvm 0]

v Using Jython:
get line separator
import java
lineSeparator = java.lang.System.getProperty(’line.separator’)
arrayJVMs = jvm.split(lineSeparator)
cjvm = arrayJVMs[0]

4. Modify the generic JVM arguments to enable SPNEGO TAI:

v Using Jacl:
set attr_name [list name com.ibm.ws.security.spnego.isEnabled]
set attr_value [list value true]
set attr_required [list required false]
set attr_description [list description "Enabled SPNEGO TAI"]

set attrs [list $attr_name $attr_value $attr_required $attr_description]

$AdminConfig create Property $cjvm $attrs

v Using Jython:
attr_name = [’name’, "com.ibm.ws.security.spnego.isEnabled"]
attr_value = [’value’, "true"]
attr_required = [’required’, "false"]
attr_description = [’description’, "Enabled SPNEGO TAI"]
attr_list = [attr_name, attr_value, attr_required, attr_description]
property=[’systemProperties’,[attr_list]]
AdminConfig.modify(cjvm, [property])

5. Save the configuration changes.

410 Securing applications and their environment

6. In a network deployment environment only, synchronize the node.

SPNEGO TAI JVM configuration custom properties (deprecated):

Java virtual machine (JVM) custom properties control the operation of the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) trust association interceptor (TAI).

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

The following JVM custom properties control operation of the SPNEGO TAI. Different custom property
values can be specified for each application server.

Table 34. JVM configuration custom properties.

This table lists the SPNEGO JVM configuration custom properties.

Custom Property Name Required
Value
Type

Default
Value Recommended Value

com.ibm.ws.security.spnego.isEnabled No Boolean False True

com.ibm.ws.security.spnego.propertyReloadFile No String None For Windows

C:\temp\TAI.props

For UNIX

/tmp/TestTAI.Properties

com.ibm.ws.security.spnego.propertyReloadTimeout No Integer None 120

com.ibm.ws.security.spnego.isEnabled
Use this custom property to enable or disable operation of the SPNEGO TAI in a given application
server. When set to false, the SPNEGO TAI is disabled and not used by the web authentication
module for authenticating any web requests. When set to true, the SPNEGO TAI is enabled and used
by the web authentication module for authenticating any web requests.

com.ibm.ws.security.spnego.propertyReloadFile
Use this custom property to identify the file that contains configuration properties for the SPNEGO TAI,
when it is not convenient to stop and restart the application server. The properties contained in this file
can be reloaded to configure the SPNEGO TAI.

Important: The properties that are defined in the specified file override any properties defined using
the administrative console.

A sample of this reload file follows:
##
Template properties files for SPNEGO TAI
#
Where possible defaults have been provided.
#
##

#---
Hostname
#---

Chapter 6. Authenticating users 411

#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---
(Optional) SpnegoNotSupportedPage
#---
#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---
(Optional) NTLMTokenReceivedPage
#---
#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

#---
(Optional) FilterClass
#---
#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---
(Optional) Filter
#---
#com.ibm.ws.spnego.SPN1.Filter=

Important: If com.ibm.ws.security.spnego.propertyReloadFile custom property is set, but the
com.ibm.ws.security.spnego.propertyReloadTimeout custom property is not, then the
SPNEGO TAI is not initialized.

com.ibm.ws.security.spnego.propertyReloadTimeout
Use this custom property to specify a time interval in seconds that elapses after which the SPNEGO
TAI reloads the configuration properties. Also, the SPNEGO TAI reloads the configuration properties if
the file that is identified by the com.ibm.ws.security.spnego.propertyReloadFile custom property
changed since the last time the configuration custom properties were retrieved. This time interval in
seconds must be specified as a positive integer.

Important:

v If the com.ibm.ws.security.spnego.propertyReloadFile custom property and the
com.ibm.ws.security.spnego.propertyReloadTimeout custom property are not set, then the
SPNEGO TAI properties are only loaded once from the SPNEGO TAI custom properties
defined in the WebSphere Application Server configuration data. This one time loading
occurs when the JVM is initialized.

v If com.ibm.ws.security.spnego.propertyReloadTimeout custom property is set, but the
com.ibm.ws.security.spnego.propertyReloadFile custom property is not, then the SPNEGO
TAI is not initialized. “Configuring JVM custom properties, filtering HTTP requests, and
enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 408 or how
to configure the JVM custom properties for SPNEGO TAI.

Remember: You can also use the wsadmin command for the AdminConfig scripting object to interactively
set the com.ibm.ws.security.spnego.isEnabled custom property. See “Enabling the SPNEGO
TAI as JVM custom property using scripting (deprecated)” on page 409 for more information.

The following custom properties are not used directly by the SPNEGO TAI; however, they affect the
operation of the core security runtime and can also be used for problem determination.

Table 35. JVM configuration custom properties.

This table describes the JVM configuration custom properties

Custom Property Name Required Value Type Default Value Recommended Value

com.ibm.security.jgss.debug No String None "off" or "all"

com.ibm.security.krb5.Krb5Debug No String None "off" or "all"

412 Securing applications and their environment

Table 35. JVM configuration custom properties (continued).

This table describes the JVM configuration custom properties

Custom Property Name Required Value Type Default Value Recommended Value

java.security.properties No String None

javax.security.auth.useSubjectCredsOnly Yes Boolean True False

com.ibm.security.jgss.debug
This custom property is optional. It can be used to collect diagnostic trace information for problem
determination in the Java Generic Security Service (JGSS) application programmer interface (API)
implementation. The value can be set to all or off to enable or disable tracing, respectively. See Java
Generic Security Service User's Guide for specific JGSS API information.

com.ibm.security.krb5.Krb5Debug
This custom property is optional. It can be used to collect additional diagnostic trace information for
problem determination in the JGSS implementation. The value can be set to all or off to enable or
disable tracing, respectively.

java.security.properties
This property is optional. It can be used when different application servers in a cell have different
security requirements and it is not convenient to modify the global java.security file for the entire cell.
In such situations, the java.security.properties custom property is used to specify the location of the
java.security file used by the JVM for each application server.

javax.security.auth.useSubjectCredsOnly
JGSS includes an optional Java Authentication and Authorization Service (JAAS) login facility that
saves Principal credentials and secret keys in the Subject of the application's JAAS login context.
JGSS retrieves credentials and secret keys from the Subject by default. This feature can be disabled
by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Attention: The SPNEGO TAI does not use the optional JAAS login module. The
javax.security.auth.useSubjectCredsOnly property must be set to false.

Mapping Kerberos client principal name to WebSphere user registry ID for
SPNEGO TAI (deprecated)
You can use a system programming interface to customize the behavior of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary
mappings of the end-user's identity, which is retrieved from Microsoft Active Directory to the identity that is
used in the WebSphere Application Server security registry.

Before you begin

You need to perform some administrative tasks in the WebSphere Application Server environment to use
SPNEGO TAI and to ensure that the requester's identity matches the identity in the WebSphere
Application Server user registry.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Note: Make sure the following tasks have been performed successfully:

Chapter 6. Authenticating users 413

http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html
http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

1. Configuring the web browser to use SPNEGO. See “Configuring the client browser to use
SPNEGO TAI (deprecated)” on page 407

2. Configuring Java virtual machine (JVM) properties, custom SPNEGO TAI properties, and
enabling the SPNEGO TAI. See “Configuring JVM custom properties, filtering HTTP requests,
and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 408

About this task

In the simplest deployment of the SPNEGO TAI, it is assumed that the requester's identity in the
WebSphere Application Server user registry is identical to the identity retrieved. This is the case when
Microsoft Windows Active Directory server is the lightweight directory access protocol (LDAP) server used
in WebSphere Application Server. This is default behavior of the SPNEGO TAI.

You do not need to use this simple deployment of the SPNEGO TAI. WebSphere Application Server can
use a different registry, such as a local OS, LDAP, or custom registry instead of the Microsoft Active
Directory. If WebSphere Application Server uses a different registry than the Microsoft Active Directory,
then a mapping from the Microsoft Windows user Id to a WebSphere Application Server user Id is
necessary.

Procedure

Use the JAAS custom login module to perform any custom mapping of a client Kerberos principal name
from the Microsoft Active Directory to the WebSphere user registry identity. The JAAS custom login module
is a plug-in mechanism that is defined for authenticating incoming and outgoing requests in WebSphere
Application Server and is inserted before the ltpaLoginModule. The JAAS custom login module retrieves a
client Kerberos principal name in the javax.security.auth.Subject using
subject.getPrincipals(KerberosPrincipal.class) method, maps the client Kerberos principal name to
the WebSphere user registry identity, and inserts the mapping identity in the hash table property
com.ibm.wsspi.security.cred.userId. The ltpaLoginModule then uses the mapped identity to create a
WSCredential.

Note: The custom login module can also supply the full set of security properties in
the javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to fully assert
the mapped identity. When the identity is fully asserted, the wsMapDefaultInboundLoginModule maps
those security properties to a WSCredential.

A sample of the custom login module follows:
package com.ibm.ws.security.server.lm;

import java.util.Map;
import java.lang.reflect.Array;
import javax.security.auth.Subject;
import javax.security.auth.callback.*;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import javax.security.auth.kerberos.*;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.AttributeNameConstants;

/**
*
* @author IBM Corporation
* @version 1.0
* @since 1.0
*
*/

public class sampleSpnegoMappingLoginModule implements LoginModule {
/*
*

414 Securing applications and their environment

* Constant that represents the name of this mapping module. Whenever this sample
* code is used to create a class with a different name, this value should be changed.
*
*/
private final static String MAPPING_MODULE_NAME = "com.ibm.websphere.security.sampleSpnegoMappingLoginModule";

private String mapUid = null;
/**
* Construct an uninitialized WSLoginModuleImpl object.
*/
public sampleSpnegoMappingLoginModule() {

debugOut("sampleSpnegoMappingLoginModule() entry");
debugOut("sampleSpnegoMappingLoginModule() exit");

}

/**
* Initialize this login module.
*
*
* This is called by the LoginContext after this login module is
* instantiated. The relevant information is passed from the LoginContext
* to this login module. If the login module does not understands any of the data
* stored in the sharedState and options parameters,
* they can be ignored.
*
*
* @param subject The subject to be authenticated.
* @param callbackHandler
* A CallbackHandler for communicating with the end user to gather

login information (e.g., username and password).
* @param sharedState
* The state shared with other configured login modules.
* @param options The options specified in the login configuration for this particular login module.
*/
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options) {
debugOut("initialize(subject = \"" + subject.toString() +

"\", callbackHandler = \"" + callbackHandler.toString() +
"\", sharedState = \"" + sharedState.toString() +
"\", options = \"" + options.toString() + "\")");

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

debug = "true".equalsIgnoreCase((String)this.options.get("debug"));

debugOut("initialize() exit");
}

/**
*
* Method to authenticate a Subject (phase 1).
*
*
*
* This method authenticates a Subject. It uses CallbackHandler to gather
* the Subject information, like username and password for example, and verify these
* information. The result of the authentication is saved in the private state within
* this login module.
*
*
* @return true if the authentication succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the authentication fails.

Chapter 6. Authenticating users 415

*/
public boolean login() throws LoginException
{

debugOut("sampleSpnegoMappingLoginModule.login() entry");

boolean succeeded = false;
java.util.Set krb5Principals= subject.getPrincipals(KerberosPrincipal.class);
java.util.Iterator krb5PrincIter = krb5Principals.iterator();

while (krb5PrincIter.hasNext()) {
Object princObj = krb5PrincIter.next();
debugOut("Kerberos principal name: "+ princObj.toString());

if (princObj != null && princObj.toString().equals("utle@WSSEC.AUSTIN.IBM.COM")){
mapUid = "user1";
debugOut("mapUid: "+mapUid);

java.util.Hashtable customProperties = (java.util.Hashtable)
sharedState.get(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY);
if (customProperties == null) {

customProperties = new java.util.Hashtable();
}
succeeded = true;
customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, mapUid);

Map<String,java.util.Hashtable)>
mySharedState=(Map<String,java.util.Hashtable>)sharedState;
mySharedState.put((AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY.customProperties);

debugOut("Add a mapping user ID to Hashtable, mapping ID = "+mapUid);

}
debugOut("login() custom properties = " + customProperties);

}
}

succeeded = true;
debugOut("sampleSpnegoMappingLoginModule.login() exit");

return succeeded;
}

/**
*
* Method to commit the authentication result (phase 2).
*
*
*
* This method is called if the LoginContext’s overall authentication
* succeeded (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module
* succeeded).
*
*
* @return true if the commit succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the commit fails.
*/
public boolean commit() throws LoginException
{

debugOut("commit()");

debugOut("commit()");

return true;
}

416 Securing applications and their environment

/**
* Method to abort the authentication process (phase 2).
*
*
* This method is called if the LoginContext’s overall authentication
* failed (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module
* did not succeed).
*
*
*
* If this login module’s authentication attempt succeeded, then this method cleans
* up the previous state saved in phase 1.
*
*
* @return true if the abort succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the abort fails.
*/
public boolean abort() throws LoginException {

debugOut("abort() entry");
debugOut("abort() exit");
return true;

}

/**
* Method which logs out a Subject.
*
* @return true if the logout succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the logout fails.
*/
public boolean logout() throws LoginException
{

debugOut("logout() entry");
debugOut("logout() exit");

return true;
}

private void cleanup()
{

debugOut("cleanup() entry");
debugOut("cleanup() exit");

}

/*
*
* Private method to print trace information. This implementation uses System.out
* to print trace information to standard output, but a custom tracing system can
* be implemented here as well.
*
*/
private void debugOut(Object o)
{

System.out.println("Debug: " + MAPPING_MODULE_NAME);
if (o != null) {

if (o.getClass().isArray()) {
int length = Array.getLength(o);
for (int i = 0; i < length; i++) {

System.out.println("\t" + Array.get(o, i));
}

} else {
System.out.println("\t" + o);

}
}

Chapter 6. Authenticating users 417

}
private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;

protected boolean debug = false;
}

Results

Using the custom login module, Microsoft Active Directory identities are mapped to the WebSphere
Application Server's security registry and the behavior of the SPNEGO TAI is customized.

Single sign-on capability with SPNEGO TAI - checklist (deprecated)
WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources in WebSphere Application Server. To deploy and use the SPNEGO TAI you
need to examine your installation and decide on how best to configure the SPNEGO TAI.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere
Application Server. However, you may need to configure LTPA prior to configuring the SPNEGO TAI. LTPA
is the required authentication mechanism for all trust association interceptors. You can configure LTPA by
clicking Security > Global security > Authentication mechanisms and expiration.

Note: Enabling web security single sign-on (SSO) is optional when you configure the SPNEGO TAI. For
more information, see “Implementing single sign-on to minimize web user authentications” on page
374.

Answer the following questions to establish how the SPNEGO TAI is deployed.

1. What is your criteria for intercepting HTTP requests?

You must decide if the SPNEGO TAI deployment will use the HTTPHeaderFilter class as the default. If
you do use this class, then you must specify the exact filter properties for this class. The default
behavior of the SPNEGO TAI is to use the com.ibm.ws.spnego.HTTPHeaderFilter class to intercept all
requests.

If you do not use the sample com.ibm.ws.spnego.HTTPHeaderFilter class, then you must define a new
class that implements the com.ibm.wsspi.security.spnego.SpnegoTAIFilter interface.

You can decide to further control what HTTP requests are intercepted using the Service Provider
Programming Interface (SPI), “Filtering HTTP requests for SPNEGO TAI (deprecated)” on page 419

See “SPNEGO TAI custom properties configuration (deprecated)” on page 402 for descriptions of

v com.ibm.ws.security.spnego.SPN<id>.filterClass

v com.ibm.ws.security.spnego.SPN<id>.filter

2. Is user Id mapping to be used? If not, why not?

WebSphere Application Server enables you to define or develop a custom login module to map user
IDs. See “Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI
(deprecated)” on page 413 for more detail about performing this mapping.

418 Securing applications and their environment

You must decide, before deploying the TAI, whether or not to use this custom login module to perform
the SPNEGO TAI identity mapping

3. What type of encryption is to be used to process the SPNEGO tokens?

Microsoft Windows Active Directory supports two different Kerberos encryption types: RC4-HMAC and
DES-CBC-MD5. The IBM Java Generic Security Service (JGSS) library (and SPNEGO library) support
both of these encryption types.

Restriction: RC4-HMAC encryption is only supported with a Windows 2003 Server key distribution
center (KDC).

4. How will you handle credential delegation?

Kerberos supports the delegation of credentials. A server that receives Kerberos credentials from a
client can impersonate that client to other servers by using delegated credentials. Since SPNEGO TAI
tokens are a wrapping of a Kerberos credential, a server that receives Kerberos credentials within an
SPNEGO token can use those Kerberos credentials to impersonate the original user. That server can
interact using SPNEGO over HTTP as a SPNEGO client to other SPNEGO servers by composing an
appropriate HTTP Authorization header.

5. Will the SPNEGO TAI be deployed in a single or multiple domain name service (DNS) domain
environment?

Web browsers running on Windows are sensitive to DNS domains. They only send a SPNEGO token
when the target host name identifies a host name defined in the DNS domain of the client machine.
You can use HTTP redirection to support this configuration with the creation of a pseudo Kerberos
service principal name (SPN) in each DNS domain. All SPNs that WebSphere Application Server
supports must have their secret keys available in Kerberos keytab files. To enable single sign-on
across multiple DNS domains, a separate Kerberos keytab file is generated for each SPN per domain.
These individual Kerberos keytab files must be merged before they can be used by WebSphere
Application Server.

6. How frequently will application servers reload the SPNEGO TAI properties?

The SPNEGO TAI has an optional property reload feature that allows the reloading of the TAI
properties without restarting the Java virtual machine (JVM). This reload feature is controlled by the
system properties com.ibm.ws.security.spnego.propertyReloadFile and
com.ibm.ws.security.spnego.propertyReloadTimeout. These properties taken together enable the
SPNEGO TAI internal properties to be reloaded from a file on the file system after a certain time
period. If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set to a valid integer
value, and the com.ibm.ws.security.spnego.propertyReloadFile attribute points to a file on the file
system, then each JVM reloads the SPNEGO TAI properties from the file after the timeout period
expires. Also, the SPNEGO TAI properties are reloaded only if the date on the file has changed. If
these reload properties are not set, then the SPNEGO TAI properties are only loaded once, at JVM
initialization, from the SPNEGO TAI custom properties that are defined in WebSphere Application
Server configuration data. See “SPNEGO TAI JVM configuration custom properties (deprecated)” on
page 411 for more information about these reload properties.

The Windows Active Directory (Web) administrator, the WebSphere Application Server administrator, and
the application team review and answer these questions to determine the best deployment and
configuration settings for the SPNEGO TAI.

Filtering HTTP requests for SPNEGO TAI (deprecated)
You can use a system programming interface to customize the behavior of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by specifying whether or
not a particular HTTP request should be intercepted.

Chapter 6. Authenticating users 419

Before you begin

Before you begin, you need to understand the deployment of the SPNEGO TAI in your installation.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single
WebSphere Application Server system on which a single application is running to a large multinode
WebSphere Application Server, Network Deployment (ND) cell, with dozens of application servers, hosting
many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular
SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures
that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and
not change any other application servers in the cell. Other WebSphere Application Servers can run exactly
as before within a given configuration.

Then decide whether or not to use the sample SPN<id>.filter class and determine the exact filter
properties to use.

Note: The default behavior of the SPNEGO TAI is to use the com.ibm.ws.security.spnego.SPN<id>.filter
class and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the
sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter
allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.
With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in
selecting which HTTP requests to intercept.

Procedure
1. Set the com.ibm.ws.security.spnego.isEnabled Java virtual machine (JVM) custom property to true to

enable the SPNEGO TAI on any JVM.

2. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you
must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filter
class accordingly.

Results

Your SPNEGO TAI is set to filter HTTP requests when it is operating.

Configuring single sign-on capability with Tivoli Access Manager or
WebSEAL
Use the following information to enable single sign-on to WebSphere Application Server using either
WebSEAL or the plug-in for web servers.

420 Securing applications and their environment

About this task

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for web servers can be used as
reverse proxy servers to provide access management and single sign-on (SSO) capability to WebSphere
Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates
users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.
Two types of single sign-on are available, the TAI interface and the TAI++ interface, so named as both use
WebSphere Application Server trust association interceptors (TAI). With the TAI, the end-user name is
extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where the end-user
name is used to construct the client credential information and authorize the user. With the TAI++, all of
the user credential information is available in the HTTP header and not just the user name. The TAI++ is
the more efficient of the two solutions because a Lightweight Directory Access Protocol (LDAP) call is not
required. TAI functionality is retained for backwards compatibility.

Complete the following tasks to enable single sign-on to WebSphere Application Server using either
WebSEAL or the plug-in for web servers. These tasks assume that embedded Tivoli Access Manager is
configured for use.

Procedure
1. Create a trusted user account for Tivoli Access Manager in the shared Lightweight Directory Access

Protocol (LDAP) user registry. For more information, see “Creating a trusted user account in Tivoli
Access Manager” on page 427.

2. Configure either WebSEAL or the Tivoli Access Manager plug-in for Web servers to work with
WebSphere Application Server. For more information, see either of the following articles:

v “Configuring WebSEAL for use with WebSphere Application Server” on page 428

v “Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application
Server” on page 429

3. Configure single sign-on using either the TAI or TAI++ interface. For more information, see either of the
following articles:

v “Configuring single sign-on using trust association” on page 430

v “Configuring single sign-on using trust association interceptor ++” on page 430

Single sign-on settings
Use this page to set the configuration values for single sign-on (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Note: The Set security cookies as HTTPOnly to resist cross-site scripting attacks check box has been
added to the Single sign-on settings page for this release. The HttpOnly attribute is a browser
attribute created to prevent client side applications (such as Java scripts) from accessing cookies to
prevent some cross-site scripting vulnerabilities. The attribute specifies that LTPA and WASReqURL
cookies include the HTTPOnly field.

Enabled:

Specifies that the single sign-on function is enabled.

Web applications that use J2EE FormLogin style login pages, such as the administrative console, require
single sign-on (SSO) enablement. Only disable SSO for certain advanced configurations where LTPA
SSO-type cookies are not required.

Data type: Boolean

Chapter 6. Authenticating users 421

Default: Enabled
Range: Enabled or Disabled

Requires SSL:

Specifies that the single sign-on function is enabled only when requests are made over HTTPS Secure
Sockets Layer (SSL) connections.

Data type: Boolean
Default: Disable
Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single sign-on hosts.

The application server uses all the information after the first period, from left to right, for the domain
names. If this field is not defined, the web browser defaults the domain name to the host name where the
web application is running. Also, single sign-on is then restricted to the application server host name and
does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).
Each domain is compared with the host name of the HTTP request until the first match is located. For
example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first, the
application server does not match the austin.ibm.com domain. However, if a match is not found in either
ibm.com or austin.ibm.com, then the application server does not set a domain for the LtpaToken cookie.

If you specify the UseDomainFromURL value, the application server sets the SSO domain name value to the
domain of the host that is used in the web address. For example, if an HTTP request comes from
server1.raleigh.ibm.com, the application server sets the SSO domain name value to raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security
attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a
maximum of two single sign-on (SSO) cookies back to the browser. In some cases, the server just sends
the interoperable SSO cookie.

Web inbound security attribute propagation:

When web inbound security attribute propagation is enabled, security attributes are propagated to
front-end application servers. When this option is disabled, the single sign-on (SSO) token is used to log in
and recreate the Subject from the user registry.

If the application server is a member of a cluster and the cluster is configured with a data replication
service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the
originating server information.

422 Securing applications and their environment

With this information, the receiving server can contact the originating server using an MBean call to get the
original serialized security attributes.

Set security cookies as HTTPOnly to resist cross-site scripting attacks:

The HttpOnly attribute is a browser attribute created to prevent client side applications (such as Java
scripts) from accessing cookies to prevent some cross-site scripting vulnerabilities. The attribute specifies
that LTPA and WASReqURL cookies include the HTTPOnly field.

For session cookies, see the session settings for servers, applications, and web modules.

Data type: boolean
Default: enabled
Range: enabled or disabled

com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on
The com.tivoli.pd.jcfg.PDJrteCfg utility configures the Java Runtime Environment component for Tivoli
Access Manager. This utility enables Java applications to use the Tivoli Access Manager policy and
authorization servers.

Purpose

Important: If you are using the WebSphere Application Server, Network Deployment product, run the
pdjrtecfg utility first on the deployment manager. Then, run the script on the other nodes in the
cell.

Syntax
java com.tivoli.pd.jcfg.PDJrteCfg -action {config | unconfig} -cfgfiles_path
configuration_file_path -host policy_server_host -was -java_home jre_path

Parameters

-action {config|unconfig}
Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

unconfig
Use to reconfigure the Access Manager Java Runtime Environment component.

-cfgfiles_path
Specifies where the generated configuration files will be placed.

Note: This parameter is required.

-host policy_server_host
Specifies the policy server host name.

Valid values for policy_server_host include any valid IP host name.

Examples include:

host = libra
host = libra.dallas.ibm.com

-was
Notifies Tivoli Access Manager Runtime for Java that the WebSphere Application Server version is
being configured so it is not necessary to perform certain steps such as copying the Java security jar
files and PD.jar file since they were already placed in the appropriate directory by the WebSphere
Application Server installer.

Chapter 6. Authenticating users 423

-java_home jre_path
Specifies the fully qualified path to the Java runtime (such as the directory ending in jre). If this
parameter is not specified, the home directory for the jre in the PATH statement is used. If the home
directory for the jre is not in the PATH statement, this utility can create an incorrect parameter in the
output files.

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for
a Java runtime that has already been installed on the system.

You can install more than one Java Runtime Environment (JRE) on a given machine. The pdjrtecfg
command can be used to configure the Tivoli Access Manager Java Runtime Environment component
independently for each of the JRE configurations.

${JAVA_HOME}/bin/java
-Dfile.encoding=ISO8859-1 \
-Dws.output.encoding=CP1047 \
-Xnoargsconversion \
-Dpd.home=${WAS_HOME}/java/jre/PolicyDirector \
-cp ${WAS_HOME}/java/jre/lib/ext/PD.jar \
com.tivoli.pd.jcfg.PDJrteCfg \
-action config \

-cfgfiles_path ${WAS_HOME}/java/jre \
-host gary.us.ibm.com \
-java_home ${JAVA_HOME}

where:

-Dws.output.encoding
Is used to enable z/OS to display all of its messages and errors in a readable format.

-Dpd.home
Indicates where Tivoli Access Manager Runtime for Java has been installed. For WebSphere
Application Server, this is java.home/PolicyDirector

com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on
The utility is used to configure and remove the configuration information associated with WebSphere
Application Server and the Tivoli Access Manager server.

Purpose

Run the svrsslcfg script first on the deployment manager and then on the other nodes in the cell.

Syntax
java com.tivoli.pd.jcfg.SvrSslCfg
-action {config | unconfig} -admin_id admin_user_ID
-admin_pwd admin_password -appsvr_id application_server_name
-appsvr_pwd application_server_password -mode{local|remote}
-host host_name_of_application_server
-policysvr policy_server_name:port:rank [,...]
-authzsvr authorization_server_name:port:rank [,...]
-cfg_file fully_qualified_name_of_configuration_file
-domain Tivoli_Acccess_Manager_domain
-key_file fully_qualified_name_of_keystore_file
-cfg_action {create|replace}

Parameters

-action {config | unconfig}
Specifies the configuration action that is performed by the script. The following options apply:

424 Securing applications and their environment

-action config
Configuring a server creates user and server information in the user registry and creates local
configuration and key store files on the application server. Use the -action unconfig option to
reverse this operation.

If this action is specified, the following options are required: -admin_id, -admin_pwd,
-appsvr_id, -port, -mode, -policysvr, -authzsvr, and -key_file.

-action unconfig
Reconfigures an application server to complete the following actions:

v Remove the user and server information from the user registry

v Delete the local key store file

v Remove information for this application from the configuration file without deleting the file

The reconfiguration operation fails only if the caller is unauthorized or the policy server cannot
be contacted.

This action can succeed when a configuration file does not exist. When the configuration file
does not exist, it is created and used as a temporary file to hold configuration information
during the operation, and then the file is deleted completely.

If this action is specified, the following options are required: -admin_id, -admin_pwd,
-appsvr_id, and -policysvr.

-admin_id admin_user_ID
Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is
the default.

A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-admin_password admin_password

Specifies the password of the Tivoli Access Manager administrator user that is associated with the
-admin_id parameter. The password restrictions depend upon the password policy for your Tivoli
Access Manager configuration.

-appsvr_id application_server_name
Specifies the name of the application server. The name is combined with the host name to create
unique names for Tivoli Access Manager objects created for your application. The following names are
reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password
Specifies the password of the application server. This option is required. A password is created by the
system and the configuration file is updated with the password created by the system.

If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name
Specifies the name of the Tivoli Access Manager authorization server with which the application server
communicates. The server is specified by fully qualified host name, the SSL port number, and the
rank. The default SSL port number is 7136. For example: myauth.mycompany.com:7136:1. You can
specify multiple servers if the entries are separated by a comma (,).

-cfg_action {create | replace}
Specifies the action to take when creating the configuration and key files. Valid values are create or

Chapter 6. Authenticating users 425

replace. Use the create option to initially create the configuration and keystore files. Use the replace
option if these files already exist. If you use the create option and the configuration or keystore files
already exist, an exception is created.

Options are as follows:

create Specifies to create the configuration and key store files during server configuration.
Configuration fails if either of these files already exists.

replace
Specifies to replace the configuration and key store files during server configuration.
Configuration deletes any existing files and replaces them with new ones.

-cfg_file fully_qualified_name_of_configuration_file
Specifies the configuration file path and name.

A file name should be an absolute file name (fully qualified file name) to be valid.

-domain Tivoli_Access_Manager_domain
Specifies the Tivoli Access Manager domain name to which the administrator is authenticated. This
domain must exist and an the administrator ID and password must be valid for this domain. The
application server is specified in this domain.

If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration
will be used. The local domain value will be retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers
0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-host host_name_of_application_server
Specifies the TCP host name used by the Tivoli Access Manager policy server to contact this server.
This name is saved in the configuration file using the azn-app-host key.

The default is the local host name returned by the operating system. Valid values for host_name
include any valid IP host name.

Examples:

host = libra
host = libra.dallas.ibm.com

-key_file fully_qualified_name_of_keystore_file
Specifies the directory that is to contain the key files for the server. A valid directory name is
determined by the operating system. Use a fully qualified file name that contains the application server
certificate and key file.

Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file
and the folder that contains the .kdb file.

This option is required.

-mode server_mode
Specifies the mode in which the application operates. This value must be either local or remote.

-policysvr policy_server_name
Specifies the name of the policy server.

426 Securing applications and their environment

Comments

After the successful configuration of a Tivoli Access Manager Java application server, SvrSslCfg creates a
user account and server entries representing the Java application server in the Tivoli Access Manager user
registry. In addition, SvrSslCfg creates a configuration file and a Java key store file, which securely stores
a client certificate, locally on the application server. This client certificate permits callers to make
authenticated use of Tivoli Access Manager services. Conversely, reconfiguration removes the user and
server entries from the user registry and cleans up the local configuration and keystore files.

The contents of an existing configuration file can be modified by using the SvrSslCfg utility. The
configuration file and the key store file must already exist when calling SvrSslCfg with all options other
than -action config or -action unconfig.

The following options are parsed and processed into the configuration file, but are otherwise ignored in this
version of Tivoli Access Manager:

The host name is used to build a unique name (identity) for the application. The pdadmin user list
command displays the application identity name in the following format:

server_name/host_name

Note that the pdadmin server list command displays the server name in a slightly different format:

server_name-host_name

CLASSPATH=${WAS_HOME}/java/jre/lib/ext/PD.jar:${WAS_CLASSPATH}
java \
-cp ${CLASSPATH} \
-Dpd.cfg.home= ${WAS_HOME}/java/jre \
-Dfile.encoding=ISO8859-1 \
-Dws.output.encoding=CP1047 \
-Xnoargsconversion \
com.tivoli.pd.jcfg.SvrSslCfg \
-action config \
-admin_id sec_master \
-admin_pwd $TAM_PASSWORD \
-appsvr_id $APPSVR_ID \
-policysvr ${TAM_HOST}:7135:1 \
-port 7135 \
-authzsvr ${TAM_HOST}:7136:1 \
-mode remote \
-cfg_file ${CFG_FILE} \
-key_file ${KEY_FILE} \
-cfg_action create

Creating a trusted user account in Tivoli Access Manager
Tivoli Access Manager trust association interceptors require the creation of a trusted user account in the
shared LDAP user registry.

About this task

This account includes the ID and password that WebSEAL uses to identify itself to WebSphere Application
Server. To prevent potential vulnerabilities, do not use the sec_master ID as the trusted user account and
ensure that the password you use is unique and generated randomly. Use the trusted user account for the
TAI or TAI++ only.

Chapter 6. Authenticating users 427

Procedure
1. Use either the Tivoli Access Manager pdadmin command-line utility or Web Portal Manager to create

the trusted user. For example, from the pdadmin command line.

2. Reference the code listed below as an example for creating a trusted user account.

3. Reference the following additional resources for more information:

a. “Configuring WebSEAL for use with WebSphere Application Server”

b. “Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application
Server” on page 429

Example
pdadmin> user create webseal_userid webseal_userid_DN firstname

surname password

pdadmin> user modify webseal_userid account-valid yes

Configuring WebSEAL for use with WebSphere Application Server
Use this topic to set the SSO password in WebSEAL for single sign-on to WebSphere Application Server.

About this task

A junction must be created between WebSEAL and WebSphere Application Server. This junction carries
the iv-credentials (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the
request. You can configure WebSEAL to pass the end user identity in other ways, the iv-credentials header
is the only one supported by the TAI++ and the iv-user is the only one supported by TAI.

Communications over the junction should use Secure Sockets Layer (SSL) for increased security. Setting
up SSL across this junction requires that you configure the HTTP Server used by WebSphere Application
Server, and WebSphere Application Server itself, to accept inbound SSL traffic and route it correctly to
WebSphere Application Server. This activity requires importing the necessary signing certificates into the
WebSEAL certificate keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and WebSphere Application Server using the -c iv_creds option
for TAI++ and -c iv_user for TAI. Enter either of the following commands as one line using the variables
that are appropriate for your environment:

TAI++
server task webseald-server create -t ssl -b supply -c iv_creds
-h host_name -p websphere_app_port_number junction_name

TAI
server task webseald-server create -t ssl -b supply -c iv_user
-h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,
delete the junction, correct problems with the key databases, and recreate the junction.

2. The junction can be created as -t tcp or -t ssl, depending on your requirements.

For single sign-on (SSO) to WebSphere Application Server the SS) password must be set in WebSEAL.
To set the password, complete the following steps:

Procedure
1. Edit the WebSEAL configuration file webseal_install_directory/etc/webseald-default.conf Set the

following parameter: basicauth-dummy-passwd=webseal_userid_passwd

428 Securing applications and their environment

where webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a
trusted user account in Tivoli Access Manager” on page 427.

2. Restart WebSEAL.

What to do next

For more details and options about how to configure junctions between WebSEAL and WebSphere
Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli
Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server
you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available
at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for web servers for use with
WebSphere Application Server
Tivoli Access Manager plug-in for web servers can be used as a security gateway for your protected
WebSphere Application Server resources.

About this task

With such an arrangement the plug-in authorizes all user requests before passing the credentials of the
authorized user to WebSphere Application Server in the form of an iv-creds header. Trust between the
plug-in and WebSphere Application Server is established through use of basic authentication headers
containing the single sign-on (SSO) user password.

Procedure
1. The Tivoli Access Manager plug-in for web servers configuration shows IV headers configured for

post-authorization processing, and basic authentication that is configured as the authentication
mechanism and for post-authorization processing, as shown in the example below.

2. After a request is authorized, the basic authentication header is removed from the request
(strip-hdr=always) and a new one is added (add-hdr=supply).

3. Included in this new header is the password that is set when the SSO user is created in “Creating a
trusted user account in Tivoli Access Manager” on page 427.

4. Specify this password in the supply-password parameter and it is passed in the newly created
header. This basic authentication header enables trust between WebSphere Application Server and the
plug-in.

5. An iv-creds header is also added (generate=iv-creds), which contains the credential information of the
user passed onto WebSphere Application Server. Session cookies are used to maintain session state.

Example
[common-modules]
authentication = BA
session = session-cookie
post-authzn = BA
post-authzn = iv-headers

[iv-headers]
accept = all
generate = iv-creds

[BA]
strip-hdr = always
add-hdr = supply
supply-password = sso_user_password

What to do next

“Configuring single sign-on using trust association” on page 430 or “Configuring single sign-on using trust
association interceptor ++” on page 430

Chapter 6. Authenticating users 429

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

Configuring single sign-on using trust association
This task is performed to enable single sign-on using trust association. Trust association is used to
connect reversed proxy servers to the application server.

Before you begin

Note: Use of TAIs for Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) authentication is
deprecated in this release. The SPNEGO web authentication panels provide a much easier and
less error-prone way to configure SPNEGO.

To establish the trust association for the single sign-on, perform the following steps:

Procedure
1. From the administrative console for WebSphere Application Server, click Security > Global security.

2. From Authentication mechanisms, click Web and SIP security > Trust association.

3. Select the Enable trust association option.

4. Under Additional properties, click the Interceptors link.

5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL
interceptor, or com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl to use a SPNEGO
interceptor.

6. Under Custom properties, select a custom property to edit or click New to create a new one. Enter the
property name and value pairs.

7. Click OK.

8. Save the configuration and log out.

9. Restart WebSphere Application Server.

Configuring single sign-on using trust association interceptor ++
Perform this task to enable single sign-on using trust association interceptor ++. The steps involve setting
up trust association and creating the interceptor properties.

Before you begin

Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the Use
SWAM-no authenticated communication between servers option on the Authentication mechanisms
and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication mechanism.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere
Application Server. You can configure LTPA prior to configuring single sign-on (SSO) by clicking Security >
Global security > Authentication mechanisms and expiration.

To establish the trust association for the single sign-on, perform the following steps:

Procedure
1. From the administrative console for WebSphere Application Server, click Security > Global security.

2. Under Web security, click Trust association.

3. Click Enable Trust Association.

4. Click Interceptors.

5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL
interceptor. This interceptor is one of two WebSEAL interceptors that are supplied for your use. You
choose to use this interceptor by supplying properties as described in the next step.

430 Securing applications and their environment

Attention: WebSphere Application Server attempts to initialize both of these interceptors even if
you only supplied properties for the
com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor. As a result, messages
AWXRB0008E and SECJ0384E can appear during initialization to indicate that the interceptor you did
not choose has failed to initialize. This is normal processing and does not affect the initialization of
the interceptor you did select. To inhibit the display of messages AWXRB0008E and SECJ0384E, you
can delete the interceptor you do not want to use prior to beginning the initialization. You can add that
interceptor back later if your environment changes.

6. Click Custom Properties.

7. Click New to enter the property name and value pairs. Ensure that the following parameters are set:

Table 36. Custom properties.

This table describes the TAI custom properties.
Option Description

com.ibm.websphere.security.
webseal.checkViaHeader

You can configure TAI so that the via header can be ignored when validating trust for a request. Set this
property to false if none of the hosts in the via header need to be trusted. When set to false you do not
need to set the trusted host names and host ports properties. The only mandatory property to check
when via header is false is com.ibm.websphere.security.webseal.loginId.

The default value of the check via header property is false. When using Tivoli Access Manager plug-in
for web servers, set this property to false.
Note: The via header is part of the standard HTTP header that records the server names the request
that passed through.

com.ibm.websphere.security.
webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in Tivoli Access Manager” on
page 427 The format of the username is the short name representation. This property is mandatory. If it
is not set in WebSphere Application Server, the TAI initialization fails.

com.ibm.websphere.security.
webseal.id

A comma-separated list of headers that exists in the request. If all of the configured headers do not exist
in the request, trust cannot be established. The default value for the ID property is iv-creds. Any other
values set in WebSphere Application Server are added to the list along with iv-creds, separated by
commas.

com.ibm.websphere.security.
webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers. The property specifies
the host names (case sensitive) that are trusted and expected in the request header. Requests arriving
from un-listed hosts might not be trusted. If the checkViaHeader property is not set or is set to false then
the trusted host names property has no influence. If the checkViaHeader property is set to true, and the
trusted host names property is not set, TAI initialization fails.

com.ibm.websphere.security.
webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for web servers. This property is a
comma-separated list of trusted host ports. Requests that arrive from unlisted ports might not be trusted.
If the checkViaHeader property is not set, or is set to false this property has no influence. If the
checkViaHeader property is set to true, and the trusted host ports property is not set in WebSphere
Application Server, the TAI initialization fails.

com.ibm.websphere.security.
webseal.viaDepth

A positive integer that specifies the number of source hosts in the via header to check for trust. By
default, every host in the via header is checked, and if any host is not trusted, trust cannot be
established. The via depth property is used when only some of the hosts in the via header have to be
trusted. The setting indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the previous via header is
received then both webseal1:7002 and webseal2:7001 need to be trusted. The following configuration
applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2
com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received, then only the last host in the
via header needs to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means all of the hosts in the via header are checked
for trust.

com.ibm.websphere.security.
webseal.ssoPwdExpiry

After trust is established for a request, the single sign-on user password is cached, eliminating the need
to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every request. You
can modify the cache timeout period by setting the single sign-on password expiry property to the
required time in seconds. If the password expiry property is set to 0, the cached password never expires.
The default value for the password expiry property is 600.

Chapter 6. Authenticating users 431

Table 36. Custom properties (continued).

This table describes the TAI custom properties.
Option Description

com.ibm.websphere.security.
webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true the comments
field of the hosts entry in the via header is checked to determine if a host is a proxy. Remember that not
all proxies insert comments in the via header indicating that they are proxies. The default value of the
ignoreProxy property is false. If the checkViaHeader property is set to false then the ignoreProxy
property has no influence in establishing trust.

com.ibm.websphere.security.
webseal.configURL

For the TAI to establish trust for a request, it requires that the SvrSslCfg run for the Java Virtual Machine
on the Application Server and result in the creation of a properties file. If this properties file is not at the
default URL, which is file://java.home/PdPerm.properties, the correct URL of the properties file must
be set in the configuration URL property. If this property is not set, and the SvrSslCfg-generated
properties file is not in the default location, the TAI initialization fails. The default value for the config URL
property is file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

8. Click OK.

9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Configuring global sign-on principal mapping
You can create a new application login that uses the Tivoli Access Manager GSO database to store the
login credentials.

Procedure
1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

3. Click New to create a new Java Authentication and Authorization Service (JAAS) login configuration.

4. Enter the alias name of the new application login. Click Apply.

5. Under Additional properties, click JAAS login modules to define the JAAS Login Modules.

6. Click New and enter the following information:

Module class name: com.tivoli.pdwas.gso.AMPrincipalMapper
Use Login Module Proxy: enable
Authentication strategy: REQUIRED

7. Click Apply

8. Under Additional Properties section, click Custom Properties to define login module-specific values
that are passed directly to the underlying login modules.

9. Click New.

The Tivoli Access Manager principal mapping module uses the authDataAlias configuration string to
retrieve the correct user name and password from the security configuration.

The authDataAlias attribute that is passed to the module is configured for the J2C connection factory.
Because the authDataAlias attribute is an arbitrary string that is entered at configuration time, the
following scenarios are possible:

v The authDataAlias attribute contains both the global sign-on (GSO) resource name and the user
name. The format of this string is "Resource/User".

v The authDataAlias attribute contains the GSO Resource name only. The user name is determined
by using the Subject of the current session.

The scenario to use is determined by a JAAS configuration option, as shown here:

Name: com.tivoli.pd.as.gso.AliasContainsUserName

Value: True, if the alias contains the user name; false, if the user name must be retrieved from the
security context

432 Securing applications and their environment

When entering authDataAlias attributes through the WebSphere Application Server administrative
console, the node name is automatically pre-pended to the alias. The JAAS configuration entry
determines whether this node name is removed or included as part of the resource name, as shown
here:

Name: com.tivoli.pd.as.gso.AliasContainsNodeName

Value: True, if the alias contains the node name

Note: If the PdPerm.properties configuration file is not located in the JAVA_HOME/PdPerm.properties
default location, then you also need to add the following property:

Name: com.tivoli.pd.as.gso.AMCfgURL

Value: file:///path to PdPerm.properties

Enter each new parameter using the following scenario information as a guide, then click Apply.

Scenario 1
Auth Data Alias - BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Table 37. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2
Auth Data Alias - BackendEIS
Resource - BackEndEIS
User - Currently authenticated WebSphere Application Server user
Principal Mapping Parameters

Table 38. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Chapter 6. Authenticating users 433

Table 39. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - nodename/BackEndEIS (notice that node name is not removed)
User - eisUser
Principal Mapping Parameters

Table 40. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5
Auth Data Alias - BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Table 41. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - nodename/BackendEIS/eisUser

(notice that the resource is the same as Auth Data Alias).
User - Currently authenticated WebSphere Application Server user
Principal Mapping Parameters

Table 42. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

434 Securing applications and their environment

Table 42. Principal Mapping Parameters (continued).

This table lists the principal mapping parameters.
com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

10. Create the Java 2 Connector (J2C) authentication aliases. The user name and password that are
assigned to these alias entries are irrelevant because Tivoli Access Manager is responsible for
providing user names and passwords. However, the user name and password that are assigned to
the J2C authentication aliases need to exist so that they can be selected for the J2C connection
factory in the administrative console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative
console, click Security >Global security. Under Authentication, click Java Authentication and
Authorization Service > J2C authentication data, and then click New for each new entry. Refer to
the previous table for scenario inputs.

The connection factories for each resource adapter that need to use the GSO database must be
configured to use the Tivoli Access Manager Principal mapping module:

a. From the WebSphere Application Server administrative console, click Applications > Enterprise
Applications > application_name > Resourcer references. Note that J2C connection factories
must be already configured for the selected application. To configure a new J2C connection
factory, see the Configuring Java EE Connector connection factories in the administrative console
article.

b. Under Additional properties, click Resource Adapter.

The resource adapter can be stand-alone and does not need to be packaged with the application.
The resource adapter is configured from Resources > Resource Adapters for stand-alone
scenarios.

c. Under Additional properties, click J2C Connection Factories.

d. Click New and enter the connection factory properties.

e. When finished, click Apply > Save.

Attention:
Custom mapping configuration for the connection factory is deprecated in WebSphere Application
Server Version 6. To configure the GSO credential mapping, use the Map Resource References to
Resources panel on the administrative console. For more information, see the J2EE connector
security article.

Configuring administrative authentication
An authentication mechanism defines rules about security information, such as whether a credential is
forwardable to another Java process, and the format of how security information is stored in both
credentials and tokens. The Rivest Shamir Adleman (RSA) token authentication mechanism simplifies the
security environment for flexible management topology, that is, the topology where you can locally or
remotely submit and manage administrative jobs through a job manager that manages applications,
perform product maintenance, modify configurations, and control the application server runtime. You use
the administrative console to configure administrative authentication, which involves the configuring of the
Rivest Shamir Adleman (RSA) token authentication mechanism.

Before you begin

The following keystore, truststore, and rootstore descriptions give you an idea of where certificates are
stored and how trust is configured between processes.

Chapter 6. Authenticating users 435

The NodeRSATokenKeyStore contains the Rivest Shamir Adleman (RSA) token personal certificate used
for this process. Not only is the public/private key from this certificate used to create RSA tokens, but the
public key is used by other processes to create tokens. The RSA personal certificate is signed by an RSA
root certificate.

The NodeRSATokenTrustStore contains all RSA signer certificates from other processes that are trusted
to send RSA tokens to this process. The signers in this trust store are placed there automatically during
the registration process. However, this task allows an administrator to configure trust between to
processes not normally involved in the same administrative domain. There may be requirements where
two base servers are communicating administratively. When using the RSA token authentication
mechanism, the base servers need to share RSA signers if administrative communications is operating in
both directions.

The NodeRSATokenRootStore contains the root personal certificate that is used to create new RSA
personal certificates. Do not use the root certificate to create RSA tokens because this usage
compromises the long-lived keys. Only use the root certificate to sign other certificates.

No manual steps are required with these keystores, and this allows uncommon trust establishment among
processes not in the same administrative domain. You can also replace the RSA personal certificate with a
personal certificate obtained from a certificate authority (CA) if desired. In this case, make sure the CA root
certificate is placed in all RSA trust stores in the same administrative domain.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Under Keystore usages, select RSA token keystores.

4. Select the RSA token key store you want to administer.

5. Modify the description if required.

6. Modify the path if required.

7. Select read only, initialize at setup, or both if required.

8. Enter the correct password to make these modifications

9. Click Apply and Save.

Results

You configured administrative authentication.

What to do next

In cases where the process is back-level or a target RSA certificate cannot be obtained, the fallback
mechanism is Lightweight Third-Party Authentication (LTPA) which is supported in all previous releases for
administrative communications. The fallback occurs automatically. If the LTPA keys are not shared and a
fallback occurs, LTPA will fail as well. However, this situation is typically an error case in the RSA
mechanism and should occur infrequently.

Job manager security
When performing a job manager registration process there are a number of WebSphere Application Server
security impacts to consider.

Note: In WebSphere Application Server Version 7.0, a new style of system management called flexible
management was introduced. It differs from the existing style of synchronous invocation and
response calls through wsadmin or Java APIs by offering an asynchronous job queuing mechanism
for administration purposes. At the core of flexible management is a new administrative process

436 Securing applications and their environment

called the job manager. You can make both application servers registered to administrative agents
and deployment manager servers known to the job manager through a registration process. After
you register the servers, you can queue administrative jobs directed at the application servers or
deployment managers through the job manager. You can submit these jobs to a large number of
servers over a geographically dispersed area. There are a number of security considerations you
must keep in mind both during and after the job manager registration process.

Consider the following:

v Security configuration requirements should be kept to a minimum prior to registration.

v Allow an agent or a deployment manager (dmgr) to be federated to the job manager with almost any
security configuration. Some exceptions include:

– The administrative agent or deployment manager must have the same administrative security state
(either enabled or disabled).

– To enable security after federation, you must enable all administrative agent and deployment
manager processes within the same administrative domain, then restart all of the processes at the
same time.

v Leverage the creation of a chained certificate to exchange only the long-lived root certificates between
an administrative agent, deployment manager and job manager. When a personal certificate expires in
either the administrative agent, deployment manager or the job manager, it does not affect trust that
was established during federation.

v Use the Rivest Shamir Adleman (RSA) certificate administrative-specific authentication mechanism,
which does not rely on shared keys and is the default administrative authentication mechanism for the
job manager. The RSA token authentication mechanism is also new to this release of WebSphere
Application Server. Read about “RSA token authentication mechanism” on page 357 for more
information.

v Add a profile Universal Unique Identifier (UUID) to all certificates generated in WebSphere Application
Server Version 8.0. This profile UUID is used to authorize requests to extract jobs from the job manager
queue.

v Job Manager jobs can be associated with caller credentials: either Lightweight Third-Party
Authentication (LTPA) or with specified credentials using a user ID and password. Both are stored with
the job. The password is obfuscated using the standard utilities and can be encrypted when the
password encryption plug point is enabled. LTPA is refreshed as long as the authentication mechanism
allows it to be refreshed.

v With this service release, Job Manager jobs can be associated with caller credentials: either Lightweight
Third-Party Authentication (LTPA) or Kerberos, or with specified credentials using a user ID and
password). Both are stored with the job. The password is obfuscated using the standard utilities and
can be encrypted when the password encryption plug point is enabled. LTPA and Kerberos are
refreshed as long as the authentication mechanism allows them to be refreshed.

v Administrative agent or deployment manager access to FileTransferServlet is performed by sending a
valid RSA certificate that is trusted by the job manager and is validated by CertPath.

The required administrative roles for executing flexible management jobs are defined by the underlying
administrative commands used by those jobs. For example, the required role for starting and stopping
servers is the operator role. The operator role is also required for execution of the flexible management
jobs that start and stop servers. The general rules for assigning required administrative roles are:

v Viewing data requires the monitor role.

v Updating data requires the configurator role.

v Managing jobs requires the operator role.

v Registering or un-registering managed nodes requires the administrator role.

Chapter 6. Authenticating users 437

Java Authentication and Authorization Service
The standard Java 2 security application programming interface (API) helps enforce access control based
on the location of the code source or the author or packager of the code that signed the jar file. The
current principal of the running thread is not considered in the Java 2 security authorization. Instances
where authorization is based on the principal, as opposed to the code base, and the user exist. The Java
Authentication and Authorization Service is a standard Java API that supports the Java 2 security
authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security
architecture of the Java 2 platform with additional support to authenticate and enforce access control with
principals and users. JAAS implements a Java version of the standard Pluggable Authentication Module
(PAM) framework, and extends the access control architecture of the Java 2 platform in a compatible
fashion to support user-based authorization or principal-based authorization. WebSphere Application
Server fully supports the JAAS architecture. JAAS extends the access control architecture to support
role-based authorization for Java Platform, Enterprise Edition (Java EE) resources including servlets,
JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB) components.

Refer to “Java 2 security” on page 81 for more information.

The following sections cover the JAAS implementation and programming model:
v Login configuration for Java Authentication and Authorization Service
v Programmatic login for JAAS
v “Java Authentication and Authorization Service authorization”

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll
down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization
Java 2 security architecture uses a security policy to specify which access rights are granted to running
code. This architecture is code-centric. The permissions are granted based on code characteristics
including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the
Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls
with new user-centric access controls. Permissions are granted based on what code is running and who is
running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated
user. A subject is comprised of a set of principals, where each principal represents an identity for that user.
You can grant permissions in the policy to specific principals. After the user is authenticated, the
application can associate the subject with the current access control context. For each subsequent
security-checked operation, the Java runtime automatically determines whether the policy grants the
required permission to a specific principal only. If so, the operation is supported if the subject that is
associated with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the
subject class, passing it an authenticated subject and the java.security.PrivilegedAction or
java.security.PrivilegedExceptionAction method. The doAs method associates the provided subject with the
current access control context and then invokes the run method from the action. The run method
implementation contains all the code that ran as the specified subject. The action runs as the specified
subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the Enterprise
JavaBeans (EJB) method from an enterprise bean or servlet, the method runs under the user identity that
is determined by the run-as setting. The J2EE Version 1.4 Specification does not indicate which user
identity to use when invoking an enterprise bean from a Subject.doAs action block within either the EJB

438 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security

code or the servlet code. A logical extension is to use the proper identity that is specified in the subject
when invoking the EJB method within the Subject doAs action block.

Letting the Subject.doAs action overwrite the run-as identity setting is an ideal way to integrate the JAAS
programming model with the J2EE run-time environment. However, JAAS introduced an issue into the
Software Development Kit (SDK), Java Technology Edition Versions 1.3 or later when integrating the JAAS
Version 1.0 or later implementation with the Java 2 security architecture. A subject, which is associated
with the access control context is cut off by a doPrivileged call when a doPrivileged call occurs within the
Subject.doAs action block. Until this problem is corrected, no reliable and run-time efficient way is
available to guarantee the correct behavior of Subject.doAs action in a J2EE run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {
Public Object run() {

// Subject is associated with the current thread context
java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction() {
public Object run() {
// Subject was cut off from the current
// thread context

return null;
}

});
// Subject is associated with the current thread context
return null;

}
});

In the previous code example, the Subject object is associated with the context of the current thread.
Within the run method of a doPrivileged action block, the Subject object is removed from the thread
context. After leaving the doPrivileged block, the Subject object is restored to the current thread context.
Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often
in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the
JAAS authorization to a J2EE EJB method invocation, as described previously. The WSSubject class
provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The
WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and
WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and
Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread
upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

The WSSubject class is not a replacement of the subject object, but rather a helper class to ensure
consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {
Public Object run() {

// Subject is associated with the current thread context
java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction() {
public Object run() {

// Subject was cut off from the current thread
// context.

Chapter 6. Authenticating users 439

return null;
}

});
// Subject is associated with the current thread context

return null;
}

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time
environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action
blocks run under the identity that is specified by the run-as setting and not by the subject identity.
v The Subject object that is generated by the WSLoginModuleImpl instance and the

WSClientLoginModuleImpl instance contains a principal that implements the WSPrincipal interface.
Using the getCredential method for a WSPrincipal object returns an object that implements the
WSCredential interface. You can also find the WSCredential object instance in the PublicCredentials list
of the subject instance. Retrieve the WSCredential object from the PublicCredentials list instead of using
the getCredential method.

v The getCallerPrincipal method for the WSSubject class returns a string that represents the caller
security identity. The return type differs from the getCallerPrincipal method of the java.security.Principal
EJBContext interface.

v The Subject object that is generated by the Java 2 Connector (J2C) DefaultPrincipalMapping module
contains a resource principal and a PasswordCredentials list. The resource principal represents the
RunAs identity.

For more information, see J2EE connector security.

Using the Java Authentication and Authorization Service programming
model for web authentication
WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) declarative
security model. You can define the authentication and access control policy using the Java EE deployment
descriptor. You can further stack custom login modules to customize the WebSphere Application Server
authentication mechanism.

Before you begin

A custom login module can perform principal and credential mapping, custom security token and custom
credential-processing, and error-handling among other possibilities. Typically, you do not need to use
application code to perform authentication function. Use the programming techniques that are described in
this section if you have to perform authentication function in application code. For example, if you have
applications that programmed to the SSOAuthenticator helper function, you can use the following
programming interface. The SSOAuthenticator helper function was deprecated starting with WebSphere
Application Server Version 4.0. Use declarative security as a rule; use the techniques that are described in
this section as a last resort.

About this task

When the Lightweight Third-Party Authentication (LTPA) mechanism single sign-on (SSO) option is
enabled, the web client login session is tracked by an LTPA SSO token cookie after successful login. At
logout, this token is deleted to terminate the login session, but the server-side subject is not deleted. When
you use the declarative security model, the WebSphere Application Server web container performs client
authentication and login session management automatically. You can perform authentication in application
code by setting a login page without a Java EE security constraint and by directing client requests to your
login page first. Your login page can use the Java Authentication and Authorization Service (JAAS)
programming model to perform authentication. To enable WebSphere Application Server web login
modules to generate SSO cookies, use the following steps.

440 Securing applications and their environment

Procedure
1. Create a new system login JAAS configuration. To access the panel, click Security > Global security.

Under Java Authentication and Authorization Service, click System logins.

2. Manually clone the WEB_INBOUND login configuration, and give it a new alias. To clone the login
configuration, click New, enter a name for the configuration, click Apply, then click JAAS login
modules under Additional properties. Click New and configure the JAAS login module. For more
information, see Login module settings for Java Authentication and Authorization Service. WebSphere
Application Server web container uses the WEB_INBOUND login configuration to authenticate web
clients. Changing the WEB_INBOUND login configuration affects all web applications in the cell. You
should create your own login configuration by cloning the contents of the WEB_INBOUND login
configuration.

3. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two
login modules defined in your login configuration: ltpaLoginModule and
wsMapDefaultInboundLoginModule.

4. Add a login property name cookie with a value of true. The two login modules are enabled to generate
LTPA SSO cookies. Do not add the cookie login option to the original WEB_INBOUND login
configuration.

5. Stack your custom LoginModule(s) in the new login configuration (optional).

6. Use your login page for programmatic login by perform a JAAS LoginContext.login using your newly
defined login configuration. After a successful login, either the ltpaLoginModule or the
wsMapDefaultInboundLoginModule generates an LTPA SSO cookie upon a successful authentication.
Exactly which LoginModule generates the SSO cookie depends on many factors, including system
authentication configuration and runtime condition (which is beyond the scope of this section).

7. Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication cache.
The subject must be a WebSphere Application Server JAAS subject created by LoginModule. Adding
the subject to the authentication cache recreates a subject from SSO token.

8. Use your programmatic logout page to revoke SSO cookies by invoking the revokeSSOCookies method
from the WSSecurityHelper class. The term cookies is used because WebSphere Application Server
Release 5.1.1 (and later) release supports a new LTPA SSO token with a different encryption
algorithm, but can be configured to generate the original LTPA SSO token for backward compatibility.
Note that the subject is still in the authentication cache and only the SSO cookies are revoked.

Example

Use the following code sample to perform authentication.

gotcha: If you set the password for the WSCallbackHandlerFactoryset factory class for getting handlers to
null, as is done in the following example, you allow identity assertion without a password.

Suppose you wrote a LoginServlet.java:

Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;
Import com.ibm.websphere.security.auth.WSSubject;

public Object login(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

PrintWriter out = null;
try {
out = res.getWriter();

res.setContentType("text/html");
} catch (java.io.IOException e){
// Error handling
}

Subject subject = null;
try {
LoginContext lc = new LoginContext("system.Your_login_configuration",
WSCallbackHandlerFactory.getInstance().getCallbackHandler(
userid, null, password, req, res, null));
lc.login();
subject = lc.getSubject();

WSSubject.setRunAsSubject(subject);
} catch(Exception e) {

Chapter 6. Authenticating users 441

// catch all possible exceptions if you want or handle them separately
out.println("Exception in LoginContext login + Exception = " +
e.getMessage());
throw new ServletException(e.getMessage());
}

The following is sample code to revoke the SSO cookies upon a programming logout:

The LogoutServlet.java:

public void logout(HttpServletRequest req, HttpServletResponse res,
Object retCreds) throws ServletException {
PrintWriter out =null;
try {
out = res.getWriter();

res.setContentType("text/html");
} catch (java.io.IOException e){
// Error Handling
}
try {
WSSecurityHelper.revokeSSOCookies(req, res);

} catch(Exception e) {
// catch all possible exceptions if you want or handle them separately
out.println("JAASLogoutServlet: logout Exception = " + e.getMessage());
throw new ServletException(e);
}
}

What to do next

For more information on JAAS authentication, refer to Developing programmatic logins with the Java
Authentication and Authorization Service. For more information on the AuthenLoginModule login module,
refer to Example: Customizing a server-side Java Authentication and Authorization Service authentication
and login configuration.

Developing custom login modules for a system login configuration for
JAAS
For WebSphere Application Server, multiple Java Authentication and Authorization Service (JAAS) plug-in
points exist for configuring system logins. WebSphere Application Server uses system login configurations
to authenticate incoming requests, outgoing requests, and internal server logins.

About this task

Application login configurations are called by Java Platform, Enterprise Edition (Java EE) applications for
obtaining a Subject that is based on specific authentication information. This login configuration enables
the application to associate the Subject with a specific protected remote action. The Subject is picked up
on the outbound request processing. The following list identifies the main system plug-in points. If you
write a login module that adds information to the Subject of a system login, these are the main login
configurations to plug in:

v WEB_INBOUND

v RMI_OUTBOUND

v RMI_INBOUND

v DEFAULT

Procedure
v Authenticate web requests with the WEB_INBOUND login configuration.

The WEB_INBOUND login configuration authenticates web requests.

For more detailed information on the WEB_INBOUND configuration including its associated callbacks,
see "RMI_INBOUND, WEB_INBOUND, DEFAULT" in System login configuration entry settings for Java
Authentication and Authorization Service. Figure 1 shows an example of a configuration using a trust
association interceptor (TAI) that creates a Subject with the initial information that is passed into the
WEB_INBOUND login configuration. If the trust association interceptor is not configured, the
authentication process goes directly to the WEB_INBOUND system login configuration, which consists

442 Securing applications and their environment

of all the login modules combined in Figure 1. Figure 1 shows where you can plug in custom login
modules and where the ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are
required.

Figure 1

v Handle outbound requests with the RMI_OUTBOUND login configuration.

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere
Application Server uses this plug point to create the serialized information that is sent downstream
based on the invocation Subject passed in and other security context information such as propagation
tokens. A custom login module can use this plug point to change the identity. For more information, see
“Configuring outbound identity mapping to a different target realm” on page 462. Figure 2 shows where
you can plug in custom login modules and shows where the wsMapCSIv2OutboundLoginModule login
module is required.

Figure 2

For more information on the RMI_OUTBOUND login configuration, including its associated callbacks,
see "RMI_OUTBOUND" in System login configuration entry settings for Java Authentication and
Authorization Service.

v Handle inbound authentication for enterprise bean requests with the RMI_INBOUND login configuration.

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise
bean requests. WebSphere Application Server uses this plug point for either an initial login or a
propagation login. For more information about these two login types, see “Security attribute propagation”
on page 467. During a propagation login, this plug point is used to deserialize the information that is
received from an upstream server. A custom login module can use this plug point to change the identity,
handle custom tokens, add custom objects into the Subject, and so on. For more information on
changing the identity using a Hashtable object, which is referenced in figure 3, see “Configuring inbound
identity mapping” on page 455. Figure 3 shows where you can plug in custom login modules and shows
that the ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are required.

Figure 3

For more information on the RMI_INBOUND login configuration, including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in System login configuration entry settings for Java
Authentication and Authorization Service.

v Handle all other types of authentication requests with the DEFAULT login configuration. DEFAULT login
configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication
requests, including administrative SOAP requests and internal authentication of the server ID.
Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in System login configuration entry settings for Java
Authentication and Authorization Service.

v Develop login configuration logic to know when specific information is present and how to use the
information. Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or
system login configuration, read the JAAS programming model, which is located at:
http://java.sun.com/products/jaas. The JAAS programming model provides basic information about
JAAS. However, before writing a login module for the WebSphere Application Server environment, read
the following sections in this article:

– Useable callbacks

– Shared state variables

– Initial versus propagation logins

Chapter 6. Authenticating users 443

http://java.sun.com/products/jaas

– Sample custom login module

Useable Callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.
However, the callbacks are not always passed data. The login configuration must contain logic to know
when specific information is present and how to use the information. For example, if you write a custom
login module that can plug into all four of the pre-configured system login configurations mentioned
previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might
be present for other reasons, including propagation and making other information available to the login
configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)
This information is a typical authentication combination.

User name only (NameCallback)
This information is used for identity assertion, trust association interceptor (TAI) logins, and
certificate logins.

Token (WSCredTokenCallbackImpl)
This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)
This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the
WSTokenHolderCallback callback is present in addition to one of the first three information
combinations, the login is called a propagation login. A propagation login means that some security
attributes are propagated to this server from another server. The servers can reuse these security
attributes if the authentication information validates successfully. In some cases, a
WSTokenHolderCallback callback might not have sufficient attributes for a full login. Check the
requiresLogin method on the WSTokenHolderCallback callback to determine if a new login is required.
You can always ignore the information returned by the requiresLogin method, but, as a result, you might
duplicate information. The following list contains the callbacks that might be present in the system login
configurations. The list includes the callback name and a description of their responsibility.

callbacks[0] = new javax.security.auth.callback.NameCallback("Username: ");
This callback handler collects the user name for the login. The result can be the user name for
a basic authentication login (user name and password) or a user name for an identity assertion
login.

callbacks[1] = new javax.security.auth.callback.PasswordCallback("Password: ", false);
This callback handler collects the password for the login.

callbacks[2] = new
com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl("Credential Token: ");

This callback handler collects the Lightweight Third Party Authentication (LTPA) token or other
token type for the login. This callback handler is typically present when a user name and
password are not present.

callbacks[3] = new com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback("Authz Token
List: ");

This callback handler collects the ArrayList of TokenHolder objects that are returned from a call
to the WSOpaqueTokenHelper.createTokenHolderListFromOpaqueToken API using the Common
Secure Interoperability Version 2 (CSIv2) authorization token as input.

callbacks[4] = new
com.ibm.websphere.security.auth.callback.WSServletRequestCallback("HttpServletRequest: ");

This callback handler collects the HTTP servlet request object, if present. This callback handler
enables login modules to get information from the HTTP request for use in the login, and is
presented from the WEB_INBOUND login configuration only.

444 Securing applications and their environment

callbacks[5] = new
com.ibm.websphere.security.auth.callback.WSServletResponseCallback("HttpServletResponse:
"); This callback handler collects the HTTP servlet response object, if present. This callback

handler enables login modules to put information into the HTTP response as a result of the
login. An example of this situation might be adding the SingleSignonCookie cookie to the
response.This callback handler is presented from the WEB_INBOUND login configuration only.

callbacks[6] = new
com.ibm.websphere.security.auth.callback.WSAppContextCallback("ApplicationContextCallback:
"); This callback handler collects the web application context that is used during the login. This

callback handler consists of a HashMap object, which contains the application name and the
redirect web address, if present. The callback handler is presented from the WEB_INBOUND
login configuration only.

callbacks[7] = new WSRealmNameCallbackImpl("Realm Name: ", default_realm);
This callback handler collects the realm name for the login information. The realm information
might not always be provided. If the realm information is not provided, assume that it is the
current realm.

callbacks[8] = new WSX509CertificateChainCallback("X509Certificate[]: ");
This callback handler contains the certificate that was validated by Secure Sockets Layer (SSL)
if the login source is an X509Certificate from SSL client authentication. The ltpaLoginModule
calls the same mapping functions as WebSphere Application Server releases prior to version
6.1. However, having it passed into the login gives a custom login module the opportunity to
map the certificate in a custom way. Then, it performs a Hashtable login. See “Configuring
inbound identity mapping” on page 455 for more information on a Hashtable login.

v Use shared state variables to share information between login modules during the login phase.

If you want to access the objects that WebSphere Application Server creates during a login, refer to the
following shared state variables. The variables are set in the following login modules: ltpaLoginModule,
swamLoginModule, and wsMapDefaultInboundLoginModule.

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose
Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere
Application Server API documentation for application programming interface (API) usage. This
shared state variable is for read-only purposes. Do not set this variable in the shared state for
custom login modules.

The login module in which variables are set
ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose
Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere
Application Server API documentation for API usage. This shared state variable is for read-only
purposes. Do not set this variable in the shared state for custom login modules.

Login module in which variables are set
wsMapDefaultInboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose
Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules
can use this object to set custom attributes plugged in after the

Chapter 6. Authenticating users 445

wsMapDefaultInboundLoginModule login module. The information set here is propagated
downstream and is available to the application. See the WebSphere Application Server API
documentation for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:

– It is the first time authentication information is presented to WebSphere Application Server.

– The login information is received from a server that does not propagate security attributes so this
information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback callback is present and
contains sufficient information from a sending server to recreate all the required objects needed by
WebSphere Application Server runtime. In cases where there is sufficient information for the WebSphere
Application Server runtime, the information you might add to the Subject is likely to exist from the
previous login. To verify if your object is present, you can get access to the ArrayList object that is
present in the WSTokenHolderCallback callback, and search through this list looking at each
TokenHolder getName method. This search is used to determine if WebSphere Application Server is
deserializing your custom object during this login. Check the class name returned from the getName
method using the String startsWith method because the runtime might add additional information at the
end of the name to know which Subject is set to add the custom object after deserialization.

v Code your login() method to determine when sufficient information is present.

The following code snippet can be used in your login() method to determine when sufficient information
is present. For another example, see “Configuring inbound identity mapping” on page 455.

// This is a hint provided by WebSphere Application Server that
// sufficient propagation information does not exist and, therefore,
// a login is required to provide the sufficient information. In this
// situation, a Hashtable login might be used.
boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)
{
// Check to see if your object exists in the TokenHolder list,
if not, add it.
java.util.ArrayList authzTokenList = ((WSTokenHolderCallback) callbacks[6]).
getTokenHolderList();boolean found = false;

if (authzTokenList != null)
{
Iterator tokenListIterator = authzTokenList.iterator();

while (tokenListIterator.hasNext())
{
com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.
TokenHolder) tokenListIterator.next();

if (th != null && th.getName().startsWith("com.acme.myCustomClass"))
{
found=true;
break;
}
}
if (!found)
{
// go ahead and add your custom object.
}
}
}
else
{
// This code indicates that sufficient propagation information is present.
// User registry calls are not needed by WebSphere Application Server to
// create a valid Subject. This code might be a no-op in your login module.
}

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state
variables.

{
// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;
com.ibm.websphere.security.cred.WSCredential credential = null;
com.ibm.websphere.security.auth.WSPrincipal principal = null;

446 Securing applications and their environment

private javax.security.auth.Subject _subject;
private javax.security.auth.callback.CallbackHandler _callbackHandler;
private java.util.Map _sharedState;
private java.util.Map _options;

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{
_subject = subject;
_callbackHandler = callbackHandler;
_sharedState = sharedState;
_options = options;
}

public boolean login() throws LoginException
{
boolean succeeded = true;

// Gets the CALLBACK information
javax.security.auth.callback.Callback callbacks[] = new javax.security.

auth.callback.Callback[7];
callbacks[0] = new javax.security.auth.callback.NameCallback(

"Username: ");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(

"Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl ("Credential Token: ");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSServletRequestCallback ("HttpServletRequest: ");
callbacks[4] = new com.ibm.wsspi.security.auth.callback.

WSServletResponseCallback ("HttpServletResponse: ");
callbacks[5] = new com.ibm.wsspi.security.auth.callback.

WSAppContextCallback ("ApplicationContextCallback: ");
callbacks[6] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback ("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}

// Sees which callbacks contain information
uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
javax.servlet.http.HttpServletRequest request = ((WSServletRequestCallback)

callbacks[3]).getHttpServletRequest();
javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)

callbacks[4]).getHttpServletResponse();
java.util.Map appContext = ((WSAppContextCallback)

callbacks[5]).getContext();
java.util.List authzTokenList = ((WSTokenHolderCallback)

callbacks[6]).getTokenHolderList();

// Gets the SHARED STATE information
principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSPRINCIPAL_KEY);
credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSCREDENTIAL_KEY);
defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.

wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

// What you tend to do with this information depends upon the scenario
// that you are trying to accomplish. This example demonstrates how to
// access various different information:
// - Determine if a login is initial versus propagation
// - Deserialize a custom authorization token (For more information, see
// “Security attribute propagation” on page 467
// - Add a new custom authorization token (For more information, see
// “Security attribute propagation” on page 467
// - Look for a WSCredential and read attributes, if found.
// - Look for a WSPrincipal and read attributes, if found.
// - Look for a default AuthorizationToken and add attributes, if found.
// - Read the header attributes from the HttpServletRequest, if found.
// - Add an attribute to the HttpServletResponse, if found.
// - Get the web application name from the appContext, if found.

// - Determines if a login is initial versus propagation. This is most
// useful when login module is first.

boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

// initial login - asserts privilege attributes based on user identity
if (requiresLogin)
{

Chapter 6. Authenticating users 447

// If you are validating a token from another server, there is an
// application programming interface (API) to get the uniqueID from it.

if (credToken != null && uid == null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.

validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID

(uniqueID);
// Now set it to the UID so you can use that to either map or
// login with.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);
}
catch (Exception e)
{
// handle exception
}
}

// Adds a Hashtable to shared state.
// Note: You can perform custom mapping on the NameCallback value returned
// to change the identity based upon your own mapping rules.

uid = mapUser (uid);

// Gets the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Gets the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.

UserRegistry) ctx.lookup("UserRegistry");

// Gets the user registry uniqueID based on the uid specified in the
// NameCallback.

String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Gets the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Gets the groups associated with this uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information you gathered from
// the UserRegistry.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an Object, but should
// implement the toString() method. Make sure the cacheKey contains
// enough information to scope it to the user and any additional
// attributes that you use. If you do not specify this property the
// Subject is scoped to the WSCREDENTIAL_UNIQUEID returned, by default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY,

"myCustomAttribute" + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,hashtable);
}
// propagation login - process propagated tokens
else
{
// - Deserializes a custom authorization token. For more information, see

// “Security attribute propagation” on page 467.
// This can be done at any login module plug in point (first,
// middle, or last).

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation

if (tokenHolder.getName().equals("com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl") && tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom AuthorizationToken constructor

// to deserialize
customAuthzToken = new
com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(tokenHolder.getBytes());

448 Securing applications and their environment

}
}
}

// - Adds a new custom authorization token (For more information,
// see “Security attribute propagation” on page 467)
// This can be done at any login module plug in point (first, middle,
// or last).

else
{
// Gets the PRINCIPAL from the default AuthenticationToken. This must

// match all of the tokens.
defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.

WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial login.
// Pass the principal into the constructor

customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes
if (customAuthzToken != null)
{
customAuthzToken.addAttribute("key1", "value1");
customAuthzToken.addAttribute("key1", "value2");
customAuthzToken.addAttribute("key2", "value1");
customAuthzToken.addAttribute("key3", "something different");
}
}
}

// - Looks for a WSCredential and read attributes, if found.
// This is most useful when plugged in as the last login module.
if (credential != null)
{
try
{
// Reads some data from the credential
String securityName = credential.getSecurityName();
java.util.ArrayList = credential.getGroupIds();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a WSPrincipal and read attributes, if found.
// This is most useful when plugged as the last login module.
if (principal != null)
{
try
{
// Reads some data from the principal
String principalName = principal.getName();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a default AuthorizationToken and add attributes, if found.
// This is most useful when plugged in as the last login module.
if (defaultAuthzToken != null)
{
try
{
// Reads some data from the defaultAuthzToken
String[] myCustomValue = defaultAuthzToken.getAttributes ("myKey");
// Adds some data if not present in the defaultAuthzToken
if (myCustomValue == null)
defaultAuthzToken.addAttribute ("myKey", "myCustomData");

}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Reads the header attributes from the HttpServletRequest, if found.
// This can be done at any login module plug in point (first, middle,

// or last).
if (request != null)
{

Chapter 6. Authenticating users 449

java.util.Enumeration headerEnum = request.getHeaders();
while (headerEnum.hasMoreElements())
{
System.out.println ("Header element: " + (String)headerEnum.nextElement());
}
}

// - Adds an attribute to the HttpServletResponse, if found
// This can be done at any login module plug in point (first, middle,
// or last).

if (response != null)
{
response.addHeader ("myKey", "myValue");
}

// - Gets the web application name from the appContext, if found
// This can be done at any login module plug in point (first, middle,

// or last).
if (appContext != null)
{
String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

callback.Constants.WEB_APP_NAME);
}

return succeeded;
}

public boolean commit() throws LoginException
{
boolean succeeded = true;

// Add any objects here that you have created and belong in the
// Subject. Make sure the objects are not already added. If you added
// any sharedState variables, remove them before you exit. If the abort()

// method gets called, make sure you cleanup anything added to the
// Subject here.

if (customAuthzToken != null)
{
// Sets the customAuthzToken token into the Subject
try
{
// Do this in a doPrivileged code block so that application code

// does not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Adds the custom authorization token if it is not

// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&

(!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))
{
_subject.getPrivateCredentials().add(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;
}

public boolean abort() throws LoginException
{
boolean succeeded = true;

// Makes sure to remove all objects that have already been added (both into the
// Subject and shared state).

if (customAuthzToken != null)
{
// remove the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged block so that application code does not need

450 Securing applications and their environment

// to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Removes the custom authorization token if it is not

// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(_subject.getPrivateCredentials().
contains(customAuthzTokenPriv)))

{
_subject.getPrivateCredentials().

remove(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;
}

public boolean logout() throws LoginException
{
boolean succeeded = true;

// Makes sure to remove all objects that have already been added
// (both into the Subject and shared state).

if (customAuthzToken != null)
{
// Removes the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged code block so that application code does

// not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.

PrivilegedAction()
{
public Object run()
{
try
{
// Removes the custom authorization token if it is not null and not

// already in the Subject
if ((customAuthzTokenPriv != null) && (_subject.
getPrivateCredentials().
contains(customAuthzTokenPriv)))

{
_subject.getPrivateCredentials().remove(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;

}

}

v Configure the system login for your custom login module.

Chapter 6. Authenticating users 451

After developing your custom login module for a system login configuration, you can configure the
system login using either the administrative console or using the wsadmin utility. To configure the
system login using the administrative console, click Security > Global security. Under Java
Authentication and Authorization Service, click System logins. For more information on using the
wsadmin utility for system login configuration, see Customizing a server-side Java Authentication and
Authorization Service authentication and login configuration. Also refer to that article for information on
system login modules and to determine whether to add additional login modules.

Customizing application login with Java Authentication and Authorization Service
Using Java Authentication and Authorization Service (JAAS), you can customize your application login.

About this task

Java Authentication and Authorization Service (JAAS) is an API that enables applications to access
authentication and access control services without being tied to those services. The following topics
explaining customizing your application with JAAS are covered in this section:

Procedure
1. Develop programmatic logins with JAAS.

You can develop programmatic logins with JAAS, which represents the strategic application
programming interfaces (API) for authentication.

2. Configure programmatic logins with JAAS.

A new JAAS login configuration can be added and modified using the administrative console. The
changes are saved in the cell-level security document and are available to all managed application
servers.

3. Customize an application login to perform an identity assertion using JAAS.

Using the JAAS login framework, you can create a JAAS login configuration that can be used to
perform login to an identity assertion.

4. Configure a server-side JAAS authentication and login configuration.

WebSphere Application Server supports plugging in a custom JAAS login module before or after the
WebSphere Application Server system login module. However, WebSphere Application Server does not
support the replacement of the WebSphere Application Server system login modules, which are used
to create the WSCredential credential and WSPrincipal principal in the Subject. By using a custom
login module, you can either make additional authentication decisions or add information to the Subject
to make additional, potentially finer-grained, authorization decisions inside a Java Platform, Enterprise
Edition (Java EE) application.

Enabling identity assertion with trust validation using JAAS:

By enabling identity assertion with trust validation, an application can use the JAAS login configuration to
perform a programmatic identity assertion.

About this task

To enable an identity assertion with trust validation, follow these steps:

Procedure

1. Create a custom login module to perform a trust validation. The login module must set trust and
identity information in the shared state, which is then passed on to the IdentityAssertionLoginModule.
The trust and identity information is stored in a map in the shared state under the key,
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If this key is missing
from the shared state, a WSLoginFailedException error is thrown by the IdentityAssertionLoginModule
module. The custom login module should include the following:

452 Securing applications and their environment

v A trust key named com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trust.
If the trust key is set to true, trust is established. If the trust key is set to false, the
IdentityAssertionLoginModule module creates a WSLoginFailedException error.

v The identity of the java.security.Principal type set in the
com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal key.

v The identity in the form of a java,security.cert.X509Certificate[] certificate set in the
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates key.

Note: If both a principal and a certificate are supplied, the principal is used, and a warning is issued.

2. Create a new Java Authentication and Authorization Service (JAAS) configuration for application logins.
It contains the user-implemented trust validation custom login module and the
IdentityAssertionLoginModule module. To configure an application login configuration from the
administrative console, complete the following steps:

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click Application logins > New.

c. Supply the JAAS configuration with an alias, and then click Apply.

d. Under Additional properties, click JAAS Login Modules > New.

e. Enter the module class name of the user-implemented trust validation custom login module, and
then click Apply.

f. Enter the com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module class
name.

g. Make sure that the module class name classes are in the correct order. The user-implemented
trust validation login module must be the first class in the list, and the IdentityAssertionLoginModule
module must be the second class.

h. Click Save. The new JAAS configuration is used by the application to perform an identity assertion.

What to do next

An application can now use the JAAS login configuration to perform a programmatic identity assertion. The
application can create a login context for the JAAS configuration created in step 2, then login to that login
context with the identity it asserts to. If the login is successful, that identity can be set in the current
running process, as in the following example:
MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));
LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);
lc.login(); //assume successful
Subject s = lc.getSubject();
WSSubject.setRunAsSubject(s);
// From here on, the runas identity is “Joe”

Performing identity mapping for authorization across servers in
different realms
Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper
authorization decisions are made by downstream servers. Identity mapping is necessary when the
integration of servers is needed, but the user registries are different and not shared between the systems.

About this task

In most cases, requests flow downstream between two servers that are part of the same security domain.
In WebSphere Application Server, two servers that are members of the same cell are also members of the
same security domain. In the same cell, the two servers have the same user registry and the same
Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure
that the LTPA token, among other user attributes, which flows between the two servers, not only can be
decrypted and validated, but also the user identity in the token can be mapped to attributes that are
recognized by the authorization engine.

Chapter 6. Authenticating users 453

The most reliable and recommended configuration involves two servers within the same cell. However,
sometimes you need to integrate multiple systems that cannot use the same user registry. When the user
registries are different between two servers, the security domain or realm of the target server does not
match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or
before enabling the existing security credentials to flow to the target server. The credentials are mapped
inbound with the specification that the target realm is trusted.

An alternative to mapping is to send the user identity without the token or the password to a target server
without actually mapping the identity. The use of the user identity is based on trust between the two
servers. Use Common Secure Interoperability Version 2 (CSIv2) identity assertion. When enabled, the
server sends just the X.509 certificate, principal name, or distinguished name (DN) based upon what was
used by the original client to perform the initial authentication. During CSIv2 identity assertion, trust is
established between WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also
enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 and higher
compliant application servers. If both the sending server and target servers have identity assertion
configured, WebSphere Application Server always uses this method of authentication, even when both
servers are in the same security domain. For more information on CSIv2 identity assertion, see “Identity
assertion to the downstream server” on page 519.

When the user identity is not present in the user registry of the target server, identity mapping must occur
either before the request is sent outbound or when the request comes inbound. This decision depends
upon your environment and requirements. However, it is typically easier to map the user identity before the
request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending
server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the
other target realm because you are not mapping the identity to LTPA credentials. Typically, you are
mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets
Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.
If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In
this case, outbound mapping is necessary because the user identity cannot be determined at the inbound
server to do inbound mapping. For more information, see “Configuring outbound identity mapping to a
different target realm” on page 462.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you
must ensure that both servers have the same LTPA keys so that you can get access to the user identity.
Typically, in secure communications between servers, an LTPA token is passed into the
WSCredTokenCallback callback of the inbound JAAS login configuration for the purposes of client
authentication. A method is available that enables you to open the LTPA token, if valid, and get access to
the user unique ID so that mapping can be performed. For more information, see “Configuring inbound
identity mapping” on page 455. In other cases, such as identity assertion, you might receive a user name
in the NameCallback callback of the inbound login configuration that enables you to map the identity.

The following topics are covered in this section:

Procedure
v Configuring inbound identity mapping For inbound identity mapping, you can write a custom login

module and configure WebSphere Application Server to run the login module first within the system
login configurations. Consider the following steps when you write your custom login module:
“Configuring inbound identity mapping” on page 455.

454 Securing applications and their environment

v Configuring outbound identity mapping to a different target realm By default, when WebSphere
Application Server makes an outbound request from one server to another server in a different security
realm, the request is rejected. This topic details alternatives for enabling one server to send outbound
requests to a target server in a different realm. For more information, see “Configuring outbound identity
mapping to a different target realm” on page 462

Configuring inbound identity mapping
For inbound identity mapping, write a custom login module and configure WebSphere Application Server to
run the login module first within the system login configurations. Consider the following steps when you
write your custom login module.

Procedure
1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login method of the login module. A valid authentication has either or both NameCallback and the
WSCredTokenCallback callbacks present. The following code sample shows you how to determine the
user identity:
javax.security.auth.callback.Callback callbacks[] =

new javax.security.auth.callback.Callback[3];
callbacks[0] = new javax.security.auth.callback.NameCallback("");
callbacks[1] = new javax.security.auth.callback.PasswordCallback

("Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback("");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}

// Shows which callbacks contain information
boolean identitySwitched = false;
String uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
java.util.List authzTokenList = ((WSTokenHolderCallback)

callbacks[3]).getTokenHolderList();

if (credToken != null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

// Now set the string to the UID so that you can use the result for either
// mapping or logging in.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);
}
catch (Exception e)
{
// Handles the exception
}
}
else if (uid == null)
{

// Throws an exception if authentication data is not valid.
// You must have either UID or CredToken

Chapter 6. Authenticating users 455

throw new WSLoginFailedException("invalid authentication data.");
}
else if (uid != null && password != null)
{

// This is a typical authentication. You can choose to map this ID to
// another ID or you can skip it and allow WebSphere Application Server
// to log in for you. When passwords are presented, be very careful to not
// validate the password because this is the initial authentication.

return true;
}

// If desired, map this uid to something else and set the identitySwitched
// boolean. If the identity was changed, clear the propagated attributes
// below so they are not used incorrectly.

uid = myCustomMappingRoutine (uid);

// Clear the propagated attributes because they are no longer applicable
// to the new identity

if (identitySwitched)
{
((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);
}

2. Check to see if attribute propagation occurred and if the attributes for the user are already present
when the identity remains the same. Check to see if the user attributes are already present from the
sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use
a method on the WSTokenHolderCallback callback that analyzes the information present in the
callback to determine if the information is sufficient for WebSphere Application Server to create a
Subject. The following code sample checks for the user attributes:
boolean requiresLogin =
((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)
callbacks[2]).getrequiresLogin();

If sufficient attributes are not present to form the WSCredential and the WSPrincipal objects that are
needed to perform authorization, the previous code sample returns a true result. When the result is
false, you can choose to discontinue processing as the necessary information exists to create the
Subject without performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in a hashtable, and
add the hashtable to the shared state. If the identity is switched in this login module, you must
complete the following steps:

a. Create the hashtable of attributes, as shown in the following example.

b. Add the hashtable to the shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is true,
you can create the hashtable of attributes. However, you are not required to create a hashtable in this
situation as WebSphere Application Server handles the login for you. However, you might consider
creating a hashtable to gather attributes in special cases where you are using your own special user
registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application
Server gather the user attributes for you might be the easiest solution. The following table shows how
to create a hashtable of user attributes:
if (requiresLogin || identitySwitched)
{
// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry implementation.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

security.UserRegistry)
ctx.lookup("UserRegistry");

// Retrieves the user registry uniqueID based on the uid specified

456 Securing applications and their environment

// in the NameCallback.
String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

// Retrieves the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Retrieves the groups associated with the uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information that you gathered
// from the UserRegistry implementation.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an object, but should have
// an implemented toString method. Make sure that the cacheKey contains
// enough information to scope it to the user and any additional attributes
// that you are using. If you do not specify this property the Subject is
// scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY, hashtable);
}

The following rules define in more detail how a hashtable login is performed. You must use a
java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state
HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that
contain the user information. If the Hashtable object is put into the shared state of the login context
using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)
login module, the value of the java.util.Hashtable object is searched using the following key within the
shared-state hashMap:

Property
com.ibm.wsspi.security.cred.propertiesObject

Reference to the property
AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation
This key searches for the Hashtable object that contains the required properties in the shared
state of the login context.

Expected result
A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify
that the following properties are present in the hashtable:

Property
com.ibm.wsspi.security.cred.uniqueId

Reference to the property
AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns
java.util.String

Chapter 6. Authenticating users 457

Explanation
The value of the property must be a unique representation of the user. For the WebSphere
Application Server default implementation, this property represents the information that is
stored in the application authorization table. The information is located in the application
deployment descriptor after it is deployed and user-to-role mapping is performed. See the
expected format examples if the user to role mapping is performed using a lookup to a
WebSphere Application Server user registry implementation.

If a third-party authorization provider overrides the user-to-role mapping, then the third-party
authorization provider defines the format. To ensure compatibility with the WebSphere
Application Server default implementation for the unique ID value, call the WebSphere
Application Server public String getUniqueUserId(String userSecurityName) UserRegistry
method.

Expected format examples

Table 43. Format examples.

This table gives some format examples when configuring inbound identity mapping.
Realm Format (uniqueUserId)

Lightweight Directory Access Protocol
(LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property
com.ibm.wsspi.security.cred.securityName

Reference to the property
AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns
java.util.String

Explanation
This property searches for the securityName of the authentication user. This name is
commonly called the display name or short name. WebSphere Application Server uses the
securityName attribute for the getRemoteUser, getUserPrincipal and getCallerPrincipal
application programming interfaces (APIs). To ensure compatibility with the WebSphere
Application Server default implementation for the securityName value, call the WebSphere
Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry
method.

Expected format examples

Table 44. Format examples. This table gives expected format examples.
Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property
com.ibm.wsspi.security.cred.groups

Reference to the property
AttributeNameConstants. WSCREDENTIAL_GROUPS

458 Securing applications and their environment

Returns
java.util.ArrayList

Explanation
This key searches for the array list of groups to which the user belongs. The groups are
specified in the realm_name/user_name format. The format of these groups is important as the
groups are used by the WebSphere Application Server authorization engine for group-to-role
mappings in the deployment descriptor. The format that is provided must match the format
expected by the WebSphere Application Server default implementation. When you use a
third-party authorization provider, you must use the format that is expected by the third-party
provider. To ensure compatibility with the WebSphere Application Server default
implementation for the unique group IDs value, call the WebSphere Application Server public
List getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the array list

Table 45. Format examples. This table gives expected format examples for each group in the array list.
Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have
associated groups.

Property
com.ibm.wsspi.security.cred.cacheKey

Reference to the property
AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns
java.lang.Object

Explanation
This key property can specify an object that represents the unique properties of the login,
including the user-specific information and the user dynamic attributes that might affect
uniqueness. For example, when the user logs in from location A, which might affect their
access control, the cache key needs to include location A so that the Subject that is received is
the correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not
specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID. When this
information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject
similar to the Subject that goes through the normal login process at least for LTPA. The new Subject
contains a WSCredential object and a WSPrincipal object that is fully populated with the information
found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java
Authentication and Authorization Service (JAAS) system login configurations. Configure the
RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login
module first.

a. Click Security > Global security > Java Authentication and Authorization Service > System
logins > RMI_INBOUND

b. Under Additional Properties, click JAAS login modules > New to add your login module to the
RMI_INBOUND configuration.

c. Return to the JAAS login modules panel for RMI_INBOUND.

d. Click Set order to change the order that the login modules are loaded so that WebSphere
Application Server loads your custom login module first. Use the Move Up or Move Down buttons
to arrange the order of the login modules.

Chapter 6. Authenticating users 459

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

Results

This process configures identity mapping for an inbound request.

Example

The “Example: Custom login module for inbound mapping” topic shows a custom login module that creates
a java.util.Hashtable hashtable that is based on the specified NameCallback callback. The
java.util.Hashtable hashtable is added to the sharedState java.util.Map map so that the WebSphere
Application Server login modules can locate the information in the hashtable.

Example: Custom login module for inbound mapping
This sample shows a custom login module that creates a java.util.Hashtable hashtable that is based on
the specified NameCallback callback. The java.util.Hashtable hashtable is added to the sharedState
java.util.Map map so that the WebSphere Application Server login modules can locate the information in
the Hashtable.
public customLoginModule()
{

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{
// (For more information on initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

// Handles the WSTokenHolderCallback to see if this is an initial or
// propagation login.

javax.security.auth.callback.Callback callbacks[] =
new javax.security.auth.callback.Callback[3];

callbacks[0] = new javax.security.auth.callback.NameCallback("");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(

"Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback("");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles the exception
}

// Determines which callbacks contain information
boolean identitySwitched = false;
String uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

getTokenHolderList();

if (credToken != null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

// Set the string to the UID so you can use the information to either
// map or login.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);
}
catch (Exception e)
{
// handle exception
}
}
else if (uid == null)

460 Securing applications and their environment

{
// The authentication data is not valid. You must have either UID
// or CredToken

throw new WSLoginFailedException("invalid authentication data.");
}
else if (uid != null && password != null)
{

// This is a typical authentication. You can choose to map this ID to
// another ID or you can skip it and allow WebSphere Application Server
// to log in for you. When passwords are presented, be very careful not
// to validate the password because this is the initial authentication.

return true;
}

// You can map this uid to something else and set the identitySwitched
// boolean. If the identity is changed, clear the following propagated
// attributes so they are not used incorrectly.
uid = myCustomMappingRoutine (uid);

// Clear the propagated attributes because they no longer apply to the new identity
if (identitySwitched)
{
((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);
}
boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback) callbacks[2]).getRequiresLogin();

if (requiresLogin || identitySwitched)
{
// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =

(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the uid that is specified
// in the NameCallback.

String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

// Retrieves the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Retrieves the groups associated with this uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information that you gathered
// from the UserRegistry.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_SECURITYNAME, securityName);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an object, but has
// an implemented toString method. Make sure the cacheKey contains enough
// information to scope it to the user and any additional attributes you are

// using. If you do not specify this property, the Subject is scoped to the
// WSCREDENTIAL_UNIQUEID returned, by default.
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);
// Adds the hashtable to the shared state of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY, hashtable);
}
else if (requiresLogin == false)
{
// For more information on this section, see

// “Security attribute propagation” on page 467.
// If you added a custom Token implementation, you can search through the

// token holder list for it to deserialize.
// Note: Any Java objects are automatically deserialized by

// wsMapDefaultInboundLoginModule

for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder) authzTokenList.get(i);
if (tokenHolder.getName().equals("com.acme.MyCustomTokenImpl"))
{

byte[] myTokenBytes = tokenHolder.getBytes();

// Passes these bytes into the constructor of your implementation
// class for deserialization.

com.acme.MyCustomTokenImpl myTokenImpl = new com.acme.MyCustomTokenImpl(myTokenBytes);
}

Chapter 6. Authenticating users 461

}
}
}

public boolean commit() throws LoginException
{
// (For more information on what to do during a commit, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Configuring outbound identity mapping to a different target realm
By default, when WebSphere Application Server makes an outbound request from one server to another
server in a different security realm, the request is rejected. This topic details alternatives for enabling one
server to send outbound requests to a target server in a different realm.

About this task

This outbound request is rejected to protect against a rogue server reading potentially sensitive information
if successfully impersonating the home of the object. Select one of the following alternative procedures so
that one server can send outbound requests to a target server in a different realm. When you are finished
with a procedure on the administrative console, click Apply.

Procedure
v Do not perform mapping. Instead, allow the existing security information to flow to a trusted target

server, even if the target server resides in a different realm. Complete the following steps in the
administrative console:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target
realm that is separated by a pipe (|) character. For example, specify
server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the
machine name for local operating system. If you want to propagate security attributes to a different
target realm, you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration
to create a basic authentication Subject that contains the credentials of the new target realm. This
configuration enables you to log in with a realm, user ID, and password that are specific to the user
registry of the target realm. You can provide the login information from within the Java Platform,
Enterprise Edition (Java EE) application that is making the outbound request or from within the
RMI_OUTBOUND system login configuration. These two login options are described in the following
information:

1. Use the WSLogin application login configuration from within the Java EE application to log in and
get a Subject that contains the user ID and the password of the target realm. The application can
wrap the remote call with a WSSubject.doAs call. For an example, see “Example: Using the
WSLogin configuration to create a basic authentication subject” on page 463.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication
subject” on page 463 from this plug point within the RMI_OUTBOUND login configuration. Every
outbound Remote Method Invocation (RMI) request passes through this login configuration when it
is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Global security.

b. Under RMI/IIOP security, click CSIv2 outbound authentication.

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is
selected, then WebSphere Application Server is already using this login configuration and you do
not need to enable custom outbound mapping.

462 Securing applications and their environment

d. Write a custom login module. For more information, see “Developing custom login modules for a
system login configuration for JAAS” on page 442.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 464 shows a custom
login module that determines whether the realm names match. In this example, the realm names
do not match so the WSLoginmodule is used to create a basic authentication Subject based on
custom mapping rules. The custom mapping rules are specific to the customer environment and
must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first
in the list.

1) Click Security > Global security.

2) Under Java Authentication and Authorization Service, click System logins >
RMI_OUTBOUND

3) Under Additional Properties, click JAAS login modules > New to add your login module to
the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND.

5) Click Set order to change the order that the login modules are loaded so that your custom
login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for
WSLogin. To add these options, complete the following steps:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click Application logins > WSLogin.

3. Under Additional properties, click JAAS login modules >
com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional properties, click Custom Properties > New.

5. On the Custom properties panel, enter use_realm_callback in the Name field and true in the Value
field.

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom properties panel, enter use_appcontext_callback in the Name field and true in the
Value field.

The following changes are made to the security.xml file:
<entries xmi:id="JAASConfigurationEntry_2" alias="WSLogin">
<loginModules xmi:id="JAASLoginModule_2"
moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
authenticationStrategy="REQUIRED">
<options xmi:id="Property_2" name="delegate"
value="com.ibm.ws.security.common.auth.module.WSLoginModuleImpl"/>
<options xmi:id="Property_3" name="use_realm_callback" value="true"/>
<options xmi:id="Property_4" name="use_appcontext_callback" value="true"/>
</loginModules>
</entries>

Example: Using the WSLogin configuration to create a basic authentication
subject
This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,
Enterprise Edition (J2EE) application to log in and get a Subject that contains the user ID and the
password of the target realm.
javax.security.auth.Subject subject = null;

try
{
// Create a login context using the WSLogin login configuration and specify a
// user ID, target realm, and password. Note: If the target_realm_name is the
// same as the current realm, an authenticated Subject is created. However, if
// the target_realm_name is different from the current realm, a basic
// authentication Subject is created that is not validated. This unvalidated
// Subject is created so that you can send a request to the different target
// realm with valid security credentials for that realm.
javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

Chapter 6. Authenticating users 463

new WSCallbackHandlerImpl("userid", "target_realm_name", "password"));

// Note: The following code is an alternative that validates the user ID and
// password specified against the target realm. The code performs a remote call
// to the target server and will return true if the user ID and password are
// valid and false if the user ID and password are not valid. If false is
// returned, a WSLoginFailedException exception is created. You can catch
// that exception and perform a retry or stop the request from flowing by
// allowing that exception to surface out of this login.

// ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE
// TARGET REALM

/**** currently remarked out ****
java.util.Map appContext = new java.util.HashMap();

appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

appContext.put(javax.naming.Context.PROVIDER_URL,
"corbaloc:iiop:target_host:2809");

javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",
new WSCallbackHandlerImpl("userid", "target_realm_name", "password", appContext));
**** currently remarked out ****/

// Starts the login
ctx.login();

// Gets the Subject from the context
subject = ctx.getSubject();
}
catch (javax.security.auth.login.LoginException e)
{
throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);
}

if (subject != null)
{
// Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()
{
public Object run()
{
// Assumes a proxy is already defined. This example method returns a String
return proxy.remoteRequest();
}
});

// Starts this action using the basic authentication Subject needed for
// the target realm security requirements.

String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs
(subject, myAction);

}

Example: Sample login configuration for RMI_OUTBOUND
This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm
names match between two servers.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

// (For more information on what to do during initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

}

public boolean login() throws LoginException
{

// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

// Gets the WSProtocolPolicyCallback object
Callback callbacks[] = new Callback[1];
callbacks[0] = new com.ibm.wsspi.security.auth.callback.

WSProtocolPolicyCallback("Protocol Policy Callback: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles the exception
}

// Receives the RMI (CSIv2) policy object for checking the target realm
// based upon information from the IOR.
// Note: This object can be used to perform additional security checks.

464 Securing applications and their environment

// See the application programming interface (API) documentation for
// more information.

csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).
getProtocolPolicy();

// Checks if the realms do not match. If they do not match, then log in to
// perform a mapping

if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.
getCurrentSecurityName()))

{
try
{
// Do some custom realm -> user ID and password mapping
MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

(csiv2PerformPolicy.getTargetSecurityName());

// Creates the login context with basic authentication data gathered from
// custom mapping

javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",
new WSCallbackHandlerImpl(myBasicAuthData.userid,
csiv2PerformPolicy.getTargetSecurityName(),

myBasicAuthData.password));

// Starts the login
ctx.login();

// Gets the Subject from the context. This subject is used to replace
// the passed-in Subject during the commit phase.

basic_auth_subject = ctx.getSubject();
}
catch (javax.security.auth.login.LoginException e)
{
throw new com.ibm.websphere.security.auth.

WSLoginFailedException (e.getMessage(), e);
}

}
}

public boolean commit() throws LoginException
{

// (For more information on what to do during commit, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

if (basic_auth_subject != null)
{

// Removes everything from the current Subject and adds everything from the
// basic_auth_subject

try
{
public final Subject basic_auth_subject_priv = basic_auth_subject;

// Do this in a doPrivileged code block so that application code
// does not need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.
PrivilegedExceptionAction()

{
public Object run() throws WSLoginFailedException
{

// Removes everything user-specific from the current outbound
// Subject. This a temporary Subject for this specific invocation
// so you are not affecting the Subject set on the thread. You may
// keep any custom objects that you want to propagate in the Subject.
// This example removes everything and adds just the new information
// back in.

try
{
subject.getPublicCredentials().clear();
subject.getPrivateCredentials().clear();
subject.getPrincipals().clear();
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

// Adds everything from basic_auth_subject into the login subject.
// This completes the mapping to the new user.

try
{
subject.getPublicCredentials().addAll(basic_auth_subject.

getPublicCredentials());
subject.getPrivateCredentials().addAll(basic_auth_subject.

getPrivateCredentials());
subject.getPrincipals().addAll(basic_auth_subject.

getPrincipals());
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

Chapter 6. Authenticating users 465

return null;
}
});
}
catch (PrivilegedActionException e)
{
throw new WSLoginFailedException (e.getException().getMessage(),

e.getException());
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;
javax.security.auth.Subject basic_auth_subject = null;
}

Updating system login configurations to perform a System
Authorization Facility identity user mapping
Use this task to modify configurations to perform System Authorization Facility (SAF) identity mapping.

Before you begin

Note: If you are using the SAF distributed identity mapping feature, you do not need to configure a
mapping module.

About this task

A mapping module must be placed in the Java Authentication and Authorization Service (JAAS)
configuration to provide the mapping from a non-local operating system registry to a SAF user ID. The
com.ibm.ws.security.common.auth.module.MapPlatformSubject login module follows this mapping module
in the configuration. You can do this using either the Simple WebSphere Authentication Mechanism
(SWAM) or the Lightweight Third Party Authentication (LTPA) authentication mechanism.

Refer to Selecting an authentication mechanism for more information. Refer to Java Authentication and
Authorization Service for more information.

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a future
release.

Application login configurations do not require changes to modify configurations to perform SAF identity
mapping. The WebSphere application login configuration entry WSLogin, calls a system login module that
is configured as the default, which performs the mapping if SAF authorization is required.

To modify configurations to perform System Authorization Facility (SAF) identity mapping and if
WebSphere Application Server is configured, you must take the following steps.

Procedure
v Use the WebSphere Application Server administrative console or the scripting tools to update the

required system login configurations.

v If required, update the appropriate user registry panel to enable SAF authorization.

v If you are migrating an existing WebSphere Application Server, Network Deployment installation, you
must update all the nodes to the service level that supports SAF identity mapping before enabling SAF
authorization for a non-local operating system registry.

466 Securing applications and their environment

Results

What to do next

When LTPA is configured, if you are mapping the WebSphere Application Server registry to a SAF user ID,
the following system login configuration entries must be configured to provide the user mapping:

WEB_INBOUND
The WEB_INBOUND login configuration handles logins for web application requests, including
servlets and JavaServer pages (JSP). This login configuration interacts with the output object that
is generated from a trust association interceptor (TAI) if configured. The Subject that is passed into
the WEB_INBOUND login configuration can contain objects that are generated by the TAI.

WebSphere Application Server administrative console requests and a subset of administrative
functions, including file transfer, authenticate using this login configuration entry.

RMI_INBOUND
The RMI_INBOUND login configuration handles logins for inbound RMI requests. Typically, these
logins are requests for authenticated access to Enterprise JavaBeans (EJB) files, and can be
performed as Java Management Extensions (JMX) requests when using the RMI connector.

DEFAULT
The DEFAULT login configuration handles the logins for inbound requests made by most other
protocols and internal authentications, such as communication between a z/OS controller and
servant processes after an initial authentication request is performed.

When SWAM is configured and you are mapping the WebSphere Application Server user registry to a SAF
identity, configure the following system login configuration entry to provide the user mapping:

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a future
release.

SWAM
This entry is used for all authentication when SWAM is selected.

Security attribute propagation
With Security attribute propagation, WebSphere Application Server can transport security attributes
(authenticated Subject contents and security context information) from one server to another in your
configuration. WebSphere Application Server might obtain these security attributes from either an
enterprise user registry, which queries static attributes, or a custom login module, which can query static or
dynamic attributes. Dynamic security attributes, which are custom in nature, might include the
authentication strength that is used for the connection, the identity of the original caller, the location of the
original caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that
are contained in the Subject. However, Java code must be able to serialize and deserialize these objects.
The Java programming language specifies the rules for how Java code can serialize an object. Because
problems can occur when dealing with different platforms and versions of software, WebSphere Application
Server also offers a token framework that enables custom serialization functionality. The token framework
has other benefits that include the ability to identify the uniqueness of the token. This uniqueness
determines how the Subject gets cached and the purpose of the token. The token framework defines four
marker token interfaces that enable the WebSphere Application Server runtime to determine how to
propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application
Server for authorization or authentication. The framework serves as a way to notify
WebSphere Application Server that you want these tokens propagated in a particular way.

Chapter 6. Authenticating users 467

WebSphere Application Server handles the propagation details, but does not handle
serialization or deserialization of custom tokens. Serialization and deserialization of these
custom tokens are carried out by the implementation and handled by a custom login module.

With WebSphere Application Server Version 6.0 and later, a custom Java Authorization
Contract for Container (JACC) provider can be configured to enforce access control for Java
Platform, Enterprise Edition (Java EE) applications. A custom JACC provider can explore the
custom security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this request
is an initial login or a propagation login. An initial login is the process of authenticating the user
information, typically a user ID and password, and then calling the application programming interfaces
(APIs) for the remote user registry to look up secure attributes that represent the user access rights. A
propagation login is the process of validating the user information, typically a Lightweight Third Party
Authentication (LTPA) token, and then deserializing a series of tokens that constitute both custom objects
and token framework objects known to WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token
The authorization token contains most of the authorization-related security attributes that are
propagated. The default authorization token is used by the WebSphere Application Server
authorization engine to make Java Platform, Enterprise Edition (Java EE) authorization decisions.
Service providers can use custom authorization token implementations to isolate their data in a
different token, perform custom serialization and de-serialization, and make custom authorization
decisions using the information in their token at the appropriate time. For information on how to
use and implement this token type, see “Using the default propagation token to propagate security
attributes” on page 478 and “Implementing a custom propagation token for security attribute
propagation” on page 869.

Single sign-on (SSO) token
A custom SingleSignonToken token that is added to the Subject is automatically added to the
response as an HTTP cookie and contains the attributes sent back to web browsers. The token
interface getName method with the getVersion method defines the cookie name. WebSphere
Application Server defines a default SingleSignonToken token with the LtpaToken name and
Version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential
information, or unencrypted data to the response cookie.

It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)
protocol to protect the request. Using an SSO token, web users can authenticate once when
accessing web resources across multiple WebSphere Application Servers. A custom SSO token
extends this functionality by adding custom processing to the single sign-on scenario. For more
information on SSO tokens, see “Implementing single sign-on to minimize web user
authentications” on page 374. For information on how to use and implement this token type, see
“Using the default single sign-on token with default or custom token factory to propagate security
attributes” on page 483 and “Implementing a custom single sign-on token for security attribute
propagation” on page 882.

Propagation token
The propagation token is not associated with the authenticated user so it is not stored in the
Subject. Instead, the propagation token is stored on the thread and follows the invocation
wherever it goes. When a request is sent outbound to another server, the propagation tokens on
that thread are sent with the request and the tokens are run by the target server. The attributes
that are stored on the thread are propagated regardless of the Java Platform, Enterprise Edition
(Java EE) RunAs user switches.

The default propagation token monitors and logs all user switches and host switches. You can add
additional information to the default propagation token using the WSSecurityHelper application

468 Securing applications and their environment

programming interfaces (APIs). To retrieve and set custom implementations of a propagation
token, you can use the WSSecurityPropagationHelper class. For information on how to use and
implement this token type, see “Using the default propagation token to propagate security
attributes” on page 478 and “Implementing a custom propagation token for security attribute
propagation” on page 869.

Authentication token
The authentication token flows to downstream servers and contains the identity of the user. This
token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in
previous versions. Although this token type is typically reserved for internal WebSphere Application
Server purposes, you can add this token to the Subject and the token is propagated using the
getBytes method of the token interface.

A custom authentication token is used solely for the purpose of the service provider that adds it to
the Subject. WebSphere Application Server does not use it for authentication purposes because a
default authentication token exists that is used for WebSphere Application Server authentication.
This token type is available for the service provider to identify how the custom data uses the token
to perform custom authentication decisions. For information on how to use and implement this
token type, see “Default authentication token” on page 471 and “Implementing a custom
authentication token for security attribute propagation” on page 890.

Kerberos authentication token
The Kerberos authentication token contains Kerberos credentials such as the Kerberos principal
name, GSSCredential and Kerberos delegation credential. This token is propagated to the
downstream server. Although this token type is typically reserved for internal WebSphere
Application Server purposes, if it contains the GSSCredential you can use the getGSSCredential
method to extract the GSSCredential. You can then place it in the subject and it can be used for
your application. This token is created when you authenticate to WebSphere Application Server
with either SPNEGO web or Kerberos authentication.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which uses single sign-on for web requests,
and downstream propagation, which uses Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated among front-end servers. The serialized
security attributes, which are the Subject contents and the propagation tokens, can contain both static and
dynamic attributes. The single sign-on (SSO) token stores additional system-specific information that is
needed for horizontal propagation. The information contained in the SSO token tells the receiving server
where the originating server is located and how to communicate with that server. Additionally, the SSO
token also contains the key to look up the serialized attributes. To enable horizontal propagation, you must
configure the single sign-on token and the web inbound security attribute propagation features. You can
configure both of these features using the administrative console.

When front-end servers are configured and in the same data replication service (DRS) replication domain,
the application server automatically propagates the serialized information to all of the servers within the
same domain. In figure 1, application 1 is deployed on server 1 and server 2, and both servers are
members of the same DRS replication domain. If a request originates from application 1 on server 1 and
then gets redirected to application 1 on server 2, the original login attributes are found on server 2 without
additional remote requests.

However, if the request originates from application 1 on either server 1 or server 2, but the request is
redirected to application 2 on either server 1 or server 2, the serialized information is not found in the DRS
cache because the servers are not configured in the same replication domain. As a result, a remote Java

Chapter 6. Authenticating users 469

Management Extensions (JMX) request is sent back to the originating server that hosts application 1 to
obtain the serialized information so that original login information is available to the application. By getting
the serialized information using a single JMX remote call back to the originating server, the following
benefits are realized:

v You gain the function of retrieving login information from the original server.

v You do not need to perform any remote user registry calls because the application server can
regenerate the Subject from the serialized information. Without this ability, the application server might
make five to six separate remote calls.

Figure 1

Performance implications for horizontal propagation

The performance implications of either the DRS or JMX remote call depends upon your environment. The
DRS or JMX remote call is used for obtaining the original login attributes. Horizontal propagation reduces
many of the remote user registry calls in cases where these calls cause the most performance problems
for an application. However, the de-serialization of these objects also might cause performance
degradation, but this degradation might be less than the remote user registry calls. It is recommended that
you test your environment with horizontal propagation enabled and disabled. In cases where you must use
horizontal propagation for preserving original login attributes, test whether DRS or JMX provides better
performance in your environment. Typically, it is recommended that you configure DRS both for failover
and performance reasons. However, because DRS propagates the information to all of the servers in the
same replication domain (whether the servers are accessed or not), there might be a performance
degradation if too many servers are in the same replication domain. In this case, either reduce the number
of servers in the replication domain or do not configure the servers in a DRS replication domain. The later
suggestion causes a JMX remote call to retrieve the attributes, when needed, which might be quicker
overall.

Downstream propagation

In downstream propagation, a Subject is generated at the web front-end server, either by a propagation
login or a user registry login. WebSphere Application Server propagates the security information
downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and
inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and
authorization purposes. The propagation of security attributes can eliminate the need for user registry
calls at each remote hop along an invocation. Previous versions of WebSphere Application Server
propagated only the user name of the authenticated user, but ignored other security attribute information
that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits
of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate
the user, gather group information, and gather other security attributes. As stated previously,
WebSphere Application Server accepted the identity of the authenticated user, but disregarded the
additional security attribute information. To create a Java Authentication and Authorization Service
(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application
Server made 5 to 6 calls to the user registry. The WSCredential object contains various security
information that is required to authorize a Java EE resource. The WSPrincipal object contains the realm
name and the user that represents the principal for the Subject.

470 Securing applications and their environment

In the current release of the Application Server, information that is obtained from the reverse proxy
server can be used by WebSphere Application Server and propagated downstream to other server
resources without additional calls to the user registry. The retaining of the security attribute information
enables you to protect server resources properly by making appropriate authorization and trust-based
decisions User switches that occur because of Java EE RunAs configurations do not cause the
application server to lose the original caller information. This information is stored in the
PropagationToken located on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method
that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different
providers. WebSphere Application Server can handle multiple tokens for the same purpose. For
example, you might have multiple authorization tokens in the Subject and each token might have
distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique
subject identifier than just the user name in cases where dynamic attributes might change the context of
a user login. The token type has a getUniqueId() method that is used for returning a unique string for
caching purposes. For example, you might need to propagate a location ID, which indicates the location
from which the user logs into the system. This location ID can be generated during the original login
using either an reverse proxy server or the WEB_INBOUND login configuration and added to the
Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique
ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere
Application Server has the ability to specify what is unique about the information in the Subject, which
might affect how the user accesses the Subject later.

Default authentication token
Do not use the default authentication token in service provider code. This default token is used by the
WebSphere Application Server run-time code only and is authentication mechanism specific.

Any modifications to this token by service provider code can potentially cause interoperability problems. If
you need to create an authentication token for custom usage, see “Implementing a custom authentication
token for security attribute propagation” on page 890 for more information.

Changing the token factory that is associated with the default authentication token

When WebSphere Application Server generates a default authentication token, the application server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the
administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPATokenFactory token factory is the default for this property. The
LTPATokenFactory token factory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates
an interoperable Lightweight Third Party Authentication (LTPA) token.

If you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with the
com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is Advanced Encryption
Standard (AES) encrypted. However, you need to weigh the performance against your security needs. You
might add additional attributes to the authentication token in the Subject during a login that are available
downstream.

If you need to perform your own signing and encryption of the default authentication token, you must
implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

Chapter 6. Authenticating users 471

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your
token implementation. You can use the LTPA keys that are passed into the initialize method of the token
factory or you can use your own keys. If you use your own keys, they must be the same everywhere to
validate the tokens that are generated using those keys. See the API documentation, available through a
link on the front page of the information center, for more information on implementing your own custom
token factory. To associate your token factory with the default authentication token using the administrative
console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the install_dir/classes directory so that the
WebSphere Application Server class loader can load the classes.

Propagating security attributes among application servers
Use the security attribute propagation feature of WebSphere Application Server to send security attribute
information regarding the original login to other servers using a token. This topic will help to configure
WebSphere Application Server to propagate security attributes to other servers.

About this task

To fully enable security attribute propagation, you must configure the single sign-on (SSO), Common
Secure Interoperability Version 2 (CSIv2) inbound, and CSIv2 outbound panels in the WebSphere
Application Server administrative console. You can enable just the portions of security attribute propagation
relevant to your configuration. For example, you can enable web propagation, which is propagation
amongst front-end application servers, using either the push technique (DynaCache) or the pull technique
(remote method to originating server).

You also can choose whether to enable Remote Method Invocation (RMI) outbound and inbound
propagation, which is commonly called downstream propagation. Typically both types of propagation are
enabled for any given cell. In some cases, you might want to choose a different option for a specific
application server using the server security panel within the specific application server settings.

Restriction: To prevent propagating the same security attributes among application servers multiple
times, WebSphere Application Server verifies that a Lightweight Third Party Authentication
(LTPA) token does not exist. Two cases can occur. Absence of the LTPA token tells the
Application Server that propagation can proceed. Presence of the LTPA token indicates that
propagation has occurred if the LTPA token has been generated within the cluster. However,
in the second case, if the LTPA token is present, but has been generated by a server outside
the cluster, such as by Tivoli Access Manager, Lotus Domino or a different Application Server
cluster, security attributes are not propagated.

To access the server security panel in the administrative console, click Servers > Application Servers >
server_name. Under Security, click Server security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

Procedure
1. Access the WebSphere Application Server administrative console by typing http://

server_name:port_number/ibm/console. The administrative console address might differ if you have
previously changed the port number.

2. Click Security > Global security.

472 Securing applications and their environment

3. Under Web security, click Single sign-on (SSO).

4. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do not
support security attribute propagation. Servers that do not support security attribute propagation
receive the Lightweight Third Party Authentication (LTPA) token and the Propagation token, but ignore
the security attribute information that they do not understand.

5. Select the Web inbound security attribute propagation option. The Web inbound security attribute
propagation option enables horizontal propagation, which allows the receiving SSO token to retrieve
the login information from the original login server. If you do not enable this option, downstream
propagation can occur if you enable the Security Attribute Propagation option on both the CSIv2
Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the web inbound security attribute propagation option if you need to gather
dynamic security attributes set at the original login server that cannot be regenerated at the new
front-end server. These attributes include any custom attributes that might be set in the
PropagationToken token using the com.ibm.websphere.security.WSSecurityHelper application
programming interfaces (APIs). You must determine whether enabling this option improves or
degrades the performance of your system. While the option prevents some remote user registry calls,
the deserialization and decryption of some tokens might impact performance. In some cases
propagation is faster, especially if your user registry is the bottleneck of your topology. It is
recommended that you measure the performance of your environment both using and not using this
option. When you test the performance, it is recommended that you test in the operating environment
of the typical production environment with the typical number of unique users accessing the system
simultaneously.

6. Click Security > Global security. Under RMI/IIOP security, click CSIv2 inbound authentication.
The Login configuration field specifies RMI_INBOUND as the system login configuration that is used for
inbound requests. To add custom Java Authentication and Authorization Service (JAAS) login
modules, complete the following steps:

a. Click Security > Global security. Under Java Authentication and Authorization Service, click
System logins. A list of the system login configurations is displayed. WebSphere Application
Server provides the following pre-configured system login configurations: DEFAULT, LTPA,
LTPA_WEB, RMI_INBOUND, RMI_OUTBOUND, SWAM, WEB_INBOUND,
wssecurity.IDAssertion, and wssecurity.Signature. Do not delete these predefined configurations.

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in
a future release.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is
displayed, which lists all of the login modules that are processed in the login configuration. Do not
delete the required JAAS login modules. Instead, you can add custom login modules before or
after the required login modules. If you add custom login modules, do not begin their names with
com.ibm.ws.security.server.

You can specify the order in which the login modules are processed by clicking Set Order.

7. Select the Security attribute propagation option on the CSIv2 inbound authentication panel. When
you select Security Attribute Propagation, the server advertises to other application servers that it
can receive propagated security attributes from another server in the same realm over the Common
Secure Interoperability version 2 (CSIv2) protocol.

8. Click Security > Global security. Under RMI/IIOP security, click CSIv2 Outbound authentication.
The CSIv2 outbound authentication panel is displayed. The Login configuration field specifies
RMI_OUTBOUND as the JAAS login configuration that is used for outbound configuration. You cannot
change this login configuration. Instead, you can customize this login configuration by completing the
substeps that are listed previously for CSIv2 Inbound authentication.

9. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable
outbound Subject and security context token propagation for the Remote Method Invocation (RMI)
protocol. When you select this option, WebSphere Application Server serializes the Subject contents

Chapter 6. Authenticating users 473

and the PropagationToken contents. After the contents are serialized, the server uses the CSIv2
protocol to send the Subject and PropagationToken token to the target servers that support security
attribute propagation. If the receiving server does not support security attribute tokens, WebSphere
Application Server sends the Lightweight Third Party Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can
serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker
tokens to the Subject to enable the target server to add additional attributes during the inbound login.
During the commit phase of the login, the marker tokens and the Subject are marked as read-only
and cannot be modified thereafter.

Important: When using security attribute propagation, use the same LTPA keys in all cell
configurations.

10. Optional: Select the Custom Outbound Mapping option if you clear the Security Attribute
Propagation option and you want to use the RMI_OUTBOUND login configuration. If neither the
Custom Outbound Mapping option nor the Security Attribute Propagation option is selected,
WebSphere Application Server does not call the RMI_OUTBOUND login configuration. If you need to
plug in a credential mapping login module, you must select the Custom Outbound Mapping option.

11. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying these
realm names, information can be sent to servers that reside outside the realm of the sending server
to support inbound mapping that is at these downstream servers. To perform outbound mapping to a
realm different from the current realm, you must specify the realm in this field so that you can get to
this point without having the request rejected because of a realm mismatch. If you need WebSphere
Application Server to propagate security attributes to another realm when a request is sent, you must
specify the realm name in the Trusted Target Realms field. Otherwise, the security attributes are not
propagated to the unspecified realm. You can add multiple target realms by adding a pipe (|) delimiter
between each entry.

12. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the
invocation Subject, you must add the following property to the sas.client.props file:
com.ibm.CSI.rmiOutboundPropagationEnabled=true

Note: The sas.client.props file is located at <WAS-HOME>/profiles/<ProfileName>/properties>.

Results

After completing these steps, you have configured WebSphere Application Server to propagate security
attributes to other servers.

What to do next

If you need to disable security attribute propagation, determine whether you need to disable it for either
the server level or the cell level.

Attention: Changes to the server-level settings override the cell settings.

To disable security attribute propagation on the server level, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Server security.

3. Select the RMI/IIOP security for this server overrides cell settings option.

4. Disable security attribute propagation for inbound requests by clicking CSI inbound authentication
under Additional Properties and clearing the Security attribute propagation option.

5. Disable security attribute propagation for outbound requests by clicking CSI outbound authentication
under Additional Properties and clearing the Security attribute propagation option.

474 Securing applications and their environment

To disable security attribute propagation on the cell level, undo each of the steps that you completed to
enable security attribute propagation in this task.

Using the default authorization token to propagate security attributes
This topic explains how WebSphere Application Server uses the default authorization token. Consider
using the default authorization token when you are looking for a place to add string attributes that get
propagated downstream.

About this task

However, make sure that the attributes you add to the authorization token are specific to the user that is
associated with the authenticated Subject. If they are not specific to a user, the attributes probably belong
in the propagation token, which is also propagated with the request. For more information on the
propagation token, see “Using the default propagation token to propagate security attributes” on page 478.
To add attributes into the authorization token, you must plug in a custom login module into the various
system login modules that are configured. Any login module configuration that has the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive
propagated information and can generate propagation information that can be sent outbound to another
server.

If propagated attributes are not presented to the login configuration during an initial login, a default
authorization token is created in the wsMapDefaultInboundLoginModule login module after the login occurs
in the ltpaLoginModule login module. You can obtain a reference to the default authorization token from
the login method using the sharedState hashmap. You must plug in the custom login module after the
wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default
authorization token.

For more information on the Java Authentication and Authorization Service (JAAS) programming model,
see the Security: Resources for learning article.

Procedure
v Obtain a reference to the default authorization token from the login method.

v Add attributes to the token.

v Read existing attributes used for authorization.

v Ensure that your custom login module code is trusted. Whenever you plug a custom login module into
the WebSphere Application Server login infrastructure, you must ensure that the code is trusted. When
you add the login module into the app_server_root/classes directory, it has Java 2 Security
AllPermissions permissions. It is recommended that you add your login module and other infrastructure
classes into a private directory. However, if you use a private directory, modify the
$(WAS_INSTALL_ROOT)/properties/server.policy file so that the private directory, Java archive (JAR)
file, or both have the permissions that are needed to run the application programming interfaces (API)
that are called from the login module. Because the login module might run after the application code on
the call stack, you might consider adding a doPrivileged code block so that you do not need to add
additional permissions to your applications.

v Modify the authorization token factory to use a token factory other than the default token factory.

When WebSphere Application Server generates a default authorization token, the application server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.authorizationTokenFactory property.

The com.ibm.ws.security.ltpa.AuthzPropTokenFactory token factory is the default. This token factory
encodes the data, but does not encrypt the data in the authorization token. Because the authorization
token typically flows over Common Secure Interoperability Version 2 (CSIv2) using Secure Sockets
Layer (SSL), encrypting the token is not necessary. However, if you need additional security for the
authorization token, you can associate a different token factory implementation with this property to get
encryption. For example, if you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory

Chapter 6. Authenticating users 475

with this property, the token uses Advanced Encryption Standard (AES) encryption. However, you need
to weigh the performance impacts against your security needs. Adding sensitive information to the
authorization token is one reason to change the token factory implementation to something that
encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Additional properties, click Custom properties.

v Perform your own signing and encryption of the default authorization token.

If you want to perform your own signing and encryption of the default authorization token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can use
the Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the
token factory or you can use your own keys. If you use your own keys, they must be the same
everywhere to validate the tokens that are generated using those keys. See the API documentation, that
is available through a link on the front page of the information center, for more information on
implementing your own custom token factory.

v Associate your token factory with the default authorization token.

To associate your token factory with the default authorization token, using the administrative console,
complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are put into the ${USER_INSTALL_ROOT}/classes directory so
that the WebSphere Application Server class loader can load the classes.

Example

The following example shows the complete task of obtaining a reference to the default authorization token
from the login method, adding attributes to the token, and reading from the existing attributes that are used
for authorization.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

// (For more information on initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

// Get a reference to the sharedState map that is passed in during initialization.
_sharedState = sharedState;
}

public boolean login() throws LoginException
{

// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

// Look for the default AuthorizationToken in the shared state
defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

sharedState.get
(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

// Might not always have one of these generated. It depends on the login
// configuration setup.

if (defaultAuthzToken != null)
{
try

476 Securing applications and their environment

{
// Add a custom attribute
defaultAuthzToken.addAttribute("key1", "value1");

// Determine all of the attributes and values that exist in the token.
java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

getAttributeNames();

while (listOfAttributes.hasMoreElements())
{
String key = (String) listOfAttributes.nextElement();

String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

for (int i=0; i<values.length; i++)
{
System.out.println ("Key: " + key + ", Value[" + i + "]: "

+ values[i]);
}
}

// Read the existing uniqueID attribute.
String[] uniqueID = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID);

// Getthe uniqueID from the String[]
String unique_id = (uniqueID != null &&

uniqueID[0] != null) ? uniqueID[0] : "";

// Read the existing expiration attribute.
String[] expiration = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_EXPIRATION);

// An example of getting a long expiration value from the string array.
long expire_time = 0;
if (expiration != null && expiration[0] != null)
expire_time = Long.parseLong(expiration[0]);

// Read the existing display name attribute.
String[] securityName = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME);

// Get the display name from the String[]
String display_name = (securityName != null &&

securityName[0] != null) ? securityName[0] : "";

// Read the existing long securityName attribute.
String[] longSecurityName = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_LONGSECURITYNAME);

// Get the long security name from the String[]
String long_security_name = (longSecurityName != null &&

longSecurityName[0] != null) ? longSecurityName[0] : "";

// Read the existing group attribute.
String[] groupList = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS);

// Get the groups from the String[]
ArrayList groups = new ArrayList();
if (groupList != null)
{
for (int i=0; i<groupList.length; i++)
{
System.out.println ("group[" + i + "] = " + groupList[i]);
groups.add(groupList[i]);
}
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

}

public boolean commit() throws LoginException
{
// (For more information on what to do during commit, see

// “Developing custom login modules for a system login configuration for JAAS” on page 442.)

}

Chapter 6. Authenticating users 477

private java.util.Map _sharedState = null;
private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;
}

.

Using the default propagation token to propagate security attributes
A default propagation token is located on the running thread for applications and the security infrastructure
to use. The product propagates this default propagation token downstream and the token stays on the
thread where the invocation lands at each hop.

About this task

The data is available from within the container of any resource where the propagation token lands.
Remember that you must enable the propagation feature at each server where a request is sent for
propagation to work. Make sure that you enable security attribute propagation for all of the cells in your
environment where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the
PropagationToken attributes. This topic documents the usage scenarios and includes examples. A close
relationship exists between the propagation token and the work area feature. The main difference between
these features is that after you add attributes to the propagation token, you cannot change the attributes.
You cannot change these attributes so that the security runtime can add auditable information and have
that information remain there for the life of the invocation. Any time that you add an attribute to a specific
key, an ArrayList object is stored to hold that attribute. Any new attribute that is added with the same key
is added to the ArrayList object. When you call getAttributes, the ArrayList object is converted to a String
array and the order is preserved. The first element in the String array is the first attribute added for that
specific key.

In the default propagation token, a change flag is kept that logs any data changes to the token. These
changes are tracked to enable WebSphere Application Server to know when to send the authentication
information downstream again so that the downstream server has those changes. Normally, Common
Secure Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client.
If the propagation token changes, a new session is generated and subsequently a new authentication
occurs. Frequent changes to the propagation token during a method cause frequent downstream calls. If
you change the token prior to making many downstream calls or you change the token between each
downstream call, you might impact security performance.

Procedure
v Obtain the server list from the default propagation token.

Every time the propagation token is propagated and used to create the authenticated Subject, either
horizontally or downstream, the name of the receiving application server is logged into the propagation
token. The format of the host is "Cell:Node:Server", which provides you access to the cell name, node
name, and server name of each application server that receives the invocation.

The following code provides you with this list of names and can be called from a Java 2 Platform,
Enterprise Edition (J2EE) application.

The format of each server in the list is: cell:node_name:server_name. The output, for example, is:
myManager:node1:server1

String[] server_list = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try

478 Securing applications and their environment

{
// Gets the server_list string array
server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();
}
catch (Exception e)
{
// Performs normal exception handling for your application
}

if (server_list != null)
{
// print out each server in the list, server_list[0] is the first server
for (int i=0; i<server_list.length; i++)
{
System.out.println("Server[" + i + "] = " + server_list[i]);

}
}
}

v Obtain the list of callers, using the getCallerList API.

A default propagation token is generated any time an authenticated user is set on the running thread or
anyone tries to add attributes to the propagation token. Whenever an authenticated user is set on the
thread, the user is logged in the default propagation token. At times, the same user might be logged in
multiple times if the RunAs user is different from the caller. The following list provides the rules that are
used to determine if a user that is added to the thread gets logged into the propagation token:

– The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

– The current authenticated Subject is logged if a Subject is not previously logged.

– The current authenticated Subject is logged if the last authenticated Subject that is logged does not
contain the same user.

– The current authenticated Subject is logged on each unique application server that is involved in the
propagation process.

The following code sample shows how to use the getCallerList API.

The format of each caller in the list is: cell:node_name:server_name:realm:port_number/securityName.
The output, for example, is: myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

String[] caller_list = null;

// If security is disabled on this application server, do not check the caller list
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the caller_list string array
caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();
}
catch (Exception e)
{
// Performs normal exception handling for your application
}

if (caller_list != null)
{
// Prints out each caller in the list, caller_list[0] is the first caller
for (int i=0; i<caller_list.length;i++)
{

Chapter 6. Authenticating users 479

System.out.println("Caller[" + i + "] = " + caller_list[i]);
}
}
}

v Obtain the security name of the first authenticated user, using the getFirst Caller API.

Whenever you want to know which authenticated caller started the request, you can call the
getFirstCaller method and the caller list is parsed. However, this method returns the security name of
the caller only. If you need to know more than the security name, call the getCallerList method and
retrieve the first entry in the String array. This entry provides all the caller information.

The following code sample retrieves the security name of the first authenticated caller using the
getFirstCaller API.

The output, for example, is: jsmith.

String first_caller = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the first caller
first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

// Prints out the caller name
System.out.println("First caller: " + first_caller);
}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

v Obtain the name of the first application server for a request, using the getFirstServer method.

Whenever you want to know what the first application server is for this request, call the getFirstServer
method directly.

The following code sample retrieves the name of the first application server using the getFirstServer
API.

The output, for example, is: myManager:node1:server1.

String first_server = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the first server
first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

// Prints out the server name
System.out.println("First server: " + first_server);
}
catch (Exception e)
{

480 Securing applications and their environment

// Performs normal exception handling for your application
}
}

v Add custom attributes to the default propagation token, using the addPropagationAttribute API.

You can add custom attributes to the default propagation token for application usage. This token follows
the request downstream so that the attributes are available when needed. When you use the default
propagation token to add attributes, you must understand the following issues:

– Adding information to the propagation token affects CSIv2 session caching. Add information sparingly
between remote requests.

– After you add information with a specific key, the information cannot be removed.

– You can add as many values to a specific key as you need. However, all of the values must be
available from a returned String array in the order that they were added.

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute attribute
is needed to add attributes to the default propagation token.

– An application cannot use keys that begin with either com.ibm.websphere.security or
com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API.

// If security is disabled on this application server,
// do not check the status of server security

if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Specifies the key and values
String key = "mykey";
String value1 = "value1";
String value2 = "value2";

// Sets key, value1
com.ibm.websphere.security.WSSecurityHelper.
addPropagationAttribute (key, value1);

// Sets key, value2
String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

addPropagationAttribute (key, value2);

// Note: previous_values should contain value1
}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

v Obtain your custom attributes with the get PropagationAttributes API.

Custom attributes are added to the default propagation token using the addPropagationAttribute API.
Retrieve these attributes using the getPropagationAttributes API. This token follows the request
downstream so the attributes are available when needed. When you use the default propagation token
to retrieve attributes, you must understand the following issues:

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission "wssecurity.getPropagationAttributes"
permission is needed to retrieve attributes from the default propagation token.

Chapter 6. Authenticating users 481

See Adding custom attributes to the default PropagationToken to add attributes using the
addPropagationAttributes API.

The following code sample shows how to use the getPropagationAttributes API.

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
String key = "mykey";
String[] values = null;

// Sets key, value1
values = com.ibm.websphere.security.WSSecurityHelper.
getPropagationAttributes (key);

// Prints the values
for (int i=0; i<values.length; i++)
{
System.out.println("Value[" + i + "] = " + values[i]);
}
}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

The output, for example, is:

Value[0] = value1
Value[1] = value2

v Modify the propagation token factory configuration to use a token factory other than the default token
factory.

When WebSphere Application Server generates a default propagation token, the Application Server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.propagationTokenFactory property.

The default token factory that is specified for this property is called
com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the propagation
token and does not encrypt the data. Because the propagation token typically flows over CSIv2 using
Secure Sockets Layer (SSL), encrypting the token is not required. However, if you need additional
security for the propagation token, you can associate a different token factory implementation with this
property to get encryption. For example, if you choose to associate the
com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with this property, the token is AES
encrypted. However, you need to weigh the performance impacts against your security needs. Adding
sensitive information to the propagation token is a good reason to change the token factory
implementation to something that encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

v Perform your own signing and encryption of the default propagation token.

If you want to perform your own signing and encryption of the default propagation token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

482 Securing applications and their environment

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can
choose to use the Lightweight Third Party Authentication (LTPA) keys and have them pass into the
initialize method of the token factory, or you can use your own keys. If you use your own keys, they
must be the same everywhere to validate the tokens that are generated using those keys. See the API
documentation, available through a link on the front page of the information center, for more information
on implementing your own custom token factory.

v Associate your token factory with the default propagation token.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

4. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

6. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory
so that the WebSphere Application Server class loader can load the classes.

Example

Using the default single sign-on token with default or custom token
factory to propagate security attributes
Do not use the default single sign-on token in service provider code. This default token is used by the
WebSphere Application Server run-time code only.

Before you begin

Size limitations exist for this token when it is added as an HTTP cookie. If you need to create an HTTP
cookie using this token framework, you can implement a custom single sign-on token. To implement a
custom single sign-on token see “Implementing a custom single sign-on token for security attribute
propagation” on page 882 for more information.

Procedure
v Modify the single sign-on token factory configuration to use a token factory other than the default token

factory.

When the default single sign-on token is generated, the application server utilizes the TokenFactory
class that is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. Use
the administrative console to modify the property.

The com.ibm.ws.security.ltpa.LTPAToken2Factory token factory is the default that is specified for this
property. This token factory creates a single sign-on (SSO) token called LtpaToken2, which WebSphere
Application Server uses for propagation. This token factory uses the AES/CBC/PKCS5Padding cipher.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Custom properties.

v Perform your own signing and encryption of the default single sign-on token.

If you need to perform your own signing and encryption of the default single sign-on token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Chapter 6. Authenticating users 483

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your
token implementation. You can use the Lightweight Third-Party Authentication (LTPA) keys passed into
the initialize method of the token factory or you can use your own keys. If you use your own keys, they
must be the same everywhere to validate the tokens that are generated using those keys. See the API
reference information for more information on implementing your own custom token factory.

v Associate your own token factory with the default single sign-on token.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Custom properties.

4. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value
of this property matches your custom TokenFactory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

6. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory
so that the WebSphere Application Server class loader can load the classes.

Configuring the authentication cache
The security authentication cache affects the frequency of rehashing and the distribution of the hash
algorithms.

About this task

To configure the authentication cache properties, complete the following steps:

Procedure
1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties.

4. Click New to specify a new custom property.

What to do next

For information on the supported authentication cache properties, see “Authentication cache settings” on
page 180.

Configuring Common Secure Interoperability Version 2 (CSIV2)
inbound and outbound communication settings
WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

About this task

Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and Security
Authentication Service (SAS).

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

484 Securing applications and their environment

Procedure
1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)
application server, which in turn communicates to a downstream EJB application server.

A CSIv2 Java client utilizes a configuration file that is specified by the com.ibm.CORBA.ConfigURL
Java property to configure outbound security.

The upstream EJB application server configures inbound security to handle the correct type of
authentication from the Java client. The upstream EJB application server utilizes the outbound security
configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the
upstream EJB application server. Security might be tighter between the pure client and the first EJB
server, depending on your infrastructure. The downstream EJB server utilizes the inbound security
configuration to accept requests from the upstream EJB server. These two servers require similar
configuration options as well. If the downstream EJB application server communicates to other
downstream servers, the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, the server supports authentication with a user ID and password.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this
type of authentication performed at every tier, use the CSIv2 authentication protocol configuration as is.
However, if you have any special requirements where some servers authenticate differently from other
servers, consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through a properties file that is specified by the
com.ibm.CORBA.ConfigURL Java property.

Configuring servers is always done from the administrative console or scripting, either from the security
navigation for cell-level configurations or from the server security of the application server for
server-level configurations. If you want some servers to authenticate differently from others, modify
some of the server-level configurations. When you modify the server-level configurations, you are
overriding the cell-level configurations.

What to do next

Use CSIV2 inbound communications settings for configuring the type of authentication information that is
contained in an incoming request or transport.

Use CSIV2 outbound communications settings to specify the features that a server supports when acting
as a client to another downstream server.

Configuring Common Secure Interoperability Version 2 inbound
communications
Inbound communications refers to the configuration that determines the type of accepted authentication for
inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the
client retrieves from the name server.

Procedure
1. Start the administrative console.

2. Click Security > Global security.

3. Under RMI/IIOP security, click CSIv2 inbound communications.

4. Consider the following layers of security:
v Identity assertion (attribute layer).

Chapter 6. Authenticating users 485

When selected, this server accepts identity tokens from upstream servers. If the server receives an
identity token, the identity is taken from an originating client. For example, the identity is in the same
form that the originating client presented to the first server. An upstream server sends the identity of
the originating client. The format of the identity can be either a principal name, a distinguished
name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the
upstream server that sends the identity token because the identity authenticates on this server. Trust
of the upstream server is established either using Secure Sockets Layer (SSL) client certificate
authentication or basic authentication. You must select one of the two layers of authentication in
both inbound and outbound authentication when you choose identity assertion.

Note: If your configured registry is Local OS, then the trust is instead established by checking if the
upstream server identity is authorized on the downstream server with UPDATE authority to
the CBIND class, profile CB.BIND.<optionalSAFProfilePrefix>.<cluster_short_name>. The
upstream server identity is sent using an SSL client certificate. If SSL is not used, the CBIND
check is performed against the started task identity of the upstream server.

Note: When identity assertion is enabled, message layer or transport layer should be enabled also.
For server-to-server communication, besides enabling transport layer/client authentication,
identity assertion or message layer should be enabled also.

For more information, refer to Identity assertion.
v Message layer:

Basic authentication (GSSUP):

This type of authentication is the most typical. The user ID and password or authenticated token is
sent from a pure client or from an upstream server. When a user ID and password are received at
the server, they are authenticated with the user registry of the downstream server.

Lightweight Third Party Authentication (LTPA):

In this case, an LTPA token is sent from the upstream server. Note that if you choose LTPA, then
both servers must share the same LTPA keys

Kerberos (KRB5):

To select Kerberos, the active authentication mechanism must be Kerberos. In this case, a Kerberos
token is sent from the upstream server.

For more information, read about Message layer authentication.
v Secure Sockets Layer client certificate authentication (transport layer).

The SSL client certificate is used to authenticate instead of using user ID and Password. If a server
delegates an identity to a downstream server, the identity comes from either the message layer (a
client authentication token) or the attribute layer (an identity token), and not from the transport layer
through the client certificate authentication.

A client has an SSL client certificate that is stored in the key ring file of the client configuration.
When SSL client authentication is enabled on this server, the server requests that the client send
the SSL client certificate when the connection is established. The certificate chain is available on the
socket whenever a request is sent to the server. The server request interceptor gets the certificate
chain from the socket and maps this certificate chain to a user in the user registry. This type of
authentication is optimal for communicating directly from a client to a server. However, when you
have to go downstream, the identity typically flows over the message layer or through identity
assertion.

5. Consider the following points when deciding what type of authentication to accept:
v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and
the transport layer has the lowest priority. The SSL client certificate authentication is used when it is
the only layer provided. If the message layer and the transport layer are provided, the message
layer is used to establish the identity for authorization. The identity assertion layer is used to
establish precedence when provided.

486 Securing applications and their environment

v Does this server usually receive requests from a client, from a server, or both? If the server always
receives requests from a client, identity assertion is not needed. You can choose either the message
layer, the transport layer, or both. You also can decide when authentication is required or just
supported. To select a layer as required, the sending client must supply this layer, or the request is
rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and
you want the certificate chain to flow downstream so that it maps to the downstream server user
registries, identity assertion is the appropriate choice. Identity assertion preserves the format of the
originating client. If the originating client authenticated with a user ID and password, a principal
identity is sent. If authentication is done with a certificate, the certificate chain is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a
pipe-separated (|) list of server administrator IDs to which this server can support identity token
submission. For backwards compatibility, you can still use a comma-delimited list. However, if the
server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma
delimiter does not work. If you choose to support any server sending an identity token, you can enter
an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate
authentication between servers to establish the trust.

Note: This step applies if you are using a Lightweight Directory Access Protocol (LDAP) or custom
user registry. However, it does not apply when you are using the local operating system user
registry or a System Authorization Facility (SAF) user registry.

7. Configure session management. You can choose either stateful or stateless security. Performance is
optimum when choosing stateful sessions. The first method request between a client and server is
authenticated. All subsequent requests (or until the credential token expires) reuse the session
information, including the credential. A client sends a context ID for subsequent requests. The context
ID is scoped to the connection for uniqueness.

Results

When you finish configuring this panel, you have configured most of the information that a client gathers
when determining what to send to this server. A client or server outbound configuration with this server
inbound configuration, determines the security that is applied. When you know what clients send, the
configuration is simple. However, if you have a diverse set of clients with differing security requirements,
your server considers various layers of authentication.

For a J2EE application server, the authentication choice is usually either identity assertion or message
layer because you want the identity of the originating client delegated downstream. You cannot easily
delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer
because additional server security, as the additional client certificate portion of the SSL handshake, adds
some overhead to the overall SSL connection establishment.

What to do next

After you determine which type of authentication data this server might receive, you can determine what to
select for outbound security. For more information, see Configuring Common Secure Interoperability
Version 2 outbound authentication.

Common Secure Interoperability Version 2 inbound communications settings
Use this page to specify the features that a server supports for a client accessing its resources.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 inbound communications.

Chapter 6. Authenticating users 487

Use common secure interoperability (CSI) inbound communications settings for configuring the type of
authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

Propagate security attributes:

Specifies support for security attribute propagation during login requests. When you select this option, the
application server retains additional information about the login request, such as the authentication
strength used, and retains the identity and location of the request originator.

If you do not select this option, the application server does not accept any additional login information to
propagate to downstream servers.

Default: Enabled

Important: When you use the replication services, ensure that the Propagate security attributes option
is enabled.

Use identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a
downstream Enterprise JavaBeans (EJB) invocation.

This server does not authenticate the asserted identity again because it trusts the upstream server. Identity
assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal
determined at the server is based on precedence rules. If identity assertion is used, the identity is always
derived from the attribute layer. If basic authentication is used without identity assertion, the identity is
always derived from the message layer. Finally, if SSL client certificate authentication is performed without
either basic authentication, or identity assertion, then the identity is derived from the transport layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise
bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the
identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The
receiving server receives the identity in an identity token and also receives the sending server identity in a
client authentication token. The receiving server validates the sending server identity as a trusted identity
through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,
serverid1|serverid2|serverid3.

All identity token types map to the user ID field of the active user registry. For an ITTPrincipal identity
token, this token maps one-to-one with the user ID fields. For an ITTDistinguishedName identity token, the
value from the first equal sign is mapped to the user ID field. For an ITTCertChain identity token, the value
from the first equal sign of the distinguished name is mapped to the user ID field.

488 Securing applications and their environment

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type
ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then
the principal gets mapped to the UID field in the LDAP registry.

Default: Disabled

The following option is enabled when the active user registry is a Local OS user registry, your z/OS
security version is at the appropriate version that supports the distributed identity mapping, and there are
no nodes prior to WebSphere Application Server Version 8.0:

Map certificate and DN using SAF distributed identity mapping
Selecting this option maps an asserted certificate and distinguished name to an SAF user identity
using an RACMAP filter.

The default value is unchecked. When checked, the security custom property,
com.ibm.websphere.security.certdn.useRACMAPMappingToSAF, is set to true.

Note: This option is only visible when the active user registry is Local OS, the cell is not
mixed-version (no nodes prior to WebSphere Application Server Version 8.0), and the z/OS
security product supports SAF identity mapping (for RACF, this means z/OS version 1.11 or
later).

Note: If your DN name has a blank space between the attributes, then you should apply the
RACF APAR OA34258, or PTF UA59873, and the SAF APAR OA34259, or PTF UA59871,
to correctly parse the blanks.

Trusted identities:

Specifies the trusted identity that is sent from the sending server to the receiving server.

Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform
identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server
supports the comma (,) character as the list delimiter for backwards compatibility. The application server
checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must
still authenticate with the receiving server to accept the identity token of the sending server.

Data type: String

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server
during a method request.

In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message
layer, basic authentication (user ID and password) is used. Client certificate authentication typically
performs better than message layer authentication, but requires some additional setup. These additional
steps involve verifying that the server trusts the signer certificate of each client to which it is connected. If
the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root
certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a local OS user registry, the certificate is mapped to the user ID in
the registry.

Chapter 6. Authenticating users 489

The identity from client certificates is used only if no other layer of authentication is presented to the
server.

Never Specifies that clients cannot attempt Secure Sockets Layer (SSL) client certificate authentication
with this server.

Supported
Specifies that clients connecting to this server can authenticate using SSL client certificates.
However, the server can invoke a method without this type of authentication. For example,
anonymous or basic authentication can be used instead.

Note: When "Supported" is set for CSIv2 Inbound authentication on the server, the client
certificate is used for the authentication.

Required
Specifies that clients connecting to this server must authenticate using SSL client certificates
before invoking the method.

The following option is enabled when the active user registry is a Local OS user registry, your z/OS
security version is at the appropriate version that supports the distributed identity mapping, and there are
no nodes prior to WebSphere Application Server Version 8.0:

Map certificate using SAF distributed identity mapping
Selecting this option maps a certificate received in the CSIv2 transport layer to an SAF user
identity using an RACMAP filter.

The default value is unchecked. When checked, the security custom property,
com.ibm.websphere.security.certificate.useRACMAPMappingToSAF, is set to true.

Note: This option is only visible when the active user registry is Local OS, the cell is not
mixed-version (no nodes prior to WebSphere Application Server Version 8.0), and the z/OS
security product supports SAF identity mapping (for RACF, this means z/OS version 1.11 or
later).

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a server
supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL connections. If
you specify SSL-supported, this server can support either TCP/IP or SSL connections. If you specify
SSL-required, then any server communicating with this one must use SSL.

Note: This option is not available on the z/OS platform unless both Version 6.1 and earlier nodes exist in
the cell.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at run time.

490 Securing applications and their environment

ORB_SSL_LISTENER_ADDRESS

Default: SSL-Supported
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

Note: This option is not available on the z/OS platform unless both Version 6.1 and earlier nodes exist in
the cell.

Data type: String
DefaultSSLSettings
Default: DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Message layer authentication:

The following options are available for message layer authentication:

Never Specifies that this server cannot accept authentication using any of the mechanisms selected
below.

Supported
Specifies that a client communicating with this server can authenticate using any of the
mechanisms selected below. However, a method might be invoked without this type of
authentication. For example, an anonymous or client certificate might be used instead.

Required
Specifies that clients communicating with this server must specify authentication information using
of the mechanisms selected below for any method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

The following options are available for client to server authentication:

Kerberos (KRB5)
Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos
authentication mechanism. Read about Configuring Kerberos as the authentication mechanism
using the administrative console for more information.

LTPA Select to specify the LTPA token authentication

Basic authentication
Basic authentication is Generic Security Services Username Password (GSSUP). This type of
authentication typically involves sending a user ID and a password from the client to the server for
authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, a user
name, password, and LTPA tokens are accepted.

If you select Basic Authentication and KRB5 and the active authentication mechanism is KRB5, a user
name, password, Kerberos token and LTPA tokens are accepted.

Chapter 6. Authenticating users 491

If you do not select Basic Authentication, a user name and password are not accepted by the server.

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

You can add custom login modules by clicking Security > Global security. From Authentication, click
Java Authentication and Authorization Service > System logins.

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

The first contact between a client and server must fully authenticate. However, all subsequent contacts
with valid sessions reuse the security information. The client passes a context ID to the server, and the ID
is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.
Whenever the security session is not valid and the authentication retry is enabled, which is the default, the
client-side security interceptor invalidates the client-side session and submits the request again without
user awareness. This situation might occur if the session does not exist on the server; for example, the
server failed and resumed operation. When this value is disabled, each method invocation must
authenticate again.

Default: Enabled

Trusted authentication realms - inbound:

Select this link to establish inbound trust for realms. Inbound authentication realm settings are not specific
to CSIv2; you can also configure which realms to grant inbound trust to for multiple security domains.

Inbound authentication refers to the configuration that determines the type of accepted authentication for
inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the
client retrieves from the name server.

Additional Common Secure Interoperability inbound authentication settings
Use this page to configure additional authentication settings for requests that are received by this server
using the Object Management Group (OMG) Common Secure Interoperability authentication protocol.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 inbound authentication.

3. Under Additional properties, click z/OS additional settings.

You can also view this administrative console page, by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click Server security > CSIv2 inbound authentication.

3. Under Additional properties, click z/OS additional settings.

Client authentication type:

Specifies the type of client authentication supported for inbound requests.

Data type String
Default SAF user ID and password

492 Securing applications and their environment

SAF identity assertion:

Specifies that the server permits a trusted upstream server to assert client identities as System
Authorization Facility (SAF) user names.

Data type Boolean
Default Disabled
Options Enabled or Disabled

Distinguished name identity assertion:

Specifies that the server permits a trusted upstream server to assert client identities as distinguished
names.

Note: This option is available for global security and not available for server-level security.

Data type Boolean
Default Disabled
Options Enabled or Disabled

Certificate identity assertion:

Specifies that the server permits a trusted upstream server to assert client identities as X.509 certificates.

Note: This option is available for global security and not available for server-level security.

Data type Boolean
Default Disabled
Options Enabled or Disabled

Configuring Common Secure Interoperability Version 2 outbound
communications
The following choices are available when configuring the Common Secure Interoperability Version 2
(CSIv2) outbound communications panel.

Before you begin

Outbound communications refers to the configuration that determines the type of authentication that is
performed for outbound requests to downstream servers. Several layers or methods of authentication can
occur. The downstream server inbound authentication configuration must support at least one choice made
in this server outbound authentication configuration. If nothing is supported, the request might go outbound
as unauthenticated. This situation does not create a security problem because the authorization runtime is
responsible for preventing access to protected resources. However, if you choose to prevent an
unauthenticated credential from going outbound, you might want to designate one of the authentication
layers as required, rather than supported. If a downstream server does not support authentication, then
when authentication is required, the method request fails to go outbound.

About this task

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) outbound
communications panel. Remember that you are not required to complete these steps in the displayed
order. Rather, these steps are provided to help you understand your choices for configuring outbound
communications.

Chapter 6. Authenticating users 493

Procedure
v Select Identity Assertion (attribute layer). When selected, this server sends an identity token to a

downstream server if the downstream server supports identity assertion. When an originating client
authenticates to this server, the authentication information supplied is preserved in the outbound identity
token. If the client authenticating to this server uses client certificate authentication, then the identity
token format is a certificate chain, containing the exact client certificate chain from the inbound socket.
The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion topic for
more information.

v Select SSL Client certificate authentication (transport layer). The main reason to enable outbound
Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create a
trusted environment between those servers. For delegating client credentials, use one of the two layers
mentioned previously. However, you might want to create SSL personal certificates for all the servers in
your domain, and only trust those servers in your SSL truststore file. No other servers or clients can
connect to the servers in your domain, except at the tiers where you want them. This process can
protect your enterprise bean servers from access by anything other than your servlet servers.

Example

Typically, the outbound authentication configuration is for an upstream server to communicate with a
downstream server. Most likely, the upstream server is a servlet server and the downstream server is an
Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to
access the servlet can be one of many different types of authentication, including client certificate and
basic authentication. When receiving basic authentication data, whether through a prompt login or a
form-based login, the basic authentication information is typically authenticated to from a credential of the
mechanism type that is supported by the server, such as the Lightweight Third Party Authentication
(LTPA). When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message
layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a
certificate login and you want to preserve sending the certificate downstream, you might decide to go
outbound with identity assertion.

Common Secure Interoperability Version 2 outbound communications settings
Use this page to specify the features that a server supports when acting as a client to another downstream
server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 outbound communications.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

Propagate security attributes:

Specifies to support security attribute propagation during login requests. When you select this option, the
application server retains additional information about the login request, such as the authentication
strength used, and retains the identity and location of the request originator.

494 Securing applications and their environment

If you do not select this option, the application server does not accept any additional login information to
propagate to downstream servers.

Default: Enabled

Important: When you use the replication services, ensure that the Propagate security attributes option
is enabled.

Use identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a
downstream Enterprise JavaBeans (EJB) invocation.

This server does not authenticate the asserted identity again because it trusts the upstream server. Identity
assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal
determined at the server is based on precedence rules. If identity assertion is performed, the identity is
always derived from the attribute layer. If basic authentication is used without identity assertion, the identity
is always derived from the message layer. Finally, if SSL client certificate authentication is performed
without either basic authentication, or identity assertion, then the identity is derived from the transport
layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise
bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the
identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The
receiving server receives the identity in an identity token and also receives the sending server identity in a
client authentication token. The receiving server validates the sending server identity as a trusted identity
through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,
serverid1|serverid2|serverid3.

All identity token types map to the user ID field of the active user registry. For an ITTPrincipal identity
token, this token maps one-to-one with the user ID fields. For an ITTDistinguishedName identity token, the
value from the first equal sign is mapped to the user ID field. For an ITTCertChain identity token, the value
from the first equal sign of the distinguished name is mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type
ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then
the principal gets mapped to the UID field in the LDAP registry.

Default: Disabled

Use server-trusted identity:

Specifies the server identity that the application server uses to establish trust with the target server. The
server identity can be sent using one of the following methods:

v A server ID and password when the server password is specified in the registry configuration.

v A server ID in a Lightweight Third Party Authentication (LTPA) token when the internal server ID is used.

For interoperability with application servers other than WebSphere Application Server, use one of the
following methods:

v Configure the server ID and password in the registry.

Chapter 6. Authenticating users 495

v Select the Server-trusted identity option and specify the trusted identity and password so that an
interoperable Generic Security Services Username Password (GSSUP) token is sent instead of an
LTPA token.

Default: Disabled

Specify an alternative trusted identity:

Specifies an alternative user as the trusted identity that is sent to the target servers instead of sending the
server identity.

This option is recommended for identity assertion. The identity is automatically trusted when it is sent
within the same cell and does not need to be in the trusted identities list within the same cell. However,
this identity must be in the registry of the target servers in an external cell, and the user ID must be on the
trusted identities list or the identity is rejected during trust evaluation.

Note: You must select Basic Authentication under the Message Layer authentication section to send an
alternative trusted identity. If you do not select Basic Authentication, then choose the Server Identity
instead.

Default: Disabled

Trusted identity:

Specifies the trusted identity that is sent from the sending server to the receiving server.

If you specify an identity in this field, it can be selected on the panel for your configured user account
repository. If you do not specify an identity, a Lightweight Third Party Authentication (LTPA) token is sent
between the servers.

Specifies a semicolon-separated (;) or comma-separated (,) list of trusted server IDs, which are trusted to
perform identity assertion to this server. For example, serverid1;serverid2;serverid3 or
serverid1,serverid2,serverid3.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must
still authenticate with the receiving server to accept the identity token of the sending server.

Password:

Specifies the password that is associated with the trusted identity.

Data type: Text

Confirm password:

Confirms the password that is associated with the trusted identity.

Data type: Text

Message layer authentication:

The following options are available for message layer authentication:

Never Specifies that this server cannot accept authentication using any of the mechanisms selected
below.

496 Securing applications and their environment

Supported
Specifies that a client communicating with this server can authenticate using any of the
mechanisms selected below. However, a method might be invoked without this type of
authentication. For example, an anonymous or client certificate might be used instead.

Required
Specifies that clients communicating with this server must specify authentication information using
of the mechanisms selected below for any method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

The following options are available for client to server authentication:

Kerberos (KRB5)
Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos
authentication mechanism. Read about Configuring Kerberos as the authentication mechanism
using the administrative console for more information.

LTPA Select to configure and enable Lightweight Third-Party Authentication (LTPA) token authentication.

Basic authentication
Basic authentication is Generic Security Services Username Password (GSSUP). This type of
authentication typically involves sending a user ID and a password from the client to the server for
authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, the
server goes with a downstream server with a user name, password or LTPA token.

If you select Basic Authentication and KRB5, and the active authentication mechanism is KRB5, the
server goes with a downstream server with a user name, password, Kerberos token or LTPA token.

If you do not select Basic Authentication, the server does not go with a downstream server with a user
name and password.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a
server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL
connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If
you specify SSL-required, then any server communicating with this one must use SSL.

For server-to-server communication, it is not enough to enable only the Transport layer. You must also
enable either the Message layer or the Attribute layer.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Chapter 6. Authenticating users 497

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at run time.

ORB_SSL_LISTENER_ADDRESS

Default: SSL-Required
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

Data type: String
DefaultSSLSettings
Default: DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Client certificate authentication:

Specifies whether a client certificate from the configured keystore is used to authenticate to the server
when the SSL connection is made between this server and a downstream server, provided that the
downstream server supports client certificate authentication.

Typically, client certificate authentication has a higher performance than message layer authentication, but
requires some additional setup. These additional steps include verifying that this server has a personal
certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never Specifies that this server does not attempt Secure Sockets Layer (SSL) client certificate
authentication with downstream servers.

Supported
Specifies that this server can use SSL client certificates to authenticate to downstream servers.
However, a method can be invoked without this type of authentication. For example, the server
can use anonymous or basic authentication instead.

Required
Specifies that this server must use SSL client certificates to authenticate to downstream servers.

Default: Enabled

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

You can add custom login modules by clicking Security > Global security. From Authentication, click
Java Authentication and Authorization Service > System logins.

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

The first contact between a client and server must fully authenticate. However, all subsequent contacts
with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

498 Securing applications and their environment

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.
Whenever the security session is not valid and the authentication retry is enabled, which is the default, the
client-side security interceptor invalidates the client-side session and submits the request again without
user awareness. This situation might occur if the session does not exist on the server, for example, the
server failed and resumed operation. When this value is disabled, every method invocation must
authenticate again.

Enable CSIv2 session cache limit:

Specifies whether to limit the size of the CSIv2 session cache.

When you enable this option, you must set values for the Maximum cache size and Idle session
timeout options. When you do not enable this option, the CSIv2 session cache is not limited.

In previous versions of the application server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property. In this product version,
it is advisable to set this value using this administrative console panel and not as a custom property.

Default: false

Maximum cache size:

Specify the maximum size of the session cache after which expired sessions are deleted from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified in the Idle
session timeout field. When you specify a value for the Maximum cache size field, consider setting its
value between 100 and 1000 entries.

Consider specifying a value for this field if your environment uses Kerberos authentication and has a short
clock skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined
as less than 20 minutes. Consider increasing the value of this field if the small cache size causes the
garbage collection to run so frequently that it impacts the performance of the application server.

In previous versions of the application server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. In this product version, it is
advisable to set this value using this administrative console panel and not as a custom property.

This field only applies if you enable both the Stateful sessions and the Enable CSIv2 session cache
limit options.

Default: By default, a value is not set.
Range: 100 to 1000 entries

Idle session timeout:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if you select the Enable CSIv2 session cache limit option and the value of the
Maximum cache size field is exceeded.

This timeout value only applies if you enable both the Stateful sessions and the Enable CSIv2 session
cache limit options. Consider decreasing the value for this field if your environment uses Kerberos
authentication and has a short clock skew for the configured key distribution center (KDC). In this
scenario, a short clock skew is defined as less than 20 minutes. A small clock skew can result in a larger

Chapter 6. Authenticating users 499

number of rejected CSIv2 sessions. However, with a smaller value for the Idle session timeout field, the
application server can clean out these rejected sessions more frequently and potentially reduce the
resource shortages.

In previous versions of WebSphere Application Server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property. In this product version, it is
advisable to set this value using this administrative console panel and not as a custom property. If you
previously set it as a custom property, the value was set in milliseconds and converted on this
administrative console panel to seconds. On this administrative console panel, you must specify the value
in seconds.

Default: By default, a value is not set.
Range: 60 to 86,400 seconds

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

The custom login module maps or completes other functions before the predefined RMI outbound call.

To declare a custom outbound mapping, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click Java Authentication and Authorization Service > System logins > New.

Trusted authentication realms - outbound:

If the RMI/IIOP communication is across different realms, use this link to add outbound trusted realms.

The credential tokens are only sent to the realms that are trusted. In addition, the receiving server should
trust this realm using the inbound trusted realms configuration to validate the LTPA token.

Additional Common Secure Interoperability outbound authentication settings
Use this page to configure additional authentication settings for requests that are received by this server
using the Object Management Group (OMG) Common Secure Interoperability authentication protocol.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 outbound authentication.

3. Under Additional properties, click z/OS additional settings.

You can also view this administrative console page by completing the following steps for the server level:

1. Click Servers > Application servers > server_name .

2. Under Security, click Server security > CSIv2 outbound authentication.

3. Under Additional properties, click z/OS additional settings.

Client authentication type:

Specifies the type of client authentication that is supported for outbound requests.

Data type String
Default System Authorization Facility (SAF) user ID and password

500 Securing applications and their environment

Configuring inbound transports
By using this configuration, you can configure a different transport for inbound security versus outbound
security.

Before you begin

Inbound transports refer to the types of listener ports and their attributes that are opened to receive
requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and z/OS
Secure Authentication Service (z/SAS) have the ability to configure the transport.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

CSIv2 and z/SAS support most of the same functions. CSIv2 has the advantage of interoperability with
other WebSphere Application Server products and any other platforms that support the CSIv2 protocol.

About this task

Complete the following steps to configure the Inbound transport panels in the administrative console:

Procedure
1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 inbound communications.

3. Under Transport, select SSL-required. You can choose to use either Secure Sockets Layer (SSL),
TCP/IP or both as the inbound transport that a server supports. If you specify TCP/IP, the server only
supports TCP/IP and cannot accept SSL connections. If you specify SSL-supported, this server can
support either TCP/IP or SSL connections. If you specify SSL-required, then any server communicating
with this one must use SSL.

4. Click Apply.

5. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most endpoints are
managed at a single location, which is why they do not display in the Inbound transport panels.
Managing end points at a single location helps you decrease the number of conflicts in your
configuration when you assign the endpoints. The location for SSL end points is at each server. The
following port names are defined in the End points panel and are used for Object Request Broker
(ORB) security:
v ORB_SSL_LISTENER_ADDRESS - SSL Port
v ORB_LISTENER_ADDRESS - IIOP port

For an application server, click Servers > Application servers > server_name. Under
Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote
Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, and is statically
specified using configuration dialogs or during migration. The ORB_LISTENER_ADDRESS and the
BOOTSTRAP_ADDRESS must specify the same port. If you are working with a firewall, you must
specify a static port for the ORB listener and open that port on the firewall so that communication can
pass through the specified port. The endPoint property for setting the ORB listener port is:
ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the
ORB_LISTENER_ADDRESS port or ports.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address or "*" in the Host field. For example the IP address can be 155.123.88.201.

Chapter 6. Authenticating users 501

Important: DNS host names are not supported for the ORB_LISTENER_ADDRESS value.

d. Enter the port number in the Port field. The port number specifies the port for which the service is
configured to accept client requests. The port value is used with the host name. Using the previous
example, the port number might be 9000.

6. Click Security > Global security. Under RMI/IIOP security, click z/SAS authentication to select the
SSL settings used for inbound requests from z/SAS clients.

Results

The inbound transport configuration is complete. With this configuration, you can configure a different
transport for inbound security versus outbound security. For example, if the application server is the first
server that is used by users, the security configuration might be more secure. When requests go to
back-end enterprise bean servers, you might lessen the security for performance reasons when you go
outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the
servers:
1. Click Save in the administrative console to save any modifications to the configuration.
2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings
Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to
use. These specifications determine which transport a client or upstream server uses to communicate with
this server for incoming requests.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a
server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL
connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If
you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to
use for the inbound configuration. This decision determines which key file and trust file are used for
inbound connections to this server.

Note: This option is not available on the z/OS platform unless there are both Version 6.1 and earlier
nodes in the cell.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

502 Securing applications and their environment

Important: SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at runtime.

ORB_SSL_LISTENER_ADDRESS

Default: SSL Required
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

Note: This option is not available on the z/OS platform unless there are both Version 6.1 and earlier
nodes in the cell.

These settings are configured at the SSL Repertoire panel. To access the SSL Repertoire panel, complete
the following steps:

1. Clicking Security > SSL certificate and key management.

2. Under configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Inbound and click inbound_configuration.

4. Under Related items, click SSL configurations.

Data type: String
DefaultSSLSettings
Default: DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

z/OS SSL settings:

Chapter 6. Authenticating users 503

Specifies a list of predefined Secure Sockets Layer (SSL) settings for inbound connections. Configure
these settings on the SSL panel by clicking Secure communications on the administrative console.

z/OS Secure Authentication Service settings
Use this page to specify authentication settings for requests that are received and sent by a server that
uses the z/OS authentication protocol. Use the z/OS Secure Authentication Service (z/SAS) protocol to
communicate securely to enterprise beans.

To view this administrative console page, complete the following steps:

1. Click Security > Global security .

2. Under Authentication expand RMI/IIOP, click z/SAS authentication.

Attention: The panel associated with this article displays only when you have a Version 6.1 server in your
environment.

Attention: The panel associated with this article displays only when you have a Version 6.1 or lower level
server in a Version 6.1 cell.

You can also view this administrative console page by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click Server security > z/SAS authentication.

Note: z/SAS protocols are ignored unless the active user registry is local operating system. z/SAS is
supported only between Version 6.0.x and previous version servers that have been federated in a
Version 6.1 cell.

Basic authentication:

Specifies that clients to this server can provide a System Authorization Facility (SAF) user ID and
password over a Secure Sockets Layer (SSL) connection. This option requires a valid system SSL
repertoire selection on the SSL settings option.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Client certificate:

Specifies that clients to this server can authenticate using SSL client certificates. The client certificates
must be capable of mapping to a SAF user ID. You must connect the public certificate of the client
certificate authority to the server key ring. The client certificate option requires a valid system SSL
repertoire selection on the SSL settings option.

Data type Boolean
Default Disabled
Range Enabled or Disabled

User ID and password:

Specifies that clients can connect to this server with a SAF user ID and password without requiring a
connection sent over an SSL session.

Data type Boolean
Default Disabled

504 Securing applications and their environment

Range Enabled or Disabled

Identity assertion inbound:

Specifies that inbound requests using SAF user IDs that are forwarded by Application Server for z/OS can
be accepted.

The immediate downstream server establishes its identity by sending a digital certificate. Identity assertion
is available only if client certificates are supported. When you enable this setting, you must select an SSL
setting.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Identity assertion outbound:

Specifies that outbound requests that originate from this server can forward authenticated client user IDs
over an SSL connection to another application server for z/OS in which it has established trust.

This option requires a valid system SSL repertoire selection on the SSL settings option.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Support unauthenticated clients:

Specifies that the server accepts Internet Inter-ORB Protocol (IIOP) requests without any authentication
information.

If you enable this property, specify the Remote identity setting to associate a user ID with requests from a
remote server.

Data type Boolean
Default Disabled
Range Enabled or Disabled

SSL settings:

Specifies a predefined list of SSL settings for connections. Configure these settings on the SSL repertoire
panel.

Data type String
Default None

Configuring outbound transports
By using this configuration, you can configure a different transport for inbound security versus outbound
security.

Chapter 6. Authenticating users 505

Before you begin

Outbound transports refers to the transport that is used to connect to a downstream server. When you
configure the outbound transport, consider the transports that the downstream servers support. If you are
considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in
this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore keyrings and
keystore and truststore files that contain the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the
downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound communications.

About this task

Complete the following steps to configure the outbound transport panels.

Procedure
1. Select the type of transport and the SSL settings by clicking Security > Global security. Under

RMI/IIOP security, click CSIv2 outbound communications. By selecting the type of transport, you
choose the transport to use when connecting to downstream servers. The downstream servers support
the transport that you choose. If you choose SSL-Supported, the transport that is used is negotiated
during the connection. If both the client and server support SSL, always select the SSL-Supported
option unless the request is considered a special request that does not require SSL, such as if an
object request broker (ORB) is a request.

2. Select the SSL required option if you want to use Secure Sockets Layer communications with the
outbound transport.

If you select the SSL required option or the SSL supported option, you can select either the
Centrally managed or Use specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node, server,
or cluster in one location. To use the Centrally managed option, you must specify the SSL
configuration for the particular set of endpoints. The Manage endpoint security configurations
and trust zones panel displays all of the inbound and outbound endpoints that use the SSL
protocol. If you expand the Inbound or Outbound section of the panel and click the name of a
node, you can specify an SSL configuration that is used for every endpoint on that node. For
an outbound transport, you can override the inherited SSL configuration by specifying an SSL
configuration for a particular endpoint. To specify an SSL configuration for an outbound
transport, click Security > SSL certificate and key management > Manage endpoint
security configurations and trust zones and expand Outbound.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

The default is DefaultSSLSettings. To modify or create a new SSL configuration, complete the
steps described in “Creating a Secure Sockets Layer configuration” on page 694.

3. Click Apply.

Results

The outbound transport configuration is complete. With this configuration, you can configure a different
transport for inbound security versus outbound security. For example, if the application server is the first

506 Securing applications and their environment

server used by end users, the security configuration might be more secure. When requests go to back-end
enterprise beans servers, you might consider less security for performance reasons when you go
outbound. With this flexibility you can design a transport infrastructure that meets your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the
servers.
v Click Save in the administrative console to save any modifications to the configuration.
v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings
Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when
communicating with downstream servers for outbound requests.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound transport.

You also can view this administrative console by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If
you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream
servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you
specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you
do specify SSL, decide which set of SSL configuration settings you want to use for the outbound
configuration.

Consider the following options:
TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.
SSL-required

If you select this option, the server opens SSL connections with downstream servers.
SSL-supported

If you select this option, the server opens SSL connections with any downstream server that
supports them and opens TCP/IP connections with any downstream servers that do not support
SSL.

Default: SSL-supported
Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the
SSL Configuration Repertoires panel.

To access the panel, complete the following steps:

Chapter 6. Authenticating users 507

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Outbound > outbound_configuration_name.

4. Under Related items, click SSL configurations.

Data type: String
Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Note: This field is available only if a Version 6.1 server exists in your environment.

SSL enabled:

Specifies whether secure socket communication is enabled to the server.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias that you want to use for outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI (LDAP) protocol.

Configuring inbound messages
You can use the administrative console to configure inbound messages for CSIv2.

Procedure
1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

3. Click CSIv2 inbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security
attributes option enables support for security attribute propagation during login requests. When you
select this option, the application server retains additional information about the login request, such as
the authentication strength used, and retains the identity and location of the request originator.

The Use identity assertion option specifies that identity assertion is a way to assert identities from
one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Never Specifies that this server cannot accept an authentication mechanism that you select under
Allow client to server authentication with:.

Supported
Specifies that clients communicating with this server can specify an authentication mechanism

508 Securing applications and their environment

that you select under Allow client to server authentication with:. However, a method might
be invoked without this type of authentication. For example, an anonymous or client certificate
might be used instead.

Required
Specifies that clients communicating with this server must specify an authentication
mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic
authentication. You can optionally select:

Kerberos
Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication
This type of authentication typically involves sending a user ID and a password from the client
to the server for authentication. This is also know as Generic Security Services Username
Password (GSSUP).

This authentication also involves delegating a credential token from an already authenticated
credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and
LTPA under Allow client to server authentication with:, then the server does not accept the
user name and password.

7. Click OK.

Results

You have now configured messages for CSIv2 inbound.

Configuring outbound messages
You can use the administrative console to configure outbound messages for CSIv2.

Procedure
1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

3. Click CSIv2 outbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security
attributes option enables support for security attribute propagation during login requests. When you
select this option, the application server retains additional information about the login request, such as
the authentication strength used, and retains the identity and location of the request originator.

The Use identity assertion option specifies that identity assertion is a way to assert identities from
one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

The Use server trusted identity option specifies the server identity that the application server uses to
establish trust with the target server.

The Specify an alternative trusted identity option enables you to specify an alternative user as the
trusted identity that is sent to the target servers instead of sending the server identity. If you select this
option you must provide the name of the trusted identity and the password that is associated with the
trusted identity.

Note: You must select Basic Authentication under the Message Layer authentication section to send
an alternative trusted identity. If you do not select Basic Authentication, then choose the Server
Identity instead.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Chapter 6. Authenticating users 509

Never Specifies that this server cannot accept an authentication mechanism that you select under
Allow client to server authentication with:.

Supported
Specifies that clients communicating with this server can specify an authentication mechanism
that you select under Allow client to server authentication with:. However, a method might
be invoked without this type of authentication. For example, an anonymous or client certificate
might be used instead.

Required
Specifies that clients communicating with this server must specify an authentication
mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic
authentication. You can optionally select:.

Kerberos
Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication
This type of authentication typically involves sending a user ID and a password from the client
to the server for authentication. This is also know as Generic Security Services Username
Password (GSSUP).

This authentication also involves delegating a credential token from an already authenticated
credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and
LTPA under Allow client to server authentication with:, then the server does not accept the
user name and password.

7. Optional: Select Custom outbound mapping. This option enables the use of custom Remote Method
Invocation (RMI) outbound login modules.

Results

You have now configured messages for CSIv2 outbound.

Common Secure Interoperability Version 2 and Security Authentication
Service (SAS) client configuration
A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and
referenced by specifying the following system property on the command line of the Java client. For
example, this property accepts any valid web address.

-Dcom.ibm.CORBA.ConfigURL=file:/WebSphere/V5R0M0/AppServer/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled between the
Java client and the target server.

If any problems exist with the client properties file or there is no match with the server security, the Java
client examines the server security for non-Common Secure Interoperability Version 2 (CSIv2) security
mechanisms that might be available. If no match is found with the old, non-CSIv2 security either, the Java
client attempts a nonsecure connection.

Use the following property to configure the CSIv2 authentication protocols:
v “Common Secure Interoperability version 2 (CSIv2) authentication protocol client settings” on page 514

510 Securing applications and their environment

Authentication protocol settings for a client configuration
You can use settings in the sas.client.props file to configure Security Authentication Service (SAS) and
Common Secure Interoperability Version 2 (CSIv2) clients.

Use the following settings in the app_server_root/properties/sas.client.props file to configure SAS and
CSIv2 clients.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Note: The sas.client.props file for WebSphere Application Server Version 8.0 contains some new
properties that support BasicAuth and Kerberos, such as:

com.ibm.IPC.authenticationTarget=BasicAuth
com.ibm.IPC.loginUserid=
com.ibm.IPC.loginPassword=
com.ibm.IPC.loginSource=prompt
com.ibm.IPC.krb5Service=WAS
com.ibm.IPC.krb5CcacheFile=
com.ibm.IPC.krb5ConfigFile=

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

Table 46. com.ibm.CORBA.securityEnabled. This table describes the com.ibm.CORBA.securityEnabled setting.
Setting Value

Data Type Boolean

Default True

Valid values True or false

com.ibm.CORBA.authenticationTarget:

Use to determine the type of authentication mechanism for sending security information from the client to
the server.

If basic authentication is specified, the user ID and password are sent to the server. Using the Secure
Sockets Layer (SSL) transport with this type of authentication is recommended; otherwise, the password is
not encrypted. The target server must support the specified authentication target.

Table 47. com.ibm.CORBA.authenticationTarget. This table describes the com.ibm.CORBA.authenticationTarget
setting.
Setting Value

Data type String

Default BasicAuth

Valid values BasicAuth, KRB5

com.ibm.CORBA.validateBasicAuth:

Use to determine if the user ID and password get validated immediately after the login data is entered
when the authenticationTarget property is set to BasicAuth.

In previous releases, BasicAuth logins validated only with the initial method request. During the first
request, the user ID and password are sent to the server. This request is the first time that the client can

Chapter 6. Authenticating users 511

notice an error, if the user ID or password is incorrect. The validateBasicAuth method is specified and the
validation of the user ID and password occurs immediately to the security server.

Note: Set com.ibm.CORBA.validateBasicAuth=false whenever connecting to a z/OS server. This function
does not currently work from a distributed client to a z/OS server since the SecurityServer is
located using the "UNAUTHENTICATED" principal, which is not accepted on a z/OS system.

For performance reasons, you might want to disable this property if you do not want to verify the user ID
and password immediately. If the client program can wait, it is better to have the initial method request
flow to the user ID and password. However, program logic might not be this simple because of error
handling considerations.

Table 48. com.ibm.CORBA.validateBasicAuth. This table describes the com.ibm.CORBA.validateBasicAuth setting.
Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryEnabled:

Use to specify that a failed login attempt is retried. This property determines if a retry occurs for other
errors, such as stateful sessions that are not found on a server or validation failures at the server because
of an expiring credential.

The minor code in the exception that is returned to a client determines which errors are retried. The
number of retry attempts is dependent upon the com.ibm.CORBA.authenticationRetryCount property.

Table 49. com.ibm.CORBA.authenticationRetryEnabled. This table describes the
com.ibm.CORBA.authenticationRetryEnabled setting.
Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryCount:

Use to specify the number of retries that occur until either a successful authentication occurs or the
maximum retry value is reached.

When the maximum retry value is reached, the authentication exception is returned to the client.

Table 50. com.ibm.CORBA.authenticationRetryCount. This table describes the
com.ibm.CORBA.authenticationRetryCount setting.
Setting Value

Data type Integer

Default 3

Range 1-10

com.ibm.CORBA.loginSource:

Use to specify how the request interceptor attempts to log in if it does not find an invocation credential
already set.

512 Securing applications and their environment

This property is valid only if message layer authentication occurs. If only transport layer authentication
occurs, this property is ignored. When specifying properties, the following two additional properties must
be defined:

v com.ibm.CORBA.loginUserid

v com.ibm.CORBA.loginPassword

When performing a programmatic login, it is not necessary to specify none as the login source. The
request fails if a credential is set as the invocation credential during a method request.

Important: For the z/OS platform, you can edit the properties file, sas.client.props, and set the
loginSource property as follows: com.ibm.CORBA.loginSource=none

When you set com.ibm.CORBA.loginSource=none for a remote method invocation (RMI)
connection, whether using scripting with wsadmin or from other clients, the logged-in user's
credentials are inherited. There is no need to specify user and/or password at the command
line or in the sas.client.props properties file. This inherited credential behavior when using
com.ibm.CORBA.loginSource=none is only available on the z/OS platform.

Table 51. com.ibm.CORBA.loginSource. This table describes the com.ibm.CORBA.loginSource setting.
Setting Value

Data type String

Default Prompt

Valid values Prompt, key file, stdin, none, properties

com.ibm.CORBA.loginUserid:

Use to specify the user ID when a properties login is configured and message layer authentication occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the
com.ibm.CORBA.loginPassword property.

Table 52. com.ibm.CORBA.loginUserid. This table describes the com.ibm.CORBA.loginUserid setting.
Setting Value

Data type String

Range Any string that is appropriate for a user ID in the configured user registry
of the server.

com.ibm.CORBA.loginPassword:

Use to specify the password when a properties login is configured and message layer authentication
occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the
com.ibm.CORBA.loginUserid property.

Table 53. com.ibm.CORBA.loginPassword. This table describes the com.ibm.CORBA.loginPassword setting.
Setting Value

Data type String

Range Any string that is appropriate for a password in the configured user
registry of the server.

com.ibm.CORBA.keyFileName:

Use to specify the key file that is used to log in.

Chapter 6. Authenticating users 513

A key file is a file that contains a list of realm, user ID, and password combinations that a client uses to log
into multiple realms. The realm that is used is the one found in the interoperable object reference (IOR) for
the current method request. The value of this property is used when the com.ibm.CORBA.loginSource=key
file is used.

Table 54. com.ibm.CORBA.keyFileName. This table describes the com.ibm.CORBA.keyFileName setting.
Setting Value

Data type String

Default C;/WebSphere/AppServer/properties/wsserver.key

Range Any fully qualified path and file name of a WebSphere Application Server
key file.

com.ibm.CORBA.loginTimeout:

Use to specify the length of time that the login prompt stays available before it is considered a failed login.

Table 55. com.ibm.CORBA.loginTimeout. This table describes the com.ibm.CORBA.loginTimeout setting.
Setting Value

Data type Integer

Units Seconds

Default 300 (5 minute intervals)

Range 0 - 600 (10 minute intervals)

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

Table 56. com.ibm.CORBA.securityEnabled. This table describes the com.ibm.CORBA.securityEnabled setting.
Setting Value

Data type Boolean

Default True

Range True, False

Common Secure Interoperability version 2 (CSIv2) authentication protocol client
settings
This page documents the properties that are valid for the CSIv2 protocol only.

com.ibm.CSI.performSSL.Keyring:

This property is used for providing the name of the Resource Access Control Facility (RACF) keyring used
for SSL connections. Changes to this System Authorization Facility (SAF) keyring require changes to the
sas.client.props file.

For example, you might have to change the following properties:

v com.ibm.ssl.keyStore=safkeyring:///WASKeyring

v com.ibm.ssl.trustStore=safkeyring:///WASKeyring

Data type: String

Default: None

Range: None

com.ibm.CORBA.loginUserid:

514 Securing applications and their environment

Use this property to specify the user ID when a properties login is configured and message layer
authentication occurs. This property is only valid when com.ibm.CORBA.loginSource=properties. Also, set
the com.ibm.CORBA.loginPassword property.

Data type: String

Range: Any string that is appropriate for a user ID in the
configured user registry of the server.

com.ibm.CORBA.loginPassword:

Use to specify the password when a properties login is configured and message layer authentication
occurs. This property is only valid when com.ibm.CORBA.loginSource=properties. Also, set the
com.ibm.CORBA.loginUserid property.

Data type: String

Range: Any string that is appropriate for a password in the
configured user registry of the server.

Authentication protocol for EJB security
WebSphere Application Server Version 8.0 servers support the CSIv2 authentication protocol only. z/SAS
is only supported between Version 6.0.x and earlier version servers that have been federated in a Version
8.0 cell. The option to select between z/SAS, CSIv2, or both is only available in the administration console
when a Version 6.0.x or earlier release has been federated in a Version 6.1 cell.

The Object Management Group (OMG) has defined the authentication protocol called CSIv2 so that
vendors can interoperate securely. CSIv2 is implemented in WebSphere Application Server with more
features than z/SAS and it is considered the strategic protocol.

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Invoking Enterprise Java Beans (EJB) methods in a secure WebSphere Application Server environment
requires an authentication protocol to determine the level of security and the type of authentication that
occur between any given client and server for each request. It is the job of the authentication protocol
during a method invocation to merge the server authentication requirements that are determined by the
object Interoperable Object Reference (IOR) with the client authentication requirements that are
determined by the client configuration and come up with an authentication policy specific to that client and
server pair.

The authentication policy makes the following decisions, among others, which are all based on the client
and server configurations:
v What kind of connection can you make to this server--Secure Sockets Layer (SSL) or TCP/IP?
v If SSL is chosen, how strong is the encryption of the data?
v If SSL is chosen, do you authenticate the client using client certificates?
v Do you authenticate the client with a user ID and password? Does an existing credential exist?
v Do you assert the client identity to downstream servers?
v Given the configuration of the client and server, can a secure request proceed?

You can configure both protocols (z/SAS and CSIv2) to work simultaneously. If a server supports both
protocols, it exports an IOR containing tagged components describing the configuration for z/SAS and
CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and z/SAS. If the
client supports both and the server supports both, CSIv2 is used. However, if the server supports z/SAS

Chapter 6. Authenticating users 515

(for example, it is a previous WebSphere Application Server release) and the client supports both, the
client chooses z/SAS for this request because the z/SAS protocol is what both have in common.

CSIv2 is considered enabled on the client with the existence of the com.ibm.CORBA.ConfigURL Java
property. If the property is not specified or the specified property does not exist, CSIv2 is not enabled.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security Attribute Service
(SAS) that enables interoperable authentication and delegation. The CSIv2 and z/SAS protocols are
entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports SSL and interoperability.

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2 SAS)
protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB
Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.
The protocol is intended for use in environments where transport layer security, such as that available
through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message
protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides
client authentication, delegation, and privilege functionality that might be applied to overcome
corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by
serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols that are used by WebSphere Application Server are add-on Interoperable
Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply communications protocol that is used to
send messages between two Object Request Brokers (ORBs). For each request made by a client ORB to
a server ORB, an associated reply is made by the server ORB back to the client ORB. Prior to any
request flowing, a connection between the client ORB and the server ORB must be established over the
TCP/IP transport (SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol
client connection interceptor, which is used to read the tagged components in the IOR of the object that is
located on the server. As mentioned previously, the authentication policy is established here for the
request. Given the authentication policy (a coalescing of the server configuration with the client
configuration), the strength of the connection is returned to the ORB. The ORB makes the appropriate
connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request
interceptor, which is used to send security information other than what is established by the transport. The
security information includes the user ID and password token that are authenticated by the server, an
authentication mechanism-specific token that is validated by the server, or an identity assertion token.
Identity assertion is a way for one server to trust another server without the need to re-authenticate or
re-validate the originating client. However, some work is required for the server to trust the upstream
server. This additional security information is sent with the message in a service context. A service context
has a registered identifier so that the server ORB can identify which protocol is sending the information.

The fact that a service context contains a unique identity is another way for WebSphere Application Server
to support both z/SAS and CSIv2 simultaneously because both protocols have different service context
IDs. After the client request interceptor finishes adding the service context to the message, the message is
sent to the server ORB.

When the message is received by the server ORB, the ORB invokes the authentication protocol server
request interceptor. This interceptor looks for the service context ID known by the protocol. When both
z/SAS and CSIv2 are supported by a server, two different server request interceptors are invoked and both
interceptors look for different service context IDs.

516 Securing applications and their environment

However, only one finds a service context for any given request. When the server request interceptor finds
a service context, it reads the information in the service context. A method is invoked to the security server
to authenticate or validate client identity. The security server either rejects the information or returns a
credential. A credential contains additional information about the client that is retrieved from the user
registry so that authorization can make the appropriate decision. Authorization is the process of
determining if the user can invoke the request based on the roles that are applied to the method and the
roles given to the user.

If a service context is not found by the CSIv2 server request interceptor, the interceptor process looks at
the transport connection to see if a client certificate chain is sent. This process is done when SSL client
authentication is configured between the client and server.

If the user registry is Lightweight Directory Access Protocol (LDAP), the search filters defined in the LDAP
registry configuration determine how the certificate maps to an entry in the registry. If the user registry is
local OS, the certificate is mapped to a System Authorization Facility (SAF) user ID. You then can map the
user ID, using the issuers name or the subjects name, with the SAF certificate mapping facility.

If the certificate does not map, no credential is created and the request is rejected. When valid security
information is not presented, the method request is rejected and a NO_PERMISSION exception is sent
back with the reply. However, when no security information is presented, an unauthenticated credential is
created for the request and the authorization engine determines if the method gets invoked. For an
unauthenticated credential to invoke an Enterprise JavaBeans (EJB) method, either no security roles are
defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked
again to complete server authentication and a new reply service context is created to inform the client
request interceptor of the outcome. This process is typically for making the request stateful. When a
stateful request is made, only the first request between a client and server requires that security
information is sent. All subsequent method requests need to send a unique context ID only so that the
server can look up the credential that is stored in a session table. The context ID is unique within the
connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the
server with a reply service context providing information so that the client-side stateful context ID can be
confirmed and reused.

The client and the server support both stateful and stateless sessions and this is not configurable.

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a
server. A client or server authentication protocol configuration can describe required features, supported
features, and non-supported features. When a client requires a feature, it can talk only to servers that
either require or support that feature. When a server requires a feature, it can talk only to clients that
either require or support that feature. When a client supports a feature, it can talk to a server that supports
or requires that feature, but can also talk to servers that do not support the feature. When a server
supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients
that do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, some setup is required to either
generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not
need to complete these actions, therefore, you can configure this feature as not supported. By making this

. Authentication protocol flow

Chapter 6. Authenticating users 517

decision, the client cannot communicate with a secure server that requires client certificate authentication.
Instead, this client can choose to use the user ID and password as the method of authenticating itself to
the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most
successful during runtime because it is more forgiving than requiring a feature. Knowing how secure
servers are configured in your domain, you can choose the right combination for the client to ensure
successful method invocations and still get the most security. If you know that all of your servers support
both client certificate and user ID and password authentication for the client, you might want to require one
and not support the other. If both the user ID and password and the client certificate are supported on the
client and server, both are performed, but user ID and password take precedence at the server. This
action is based on the CSIv2 specification requirements.

Authentication protocol support
Use this page to reference information regarding supported authentication protocols.

Authentication protocol support for z/OS

Beginning with WebSphere Application Server Version 8.0, the WebSphere Application Server Version 8.0
servers only support the Common Secure Interoperability Version 2 (CSIv2) authentication protocol.
Secure Authentication Service for z/OS (z/SAS) is only supported between Version 6 and previous version
servers that have been federated in a Version 8.0 cell. The option to select between z/SAS, CSIv2, or both
will only be made available in the administration console when a Version 6 or previous release has been
federated in a Version 8.0 cell.

In future releases, IBM will no longer ship or support the Secure Authentication Service (z/SAS) IIOP
security protocol. It is recommended that you use the Common Secure Interoperability version 2 (CSIv2)
protocol.

You can configure both protocols to work simultaneously between Version 6.0.x and previous version
servers that have been federated in a Version 8.0 cell. If a server supports both protocols, it exports an
interoperable object reference (IOR) that contains tagged components describing the configuration for
z/SAS and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and
z/SAS. If the client and server support both protocols, CSIv2 is used. However, if the server supports
z/SAS (for example, the server is a previous WebSphere Application Server release) and the client
supports both protocols, the client chooses z/SAS for this request.

CSIv2 is considered enabled on the client with the existence of the com.ibm.CORBA.ConfigURL java
property. If the property is not specified or the property does not exist, CSIv2 is not enabled.

Common Secure Interoperability Version 2 features
The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere
Application Server: message layer authentication, identity assertion, and security attribute propagation.
v Identity Assertion

Supports a downstream server in accepting the client identity that is established on an upstream server,
without having to authenticate again. The downstream server trusts the upstream server.

v Message Layer Authentication

Authenticates credential information and sends that information across the network so that a receiving
server can interpret it.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and
PropagationToken contents with the request. You can propagate these objects using a pure client or a
server login that adds custom objects to the Subject. Propagating security attributes prevents
downstream logins from having to make user registry calls to look up these attributes.

518 Securing applications and their environment

Propagating security attributes is also useful when the security attributes contain information that is only
available at the time of authentication. This information cannot be located using the user registry on
downstream servers.

Identity assertion to the downstream server
When a client authenticates to a server, the received credential is set. When the authorization engine
checks the credential to determine whether access is permitted, it also sets the invocation credential .
Identity assertion is the invocation credential that is asserted to the downstream server.

When a client authenticates to a server, the received credential is set. When the authorization engine
checks the credential to determine whether access is permitted, it also sets the invocation credential so
that if the Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers,
the invocation credential can be the identity used to invoke the downstream method. Depending on the
RunAs mode for the enterprise beans, the invocation credential is set as the originating client identity, the
server identity, or a specified different identity. Regardless of the identity that is set, when identity assertion
is enabled, it is the invocation credential that is asserted to the downstream server.

The sending server identity is sent using an SSL client certificate. If SSL is not used, the server identity is
not sent.

Both identity tokens are needed by the receiving server to accept the asserted identity. The receiving
server completes the following actions to accept the asserted identity:
v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server
determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending
server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the
receiving server. If the credentials of the sending server are authenticated and on the trusted principal
list, then the server proceeds to evaluate the identity token.

v The downstream server checks its defined user registry for the presence of the asserted user ID to
gather additional credential information for authorization purposes (for example, group memberships).
Thus, the downstream user registry must contain all of the asserted user IDs. Otherwise, identity
assertion is not possible. In a stateful server, this action occurs once for the sending server and the
receiving server pair where the identity tokens are the same. Subsequent requests are made through a
session ID.

Note: When the downstream server does not have a user registry with access to the asserted user IDs
in its repository, do not use identity assertion because authorization checks will fail. By disabling
identity assertion, the authorization checks on the downstream server are not needed.

The target server validates the authority of the sending server to assert an identity by the client certificate.
The client certificate is mapped to a Service Access Facility (SAF) user ID, either using the RACDCERT
MAP filters or the RACMAP filters defined in the SAF database. The SAF user ID must have UPDATE
authority for the CB.BIND.<optionSAFProfilePrefix>.cluster_short_name profile in the CBIND class. If a
client certificate is not sent, the CBIND check is performed against the started task ID of the sending
server.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:
v Principal name
v Distinguished name
v Certificate chain
v Anonymous identity

The product servers that receive authentication information typically support all four identity types. The
sending server decides which one is chosen, based on how the original client authenticated. The existing

Chapter 6. Authenticating users 519

type depends on how the client originally authenticates to the sending server. For example, if the client
uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the
identity token sent to the downstream server contains the certificate chain. With this information, the
receiving server can perform its own certificate chain mapping and interoperability is increased with other
vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal
identity token, this identity maps one-to-one with the user ID fields.

ITTDistinguishedName identity tokens and ITTCertChain identity tokens are mapped in the same way.
Both types of identity tokens use a certificate that is mapped to a SAF user ID using the RACDCERT or
equivalent mapping functions, like RACMAP filters. The mapping can be based on the Subject name or
the Issuers name.

Note: There is a restriction for using identity assertion with KRB token to downstream. If you use identity
assertion with Kerberos enabled, the identity assertion does not have the Kerberos authentication
token (KRBAuthnToken) when going to downstream servers. It uses LTPA for authentication
instead.

Identity assertions with trust validation
If you want an application or system provider to perform an identity assertion with trust validation, it can be
accomplished by use of the Java Authentication and Authorization Service (JAAS) login framework, where
trust validation is performed in one login module and credential creation in another. These two custom
login modules are used to create a JAAS login configuration that performs a login to an identity assertion.

Two custom login module are required:

v A user-implemented trust association login module. This login module performs whatever trust
verification the user requires. When trust is verified, the trust verification status and the login identity
must be placed in a map in the share state of the login module to enable the credential creation login
module to use that information. The map must be stored in the
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state property. State maps
contain the following information:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – set to true, if
trusted, and false, if not trusted.

– com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal – contains the
principal of the identity.

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – contains the
certificate of the identity

v The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module performs the
credential creation. It requires that the trust state information be in the login context’s shared state. This
login module is protected by the Java 2 security runtime permissions for the following:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

IdentityAssertionLoginModule searches for the trust information in the shared state property,
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. This is a map that
contains the trust status and the identity used to login. The map includes the following:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – if set to true it is
trusted, false if not trusted.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal – if a principal is
used, it contains the principal of the identity necessary to login.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – if a certificate is
used, it contains an array of a certificate chain that includes the identity necessary to login.

520 Securing applications and their environment

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The login
module then performs a login of the identity. The subject now contains the new identity.

Message layer authentication
Defines the credential information and sends that information across the network so that a receiving server
can interpret it.

When you send authentication information across the network using a token the transmission is
considered message layer authentication because the data is sent with the message inside a service
context.

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username
Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the
server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send security information in
the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic authentication
credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The
way that the token is interpreted is only known by the authentication mechanism. Therefore, each
authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to
the server, so that the server knows which mechanism to use when reading and validating the token. The
following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1
KRB5: OID: 1.2.840.113554.1.2.2
LTPA: oid:1.3.18.0.2.30.2
SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a future
release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can
authenticate basic authentication data from the client, and create a credential. Either way, the created
credential is the received credential that the authorization check uses to determine if the user has access
to invoke the method. You can specify the authentication mechanism by using the following property on
the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the
server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does
not pass a credential such as a user ID and password).

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password
incorrectly or you want a method to retry when a particular error occurs back at the client. If you can
correct the error by information at the client side, the system automatically performs a retry without the
client seeing the failure, if the system is configured appropriately.

Some of these errors include:
v Entering a user ID and password that are not valid
v Having an expired credential on the server

Chapter 6. Authenticating users 521

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the
client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable
authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number
of retry attempts.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 6.x, a behavior is defined during request_login for a BasicAuth
login. In releases prior to Version 5, a BasicAuth login takes the user ID and password entered through the
loginSource method and creates a BasicAuth credential. If either the user ID or the password is not valid,
the client program does not find out until the first method request is attempted. When the user ID or
password is specified during a prompt or programmatic login, the user ID and password are authenticated
by default with the security server, with a True or False returned as the result. If False, an
org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating that the user ID and
password are not valid. If True, then the BasicAuth credential is returned to the caller of the request_login.
To disable this feature on the pure client, specify com.ibm.CORBA.validateBasicAuth=false. By default, this
feature is set to True. On the server side, specify this property in the security dynamic properties.

Note: Set com.ibm.CORBA.validateBasicAuth=false whenever connecting to a z/OS server. This function
does not currently work from a distributed client to a z/OS server since the SecurityServer is
located using the "UNAUTHENTICATED" principal, which is not accepted on a z/OS system.

Using Microsoft Active Directory for authentication
WebSphere Application Server supports the Microsoft Active Directory. Many installations use the Microsoft
Active Directory as their primary component for managing user authentication and user data.
Authenticating a user across multiple repositories or across a distributed Lightweight Directory Access
Protocol (LDAP), such as a Microsoft Active Directory forest can be challenging. In any search of the
whole registry, if there is more than one match at run time, authentication fails because ambiguous
matches result.

About this task

User IDs are guaranteed to be unique within a single domain, but there is no automatic guarantee that a
given user ID is unique across a tree or a forest. The following figure exemplifies the condition of a given
user ID not being unique across a tree or forest.

522 Securing applications and their environment

Authenticating users across trees or forests can be a difficult task and the following steps should be
performed.

Procedure
1. Analyze the Microsoft Active Directory construct that defines your installation. Your analysis can

conclude with the following forms:

v Single LDAP registry - Simple configuration.

v Federated repository (a forest)- Typical configuration.

v Merger of federated repositories (a merger of trees into a forest)- Less typical configuration

v Combination of user and group forests - Rare configuration

2. Develop strategies for user look up that match your Microsoft Active Directory installation. Remember
that user IDs are guaranteed to be unique within a single domain, but there is no automatic guarantee
that a given user ID is unique across a tree or a forest.

3. Evaluate with testing to ensure that your authentication search strategies successfully authenticate
users in your Microsoft Active Directory installation.

Results

You will be in the position to authenticate users with LDAP registries in a Microsoft Active Directory forest.

What to do next

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Authentication using Microsoft Active Directory
Many installations use the Microsoft Active Directory as their primary component for managing user
authentication and user data. One portion of the Microsoft Active Directory provides a Lightweight Directory
Access Protocol (LDAP) service. WebSphere Application Server supports LDAP and, therefore,
WebSphere Application Server supports the Microsoft Active Directory.

Search

Search DN:

Filter:

Attributes:

DC=acme,DC=net

(&(objectclass=")(sMAccountName=smith))

userPrincipalName

Search scope: One level Sub-tree level

Matched 3 entries.

dn userPrincipalName

Search Export Cancel

CN= ,CN=Users,DC= ,DC=net

DC=eu,

na

Howard Smith acme

CN=Howard Smith,CN=Users, DC=acme,DC=net

CN=Howard Smith,CN=Users,DC= ,DC=acme,DC=net

smith@acme.net

smith@ acme.net

smith@ acme.net

eu.

na.

Figure 18. Forest search strategy.. Search illustration of a non-unique sAMAccountName across the entire forest.

Chapter 6. Authenticating users 523

While the Microsoft Active Directory is fully LDAP-compliant, it exposes LDAP information in ways that can
make it difficult to obtain directory information for WebSphere Application Server.

WebSphere Application Server operates in a way that assumes that a single LDAP directory contains all
the information necessary to operate. With complex Microsoft Active Directory configurations, this is not
the case. WebSphere Application Server - Microsoft Active Directory installations must handle unique
challenges because of the way data is spread throughout the domain controllers in a forest.

Microsoft Active Directory installations frequently incorporate the use of a forest. As such, security
questions pertaining to user ID uniqueness, reliably obtaining user group information, and group
membership spread across forests become important.

The following figure highlights a typical Microsoft Active Directory installation environment.

This figure illustrates two forests of one or more trees. A tree can contain one or more domains where the
domain is the single atomic unit that forms the basis for the constructed environment. Each domain is
made up of the primary domain components of the distinguished name (DN), for example, dc=acme,
dc=com. A forest can extend trust to other forests (This trust is based on Kerberos.).

Microsoft Active Directory configurations with WebSphere Application Server

There can be a variety of Microsoft Active Directory configurations for WebSphere Application Server,
which include:

v Simple configuration

v Typical configuration

v Less typical configurations

v Rare configurations

Simple configuration

The simplest configuration consists of a stand-alone LDAP registry representing a single domain. This
configuration represents the closest fit between WebSphere Application Server and the Microsoft Active
Directory. In this configuration, Microsoft Active Directory is supported through the WebSphere Application
Server stand-alone LDAP user registry implementation. Alternatively, you can access this single Microsoft
Active Directory domain through a federated repositories registry, which contains a single LDAP repository.

Domain A
DC=acme,DC=net

Domain B
DC=na,DC= ,DC=netacme

Domain D
DC=us,DC=na,DC= ,DC=netacme

Domain C
DC=eu,DC= ,DC=netacme

Domain E
DC=acme2,DC=net

Domain F
DC=na,DC=acme2,DC=net

Domain G
DC= ,DC=comacme

Domain H
DC=na,DC= ,DC=comacme

Forest1 Forest2

Figure 19. Microsoft Active Directory forests. An illustration of Microsoft Active Directory forests.

524 Securing applications and their environment

Typical Configuration

Beyond the simple single domain Microsoft Active Directory configuration, a typical Microsoft Active
Directory configuration consists of a single tree in a forest where each branch of the tree is a domain. An
example of this configuration, which consists of a single tree of four domains (A, B, C, D), is shown in the
following example:

Configurations, such as this configuration, frequently have domains that are organized by geography or
organizational unit. The WebSphere Application Server registry configuration that is necessary to use this
"single tree" Microsoft Active Directory implementation needs to use the federated repositories. This
configuration contains an LDAP registry to map entries from multiple individual user repositories into a
single virtual repository. These configurations create a federated user repository with a single named realm
and an LDAP subtree within the single repository. The root of the repository is mapped to a base entry
within the federated repository, which is the starting point within the hierarchical namespace of the virtual
realm. LDAP searches in this configuration proceed with binding to the top domain object and following
LDAP referrals.

gotcha: The stand-alone LDAP registry in WebSphere Application Server does not support LDAP referrals
and cannot be used in a WebSphere Application Server - Microsoft Active Directory configuration.

Less typical configurations

Less typical WebSphere Application Server - Microsoft Active Directory configurations evolve from mergers
of organizations units in a larger enterprise. Where a single forest of domains once served the enterprise,
the merger of several new organizational units can add trees to the forest or even add more than a single
forest to the environment. In this environment, the WebSphere Application Server LDAP configuration
requires more careful design. You must use the federated repositories registry in such an environment with
separate LDAP repositories mapped to the top of each tree in the forest. Again, if a Microsoft Active
Directory tree exists under the top-level domain, LDAP referrals must be enabled for the LDAP registry.
The forest resulting from a merger can look like the following figure:

Domain A
DC=acme,DC=net

Domain B
DC=na,DC=acme,DC=net

Domain D
DC=us,DC=na,DC=acme,DC=net

Domain C
DC=eu,DC=acme,DC=net

Forest1

WebSphere Application Server
federated LDAP repository

Figure 20. Typical forest configuration. An illustration of a typical forest configuration.

Chapter 6. Authenticating users 525

Rare configurations

Rare configurations consist of Microsoft Active Directory domains that are configured where there is a
combination of a user forest and a group forest. Users are imported as ForeignSecurityPrincipals objects
in the group forest. The groups contain the distinguished names (DN) of the ForeignSecurityPrincipals
objects as members.

In this form of configuration, direct group lookups do not occur. Lookups are relegated to a static group
query across multiple registries. This configuration requires a custom user registry. However, WebSphere
Application Server registries do not support this type of configuration. See the following figure.

Using a Microsoft Active Directory forest as LDAP - user filter

Authenticating a user across multiple repositories, or across a distributed LDAP, such as a Microsoft Active
Directory forest configuration can be challenging. In any search of the whole registry, authentication fails if
there is more than one match at run time because ambiguous matches result. In multiple Microsoft Active

Domain A
DC=acme,DC=net

Domain B
DC=na,DC=acme,DC=net

Domain D
DC=us,DC=na,DC=acme,DC=net

Domain C
DC=eu,DC=acme,DC=net

Forest1

WebSphere Application Server
federated LDAP repository

WebSphere Application Server
federated LDAP repository

Federated Realm/Custom User Registry

Domain E
DC=acme2,DC=net

Domain F
DC=na,DC=acme2,DC=net

Figure 21. Less typical configurations. Less typical configurations that depict the merger of trees

Custom
LDAP registry

Custom
LDAP registry

Custom User Registry

DC=acme, DC=net
- ou=Groups, DC=acme, DC=net
- cn=WebSphere Security Experts, ou=Groups, DC= , DC=net
- Member:

CN=S-1-5-11,CN=ForeignSecurityPrincipals, DC= , DC=net
- CN=ForeignSecurityPrincipals, DC= , DC=net

- CN=S-1-5-11,CN=ForeignSecurityPrincipals, DC= , DC=net
- CN=S-1-5-99,CN=ForeignSecurityPrincipals, DC= , DC=net

acme

acme
acme

acme
acme

Group Forest

DC= , DC=com
- ou=Users, DC= , DC=com
- cn= , ou=Users, DC= , DC=com

- memberOf: <None>
- objectID=S-1-5-11

- cn= , ou=Users, DC= , DC=com
- memberOf: <None>
- objectID=S-1-5-99

acme
acme

Howard Smith acme

Robert Jones acme

User Forest

Figure 22. Resource model forest. An illustration of a resource model forest.

526 Securing applications and their environment

Directory domain environment, the WebSphere Application Server administrator must consider that the
default unique ID in the Microsoft Active Directory is the sAMAccountName attribute of a user. User IDs
are guaranteed to be unique within a single domain, but it is not possible to guarantee that a given user ID
is unique across a tree or a forest. See the topic, "Authenticating users with LDAP registries in a Microsoft
Active Directory forest" to understand how to search for user IDs within a Microsoft Active Directory forest
using the sAMAccountName attribute of a user.

gotcha: Before selecting any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Groups spanning domains with Microsoft Active Directory
The domains and forests functional levels of the Microsoft Active Directory control which configurations are
available for use. How you configure Microsoft Active Directory affects how group membership is
determined within WebSphere Application Server. Using groups to configure your Microsoft Active
Directory installation with the product allows flexible management.

A breakdown follows of applicable functional levels that apply to a Microsoft Active Directory installation
with the product.

v Domain Functional Levels

– Native

- Supported by Windows Server 2008 and Windows Server 2008 R2

- Default in Windows 2008

You must use native domain functional levels to support group nesting, and universal groups. Forest
functional levels do not directly affect group membership. The Windows 2008 operating system is the
exception.

v Forest Functional Levels

– Windows Server 2008 or Windows Server 2008 R2

- All domains operate at the Windows Server 2008 domain functional level.

If the forest functional level is set to Windows Server 2008, then that also makes the domain
functional level for all domains to be Windows Server 2008 Native level, which adds to the group
nesting and Universal groups features to Microsoft Active Directory.

Microsoft Active Directory groups

In a domain, Microsoft Active Directory provides support for different types of groups and group scopes.
Groups in Microsoft Active Directory are containers with other objects within them as members. Those
objects can be user objects, other group objects, which is group nesting, and other objects types, such as
computers. The group type determines the type of task that you manage with the group. The group scope
determines whether the group can have members from multiple domains or a single domain. In summary:

v Groups are typically a collection of user accounts.

v Members receive permission given to groups.

v Users can be members of multiple groups.

v Groups can be members of other groups, which are nested groups.

gotcha: In WebSphere Application Server, security roles of the individual, which map to application
permissions or authorizations, must be bound to either users or groups at application deployment
time. From an administrative point of view, it is preferable to assign permissions once for a group
instead of assigning permissions repeatedly for each user account. Then the ability to act in a
given role is under the control of the directory administrator, instead of the WebSphere

Chapter 6. Authenticating users 527

administrator. Because the job of the directory administrator is to create and delete users, change
group memberships for users, and other tasks, this approach is generally the correct division of
responsibilities.

Group types determine how the group is used. The Microsoft Active Directory group types are:

v Security groups: Microsoft Active Directory uses security groups for granting permissions to gain
access to resources.

v Distribution groups: Distribution groups are used by Windows-based applications as lists for
nonsecurity-related functions. Distribution groups are used for sending email messages to groups of
users. You cannot grant Windows permissions to security groups.

Although WebSphere Application Server can use either type of group, security groups are typically bound
to WebSphere Application Server security roles.

Group scopes describe which type of objects can be arranged together within a group. Group nesting
describes when one group is a member of other groups. The Microsoft Active Directory group scopes are:

v Domain local group:

– Windows usage: Members of this group can come from any domain, but can access Windows
resources only in the local domain. Use this scope to grant permissions to domain resources that are
located in the same domain in which you created the domain local group. Domain local groups can
exist in all mixed, native, and interim functional level of domains and forests.

– Restriction: You cannot define group nesting in a domain local group. A domain local group cannot
be a member of another domain local group or any other group in the same domain.

– WebSphere usage: Users are not typically placed in domain - local groups due to these restrictions.
WebSphere Application Server security roles are not typically bound to domain local groups.

v Global Group:

– Windows usage: Members of this group originate from a local domain, but can access Windows
resources in any domain. The global group is used to organize users who share similar Windows
network access requirements. You can add members only from the domain in which the global group
is created. You can use this group to assign permissions to gain access to Windows resources that
are located in any domain in the domain, tree, or forest.

You can group users with similar function under global scope and give permission to access a
Windows resource, such as a printer or shared folder and files, that is available in local or another
domain in the same forest. You can use global groups to grant permission to gain access to
Windows resources that are located in any domain in a single forest as their memberships are
limited. You can add user accounts and global groups only from the domain in which global group is
created.

Nesting is possible for global groups within other groups as you can add a global group into another
global group from any domain. Members of a global group can be members of a domain - local
group. Global groups exist in all mixed, native, and interim functional levels of domains and forests.

WebSphere Application Server usage: Global groups are visible on every domain controller, but
memberships are only visible for local users. That is, you can see your group memberships only if you
query your home domain controller. A global group should contain groups of users. Global groups are
intended to be included in universal groups.

v Universal Group:

– Windows usage: Members in this group can come from any domain and access Windows
resources in multiple domains. Universal group memberships are not limited like global groups. All
domain user accounts and groups can be members of a universal group.

– Restrictions:

- Universal groups are available when the domain is at a Windows mixed functional level.

528 Securing applications and their environment

- It can be expensive to replicate this data across the forest. Group definitions and deletions are
relatively rare compared to the equivalent user actions, and nested group membership changes
are typically rare compared to memberships of users within groups,

gotcha: Consult appropriate Microsoft Active Directory information concerning any implications of
replicating data across forests.

– WebSphere usage:

- Universal Groups and their memberships are visible on every domain controller in the forest.

- Universal groups are also visible when using the Global Catalog. To be useful, all user objects
must be directly in the universal group,

Universal group guidelines

1. Assign permissions to universal groups for Windows resources in any domain in the network.

2. Use universal groups only when their membership is static. Changes in membership can cause
excessive network traffic between domain controllers. Membership of universal groups can be
replicated to many domain controllers.

3. Add global groups from several domains to a universal group.

4. Assign permissions for access to a Windows resource to the universal group and for use by
WebSphere Application Server group membership resolution across multiple domains.

5. Use a universal group in the same way as a domain local group to assign resource permissions.

gotcha: When you select any of these scenarios, consult the appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Microsoft Active Directory Global Catalog
A Global Catalog is a Global Catalog Server. A Global Catalog holds a full set of attributes for the domain
in which it resides and a subset of attributes for all objects in the Microsoft Active Directory Forest. The
primary two functions of a Global Catalog within the Microsoft Active Directory are logon capability and
Microsoft Active Directory queries.

A Global Catalog in a Microsoft Active Directory installation with the product is a single Lightweight
Directory Access Protocol (LDAP) repository that contains a subset of user information from all the
domains in the forest. This information includes user IDs, authentication information, and groups, but not
all the group information.

You can use the Global Catalog on any domain controller in the forest, even in subdomains. The Global
Catalog is a solution to the WebSphere Application Server limitation of a "single registry". There are
limitations to the Global Catalog. Users from the local domain controller contain group "memberOf"
information. Users from a foreign domain controller contain limited "memberOf" information because the
global group information is not replicated to every domain controller.

Nested global groups in universal groups

This is a typical structure of group membership and consists of the following characteristics:

v Users are distributed across domain controllers in a forest containing multiple domain controllers.

v Users are defined in global groups within their own local domain controller.

v A universal group contains the global groups, which reflects a Java Platform Enterprise Edition (Java
EE) role that maps to a set of users spread across multiple domain controllers.

The following figure illustrates nested global groups in universal groups.

Chapter 6. Authenticating users 529

It is a challenge to develop methods of configuring WebSphere Application Server to be able to find users
and their group memberships when the information is spread across multiple domain controllers. One
method requires that WebSphere Application Server follow LDAP referrals to find the home domain
controller for each user and that WebSphere Application Server perform nested group queries.

gotcha: This approach does not use the Global Catalog.

Another method and the simplest approach has universal groups that contain users and uses a Global
Catalog, which requires using referrals. The figure that follows illustrates this method.

Employees - Universal

Members

EU Employees Global
NA Employees Global

NA Employees - Global

Members

kagan@na.acme.net
wang@na. .netacme

memberOf

EU Employees - Global

Members

martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

MemberOf

kagan@na. .netacme

MemberOf

wang@na. .netacme

MemberOf

Smolko@eu. .netacme

MemberOf

martin@eu. .netacme

Figure 23. Nested global groups in universal groups. This figure illustrates nested global groups in universal groups.

530 Securing applications and their environment

A variation on this method is to not use universal groups. You can use this approach when universal
groups are not available.

gotcha: This approach does not use the Global Catalog.

You might consider using the Microsoft Active Directory Global Catalog as the WebSphere Application
Server registry. There are three scenarios; however, the first two scenarios demonstrate how failures
occur.

1. If you configure WebSphere Application Server to use Global Catalog as its LDAP registry and follow
referrals, then individual users are visible in each domain controller. Because a user must exist only
once in the registry, all logins fail.

2. If you configure WebSphere Application Server to use Global Catalog as its LDAP registry and do not
follow referrals and the individual users are within global groups, then group membership is
incomplete. See the following figure, which illustrates this limitation.

Employees - Universal

Members

EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:
martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

memberOf

Smolko@eu. .netacme martin@eu. .netacme

na.acme.net

NA Employees - Global
Members:
kagan@na. .net
wang@na. .net

acme
acme

memberOf

memberOf

kagan@na. .netacme wang@na. .netacme

Group Lookup

referral

ldapbind uid=kagan/pw

ldapbind uid=kagan/pw

Figure 24. Locating group memberships. This figure illustrates the process of locating group memberships.

Chapter 6. Authenticating users 531

3. When you configure WebSphere Application Server to use Global Catalog as its LDAP registry, do not
follow referrals, and users are directly contained within universal global groups, then group
membership is complete.

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Options for finding group membership within a Microsoft Active
Directory forest
Locating and finding group membership with the Microsoft Active Directory forest is necessary for
authenticating users. There are several ways to approach finding group membership within the Microsoft
Active Directory forest.

The following figure depicts an example of group membership with the Microsoft Active Directory forest.
This figure is used to explain ways to find group membership.

Employees - Universal

Members:
EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:

martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

Smolko@eu. .netacme

martin@eu. .netacme

kagan@na. .netacme

wang@na. .netacme

Smolko@eu. .netacme

martin@eu. .netacme

Employees - Universal
Members:

EU Employees Global
NA Employees Global

memberOfkagan@na. .netacme

wang@na. .netacme

na.acme.net

EU Employees - Global
Members:

kagan@na. .net
wang@na. .net

acme
acme

memberOf

kagan@na. .netacme

wang@na. .netacme

Employees - Universal
Members:

EU Employees Global
NA Employees Global

memberOf martin@eu. .netacme

Smolko@eu. .netacme

Figure 25. Global catalog (without using referrals). An illustration of a Global Catalog without using referrals

532 Securing applications and their environment

v Option 1 does not use nested groups, and the following steps describe the process of locating group
membership using a hypothetical organizational structure.

– Create a global group of NA employees.

– Create a global group of EU employees.

– Map the Java Platform Enterprise Edition (Java EE) role to NA employees + EU employees. This
mapping can become unmanageable if there are too many sub domains

– Enable referrals.

In WebSphere Application Server Version 6.1, use federated repositories, specifically:

- Use a federated realm.

- Add the Microsoft Active Directory top-level domain controller to the repository. Do not add
sub-domain controllers. Doing this results in multiple matches when searches for user IDs occur.
The multiple matches cause user logins to fail.

- Select "Support referrals to other LDAP servers" = "follow".

v Option 2 uses universal groups.

– Put individual users into the universal group, Employees.

Requirements:

- The Windows 2003 Native domain functional levels is required.

- Userids must be directly contained within universal groups.

– Map Java EE role to Employees.

– Connect to any global catalog in the forest.

Employees - Universal

Members

EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:
martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

memberOf

Smolko@eu. .netacme martin@eu. .netacme

na.acme.net

NA Employees - Global
Members:
kagan@na. .net
wang@na. .net

acme
acme

memberOf

memberOf

kagan@na. .netacme wang@na. .netacme

Group Lookup

referral

ldapbind uid=kagan/pw

ldapbind uid=kagan/pw

Figure 26. Finding group membership.. An illustration of ways to find group membership.

Chapter 6. Authenticating users 533

Tip: This option reduces the amount of directory lookup traffic. WebSphere Application Server does
not have to follow all the referrals across the directory tree. That is, each domain controller can
fully resolve the group information locally.

v Option 3 uses nested groups.

– Create the universal group, Employees.

– Create NA Employees and EU Employees as global groups and make them members in the
Employees universal group.

Requirements: Windows Native Domain functional levels.

– Map Java JEE role to "Employees".

– Enable referrals.

For WebSphere Application Server Version 6.1, use federated repositories, specifically:

- Use a federated realm.

- Add the Active Directory top-level domain controller to the repository. Do not add sub-domain
controllers, as this will result in multiple matches when searches for userids occur, and logins will
fail.

- Select "Support referrals to other LDAP servers" = "follow".

– Enable nested groups.

Tip: This option offers the optimal approach when using WebSphere Application Server Versions 6.1 or
later. Before WebSphere Application Server version 6.1, referrals were not officially supported.

Summary

The following table summarizes how to find group membership within a Microsoft Active Directory forest.

Table 57. Finding group membership.. The following table identifies group membership levels supported in a
Microsoft Active Directory forest.

Group
Membership

Map Java EE
Roles To

Bind to Which
LDAP Enable

Supported in
WebSphere
Application
Server Version Comments

Global Groups Collection of
global groups

Top domain
controller using
port 389/636

Referrals v Federated
repositories in
WebSphere
Application
Server

Universal groups Universal groups Any Global
catalog, using
port 3268

All

Global groups in
universal groups

Universal groups Top domain
controller using
port 389/636

referrals, nesting v Federated
repositories in
WebSphere
Application
Server

Cannot use
Windows mixed
domain functional
level

Configuring to use objectCategory attribute

A federated repository uses the objectCategory attribute by default for Active Directory user search filters.
You can ensure that the federated repository is configured to use the objectCategory attribute. For
example, the federated repositories configuration file, wimconfig.xml, should be as shown in the following
example:

534 Securing applications and their environment

<supportedLDAPEntryType name="user" searchFilter="(objectCategory=user)"...>
<supportedLDAPEntryType name="Group" searchFilter="(objectCategory=Group)"...>

Configure the user filter and group filter (advanced properties) like the following example:
User Filter: (&(sAMAccountName=%v)(objectCategory=user))
Group Filter: (&cn=%v)(objectCategory=group)

Follow the following instructions from the administrative console to complete the search filter with the
objectCategory attribute.

1. Click Security.

2. Select Global security.

3. Under Available realm definitions, use the drop-down list to select Federated repositories.

4. Click Configure.

5. Under Related items, click Manage repositories.

6. Select Forest > LDAP entity types > PersonAccount. Under General Properties, find the Search
filter box.

7. Fill in the search filter.
(objectCategory=user)

gotcha: When you select any of these scenarios to use, consult the appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Authenticating users with LDAP registries in a Microsoft Active
Directory forest
Authenticating a user across multiple repositories, or across a distributed Lightweight Directory Access
Protocol (LDAP) repository, such as a Microsoft Active Directory forest can be challenging. In any search
of the whole user registry, if there is more than one match at run time, authentication fails because of
ambiguous match results.

Before you begin

In any multiple Microsoft Active Directory domain environment, the WebSphere Application Server
administrator must consider that the default unique ID in the Microsoft Active Directory is the
sAMAccountName attribute of a user.

About this task

User IDs are guaranteed to be unique within a single domain. However they are not guaranteed across a
tree or a forest. For example, suppose the user ID, smith, is added in the forest and in each subdomain.
The search for sAMAccountName=smith returns three matches. WebSphere Application Server does not
authenticate this user when there is more than one possible match in the registry.

Chapter 6. Authenticating users 535

You can mitigate this condition by changing the user filter to be based on the userPrincipalName attribute
of the user, which is unique across the forest, instead of being based on their sAMAccountName attribute.
However, users must then know to log in using their userPrincipalName, which they might not know.

The specific procedure to establish a user filter on a LDAP user registry depends on the type of LDAP
registry. The following examples illustrate a procedure for a stand-alone LDAP registry and a procedure for
a federated repository registry.

Procedure
1. Establish a user filter on a stand-alone LDAP registry: You can set the user filter on the Advance

Lightweight Access Protocol (LDAP) user registry settings page to search for userPrincipalName
instead of sAMAccountName value.

For example:
(&(objectClass=user)(userPrincipalName=%w))

2. Establish a user filter on a federated repositories registry: You can change the log-in property in
the LDAP repository to uid;cn, for example, by using the administrative console.

a. Click Security.

b. Select Global security.

c. Under Available realm definitions, use the drop-down list to select Federated repositories.

d. Click Configure.

e. Under Related items, click Manage repositories.

f. Under General Properties, add the following information:

Repository identifier
forest

Directory type
Microsoft WIndows Server 2003 Active Directory

Primary host name
forest.acme.net

Port 389

Failover server used when primary is not available
Delete

Search

Search DN:

Filter:

Attributes:

DC=acme,DC=net

(&(objectclass=")(sMAccountName=smith))

userPrincipalName

Search scope: One level Sub-tree level

Matched 3 entries.

dn userPrincipalName

Search Export Cancel

CN= ,CN=Users,DC= ,DC=net

DC=eu,

na

Howard Smith acme

CN=Howard Smith,CN=Users, DC=acme,DC=net

CN=Howard Smith,CN=Users,DC= ,DC=acme,DC=net

smith@acme.net

smith@ acme.net

smith@ acme.net

eu.

na.

Figure 27. Forest search strategy.. Search illustration of a non-unique sAMAccountName across the entire forest.

536 Securing applications and their environment

Bind distinguished name
cn=wasbind, CN=Users, DC=ib

Bind password

Login properties
uid;cn

3. Click OK and Save to save the changes to the master configuration.

4. Locate the {WAS_HOME}\profiles\{profileName}\config\cells\{cellName}\wim\config\wimconfig.xml
or profile_root/conf/cells/<cell>/wim/config/wimconfig.xml file in the deployment manager
configuration.

5. Edit the wimconfig.xml file.

a. Find the <config:attributeConfiguration> attribute in the file.

b. Add the following lines:
<config:attributes name="userPrincipalName" propertyName="cn">
<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>

6. Save the wimconfig.xml file.

7. Run the profile_root/bin/syncNode.bat or profile_root/syncNode.bar/sh script on all of the nodes
in the configuration.

Results

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Chapter 6. Authenticating users 537

538 Securing applications and their environment

Chapter 7. Authorizing access to resources

WebSphere Application Server provides many different methods for authorizing accessing resources. For
example, you can assign roles to users and configure a built-in or external authorization provider.

About this task

You can create an application, an Enterprise JavaBeans (EJB) module, or a web module and secure them
using assembly tools.

To authorize user or group access to resources, read the following articles:

Procedure
1. Secure you application during assembly and deployment. For more information on how to create a

secure application using an assembly tool, such as the IBM Rational Application Developer, see the
information about securing applications during assembly and deployment.

2. Authorize access to Java Platform, Enterprise Edition (Java EE) resources. WebSphere Application
Server supports authorization that is based on the Java Authorization Contract for Containers (JACC)
specification in addition to the default authorization. When security is enabled in WebSphere
Application Server, the default authorization is used unless a JACC provider is specified. For more
information, see “Authorization providers” on page 552.

3. Authorize access to administrative resources. You can assign users and groups to predefined
administrative roles such as the monitor, configurator, operator, administrator, auditor and iscadmins
roles. These roles determine which tasks a user can perform in the administrative console. For more
information, see “Authorizing access to administrative roles” on page 621.

What to do next

After authorizing access to resources, configure the Application Server for secure communication. For
more information, see Chapter 8, “Securing communications,” on page 649.

Authorization technology
Authorization information determines whether a user or group has the necessary privileges to access
resources.

WebSphere Application Server supports many authorization technologies including the following:

v Authorization involving the web container and Java Platform, Enterprise Edition (Java EE) technology

v Authorization involving an enterprise bean application and Java EE technology

v Authorization involving web services and Java EE technology

v Java Message Service (JMS)

v Java Authorization Contract for Containers (JACC)

WebSphere Application Server supports both a default authorization provider and an authorization
provider that is based on the Java Authorization Contract for Containers (JACC) specification. The
JACC-based authorization provider enables third-party security providers to handle the Java EE
authorization. For more information, see “JACC support in WebSphere Application Server” on page 553.

v Java Authentication and Authorization Service (JAAS)

For more information, see “Java Authentication and Authorization Service” on page 438.

v Java 2 security

For more information, see “Java 2 security” on page 81.

v Naming and administrative authorization

© Copyright IBM Corp. 2011 539

v Pluggable authorization

WebSphere Application Server supports an authorization infrastructure that enables you to plug in an
external authorization provider. For more information, see “Enabling an external JACC provider” on page
591.

v System Authorization Facility (SAF)

As an alternative to WebSphere Application Server authorization, you can use SAF-based authorization,
such as the RACF EJBROLE profile, to control client access to Java Platform, Enterprise Edition (Java
EE) roles in EJB and web applications. For more information, see “System Authorization Facility for
role-based authorization” on page 569.

In this release of WebSphere Application Server, you can use SAF security to associate a SAF user ID
with a distributed identity. See Using distributed identity mapping for SAF for more information.

Administrative roles and naming service authorization
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based
access control to protect the product administrative and naming subsystems.

Administrative roles

A number of administrative roles are defined to provide the degrees of authority that are needed to
perform certain WebSphere Application Server administrative functions from either the administrative
console or the system management scripting interface called wsadmin. The authorization policy is only
enforced when administrative security is enabled. The following table describes the administrative roles:

Table 58. Administrative roles that are available through the administrative console and wsadmin.

This table lists administrative roles that are available through the administrative console and wsadmin.

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.
Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

540 Securing applications and their environment

Table 58. Administrative roles that are available through the administrative console and wsadmin (continued).

This table lists administrative roles that are available through the administrative console and wsadmin.

Role Description

Administrator An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.
Note: In previous releases of WebSphere Application Server, the Enable
administrative security option is known as the Enable global security option.

v Enforce Java 2 security using the Use Java 2 security to restrict application access
to local resources option.

v Change the Lightweight Third Party Authentication (LTPA) password and generate
keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Adminsecuritymanager Only users who are granted this role can map users to administrative roles. Also, when
fine-grained administrative security is used, only users who are granted this role can
manage authorization groups. See “Administrative roles” on page 549 for more
information.

Deployer Users who are granted this role can perform both configuration actions and runtime
operations on applications.

Auditor Users granted this role can view and modify the configuration settings for the security
auditing subsystem. For example, a user with the auditor role can complete the following
tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in point.

v Select and configure the service provide, or emitter. or both to be used with the service
provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event of
an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not change
the rest of the security configuration.

Table 59. Additional administrative role that is available through the administrative console.

This table lists an additional administrative role that is available through the administrative console.
Role Description

iscadmins This role is only available for administrative console users and not for wsadmin users. Users who are granted this
role have administrator privileges for managing users and groups in the federated respositories. For example, a
user of the iscadmins role can complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Chapter 7. Authorizing access to resources 541

Table 60. Additional administrative role that is available through wsadmin.

This table lists an additional administrative role that is available through the administrative console.
Role Description

Deployer This role is only available for wsadmin users and not for administrative console users. Users who are granted this
role can perform both configuration actions and run-time operations on applications.

When administrative security is enabled, the administrative subsystem role-based access control is
enforced. The administrative subsystem includes the security server, the administrative console, the
wsadmin scripting tool, and all the Java Management Extensions (JMX) MBeans. When administrative
security is enabled, both the administrative console and the administrative scripting tool require users to
provide the required authentication data. Moreover, the administrative console is designed so the control
functions that display on the pages are adjusted, according to the security roles that a user has. For
example, a user who has only the monitor role can see only the non-sensitive configuration data. A user
with the operator role can change the system state.

When you are changing registries (for example, from a federated repository to LDAP), make sure you
remove the information that pertains to the previously configured registry for console users and console
groups.

WebSphere Application Server for z/OS security customization dialogs prime the administrative subsystem
to accept the MVS identities of all the started WebSphere Application Server system tasks (for example,
controllers, servants, and so on) as WebSphere administrators and the configured administrator identity. If
a federated repository, a stand-alone Lightweight Directory Access Protocol (LDAP) registry, or a
stand-alone custom registry is specified, the configured server identities are used for work that is run by
the system instead of for work that is run by the started task identities.

SAF authorization for administrative roles: The value of the com.ibm.security.SAF.authorization setting
controls whether SAF EJBROLE profiles or the console settings are used to control access to
administration profiles rather than the console users. When property,
com.ibm.security.SAF.authorization, is set to true, SAF authorization is selected and SAF EJBROLE
profiles are used to control access to administrative roles.

Note: With System Authorization Facility (SAF) authorization any values in the console users and console
groups are ignored.

WebSphere authorization for administrative roles: If WebSphere Application Server authorization rather
than SAF authorization is used to restrict access to Java Platform, Enterprise Edition (Java EE) roles,
WebSphere Application Server for z/OS automatically maps the server identity that is specified when
enabling administrative security to the administrative role. When administrative security is enabled,
WebSphere Application Servers for z/OS runs under the server identity that is defined under the active
user registry configuration. Although it is not shown on the administrative console and in other tools, a
special Server subject is mapped to the administrator role.

v The WebSphere Application Server run-time code, which runs under the server identity, requires
authorization for some run-time operations. You can either explicitly enter the server identity and
password or the identity can be auto-generated. In the former case, the server identity is a valid user in
the registry. In the latter case, use the internalServerId feature to generate a server identity
automatically. The configuration panel for each user registry enables you to make this choice. For an
internalServerId, enter the administrator ID or adminID in the Primary administrative user name field.
This adminID is a valid user in the registry, and the password for this ID is not required and is not saved
in the configuration. See "Internal server ID" in the section below.

v If no explicit users or groups are assigned to administrative roles, you can log into the administrative
console or to the wsadmin scripting tool using the server identity or adminID when using the
internalServerId feature to perform administrative operations and to assign other users or groups to
administrative roles. This is possible because the server identity (or the adminID) is assigned

542 Securing applications and their environment

automatically to the adminsecuritymanager role. Only the users/groups associated with the
adminsecuritymanager can manage the users/groups to all administrative roles. Once you login using
the server identity (or adminID), the administrative security policy allows you to perform the operations
such as:
– Change server ID and server password
– Enable or disable WebSphere Application Server administrative security
– Enforce Java 2 security using the Use Java 2 security to restrict application access to local

resources option.
– Change the LTPA password or generate keys

v A special configuration is not required to enable the server identity as specified when enabling
administrative security for administrative use because the server identity is automatically mapped to the
administrator role. You can add or remove users and groups to or from the administrative roles from the
WebSphere Application Server administrative console. However, you must restart the server for the
changes to take effect. A best practice is to map a group, rather than specific users, to administrative
roles because this approach is more flexible and easier to administer. By mapping a group to an
administrative role, adding or removing users to or from the group occurs outside of WebSphere
Application Server and does not require a server restart for the change to take effect.

Primary administrative user name

The Version 6.1 release of WebSphere Application Server and subsequent releases require an
administrative user, distinguished from the server user identity, to improve auditability of administrative
actions. The user name specifies a user with administrative privileges that is defined in the local operating
system.

Server user identity

The Version 6.1 release of WebSphere Application Server and subsequent releases distinguish the server
identity from the administrative user identity to improve auditability. The server user identity is used for
authenticating server-to-server communications.

Internal server ID

The internal server ID enables the automatic generation of the user identity for server-to-server
authentication. Automatic generation of the server identity supports improved auditability for cells only for
Version 6.1 or later nodes. In the Version 6.1 release of WebSphere Application Server, you can save the
internally-generated server ID because the Security WebSphere Common Configuration Model (WCCM)
model contains a new tag, internalServerId. You do not need to specify a server user ID and a password
during security configuration except in a mixed-cell environment. An internally-generated server ID adds a
further level of protection to the server environment because the server password is not exposed as it is in
releases prior to Version 6.1. However, to maintain backwards compatibility, you must specify the server
user ID if you use earlier versions of WebSphere Application Server.

When enabling security, you can assign one or more users and groups to naming roles. For more
information, see Assigning users to naming roles. However, before assigning users to naming roles,
configure the active user registry. User and group validation depends on the active user registry. For more
information, see Configuring user registries.

Special subject

In addition to mapping users or groups, you can map a special-subject to the administrative roles. A
special-subject is a generalization of a particular class of users. The AllAuthenticated or the
AllAuhenticatedInTrustedRealms (when cross realm is involved) special subjects mean that the access
check of the administrative role ensures that the user making the request is at least authenticated. The
Everyone special subject means that anyone, authenticated or not, can perform the action as if security is
not enabled.

Chapter 7. Authorizing access to resources 543

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming
functions are available on CosNaming servers such as the WebSphere Application Server. These functions
affect the content of the WebSphere Application Server name space. Generally, you have two ways in
which client programs result in CosNaming calls. The first is through the Java Naming and Directory
Interface (JNDI) call. The second is with common object request broker architecture (CORBA) clients
invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The roles have authority levels from low to high:
CosNamingRead

You can query the WebSphere Application Server name space, using, for example, the JNDI
lookup method. The special-subject, Everyone, is the default policy for this role.

CosNamingWrite
You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. As a default policy, Subjects are not assigned this role.

CosNamingCreate
You can create new objects in the name space through such operations as JNDI createSubcontext
and CosNamingWrite operations. As a default policy, Subjects are not assigned this role.

CosNamingDelete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. As a default policy, Subjects are not assigned this role.

When you configure a local operating system registry with WebSphere Application Server for z/OS, factors
require some additional considerations. Refer to “Selecting a registry or repository” on page 183 and
“Configuring local operating system registries” on page 186 for more information. If you specify federated
repositories, a stand-alone LDAP registry, or a stand-alone custom registry, you must remove the local
operating system customization by deleting the pre-configured WebSphere Application Server configuration
group and administrator identity from the console group and delete the console users.

A Server special-subject is assigned to all of the four CosNaming roles by default. The Server
special-subject provides a WebSphere Application Server process, which runs under the server identity, to
access all the CosNaming operations. The Server special-subject does not display and cannot be modified
through the administrative console or other administrative tools.

Special configuration is not required to enable the server identity as specified when enabling administrative
security for administrative use because the server identity is automatically mapped to the administrator
role.

Configuration is not required to enable the server identity (as specified) when enablingadministrative
security for administrative use because the server identity is automatically mapped to the administrator
role. Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or
from the naming roles from the WebSphere Application Server administrative console at any time.
However, a server restart is required for the changes to take effect. When SAF Authorization is chosen, a
server restart is not needed to authorize additional users or groups.

A best practice is to map groups or one of the special-subjects, rather than specific users, to naming roles
because it is more flexible and easier to administer in the long run. By mapping a group to a naming role,

544 Securing applications and their environment

adding or removing users to or from the group occurs outside of WebSphere Application Server and does
not require a server restart for the change to take effect.

The CosNaming authorization policy is only enforced when administrative security is enabled. When
administrative security is enabled, attempts to do CosNaming operations without the proper role
assignment result in an org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

Although the ability exists to greatly restrict access to the name space by changing the default policy,
unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at runtime. Typically, Java EE
applications access the name space and the identity they use is that of the user that authenticated to
WebSphere Application Server when accessing the Java EE application. Unless the Java EE application
provider clearly communicates the expected naming roles, use caution when changing the default naming
authorization policy.

Administrative roles for business level applications
The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the
WebSphere Application Server administrative subsystem. This protection applies to those administrative
roles associated with business level applications.

Deploying business level applications on a server configured to hold business level applications requires a
number of administrative roles that are defined to provide degrees of authority when performing certain
administrative functions from either the Web-based administrative console or the system management
scripting interface. The authorization policy is only enforced when administrative security is enabled. The
following table describes the system management scripting command used for business level applications
and the corresponding administrative role that is required in using the command:

Table 61. Business level application - administrative roles. Business level application - administrative roles

Command Role Required

startBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,
Target operator

stopBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,
Target operator

createEmptyBLA Cell configurator, Cell deployer

editBLA Cell configurator, Cell deployer, BLA deployer

viewBLA Cell monitor, BLA monitor

listBLAs Cell monitor, BLA monitor(s)

deleteBLA Cell configurator, Cell deployer, BLA developer

importAsset Cell configurator, Cell deployer

editAsset Cell configurator, Cell deployer, Asset deployer

viewAsset Cell monitor, Asset monitor(s)

listAssets Cell monitor, Asset monitor

exportAsset Cell monitor, Asset monitor

deleteAsset Cell configurator, Cell deployer, Asset deployer

updateAsset Cell configurator, Cell deployer, Asset deployer

Chapter 7. Authorizing access to resources 545

Table 61. Business level application - administrative roles (continued). Business level application - administrative
roles

addCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA to add the
composition unit)

+ Asset-deployer (for the asset to create the composition unit from)

+ Target-deployer (for each target the composition unit is deployed to)

+ Relationship-deployer (for each relationship the composition unit depends
on that will result in creating a composition unit from the dependency asset)

editCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition
unit belongs to)

+ Target deployer (for each target that this composition unit is deployed to)

viewCompUnit Cell monitor, BLA monitor

listCompUnit Cell monitor, BLA monitor

deleteCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition
unit belongs to)

+ Target deployer (for each target that this composition unit is deployed to)

setCompUnitTargetAutoStart Cell configurator, Cell deployer

listControlOps Cell monitor, BLA monitor

getBLAStatus Cell monitor, BLA monitor

Where:

v BLA deployer specifies the deployer role for the BLA that is being
managed.

v BLA monitor specifies the monitor role for the BLA that is being
managed.

v BLA operator specifies the operator role for the BLA that is being
managed.

v Asset deployer specifies the deployer role for the asset that is being
managed.

v Asset monitor specifies the monitor role for the asset that is being
managed.

v Target deployer specifies the deployer for the target that the composition
unit is being deployed to.

v Target operator specifies the operator role for the target that the
composition unit is being deployed to.

Role-based authorization
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

The following figure illustrates the process that is used during authorization.

Web resource access from a web client is handled by a web collaborator. The Enterprise JavaBeans (EJB)
resource access from a Java client, whether an enterprise bean or a servlet, is handled by an EJB
collaborator. The EJB collaborator and the web collaborator extract the client credentials from the object
request broker (ORB) current object. The client credentials are set during the authentication process as

546 Securing applications and their environment

received credentials in the ORB current object. The resource and the received credentials are presented to
the WSAccessManager access manager to check whether access is permitted to the client for accessing
the requested resource.

The access manager module contains two main modules:
v The resource permission module helps determine the required roles for a given resource. This module

uses a resource-to-roles mapping table that is built by the security runtime during application startup. To
build the resource-to-role mapping table, the security runtime reads the deployment descriptor of the
enterprise beans or the Web module (ejb-jar.xml file or web.xml file)

v The authorization table module consults a role-to-user or group table to determine whether a client is
granted one of the required roles. The role-to-user or group mapping table, also known as the
authorization table, is created by the security runtime during application startup.

To build the authorization table, the security run time reads the application binding file, the
ibm-application-bnd.xmi file, or the ibm-application-bnd.xml file, as appropriate.

The authorization table can also be built when accessing the EJBROLE profiles at the time of
authorization using the Security Access Facility (such as RACF).

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

– For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

– For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
.xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Use authorization information to determine whether a caller has the necessary privilege to request a
service. You can store authorization information many ways. For example, with each resource, you can
store an access-control list, which contains a list of users and user privileges. Another way to store the
information is to associate a list of resources and the corresponding privileges with each user. This list is
called a capability list.

WebSphere Application Server uses the Java 2 Platform, Enterprise Edition (J2EE) authorization model. In
this model, authorization information is organized as follows:

During the assembly of an application, permission to invoke methods is granted to one or more roles. A
role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,
clerk, and other industry-related positions. The teller role is associated with permissions to run methods
that are related to managing the money in an account, such as the withdraw and deposit methods. The
teller role is not granted permission to close accounts; this permission is given to the supervisor role. The
application assembler defines a list of method permissions for each role. This list is stored in the
deployment descriptor for the application.

Three special subjects are not defined by the J2EE model: AllAuthenticatedUsers,
AllAuthenticatedInTrustedRealms, and Everyone. A special subject is a product-defined entity that is
defined outside of the user registry. This entity is used to generically represent a class of users or groups
in the registry.

Chapter 7. Authorizing access to resources 547

v The AllAuthenticatedUsers subject permits all authenticated users to access protected methods. As long
as the user can authenticate successfully, the user is permitted access to the protected resource.

v The AllAuthenticatedInTrustedRealms subject permits all authenticated foreign users (those that are
bound to other realms) to access protected methods. As long as the user can authenticate successfully,
the user is permitted access to the protected resource.

v The Everyone subject permits unrestricted access to a protected resource. Users do not have to
authenticate to get access; this special subject provides access to protected methods as if the
resources are unprotected.

gotcha: When WebSphere Application Server is configured using SAF, special subjects are ignored.
These functions are available within SAF. The functions are simulated by the definition of the
unauthenticated user ID in RACF with a RESTRICTED property. If an EJBROLE profile is created
with a Universal Access (UACC) of READ, all authenticated users have access with the
exception of the unauthenticated user ID.

During the deployment of an application, real users or groups of users are assigned to the roles. When a
user is assigned to a role, the user gets all the method permissions that are granted to that role.

Depending on your environment, some restrictions might exist. For example, when utilizing SAF, checks
are always made against the SAF database. If authentication is not done before an access check against
a given role starts, a default SAF identity is used for the check. Unless a valid default user ID is configured
in the com.ibm.SAF.authorization property, access is not granted.

The administrator is responsible for managing these roles.

Users can be assigned to more than one role; the permissions that are granted to the user are the union
of the permissions granted to each role. Additionally, if the authentication mechanism supports the
grouping of users, these groups can be assigned to roles. Assigning a group to a role has the same effect
as assigning each individual user to the role.

A best practice during deployment is to assign groups instead of individual users to roles. If you are using
bindings rather than SAF EJBROLES for authorization and you need to change the binding value, you
must restart the server to pick up new values. If you are using SAF EJBROLES, the application server
automatically detects the changes. For further information, see System Authorization Facility for role-based
authorization

At runtime, WebSphere Application Server authorizes incoming requests based on the user's identification
information and the mapping of the user to roles. If the user belongs to any role that has permission to run
a method, the request is authorized. If the user does not belong to any role that has permission, the
request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you
cannot deal with all situations declaratively. For these situations, methods are provided for determining
user and role information programmatically. For enterprise beans, the following two methods are supported
by WebSphere Application Server:
v getCallerPrincipal: This method retrieves the user identification information.
v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:
v getRemoteUser
v isUserInRole
v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

548 Securing applications and their environment

For more information on the J2EE security authorization model, see the following website:
http://java.sun.com

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect
the WebSphere Application Server administrative subsystem.

A number of administrative roles are defined to provide degrees of authority that are needed to perform
certain administrative functions from either the Web-based administrative console or the system
management scripting interface. The authorization policy is only enforced when administrative security is
enabled. The following table describes the administrative roles:

Table 62. Administrative roles. Administrative roles

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the daily configuration tasks. For example, a configurator can complete the
following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.
Important: SAS is supported only between Version 6.0.x and previous version
servers that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and
configurator privileges, plus additional privileges that are granted solely to the
administrator role. For example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate
keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Important: An administrator cannot map users and groups to the administrator roles
without also having the adminsecuritymanager role.

Chapter 7. Authorizing access to resources 549

http://java.sun.com

Table 62. Administrative roles (continued). Administrative roles

iscadmins This role is only available for administrative console users, not for wsadmin users.
Users who are granted this role have administrator privileges for managing users and
groups in the federated repositories. For example, a user of the iscadmins role can
complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Deployer Users granted this role can complete both configuration actions and runtime operations
on applications. See the “Deployer role” on page 551 section for more details.

Admin Security Manager You can assign users and groups to the Admin Security Manager role on the cell level
through wsadmin scripts and the administrative console. Using the Admin Security
Manager role, you can assign users and groups to the administrative user roles and
administrative group roles. However, an administrator cannot assign users and groups
to the administrative user roles and administrative group roles including the Admin
Security Manager role. See the “Admin Security Manager role” on page 551 section for
more details.

Auditor Users granted this role can view and modify the configuration settings for the security
auditing subsystem. For example, a user with the auditor role can complete the
following tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in
point.

v Select and configure the service provide, or emitter. or both to be used with the
service provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event
of an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not
change the rest of the security configuration. See the “Auditor role” on page 552
section for more details.

The server ID that is specified and the administrative ID, if specified, when enabling administrative security
is automatically mapped to the administrator role.

Users and groups can be added or removed from administrative roles using the WebSphere Application
Server administrative console by a user given the appropriate authority. The Primary administrative user
name must be used to log on to the administrative console to change the administrative user and group
roles other than the auditor role. Only a user with the auditor role can change the auditor user and group
roles. When security auditing is initially enabled, the Primary administrative user is also given the auditor
role, and can manage all of the administrative user and group roles including the those in the auditor role.
A best practice is to map a group or groups, rather than specific users, to administrative roles because it is
more flexible and easier to administer.

In addition to mapping user or groups, a special-subject can also be mapped to the administrative roles. A
special-subject subject is a generalization of a particular class of users. The AllAuthenticated special
subject means that the access check of the administrative role ensures that the user making the request is
at least authenticated. The Everyone special subject means that anyone, authenticated or not, can perform
the action, as if security was not enabled.

550 Securing applications and their environment

Deployer role

A user that is granted a deployer role can complete all of the configuration and runtime operations on an
application. A deployer role can be subsets of both configurator and operator roles. However, a user
granted a deployer role cannot configure or operate any other resources, such as a server, node.

When fine-grained administrative security is used, only a user granted a deployer role to an application
can configure and operate that application.

Cell-level configurators can configure applications. Cell-level operators can also operate (start and stop)
applications. However, a user granted a deployer role at cell level can also complete configuration and
operation on all applications.

Table 63. Deployer role capabilities.

This table lists the deployer role capabilities when fine-grained administrative security is used.
Operation Required Roles (Any one)

Install application Cell-configurator, target-deployer

Uninstall application Cell-configurator, application-deployer, target-deployer

List application Cell-monitor, application-monitor

Edit, update and redeploy application Cell-configurator, application-deployer

Export application Cell-monitor, application-monitor

Start or stop application Cell-operator, application-deployer

Where:

Cell-configurator
Specifies the configurator role at cell level.

Application-deployer
Specifies the deployer role for the application that is being managed.

Target-deployer
Specifies the deployer role for all servers or clusters for which an application is targeted. If you
have a target-deployer role, you can install a new application on the target. However, to edit or
update the installed application, you must be included in the authorization group of the installed
application-deployer.

The target-deployer cannot explicitly start or stop a new application. However, when a
target-deployer starts a server on a target, all of the applications that have their auto-start attribute
set to yes are started when the server starts.

It is recommended that the application-deployer set this attribute to true if the application-deployer
does not want the application to be started by the target-deployer.

Admin Security Manager role

The Admin Security Manager role separates administrative security administration from other application
administration.

By default, serverId and adminID, if specified, are assigned to this role in the cell level authorization table.
This role implies a monitor role. However, an administrator role does not imply the Admin Security
Manager role.

When fine-grained admin security is used, only a user granted this role at cell level can manage
administrative authorization groups. However, a user granted this role for each administrative authorization

Chapter 7. Authorizing access to resources 551

group can map users to administrative roles for those groups. The following list summarizes the
capabilities of the Admin Security Manager role at different levels, such as the cell and administrative
authorization group levels.

Table 64. Admin Security Manager role capabilities.

This table lists Admin Security Manager role capabilities.
Action Role

Map users to administrative roles for cell level Only the Admin Security Manager of the cell

Map users to administrative roles for an authorization group Only the Admin Security Manager of that authorization group or the Admin
Security Manager of the cell

Manage authorization groups, create, delete, add resource to an
authorization group, or remove resource from an authorization group or list

Only the Admin Security Manager of the cell

Auditor role

The auditor role separates security auditing administration from administrative security and other
application administration.

The auditor role was added to allow distinct separation of the authority of an auditor from the authority of
the administrator. The auditor role can be granted to administrators to combine their authority. When
security is first enabled, the auditor role is assigned to the primary administrator. If in your situation the
separation of authority is required, administrators can remove the auditor role from themselves and assign
the auditor role to other users.

A fine grained security for the auditor role is not implemented, which results in the auditor role requiring
the monitor role. This process allows the auditor to read but not modify the panels managed by the
administrator. The auditor has full authority to read and modify the panels associated with the security
auditing subsystem. The administrator will have the monitor role for those panels, however, the
administrator cannot modify those panels.

Authorization providers
WebSphere Application Server supports authorization that is based on the Java Authorization Contract for
Containers (JACC) specification in addition to the default authorization.

JACC is a specification introduced in Java Platform, Enterprise Edition (Java EE)1.4. It enables third-party
security providers to manage authorization in the application server.

Note: In WebSphere Application Server version 7.0, Java Authorization Contract for Containers (JACC)
specification 1.4 was applied. In JACC specification 1.4, we support Java EE5 that includes Servlet
2.5 and EJB 3. The biggest functional change with the introduction of JACC specification 1.4 is the
inclusion of annotations for propagating security policy information.

Note: For WebSphere Application Server for z/OS, if SAF- based authorization is implemented, the
implementation at this point does not use or implement the JACC Policy provider interface.

When security is enabled in WebSphere Application Server, the default authorization is used unless a
JACC provider is specified. The default authorization does not require special setup, and the default
authorization engine makes all of the authorization decisions. However, if a JACC provider is configured
and set up for WebSphere Application Server to use, all of the enterprise beans and web authorization
decisions are delegated to the JACC provider.

WebSphere Application Server supports security for Java EE applications and also for its administrative
components. Java EE applications, such as Web and Enterprise JavaBeans (EJB) components are
protected and authorized per the Java EE specification. The administrative components are internal to
WebSphere Application Server and are protected by the role-based authorizer. The administrative

552 Securing applications and their environment

components include the administrative console, MBeans, and other components such as naming and
security. For more information on administrative security, see “Role-based authorization” on page 546.

When a JACC provider is used for authorization in WebSphere Application Server, all of the Java EE
application-based authorization decisions are delegated to the provider per the JACC specification.
However, all administrative security authorization decisions are made by the WebSphere Application
Server default authorization engine. The JACC provider is not called to make the authorization decisions
for administrative security.

When a protected Java EE resource is accessed, the authorization decision to give access to the principal
is the same whether using the default authorization engine or a JACC provider. Both of the authorization
models satisfy the J2EE specification, and function the same. Choose a JACC provider only when you
want to work with an external security provider such as Tivoli Access Manager. In this instance, the
security provider must support the JACC specification and be set up to work with WebSphere Application
Server. Setting up and configuring a JACC provider requires additional configuration steps, depending on
the provider. Unless you have an external security provider that you can use with WebSphere Application
Server, use the default authorization.

JACC support in WebSphere Application Server
WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)
specification, which enables third-party security providers to handle the Java Platform, Enterprise Edition
(Java EE) authorization.

The JACC specification requires that both the containers in the application server and the provider satisfy
some requirements. Specifically, the containers are required to propagate the security policy information to
the provider during the application deployment and to call the provider for all authorization decisions. The
providers are required to store the policy information in their repository during application deployment. The
providers then use this information to make authorization decisions when called by the container.

JACC access decisions

When security is enabled and an enterprise bean or web resource is accessed, the Enterprise JavaBeans
(EJB) container or web container calls the security runtime to make an authorization decision on whether
to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Authorization Contract for Containers (JACC) specification, the appropriate
permission object is created, the appropriate policy context handlers are registered, and the appropriate
policy context identifier (contextID) is set. A call is made to the java.security.Policy object method that is
implemented by the provider to make the access decision.

The following sections describe how the provider is called for both the enterprise bean and the web
resources.

Access decisions for enterprise beans

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization
check to the security runtime. If JACC is enabled, the security runtime uses the following process to
perform the authorization check:

1. Creates the EJBMethodPermission object using the bean name, method name, interface name, and
the method signature.

2. Creates the context ID and sets it on the thread by using the PolicyContext.setContextID(contextID)
method.

3. Registers the required policy context handlers, including the Subject policy context handler.

4. Creates the ProtectionDomain object with principal in the Subject. If no principal exists, null is passed
for the principal name.

Chapter 7. Authorizing access to resources 553

5. The access decision is delegated to the JACC provider by calling the implies method of the Policy
object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain
objects are passed to this method.

6. The isCallerInRole access check also follows the same process, except that an EJBRoleRefPermission
object is created instead of an EJBMethodPermission object.

Access decisions for web resources

When security is enabled and configured to use a JACC provider, and when a web resource such as a
servlet or a JavaServer Pages (JSP) file is accessed, the security runtime delegates the authorization
decision to the JACC provider by using the following process:

1. A WebResourcePermission object is created to see if the URI is cleared. If the provider honors the
Everyone subject it is also selected here.

a. The WebResourcePermission object is constructed with the urlPattern and the HTTP method
accessed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.
If the URI access is cleared or given access to the Everyone subject, the provider permits access
(return true) in the implies method. Access is then granted without further checks.

2. If access is not granted in the previous step, a WebUserDataPermission object is created and used to
see if the Uniform Resource Identifier (URI) is precluded, excluded or must be redirected using the
HTTPS protocol.

a. The WebUserDataPermission object is constructed with the urlPattern accessed, the HTTP method
invoked, and the transport type of the request. If the request is over HTTPS, the transport type is
set to CONFIDENTIAL; otherwise, null is passed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.
If the request is using the HTTPS protocol and the implies method returns false, the HTTP 403
error is returned to imply excluded and precluded permission. In this case no further checks are
performed. If the request is not using the HTTPS protocol, and the implies returns false, the
request is redirected over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists
(for example, LTPA token), it is used. Otherwise, the user's credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user is
granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission object is created. The ProtectionDomain object now
contains the Principal that is attempting to access the URI. The Subject policy context handler also
contains the user's information, which can be used for the access check.

b. The provider implies method is called using the Permission object and the ProtectionDomain object
created previously. If the user is granted permission to access the resource, the implies method
returns true. If the user is not granted access, the implies method returns false.

Even if the order listed previously is changed later (for example, to improve performance) the end result is
the same. For example, if the resource is precluded or excluded, the end result is that the resource cannot
be accessed.

For more information on these access permissions, see the JSR-000115 Java Authorization Contract for
Containers (Final Release).

Using information from the Subject for access decision

If the provider relies on the WebSphere Application Server generated Subject for access decision, the
provider can query the public credentials in the Subject to obtain the WSCredential credential. The

554 Securing applications and their environment

WSCredential API is used to obtain information about the user, including the name and the groups that the
user belongs to. This information is used to make the access decision.

If the provider adds the required information to the Subject, WebSphere Application Server can use the
information to make the access decision. The provider might add the information by using the Trust
Association Interface feature or by plugging login modules into the Application Server.

The security attribute propagation section contains additional documentation on how to add the
WebSphere Application Server required information to the Subject. For more information, see “Propagating
security attributes among application servers” on page 472.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to web modules under certain conditions. If a
web module is updated, deleted or added to an application, only that module is stopped and started as
appropriate. The other existing modules in the application are not impacted, and the application itself is not
stopped and then restarted.

When using the default authorization engine, any security policies are modified in the web modules and
the application is stopped and then restarted. When using the Java Authorization Contract for Containers
(JACC) based authorization, the behavior depends on the functionality that a provider supports. If a
provider can handle dynamic changes to the web modules, then only the web modules are impacted.
Otherwise, the entire application is stopped and restarted for the new changes in the web modules to take
effect.

A provider can indicate if it supports the dynamic updates by configuring the Supports dynamic module
updates option in the JACC configuration model (see “Authorizing access to Java EE resources using
Tivoli Access Manager” on page 586 for more information). This option can be enabled or disabled using
the administrative console or by scripting. It is expected that most providers store the policy information in
their external repository, which makes it possible for them to support these dynamic updates. This option
should be enabled by default for most providers.

When the Supports dynamic module updates option is enabled, if a web module that contains security
roles is dynamically added, modified, or deleted, only the specific web modules are impacted and
restarted. If the option is disabled, the entire application is restarted. When dynamic updates are
performed, the security policy information of the modules impacted are propagated to the provider. For
more information about security policy propagation, see “JACC policy propagation” on page 557.

Initialization of the JACC provider

If a Java Authorization Contract for Containers (JACC) provider requires initialization during server startup,
for example, to enable the client code to communicate to the server code, the provider can implement the
com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces that support JACC”
on page 604 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC
configuration model are propagated to the initialize method of this implementation. The custom properties
can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.
Implementation of this interface is strictly optional, and is used only if the provider requires initialization
during server startup.

Chapter 7. Authorizing access to resources 555

Mixed node environment and JACC

Authorization using Java Authorization Contract for Containers (JACC) is a new feature in WebSphere
Application Server Version 6.0.x. Also, the JACC configuration is set up at the cell level and is applicable
for all the nodes and servers in that cell.

If you are planning to use the JACC-based authorization, the cell must contain Version 6.0.x and later
nodes only. This restriction implies that a mixed node environment containing a set of Version 5.x nodes in
a Version 6.0.x or later cell is not supported.

JACC providers
The Java Authorization Contract for Containers (JACC) is a specification that was first introduced in Java
Platform, Enterprise Edition (Java EE) Version 1.4 through the Java Specifications Request (JSR) 115
process. JACC specification 1.4 is included for WebSphere Application Server version 7.0 for Java EE 5
support.. This specification defines a contract between Java EE 5 containers and authorization providers.

The contract enables third-party authorization providers to plug into Java EE 5 application servers, such as
WebSphere Application Server, to make the authorization decisions when a Java EE 5 resource is
accessed. The access decisions are made through the standard java.security.Policy object.

To plug in to WebSphere Application Server, the third-party JACC provider must implement the policy
class, policy configuration factory class, and policy configuration interface, which are all required by the
JACC specification.

Note: For WebSphere Application Server for z/OS, if System Authorization Facility (SAF)-based
authorization is implemented, the implementation at this point does not use or implement the JACC
Policy provider interface.

The JACC specification does not specify how to handle the authorization table information between the
container and the provider. It is the responsibility of the provider to provide some management facilities to
handle this information. The container is not required to provide the authorization table information in the
binding file to the provider.

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration role
configuration interfaces to help the provider obtain information from the binding file, as well as an
initialization interface (InitializeJACCProvider). The implementation of these interfaces is optional. See
“Interfaces that support JACC” on page 604 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server
pieces of the Tivoli Access Manager. The client piece of Tivoli Access Manager is embedded in
WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as
part of the WebSphere Application Server, Network Deployment (ND) package.

The JACC provider is not the default authorization. You must configure WebSphere Application Server to
use the JACC provider.

JACC policy context handlers
WebSphere Application Server supports all of the policy context handlers that are required by the Java
Authorization Contract for Containers (JACC) specification. However, due to performance impacts, the
Enterprise JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically
required by the provider. Performance impacts result if objects must be created for each argument of each
EJB method.

556 Securing applications and their environment

If the provider supports and requires this context handler, select the Requires the EJB arguments policy
context handler for access decisions check box in the External JACC provider link under the
Authorization providers panel or by using scripting. Any changes to this option are effective after the
servers are restarted. By default this option is disabled. Disable this option when using Tivoli Access
Manager as the JACC provider, because the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format
A policy context identifier is defined as a unique string that represents a policy context. A policy context
contains all of the security policy statements as defined by the Java Contract for Containers (JACC)
specification that affect access to the resources in a web or Enterprise JavaBeans (EJB) module.

During policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy
context. The object is populated with the policy statements, represented by the JACC permission objects
that correspond to the context. The object is propagated to the JACC provider using the JACC
specification APIs.

WebSphere Application Server makes the contextID unique by using the href:cellName/appName/
moduleName string as the contextID format for the modules. The href part of the string indicates that a
hierarchical name is passed as the context ID. The cellName represents the name of the deployment
manager cell or the base cell where the application is installed. After an application is installed in one cell
(for example, in a base application server where the cell name is base1) and is added to a deployment
manager cell whose name is cell1 by using addNode, the context ID for the modules in the application
contain base1 (not cell1) as the cell name because the application is initially installed in base1.

The appName part of the string in the context ID represents the application name containing the module.
The moduleName refers to the name of the module.

As an example, the context ID for the module Increment.jar file in an application named
DefaultApplication that is installed in cell1 is the href:cell1/DefaultApplication/Increment.jar file.

JACC policy propagation
When an application is installed or deployed in WebSphere Application Server, the security policy
information in the application is propagated to the provider when the configuration is saved. The context ID
for the application is saved in its application.xml file, that is used for propagating the policy to the Java
Authorization Contract for Containers (JACC) provider, and also for access decisions for Java Platform,
Enterprise Edition (Java EE) resources.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

When an application is uninstalled, the security policy information in the application is removed from the
provider when the configuration is saved.

If the provider implemented the RoleConfiguration interface, the security policy information that is
propagated to the policy provider also contains the authorization table information. See “Interfaces that
support JACC” on page 604 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the
RoleConfiguration, if implemented) objects do not contain any information. The existence of empty
PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module
does not exist.

Chapter 7. Authorizing access to resources 557

After an application is installed, it can be updated without being uninstalled and reinstalled. For example, a
new module can be added to an existing application, or an existing module can be modified. In this
instance, the information in the impacted modules is propagated to the provider by default. A module is
impacted when the deployment descriptor of the module or annotations within the module are changed as
part of the update. If the provider supports the RoleConfiguration interfaces, the entire authorization table
for that application is propagated to the provider.

If the security information is not propagated to the provider during application updates, you can set the
com.ibm.websphere.security.jacc.propagateonappupdate Java virtual machine (JVM) property to false in
the deployment manager, in a Network Deployment environment, or the unmanaged base application
server. If this property is set to false, any updates to an existing application in the server are not
propagated to the provider. You also can set this property on a per-application basis using the custom
properties of an application. The wsadmin tool can be used to set the custom property of an application. If
this property is set at the application level, any updates to that application are not propagated to the
provider. If the update to an application is a full update, for example, a new application enterprise archive
(EAR) file is used to replace the existing one, and the provider is refreshed with the entire application
security policy information.

When an application is installed and saved, the security policy information in that application is updated in
the provider from the deployment manager. The application is not propagated to its respective nodes until
the synchronization command is issued and completed. Also, when an application is uninstalled and saved
at the deployment manager, the policy for that application is removed from the JACC provider.

However, unless the synchronization command is issued and completed from the deployment manager to
the nodes hosting the application, the applications are still running in the respective nodes. In this
instance, deny any access to this application because the JACC provider does not contain the required
information to make the access decision for that application. Any updates to the application already
installed as described previously are also propagated to the provider from the deployment manager. The
changes in the provider are not synchronized with the applications in the nodes until the synchronization is
completed.

As mentioned earlier, the security policy information is propagated to the JACC provider during the save
operation. The SystemOut.log file indicates the success or failure of the propagation to the provider. Check
the log file after the installation to ensure that the propagation had no problems. If the propagation had any
problems, access to the application fails when Tivoli Access Manager is used as the JACC provider.

If the security policy information for the application is successfully propagated to the provider, the audit
statements with the message key SECJ0415I appear. However, if there was a problem propagating the
security policy information to the provider (for example: network problems, JACC provider is not available),
the SystemOut.log files contain the error message with the message keys SECJ0396E during install or
SECJ0398E during modification. The installation of the application is not stopped due to a failure to
propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error
messages appear during the save operation. When the problem causing this failure is fixed, run the
propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without
reinstalling the application. For more information, see Propagating security policy of installed applications
to a JACC provider using wsadmin scripting.

JACC registration of the provider implementation classes
The JACC specification states that providers can plug in their provider using the
javax.security.jacc.policy.provider and the javax.security.jacc.PolicyConfigurationFactory.provider system
properties.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while the
javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider
PolicyConfigurationFactory implementation.

558 Securing applications and their environment

Although both system properties are supported in WebSphere Application Server, it is highly recommended
that you use the configuration model that is provided. You can set these values using either the JACC
configuration panel (see “Authorizing access to Java EE resources using Tivoli Access Manager” on page
586 for more information) or by using wsadmin scripting. One of the advantages of using the configuration
model instead of the system properties is that the information is entered in one place at the cell level, and
is propagated to all nodes during synchronization. Also, as part of the configuration model, additional
properties can be entered, as described in the JACC configuration panel.

Using the configuration model is especially recommended in the case of a WebSphere Application Server,
Network Deployment (ND) environment where multiple application servers can exist in the configuration. If
the system properties are used, you must ensure that each of the Java virtual machine (JVM) processes in
the configuration set these properties. If the configuration model is used, the information is propagated to
all processes through the synchronization process of the application server.

Role-based security with embedded Tivoli Access Manager
The Java Platform, Enterprise Edition (Java EE) role-based authorization model uses the concepts of roles
and resources. An example is provided here.

Table 65. Roles.

This table is an example of role-based security with embedded Tivoli Access Manager.
Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are
defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount
application methods are mapped to these roles. From the example, you can see that users assigned the
role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this
method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that
performs activities. Groups are logical collections of principals that are configured in WebSphere
Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or
both.

Table 66. Roles methods. The entry that is invoked in the following table indicates that the principal or group can
invoke any methods that are granted to that role.

Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank: A principal who is not a
member of any of the previous
groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,
but cannot invoke the deposit method because this method is not granted either the Cashier or the
Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of
Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

Chapter 7. Authorizing access to resources 559

policy information that is contained in the application deployment descriptor and or annotations. This
security information is used to determine access whenever the WebSphere Application Server resource is
requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the
application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a
principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the
time of application deployment.

Principal-to-role mappings are managed from the WebSphere Application Server administrative console
and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed for
administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the JACC provider of Tivoli Access
Manager . This policy information contains permission-to-role mappings and role-to-principal and
role-to-group mapping information.

2. The JACC provider of Tivoli Access Manager converts the information into the required format, and
passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the
roles that are defined for the application and the permission-to-role mappings. A permission is
represented as a Tivoli Access Manager-protected object and the role that is granted to this object is
attached as an extended attribute.

Tivoli Access Manager integration as the JACC provider
Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere
Application Server to perform access checks.

Tivoli Access Manager consists of the following components:

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the
PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy
information in the deployment descriptor and the authorization table information in the binding files are
propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the
authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli
Access Manager application programming interfaces (API).

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration
interfaces. These interfaces are used to ensure that the authorization table information is passed to the
provider with the policy information. See “Interfaces that support JACC” on page 604 for more information
about these interfaces.

Tivoli Access Manager client configuration

560 Securing applications and their environment

To configure the Tivoli Access Manager client, you can use either the administrative console or wsadmin
scripting. You can access the administrative console panels for the Tivoli Access Manager client
configuration by clicking Security > Global security > External authorization providers. Under Related
Items, click External JACC provider. The Tivoli client must be set up to use the Tivoli Access Manager
JACC Provider.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager
JACC provider configuration” on page 594.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table
information is passed to the Tivoli Access Manager provider when the application is installed or deployed.
When an application is deployed or edited, the set of users and groups for the user or group-to-role
mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory
Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by
plugging into the application management users or groups-to-role administrative console panels. The
management APIs are called to obtain users and groups rather than relying on the WebSphere Application
Server-configured LDAP registry.

The user or group-to-role mapping is on the application level, not on the node level.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it
passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager
policy implementation queries the local replica of the access control list (ACL) database for the access
decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is
plugged in before the WebSphere Application Server-provided login modules. The custom login modules
can provide information that can be stored in the Subject. If the required information is stored, no
additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used
to plug into WebSphere Application Server for Lightweight Third Party Authentication (LTPA), Kerberos
(KRB5) and Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule
module is modified to authenticate with the user ID or password. The module is also used to fill in the
required attributes in the Subject so that no registry calls are made by the login modules in WebSphere
Application Server. The information that is placed in the Subject is available for the Tivoli Access Manager
policy object to use for access checking.

Note: SWAM is deprecated in WebSphere Application Server Version 8.0 and will be removed in a future
release.

Note: When using Kerberos authentication mechanism and Tivoli Access Manager, TAM loginModule
creates the PDPrincipal without first going through the Tivoli Access Manager authentication
process. Also when using Kerberos authentication mechanism and Tivoli Access Manager, the Tivoli
Access Manager policy is not enforced starting in WebSphere Application Server Version 7.0.

Tivoli Access Manager security for WebSphere Application Server
WebSphere Application Server provides embedded IBM Tivoli Access Manager client technology to secure
your WebSphere Application Server-managed resources.

Chapter 7. Authorizing access to resources 561

The benefits of using Tivoli Access Manager that are described here are only applicable when Tivoli
Access Manager client code is used with the Tivoli Access Manager server:

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java Platform, Enterprise Edition (Java EE) compliant and
non-compliant Java EE resources using the administrative console for Tivoli Access Manager Web
Portal Manager

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative
console

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)
specification. JACC details the contract requirements for Java EE containers and authorization providers.
With this contract, authorization providers can perform the access decisions for resources in Java EE
application servers such as WebSphere Application Server. The Tivoli Access Manager security utility that
is embedded within WebSphere Application Server is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authorize access to WebSphere Application Server-secured resources.

When applications are deployed, the embedded Tivoli Access Manager client takes any policy and or user
and role information that is stored within the application deployment descriptor or using annotations and
stores it within the Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is
managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module
that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the Java EE application
deployment descriptor and annotations to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an
authorization decision from the Tivoli Access Manager authorization server. Additional context
information, when present, is also passed to the authorization server. This context information is
comprised of the cell name, Java EE application name, and Java EE module name. If the Tivoli Access
Manager policy database has policies that are specified for any of the context information, the
authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the
Tivoli Access Manager-protected object space. The protected object space is part of the policy
database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli
Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,
based on the decision that is returned from the Tivoli Access Manager authorization server.

562 Securing applications and their environment

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn
more about Tivoli Access Manager, including the information that is necessary to make deployment
decisions, by reviewing the product documentation. The following guides are available in the IBM Tivoli
Access Manager for e-business Information Center:

v IBM Tivoli Access Manager for e-business Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using
a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These
scripts are very useful when prototyping the deployment of a secure domain.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access
Manager for e-business > Installation and upgrade information > Installation Guide.

v IBM Tivoli Access Manager for e-business Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing
protected resources. This guide describes how to configure the Tivoli Access Manager servers that
make access control decisions. In addition, detailed instructions describe how to perform important
tasks, such as declaring security policies, defining protected object spaces, and administering user and
group profiles.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access
Manager for e-business >Administration Information > Administration Guide.

Tivoli Access Manager provides centralized administration of multiple servers.

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli
Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy
database to make authorization decisions for incoming requests. The local policy databases are replicas of
the master policy database. The master policy database is installed as part of the Tivoli Access Manager
installation. Having policy database replicas on each participating WebSphere Application Server node
optimizes performance when making authorization decisions and provides failover capability.

Although the authorization server can also be installed on the same system as WebSphere Application
Server, this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture
share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli
Access Manager.

It is possible to have separate WebSphere Application Server profiles on the same host that is configured
for different Tivoli Access Manager servers. Such an architecture requires that the profiles are configured
for separate Java SE Runtime Environments (JRE 6) and therefore you need multiple JREs installed on
the same host.

Security annotations
Annotations are a powerful programming mechanism resulting from the JSR-175 recommendation. An
annotation is a standard way to include supported security behaviors while allowing, the source code and
configuration files to be generated automatically.

In Java Platform, Enterprise Edition (Java EE) 5 and above, The security roles and policies can be defined
using annotations as well as within the deployment descriptor. During the installation of the application, the
security policies and roles defined using annotations are merged with the security policies and roles

Chapter 7. Authorizing access to resources 563

defined within the deployment descriptor. This merge is performed by the Annotations Metadata Manager
(AMM) facility. When the metadata is merged, the following inheritance rules are followed.

Table 67. Metadata merger inheritance rules.

This table lists the metadata merger inheritance rules.
Scenario Rules

Security metadata in deployment descriptor only No merge is needed, the security metadata from the deployment
descriptor is propagated.

Security metadata in annotations only No merge is needed, the security metadata defined with annotations is
propagated.

Security metadata in deployment descriptor and annotations The metadata from the deployment descriptor and annotations is merged.
The metadata in annotations is overridden by the same type of data from
the deployment descriptor.

Six security annotations are currently supported. For each annotation, a MergeAction implementation is
defined.

v @DeclareRoles (Servlet 2.5 and greater and EJB 3)

The MergeAction implementation finds all the classes annotated with the DeclareRoles annotation.
Within each annotated class for each role name specified, if the security roles listed in the deployment
descriptor does not contain a SecurityRole with the annotated role name, a new SecurityRole is created
and added to this list of security roles.

v @RunAs (Servlet 2.5 and greater and EJB 3)

The MergeAction implementation finds all the classes with the RunAs annotation. For each annotated
class, it finds the Servlet or the Enterprise Java Bean (EJB) associated with the given class. It then
determines if a run-as element is defined in the deployment descriptor for the servlet or EJB. If one is
not found, a new run-as element is created and added to the deployment descriptor. If a run-as element
is found, this run-as element will be used instead of creating a new one. The role name used in the
RunAs annotation must be defined in the deployment descriptor.

v @DenyAll (EJB 3 only)

The MergeAction implementation finds all the methods annotated with the DenyAll annotation. For each
annotated method, if the method is not included in the deployment descriptor list of excluded methods,
and a MethodPermission does not exist in the deployment descriptor, a new MethodElement is created
and added to this list of excluded methods in the deployment descriptor.

v @PermitAll (EJB 3 only)

The MergeAction implementation finds all the classes and the methods with the PermitAll annotation.
For each annotated class, it finds the Enterprise Java Bean (EJB) associated with the given class. It
then searches the subset of the MethodElements in the list of all the MethodPermissions defined in the
deployment descriptor for this EJB. If a MethodElement with a wildcard method name (“*”) is not found
and a wildcard method does not exist in the list of excluded methods or in the list of MethodElements
with security roles, a new MethodPermission and a new MethodElement are created. The new
MethodPermission is marked unchecked and is added to the MethodPermission list in the deployment
descriptor. The new MethodElement is added to the MethodElement list of the newly created unchecked
MethodPermission. Similar action is done for all annotated methods. Instead of a wildcard
MethodElement, the method signature must match exactly the signature of the annotated method.

v @RolesAllowed (EJB 3 only)

The MergeAction implementation finds all of the classes and methods with the RolesAllowed annotation.
For each annotated class, it finds the EJB associated with the given class. It then finds the subset of
the MethodElements in the list of all the MethodPermissions defined in the deployment descriptor for
this EJB. If a MethodElement with a wildcard method name (“*”) is not found, and a wildcard method
does not exist in the list of excluded methods or in the list of unchecked MethodElements, a new
MethodPermission and MethodElement are created. If a MethodPermission for this EJB exists with
exactly the same roles as those found in the annotation, this MethodPermission will be used instead of
creating a new one. For each role name specified in the annotation, a new SecurityRole is created and

564 Securing applications and their environment

added to the SecurityRole list in the MethodPermission, If the MethodPermission was newly created, it
is added to the MethodPermission list in the deployment descriptor. The new MethodElement created is
added to the MethodElement list of the MethodPermission. Similar processing is done for all annotated
methods. Instead of a wildcard MethodElement, the method signature must exactly match the signature
of the annotated method. Additionally, for each role name specified in the annotation, if the deployment
descriptor list of security roles does not contain a SecurityRole with the annotated role name, a new
SecurityRole is also created and added to this list of security roles.

v @ServletSecurity (Servlet 3.0 only)

Note: Support for ServletSecurity annotation for Servlet 3.0 is new in this release of WebSphere
Application Server.

When an application deploys, the ServletSecurity MergeAction implementation finds all servlets
with the ServletSecurity annotation. For each annotated servlet, it finds the servlet associated
with the given class base on the WebServlet annotation. If RolesAllowed in the ServletSecurity
annotation is not found in the deployment descriptor, it then creates a role-name attribute for the
role in the deployment descriptor.

When an application starts, the WebContainer inspects all servlets with the RunAs, declareRoles,
and ServletSecurity annotations, and sets those annotations on the setServletSecurity() method
of the ServletRegistration annotation. The WebContainer notifies the security component to
inspect all ServletRegistration annotations that have URL patterns and security constraints. The
security component then determines if a URL pattern is defined in the deployment descriptor. If
one is not defined in the deployment descriptor, the security constraints and RunAs role in the
URL pattern are created and then used. If an exact match is already defined in the deployment
descriptor, the security constraints and RunAs role in the URL pattern of the deployment
descriptor are used instead of the annotation data.

Note: When the web authentication system property, com.ibm.wsspi.security.web.webAuthReq, is set to
persisting, you can log into an unprotected URL if a valid username and password are
provided.

Note: ServletSecurity MergeAction and WebContainer require the WebServlet annotation to determine
the servlet name of the URL pattern. The ServletSecurity annotation is omitted if the WebServlet
annotation is missing, or if a URL pattern is not specified in the ServletSecurity annotation.

The Inherited servlet annotation is a metadata annotation. Do not specify the Inherited annotation in the
class. If a subclass does not have security annotation, it automatically inherits security annotation from
the parent class. The subclass can overwrite the parent security annotations by specifying its security
annotations.

The following example is for all HTTP methods with no constraints:
@WebServlet ("/Example")
@ServletSecurity
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods with no <auth-constraint> element and confidential
TransportGuarantee required:

@WebServlet ("/Example")
@ServletSecurity(@HttpConstraint(transportGuarantee =

TransportGuarantee.CONFIDENTIAL))
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods with all access denied:
@WebServlet ("/Example")
@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))
public class Example extends HttpServlet {

......
}

Chapter 7. Authorizing access to resources 565

The following example is for all HTTP methods except for the GET and POST values with no
constraints. For GET, the <auth-constraint> element requires membership in ALL ROLE. For POST, all
access is denied.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity((httpMethodConstraints = {
@HttpMethodConstraint(value = "GET", rolesAllowed = “ALL ROLE"),
@HttpMethodConstraint(value="POST“, emptyRoleSemantic =
EmptyRoleSemantic.DENY))
})
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods except GET, the <auth-constraint> element requires
membership in ALL ROLE, and the GET method has no constraints.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity(value = @HttpConstraint(rolesAllowed = "ALL ROLE"),
httpMethodConstraints = @HttpMethodConstraint("GET"))
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods except TRACE, the <auth-constraint> element requires
membership in ALL ROLE, and for TRACE, all access is denied.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity(value = @HttpConstraint(rolesAllowed = "ALL ROLE"),
httpMethodConstraints = @HttpMethodConstraint(value="TRACE",
emptyRoleSemantic = EmptyRoleSemantic.DENY))
public class Example extends HttpServlet {

......
}

Java Servlet 3.0 support for security
This release of WebSphere Application Server supports all security updates as defined in the Java Servlet
3.0 specification.

Note: This release of WebSphere Application Server supports all security updates as defined in the Java
Servlet 3.0 specification (JSR-315), including the new servlet security annotations, use of new
programmatic security APIs and the dynamic updating of the servlet security configuration.

A significant enhancement is the new annotation support for servlets. A developer can declare the
security constraints using annotations as an alternative to declaring them as part of the web.xml
file, which is used prior to Java Servlet 3.0. The web.xml file continues to function and overrides any
conflicts defined as annotations.

The list of supported Java Servlet 3.0 updates for security includes the following:

v Support for the @ServletSecurity annotation

v Support for the dynamic updating of the @RunAs, @declareRoles, and @ServletSecurity servlet
security annotations

v Support for the authenticate, login and logout servlet security methods

v The new com.ibm.websphere.security.displayRealm property specifies whether the HTTP basic
authentication login window displays the realm name that is not defined in the application
web.xml file.

The following discusses the Java Servlet 3.0 updates for security in more detail:

Support for the @ServletSecurity annotation:

When an application deploys, the ServletSecurity MergeAction implementation finds all servlets with the
ServletSecurity annotation. For each annotated servlet, it finds the servlet associated with the given class
base on the WebServlet annotation. If RolesAllowed in the ServletSecurity annotation is not found in the
deployment descriptor, it then creates a role-name attribute for the role in the deployment descriptor.

566 Securing applications and their environment

When an application starts, the WebContainer inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The WebContainer notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If one is not defined in the
deployment descriptor, the security constraints and RunAs role in the URL pattern are created and then
used. If an exact match is already defined in the deployment descriptor, the security constraints and
RunAs role in the URL pattern of the deployment descriptor are used instead of the annotation data.

Read the Security annotations topic for more information.

Support for the dynamic updating of the @RunAs, @declareRoles, and @ServletSecurity servlet
security annotations:

When an application starts, the web container inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The web container notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If an exact match is already
defined in the deployment descriptor, the security constraints and RunAs role in the URL pattern of the
deployment descriptor are used instead of the dynamic data.

Read the Servlet security dynamic annotations topic for more information.

Note: WebSphere Application Server supports both a default authorization provider and an authorization
provider that is based on the Java Authorization Contract for Containers (JACC) specification. The
JACC-based authorization provider (for example, the Tivoli Access Manager), enables third-party
security providers to handle the Java EE authorization. The RunAs, declareRoles, and
ServletSecurity annotations are supported for both native authorization and for JACC.

Support for the authenticate, login and logout servlet security methods:

The authenticate method authenticates a user by using the WebSphere Application Server container login
mechanism configured for the servlet context.

The login method authenticates a user to the WebSphere Application Server with a user ID and password.
If authentication is successful, it creates a user subject on the thread and Lightweight Third Party
Authentication (LTPA) cookies (if single sign-on (SSO) is enabled).

The logout method logs the user out of the WebSphere Application Server and invalidates the HTTP
session.

Read the Servlet security methods topic for more information.

The new com.ibm.websphere.security.displayRealm property specifies whether the HTTP basic
authentication login window displays the realm name that is defined in the application web.xml file:

If the realm name is not defined in the web.xml file, one of the following occurs:

v If the property is set to false (the default), the WebSphere realm name display is Default Realm.

v If the property is set to true, the WebSphere realm name display is the user registry realm name for the
LTPA authentication mechanism or the Kerberos realm name for the Kerberos authentication
mechanism.

Read the Security custom properties topic for more information.

Chapter 7. Authorizing access to resources 567

Servlet security dynamic annotations
When you use the programmatic APIs to add or to create a servlet, the security annotations, RunAs,
declareRoles and ServletSecurity, can be dynamically updated through the setRunAsRole(), declareRoles()
and setServletSecurity() methods respectively.

Note: Support for the dynamic updating of the RunAs, declareRoles, and ServletSecurity servlet security
annotations is new in this release of WebSphere Application Server.

When an application starts, the web container inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The web container notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If an exact match is already
defined in the deployment descriptor, the security constraints and RunAs role in the URL pattern of the
deployment descriptor are used instead of the dynamic data.

Note: If the dynamic security annotations, declareRoles, setRunAs and rolesAllowed, are used, the role
name must be pre-defined, either through the deployment descriptor or through the declareRoles
and or RunAs annotations in the servlet class. During deployment time, you can use the
administrative console to map a user or group to this role.

If you have an exact URL pattern match for the ServletSecurity annotation in the security dynamic
annotation, the security constraint of the URL pattern in the security dynamic annotation takes precedent.
Also, if you call the setServletSecurity() method multiple times with the same URL pattern, the last one
takes precedent.

v ServletRegistration.Dynamic.setRunAsRole(String roleName) sets the name of the RunAs role for this
servlet registration.

v ServletContext.declareRoles(String roleNames) declares role names that are tested for the
isUserInRole() method.

v ServletRegistration.Dynmaic.setServletSecurity(ServletSecurityElement constraint) sets the
ServletSecurityElement for this servlet registration.

Note: When the web authentication system property, com.ibm.wsspi.security.web.webAuthReq, is set to
persisting, you can log into an unprotected URL if a valid username and password are provided.

The following two examples can be used to set the security constraints and RunAs role for dynamic
servlets by using the setServletSecurity() method.

In this example, all HTTP elements require membership in the Employee role except for the PUT method.
For the PUT method, the <auth-constraint> element requires membership in the Manager role and
TransportGuarantee is confidential.
HttpConstraintElement constraint = new HttpConstraintElement(TransportGuarantee.NONE,
new String[]{"Employee"});
List<HttpMethodConstraintElement> methodConstraints =
new ArrayList<HttpMethodConstraintElement>();
methodConstraints.add(new HttpMethodConstraintElement("PUT",
new HttpConstraintElement(TransportGuarantee.CONFIDENTIAL, new String[]{"Manager"})));
ServletSecurityElement servletSecurity =
new ServletSecurityElement(constraint, methodConstraints);

In this example, all HTTP methods are allowed except for the CUSTOM and GET methods. For the
CUSTOM method, the <auth-constraint> element requires membership in the Manager role. For the GET
method, the <auth-constraint> element requires membership in the Employee role, and
TransportGuarantee is confidential.

568 Securing applications and their environment

HttpConstraintElement constraint = new HttpConstraintElement();
List<HttpMethodConstraintElement> methodConstraints =
new ArrayList<HttpMethodConstraintElement>();
methodConstraints.add(new HttpMethodConstraintElement("CUSTOM",
new HttpConstraintElement(TransportGuarantee.NONE, new String[]{"Manager"})));
methodConstraints.add(new HttpMethodConstraintElement("GET",
new HttpConstraintElement(TransportGuarantee.CONFIDENTIAL, new String[]{"Employee"})));
ServletSecurityElement servletSecurity = new ServletSecurityElement(constraint,
methodConstraints);

System Authorization Facility for role-based authorization
There are three choices you have when assigning roles: (1) WebSphere Application Server authorization,
in which authorization management is performed within the WebSphere Administration using the Security
role to user/group mapping panel of the administrative console. (2) The System Authorization Facility
(SAF) for role-based authorization (WebSphere Authorization Facility for z/OS only option) , which uses
SAF authorization for Java 2 Platform Enterprise Edition (J2EE) roles. (3) External Authorization Provider
using the pluggable JACC interfaces. When WebSphere Application Server is configured to use SAF
Authorization, the authorization management is performed using SAF management facilities and the user
or group to J2EE role Management within WebSphere Administration is ignored. SAF class of EJBROLE
is used (for example, using the RACF EJBROLE profile) to control access by a client to Java 2 Platform,
Enterprise Edition (J2EE) roles in EJB and web applications, including the WebSphere Application Server
administrative console application.

Important considerations when using SAF authorization: When you select SAF for authorization, there
are several functional implications to
subsequent authorization operations that you
need to consider:

v If SAF authorization is selected on the
administrative console, it overrides any
other authorization choice (such as, Tivoli
Access Manager authorization). See
“Summary of controls” on page 40 for
more information.

v When SAF authorization is enabled,
authorization on any level is always
performed by the operating system's
security manager (RACF or equivalent
product). That is, users need to be
authenticated with a security manager
(RACF) user ID or a SAF mapping
module needs to be used.. See “System
Authorization Facility considerations for
the operating system and application
levels” on page 38 for more information.

v When SAF authorization is selected
during systems customization,
administrative EJBROLE profiles for all
administrative roles are defined by the
RACF jobs generated using the
customization dialogs, and SAF
authorization can be used as an
authorization mechanism for all user
registries. See “Controlling access to
console users when using a Local OS
Registry” on page 140 for more
information.

Chapter 7. Authorizing access to resources 569

v When configuring SAF authorization,
property,
com.ibm.security.SAF.authorization is
set to true and SAF EJBROLE profiles
are used to control access to
administrative roles. See “Authorizing
access to administrative roles” on page
621 for more information about
authorizing access to administrative roles.

v When SAF authorization is enabled, any
values in the console users and console
groups are ignored. The Map security
roles to users/groups functional panel in
the administrative console is ignored. See
“Administrative roles and naming service
authorization” on page 540 for more
information.

v Everyone and All Authenticated are
ignored since they are managed in RACF.
See “System Authorization Facility
considerations for the operating system
and application levels” on page 38 as well
as Security role to user or group mapping
for more information.

v When SAF authorization is enabled, the
SAF EJBROLE profiles are used to
control access to CosNaming functions.
During security domain setup in the
customization dialog, the CosNaming
roles are defined by customization jobs.
See “Special considerations for controlling
access to naming roles using SAF
authorization” on page 576 for more
information on CosNaming functions and
SAF authorization as well as referencing
“Administrative roles and naming service
authorization” on page 540.

v When SAF authorization is enabled, SAF
EJBROLE profiles are used to authorize
J2EE roles. For non-local operating
system registries, identity mapping must
be in place to map WebSphere
Application Server identities to SAF
identities. See “Controlling access to
console users when using a Local OS
Registry” on page 140 for more
information

v SAF authorization for J2EE roles is a task
that is independent of the application
deployment process. See Assigning users
and groups to roles for more information.

v The EJBROLE class should be
RACLISTed. If the EJBROLE class is not
RACLISTed, you must restart the

570 Securing applications and their environment

application server to pick up changes
made to profiles in the EJBROLE class.

Note: When you use SAF authorization, to make sure that any changes in SAF to a user or group
membership become effective immediately, call the purgeUserFromAuthCache SecurityAdmin
mbean method for the modified user. Otherwise, the changes become effective when the cache is
refreshed on a periodic basis. As an alternative, you can restart the server.

When SAF authorization is enabled, SAF EJBROLE profiles are used to authorize Java EE roles. For
non-local operating system registries, identity mapping must be in place to map WebSphere Application
Server identities to SAF identities.

To enable SAF authorization, see “z/OS System Authorization Facility authorization” on page 573 for more
information.

Defining EJBROLES belongs to the application deployment process. If the user ID has at least READ
access to the defined EJBROLE profile that corresponds to the Java EE role defined by the application,
the user ID is considered to be in Role. (Do not be confused by the name EJBROLE. It is used for Java
EE roles in both enterprise beans and Web applications.)

When an application deployer uses a role in the deployment descriptor of a component, the role name
must be identical to the name of an EJBROLE profile. A security administrator defines EJBROLE profiles
and permits SAF users or groups to the profiles. In order to be considered as eligible for a role, a user
must have read access to the EJBROLE profile or must be connected to a SAF group that has read
access.

The specification of a SAF profile prefix (previously referred to as a z/OS security domain) affects the
specific EJBROLE profiles used by WebSphere Application Server for z/OS system resources when SAF
authorization is chosen. When a SAF prefix is defined, the Java EE application EJBROLE profiles for the
WebSphere Application Server for z/OS runtime are prefixed with the value of this property. This enables
you to deploy the same application on different cells in the same sysplex, but have different user to role
mappings if desired.

For example, your application has two Java EE role names: juniorTellers and seniorTellers. These are
mixed case roles. In your SAF registry, you have an MVS group called JTELLER and STELLER and a MVS
user ID called BANKADM. The JTELLER group is required to access to the juniorTellers role, and the
STELLER group is required to access the seniorTellers role. The BANKADM user ID is required to access both
roles.

You have two cells, both defined to use a SAF profile prefix. The prefixes are PRODCELL and TESTCELL,
respectively. The TEST1 user ID should have access to both roles, but only in the test environment
TESTCELL.

If you wanted to deploy the same application in both cells, you must define distinct profiles using a RACF
(or equivalent security subsystem) as follows.

If RACF is used as your security server, enable this by issuing the following commands:
/* the EJBROLE class must be active, this step is done by the customization dialogs */
SETROPTS CLASSACT(EJBROLE)

/* first define the roles in RACF */
RDEFINE EJBROLE PRODCELL.juniorTellers UACC(NONE)
RDEFINE EJBROLE PRODCELL.seniorTellers UACC(NONE)

RDEFINE EJBROLE TESTCELL.juniorTellers UACC(NONE)
RDEFINE EJBROLE TESTCELL.seniorTellers UACC(NONE)

/* permit the appropriate users and groups to the various roles */
PERMIT PRODCELL.juniorTellers CLASS(EJBROLE) ID(JTELLER BANKADM) ACCESS(READ)
PERMIT PRODCELL.seniorTellers CLASS(EJBROLE) ID(STELLER BANKADM) ACCESS(READ)

Chapter 7. Authorizing access to resources 571

PERMIT TESTCELL.juniorTellers CLASS(EJBROLE) ID(TEST1) ACCESS(READ)
PERMIT TESTCELL.seniorTellers CLASS(EJBROLE) ID(TEST1) ACCESS(READ)

/* refresh the EJBROLE class in RACF *
SETROPTS RACLIST(EJBROLE) REFRESH"

Grouping EJBROLES (GEJBROLE)

The SAF interface also supports a grouping class for the EJBROLE class. This grouping class is called
GEJBROLE. It is particularly useful when you have a need to give access to the same users or groups for
several roles.

The GEJBROLE grouping class provides a capability not natively available in other Java EE servers.
Using the Java EE security model, if there are several components or applications that use different role
names for similar functions, such as Hire, Promote, or GrantPayraise for managerial functions, there are
several options:

v Adjust the application deployment descriptors so that they conform to the roles already defined in the
enterprise, such as managers. This process is time consuming and error prone especially because it
might require a readjustment of the deployment descriptor each time the application is changed or
reinstalled.

v Define the EJBROLE profiles for each of the roles that are required by the application. Then, permit
users and groups to access these roles. This process might be extensive for the administrator because
the same users and groups might have permissions for several different profiles with similar meanings.

v Use the grouping class to avoid the worst issues with the other two options. You must still define
EJBROLE profiles for each of the roles required by the application. Instead of permitting all of the same
users and groups to use the new profiles, create a profile, such as supervisors, in the grouping class
and add all of the new EJBROLE profiles to it. You can give permission in one place to every user and
group that needs access to these roles, such as the supervisors profile. You can further avoid
administrative work by adding the existing EJBROLE profile (Managers) to the grouping class profile
(Supervisors).

Considerations when implementing GEJBROLES:

v Plan organizational role profiles in the RACF
class GEJBROLEs.

v Create the access list by permitting user groups
to the GEJBROLE profiles, then add roles to the
GEJBROLE profiles.

v A GEJBROLE with only one EJBROLE is OK.

v Do not use a mixture of EJBROLE and
GEJBROLE for permitting users to roles.

v If possible, permit users to GEJBROLE profiles
only.

v Generally use GEJBROLE in preference to
EJBROLE.

System Authorization Facility user registries
System Authorization Facility (SAF) user registries are used for several purposes in WebSphere
Application Server for z/OS.

SAF-based user registries are used to:

v Authenticate using basic authentication, identity assertion, or client certificates

v Store information about users and groups

v Retrieve information about users and groups to perform security-related administrative functions
including mapping users and groups to security roles.

v Control access to resources such as datasets, commands and ports

572 Securing applications and their environment

Refer to “Selecting a registry or repository” on page 183 for more information

Using a local operating system or non-local operating system registry implementation, the WebSphere
Application Server for z/OS authentication mechanism can use SAF interfaces. SAF interfaces are defined
by MVS to enable applications to use system authorization services or user registries to control access to
resources such as data sets and MVS commands. SAF either processes security authorization requests
directly or works with RACF, or other security products, to process the requests. Note that a local
operating system SAF user registry is not a centralized registry like Lightweight Directory Access Protocol
(LDAP), but it is a centralized registry within a sysplex.

Note: When a non-local operating system registry is used, WebSphere Application Server for z/OS uses
the non-local operating system registry for authentication but still uses the SAF interface to control
access to system resources.

With WebSphere Application Server for z/OS, SAF user registries provide digital certificate to user ID
mappings using the Resource Access Control Facility (RACF) RACDCERT command. For more
information on the RACDCERT command, refer to z/OS Security Server RACF Command Language
Reference (SA22-7687-05), available at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/
secserv.html.

WebSphere Application Server for z/OS localOS User Registry (SAF User Registry) implementation sets
the registry realm name from the SAFDFLT profile in the REALM class when the REALM class is active
and the SAFDFLT profile is defined. This realm name is specified as the APPLDATA property of the
SAFDFLT profile. If the realm name cannot be obtained from the OS security product (such as RACF), the
value of protocol_iiop_daemon_listenIPAddress is used instead. This can happen, for example, if the
REALM class is not active, or if the SAFDFLT profile is not defined.

For any realm name changes to take effect, the entire cell, including the Daemon Address Space, must be
recycled for the changes to be effective. There is a UNIX System Services restriction, however. If you list
user and group information, only those users with an OMVS segment (where the user and group
information is stored) are shown. Refer to “Summary of controls” on page 40 for more information.

gotcha: If you list the groups or users in the user registry for a specific security realm, resource name, or
domain name, you must ensure that you add an OMVS segment (where the user and group
information is stored) to any group or user that you want to use with WebSphere Application
Server.

Note: The default and only implementation for a local operating system registry is SAF.

Refer to “Selecting a registry or repository” on page 183 for general information about selecting user
registries.

z/OS System Authorization Facility authorization:

Use this page to configure the System Authorization Facility (SAF) and the SAF Authorization properties.

To enable SAF authorization:

1. Click Security > Global security > External authorization providers.

2. Select the System Authorization Facility (SAF) from the drop-down list under Authorization provider.

3. Click the Configure button.

When you select SAF authorization, WebSphere Application Server uses the authorization policy that is
stored in the z/OS security product for authorization. If a Lightweight Access Directory Protocol (LDAP)
registry or Custom registry is configured and SAF authorization is specified, a mapping to a z/OS principal
is required at each login for any protected methods to run:

Chapter 7. Authorizing access to resources 573

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html

v If the authentication mechanism is Lightweight Third Party Authentication (LTPA), it is recommended that
you update all of the following configuration entries to include a mapping to a valid z/OS principal (such
as WEB_INBOUND, RMI_INBOUND, and DEFAULT).

v If the authentication mechanism is Simple WebSphere Authentication Mechanism (SWAM), you must
update the SWAM configuration entry to include a mapping to a valid z/OS principal.

Note: SWAM is deprecated and will be removed in a future release.

The common properties for unauthenticated user, SAF authorization, and SAF EJBROLE message
suppression are no longer custom properties.

When you select this option, WebSphere Application Server uses the authorization policy that is stored in
the z/OS security product for authorization.

Unauthenticated user ID:

Specifies the MVS user ID that is used to represent unprotected servlet requests when SAF authorization
is specified or a local operating system registry is configured. This user ID must be a maximum of 8
characters long.

This property definition is used in the following instances:

v For authorization if an unprotected servlet invokes an entity bean

v For identification of an unprotected servlet for invoking a z/OS connector such as Customer Information
Control System (CICS) or Information Management System (IMS) that uses a current identity when
res-auth=container

v When an application-initiated Synch to OS thread function is attempted

For more information, see the following articles in the information center:

v "Understanding application Synch to OS Thread Allowed"

v "When to use application Synch to OS Thread Allowed"

SAF profile mapper:

Specifies the name of SAF EJBRole profile to which a Java 2 Platform, Enterprise Edition (J2EE) role
name is mapped. The name that you specify implements the com.ibm.websphere.security.SAFRoleMapper
interface.

The com.ibm.ws.security.zOS.authz.SAFRoleMapperImpl implementation class, which is the default SAF
role mapper implementation, is initially configured. This initial configuration maps all the characters that are
not allowed in a SAF role name, such as the percent (%), ampersand (&), asterisk (*) and blank
characters, to a pound (#) character.

For more information, see the “Developing a custom SAF EJB role mapper” on page 816

Enable SAF delegation:

Specifies that the SAF EJBROLE definitions are assigned the MVS user identity that becomes the active
identity when you select the RunAs specified role.

Select the Enable SAF delegation option only if you select the Enable SAF Authorization option as the
external authorization provider.

Use the APPL profile to restrict access to the application server:

Use the APPL profile to restrict access to WebSphere Application Server.

574 Securing applications and their environment

If you have defined an SAF profile prefix, the APPL profile used is the profile prefix. Otherwise, the APPL
profile name is CBS390. All of the z/OS identities using WebSphere services should have READ
permission to the APPL profile. This includes all WebSphere Application Server identities, WebSphere
Application Server unauthenticated identities, WebSphere Application Server administrative identities, user
IDs based on role-to-user mappings, and all user identities for system users. If the APPL class is not
active on the z/OS system, then this property has no effect, regardless of its value.

Default: Enabled.

Suppress authorization failed messages from the z/OS security product:

Specifies whether ICH408I messages are on or off. The default value for this settings is false (unchecked),
which does not suppress messages.

System Management Facility (SMF) records access violations no matter what value is specified for this
new property. This property affects the generation of access violation messages for both
application-defined roles and for application server run-time-defined roles for the naming and
administrative subsystems. EJBROLE profile checks are done for both declarative and programmatic
checks:

v Declarative checks are coded as security constraints in Web applications and deployment descriptors
are coded as security constraints in Enterprise JavaBeans (EJB) files.

v Program logic checks or access checks are performed using the programmatic isCallerinRole(x) method
for enterprise beans or isUserInRole(x) method for Web applications.

gotcha:

v If you do not want administrative role messages suppressed when the SMF audit record
strategy is set to Default, set the
com.ibm.security.SAF.EJBROLE.Audit.Messages.Suppress.Admin property to false. The value
specified for this property overrides any other setting that governs message suppression for
administrative roles.

v When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the
information in the administrative console panel might not represent the data in the provider.
Also, any changes to the panel might not be reflected in the provider automatically. Follow the
provider's instructions to propagate any changes made to the provider.

For more information on SAF authorization, see "Controlling access to console users when using a Local
OS registry" in the information center. For more information on administrative roles, see "Administrative
roles" in the information center.

Default: Disabled, which does not suppress messages.

SMF audit record strategy:

Determines when an audit record is written to the System Management Facility (SMF). On each
authorization call, RACF or an equivalent SAF-based product, can write an audit record to SMF with the
result of the authorization check.

WebSphere Application Server for z/OS uses the SAF RACROUTE AUTH and RACROUTE FASTAUTH
operations and passes the LOG option that is specified in the security configuration. The options are
DEFAULT, ASIS, NOFAIL, and NONE.

The following options are available from the drop-down list:

DEFAULT

Chapter 7. Authorizing access to resources 575

When multiple role constraints are specified, such as a user must be in one of a set of roles, all of
the roles except for the last role is checked with the NOFAIL option. If the authorization is granted
in one of the roles before the last role, WebSphere Application Server writes an authorization
success record. If the authorization is not successful in these roles, the last role is checked with
the ASIS log option. If the user is authorized to the last role, a success record might be written. If
the user is not authorized, a failure record might be written.

ASIS Specifies that the audit events are recorded in the manner that is specified in the profile that
protects the resource or in the matter that is specified by the SETROPTS options.

NOFAIL
Specifies that failures are not recorded. Authorization failure messages are not issued, but
successful authorization audit records might be written.

NONE Specifies that neither successes or failures are recorded.

Only one authorization failed record is written for a failed J2EE authorization check even if several SAF
authorization calls are made. For more information on the LOG options for SAF RACROUTE AUTH and
RACROUTE FASTAUTH, see the RACF or equivalent SAF-based product documentation.

SAF profile prefix:

Specifies a prefix which will be added to all the SAF EJBROLE profiles used for the Java EE roles. This
prefix is also used as the APPL profile name and is inserted into the profile name used for CBIND checks.
There is no default value for the SAF profile prefix field. If a prefix is not explicitly specified, then no prefix
is added to the SAF EJBROLE profiles, the default value of CBS390 will be used as the APPL profile
name, and nothing is inserted into the profile name for CBIND checks.

You can use APPL profile to restrict access to WebSphere Application Server

If you have defined an SAF profile prefix, the APPL profile used is the profile prefix. Otherwise, the APPL
profile name is CBS390. All of the z/OS identities using WebSphere services should have READ
permission to the APPL profile. This includes all WebSphere Application Server identities, WebSphere
Application Server unauthenticated identities, WebSphere Application Server administrative identities, user
IDs based on role-to-user mappings, and all user identities for system users. Note that if the APPL class is
not active on the z/OS system, then this property has no effect, regardless of its value.

Note: The SAF profile prefix corresponds to the property, com.ibm.security.SAF.profilePrefix.name, in
the security.xml file.

Special considerations for controlling access to naming roles using SAF
authorization
There are special considerations in WebSphere Application Server for controlling access to naming roles.

Considerations for assigning users to naming roles

You can use either System Authorization Facility (SAF) authorization (EJBROLE profiles) or WebSphere
Application Server authorization to control access to naming roles. To enable SAF authorization, see “z/OS
System Authorization Facility authorization” on page 573 for more information. For a discussion of the
CosNaming roles, see Administrative console and naming service authorization. You can also refer to
Assigning users to naming roles.

Using SAF authorization to control access to naming roles

When SAF authorization is enabled, SAF EJBROLE profiles are used to control access to CosNaming
functions. If you selected Use a z/OS security product during profile creation in the z/OS Profile
Management Tool and you additionally specify a value for the SAF profile prefix (previously referred to as
the z/OS security domain), then the following CosNaming roles were defined by the customization jobs:

576 Securing applications and their environment

RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingRead
UACC(READ)
RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingWrite
UACC(NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingCreate
UACC(NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingDelete
UACC(NONE)

PERMIT (optionalSecurityDomainName.)CosNamingRead CLASS(EJBROLE)
ID(WSGUEST) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)CosNamingWrite CLASS(EJBROLE)
ID(WSCFG1) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)CosNamingCreate CLASS(EJBROLE)
ID(WSCFG1) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)CosNamingDelete CLASS(EJBROLE)
ID(WSCFG1) ACCESS(READ)

If you decide, at a future date, to enable SAF authorization, you must issue these RACF commands to
enable proper WebSphere Application Server operation. Change the value WSGUEST if you have chosen
a different unauthenticated user ID. Change the value WSCFG1 if you have chosen a different
configuration group. WSGUEST must be given explicit READ access because it is a restricted userid.

The default access granted by the customization job permits all authenticated users to update the name
space. This type of authorizations might be a broader level of authority than you want to provide.
Minimally, you must enable the configuration group for WebSphere Application Server (servers and
administrators) to have read access to all of the profiles and permit all WebSphere Application Server for
z/OS clients to have read access to the CosNamingRead profile.

If additional users require access to CosNaming roles, you can permit a user to have any of the previous
roles, as indicated, by issuing the following RACF command:
PERMIT (optionalSAFProfilePrefix.)rolename CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

Using WebSphere Application Server authorization to control access to naming roles

When SAF authorization is not enabled, WebSphere Application Server authorization and the
administrative console are used to control access to CosNaming functions.

For information on assigning users to naming roles, refer to Assigning users to naming roles.

System Authorization Facility (SAF) delegation
System Authorization Facility (SAF) delegation minimizes the need to store user Ids and passwords in
many locations in the configuration.

WebSphere Application Server supports the function of delegation. Delegation allows a user identity to be
represented as a Java EE role. For example, you can establish an application to be run with a RunAs role
of RoleA. RoleA can then be mapped as UserA. WebSphere Application Server then establishes the
identity context as UserA, and RoleA is defined in the deployment descriptor. Within such an arrangement
in place, SAF delegation uses the specified Java EE role, RoleA, to determine the thread identity and then
synchronizes processing with the user Id, UserA . UserA is specified in the SAF EJBROLE profile's
APPLDATA value of the RDEFINE RACF command. The REDEFINE command in this example would be
as follows:
RDEFINE EJBROLE rolea UACC(NONE) APPLDATA(usera)

SAF delegation requires that SAF authorization be enabled. The SAF security administrator would be
responsible for the assignment of Users to the role. See “z/OS System Authorization Facility authorization”
on page 573 for the steps that permit SAF delegation.

Note: If you have SAF delegation enabled and Kerberos is your active authentication mechanism, when
the application requests the run-as role, the runAs subject that is created on the server does not
contain the Kerberos credential. As a result, the request falls back to LTPA.

Chapter 7. Authorizing access to resources 577

Using distributed identity mapping for SAF
In this release of WebSphere Application Server, you can use z/OS System Authorization Facility (SAF)
security to associate a SAF user ID with a distributed identity.

About this task

When you use this feature, you can maintain the original identity information of a user for audit purposes
and have less to configure in WebSphere Application Server.

You can log in to a WebSphere Application Server application with the distributed identity of the user. The
filters defined in the z/OS security product then determine the mapping of the distributed identity to a SAF
user.

Note: The SAF distributed identity mapping feature is not supported in a mixed-version cell (nodes prior to
WebSphere Application Server Version 8.0).

Procedure
1. Review the Distributed identity mapping using SAF topic. Decide which scenario applies to your

configuration and make any necessary changes.

Note: Before you configure distributed identity mapping, you must first remove unnecessary Java
Authentication and Authorization Service (JAAS) login modules. Ensure that you do not have
the com.ibm.ws.security.common.auth.module.MapPlatformSubject login JAAS module
configured in WebSphere Application Server. Use the administrative console or wsadmin
scripting to remove this login module, or you can use the provided Jython script,
removeMapPlatformSubject.py, which searches for and removes this login module from the
appropriate login entries. For more information about how to use this script, read the
removeMapPlatformSubject script topic.

2. Configure the RACMAP filters in the z/OS security product to establish the mapping of distributed
identities to SAF users. Read the Distributed identity filters configuration in z/OS security topic for more
information.

Distributed identity mapping using SAF
The distributed identity mapping feature using System Authorization Facility (SAF) for z/OS provides some
major benefits, and is new in this version of WebSphere Application Server.

Note: This release of WebSphere Application Server enables you to use z/OS System Authorization
Facility (SAF) security to associate a SAF user ID with a distributed identity. When you use this
feature, you can maintain the original identity information of a user for audit purposes and have less
to configure in WebSphere Application Server.

Your z/OS security product must be at the appropriate version that supports the distributed identity
mapping. The correct SAF version is 7760 or later. For Resource Access Control Facility (RACF), you
must be at z/OS version 1.11 or later.

Some advantages in using this feature include:

v If you are using a non-Local OS registry, such as Lightweight Directory Access Protocol (LDAP), and
are using either SAF authorization, z/OS thread identity synchronization (SyncToThread) or the
connection manager RunAs thread identity option, you can directly map the LDAP user to a SAF user in
the z/OS security product with the RACMAP SAF profiles. No mapping modules are required; therefore
do not configure these modules in WebSphere Application Server. SMF audit records contain both the
LDAP user name and the mapped SAF user ID.

v If you are using Local OS registry, and are using Kerberos or Simple and Protected GSS-API
Negotiation (SPNEGO), you can directly map the Kerberos principal to an SAF user in the z/OS security

578 Securing applications and their environment

product. No mapping modules are required; therefore do not configure these modules in WebSphere
Application Server. SMF audit records contain both the Kerberos principal and the mapped SAF user ID.

Note: The SAF distributed identity mapping feature is not supported in a mixed-version cell (nodes prior to
WebSphere Application Server Version 8.0).

Benefits when using distributed identity mapping

Distributed identity mapping in SAF provides two major benefits:

v When a user is audited on the z/OS operating system using SMF, the audit record contains both the
distributed identity and the mapped SAF user ID. This improves cross-platform interoperability and
provides value for both host centric and heterogeneous application environments.

v The mapping of distributed identities is handled by the z/OS security administrator. There is no need to
configure mapping modules in the WebSphere Application Server configuration.

When to use distributed identity mapping

The following scenarios describe how you can use the new distributed identity mapping feature in SAF.

v Scenario 1: When you have a non-Local OS registry configured with either SAF authorization, z/OS
thread identity synchronization (SyncToThread) or the connection manager RunAs thread identity option,
you can use this feature to map your registry user to an SAF user. In previous releases, this process
had to be done with Java Authentication and Authorization Service (JAAS) login modules that were
configured in WebSphere Application Server.

The advantages of using distributed identity mapping are that the SMF audit records will contain both
the distributed user and the SAF user, and that the mapping is controlled by the z/OS Security
administrator.

When mapping a non-Local OS registry user, the distributed user name is the value returned by the
WebSphere Application Server WSCredential.getUniqueSecurityName() API. The realm name is
determined by the WebSphere Application Server WSCredential.getRealmName() API.

To enable distributed identity mapping for this scenario, no further changes are needed in the security
configuration.

Note: For scenario 1, if you are using the Federated Repositories registry configured with the
UserRegistry bridge, you can still take advantage of the SAF distributed identity mapping feature.
If you log in with a SAF user, it is not mapped. However, if you log in with a distributed user, it is
mapped to a SAF user.

v Scenario 2: When you have a Local OS registry configured on the z/OS platform with Kerberos or
SPNEGO enabled, you can map the Kerberos principal name to a SAF user using the distributed
identity mapping feature. In previous releases, you could use either a JAAS mapping login module that
was configured in WebSphere Application Server or the KERB segment of the SAF user in the z/OS
security product.

The advantage of using distributed identity mapping is that the SMF records will contain both the
Kerberos user and the mapped SAF user.

When mapping a Kerberos user, the distributed user name is the Kerberos principal name. The realm
name is the Kerberos realm name of the Kerberos Key Distribution Center (KDC). For more information
on creating distributed identity filters in the z/OS security product, read the Distributed identity filters
configuration in z/OS security topic.

To enable distributed identity mapping for this scenario, you must select the radio button for "Use the
RACMAP profiles in the SAF product for distributed identity mapping" on the administrative console
panel Kerberos authentication settings page. To make this change with wsadmin scripting, set the
security custom property com.ibm.websphere.security.krb.useRACMAPMappingToSAF=true.

v Scenario 3: When you have a Local OS registry configured, you can map an asserted certificate or an
asserted distinguished name to a SAF user.

Chapter 7. Authorizing access to resources 579

In previous releases, the first attribute of the asserted DN name was mapped to a SAF user. The
advantage of using the distributed identity mapping for an asserted DN is the added flexibility for
mapping users, the mapping is controlled by the z/OS security administrator, and the SMF audit records
will contain both the asserted DN name and the mapped SAF user ID. In previous releases, an asserted
certificate was mapped to a SAF user by using the RACDCERT MAP function in SAF. The advantage of
using the distributed identity mapping is that the SMF audit records will contain both the certificate DN
name and the mapped SAF user ID. Additionally, the SAF database saves space by not having to store
the digital certificates.

When mapping an asserted certificate or DN name in SAF, the distributed user is the DN name and the
realm name is the current SAF realm.

To enable distributed identity mapping for this scenario, you must check the checkbox for "Map
certificate and DN using SAF distributed identity mapping" in the administrative console panel Common
Secure Interoperability Version 2 inbound communications settings. To make this change with wsadmin
scripting, set the security custom property
com.ibm.websphere.security.certdn.useRACMAPMappingToSAF=true

v Scenario 4: When you have a Local OS registry configured, you can map a certificate received in the
CSIv2 transport layer to a SAF user.

In previous releases, a certificate was mapped to a SAF user by using the RACDCERT MAP function in
SAF. The advantage of using the distributed identity mapping is that the SMF audit records will contain
both the certificate DN name and the mapped SAF user ID.

When mapping a certificate received in the CSIv2 transport layer, the distributed user is the DN name
and the realm name is the current SAF realm..Additionally, the SAF database saves space by not
having to store the digital certificates.

To enable distributed identity mapping for this scenario, you must check the checkbox for "Map
certificate using SAF distributed identity mapping" in the administrative console panel Common Secure
Interoperability Version 2 inbound communications settings. To make this change with wsadmin
scripting, set the security custom property
com.ibm.websphere.security.certificate.useRACMAPMappingToSAF=true.

Note: If your DN name has a blank space between the attributes, then you should apply the RACF
APAR OA34258, or PTF UA59873, and the SAF APAR OA34259, or PTF UA59871, to correctly
parse the blanks.

Table 68. Distributed identity mapping scenarios. The following table summarizes the configuration for each of the
distributed identity mapping scenarios.

Scenario SAF version User registry

SAF
authorization=true
or
SyncToThread=true
or runAs=true?

JAAS mapping
module
configured?

Kerberos or
SPNEGO
enabled

Scenario 1 7760 or later
(z/OS 1.11 or
later for RACF)

non-Local OS yes no n/a

Scenario 2 7760 or later
(z/OS 1.11 or
later for RACF

Local OS yes no yes

Scenario 3 7760 or later
(z/OS 1.11 or
later for RACF

Local OS yes no n/a

Scenario 4 7760 or later
(z/OS 1.11 or
later for RACF

Local OS yes no n/a

580 Securing applications and their environment

Considerations when configuring distributed identity mapping

When you configure distributed identity mapping, you must complete the following actions:

v Determine the SAF version. You must first ensure that your z/OS security version is at SAF version
7760 or later. If you are using RACF, you must be at z/OS version 1.11 or later. A new AdminTask,
isSAFVersionValidForIdentityMapping(), is provided to help determine this. Additionally, the informational
message, SECJ6233I, is printed in the server job log, which indicates the current SAF version.

v Remove unnecessary JAAS login modules. You must ensure that you do not have the
com.ibm.ws.security.common.auth.module.MapPlatformSubject login JAAS module configured in your
WebSphere configuration. In previous releases of WebSphere Application Server, this is how mapping a
distributed user to a SAF user was completed. As long as you have this login module configured, the
security configuration continues to use the previous method for mapping a distributed user to a SAF
user. If you are configuring a new WebSphere Application Server Version 8.0 cell, this JAAS login
module is not configured by default; therefore, no further action is necessary. However, if you have
migrated your cell to WebSphere Application Server Version 8.0 , the JAAS login module likely exists
and should be removed. You can use the administrative console or wsadmin scripting to remove this
login module. You can also use the provided Jython script, removeMapPlatformSubject.py, which
searches for and removes this login module from the appropriate login entries. For more information on
how to use this script, read the removeMapPlatformSubject script topic.

To delete the JAAS login module on the administrative console, complete the following steps:

1. Click Security > Global security > Java Authentication and Authorization Service > System
logins.

2. Click DEFAULT.

3. Select the checkbox for com.ibm.ws.security.common.auth.module.MapPlatformSubject login JAAS
module, then click Delete.

4. Click OK.

5. Repeat for steps 2-4 for the System logins of WEB_INBOUND, RMI_INBOUND and
SWAM_ZOSMAPPING.

v Map SAF users in the z/OS security product. Use the RACMAP command in the z/OS security
product to configure a distributed identity filter. Use this filter to map multiple distributed users to one
SAF user, or you can have a one-to-one mapping. The distributed identity filter consists of two parts: the
distributed user name and the realm name of the registry where the distributed user exists.

Note: In some cases, changes to the RACMAP filters do not take effect immediately on the WebSphere
server. Read “Activating RACMAP filter changes for an authenticated user” in the Distributed
identity filters configuration in z/OS security topic for more details.

When configuring the SAF distributed identity mapping feature at the security domain level, note the
realm name for that domain. You can choose to provide a realm name or to use the system-generated
realm name. Regardless of which option you choose, this is the realm name that you must use when
defining the mappings in the SAF registry.

v Make the necessary changes to the security configuration. Read scenarios 1-4 listed above to
determine additional changes you might need to make to the security configuration.

Distributed identity filters configuration in z/OS security
Before you can map distributed identities to System Authorization Facility (SAF) users, you must first
configure distributed identity filters in the z/OS security product for WebSphere Application Server.

The distributed identity filter in the SAF class RACMAP consists of the distributed user name and the
realm name of the distributed user name. You can configure the filters to map many distributed identities to
one SAF user, or you can have a one-to-one mapping.

The following syntax for creating a distributed identity filter using the RACMAP command exists:

Chapter 7. Authorizing access to resources 581

RACMAP ID(<SAFUser>) MAP USERDIDFILTER(NAME(’<distributedUserId>’))
REGISTRY(NAME(’<distributedRealmName>’)) WITHLABEL(’<someLabel>’)

The <SAFUser> element is the SAF user in the z/OS security product, <distributedUserId> is the
distributed identity, <distributedRealmName> is the realm name of the distributed identity and <someLabel>
is a text field that describes this distributed identity filter.

Use the following command to activate the IDIDMAP class. This command only needs to be run once at
the beginning:
SETROPTS CLASSACT(IDIDMAP) RACLIST(IDIDMAP)

Use the following command after any changes are made to RACMAP profiles for the changes to take
effect:
SETROPTS RACLIST(IDIDMAP) REFRESH

Note: In some cases, changes to the RACMAP filters do not take effect immediately on the WebSphere
server. See the section below, “Activating RACMAP filter changes for an authenticated user” for
more details.

Mapping distributed users to SAF users:

If you have configured a non-local OS registry, you can map a distributed user, such as a Lightweight
Directory Access Protocol (LDAP) user, to an SAF user. The distributed user name that WebSphere
Application Server uses when mapping to an SAF user is the value returned by the
WSCredential.getUniqueSecurityName() API. This method returns the unique user name as it applies to
the configured user registry. For LDAP, this would be the full distinguished name (DN). For a custom
configuration, this is whatever the getUniqueUserId() API in the custom registry returns. For federated
repositories, this is the uniqueName property in virtual member manager.

The distributed realm name used by WebSphere Application Server is determined by the
WSCredential.getRealmName() API. The realm name that is returned depends on the user registry that is
being configured. For LDAP, the realm name is the ldapHostName:ldapPortNumber. For custom user
registry, it is whatever you have configured the getRealm() method to return in your implementation. For
federated repositories, the realm name is the realm you specified on the realm name field of the federated
repositories panel.

In the following example, the LDAP user, LDAPUser1, is mapped to the SAF user, USER1:
RACMAP ID(USER1) MAP USERDIDFILTER(NAME(’CN=LDAPUser1,o=ibm,c=us’))
REGISTRY(NAME(’ccwin12.austin.ibm.com:389’))
WITHLABEL(’Mapping LDAP LDAPUser1 to USER1’)

In this example, the custom user registry user, CustomUser3, is mapped to the SAF user, USER3:
RACMAP ID(USER3) MAP USERDIDFILTER(NAME(’CustomUser3’))
REGISTRY(NAME(’customRealm’)) WITHLABEL(’Mapping custom CustomUser3 to USER3’)

In this example, the federated repositories user, wimUser5, is mapped to the SAF user, USER5:
RACMAP ID(USER5) MAP USERDIDFILTER(NAME(’uid=wimUser5,o=defaultWIMFileBasedRealm
’)) REGISTRY(NAME(’defaultWIMFileBasedRealm’)) WITHLABEL(’Mapping custom wimUser5 to USER5’)

Mapping Kerberos principals to SAF users:

If you have a local OS registry configured on z/OS operating systems with the Kerberos authentication
mechanism, you might want to map a Kerberos user to a SAF user. In this case, the distributed identity is
the Kerberos principal name. The distributed realm name is the Kerberos realm name of the KDC.

The following example maps a Kerberos user to a SAF user:

582 Securing applications and their environment

kerberosUser@KRB390.IBM.COM to the SAF user WSADMIN:
RACMAP ID(WSADMIN) MAP USERDIDFILTER(NAME(’kerberosUser’))
REGISTRY(NAME(’KRB390.IBM.COM’)) WITHLABEL(’Mapping Kerberos kerberosUser to WSADMIN’)

Mapping multiple distributed identities to one SAF user:

You can use the wildcard (*) to create a filter that maps multiple distributed identities to one SAF user. you
can specify the wildcard (*) for the distributed identity name and realm name. For example, if you want
each user from your LDAP server, accountingUnit.acme.ibm.com, to be mapped to the SAF user ACCT, you
can define a filter as in the following example:
RACMAP ID(ACCT) MAP USERDIDFILTER(NAME(’*’))
REGISTRY(NAME(’accountingUnit.acme.ibm.com:389’))
WITHLABEL(’Mapping accounting users to ACCT’)

If the distributed identity name is a distinguished name, you can omit attributes of the DN value when
creating the filter, starting with the most specific attributes. For example, you can create a filter that maps
all LDAP users that have the attributes O=ibm,C=us to the SAF user, ACCT2, as in the following example:
RACMAP ID(ACCT2) MAP USERDIDFILTER(NAME(’O=ibm,C=us’))
REGISTRY(NAME(’accountingUnit.acme.ibm.com:389’))
WITHLABEL(’Mapping US accounting users to ACCT2’)

Mapping certificates and distinguished names to SAF users

The distributed identity is the distinguished name or attributes of the distinguished name. The distributed
realm name is the current realm. For example:
RACMAP ID(ACCT3) MAP USERDIDFILTER(NAME(’O=ibm,C=us’))
REGISTRY(NAME(’localOSRealm’))
WITHLABEL(’Mapping certificate or distinguished names to ACCT3’)

Creating a default distributed identity filter:

You might want to define a default filter that maps any distributed identity that is not found in any of the
other filters to a SAF user with the RESTRICTED attribute.

The following example demonstrates how to create a default filter:
RACMAP ID(WSGUEST) MAP USERDIDFILTER(NAME(’*’))
REGISTRY(NAME(’*’)) WITHLABEL(’The default filter’)

Activating RACMAP filter changes for an authenticated user:

When a user authenticates with the registry, the user is also added to the authentication cache. Any
changes to the RACMAP filters in the z/OS security product do not take effect until this user is removed
from the authentication cache.

If you want these changes to take effect immediately, call the SecurityAdmin Mbean on the server that you
want to update. You can either invoke the purgeUserFromAuthCache operation to remove one specific
user, or the clearAuthCache operation to remove all users from the authentication cache. The
authentication cache is also cleared once the server is restarted.

Refer to the SecurityAdmin MBean Definition Table for details on the Mbean and its operations.

For example, a distributed identity, LDAPUser1, is not mapped to an SAF user, and attempts to log in to a
servlet protected by a role. Since the user ID and password are valid, the user is authenticated and added
to the authentication cache. However, since LDAPUser1 is not mapped to an SAF user, a default
unauthenticated ID, WSGUEST, is used for authorization.

Chapter 7. Authorizing access to resources 583

LDAPUser1 is unable to access the servlet since WSGUEST is not authorized to the servlet role. The z/OS
security administrator then defines a RACMAP filter to map LDAPUser1 to the SAF user, USER1. LDAPUser1
still cannot access the servlet until this ID is removed from the authentication cache.

For more information about the RACMAP command, refer to the z/OS Security Server RACF Command
Language Reference.

removeMapPlatformSubject script
If you want to use distributed identity mapping for System Authorization Facility (SAF), use the
removeMapPlatformSubject Jython script that is provided to remove the unnecessary Java Authentication
and Authorization Service (JAAS) login module, MapPlatformSubject, from the security configuration.

The removeMapPlatformSubject script searches for and removes the
com.ibm.ws.security.common.auth.module.MapPlatformSubject JAAS login module from these login
entries: DEFAULT, WEB_INBOUND, RMI_INBOUND, SWAM_ZOSMAPPING. You can run this script for
the global security configuration or for a specific security domain.

Syntax

The following command syntax exists:
wsadmin.sh -conntype NONE -lang jython -f
/path/to/script/removeMapPlatformSubject.py [options]

Running this script with no options updates the global security configuration.

Parameters

The following options are available for the removeMapPlatformSubject script:

-securityDomain <securityDomainName>
Specifies that you want to update only the specified security domain. If this option is not specified, the
global security configuration is updated.

-scripthelp
Specifies that you want to see a description of the syntax and options that are available. A –trace
option is also available for debug purposes. The debug output is sent to the stdout stream.

–trace
Specifies that you want to create a trace that you can use to debug a problem with the application of
this function. The trace output is sent to the stdout stream.

Usage scenarios

The following examples demonstrate correct syntax.

Use this example to remove the login module from the global security configuration:
wsadmin.sh -conntype NONE -lang jython -f
/WebSphere/AppServer/bin/removeMapPlatformSubject.py

Use this example to remove the login modules from the server2Domain security domain:
wsadmin.sh -conntype NONE -lang jython -f
/WebSphere/AppServer/bin/removeMapPlatformSubject.py
-securityDomain server2Domain

Delegations
Delegation is a process security identity propagation from a caller to a called object. As per the Java
Platform, Enterprise Edition (Java EE) specification, a servlet and enterprise beans can propagate either
the client or remote user identity when invoking enterprise beans, or they can use another specified
identity as indicated in the corresponding deployment descriptor.

584 Securing applications and their environment

The extension supports enterprise bean propagation to the server ID when invoking other entity beans.
Three types of delegations are possible:
v Delegate (RunAs) client identity
v Delegate (RunAs) specified identity
v Delegate (RunAs) system identity

Note: The RunAs system identity delegation only works when server ID and password are used. When
the internalServerId feature is used, it does not work because runAs with system identity is not
supported. You must specify RunAs roles. When internalServerID is used, use the RunAsSpecified
with a user ID and password that is mapped to the administrator role. See “Administrative roles and
naming service authorization” on page 540 for more information about internalServerId.

The EJB specification only supports delegation (RunAs) at the Enterprise JavaBeans (EJB) level. But an
extension allows EJB method-level RunAs specification. With an EJB method level, the RunAs
specification can specify a different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor, which is the ejb-jar.xml file in the EJB
module and the web.xml file in the web module. The extension to the RunAs specification is included in the
ibm-ejb-jar-ext.xml file.

An IBM-specific binding file is available for each application that contains a mapping from the RunAs role
to the user. This file is specified in the ibm-application-bnd.xml file.

These specifications are read by the runtime during application startup. The following figure illustrates the
delegation mechanism, as implemented in the WebSphere Application Server security model.

Delegation Process

Two tables help in the delegation process:
v Resource to RunAs role mapping table
v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise
beans to propagate to the next enterprise beans call.

Use the RunAsRole to user ID and password mapping table to get the user ID that belongs to the RunAs
role and its password.

Delegation is performed after successful authentication and authorization. During this process, the
delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The
delegation module consults the RunAs role to user ID and password mapping table to get the user that
belongs to the RunAs role (4). The user ID and password is used to create a new credential using the
authentication module, which is not shown in the figure.

Chapter 7. Authorizing access to resources 585

Authorizing access to Java EE resources using Tivoli Access Manager
The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,
Enterprise Edition (Java EE) containers and authorization providers. You can use the default authorization,
a System Authorization Facility (SAF) authorization, or an external JACC authorization provider. When
security is enabled in WebSphere Application Server, the default authorization is used unless a JACC
provider is specified.

Before you begin

JACC enables any third-party authorization providers to plug into a Java EE application server (such as
WebSphere Application Server) to make the authorization decisions when a Java EE resource is
accessed. By default, WebSphere Application Server implements the JACC provider by using Tivoli Access
Manager as the external authorization provider.

Read the following articles for more detailed information about JACC before you attempt to configure
WebSphere Application Server to use a JACC provider:

Procedure
v “JACC support in WebSphere Application Server” on page 553

v “JACC providers” on page 556

v “Tivoli Access Manager integration as the JACC provider” on page 560

Using the built-in authorization provider
You can extend the capabilities of WebSphere Application Server by plugging in your own authorization
provider. You can use the built-in authorization, a System Authorization Facility (SAF) authorization, or an
external JACC authorization provider.

About this task

For an explanation of the administrative console panels that support these capabilities, see:

Procedure
v Use the built-in authorization provider. It is recommended that you do not modify any settings on the

authorization provider panels if you use the Built-in authorization option. For more information, see
“External authorization provider settings.”

v Use an external authorization provider. If you use the External authorization using a JACC provider
option, the external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java Platform, Enterprise Edition (Java EE) authorization. By default,
WebSphere Application Server enables you to configure the Tivoli Access Manager Java Authorization
Contract for Containers (JACC) provider as the default external JACC provider. For more information,
see “External Java Authorization Contract for Containers provider settings” on page 587 and “Tivoli
Access Manager JACC provider settings” on page 594.

v Use a System Authorization Facility (SAF). Use the System Authorization Facility (SAF)
authorization option to specify that SAF EJBROLE profiles be used for user-to-role authorization for
both Java Platform, Enterprise Edition (Java EE) applications and the role-based authorization requests
(naming and administration) that are associated with application server runtime. This option is available
only when your environment contains z/OS nodes. For more information, see “External authorization
provider settings” and “z/OS System Authorization Facility authorization” on page 573.

External authorization provider settings
Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization
decisions.

586 Securing applications and their environment

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

The application server provides a default authorization engine that performs all of the authorization
decisions. In addition, the application server also supports an external authorization provider using the
JACC specification to replace the default authorization engine for Java Platform, Enterprise Edition (Java
EE) applications.

JACC is part of the Java EE specification, which enables third-party security providers such as Tivoli
Access Manager to plug into the application server and make authorization decisions.

Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access
Manager that can handle Java EE authorizations based on JACC, and it is configured and set
up to use with the application server, do not enable External authorization using a JACC
provider.

Built-in authorization:

Use this option all the time unless you want an external security provider such as the Tivoli Access
Manager to perform the authorization decision for Java EE applications that are based on the JACC
specification.

External JACC provider: Use this link to configure the application server to use an external JACC
provider. For example, to configure an external JACC provider, the policy class name and the policy
configuration factory class name are required by the JACC specification.

The default settings that are contained in this link are used by Tivoli Access Manager for authorization
decisions. If you intend to use another provider, modify the settings as appropriate.

System Authorization Facility (SAF) authorization:

Use this option to specify that SAF EJBROLE profiles are used for user-to-role authorization for both Java
2 Platform, Enterprise Edition (Java EE) applications and the role-based authorization requests (naming
and administration) that are associated with application server runtime. This option is available when your
environment contains z/OS nodes only.

Important: When you select this option, WebSphere Application Server uses the authorization policy that
is stored in the z/OS security product for authorization.

If a Lightweight Access Directory Protocol (LDAP) registry or Custom registry is configured and SAF
authorization is specified, a mapping to a z/OS principal is required at each login for any protected
methods to run:

v If the authentication mechanism is Lightweight Third Party Authentication (LTPA), it is recommended that
you update all of the following configuration entries to include a mapping to a valid z/OS principal (such
as WEB_INBOUND, RMI_INBOUND, and DEFAULT).

v If the authentication mechanism is Simple WebSphere Authentication Mechanism (SWAM), you must
update the SWAM configuration entry to include a mapping to a valid z/OS principal.

Note: SWAM is deprecated and will be removed in a future release.

External Java Authorization Contract for Containers provider settings
Use this page to configure the application server to use an external Java Authorization Contract for
Containers (JACC) provider. For example, the policy class name and the policy configuration factory class
name are required by the JACC specification.

Chapter 7. Authorizing access to resources 587

Use these settings when you have set up an external security provider that supports the JACC
specification to work with the application server. The configuration process involves installing and
configuring the provider server and configuring the client of the provider in the application server to
communicate with the server. If the JACC provider is not enabled, these settings will be ignored.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

3. Under Authorization provider, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure
the Tivoli Access Manager server prior to using it with the application server. Use the Tivoli Access
Manager properties link under Additional properties, and configure the Tivoli Access Manager client in the
application server to use the Tivoli Access Manager server. If you intend to use another provider, modify
the settings as appropriate.

Name:

Specifies the name that is used to identify the external JACC provider.

This field is required.

Data type: String

Description:

Provides an optional description for the provider.

Data type: String

Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per
the JACC specification. The class represents the provider-specific implementation of the
java.security.Policy abstract methods.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

This class is used during authorization decisions. The default class name is for Tivoli Access Manager
implementation of the policy file.

This field is required. For information on enabling the JACC provider using this field, see the "Enabling the
JACC provider for Tivoli Access Manager" article in the information center.

Data type: String
Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

588 Securing applications and their environment

Specifies a fully qualified class name that represents the
javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class
represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory
abstract methods.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.
This class is used to propagate the security policy information to the JACC provider during the installation
of the J2EE application. The default class name is for the Tivoli Access Manager implementation of the
policy configuration factory class name.

This field is required.

Data type: String
Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

Specifies a fully qualified class name that implements the
com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

When you implement this class, the authorization table information in the binding file is propagated to the
provider during the installation of the J2EE application. The default class name is for the Tivoli Access
Manager implementation of the role configuration factory class name.

This field is optional. For information on enabling the JACC provider using this field, see the "Enabling the
JACC provider for Tivoli Access Manager" article in the information center.

Data type: String
Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the
com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

When implemented, this class is called at the start and the stop of all the application server processes.
You can use this class for any required initialization that is needed by the provider client code to

Chapter 7. Authorizing access to resources 589

communicate with the provider server. The properties that are entered in the custom properties link are
passed to the provider when the process starts up. The default class name is for the Tivoli Access
Manager implementation of the provider initialization class name.

This field is optional. For information on enabling the JACC provider using this field, see the "Enabling the
JACC provider for Tivoli Access Manager" article in the information center.

Data type: String
Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler handler to make
access decisions.

Because this option has an impact on performance, do not set it unless it is required by the provider.
Normally, this handler is required only when the provider supports instance-based authorization. Tivoli
Access Manager does not support this option for J2EE applications.

Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes made to security policies of web modules in a running
application, dynamically without affecting the rest of the application.

If this option is enabled, the security policies of the added or modified web modules are propagated to the
JACC provider and only the affected web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC
provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

Default: Enabled

Custom properties:

Specifies the properties that are required by the provider.

These properties are propagated to the provider during the startup process when the provider initialization
class name is initialized. If the provider does not implement the provider initialization class name as
described previously, the properties are not used.

The Tivoli Access Manager implementation does not require that you enter any properties in this link.

Tivoli Access Manager properties:

Specifies properties that are required by the Tivoli Access Manager implementation.

These properties are used to set up the communication between the application server and the Tivoli
Access Manager server. You must install and configure the Tivoli Access Manager server before entering
these properties.

590 Securing applications and their environment

Enabling an external JACC provider
Use this topic to enable an external JACC provider using the administrative console.

Before you begin

The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,
Enterprise Edition (Java EE) containers and authorization providers. This contract enables any third-party
authorization providers to plug into a Java EE 5 application server, such as WebSphere Application Server
to make the authorization decisions when a Java EE resource is accessed.

Procedure
1. From the WebSphere Application Server administrative console, click Security > Global security >

External authorization providers.

2. Under Related items, click External JACC provider.

3. The fields are set for Tivoli Access Manager by default. If you do not plan to use Tivoli Access
Manager as the JACC provider, replace these fields with the details for your own external JACC
provider.

4. If any custom properties are required by the JACC provider, click Custom properties under Additional
properties and enter the properties. When using the Tivoli Access Manager, use the Tivoli Access
Manager properties link instead of the Custom properties link. For more information, see “Configuring
the JACC provider for Tivoli Access Manager using the administrative console.”

5. On the External authorization providers panel, select the External authorization using a JACC
provider option and click OK.

6. Complete the remaining steps to enable security. If you are using Tivoli Access Manager, you must
select LDAP as the user registry and use the same LDAP server. For more information on configuring
LDAP registries, see “Configuring Lightweight Directory Access Protocol user registries” on page 191.

7. Verify that all of the changes are synchronized across all nodes.

8. In a multinode environment, stop and start the deployment manager configuration.

Issue the following commands:
profile_root/bin/stopManager.bat
-username user_name
-password password

profile_root/bin/startManager.bat

9. Restart all servers to make these changes effective.

Configuring the JACC provider for Tivoli Access Manager using the administrative
console
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)
provider using the administrative console.

Before you begin

Before configuring Tivoli Access Manager as the JACC provider, verify that all of the managed servers,
including node agents, are started

Prior to completing the following steps, verify that you have previously created a security administrative
user. For more information, see “Creating the security administrative user for Tivoli Access Manager” on
page 593.

About this task

The following configuration is performed on the management server. When you click either Apply or OK,
configuration information is checked for consistency, saved, and applied if successful.

Chapter 7. Authorizing access to resources 591

This configuration information is propagated to the nodes when synchronization is performed. Restart the
nodes for the configuration changes to take effect.

To configure Tivoli Access Manager as the JACC provider using the administrative console, complete the
following steps:

Procedure
1. Start the WebSphere Application Server administrative console by clicking http://

yourhost.domain:port_number/ibm/console after starting WebSphere Application Server. If security is
currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined
administrative ID and password. This ID is typically the server user ID that is specified when you
configure the user registry.

2. Click Security > Global security > External authorization providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager
JACC provider configuration screen is displayed.

6. Enter the following information:

Enable embedded Tivoli Access Manager
Select this option to enable Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement
Select this option when you want to unconfigure the JACC provider. Do not select this option
during configuration.

Client listening port set
WebSphere Application Server must listen using a TCP/IP port for authorization database
updates from the policy server. More than one process can run on a particular node or
machine. More than one authorization server can be specified by separating the entries with
commas. Specifying more than one authorization server at a time is useful for reasons of
failover and performance. Enter the listening ports used by Tivoli Access Manager clients,
separated by a comma. If a range of ports is specified, separate the lower and higher values
by a colon (:) (for example, 7999, 9990:999).

Policy server
Enter the name of the Tivoli Access Manager policy server and the connection port. Use the
policy_server:port form. The policy communication port is set at the time of the Tivoli Access
Manager configuration, and the default is 7135.

Authorization servers
Enter the name of the Tivoli Access Manager authorization server. Use the
auth_server:port:priority form. The authorization server communication port is set at the
time of the Tivoli Access Manager configuration, and the default is 7136. The priority value is
determined by the order of the authorization server use (for example, auth_server1:7136:1
and auth_server2:7137:2). A priority value of 1 is required when configuring against a single
authorization server.

Administrator user name
Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access
Manager was configured; it is usually sec_master.

Administrator user password
Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix
Enter the distinguished name suffix for the user registry that is shared between Tivoli Access
Manager and WebSphere Application Server, for example, o=ibm, c=us.

592 Securing applications and their environment

Security domain
You can create more than one security domain in Tivoli Access Manager, each with its own
administrative user. Users, groups and other objects are created within a specific domain, and
are not permitted to access resource in another domain. Enter the name of the Tivoli Access
Manager security domain that is used to store WebSphere Application Server users and
groups.

If a security domain is not established at the time of the Tivoli Access Manager configuration,
leave the value as Default.

Administrator user distinguished name
Enter the full distinguished name of the WebSphere Application Server security administrator
ID (for example, cn=wasdmin, o=organization, c=country). The ID name must match the
Server user ID on the Lightweight Directory Access Protocol (LDAP) User Registry panel in the
administrative console. To access the LDAP User Registry panel, click Security > Global
security. Under User account repository, choose Standalone LDAP registry as the
available realm definition. Then click Configure.

7. When all information is entered, click OK to save the configuration properties. The configuration
parameters are checked for validity and the configuration is attempted at the host server or cell
manager.

Results

After you click OK, WebSphere Application Server completes the following actions:

v Validates the configuration parameters.

v Configures the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

What to do next

If the configuration is successful, the parameters are copied to all subordinate servers, including the node
agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the
servers, including the host server, and enable WebSphere Application Server security.

Creating the security administrative user for Tivoli Access Manager:

Enabling security requires the creation of a WebSphere Application Server administrative user. Use the
Tivoli Access Manager command-line pdadmin utility to create the Tivoli Access Manager administrative
user for WebSphere Application Server. This utility is available on the policy server host machine.

About this task

Follow these steps to use the pdadmin utility.

Procedure

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,
sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a
new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,
c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access
Protocol (LDAP) user registry.

Chapter 7. Authorizing access to resources 593

3. Enable the account for the WebSphere Application Server security administrative user by issuing the
following command:

pdadmin> user modify wasadmin account-valid yes

What to do next

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager. For
more information, see “Tivoli Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration:

You can configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access
Manager to deliver authentication and authorization protection for your applications or for authentication
only. Most deployments that use the JACC provider for Tivoli Access Manager to configure Tivoli Access
Manager provide both authentication and authorization functionality.

If you want Tivoli Access Manager to provide authentication, but leave authorization as part of WebSphere
Application Server's native security, add the
com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true property to the
amwas.amjacc.template.properties file. The file is located in the profile_root/config/cells/cell_name
directory.

After this property is set, perform the tasks for setting Tivoli Access Manager Security, as documented.

You can configure the JACC provider for Tivoli Access Manager using either the WebSphere Application
Server administrative console or the wsadmin command-line utility.

v For details on configuring the JACC provider for Tivoli Access Manager using the administrative
console, refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative
console” on page 591.

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line
utility, refer to Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility.

The JACC configuration files for Tivoli Access Manager that are common across multiple WebSphere
Application Server profiles are created by default under the java/jre directory. When you install
WebSphere Application Server, you are given permissions to read and write to the files in this directory.

This situation is not ideal because configuration of the JACC provider for Tivoli Access Manager fails in
these situations. To avoid this situation, you can add the following property to the profile_root/config/
cells/cell_name/amwas.amjacc.template.properties file:
com.tivoli.pd.as.jacc.CommonFileLocation=new location where new location is a fully qualified directory
name.

This property applies read and write permissions to the java/jre directory.

The wsadmin command is available to reconfigure the Java Authorization Contract for Containers (JACC)
Tivoli Access Manager interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then
reconfiguring it.

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access
Manager.

594 Securing applications and their environment

Note: When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the
information in the administrative console panel might not represent the data in the provider. Also,
any changes to the panel might not be reflected in the provider automatically. Follow the provider's
instructions to propagate any changes made to the provider.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click External authorization providers.

3. Under Authorization provider, click External JACC provider.

4. Click Configure to configure the properties for Tivoli Access Manager.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

Default: Disabled
Range: Enabled or Disabled

Note: If you want to disable Tivoli Access Manager as the JACC provider, clear this option and also select
Default authorization.

Ignore errors during embedded Tivoli Access Manager disablement:

Specifies whether to ignore error messages during the unconfiguration process.

If you check this check box and click OK or Apply, when you unconfigure the embedded Tivoli Access
Manager, any unconfiguration errors are ignored and the process completes. If you do not check this
check box, unconfiguration errors cause the unconfiguration process to stop.

This option is applicable only when re-configuring an embedded Tivoli Access Manager client or disabling
an embedded Tivoli Access Manager.

Default: Disabled
Range: Enabled or Disabled

Client listening port set:

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

The application server needs to listen on a TCP/IP port for authorization database updates from the policy
server. More than one process can run on a particular node and machine, so a list of ports is required for
use by the processes. If you specify a range of ports, separate the lower and higher values by a colon (:).
The first 20% of the range is reserved for the deployment manager. Single ports and port ranges are
specified on separate lines. An example list might look like the following example:

7999
8900:8999

Note: Each of the servants might need to open up a listener port.

Policy server:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and
the connection port.

Chapter 7. Authorizing access to resources 595

Use the form policy_server:port. The policy server communication port was set at the time of the Tivoli
Access Manager configuration. The default is 7135.

Authorization servers:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization
server. Use the form, auth_server:port:priority.

The authorization server communication port is set at the time of Tivoli Access Manager configuration. The
default is 7136. You can specify more than one authorization server by entering each server on a new line.
Configuring more than one authorization server provides for failover. The priority value is the order of
authorization server use. For example:
auth_server1.mycompany.com:7136:1
auth_server2.mycompany.com:7137:2

A priority of 1 is still required when configuring a single authorization server.

Administrator user name:

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager
configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID that is entered in the
Administrator user name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and the
application server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store application server users
and groups.

Specification of the Tivoli Access Manager domain is required because more than one security domain can
be created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are
created within a specific domain and are not permitted to access resources in another domain. If a security
domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

Default: Default

Administrator user distinguished name:

Enter the fully distinguished name of the security administrator ID for the application server. For example,
cn=wasadmin,o=organization,c=country

JACC provider configuration properties for Tivoli Access Manager:

The JACC provider configuration properties detailed below may require configuration.

The Java property files are created in the profile_root/etc/tam directory.

Two properties files might require configuration:

596 Securing applications and their environment

v amwas.node_name_server_name.amjacc.properties contains properties that are used by the JACC
provider of Tivoli Access Manager.

v amwas.node_name_server_name.pdjlog.properties contains logging properties that are created from the
amwas.pdjlog.template.properties file for the specific node and server combination at the time of
configuration.

Use amwas.node_name_server_name.amjacc.properties file to configure static role caching, dynamic role
caching, object caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true:

Enables or disables static role caching. Static role caching is enabled by default.

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl:

This property holds the implementation class of the static role cache. You do not need to change this
property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer:

Defines the administration roles for WebSphere Application Server.

Tip: Enhance Application performance by adding the static roles: CosNamingRead, CosNamingWrite,
CosNamingCreate, CosNamingDelete. These roles support for improved lookup performance within
the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true:

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl:

This property holds the implementation class of the dynamic role cache. You do not need to change this
property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000:

The maximum number of users that the cache supports before a cache cleanup is performed. The default
number of users is 100000.

Chapter 7. Authorizing access to resources 597

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20:

The number of tables that is used internally by the dynamic role cache. The default is 20. When a large
number of threads use the cache, increase the value to tune and optimize cache performance.

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10:

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.
The term, principal, here refers to the Tivoli Access Manager credential that is returned from a unique
Lightweight Directory Access Protocol user.

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20:

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The
default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.
This bypasses the need to query the Tivoli Access Manager authorization server for each resource
request.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter when the profile is created.

These object cache properties cannot be changed after configuration. If any require changing, it should be
done before configuration of the nodes in the cell. Changes need to be made in the template properties
file before any configuration actions are performed. Properties changed after configuration might cause
access decisions to fail.

com.tivoli.pd.as.cache.EnableObjectCaching=true:

This property enables or disables object caching. The default value is true.

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl:

This property is the class used to perform object caching. You can implement your own object cache if
required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default
is com.tivoli.pd.as.cache.ObjectCacheImpl.

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20:

This property specifies the number of buckets used to store object cache entries in the underlying hash
table. The default is 20.

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000:

This property specifies the total number of entries for all buckets in the cache. This figure, divided by
NumBuckets determines the maximum size of each bucket. The default is 10000.

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20:

This property specifies the length of time in minutes that objects are kept in the object cache. The default
is 20.

Role-based policy framework properties:

598 Securing applications and their environment

Although it is very unlikely that you will need to change these properties, use this file to reference
supported properties within the role-based policy framework.

The role-based policy framework parameters are located in the Java Authorization Contract for Containers
(JACC) configuration file and in the authorization configuration file. They are set at the time of JACC
provider configuration and authorization server configuration. The role-based policy framework settings for
the authorization table and the JACC provider can be modified separately for each WebSphere Application
Server instance. The amwas.node_server.authztable.properties configuration file is generated from the
authorization table. The amwas.node_name_server_name.amjacc.properties configuration file is generated
from the JACC provider. Both files are stored in the profile_root/etc/tam directory. It is very unlikely that
you might need to change these properties. The properties are described here for reference.

The settings cannot be changed after configuration. Make changes in the template properties file before
any configuration actions are performed. Properties that are changed after configuration will cause access
decisions to fail.

com.tivoli.pd.as.rbpf.AMAction=i:

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli
Access Manager access control list (ACL) and places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer:

This property sets the Tivoli Access Manager action group that serves as a container for the action that is
specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in the
com.tivoli.pd.as.rbpf.AMAction property goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer:

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources:

This property specifies the location under the root location that is specified in the posroot property to
separate other products in the protected object space. Embedded Tivoli Access Manager objects are found
in the /WebAppServer/deployedResources directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources:

This property specifies the Tivoli Access Manager object space container name for the protected
resources. The default location is the /WebAppServer/deployedResources/Resources directory.

com.tivoli.pd.as.rbpf.RoleContainerName=Roles:

This property specifies the Tivoli Access Manager protected object space container name for the security
roles. The default location is the /WebAppServer/deployedResources/Roles directory.

System-dependent configuration properties:

Do not change these system-dependent configuration properties. These properties are included in this
article for reference only.

These properties are in the app_server_root/etcamwas.node_name_server_name.amjacc.properties file.

The profile_root variable is the value of the profilePath parameter when the profile is created.

Chapter 7. Authorizing access to resources 599

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration.
This argument specifies the location of the file that contains information about the JACC provider of Tivoli
Access Manager. Do not change this entry or the properties in the amwas.node_server.pdperm.properties
file.

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:user_root/etc/tam/amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration. It
specifies the location of the file that contains information about the Tivoli Access Manager JACC provider.
Do not change this entry or the properties in the amwas.node_server.pdperm.properties file.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the JACC provider of Tivoli Access
Manager. The referenced file is generated by the JACC provider of Tivoli Access Manager configuration.
Do not change this entry.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:user_root/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the Tivoli Access Manager JACC
provider. The file referenced is generated by the Tivoli Access Manager JACC provider configuration. Do
not change this entry.

Administering security users and roles with Tivoli Access Manager
Use these steps to manage user-to-role mappings and user-to-group mappings for applications.

About this task

User-to-role mapping and user-to-group mapping for the JACC provider of Tivoli Access Manager are
performed using the WebSphere Application Server administrative console.

Procedure
1. Click Applications > Enterprise applications > application_name.

2. Under Additional properties, click Security role to user/group mapping. The user and groups
management screen is displayed.

3. Select the role that requires user or group management and use Lookup users or Lookup groups to
manage the users or groups for the selected role. The native role mapping uses the MapRolesToUsers
administrative task. If you are using Tivoli Access Manager, use the TAMMapRolesToUsers
administrative task instead. The syntax and options for the Tivoli version are the same as those used
in the native version. For more information, see “Role-based security with embedded Tivoli Access
Manager” on page 559 and “Configuring Tivoli Access Manager groups.”

Configuring Tivoli Access Manager groups
Use these steps to configure the WebSphere Application Server administrative console to add objects of
the accessGroup class to the list of object classes that represent user registry groups.

600 Securing applications and their environment

About this task

You can use the WebSphere Application Server administrative console to specify security policies for
applications that run in the WebSphere Application Server environment. You can also use the WebSphere
Application Server administrative console to specify security policies for other web resources, based on the
entities that are stored in the user registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager
administrators can use the pdadmin utility, which is available only on the policy server host in the PD.RTE
fileset, to create new groups. These new groups are added to the registry as the accessGroup object
class.

The WebSphere Application Server administrative console is not configured by default to recognize objects
of the accessGroup class as user registry groups. You can configure the WebSphere Application Server
administrative console to add this object class to the list of object classes that represent user registry
groups. To do this configuration, complete the following instructions:

Procedure
1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member. The Group
Member ID Map field looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;
accessGroup:member

6. Stop and restart WebSphere Application Server.

Configuring additional authorization servers for Tivoli Access Manager
Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple
authorization servers is useful for providing a failover capability as well as improving performance when
the volume of access requests is large.

Procedure
1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available in the IBM Tivoli Access Manager for e-business
information center.

2. Re-configure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask
reconfigureTAM interactive wsadmin command. Enter all new and existing options. The following
table lists the information that you are asked to provide for the reconfigureTAM command. The table
also lists the properties that apply to the configureTAM and unconfigureTAM commands.

Chapter 7. Authorizing access to resources 601

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

Table 69. Commands for configuring, reconfiguring, and unconfiguring Tivoli Access Manager. The following table
lists the information that you are asked to provide for the configureTAM command. The table also lists the properties
that apply to the unconfigureTAM and reconfigureTAM commands.
Property Default Relevant command Description

Websphere Application Server node
name

*
v configureTAM

v reconfigureTAM

v unconfigureTAM

Specify a single node or enter an asterisk (*) to run the configuration task on all of the
application server instances including the deployment manager, node agents, and servers.

Tivoli Access Manager Policy Server Default port:
7135

v configureTAM

v reconfigureTAM

Enter the name of the Tivoli Access Manager policy server and the connection port. Use
the format, policy_server : port. The policy server communication port is set at the time of
Tivoli Access Manager configuration.

Tivoli Access Manager Authorization
Server

Default port:
7136

v configureTAM

v reconfigureTAM

Enter the name, port, and priority of each configured Tivoli Access Manager authorization
server. Use the format auth_server : port : priority. The authorization server
communication port is set at the time of Tivoli Access Manager configuration. You can
specify more than one authorization server by separating the entries with commas. Having
more than one authorization server configured is useful for failover and performance. The
priority value is the order of authorization server use. For example:
auth_server1:7136:1,auth_server2:7137:2. A priority of 1 is still required when you use a
single authorization server.

Websphere Application Server
administrator's distinguished name

v configureTAM

v reconfigureTAM

Enter the full distinguished name of the security primary administrator ID for WebSphere
Application Server as created in the "Creating the security administrative user" topic in the
Securing applications and their environment PDF. For example:
cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry
distinguished name suffix

v configureTAM

v reconfigureTAM

Enter the suffix that you have set up in the user registry to contain the user and groups
for Tivoli Access Manager. For example: o=organization,c=country

Tivoli Access Manager administrator's
user name

sec_master
v configureTAM

v reconfigureTAM

v unconfigureTAM

Enter the Tivoli Access Manager administration user ID that you created when you
configured Tivoli Access Manager. This ID is usually sec_master.

Tivoli Access Manager administrator's
user password

v configureTAM

v reconfigureTAM

v unconfigureTAM

Enter the password that is associated with the Tivoli Access Manager administration user
ID.

Tivoli Access Manager security domain Default
v configureTAM

v reconfigureTAM

Enter the name of the Tivoli Access Manager security domain that is used to store users
and groups. If a security domain is not already established at the time of Tivoli Access
Manager configuration, click Return to accept the default.

Embedded Tivoli Access Manager
listening port set

8900:8999
v configureTAM

v reconfigureTAM

WebSphere Application Server needs to listen on a TCP/IP port for authorization database
updates from the policy server. More than one process can run on a particular node and
machine so a list of ports is required for the processes. Enter the ports that are used as
listening ports by Tivoli Access Manager clients, separated by a comma. If you specify a
range of ports, separate the lower and higher values by a colon. For example, 7999,
9990:9999.

Defer No
v configureTAM

v reconfigureTAM

v unconfigureTAM

Set this option to yes if you want to defer the configuration of the management server
until the next restart. Set the option to no if you want the configuration of the management
server to occur immediately. Managed servers are configured on their next restart.

Force No
v reconfigureTAM

v unconfigureTAM

Set this value to yes if you want to ignore errors during the unconfiguration process and
allow the entire process to complete. Set the value to no if you want errors to stop the
unconfiguration process. This option is especially useful if the environment needs to be
cleaned up and problems are occurring that do not allow the entire cleanup process to
complete successfully.

Logging Tivoli Access Manager security
Use this topic to enable the trace specification to indicate tracing at the required level.

About this task

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are
logged to the configured trace output location, and messages are written to standard out SystemOut.log
file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

Note: These messages are sent to CTRACE. CTRACE can write them to a CTRACE dataset, memory
buffer, and/or the SYSPRINT data set for the region's started task.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using

602 Securing applications and their environment

HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the JACC provider for Tivoli Access
Manager, set the following line to true:
amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the JACC provider of Tivoli Access Manager components in the WebSphere
Application Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log option.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server_name.

f. Click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using the com.tivoli.pd.as.*
command. Tracing for separate components can be enabled using the following commands:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

For more information, see ../ae/utrb_loglevel.dita.

h. Click Apply.

What to do next

The trace specification now indicates that tracing is enabled at the required level. Save the configuration
and restart the server for the changes to take effect.

Tivoli Access Manager loggers:

The Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager uses the JLog
logging framework as does the Java runtime environment for Tivoli Access Manager. You can enable
tracing and messaging selectively for specific JACC providers for Tivoli Access Manager components.

The JACC for Tivoli Access Manager provider messages are logged to the configured trace output
location, and messages are written to standard out SystemOut.log file. When trace is enabled, all logging,
both trace and messaging, is sent to the trace.log file.

Note: These messages are sent to CTRACE. CTRACE can write them to a CTRACE dataset, memory
buffer, and/or the SYSPRINT data set for the region's started task.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Chapter 7. Authorizing access to resources 603

Tracing and message logging for the JACC provider for Tivoli Access Manager are configured in the
amwas.node_server.pdjlog.properties properties file, which is located in the profile_root/etc/tam
directory. This file contains logging properties from the amwas.pdjlog.template.properties template file for
the specific node and server combination at the time of JACC provider for Tivoli Access Manager
configuration.

The contents of this file let the user control:

v Whether tracing is enabled or disabled for the JACC provider of Tivoli Access Manager components.

v Whether message logging is enabled or disabled for the JACC provider of Tivoli Access Manager
components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with
one JACC provider of Tivoli Access Manager component. These loggers include:

Table 70. Tivoli Access Manager loggers. This table describes the Tivoli Access Manager loggers.
Logger Name Description

AmasRBPFTraceLogger AmasRBPFMessageLogger Logs messages and trace for the role-based policy framework. This underlying framework is
used by embedded Tivoli Access Manager to make access decisions.

AmasCacheTraceLogger AmasCacheMessageLogger Logs messages and trace for the policy caches that are used by the role-based policy
framework.

AMWASWebTraceLogger AMWASWebMessageLogger Logs messages and trace for the WebSphere Application Server authorization plug-in.

AMWASConfigTraceLogger
AMWASConfigMessageLogger

Logs messages and trace for the configuration actions of the JACC provider for Tivoli
Access Manager .

JACCTraceLogger JACCMessageLogger Logs messages and trace for the JACC provider activity of Tivoli Access Manager .

Note: Tracing can have a significant impact on system performance. Enable tracing only when diagnosing
the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging
sub-system. All messages are written to the WebSphere Application Server trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which, when
set to true, enables logging for the specific component. A value of false disables logging for that
component.

The amwas.node_server.pdjlog.properties file defines the parent loggers MessageLogger and
TraceLogger that also have an isLogging attribute. If the child loggers do not specify this isLogging
attribute, they inherit the value of their respective parent. When the JACC provider for Tivoli Access
Manager is enabled, the isLogging attribute is set to true for the MessageLogger and set to false for the
TraceLogger logger. Message logging is enabled for all components and tracing is disabled for all
components, by default.

To turn on tracing for a JACC provider component, see Logging Tivoli Access Manager security.

Interfaces that support JACC
WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration
interfaces, which are similar to PolicyConfigurationFactory and PolicyConfiguration interfaces so the
information that is stored in the bindings file can be propagated to the provider during installation. The
implementation of these interfaces is optional.

RoleConfiguration interface

Use the RoleConfiguration interface to propagate the authorization information to the provider. This
interface is similar to the PolicyConfiguration interface that is found in Java Authorization Contact for
Containers (JACC).

604 Securing applications and their environment

RoleConfiguration
- com.ibm.wsspi.security.authorization.RoleConfiguration

/**
* This interface is used to propagate the authorization table information
* in the binding file during application installation. Implementation of this interface is
* optional. When a JACC provider implements this interface during an application, both
* the policy and the authorization table information are propagated to the provider.
* If this is not implemented, only the policy information is propagated as per
* the JACC specification.
* @ibm-spi
* @ibm-support-class-A1
*/

public interface RoleConfiguration

/**
* Add the users to the role in RoleConfiguration.
* The role is created, if it does not exist in RoleConfiguration.
* @param role the role name.
* @param users the list of the user names.
* @exception RoleConfigurationException if the users cannot be added.
*/
public void addUsersToRole(String role, List users)
throws RoleConfigurationException

/**
* Remove the users to the role in RoleConfiguration.
* @param role the role name.
* @param users the list of the user names.
* @exception RoleConfigurationException if the users cannot be removed.
*/
public void removeUsersFromRole(String role, List users)
throws RoleConfigurationException

/**
* Add the groups to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @param groups the list of the group names.
* @exception RoleConfigurationException if the groups cannot be added.
*/
public void addGroupsToRole(String role, List groups)
throws RoleConfigurationException

/**
* Remove the groups to the role in RoleConfiguration.
* @param role the role name.
* @param groups the list of the group names.
* @exception RoleConfigurationException if the groups cannot be removed.
*/
public void removeGroupsFromRole(String role, List groups)
throws RoleConfigurationException

/**
* Add the everyone to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the everyone cannot be added.
*/
public void addEveryoneToRole(String role)
throws RoleConfigurationException

/**
* Remove the everyone to the role in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the everyone cannot be removed.
*/
public void removeEveryoneFromRole(String role)
throws RoleConfigurationException

/**
* Add the all authenticated users to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the authentication users cannot
* be added.
*/
public void addAuthenticatedUsersToRole(String role)
throws RoleConfigurationException

/**
* Remove the all authenticated users to the role in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the authentication users cannot
* be removed.
*/
public void removeAuthenticatedUsersFromRole(String role)
throws RoleConfigurationException

/**
* This commits the changes in Roleconfiguration.
* @exception RoleConfigurationException if the changes cannot be

Chapter 7. Authorizing access to resources 605

* committed.
*/
public void commit()
throws RoleConfigurationException

/**
* This deletes the RoleConfiguration from the RoleConfiguration Factory.
* @exception RoleConfigurationException if the RoleConfiguration cannot
* be deleted.
*/
public void delete()
throws RoleConfigurationException

/**
* This returns the contextID of the RoleConfiguration.
* @exception RoleConfigurationException if the contextID cannot be
* obtained.
*/
public String getContextID()
throws RoleConfigurationException

RoleConfigurationFactory interface

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface that is
introduced by JACC, and is used to obtain RoleConfiguration objects based on the contextID IDs.
RoleConfigurationFactory
- com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**
* This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration
* objects based on the context identifier similar to the policy context identifier.
* Implementation of this interface is required only if the RoleConfiguration interface is implemented.
*
* @ibm-spi
* @ibm-support-class-A1
*/

public interface RoleConfigurationFactory
/**
* This gets a RoleConfiguration with contextID from the
* RoleConfigurationfactory. If the RoleConfiguration does not exist
* for the contextID in the RoleConfigurationFactory, a new
* RoleConfiguration with contextID is created in the
* RoleConfigurationFactory. The contextID is similar to
* PolicyContextID, but it does not contain the module name.
* If remove is true, the old RoleConfiguration is removed and a new
* RoleConfiguration is created, and returns with the contextID.
* @return the RoleConfiguration object for this contextID
* @param contextID the context ID of RoleConfiguration
* @param remove true or false
* @exception RoleConfigurationException if RoleConfiguration
* cannot be obtained.
**/
public abstract com.ibm.ws.security.policy.RoleConfiguration

getRoleConfiguration(String contextID, boolean remove)
throws RoleConfigurationException

InitializeJACCProvider provider

When implemented by the provider, this interface is called by every process where the JACC provider can
be used for authorization. All additional properties that are entered during the authorization check are
passed to the provider. For example, the provider can use this information to initialize client code to
communicate with their server or repository. The cleanup method is called during server shutdown to clean
up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement the interface, and WebSphere
Application Server calls it to initialize the JACC provider. The name of the implementation class is obtained
from the value of the initializeJACCProviderClassName system property.

606 Securing applications and their environment

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.
InitializeJACCProvider

- com.ibm.wsspi.security.authorization.InitializeJACCProvider

/**
* Initializes the JACC provider

* @return 0 for success.
* @param props the custom properties that are included for this provider will
* pass to the implementation class.
* @exception Exception for any problems encountered.
**/
public int initialize(java.util.Properties props)
throws Exception

/**
* This method is for the JACC provider cleanup and will be called during a process stop.
**/
public void cleanup()

Enabling the JACC provider for Tivoli Access Manager
The Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager is configured by
default. Use this topic to enable the JACC provider for Tivoli Access Manager.

About this task

Restriction: Do not perform this task if you are configuring the JACC provider for Tivoli Access Manager
to supply authentication services only. Only perform this task for installations that require
both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. To enable the JACC provider for
Tivoli Access Manager, complete the following steps:

Procedure
1. Click Security > Global security > External authorization providers.

2. Select the External authorization using a JACC provider option, then click Apply.

3. Under Related Items, click External JACC provider. The JACC provider settings for Tivoli Access
Manager are displayed.

4. Verify that the correct settings are present to work with your Tivoli Access Manager configuration. The
following list shows the JACC provider configuration settings for Tivoli Access Manager.

Table 71. JACC provider configuration settings for Tivoli Access Manager. This table describes the JACC provider
configuration settings for Tivoli Access Manager.
Field Value

Name Tivoli Access Manager

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler
for access decisions

false

Supports dynamic module updates true

For more information, see “External Java Authorization Contract for Containers provider settings” on
page 587.

5. Under Additional properties, click Tivoli Access Manager properties and set the properties that are
associated with the embedded Tivoli Access Manager. The following table explains the properties that
are needed for the embedded Tivoli Access Manager. Some fields do not have default values.

Chapter 7. Authorizing access to resources 607

Table 72. Tivoli Access Manger properties. This table lists the Tivoli Access Manger properties.
Name Default value Description

Enable embedded Tivoli Access
Manager

Unchecked When you select this check box, the embedded Tivoli Access Manager is configured or
reconfigured. When you clear this check box, the embedded Tivoli Access Manager is
unconfigured.

Ignore errors during embedded Tivoli
Access Manager disablement

Unchecked If you check this check box and click OK or Apply, when you unconfigure the embedded
Tivoli Access Manager, any unconfiguration errors are ignored and the process
completes. If you do not check this check box, unconfiguration errors cause the
unconfiguration process to stop.

Client listening port 8900:8999 When the embedded Tivoli Access Manager is configured and running, it requires several
ports to listen for updates to the access control list database for Tivoli Access Manager.
The value in this field is a range of port numbers that Tivoli Access Manager can use for
this purpose. The first 20% of this range is reserved for the deployment manager. You
can enter multiple ranges or individual port numbers in a line separated list. For example:

8900:8999
9100:9200
9999

Policy server This field value specifies the name and port number of the configure and running Tivoli
Access Manager policy server. The format is server:port

For example:snapper.ibm.com:7135

Authorization servers This field contains the names, port numbers, and priorities of all of the configured and
running Tivoli Access Manager authorization servers. This field must contain at least one
authorization server. If multiple authorization servers are listed, those servers are used
for failover. The server with priority 1 is used first with failover to server priority 2 and so
on. The format is server:port:priority with each authorization server listed on a different
line. For example:

snapper.ibm.com:7136:1
turtle.ibm.com:7136:2

Authorization user name sec_master This field value specifies the administrative user name for Tivoli Access Manager.

Administrator user password This field value specifies the password for Tivoli Access Manager.

User registry distinguished name
suffix

This field value is the suffix that is set up in the user registry to contain the users and
groups for Tivoli Access Manager. For example using IBM Tivoli Directory Server:

o=ibm,c=au

Security domain Default This field value specifies the configured security domain to use for the embedded Tivoli
Access Manager.

Administrator user distinguished
name

This field specifies the fully distinguished user name of the primary administrative user
for WebSphere Application Server security. For example using IBM Tivoli Directory
Server:

cn=wasadmin,o=ibm,c=au

For more information, see “Tivoli Access Manager JACC provider settings” on page 594.

6. Click OK.

7. Save the settings by clicking Save at the top of the page.

8. Log out of the WebSphere Application Server administrative console.

9. Restart WebSphere Application Server. The security configuration is now replicated to managed
servers and node agents. These other servers within a cell also require restarting before the security
changes take effect.

Enabling embedded Tivoli Access Manager
Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use.

About this task

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This
user registry contains the user and group information for both Tivoli Access Manager and WebSphere
Application Server.

608 Securing applications and their environment

v Tivoli Access Manager server exists and is configured to use the user registry. For details on the
installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for
e-business information center.

Note: WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use
Tivoli Access Manager, you must also configure the Tivoli Access Manager server.

However, the server version must be the same version or later as the client version. For
information on the supported version of Tivoli Access Manager, see WebSphere Application
Server - Supported Prerequisites.

Tivoli Access Manager server is bundled with WebSphere Application Server.

v WebSphere Application Server is installed either in a single server model or as WebSphere Application
Server, Network Deployment.

v When administrative security is configured with a Federal Information Processing Standard (FIPS)
provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security:

Procedure
1. Create the security administrative user.

For more information, see the Securing applications and their environment PDF.

2. Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager .

For more information, see the Securing applications and their environment PDF.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must
configure LDAP as the user registry.

For more information, see the Securing applications and their environment PDF.

4. Enable the JACC provider for Tivoli Access Manager.

For more information, see the Securing applications and their environment PDF.

TAMConfig command group for the AdminTask object
You can use the Jython or Jacl scripting languages to configure embedded IBM Tivoli Access Manager
with the wsadmin tool. The commands and parameters in the TAMConfig group can be used to configure
or unconfigure Tivoli Access Manager.

The TAMConfig command group for the AdminTask object includes the following commands:

v “configureTAM” on page 610

v “listTAMSettings” on page 610

v “modifyTAM” on page 610

v “reconfigureTAM” on page 611

v “unconfigureTAM” on page 612

v “configureTAMTAI” on page 612

v “unconfigureTAMTAI” on page 614

v “configureTAMTAIProperties” on page 615

v “unconfigureTAMTAIProperties” on page 617

v “configureTAMTAIPdjrte” on page 618

v “unconfigureTAMTAIPdjrte” on page 619

Chapter 7. Authorizing access to resources 609

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm

configureTAM

Use the configureTAM command to manually configure the Tivoli Access Manager.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAM {-interactive}

v Using Jython:
AdminTask.configureTAM(’-interactive’)

listTAMSettings

The listSSLRepertoires command displays the current embedded Tivoli Access Manager configuration
settings.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask listTAMSettings {-interactive}

v Using Jython:
print AdminTask.listTAMSettings(’-interactive’)

modifyTAM

The modifyTAM command modifies embedded Tivoli Access Manager configuration settings.

Target object

610 Securing applications and their environment

None.

Required parameters

-adminPasswd
Specifies the Tivoli Access Manager administrator password. (String, required)

Optional parameters

-adminUid
Specifies the Tivoli Access Manager user name. (String, optional)

-nodeName
Specifies the target node or nodes. Set the value as the * asterisk character to specify all nodes.
(String, optional)

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask modifyTAM {-adminPasswd my11password}

v Using Jython:
AdminTask.modifyTAM(’-adminPasswd my11password’)

v Using Jython list:
AdminTask.modifyTAM([’-adminPasswd’, ’my11password’])

Interactive mode example usage:

v Using Jacl:
$AdminTask modifyTAM {-interactive}

v Using Jython:
AdminTask.modifyTAM(’-interactive’)

reconfigureTAM

The reconfigureTAM command reconfigures the Java Authorization Contract for Containers (JACC) Tivoli
Access Manager settings.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask reconfigureTAM {-interactive}

v Using Jython:
AdminTask.reconfigureTAM(’-interactive’)

Chapter 7. Authorizing access to resources 611

unconfigureTAM

The unconfigureTAM command removes configuration data for the Java Authorization Contract for
Containers (JACC) Tivoli Access Manager.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAM {-interactive}

v Using Jython:
AdminTask.unconfigureTAM(’-interactive’)

configureTAMTAI

The configureTAMTAI command configures the embedded Tivoli Access Manager trust association
interceptor (TAI) with classname TAMTrustAsociationInterceptorPlus.

Target object

None.

Required parameters

-policySvr
This property specifies the name of the Tivoli Access Manager policy server with which the application
server communicates. The server is specified by a fully-qualified host name, the SSL port number, and
the rank. The default SSL port number is 7135. For example: myauth.mycompany.com:7135:1.

-authSvrs
This property specifies the name of the Tivoli Access Manager authorization server with which the
application server communicates. The server is specified by a fully-qualified host name, the SSL port
number, and the rank. The default SSL port number is 7136. For example:
myauth.mycompany.com:7136:1. You can specify multiple servers if the entries are separated by a
comma (,).

-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

-loginId
The WebSEAL trusted user as created in "Creating a trusted user account in Tivoli Access Manager".
See the Configuring single sign-on using trust association interceptor ++ article for more information.
The format of the username is the short name representation.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,

612 Securing applications and their environment

sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

For example, for U.S. English, the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-secDomain
This property specifies the Tivoli Access Manager domain name to which the administrator is
authenticated. This domain must exist and an administrator ID and password must be valid for this
domain. The application server is specified in this domain. If the application server is not specified, the
default value is Default. The local domain value is retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English, the valid characters for domain names are the letters a-Z, the numbers
0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-checkViaHeader
You can configure TAI so that the via header can be ignored when validating trust for a request. Set
this property to false if none of the hosts in the via header need to be trusted. When set to false, you
do not need to set the trusted host names and host ports properties. The only mandatory property to
check when the via header is false is com.ibm.websphere.security.webseal.loginId. The default value
of the check via header property is false. When using Tivoli Access Manager plug-in for web servers,
set this property to false.

Note: The via header is part of the standard HTTP header that records the server names that the
request passed through.

-id
This property specifies a comma-separated list of headers that exists in the request. If all of the
configured headers do not exist in the request, trust cannot be established. The default value for the
ID property is iv-creds. Any other values set in WebSphere Application Server are added to the list
along with iv-creds, separated by commas.

-hostnames
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property specifies the host names (case-sensitive) that are both trusted and expected in the request
header. Requests arriving from unlisted hosts might not be trusted. If the checkViaHeader property is
not set, or is set to false, then the trusted host names property has no influence. If the
checkViaHeader property is set to true, and the trusted host names property is not set, the TAI
initialization fails.

-ports
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property is a comma-separated list of trusted host ports. Requests that arrive from unlisted ports might
not be trusted. If the checkViaHeader property is not set, or is set to false, then this property has no
influence. If the checkViaHeader property is set to true, and the trusted host ports property is not set
in WebSphere Application Server, the TAI initialization fails.

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used when only some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

Chapter 7. Authorizing access to resources 613

For example, consider the following header:

If in via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001If the viaDepth property is not set, is set to 2 or
is set to 0, and a request with the previous via header is received then both webseal1:7002 and
webseal2:7001 need to be trusted. The following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

If in com.ibm.websphere.security.webseal.ports = 7002,7001If the viaDepth property is set to 1, and
the previous request is received, then only the last host in the via header needs to be trusted. The
following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means that all of the hosts in the via header are
checked for trust.

-ssoPwdExpiry
After trust is established for a request, the single sign-on user password is cached, eliminating the
need to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every
request. You can modify the cache timeout period by setting the single sign-on password expiry
property to the required time in seconds. If the password expiry property is set to 0, the cached
password never expires. The default value for the password expiry property is 600.

-ignoreProxy
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust.

-configURL
For the TAI to establish trust for a request, it requires that the SvrSslCfg task be run for the Java
Virtual Machine on the Application Server and result in the creation of a properties file. If this
properties file is not at the default URL, which is file://java.home/PdPerm.properties, the correct URL of
the properties file must be set in the configuration URL property. If this property is not set, and the
SvrSslCfg-generated properties file is not in the default location, the TAI initialization fails. The default
value for the config URL property is file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

-defer
This property indicates whether the Tivoli Access Manager configuration portion of this task should be
run immediately or deferred until the startup of the WebSphere Application Server. The default value is
no.

Note: The TAI properties are updated immediately regardless of this setting.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAI {-interactive}

v Using Jython:
AdminTask.configureTAMTAI(’-interactive’)

unconfigureTAMTAI

The unconfigureTAMTAI command unconfigures the embedded Tivoli Access Manager Trust Association
Interceptor with classname TAMTrustAsociationInterceptorPlus. This task does not include removing any
custom properties from the security configuration.

614 Securing applications and their environment

Target object

None.

Required parameters

-adminPasswd
Specifies the password of the Tivoli Access Manager administrator user that is associated with the
-adminUid parameter. The password restrictions depend upon the password policy for your Tivoli
Access Manager configuration.

Optional parameters

-adminUid
Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is
the default. A valid administrative ID is an alphanumeric, case-sensitive string. String values are
expected to be characters that are part of the local code set. You cannot use a space in the
administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.), an
underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-force
Indicates whether or not this task should stop when an error is encountered. The default value is no.

-defer
Indicates whether this task should be run immediately or deferred until the startup of the WebSphere
Application Server. The default value is no.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAI {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAI(’-interactive’)

configureTAMTAIProperties

The configureTAMTAIProperties command adds the custom properties to the security configuration for the
embedded Tivoli Access Manager Trust Association Interceptor with classname
TAMTrustAsociationInterceptorPlus.

Target object

None.

Required parameters

-loginId
The WebSEAL trusted user is created as discussed in "Creating a trusted user account in Tivoli
Access Manager". See the Configuring single sign-on using trust association interceptor ++ article for
more information. The format of the username is the short name representation.

Optional parameters

Chapter 7. Authorizing access to resources 615

-checkViaHeader
You can configure TAI so that the via header can be ignored when validating trust for a request. Set
this property to false if none of the hosts in the via header need to be trusted. When set to false you
do not need to set the trusted host names and host ports properties. The only mandatory property to
check when via header is false is com.ibm.websphere.security.webseal.loginId. The default value of
the check via header property is false. When using Tivoli Access Manager plug-in for web servers, set
this property to false.

Note: The via header is part of the standard HTTP header that records the server names that the
request passed through.

-id
This property indicates a comma-separated list of headers that exists in the request. If all of the
configured headers do not exist in the request, trust cannot be established. The default value for the
ID property is iv-creds. Any other values set in WebSphere Application Server are added to the list
along with iv-creds, separated by commas.

-hostnames
Do not set this property if using Tivoli Access Manager plug-in for web servers. The property specifies
the host names (case-sensitive) that are both trusted and expected in the request header. Requests
arriving from unlisted hosts might not be trusted. If the checkViaHeader property is not set, or is set to
false, then the trusted host names property has no influence. If the checkViaHeader property is set to
true, and the trusted host names property is not set, the TAI initialization fails.

-ports
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property is a comma-separated list of trusted host ports. Requests that arrive from unlisted ports might
not be trusted. If the checkViaHeader property is not set, or is set to false, then this property has no
influence. If the checkViaHeader property is set to true, and the trusted host ports property is not set
in WebSphere Application Server, the TAI initialization fails.

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used only when some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

If in via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001If the viaDepth property is not set, is set to 2 or
is set to 0, and a request with the previous via header is received then both webseal1:7002 and
webseal2:7001 need to be trusted. The following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

If in com.ibm.websphere.security.webseal.ports = 7002,7001If the viaDepth property is set to 1, and
the previous request is received, then only the last host in the via header needs to be trusted. The
following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means that all of the hosts in the via header are
checked for trust.

-ssoPwdExpiry
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true, the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust

616 Securing applications and their environment

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used only when some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

-ssoPwdExpiry
After trust is established for a request, the single sign-on user password is cached, eliminating the
need to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every
request. You can modify the cache timeout period by setting the single sign-on password expiry
property to the required time in seconds. If the password expiry property is set to 0, the cached
password never expires. The default value for the password expiry property is 600.

-ignoreProxy
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true, the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust.

-configURL
For the TAI to establish trust for a request, it requires that the SvrSslCfg task be run for the Java
Virtual Machine on the Application Server and result in the creation of a properties file. If this
properties file is not at the default URL, which is file://java.home/PdPerm.properties, the correct
URL of the properties file must be set in the configuration URL property. If this property is not set, and
the SvrSslCfg-generated properties file is not in the default location, the TAI initialization fails. The
default value for the config URL property is file://${WAS_INSTALL_ROOT}/java/jre/
PdPerm.properties.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAIProperties {-interactive}

v Using Jython:
AdminTask.configureTAMTAIProperties(’-interactive’)

unconfigureTAMTAIProperties

The unconfigureTAMTAIProperties command removes the custom properties from the security
configuration for the embedded Tivoli Access Manager Trust Association Interceptor with classname
TAMTrustAsociationInterceptorPlus.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Chapter 7. Authorizing access to resources 617

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAIProperties {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAIProperties(’-interactive’)

configureTAMTAIPdjrte

The configureTAMTAIPdjrte command performs the tasks necessary to fully configure the Tivoli Access
Manager Runtime for Java. The specific tasks run are PDJrteCfg and SvrSslCfg.

Target object

None.

Required parameters

-policySvr
This property specifies the name of the Tivoli Access Manager policy server with which the application
server communicates. The server is specified by fully qualified host name, the SSL port number, and
the rank. The default SSL port number is 7135. For example: myauth.mycompany.com:7135:1.

-authSvrs
This property specifies the name of the Tivoli Access Manager authorization server with which the
application server communicates. The server is specified by fully-qualified host name, the SSL port
number, and the rank. The default SSL port number is 7136. For example:
myauth.mycompany.com:7136:1. You can specify multiple servers if the entries are separated by a
comma (,).

-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,
sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

For example, for U.S. English. the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-secDomain
This property specifies the Tivoli Access Manager domain name to which the administrator is
authenticated. This domain must exist and an administrator ID and password must be valid for this
domain. The application server is specified in this domain.

If this property is not specified, the default value is Default. The local domain value is retrieved from
the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

618 Securing applications and their environment

For example, for U.S. English, the valid characters for domain names are the letters a-Z, the numbers
0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-defer
This property indicates whether this task should be run immediately or deferred until the startup of the
WebSphere Application Server. The default value is no.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAIPdjrte {-interactive}

v Using Jython:
AdminTask.configureTAMTAIPdjrte(’-interactive’)

unconfigureTAMTAIPdjrte

The unconfigureTAMTAIPdjrte command performs the tasks necessary to unconfigure the Tivoli Access
Manager Runtime for Java. The specific tasks run are PDJrteCfg and SvrSslCfg.

Target object

None.

Required parameters

-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,
sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

-force
This property indicates whether or not this task should stop when an error is encountered. The default
value is no.

-defer
This property indicates whether this task should be run immediately or deferred until the startup of the
WebSphere Application Server. The default value is no.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAIPdjrte {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAIPdjrte(’-interactive’)

Chapter 7. Authorizing access to resources 619

Disabling embedded Tivoli Access Manager client using the administrative
console
To unconfigure the JACC provider for Tivoli Access Manager, you can use the WebSphere Application
Server administrative console.

About this task

Ensure that all the managed servers, including node agents, are started. Perform the following process
once on the deployment management server. Information from the unconfigure operation is forwarded to
managed servers, including node agents, when the server is restarted. The managed servers require their
own restart for changes to take effect.

Note: It is also possible to unconfigure using the wsadmin command line utility. For details on
unconfiguring the embedded Tivoli Access Manager client using the wsadmin command line utility,
refer to the information about disabling embedded Tivoli Access Manager client using wsadmin.

Procedure
1. Restart the deployment manager process.

2. Click Security > Global security > External authorization providers.

3. Make sure that the default option, Default authorization, is checked, then click OK.

4. On the Global security panel, click External authorization > External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for
the JACC provider for Tivoli Access Manager is displayed.

6. Clear the Enable embedded Tivoli Access Manager option. If you want to ignore errors when
unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement
option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

7. Click OK.

8. Optional: If you want security enabled without Tivoli Access Manager re-enable administrative
security.

9. Optional: Synchronize all nodes.

10. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider
If you find you cannot restart WebSphere Application Server after configuring the JACC provider for Tivoli
Access Manager a utility is available to clear the security configuration and return WebSphere Application
Server to an operable state.

About this task

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager
authorization table from security.xml and wsjaas.conf files. This utility effectively removes the JACC
provider for Tivoli Access Manager.

Procedure
1. Back up the security.xml and wsjaas.conf files.

2. Enter the following command as one continuous line.
app_server_root/java/jre/bin/java
-classpath "app_server_root /$WAS_HOME/plug-in/com.ibm.ws.runtime_1.0.0.jar"
com.tivoli.pd.as.jacc.cfg.CleanSecXML
fully_qualified_path/security.xml fully_qualified_path/wsjaas.conf

Propagating security policies and roles for previously deployed applications
Use this task to propagate security policies and roles to the external Java Authorization Contract for
Containers (JACC) provider.

620 Securing applications and their environment

Before you begin

The external JACC provider must be configured before following these steps.

About this task

After switching to use the external JACC provider you can follow these steps to avoid having to redeploy
your existing applications. Updating using these steps retrieves the security policy and roles from the
deployed applications and propagates it to the external JACC provider removing the need for the
applications to be redeployed.

Procedure
1. From the WebSphere Application Server administrative console, click Security > Global security >

External authorization providers.

2. Select the appropriate security policy and role updating option.

v Select Don't update provider to not propagate any security policies or roles

v Select Update with all applications to propagate security policies and roles for all applications

v Select Update with application names listed to propagate security policies and roles for the
selected applications. If multiple applications should be updated, separate the application names
with commas.

3. Click Apply.

Results

After completing this task your security policies and roles have been successfully propagated to the
external JACC provider.

Authorizing access to administrative roles
You can assign users and groups to administrative roles to identify users who can perform WebSphere
Application Server administrative functions.

Before you begin

Administrative roles enable you to control access to WebSphere Application Server administrative
functions. Refer to the descriptions of these roles in “Administrative roles” on page 549.

v Using System Authorization Facility (SAF) authorization to control access to administrative
roles: When the com.ibm.security.SAF.authorization is set to true, SAF EJBROLE profiles are used to
control access to administrative roles. See “System Authorization Facility for role-based authorization”
on page 569 for more information.

v If you select Use a z/OS security product during profile creation in the z/OS Profile Management Tool,
and you additionally specify a value for the SAF profile prefix (previously referred to as the z/OS
security domain), the following administrative roles are defined by the customization jobs. The SAF
profile prefix can be specified during profile creation, and the configGroup represents the WebSphere
Application Server configuration group name that you chose.

RDEFINE EJBROLE (optionalSAFProfilePrefix.)administrator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)monitor UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)configurator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)operator UACC(NONE)
RDEFINE EJBROLE (optionalSAFProfilePrefix.)auditor UACC(NONE)

PERMIT (optionalSAFProfilePrefix.)administrator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)monitor CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)configurator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)operator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSAFProfilePrefix.)auditor CLASS(EJBROLE) ID(configGroup) ACCESS(READ)

Chapter 7. Authorizing access to resources 621

v If you decide at a later date to turn on SAF authorization, you must issue these Resource Access
Control Facility (RACF) commands to enable proper WebSphere Application Server operation. You can
give a user access to all administrative functions by connecting to the configuration group:

CONNECT mvsid GROUP(configGroup)

v You can also assign individual users to specific roles by issuing the following RACF command:
PERMIT (optionalSAFProfilePrefix.)rolename CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

v You do not need to restart the server for SAF EJBROLE changes to take effect. However, after the SAF
changes are made, you must issue the following RACF command, (or the equivalent for your security
system), to refresh the security tables:

SETROPTS RACLIST(EJBROLE) REFRESH

v Using WebSphere Authorization to control access to administrative roles: When
com.ibm.security.SAF.authorization is set to false, WebSphere Application Server authorization and the
administrative console are used to control access to administrative roles.

Procedure
1. Click Users and Groups. Click either Administrative User Roles or Administrative Group Roles.

2. To add a user or a group, click Add on the Console users or Console groups panel.

3. To add a new administrator user, follow the instructions on the page to specify a user, and select the
Administrator role. Once the user is added to the Mapped to role list, click OK. The specified user is
mapped to the security role.

4. To add a new administrative group, follow the instructions on the page to specify either a group name
or a Special subject, highlight the Administrator role, and click OK. The specified group or special
subject is mapped to the security role.

5. To remove a user or group assignment, click Remove on the Console Users or the Console Groups
panel. On the Console Users or the Console Groups panel, select the check box of the user or group
to remove and click OK.

6. To manage the set of users or groups to display, click Show filter function on the User Roles or
Group Roles panel. In the Search term(s) box, type a value, then click Go. For example, user*
displays only users with the user prefix.

7. After the modifications are complete, click Save to save the mappings.

8. Restart the application server for changes to take effect.

Administrative user roles settings and CORBA naming service user
settings
Use the Administrative User Roles page to give users specific authority to administer application servers
through tools such as the administrative console or wsadmin scripting. The authority requirements are only
effective when global security is enabled. Use the Common Object Request Broker Architecture (CORBA)
naming service users settings page to manage CORBA naming service users settings.

To view the Console Users administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative User Roles.

v Click Users and Groups > Administrative User Roles.

Note: If you are using local OS, the SIB administrative security panel's searches can use both the "?" and
"*" search characters. However. if you switch to federated repositories, the searches will not work
with the "?" character but will with the "*" character.

To view the CORBA naming service groups administrative console page, click Environment > Naming >
CORBA Naming Service Groups.

Note: When a third-party authorization such as Tivoli Access Manager or System Authorization Facility
(SAF) for z/OS is used, the information in this panel might not represent the data in the provider.

622 Securing applications and their environment

Also, any changes to this panel might not be reflected in the provider automatically. Follow the
provider's instructions to propagate any changes made here to the provider.

Click Refresh All to automatically update the node agent and all of the nodes when a new user is created
with the Administrator or Admin Security Manager role. When you click Refresh All, you do not need to
manually restart the node agent under an existing Administrator before the new user is recognized with
one of these roles. This button automatically invokes the AuthorizationManager refreshAll MBean method.
To invoke this method manually, read about Fine-grained administrative security in heterogeneous and
single-server environments.

User (Administrative user roles)
Specifies users.

The users that are entered must exist in the configured active user registry.

Data type: String

User (CORBA naming service users)
Specifies CORBA naming service users.

The users that are entered must exist in the configured active user registry.

Data type: String

Role (Administrative user roles)
Specifies user roles.

The following administrative roles provide different degrees of authority that are needed to perform certain
application server administrative functions:
Administrator

The administrator role has operator permissions, configurator permissions, and the permission that
is required to access sensitive data including server password, Lightweight Third Party
Authentication (LTPA) password and keys, and so on.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

Configurator
The configurator role has monitor permissions and can change the WebSphere Application Server
configuration.

Deployer
The deployer role can complete both configuration actions and run-time operations on applications.

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
application server configuration and current state.

adminsecuritymanager
The adminsecuritymanager role has privileges for managing users and groups from within the
administrative console and determines who has access to modify users and groups using
administrative role mapping. Only the adminsecuritymanager role can map users and groups to
administrative roles, and by default, AdminId is granted to the adminsecuritymanager.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click
either Manage Users or Manage Groups.

Chapter 7. Authorizing access to resources 623

Data type: String
Range: Administrator, Operator, Configurator, Deployer, Monitor,

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection
table. Other contributors to the console might create these additional roles, which can be used for
applications that are deployed to the console.

Role (CORBA naming service users)
Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority that are needed to perform certain
application server naming service functions. The authorization policy is only enforced when global security
is enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete.

The roles now have authority levels from low to high:

CosNamingRead
You can query the application server name space by using, for example, the Java Naming and
Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for
this role.

CosNamingWrite
You can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead
operations.

CosNamingCreate
You can create new objects in the name space through operations such as JNDI createSubcontext
and CosNamingWrite operations.

CosNamingDelete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations.

Data type: String
Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Login status (Administrative user roles)
Specifies whether the user is active or inactive.

Administrative group roles and CORBA naming service groups
Use the Administrative Group Roles page to give groups specific authority to administer application servers
through tools such as the administrative console or wsadmin scripting. The authority requirements are only
effective when administrative security is enabled. Use the Common Object Request Broker Architecture
(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative Group Roles.

v Click Users and Groups > Administrative Group Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >
CORBA Naming Service Groups.

624 Securing applications and their environment

Click Refresh All to automatically update the node agent and all of the nodes when a new user is created
with the Administrator or Admin Security Manager role. When you click Refresh All, you do not need to
manually restart the node agent under an existing Administrator before the new user is recognized with
one of these roles. This button automatically invokes the AuthorizationManager refreshAll MBean method.
To invoke this method manually, read about Fine-grained administrative security in heterogeneous and
single-server environments.

Group (CORBA naming service groups)
Identifies CORBA naming service groups.

In previous releases of WebSphere Application Server, there were two default groups: ALL
AUTHENTICATED and EVERYONE. However, EVERYONE is now the only default group, and it provides
CosNamingRead privileges only.

Data type: String
Range: EVERYONE

Role (CORBA naming service groups)
Identifies naming service group roles.

A number of naming roles are defined to provide the degrees of authority that are needed to perform
certain application server naming service functions. The authorization policy is only enforced when global
security is enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete. The roles have authority levels from low to high:

Cos Naming Read
You can query the application server name space using, for example, the Java Naming and
Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for
this role.

Cos Naming Write
You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. The ALL_AUTHENTICATED special-subject is the default policy for this role.

Cos Naming Create
You can create new objects in the name space through operations such as JNDI createSubcontext
and CosNamingWrite operations. The ALL_AUTHENTICATED special-subject is the default policy
for this role.

Cos Naming Delete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. The ALL_AUTHENTICATED special-subject is the
default policy for this role.

Data type: String
Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Group (Administrative group roles)
Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:
Administrator, Configurator, Operator, and Monitor.

Data type: String

Chapter 7. Authorizing access to resources 625

Range: ALL_AUTHENTICATED, EVERYONE

Role (Administrative group roles)
Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain
application server administrative functions:
Administrator

The administrator role has operator permissions, configurator permissions, and the permission that
is required to access sensitive data, including server password, Lightweight Third Party
Authentication (LTPA) password and keys, and so on.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

Configurator
The configurator role has monitor permissions and can change the application server
configuration.

Deployer
The deployer role can perform both configuration actions and runtime operations on applications.

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
application server configuration and current state.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click
either Manage Users or Manage Groups.

Auditor
The auditor can view and modify the configuration settings for the security auditing subsystem.
The auditor role includes the monitor role.

Data type: String
Range: Administrator, Operator, Configurator, Monitor, Deployer

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection
table. Other contributors to the console might create these additional roles, which can be used for
applications that are deployed to the console.

Assigning users to naming roles
Use this task to assign users to naming roles by using the administrative console.

About this task

The following steps are needed to assign users to naming roles. In the administrative console, click
Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

Procedure
1. Click Add on the CORBA Naming Service Users or the CORBA Naming Service Groups panel.

2. To add a new naming service user, follow the instructions on the page to specify a user, and select
one or more roles. Once the user is added to the "Mapped to role" list, click OK. The specified user is
mapped to one or more security roles.

626 Securing applications and their environment

3. To add a new naming service group, follow the instructions on the page to specify either a group name
or a Special subject, highlight one or more roles, and click OK. The specified group or special subject
are mapped to one or more the security roles

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming
Service Groups panel. Select the check box next to the user or group that you want to remove and
click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and
modify the filter text box. For example, setting the filter to user* displays only users with the user
prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes
to take effect.

Example

The default naming security policy is to grant all users read access to the CosNaming space and to grant
any valid user the privilege to modify the contents of the CosNaming space. You can perform the
previously mentioned steps to restrict user access to the CosNaming space. However, use caution when
changing the naming security policy. Unless a Java Platform, Enterprise Edition (Java EE) application has
clearly specified its naming space access requirements, changing the default policy can result in
unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime.

Propagating administrative role changes to Tivoli Access Manager
These steps provide an example of how to migrate the admin-authz.xml file.

About this task

Additions and changes to console users and groups are not automatically added to the Tivoli Access
Manager object space after the Java Authorization Contract for Containers (JACC) provider for Tivoli
Access Manager is configured. Changes to console users and groups are saved in the admin-authz.xml
file and this file must be migrated before any changes take effect. The JACC provider for Tivoli Access
Manager includes the migrateEAR migration utility for incorporating console user and group changes into
the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the
JACC provider for Tivoli Access Manager is configured. The utility does not need to run for changes
and additions to console users and groups made prior to the configuration of the JACC provider for
Tivoli Access Manager because the changes made to the admin-authz.xml and naming-authz.xml
files are automatically migrated at configuration time. Furthermore, the migration tool does not need
to run before deploying standard Java Platform, Enterprise Edition (Java EE) applications; Java EE
application policy deployment is also performed automatically.

For example, if you wanted to migrate the admin-authz.xml file, perform the following steps:

Procedure
1. Set up the environment.

Before running the migrateEAR utility, set up the environment by running the setupCmdLine.bat or
setupCmdLine.sh file that is located in the app_server_root/bin directory.

Make sure that the WAS_HOME environment variable is set to the WebSphere Application Server
installation directory.

2. Change to the app_server_root/bin directory where the migrateEAR utility is located.

3. Run the migrateEAR utility to migrate the data contained in the admin-authz.xml file. Use the
parameter descriptions that are listed in “migrateEAR utility for Tivoli Access Manager” on page 628.

Chapter 7. Authorizing access to resources 627

A status message is displayed when the migration completes. Output of the utility is logged to the
pdwas_migrate.log file, which is created in the directory where the utility is run. Check the log file after
each migration. If the log file displays errors, check the last recorded transaction, correct the source of
the error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the
correct values for the -c and -j options.

4. WebSphere Application Server does not require a restart for the changes to take effect.

migrateEAR utility for Tivoli Access Manager
The migrateEAR utility migrates changes made to console users and groups in the admin-authz.xml and
naming-authz.xml files into the Tivoli Access Manager object space.

Syntax
migrateEAR
-j fully_qualified_filename
-c pdPerm.properties_file_location
-a Tivoli_Access_Manager_administrator_ID
-p Tivoli_Access_Manager_administrator_password
-w WebSphere_Application_Server_administrator_user_name
-d user_registry_domain_suffix
[-r root_objectspace_name]
[-t ssl_timeout]
[-z role_mapping_location]

Parameters

-aTivoli_Access_Manager_administrator_ID
The administrative user identifier. The administrative user must have the privileges required to create
users, objects, and access control lists (ACLs). For example, -a sec_master.

This parameter is optional. When the parameter is not specified, you are prompted to supply it at run
time.

-c PdPerm.properties_file_location
The Uniform Resource Indicator (URI) location of the PdPerm.properties file that is configured by the
pdwascfg utility. When WebSphere Application Server is installed in the default location, the URI is:

file:profile_root/etc/pd/PdPerm.properties

-d user_registry_domain_suffix
The domain suffix for the user registry to use. For example, for Lightweight Directory Access Protocol
(LDAP) user registries, this value is the domain suffix, such as: "o=ibm,c=us"

You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j fully_qualified_pathname
The fully qualified path and file name of the Java 2 Platform, Enterprise Edition application archive file
,admin-authz.xml or the roles definitions file naming-authz.xml that is used for a naming operation
authorization. Optionally, this path can also be a directory of an expanded enterprise application. For
example, when WebSphere Application Server is installed in the default location, the path to the data
files to migrate includes:

profile_root/config/cells/cell_name

-p Tivoli_Access_Manager_administrator_password
The password for the Tivoli Access Manager administrative user. The administrative user must have
the privileges that are required to create users, objects, and access control lists (ACLs). For example,
you can specify the password for the -a sec_master administrative user as -p myPassword.

When this parameter is not specified, the user is prompted to supply the password for the
administrative user name.

-r root_objectspace_name
The space name of the root object. The value is the name of the root of the protected object
namespace hierarchy that is created for WebSphere Application Server policy data.

The default value for the root object space is WebAppServer.

628 Securing applications and their environment

Set the Tivoli Access Manager root object space name by modifying the
amwas.amjacc.template.properties file prior to configuring the Java Authorization Contract for
Containers (JACC) provider for Tivoli Access Manager for the first time. Use this option if the default
object space value is not used in the configuration of the Tivoli Access Manager JACC provider for
Tivoli Access Manager.

Do not change the Tivoli Access Manager object space name after the Tivoli Access Manager JACC
provider is configured.

-t ssl_timeout
The number of minutes for the Secure Sockets Layer (SSL) timeout. This parameter is used to
disconnect and reconnect the SSL context between the Tivoli Access Manager authorization server
and the policy server before the default connection times out.

The default is 60 minutes. The minimum value is 10 minutes. The maximum value cannot exceed the
Tivoli Access Manager ssl-v3-timeout value. The default value for ssl-v3-timeout is 120 minutes.

If you are not familiar with the administration of this value, you can safely use the default value.

-w WebSphere_Application_Server_administrator_user_name
The user name that is configured in the WebSphere Application Server security user registry field as
the administrator. This value matches the account that you created or imported in “Creating the
security administrative user for Tivoli Access Manager” on page 593. Access permission for this user is
needed to create or update the Tivoli Access Manager protected object space.

When the WebSphere Application Server administrative user does not already exist in the protected
object space, it is created or imported. In this case, a random password is generated for the user and
the account is set to not valid. Change this password to a known value and set the account to valid.

A protected object and access control list (ACL) are created. The administrative user is added to the
pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer
You can overwrite the action group name. The default name is WebAppServer. This action
group name and the matching root object space can be overwritten when the migration utility
is run with the -r option.

-z role_mapping_location
The location where the role mapping is to be stored when migrating administration applications. The
default location is to place the role mapping in the current directory structure, such as:

/WebAppServer/deployedResouces

Specifying the -z option adds another directory level in which to store the role mapping. For example,
if you specify -z Roles in the migrateEAR utility, the role mapping is stored in the directory structure
as follows:

/WebAppServer/deployedResouces/Roles

Comments

This utility migrates security policy information from deployment descriptors or enterprise archive files to
Tivoli Access Manager for WebSphere Application Server. The script calls com.tivoli.pdwas.migrate.Migrate
the Java class.

Before invoking the script you must run the setupCmdLine.bat or the setupCmdLine.sh commands.
These files can be found in the %WAS_HOME%/bin directory.

Chapter 7. Authorizing access to resources 629

The script is dependent on finding the correct environment variables for the location of prerequisite
software.

The script calls Java code with the following options:

-Dpdwas.lang.home
The directory that contains the native language support libraries that are provided with the JACC
provider for Tivoli Access Manager. These libraries are located in a subdirectory under the JACC
provider for Tivoli Access Manager installation directory. For example: -Dpdwas.lang.home=
%PDWAS_HOME%\java\nls

-cp %CLASSPATH% com.tivoli.pdwas.migrate.Migrate
The CLASSPATH variable must be set correctly for your Java installation.

To enable a new user access to the administrative group in WebSphere Application Server, it is
recommended that the user be added to the pdwas-admin group after JACC has been enabled. You can
enter the administrative primary ID (adminID) in the group. This is required when the serverID is not the
same as the adminID.

The following is an example of this command:
pdadmin> group modify pdwas-admin add adminID

Return codes

The utility can return the following exit status codes:

0 The command completed successfully.

1 The command failed.

Assigning users from a foreign realm to the admin-authz.xml
Operating with the administrative agent and job manager topology allows more situations where you might
need to add an administrative user from a different registry into your administrative authorization table
(admin-authz.xml). Each administrative user that needs to be added requires the "accessID" format of the
user from the remote registry. When that user finally is active in the local cell, the authorization table will
already have that accessID that is required. This task demonstrates how this assignment of users is
performed.

Procedure
1. You need to determine the accessId for a user on the remote registry. To do this, you call the following

wsadmin task and query based on a user filter. The following example illustrates a query from the
registry realm "BIRKT60" with a userFilter of "localuser*". This query returns any user from this realm
that begins with "localuser". The resulting accessId is the one you need to specify in the target
administrative authorization table in the following step. Connect to the sending administrative process:
wsadmin> $AdminTask listRegistryUsers {-securityRealmName BIRKT60 -displayAccessIds true -userFilter localuser*}
{name BIRKT60\localuser@BIRKT60}
{accessId user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007}

2. Add "localuser" to the target admin-authz.xml using the following wsadmin task. Connected to the
receiving administrative process:
wsadmin> $AdminTask mapUsersToAdminRole {-roleName administrator -userids {localuser }
-accessids {user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007 }}

3. Save the changes.

630 Securing applications and their environment

Results

This task updates the admin-authz.xml in the receiving administrative process to allow a "cross-realm
authorization" to succeed. The example illustrated here was for a LocalOS registry user. Performing the
same task for an LDAP accessId produces results that look more like a realm and distinguished name
(DN).

Note: If you change your realm you must repeat this process with the new realm name.

Enabling pluggable login modules to map Java EE identities to System
Authorization Facility (SAF)
You need to perform several actions to enable any pluggable login modules to correctly map Java EE
identities to SAF. These actions include configuring the active WebSphere Application Server user registry
and configuring pluggable mapping modules.

Before you begin

About this task

Procedure
v Configure the active WebSphere Application Server user registry as an Lightweight Directory Access

Protocol (LDAP) registry or a Custom registry, and use System Authorization Facility (SAF) services
such as:

– System Authorization Facility (SAF) EJBROLE profiles to control WebSphere Application Server
authorization. Refer to “Role-based authorization” on page 546 for more information.

– Enabling an application to run a WebSphere Application Server application and set the operating
system (OS) identity to match the Java EE identity. This is known as application Sync to OS Thread.
Refer to “Application Synch to OS Thread Allowed” on page 74 and “When to use application Synch
to OS Thread Allowed” on page 76 for more information.

– Using the Java EE client identity as the identity when issuing a Connection Management request for
a local native connector such as CICS, Information Management System (IMS), Database 2 (DB2),
or Java Messaging Service (JMS). Refer to “Java Platform, Enterprise Edition identity and an
operating system thread identity” on page 77 for more information.

– Auditing using SMF audit. Refer to the information about using SMF type 80 to prepare for audit
support.

v You must configure a pluggable mapping module followed by a WebSphere Application Server for
z/OS-supplied module in appropriate system login configurations to use pluggable login modules. If a
registry other than local OS is selected and no mapping is done or no valid mapping is available for a
particular identity:

– SAF authorization is not supported: If SAF authorization is selected and a method is protected the
method fails.

– Application Synch to OS thread is not supported: Requests always run using the user ID of the
servant.

– When res-auth=container is specified to native connectors and no alias is identified, a connection
management request runs under the servant user ID.

v Pluggable login modules can be used when:

– The WebSphere Application Server authentication mechanism specified is Simple WebSphere
Authentication Mechanism (SWAM) or Lightweight Third-Party Authentication (LTPA). SWAM is
deprecated in WebSphere Application Server Version 8.0 and will be removed in a future release.

– The Internet Inter-ORB protocol (IIOP) authentication protocol negotiated uses Common Secure
Interoperability Version 2 (CSIV2).

Chapter 7. Authorizing access to resources 631

– A web request is issued.

Fine-grained administrative security
In releases prior to WebSphere Application Server version 6.1, users granted administrative roles could
administer all of the resources under the cell. WebSphere Application Server is now more fine-grained,
meaning that access can be granted to each user per resource.

For example, users can be granted configurator access to a specific instance of a resource only (an
application, an application server or a node). Users cannot access any other resources outside of the
resources assigned to them. The administrative roles are now per resource rather than to the entire cell.
However, there is a cell-wide authorization group for backward compatibility. Users assigned to
administrative roles in the cell-wide authorization group can still access all of the resources within the cell.

Note: Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are filtered
out of resource mapping.

To achieve this instance-based security or fine-grained security, resources that require the same privileges
are placed in a group called the administrative authorization group or authorization group. Users can be
granted access to the authorization group by assigning to them the required administrative role.

Fine-grained administrative security can also be used in single-server environments. Various applications
in the single server can be grouped and placed in different authorization groups. Therefore, there are
different authorization constraints for different applications. Note that the server itself cannot be part of any
authorization group in a single-server environment.

You can assign users and groups to the adminsecuritymanager role on the cell level through wsadmin
scripts and the administrative console. Using the adminsecuritymanager role, you can assign users and
groups to the administrative user roles and administrative group roles.

When fine grained administrative security is used, users granted the adminsecuritymanager role can
manage authorization groups. See “Administrative roles and naming service authorization” on page 540 for
detailed explanations of all administrative roles.

An administrator cannot assign users and groups to the administrative user roles and administrative group
roles, including the adminsecuritymanager role. See “Administrative roles” on page 549 for more details.

There are several administrative security commands that can be used to create authorization groups, map
resources to authorization groups, and to assign users to administrative roles within the authorization
groups. Following are some examples using wsadmin:

v Create a new authorization group:
$AdminTask createAuthorizationGroup {-authorizationGroupName authGroup1}

v Deleting an authorization group:
$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Add resources to an authorization group:
$AdminTask addResourceToAuthorizationGroup
{-authorizationGroupName groupName -resourceName Application=app1}

v Remove resources from an authorization group:
$AdminTask removeResourceFromAuthorizationGroup
{-authorizationGroupName groupName -resourceName Application=app1}

v Add user IDs to roles in an authorization group:
$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName
-roleName administrator -userids user1}

v Add group IDs to roles in an authorization group:
$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName
-roleName administrator -groupids group1}

632 Securing applications and their environment

v Remove user IDs from roles in an authorization group:
AdminTask removeUsersFromAdminRole {-authorizationGroupName
groupName -roleName administrator -userids user1}

v Remove group IDs from roles in an authorization group:
$AdminTask removeGroupsFromAdminRole {-authorizationGroupName
groupName -roleName administrator -groupids group1}

Resources that can be added to an authorization group

You can add only resources of the following types to an authorization group:

v Cell

v Node

v ServerCluster

v Server

v Application

v NodeGroup

If a resource is not one of the types listed above, its parent resource will be used.

A resource can only belong to one authorization group. However, there is a containment relationship
among resources. If a parent resource belongs to a different authorization group than that of its child
resource, the child resource implicitly will belong to multiple authorization groups. You cannot add the
same resource to more than one authorization group.

The following diagram shows the containment relationship among resources:

The privileges required for actions on resources depend on two factors:

v The authorization group of the administrative resource. If a user is granted access to an authorization
group, all of the resources in that group will be included.

v The containment relationship of the resource. If a user is granted access to a parent resource, all of the
children resources will be included.

Keystore management requires a user to have cell-level administrative privileges because they are created
and managed at the cell level. Fine-grained security access to a specific resource does not allow
management of the associated keystores.

Table 73. Privileges required to access various administrative resources. The privileges required to access various
administrative resources are shown in the following table:

Resource Action Required roles

Server Start, stop, runtime operations Server-operator, node-operator,
cell-operator

Server New, delete Node-configurator, cell-configurator

Server Edit configuration Server-configurator, node-configurator,
cell-configurator

Server View configuration, runtime status Server-monitor, node-monitor, cell-monitor

Node Restart, stop, sync Node-operator, Cell-operator

Node Add, delete Cell-configurator

Node Edit configuration Node-configurator, cell-configurator

Node View configuration, runtime status Node-monitor, cell-monitor

Chapter 7. Authorizing access to resources 633

Table 73. Privileges required to access various administrative resources (continued). The privileges required to
access various administrative resources are shown in the following table:

Resource Action Required roles

Cluster Start, stop, runtime operations Cluster-operator, cell-operator

Cluster New, delete Cell-configurator

Cluster Edit configuration Cluster-configurator, cell-configurator

Cluster View configuration, runtime status Cluster-monitor, cell-monitor

Cluster member Start, stop, runtime operations Server-operator, cluster-operator,
node-operator, cell-operator

Cluster member New, delete Node-configurator, cell-configurator

Cluster member Edit configuration Server-configurator, cluster-configurator,
node-configurator, cell-configurator

Cluster member View configuration, runtime status Server-monitor, cluster-monitor,
node-monitor, cell-monitor

Application All operations Refer to the section "Deployer roles" in
“Administrative roles” on page 549.

Node, cluster Add, delete Cell-configurator

The server-operator role is the operator role of the authorization group to which the server instance is part
of. Similarly, the node-operator role is in the operator role of the authorization group to which the node
instance is part of.

To use fine-grained administrative security in the administrative console, a user should be granted a
monitor role at the cell level at minimum. However, to login using wsadmin, a user should be granted a
monitor role for any authorization group.

Example: Using fine-grained security.

The following scenarios describe the use of fine-grained administrative security, particularly the new
deployment role.

Deployment role scenario 1.

In the following scenario, there are four applications configured on server S1, as shown in the following
table. Each application must be isolated so that the administrator of one application cannot modify another
application. Assume that only user1 can manage application A1, user2 can manage applications A2 and
A3, and only user3 can manage application A4.

Note: It is not recommended to have an application in one group and its target server in another group.
However, that is not always possible. It is common to have many applications on one server. It is
still sometimes necessary to isolate the administration of applications running on the same server.

One example is an Application Service Provider (ASP), where a single application server can have
multiple vendor applications. In this instance the server administrator is responsible for installing all
of the vendor applications. Once applications are installed, each vendor can manage their own
application without interfering with other vendor's applications.

Table 74. Deployment role scenario 1 applications.

This table lists the Deployment role scenario 1 applications.
Application Server Node

A1 S1 N1

634 Securing applications and their environment

Table 74. Deployment role scenario 1 applications (continued).

This table lists the Deployment role scenario 1 applications.
Application Server Node

A2 S1 N1

A3 S1 N1

A4 S1 N1

We can configure authorization groups as shown in the diagram below:

In the diagram, application A1 is in authorization group G1, applications A2 and A3 are in authorization
group G2, and application A4 is in authorization group G3.

A deployer role is assigned from authorization group G1 to user1, from authorization group G2 to user2,
and from authorization group G3 to user3.

Consequently, user1 can perform all of the operations on application A1, user2 on applications A2 and A3,
and user3 on application A4. Since all applications share the same server, we cannot put the same server
on all authorization groups. Only a cell-level administrator can install an application. After the installation of
an application is complete, the deployer of each application can modify their own. To start and stop the
server, cell-level administrative authority is required. This type of scenario is useful in an ASP environment.

Deployment role scenario 2.

In the following scenario, a group of applications require the same administrative roles to one server. In
this example, applications A1 and A2 are related applications, and can be administrated by one set of
administrators. They are running on the same server (S1). Applications A3 and A4 require a different set of
administrators, and are running on servers S2 and S3 respectively.

Table 75. Deployment role scenario 2 applications.

This table lists the Deployment role scenario 2 applications.
Application Server Node

A1 S1 N1

A2 S1 N1

A3 S2 N2

A4 S3 N3

Scenarios that can be applied directly in customer environments.

Each developer must be able to modify the configuration for their server, and they must be able to install
their application onto that server. They also must be able to start and stop the server as well as the
application on the server.

Developers also must be able to configure the server so that they can debug any problems they run into.
They must have the ability to update or modify the application being developed. The administrative
authorization group for this developer includes at least one server and any applications that the developer
installs on that server.

Chapter 7. Authorizing access to resources 635

In the following example, developers of authorization group G1 have a new application (A11). They can
install and target that new application only on servers within authorization group G1. Also, they can place
that new application in their authorization group (G1).

ASP environment scenario.

In this scenario, the customer is an ASP. They have their own customers to whom they provide application
serving function. They want to enable their customers to administer and monitor their applications, but not
to see or administer applications for different customers. In this example, however, the ASP has internal
staff administrators whose job it is to maintain the servers.

This internal ASP staff administrator might need to move an application from one server to another to
ensure that an application remains available. The internal ASP staff administrator should be able to stop
and start the servers and to change their configuration.

In contrast, the ASP customer administrator should not be able to stop or start servers. However, the ASP
customer administrator should be able to update their applications running on those servers. The
administrative authorization group for the internal ASP administrator can be the whole cell or can include a
subset of servers, nodes, clusters and applications. The administrative authorization group for the
customer administrator only includes those applications that the customer has paid to have served by this
ASP.

When updating the configuration repository, run the admin scripts from the deployment manager so that
the fine grain admin security rules will be in effect when admin scripts are run from the deployment
manager side.

The following diagram contains a scenario where two different customers have two different types of
applications, and can manage their own applications. However, the servers and nodes on which the
applications are running are isolated from their customers. The servers and nodes can only be maintained
by the internal administrators. In addition, the customers cannot target their applications on a different
server. This can only be performed by the internal administrator or internal deployers.

Regional organization scenario.

In this scenario, the customer is a large global company. The company's nodes and servers are organized
so as to provide application serving for different regions (or alternatively, different lines of business). They
want representatives from the different regional areas to be able to monitor and administer the nodes and
servers associated with that region. However, they do not want the regional administer to be able to effect
any node and server associated with a different region.

The administrative authorization group for each regional representative includes the nodes, servers,
clusters and applications associated with that region.

For example, consider a company that provides multiple services, such as a financial institution that
provides services like credit card accounts, brokerage accounts, banking accounts, or travel accounts.
Each of these services can be separate applications, and the administrator for each of these applications
must also be different. The following figure shows one way to configure such a system:

The following figure shows how the resources in such a system can be grouped to isolate administrators
from each other:

636 Securing applications and their environment

Note that the nodes are not part of any authorization group. Therefore, a trade application administrator
cannot stop a server on any of the nodes, and is prevented from stopping a travel application.

The same system can be configured in another way as shown below:

The following figure shows how the resources in such a system can be grouped to isolate administrators
from each other:

New Administrative Authorization Group
Use this page to create a new administrative authorization group and to specify the associated
administrative resources.

To view this administrative console page, click Security > Administrative Authorization Groups > New.

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or
the primary administrative ID can make these changes as well.

Name
Use to identify the new administrative authorization group. The name should be descriptive of the group's
role, or purpose, and should be unique in the cell structure. Using a non-unique name results in an error
and a failure to create the new administrative authorization group. This is a required field.

Resources
Select the resources from the Resource section to which you want the new administrative authorization
group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization
group. Therefore, these resources are not available for inclusion in the new administrative authorization
group. When a resource is a member of a different authorization group, the name of the group displays
next to the resource name. For example: server_1 (group_1)

The available filtering options are the following. Each option includes all the resources that are associated
with that specific filtering option.

All scopes
The default view that displays the authorization group tree.

Clusters
All of the resources associated with the clusters.

Web Servers
All of the resources associated with the web servers.

Business-level applications
All of the resources associated with the business-level applications.

Servers
All of the resources associated with the servers.

Nodes
All of the resources associated with the nodes.

Chapter 7. Authorizing access to resources 637

Applications
All of the resources associated with the applications.

Assets
All of the resources associated with the assets.

Node Groups
All of the resources associated with the node groups.

Assigned scopes
Displays all of the scopes explicitly assigned to the current authorization group.

Administrative Authorization Group collection
Use this page to create, delete or to edit an existing administrative authorization group.

To view this administrative console page, click Security > Administrative Authorization Groups.

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or
the primary administrative ID can make these changes as well.

Name
The name field specifies the current name of the administrative authorization group. You can edit the name
of the administrative authorization group during the creation process only. After the authorization group is
created, you cannot modify the name. The specified name must be unique within the cell structure.
Otherwise, a non-unique name results in an error.

New
Select to create a new administrative authorization group.

Delete
Select to remove an existing administrative authorization group.

Note: You must select an administrative authorization group before selecting Delete.

System Authorization Facility for fine-grained administrative
authorization

When fine-grained administrative security is used, the administrative resources are partitioned to multiple
authorization groups. Each authorization group contains its own authorization table, which represents the
user-to-administrator role mapping for that authorization group.

The same set of administrative roles exist for all of the authorization groups. However, users mapped to
the administrative roles can differ. There are still cell level administrative roles that represent access to all
of the resources within the cell.

When Resource Access Control Facility (RACF) or System Authorization Facility (SAF) is used to configure
user-to-role mapping, one EJBROLE profile for each role in each authorization group must be defined, as
well as the previously defined EJBROLE profiles for the cell level administrator roles. There are six profiles
defined in the RACF EJBROLE class for administrative authorization. They are administrator, configurator,
monitor, operator, deployer and adminsecuritymanager.

Authorization groups can be created using the WebSphere Application Server configuration tool (wsadmin).
After creating an authorization group, user-to-role mapping within the authorization group can also be
performed using wsadmin. However, when RACF is used to store the user-to-administrative role mapping,
the RACF administrator must perform additional steps to map the user-to-role mappings. For each

638 Securing applications and their environment

administrator role within the newly-created authorization group, an EJBROLE profile must be defined.
Users must then be granted access to the newly-created EJBROLE profiles.

For example, if the following authorization groups and user-to-role mappings have already been created
using wsadmin:

Table 76. Authorization groups and user-to-role mappings. The table lists the Authorization groups and user-to-role
mappings.
group1 administrator=user1 configurator operator monitor deployer=user3 adminsecuritymanager

group2 administrator=user2 configurator operator=user4 monitor deployer adminsecuritymanager

then the following script can be used to reflect the same information in RACF:
/* activate EJBROLE class */
SETROPTS CLASSACT(EJBROLE)

/* Defining EJBROLE profiles for admin roles in group1 and group2 */

/* define the roles in RACF for group1 */
RDEFINE EJBROLE domainName.group1.administrator UACC(NONE)
RDEFINE EJBROLE domainName.group1.configurator UACC(NONE)
RDEFINE EJBROLE domainName.group1.operator UACC(NONE)
RDEFINE EJBROLE domainName.group1.monitor UACC(NONE)
RDEFINE EJBROLE domainName.group1.deployer UACC(NONE)
RDEFINE EJBROLE domainName.group1.adminsecuritymanager UACC(NONE)

/* define the roles in RACF for group2 */
RDEFINE EJBROLE domainName.group2.administrator UACC(NONE)
RDEFINE EJBROLE domainName.group2.configurator UACC(NONE)
RDEFINE EJBROLE domainName.group2.operator UACC(NONE)
RDEFINE EJBROLE domainName.group2.monitor UACC(NONE)
RDEFINE EJBROLE domainName.group2.deployer UACC(NONE)
RDEFINE EJBROLE domainName.group2.adminsecuritymanager UACC(NONE)

/* Mapping users to roles in group1 and group2 */

/* map user1 to administrator role in group1 */
PERMIT domainName.group1.administrator CLASS(EJBROLE) ID(USER1) ACCESS(READ)
/* map user3 to deployer role in group1 */
PERMIT domainName.group1.deployer CLASS(EJBROLE) ID(USER3) ACCESS(READ)

/* map user2 to administrator role in group2 */
PERMIT domainName.group2.administrator CLASS(EJBROLE) ID(USER2) ACCESS(READ)
/* map user4 to operator role in group2 */
PERMIT domainName.group2.operator CLASS(EJBROLE) ID(USER4) ACCESS(READ)

/* refresh the EJBROLE class in RACF */
SETROPTS RACLIST(EJBROLE) REFRESH"

where domainName represents the security domain of the WebSphere Application Server cell.

Note that the EJBROLE profile for all of the roles in each authorization group should be created regardless
of whether any user is mapped to that role.

Creating a fine-grained administrative authorization group using the
administrative console
You can create a fine-grained administrative authorization group by selecting administrative resources to
be part of the authorization group. You can assign users or groups to this new administrative authorization
group and also give them access to the administrative resources contained within.

Chapter 7. Authorizing access to resources 639

Before you begin

You must be logged into the administrative console with cell-level Admin Security Manager authority, or
the primary administrative ID can make these changes as well.

Procedure
1. Navigate to Security > Administrative Authorization Groups > New.

2. Type a name for the administrative authorization group into the Name field. This is a required field.
The name must be unique within the cell structure. If the name is not unique then the new
administrative authorization group is not created at the end of this procedure.

3. Select the resources from the Resource section to which you want the new administrative authorization
group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization
group. Therefore, these resources are not available for inclusion in the new administrative authorization
group. When a resource is a member of a different authorization group, the name of the group displays
next to the resource name. For example: server_1 (group_1)

Your filtering options include the following:

v Nodes. (All of the resources associated with the nodes.)

v Servers. (All of the resources associated with the servers.)

v Web servers. (All of the resources associated with the web servers.)

v Clusters. (All of the resources associated with the clusters.)

v Applications. (All of the resources associated with the applications.)

v Node groups. (All of the resources associated with the Node Groups.)

v All scopes. (The default view that displays the authorization group tree.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group.)

4. Click OK or Apply.

5. If you want to associate a user role to this new administrative authorization group, do the following:

a. Click Administrative user roles located under the Additional Properties section. The available
user roles are the following:

Administrator
An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.
.

Configurator
An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

640 Securing applications and their environment

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure Authentication
Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Deployer
Users granted this role can perform both configuration actions and runtime operations on
applications..

Operator
An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Monitor
An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Admin Security Manager
Using the Admin Security Manager role, you can assign users and groups to the
administrative user roles and administrative group roles. However, an administrator cannot
assign users and groups to the administrative user roles and administrative group roles
including the Admin Security Manager roles.

b. Click Add.... The New User page is displayed.

c. Select the appropriate role(s) from the Role(s) list box.

d. Select a user or users by entering text in the Search string field, and then click Search.. Click the
arrow to add the available user or users to the Mapped to role field. You can select multiple users
and roles by clicking Select All.

e. Click OK. You are returned to the Administrative User Roles page. The new users are displayed in
the Administrative User Roles table along with their appropriate roles.

f. Repeat steps B through E for each new user to whom you want to map a role.

6. If you want to associate a group to this new user role, do the following:

a. Click Administrative group roles located under the Additional Properties section.

b. Click Add.... The New Group page is displayed.

c. Select the appropriate role or roles from the Role(s) list box.

d. Select a user or users by entering text in the Search string field, and then click Search.. Click the
arrow to add the available user or users to the Mapped to role field. You can select multiple users
and roles by clicking Select All.

e. Select either the Select from special subjects or Map Groups As Specified Below option.

If you select the Select from special subjects option, you can select the EVERYONE, ALL
AUTHENTICATED, or ALL AUTHENTICATED IN TRUSTED REALMS values.

Chapter 7. Authorizing access to resources 641

A list of user groups and roles are displayed in the Available and Mapped to role fields. Select
the user groups from the Available field and then select the roles from the Mapped to role field to
which you want the group or groups associated. You can select multiple groups and roles.

f. Click OK. You are returned to the Administrative Group Roles page. The new group is displayed in
the Administrative Group Roles table along with the role of the new group.

g. Repeat steps B through E for each new group to whom you want to map a role.

7. If you want to create another administrative authorization group, click Apply. The current administrative
authorization group is created. Repeat steps 2 through 6 to create another administrative authorization
group.

8. If you do not want to create another administrative authorization group, click OK.

Editing a fine-grained administrative authorization group using the
administrative console
You can add or remove administrative resources to an administrative authorization group or edit an
existing one.

Before you begin

You must be logged into the administrative console with the cell-level AdminSecurityManager authority or
as the primary administrative user.

Procedure
1. Navigate to Security > Administrative Authorization Groups. The Administrative Authorization

Groups page displays a table that lists all of the current administrative authorization groups available in
the cell.

2. Click on the administrative authorization group in the table that you want to edit.

3. To add or remove resources from the administrative authorization group, select or clear them in the
Resource section of the edit page. Resources displayed in black text are available for selection or
clearing. Resources displayed in grey text are members of a different administrative authorization
group and therefore cannot be edited for the current administrative authorization group.

The available filtering options are the following. Each option includes all the resources that are
associated with that specific filtering option.

v All scopes. (The default view that displays the authorization group tree.)

v Clusters. (All of the resources associated with the clusters.)

v Web servers. (All of the resources associated with the Web servers.)

v Business-level applications. (All of the resources associated with the business-level applications.)

v Servers. (All of the resources associated with the servers.)

v Nodes. (All of the resources associated with the nodes.)

v Applications. (All of the resources associated with the applications.)

v Assets. (All of the resources associated with the assets.)

v Node groups. (All of the resources associated with the node groups.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group).

Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are filtered out
of resource mapping.

4. To remove a user or a group, do the following:

a. To delete users, click Administrative user roles under the Additional Properties section. To delete
groups, click Administrative group roles under the Additional Properties section. The appropriate
edit page displays a table that lists all of the current users or groups and their associated roles,
along with the user's login status.

642 Securing applications and their environment

b. Click the check box beside the name of the current user or group and then click Remove. The
current user or group is no longer associated with the role and the role is no longer listed in the
table. It is now ready to have a new user or group assigned to it.

5. If you want to add or to reassign a user or group role to this administrative authorization group, do the
following:

a. To add a user, click Administrative user roles under the Additional Properties section. To add a
group, click Administrative group roles located under the Additional Properties section. The
appropriate edit page displays a table that lists all of the current users or groups and their
associated roles. The available roles are:

Administrator
An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Configurator
An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Deployer
Users granted this role can perform both configuration actions and runtime operations on
applications.

Operator
An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

.

Chapter 7. Authorizing access to resources 643

Monitor
An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Admin Security Manager
Using the Admin Security Manager role, you can assign users and groups to the
administrative user roles and administrative group roles. However, an administrator cannot
assign users and groups to the administrative user roles and administrative group roles
including the Admin Security Manager role.

b. Click Add....

c. To add a new user or group, follow the instructions on the page to specify either a user name,
group name, or Special subject. Highlight the desired role(s), and click OK. The specified users,
groups, or Special subject are mapped to the security roles.

Fine-grained administrative security in heterogeneous and
single-server environments
Fine-grained administrative security can be used in heterogeneous or single-server environments with
some restrictions.

Fine-grained administrative security in a heterogeneous environment

In WebSphere Application Server Version 8.0, heterogeneous systems are supported. Specifically, a
deployment manager node can run in WebSphere Application Server Version 8.0, some nodes can run
WebSphere Application Server Version 7.0, some nodes can run WebSphere Application Server Version
6.1, and other nodes can run WebSphere Application Server Version 6.0.

Because the configurations that are done in the deployment manager node are always WebSphere
Application Server Version 8.0 or higher configurations, fine-grained administrative security can be
enforced when configuring resources that belong to earlier releases. However, run-time code for versions
lower than Version 6.1 cannot enforce fine-grained administrative security. Therefore, any resource
instance that is not part of a WebSphere Application Server Version 6.1 or higher node cannot be added to
an authorization group.

Fine-grained administrative security in a heterogeneous environment has the following restrictions:

v Only nodes that are running WebSphere Application Server Version 8.0 can be part of an administrative
authorization group.

v Only servers that are running in a WebSphere Application Server Version 8.0 node can be part of an
administrative authorization group.

v Only applications that are targeted on servers running on WebSphere Application Server Version 8.0
can be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, it cannot be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, none of its members can be part of an administrative
authorization group.

v If an application is targeted on a cluster that spans multiple releases, that application cannot be part of
an administrative authorization group.

Fine-grained administrative security in a single-server environment

You can also use fine-grained administrative security in a single-server environment. Various applications
in the single server can be grouped and placed in different authorization groups. Therefore, different

644 Securing applications and their environment

authorization constraints might exist for different applications.

Life cycle of fine-grained administrative resource

An administrative resource that was once part of an authorization group continues to be part of that
authorization group until one of the following events occurs:

v The administrative resource is removed from the authorization group. In this instance, the administrative
resource belongs to the cell-level authorization group.

v The administrative resource is removed from the configuration. In this instance, the administrative
resource does not exist in the configuration, but still exists in the authorization group. Remove this
administrative resource from the authorization group.

After the administrative resource is removed from the authorization group, the administrative authorizer
runtime must be notified by using the AuthorizationManager refreshAll MBean method.

The refreshAll command must be invoked after AdminConfig.save() and sync nodes. For example:

JACL:
// get AuthorizationGroup Mbean
wsadmin> set agBean [$AdminControl queryNames
type=AuthorizationGroupManager,process=dmgr,*]

wsadmin> $AdminControl invoke &agBean refreshAll

JYTHON:
// get AuthorizationGroup Mbean
wsadmin> set agBean
AdminControl.queryNames(’type=AuthorizationGroupManager,process=dmgr,*’)

wsadmin> AdminControl.invoke(agBean, ’refreshAll’)

The server restart is no longer needed.

Using SCA authorization and security identity policies
Use two Service Component Architecture (SCA) declarative policies (authorization and security identity) to
protect SCA components and operations and to declare the security identity under which the SCA
components or operations are executed.

Before you begin

A user registry must be configured and an SCA component must first have been developed. You must also
enable application security.

About this task

Note: An authorization policy controls who can access protected SCA components and operations. A
security identity policy declares the security identity under which an SCA component or operation is
executed. You can limit access to an SCA component or to an operation to particular users or
groups. You can also delegate access to another user when executing an SCA component or an
operation.

Note the following limitations:

v SCA authorization policy is not supported for composites packaged in web application archives (WAR
files).

v The definitions.xml file must be packaged in the same asset as the composites that reference its
policy sets.

Chapter 7. Authorizing access to resources 645

v Role assignments are scoped to a configuration unit, and are required for all of the roles used in all of
the composites within the configuration unit. These role assignments are completely independent of any
role assignments made for other configuration units in the same business-level application.

v The target namespace of the policy set and the name of the policy set do not contribute to the name of
a role. They are used solely to resolve the policy set reference. This implies that within the same
configuration unit, identically-named roles that are defined within different policy sets or different name
spaces are treated as the same role.

v If authorization policy is not attached to a given component and operation, the operation runs
unprotected.

v It is possible to create conflicts by specifying multiple policy sets in the @policySets attribute or by
inheriting policy sets across elements. In this case, the following rules are used:

– The <denyAll> element takes precedence over <permitAll>, which takes precedence over <allow>.

– Roles from multiple <allow> elements are aggregated.

v SCA authorization policy does not support authorizing users in foreign realms.

Access to an SCA component is permitted or denied by using the following steps:

Procedure
1. The policy administrator creates one or more policy sets in the file named definitions.xml as shown

in the following example:
<definitions xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://smallvilleBank"
xmlns:sca="http://www.osoa.org/xmlns/sca/1.0">
<policySet name="StaffAuthorizationPolicy"
appliesTo="sca:implementation.java"
xmlns="http://www.osoa.org/xmlns/sca/1.0">
<authorization>
<allow roles="staff"/>

</authorization>
</policySet>
<policySet name="SupervisorAuthorizationPolicy"
appliesTo="sca:implementation.java"
xmlns="http://www.osoa.org/xmlns/sca/1.0">
<authorization>
<allow roles="supervisor manager specialist"/>

</authorization>
<securityIdentity>
<runAs role="specialist"/>

</securityIdentity>
</policySet>
</definitions>

2. The assembler attaches the policy to the SCA composite as in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:bank="http://smallvilleBank"
name="AccountServices">
<component name="AccountAccess">

<implementation.java class="smallvilleBank.AccountAccessImpl"
policySets="bank:staffAuthorizationPolicy"/>

</component>
<component name="AccountAudit">

<implementation.java class="smallvilleBank.AccountAuditImpl"
policySets="bank:supervisorAuthorizationPolicy"/>

</component>
</composite>

3. The deployer assigns users and or groups to the roles that are defined in the composite.

4. The deployer assigns a user to the runAs roles that are defined in the composite.

What to do next

Access to the SCA component is permitted or denied according to the authorization policy.

646 Securing applications and their environment

Using the SCA RequestContext.getSecuritySubject() API
The Service Component Architecture (SCA) Version 1.0 Java Common Annotations and APIs Specification
RequestContext.getSecuritySubject() API programming interface returns a Java Authentication and
Authorization (JAAS) subject that represents an authenticated user who accesses the protected SCA
service.

Before you begin

Note: SCA service developers can use the RequestContext.getSecuritySubject() API to obtain a JAAS
Subject that represents the requester.

If one or more of the following preconditions are not met the SCA request is not authenticated, and the
RequestContext.getSecuritySubject API returns a null Subject:

v Administrative security must be enabled to initialize the security infrastructure.

v Application security must be enabled to enforce security policy and authentication.

v SCA service either has an authentication intent or a PolicySet that requires authentication prior to
deployment.

v The SCA deployment process must associate a PolicySet that contains authentication policy
configuration to the SCA service.

About this task

When using the RequestContext.getSecuritySubject() API, perform the following steps:

Procedure
1. Add an authentication intent or specify a PolicySet in the binding element of an SCA service composite

file to enforce SCA request authentication, as shown in the following example. The following example
uses the "authentication.transport" intent.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:dbsdo="http://tuscany.apache.org/xmlns/sca/databinding/sdo/1.0"
xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
name="EchoServiceWithIdentityWSComposite">

<component name="EchoServiceWithIdentityWSComponent">
<implementation.java class="test.ws.soa.sca.qos.policy.echoRelayServiceTest.echoService.EchoServiceWithIdentityComponentImpl"/>
<service name="EchoService">

<binding.ws uri="EchoServiceWithIdentity"
wsdlElement="http://echo#wsdl.port(EchoServiceWithIdentity/EchoServiceWithIdentitySoapPort)"
requires="authentication.transport" />

</service>
</component>

</composite>

2. Specify the "WSHTTPS default" PolicySet in the SCA client composite file. A user name and password
are configured for use in outbound requests of the "HTTP Transport" default PolicySet binding.

The following example utilizes the RequestContext.getSecuritySubject API:
import org.osoa.sca.annotations.Context;
import org.osoa.sca.RequestContext;
import javax.security.auth.Subject;
import java.security.Principal;
import java.util.Iterator;
import com.ibm.websphere.security.cred.WSCredential;

@Service(EchoService.class)
public class EchoServiceWithIdentityComponentImpl implements EchoService
{

@Context
protected RequestContext requestContext;

public String echo_String(String input)
{

try {
Subject subject = null;
String securityName = null;

if (requestContext != null) {
subject = requestContext.getSecuritySubject();

Chapter 7. Authorizing access to resources 647

}

if (subject != null) {
java.util.Set principalSet = subject.getPrincipals();
if (principalSet != null && principalSet.size() > 0) {

Iterator principalIterator = principalSet.iterator();
if (principalIterator.hasNext()) {

Principal principal = (java.security.Principal) principalIterator.next();
securityName = principal.getName();

}
}

}
. . .

3. The principal identity consists of a realm name followed by the identity of the requester as shown in
the example below. WebSphere Application Server is configured to use an Lightweight Directory
Access Protocol (LDAP) server for authentication. The realm name is the LDAP server host name and
the port number:

security name = ldap1.austin.ibm.com:389/user2

You can obtain various security attributes of the request from the WSCredential object in the subject as
shown in the following example:

if (subject != null) {
java.util.Set credSet = subject.getPublicCredentials();
if (credSet != null && credSet.size() > 0)
{

Iterator credIterator = credSet.iterator();
while (credIterator.hasNext()) {

Object o = credIterator.next();
WSCredential cred = null;
if (o instanceof WSCredential) {

cred = (WSCredential) o;
} else {

if (securityName == null) {
securityName = new StringBuffer();

}
securityName.append("\n>> Found a public credential: " + o.getClass().getName());

}
if (cred != null) {

if (securityName == null) {
securityName = new StringBuffer();

}
securityName.append("\n>> WSCredential security attributes . . .");
securityName.append("\n>> getAccessId = \t\t" + cred.getAccessId());
securityName.append("\n>> getGroupIds = \t\t" + cred.getGroupIds());
securityName.append("\n>> getPrimaryGroupId = \t\t" + cred.getPrimaryGroupId());
securityName.append("\n>> getRealmName = \t\t" + cred.getRealmName());
securityName.append("\n>> getRealmSecurityName = \t\t" + cred.getRealmSecurityName());
securityName.append("\n>> getRealmUniqueSecurityName = \t\t" + cred.getRealmUniqueSecurityName());
securityName.append("\n>> getSecurityName = \t\t" + cred.getSecurityName());
securityName.append("\n>> getUniqueSecurityName = \t\t" + cred.getUniqueSecurityName());

}
}

}
}

Sample output is shown below:
>> WSCredential security attributes . . .
>> getAccessId = user:ldap1.austin.ibm.com:389/cn=user2,o=ibm,c=us
>> getGroupIds = [group:ldap1.austin.ibm.com:389/CN=GROUP2,O=IBM,C=US]
>> getPrimaryGroupId = group:ldap1.austin.ibm.com:389/CN=GROUP2,O=IBM,C=US
>> getRealmName = ldap1.austin.ibm.com:389
>> getRealmSecurityName = ldap1.austin.ibm.com:389/user2
>> getRealmUniqueSecurityName = ldap1.austin.ibm.com:389/cn=user2,o=ibm,c=us
>> getSecurityName = user2
>> getUniqueSecurityName = cn=user2,o=ibm,c=us

648 Securing applications and their environment

Chapter 8. Securing communications

WebSphere Application Server provides several methods to secure communication between a server and
a client.

About this task

Note: WebSphere Application Server provides several methods for securing communication between a
server and a client. New in this release are functions that ensure secure communication between a
server and a client. These functions focus on certificate management, authentication, and ensuring
trust among the application server, administrative agent, and job manager. The new functions
include:

v Creating and using a certificate authority (CA) clients to enable a CA to request, query, and
revoke certificates.

v Creating and using chained personal certificates to allow a certificate to be signed with a longer
life span.

v Creating and revoking certificate authority (CA) certificates to ensure secure communication
between the CA client and the CA server.

v Allowing the WebSphere Application Server administrator to create, configure, and enable
System Authorization Facility (SAF) keyrings by utilizing the (Open Cryptographic Services
Facility) OCSF Data library functions for SAF keyrings.

The following topics are covered in this section:

Procedure
v Secure communications using Secure Sockets Layer

v Creating an SSL configuration

v Creating a keystore configuration

v Creating a certificate authority (CA) client

v Deleting a certificate authority (CA) client

v Viewing or Modifying a certificate authority (CA) client

v Creating a keystore configuration for a preexisting keystore file

v Creating a self-signed certificate

v Creating a certificate authority request

v Creating writeable SAF keyrings

v Using writeable SAF keyrings

v Extracting a signer certificate from a personal certificate

v Retrieving signers from a remote SSL port

v Adding a signer certificate to a keystore

v Adding a signer certificate to the default signers keystore

v Exchanging signer certificates in a keystore

v Configuring certificate expiration monitoring

v Key management for cryptographic uses

v Creating a key set configuration

v Creating a key set group configuration

© Copyright IBM Corp. 2011 649

Secure communications using Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol provides transport layer security including authenticity, data
signing, and data encryption to ensure a secure connection between a client and server that uses
WebSphere Application Server. The foundation technology for SSL is public key cryptography, which
guarantees that when an entity encrypts data using its public key, only entities with the corresponding
private key can decrypt that data.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as the SSL implementation
for secure connections. JSSE is part of the Java 2 Standard Edition (J2SE) specification and is included in
the IBM implementation of the Java Runtime Extension (JRE). JSSE handles the handshake negotiation
and protection capabilities that are provided by SSL to ensure secure connectivity exists across most
protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for secure connection protection
and some data encryption. Key pairs effectively encrypt session-based secret keys that encrypt larger
blocks of data. The SSL implementation manages the X.509 certificates.

Managing X.509 certificates

Secure communications for WebSphere Application Server require digitally-signed X.509 certificates. The
contents of an X.509 certificate, such as its distinguished name and expiration, are either signed by a
certificate authority (CA), signed by a root certificate in NodeDefaultRootStore or
DmgrDefaultRootStore, or are self-signed. When a trusted CA signs an X.509 certificate, WebSphere
Application Server identifies the certificate and freely distributes it. A certificate must be signed by a CA
because the certificate represents the identity of an entity to the general public. Server-side ports that
accept connections from the general public must use CA-signed certificates. Most clients or browsers
already have the signer certificate that can validate the X.509 certificate so signer exchange is not
necessary for a successful connection.

You can trust the identity of a self-signed X.509 certificate only within a peer in a controlled environment,
such as internal network communications, accepts the signer certificate. To complete a trusted handshake,
you must first send a copy of the entity certificate to every peer that connects to the entity.

CA, chained, and self-signed X.509 certificates reside in Java keystores. JSSE provides a reference to the
keystore in which a certificate resides. You can select from many types of keystores, including Java
Cryptographic Extension (JCE)-based and hardware-based keystores. Typically, each JSSE configuration
has two Java keystore references: a keystore and a truststore. The keystore reference represents a Java
keystore object that holds personal certificates. The truststore reference represents a Java keystore object
that holds signer certificates.

A personal certificate without a private key is an X.509 certificate that represents the entity that owns it
during a handshake. Personal certificates contain both public and private keys. A signer certificate is an
X.509 certificate that represents a peer entity or itself. Signer certificates contain just the public key and
verify the signature of the identity that is received during a peer-to-peer handshake.

For more information, see “Extracting a signer certificate from a personal certificate” on page 778

For more information about keystores, see “Keystore configurations for SSL” on page 664.

Signer exchange

When you configure an SSL connection, you can exchange signers to establish trust in a personal
certificate for a specific entity. Signer exchange enables you to extract the X.509 certificate from the peer
keystore and add it into the truststore of another entity so that the two peer entities can connect. The
signer certificate also can originate from a CA as a root signer certificate or a chained certificate's root
signer certificate or an intermediate signer certificate. You can also extract a signer certificate directly from
a self-signed certificate, which is the X.509 certificate with the public key.

650 Securing applications and their environment

Figure 1 illustrates a hypothetical keystore and truststore configuration. An SSL configuration determines
which entities can connect to other entities, and the peer connections that are trusted by an SSL
handshake. If you do not have the necessary signer certificate, the handshake fails because the peer
cannot be trusted.

In this example, the truststore for Entity A contains three signers. Entity A can connect to any peer as long
as one of the three signers validates its personal certificate. For example, Entity A can connect to Entity B
or Entity C because the signers can trust both signed personal certificates. The truststore for Entity-B
contains one signer. Entity B is able to connect to Entity C only, and only when the peer endpoint is using
certificate Entity-C Cert 1 as its identity. The ports that use the other personal certificate for Entity C are
not trusted by Entity B. Entity C can connect to Entity A only.

In the example, the self-signed configuration seems to represent a one-to-one relationship between the
signer and the certificate. However, when a CA signs a certificate, it typically signs many at a time. The
advantage of using a single CA signer is that it can validate personal certificates that are generated by the
CA for use by peers. However, if the signer is a public CA, you must be aware that the signed certificates
might have been generated for another company other than your target entity. For your internal
communications, private CAs and self-signed certificates are preferable to public CAs because they enable
you to isolate the connections that you want to occur and prevent those that you do not want to occur.

SSL configurations

An SSL configuration comprises a set of configuration attributes that you can associate with an endpoint or
set of endpoints in the WebSphere Application Server topology. The SSL configuration enables you to
create an SSLContext object, which is the fundamental JSSE object that the server uses to obtain SSL
socket factories. You can manage the following configuration attributes:

v An alias for the SSLContext object

v A handshake protocol version

v A keystore reference

v A truststore reference

v A key manager

v One or more trust managers

v A security level selection of a cipher suite grouping or a specific cipher suite list

v A certificate alias choice for client and server connections

To understand the specifics of each SSL configuration attribute, see “SSL configurations” on page 656.

Selecting SSL configurations

In previous releases of WebSphere Application Server, you can reference an SSL configuration only by
selecting the SSL configuration alias directly. Each secure endpoint was denoted by an alias attribute that
references a valid SSL configuration within a repertoire of SSL configurations. When you made a single
configuration change, you had to re-configure many alias references across the various processes.
Although the current release still supports direct selection, this approach is no longer recommended.

The current release provides improved capabilities for managing SSL configurations and more flexibility
when you select SSL configurations. In this release, you can select from the following approaches:

Programmatic selection
You can set an SSL configuration on the running thread prior to an outbound connection.

Figure 28. Signer exchange

Chapter 8. Securing communications 651

WebSphere Application Server ensures that most system protocols, including Internet Inter-ORB
Protocol (IIOP), Java Message Service (JMS), Hyper Text Transfer Protocol (HTTP), and
Lightweight Directory Access Protocol (LDAP), accept the configuration. See “Programmatically
specifying an outbound SSL configuration using JSSEHelper API” on page 726

Dynamic selection
You can associate an SSL configuration dynamically with a specific target host, port, or outbound
protocol by using a predefined selection criteria. When it establishes the connection, WebSphere
Application Server checks to see if the target host and port match a predefined criteria that
includes the domain portion of the host. Additionally, you can predefine the protocol for a specific
outbound SSL configuration and certificate alias selection. See “Dynamic outbound selection of
Secure Sockets Layer configurations” on page 668 for more information.

Dynamic outbound selection of Secure Sockets Layer configurations is based on connection
information being available for the server so that the server can match up the outbound protocol,
host, or port when the creation of the client socket takes place in
com.ibm.websphere.ssl.protocol.SSLSocketFactory. For WebSphere admin connectors like SOAP
and Remote Method Invocation (RMI), connection information is placed on the thread and is
available for dynamic outbound selection to take place. The dynamic outbound selection process
replies on connection information being setup when SSL properties are retrieved similar to what is
described in “Programmatically specifying an outbound SSL configuration using JSSEHelper API”
on page 726.

When the outbound connection is being made from customer written applications, parts of the
connection information may not be available. Some of these applications make API calls to a
protocol to make the connection. The API ultimately then calls one of the createSocket() methods
in com.ibm.websphere.ssl.protocol.SSLSocketFactory to complete the process. gotcha: All of the
connection information for dynamic outbound selection might not be available, and you may have
to adjust the dynamic outbound selection connection filter and fill in an asterisk (*) for the missing
part of the connection information. As an example, the openConnection() call on a URL object
ultimately calls createSocket(java.net.Socket socket, String host, int port, boolean
autoClose). The connection information can be built with the host and port provided, but there is
no protocol provided. In this case, a wild card, asterisk (*), should be used for the protocol part of
the dynamic selection connection information.

Most of the createSocket() methods take a host or IP address and a port as parameters. The
dynamic outbound selection connection filter can be built with the host and port. The default
method, createSocket(), without any parameters does not contain any information to build the
outbound selection connection filter unless the socket factory was instantiated with connection
information, If no connection information is available, then you should consider using one of the
other methods of selecting a SSL configuration describes in this topic, "Programmatic selection"
can be good choice.

Direct selection
You can select an SSL configuration by using a specific alias, as in past releases. This method of
selection is maintained for backwards compatibility because many applications and processes rely
on alias references.

Scope selection
You can associate an SSL configuration and its certificate alias, which is located in the keystore
associated with that SSL configuration, with a WebSphere Application Server management scope.
This approach is recommended to manage SSL configurations centrally. You can manage
endpoints more efficiently because they are located in one topology view of the cell. The
inheritance relationship between scopes reduces the number of SSL configuration assignments
that you must set.

Each time you associate an SSL configuration with a cell scope, the node scope within the cell
automatically inherits the configuration properties. However, when you assign an SSL configuration
to a node, the node configuration overrides the configuration that the node inherits from the cell.

652 Securing applications and their environment

Similarly, all of the application servers for a node automatically inherit the SSL configuration for
that node unless you override these assignments. Unless you override a specific configuration, the
topology relies on the rules of inheritance from the cell level down to the endpoint level for each
application server.

Note: If your applications are relying on SSL configurations that were set as individual settings for
each SSL configuration in the topology, but your application servers have inherited the SSL
configuration as deployed from the cell level down to the endpoint level, then there is the
possibility of communication errors occurring among servers (for example, handshake
errors). You need to ensure that your applications are operating consistent with the central
management of SSL configurations.

The topology view displays an inbound tree and outbound tree. You can make different SSL
configuration selections for each side of the SSL connection based on what that server connects
to as an outbound connection and what the server connects to as an inbound connection. See
“Central management of SSL configurations” on page 669 for more information.

The runtime uses an order of precedence for determining which SSL configuration to choose because you
have many ways to select SSL configurations. Consider the following order of precedence when you select
a configuration approach:

1. Programmatic selection. If an application sets an SSL configuration on the running thread using the
com.ibm.websphere.ssl.JSSEHelper application programming interface (API), the SSL configuration is
guaranteed the highest precedence.

2. Dynamic selection criteria for outbound host and port or protocol.

3. Direct selection.

4. Scope selection. Scope inheritance guarantees that the endpoint that you select is associated with an
SSL configuration and is inherited by every scope beneath it that does not override this selection.

Default chained certificate configuration

By default, WebSphere Application Server creates a unique chained certificate for each node. The chained
certificate is signed with a root, a self-signed certificate stored in the DmgrDefaultRootStore or
NodeDefaultRootStore. WebSphere Application Server no longer relies on a self-signed certificate or the
default or dummy certificate that is shipped with the product. The key.p12 default keystore and the
trust.p12 truststore are stored in the configuration repository within the node directory. The default root
certificate is stored in the root-key.p12 in the configuration repository under the node directory.

All of the nodes put their signer certificates from the default root certificate in this common truststore
(trust.p12). Additionally, after you federate a node, the default SSL configuration is automatically modified
to point to the common truststore, which is located in the cell directory. The node can now communicate
with all other servers in the cell.

All default SSL configurations contain a keystore with the name suffix DefaultKeyStore, a truststore with
the name suffix DefaultTrustStore and a rootstore with the name suffix DefaultRootStore. These default
suffixes instruct the WebSphere Application Server runtime to add the root signer of the personal
certificate to the common truststore. If a truststore name does not end with DefaultKeyStore, the keystores
root signer certificates are not added to the common truststore when you federate the server. You can
change the default SSL configuration, but you must ensure that the correct trust is established for
administrative connections, among others.

For more information, see “Default chained certificate configuration in SSL” on page 676.

Chapter 8. Securing communications 653

Certificate expiration monitoring

Certificate monitoring ensures that the default chained certificate for each node is not allowed to expire.
The certificate expiration monitoring function issues a warning before certificates and signers are set to
expire. Those certificates and signers that are located in keystores managed by the WebSphere
Application Server configuration can be monitored. You can configure the expiration monitor to
automatically replace a certificate. A chained certificate will be recreated based on the same data used for
the initial creation and sign it with the same root certificate that signed the original certificate. A self-signed
certificate or chained certificate is also recreated based upon the same data that is used for the initial
creation.

The monitor also can automatically replace old signers with the signers from the new chained or
self-signed certificates in keystores that are managed by WebSphere Application Server. The existing
signer exchanges that occurred by the runtime during federation and by administration are preserved. For
more information, see “Certificate expiration monitoring in SSL” on page 684.

The expiration monitor is configured to replace chained personal certificates that are signed by a root
certificate in DmgrDefaultRootStore or NodeDefaultRootStore. The certificate is renewed using the
same root certificate that was used to sign the original certificate.

The monitor also can automatically replace old signers with the signers from the new self-signed
certificates in keystores that are managed by WebSphere Application Server. The existing signer
exchanges that occurred by the runtime during federation and by administration are preserved. For more
information, see “Certificate expiration monitoring in SSL” on page 684.

WebSphere Application Server clients: signer-exchange requirements

A new chained certificate is generated for each node during its initial startup. To ensure trust, clients must
be given the root signers to establish a connection. The introduction of chained certificates in the current
release makes this process simpler. Rather than exchanging the signer of a short lived self-signed
certificate, you can exchange the long lived root signer which will allow for preserved trust across personal
certificate renewals. In addition, you can gain access to the signer certificates of various nodes to which
the client must connect with any one of the following options (for more information, see “Secure installation
for client signer retrieval in SSL” on page 679):

v A signer exchange prompt enables you to import signer certificates that are not yet present in the
truststores during a connection to a server. By default, this prompt is enabled for administrative
connections and can be enabled for any client SSL configuration. When this prompt is enabled, any
connection that is made to a server where the signer is not already present offers the signer of the
server along with the certificate information and a Secure Hash Algorithm (SHA) digest of the certificate
for verification. The user is given a choice whether to accept these credentials. If the credentials are
accepted, the signer is added to the truststore of the client until the signer is explicitly removed. The
signer exchange prompt does not occur again when connecting to the same server unless the personal
certificate changes.

Attention: It is unsafe to trust a signer exchange prompt without verifying the SHA digest. An
unverified prompt can originate from a browser when a certificate is not trusted.

v You can run a retrieveSigners administrative script from a client prior to making connections to servers.
To download signers, no administrative authority is required. To upload signers, you must have
Administrator role authority. The script downloads all of the signers from a specified server truststore
into the specified client truststore and can be called to download only a specific alias from a truststore.
You can also call the script to upload signers to server truststores. When you select the
CellDefaultTrustStore truststore as the specified server truststore and common truststore for a cell, all of
the signers for that cell are downloaded to the specified client truststore, which is typically
ClientDefaultTrustStore. For more information, see “retrieveSigners command” on page 682.

v You can physically distribute to clients the trust.p12 common truststore that is located in the cell
directory of the configuration repository. When doing this distribution, however, you must ensure that the

654 Securing applications and their environment

correct password has been specified in the ssl.client.props client SSL configuration file. The default
password for this truststore is WebAS. Change the default password prior to distribution. Physical
distribution is not as effective as the previous options. When changes are made to the personal
certificates on the server, automated exchange can fail.

Dynamic SSL configuration changes

The SSL runtime for WebSphere Application Server maintains listeners for most SSL connections. A
change to the SSL configuration causes the inbound connection listeners to create a new SSLContext
object. Existing connections continue to use the current SSLContext object. Outbound connections
automatically use the new configuration properties when they are attempted.

Make dynamic changes to the SSL configuration during off-peak hours to reduce the possibility of
timing-related problems and to prevent the possibility of the server starting again. If you enable the runtime
to accept dynamic changes, then change the SSL configuration and save the security.xml file. Your
changes take effect when the new security.xml file reaches each node.

Note: If configuration changes cause SSL handshake failures, administrative connectivity failures also can
occur, which can lead to outages. In this case, you must re-configure the SSL connections then
perform manual node synchronization to correct the problem. You must carefully complete any
dynamic changes. It is highly recommended that you perform changes to SSL configurations on a
test environment prior to making the same changes to a production system. For more information,
see “Dynamic configuration updates in SSL” on page 686.

Built-in certificate management

Certificate management that is comparable to iKeyMan functionality is now integrated into the keystore
management panels of the administrative console. Use built-in certificate management to manage personal
certificates, certificate requests, and signer certificates that are located in keystores. Additionally, you can
remotely manage keystores. For example, you can manage a file-based keystore that is located outside
the configuration repository on any node from the deployment manager. You also can remotely manage
hardware cryptographic keystores from the deployment manager.

With built-in certificate management, you can replace a chained or self-signed certificate along with all of
the signer certificates scattered across many truststores and retrieve a signer from a remote port by
connecting to the remote SSL host and port and intercepting the signer during the handshake. The
certificate is first validated according to the certificate SHA digest, then the administrator must accept the
validated certificate before it can be placed into a truststore.

When you make a certificate request, you can send it to a certificate authority (CA). When the certificate is
returned, you can accept it within the administrative console. For more information, see “Certificate
management in SSL” on page 689.

Tip: Although iKeyMan functionality still ships with WebSphere Application Server, configure keystores
from the administrative console using the built-in certificate management functionality. iKeyMan is still
an option when it is not convenient to use the administrative console. For more information, see
“Certificate management using iKeyman prior to SSL” on page 688.

AdminTask configuration management

The SSL configuration management panels in the administrative console rely primarily on administrative
tasks, which are maintained and enhanced to support the administrative console function. You can use
wsadmin commands from a Java console prompt to automate the management of keystores, SSL
configurations, certificates, and so on.

Chapter 8. Securing communications 655

SSL configurations
Secure Sockets Layer (SSL) configurations contain attributes that enable you to control the behavior of
both the client and the server SSL endpoints. You can assign SSL configurations to have specific
management scopes. The scope that an SSL configuration inherits depends upon whether you create it
using a cell, node, server, or endpoint link in the configuration topology.

When you create an SSL configuration, you can set the following SSL connection attributes:

v Keystore

v Default client certificate for outbound connections

v Default server certificate for inbound connections

v Truststore

v Key manager for selecting a certificate

v Trust manager or managers for establishing trust during the handshake

v Handshaking protocol

v Ciphers for negotiating the handshake

v Client authentication support and requirements

You can manage an SSL configuration using any of the following methods:

v Central management selection

v Direct reference selection

v Dynamic outbound connection selection

v Programmatic selection

Using the administrative console, you can manage all of the SSL configurations for WebSphere Application
Server. From the administrative console, click Security > SSL certificates and key management >
Manage endpoint security configurations > Inbound | Outbound > SSL_configuration. You can view
an SSL configuration at the level it was created and in the inherited scope below that point in the topology.
If you want the entire cell to view an SSL configuration, you must create the configuration at the cell level
in the topology.

SSL configuration in the security.xml file

The attributes defining an SSL configuration repertoire entry for a specific management scope are stored
in the security.xml file. The scope determines the point at which other levels in the cell topology can see
the configuration, as shown in the following example:
<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"
managementScope="ManagementScope_1" type="JSSE">
<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"
clientAuthenticationSupported="false" securityLevel="HIGH" enabledCiphers=""
jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS" keyStore="KeyStore_1"
trustStore="KeyStore_2" trustManager="TrustManager_1" keyManager="KeyManager_1"
clientKeyAlias="default" serverKeyAlias="default"/>
</repertoire>

The SSL configuration attributes from the previous code sample are described in Table 1.

Table 77. security.xml Attributes. This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

xmi:id The xml:id attribute represents
the unique identifier for this XML
entry and determines how the
SSL configuration is linked to
other XML objects, such as
SSLConfigGroup. This
system-defined value must be
unique.

The administrative
configuration service
defines the default
value.

None. This value is used only for XML
associations.

656 Securing applications and their environment

Table 77. security.xml Attributes (continued). This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

alias The alias attribute defines the
name of the SSL configuration.
Direct selection uses the alias
attribute and the node is not
prefixed to the alias. Rather, the
management scope takes care
of ensuring that the name is
unique within the scope.

The default is
CellDefaultSSLSettings.

com.ibm.ssl.alias

managementScope The managementScope attribute
defines the management scope
for the SSL configuration and
determines the visibility of the
SSL configuration at runtime.

The default scope is
the cell.

The managementScope attribute is not
mapped to an SSL property. However, it
confirms whether or not the SSL configuration
is associated with a process.

type The type attribute defines the
Java Secure Socket Extension
(JSSE) or System Secure
Sockets Layer (SSSL)
configuration option. JSSE is the
SSL configuration type for most
secure communications within
WebSphere Application Server.

Both JSSE and SSSL are valid
options. The z/OS daemon still
uses SSSL in this release.

The default is JSSE. com.ibm.ssl.sslType

clientAuthentication The clientAuthentication attribute
determines whether SSL client
authentication is required.

The default is false. com.ibm.ssl.clientAuthentication

clientAuthenticationSupportedThe
clientAuthenticationSupported
attribute determines whether
SSL client authentication is
supported. The client does not
have to supply a client
certificate if it does not have a
client certificate.

Attention:
When you set the
clientAuthentication attribute to
true, you override the value that
is set for the
clientAuthenticationSupported
attribute.

The default is false. com.ibm.ssl.client.AuthenticationSupported

securityLevel The securityLevel attribute
determines the cipher suite
group. Valid values include
STRONG (128-bit ciphers),
MEDIUM (40-bit ciphers), WEAK
(for all ciphers without
encryption), and CUSTOM (if
the cipher suite group is
customized. When you set the
enabledCiphers attribute with a
specific list of ciphers, the
system ignores this attribute.

The default is
STRONG.

com.ibm.ssl.securityLevel

enabledCiphers You can set the enabledCiphers
attribute to specify a unique list
of cipher suites. Separate each
cipher suite in the list with a
space.

The default is the
securityLevel
attribute for cipher
suite selection.

com.ibm.ssl.enabledCipherSuites

Chapter 8. Securing communications 657

Table 77. security.xml Attributes (continued). This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

jsseProvider The jsseProvider attribute
defines a specific JSSE
provider.

The default is
IBMJSSE2.

com.ibm.ssl.contextProvider

sslProtocol The sslProtocol attribute defines
the SSL handshake protocol.
Valid options include: SSLv2
(client-side only), SSLv3, SSL,
SSL_TLS, TLSv1, and TLS
values. The SSL option includes
SSLv2 and SSLv3 values. The
TLS option includes the TLSv1
value. SSL_TLS, which is the
most interoperable protocol,
includes all these values and
defaults to a Transport Layer
Security (TLS) handshake.

The default is
SSL_TLS.

com.ibm.ssl.protocol

keyStore The keyStore attribute defines
the keystore and attributes of
the keyStore instance that the
SSL configuration uses for key
selection.

The default is
CellDefaultKeyStore.

For more information, see Keystore
configurations.

trustStore The trustStore attribute defines
the key store that the SSL
configuration uses for certificate
signing verification.

The default is
CellDefaultTrustStore.

A trustStore is a logical JSSE term. It
signifies a key store that contains signer
certificates. Signer certificates validate
certificates that are sent to WebSphere
Application Server during an SSL handshake.

keyManager The keyManager attribute
defines the key manager that
WebSphere Application Server
uses to select keys from a key
store. A JSSE key manager
controls the
javax.net.ssl.X509KeyManager
interface. A custom key
manager controls the
javax.net.ssl.X509KeyManager
and the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interfaces. The
com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface provides more
information from WebSphere
Application Server.

The default is
IbmX509.

com.ibm.ssl.keyManager defines a
well-known key manager and accepts the
algorithm and algorithm|provider formats, for
example IbmX509 and IbmX509|IBMJSSE2.
com.ibm.ssl.customKeyManager defines a
custom key manager and takes precedence
over the other keyManager properties. This
class must implement
javax.net.ssl.X509KeyManager and can
implement
com.ibm.wsspi.ssl.KeyManagerExtendedInfo.
For more information, see “Key manager
control of X.509 certificate identities” on page
660

trustManager The trustManager determines
which trust manager or list of
trust managers to use for
determining whether to trust the
peer side of the connection. A
JSSE trust manager implements
the
javax.net.ssl.X509TrustManager
interface. A custom trust
manager might also implement
com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface to get more information
from the WebSphere Application
Server environment.

The default is
IbmPKIX, which can
be configured for
certificate revocation
list (CRL) verification
when the certificate
contains a CRL
distribution point.
The other option is
IbmX509.

com.ibm.ssl.trustManager defines a
well-known trust manager, which is required
for most handshake situations.
com.ibm.ssl.trustManager performs certificate
expiration checking and signature validation.
You can define
com.ibm.ssl.customTrustManagers with
additional custom trust managers that are
called during an SSL handshake. Separate
additional trust managers with the vertical bar
(|) character. For more information, see “Trust
manager control of X.509 certificate trust
decisions” on page 659

Client SSL configurations are managed using the ssl.client.props properties file. The ssl.client.props
file is located in the ${USER_INSTALL_ROOT}/properties directory for each profile. For more information

658 Securing applications and their environment

about configuring this file, see the “ssl.client.props client configuration file” on page 735. Specifying any
javax.net.ssl system properties will override the corresponding property in the ssl.client.props file.

Trust manager control of X.509 certificate trust decisions
The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the
peer, which includes verifying the signature and checking the expiration date of the certificate. A Java
Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an
SSL handshake.

WebSphere Application Server has the ability to call multiple trust managers during an SSL connection.
The default trust manager does the standard certificate validation; custom trust manager plug-ins run
customized validation such as host name verification. For more information, see “Example: Developing a
custom trust manager for custom SSL trust decisions” on page 718

When a trust manager is configured in a server-side SSL configuration, the server calls the isClientTrusted
method. When a trust manager is configured in a client-side SSL configuration, the client calls the
isServerTrusted method. The peer certificate chain is passed to these methods. If the trust manager
chooses not to trust the peer information, it might produce an exception to force a handshake failure.

Optionally, WebSphere Application Server provides the com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface so that additional information can be passed to the trust manager. For more information, see the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Default IbmX509 trust manager

The default IbmX509 trust manager, which is used in the following code sample, establishes trust by
performing standard certificate validation.
<trustManagers xmi:id="TrustManager_1132357815717" name="IbmX509" provider="IBMJSSE2"
algorithm="IbmX509" managementScope="ManagementScope_1132357815717"/>

The trust manager provides a signer certificate to verify the peer certificate that is sent during the
handshake. The signers who are added to the truststore for the SSL configuration must be trustworthy. If
you do not trust the signers or do not want to allow others to connect to your servers, consider removing
default root certificates from certificate authorities (CA). You might also remove any certificates if you
cannot verify their origination.

Default IbmPKIX trust manager

You can use the default IbmPKIX trust manager to replace the IbmX509 trust manager, which is shown in
the following code sample:
<trustManagers xmi:id="TrustManager_1132357815719" name="IbmPKIX" provider="IBMJSSE2"
algorithm="IbmPKIX" trustManagerClass="" managementScope="ManagementScope_1132357815717">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815717"
name="com.ibm.security.enableCRLDP" value="true" type="boolean"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815718"
name="com.ibm.jsse2.checkRevocation" value="true" type="boolean"/>
</trustManagers>

<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=
"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""
managementScope="ManagementScope_managementNode_1">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se
curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="
" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js
se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=
"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enabl
e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""
range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo
nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""
nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo
nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov
erHelpKey="" range="" inclusive="false" firstClass="false"/>

Chapter 8. Securing communications 659

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo
nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove
rHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo
nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho
verHelpKey="" range="" inclusive="false" firstClass="false"/>
</trustManagers>

See “Example: Enabling certificate revocation checking with the default IbmPKIX trust manager” on page
661 for additional information in using the default IbmPKIX trust manager.

In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for OCSP
properties and for certificates that contain certificate revocation list (CRL) distribution points. This process
is known as extended CRL checking. When you select a trust manager, its associated properties are
automatically set as Java System properties so that the IBMCertPath and IBMJSSE2 providers are aware
that CRL checking is enabled.

Custom trust manager

You can define a custom trust manager to perform additional trust checking, which is based upon the
needs of the environment. For example, in one environment, you might enable connections from the same
Transmission Control Protocol (TCP) subnet only. The com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface provides extended information about the connection that is not provided by the standard Java
Secure Sockets Extension (JSSE) javax.net.ssl.X509TrustManager interface. The configured
trustManagerClass attribute determines which class is instantiated by the runtime, as shown in the
following code sample:
<trustManagers xmi:id="TrustManager_1132357815718" name="CustomTrustManager"
trustManagerClass="com.ibm.ws.ssl.core.CustomTrustManager"
managementScope="ManagementScope_1132357815717"/>

The trustManagerClass attribute must implement the javax.net.ssl.X509TrustManager interface and,
optionally, can implement the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Disabling the default trust manager

In some cases, you might not want to perform the standard certificate verification that is provided by the
IbmX509 and IbmPKIX default trust managers. For example, you might be working with an internal
automated test infrastructure that is not concerned with SSL client or server authentication, integrity, or
confidentiality. The following sample code shows a basic custom trust manager such as
com.ibm.ws.ssl.core.CustomTrustManager whose property is set to true.
com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined=true

You can set this property in the global properties at the top of the ssl.client.props file for clients or in the
security.xml custom properties file for servers. You must configure a custom trust manager when you
disable the default trust manager to prevent the server from calling the default trust manager even though
it is configured. Disabling the default trust manager is not a common practice. Be sure to test the system
with the disabled default trust manager in a test environment first. For more information on setting up a
custom trust manager, see “Creating a custom trust manager configuration for SSL” on page 714

Key manager control of X.509 certificate identities
The role of a Java Secure Socket Extension (JSSE) key manager is to retrieve the certificate that is used
to identify the client or server during a Secure Sockets Layer (SSL) handshake.

WebSphere Application Server provides a default key manager that can select a certificate from a keystore
when you define the following SSL configuration properties:

com.ibm.ssl.keyStoreClientAlias
Defines the alias that is chosen from the keystore for the client side of a connection. This alias
must be present in the keystore.

660 Securing applications and their environment

com.ibm.ssl.keyStoreServerAlias
Defines the alias that is chosen from the keystore for the server side of a connection. This alias
must be present in the keystore.

These two properties are set automatically when you use the administrative console because the default
key manager is already configured.

With WebSphere Application Server, you can configure only one key manager at a time for a given SSL
configuration. If you want custom certificate selection logic on the client side, you must write a new custom
key manager. The custom key manager could provide function that prompts the user to choose a
certificate dynamically. Also, you can implement an extended interface so that a key manager can provide
information during connection time. For more information on the extended interface, see the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. For more information on custom key manager
development, see “Creating a custom key manager for SSL” on page 719.

Default IbmX509 key manager

The default IbmX509 key manager chooses a certificate to serve as the identity for an SSL handshake.
The key manager is called to enable client authentication on either side of the SSL handshake; frequently
on the server-side, and less frequently on the client side according to client and server requirements. If a
keystore is not configured on the client-side and SSL client authentication is enabled, the key manager
cannot select a certificate to send to the server. Therefore, the handshake fails.

The following sample code shows the key manager configuration in the security.xml file for an IbmX509
key manager.
<keyManagers xmi:id="KeyManager_1" name="IbmX509"
provider="IBMJSSE2" algorithm="IbmX509" keyManagerClass=""
managementScope="ManagementScope_1"/>

You do not specify the keyManagerClass class because the key manager is provided by the IBMJSSE2
provider. However, you can specify whether the key manager is a custom class implementation, in which
case you must specify the keyManager class, or an algorithm name that WebSphere Application Server
can start from the Java security provider framework.

Custom key manager

The following sample code shows the key manager configuration in the security.xml file for a custom
class.
<keyManagers xmi:id="KeyManager_2" name="CustomKeyManager"
keyManagerClass="com.ibm.ws.ssl.core.CustomKeyManager"
managementScope="ManagementScope_1"/>

The custom class must implement the javax.net.ssl.X509KeyManager interface and, optionally, implement
the com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface to retrieve additional WebSphere Application
Server information. This interface replaces the function of the default key manager because you can
configure only one key manager at a time. Therefore, the custom key manager has sole responsibility for
selecting the alias to use from the configured keystore. The benefit of a custom key manager is its ability,
on the client side, to prompt for an alias. This process enables the user to decide which certificate to use
in situations where the user knows the client certificate identity. For more information, see “Creating a
custom key manager for SSL” on page 719.

Example: Enabling certificate revocation checking with the default IbmPKIX trust
manager
The IbmPKIX trust manager is enabled in the WebSphere Application Server by default. The IbmPKIX trust
manager allows certificate revocation checking to occur. You enable certificate revocation checking by
using the administrative console or by manually updating the ssl.client.props file.

Chapter 8. Securing communications 661

The default IbmPKIX trust manager

The IbmPKIX trust manager is enabled by default, but revocation checking is not enabled by default. The
following trust manager definition for IbmPKIX reflects the default condition:
<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=
"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""
managementScope="ManagementScope_managementNode_1">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se
curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="
" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js
se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=
"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enable
e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""
range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo
nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""
nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo
nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov
erHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo
nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove
rHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo
nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho
verHelpKey="" range="" inclusive="false" firstClass="false"/>
</trustManagers>

Enabling certificate revocation checking with the default IbmPKIX trust manager

You can view and change IbmPKIX Trust Manager Custom Properties using the administrative console.

To do this,

v Click Security > SSL certificate and key management.

v Under Related Items, click Trust managers.

v Click IbmPKIX.

v Under Additional Properties, click Custom properties.

IbmPKIX custom properties

com.ibm.jsse2.checkRevocation
This property configures revocation checking for the Java Virtual Machine (JVM). This property is
set to false by default because the default WebSphere certificates used for SSL communication do
not contain certificate revocation list (CRL) distribution points or Online Certificate Status Protocol
(OCSP) information.

Note: Since this property is a JVM property, this value is in effect for the entire application server.
If the property is defined in trust managers at different scopes, the value in effect is used
from the most specifically scoped IbmPKIX trust manager. For example, the property for an
IbmPKIX trust manager defined at the node level overrides the property for an IbmPKIX
trust manager defined at the cell level. This property is ignored for the IbmX509 trust
manager.

default
false

com.ibm.security.enableCRLDP
This property configures CRL distribution point checking for the PKIX trust manager.

662 Securing applications and their environment

Note: If you enable CRL distribution point revocation checking, the certificates used for secure
sockets layer (SSL) must contain a valid distribution point and the distribution point must be
accessible or else SSL communication will fail and the server will not function correctly.

default
false

For certificates that do not contain an internal CRL distribution point, the following properties can used so
the revocation status will be checked against a remote LDAP server containing the CRL.

com.ibm.security.ldap.certstore.host
This property specifies the LDAP server host name containing trusted certificates or certificate
revocation lists. The target LDAP server host is used to obtain CA certificates or certificate
revocation lists when validating a certificate and the local truststore does not contain the required
certificate. The local truststore must contain the required certificates if an LDAP server is not
specified. In cases when an LDAP server is used, the root CA certificates must also be located in
the local truststore as the LDAP server is not a trusted certificate store.

Note: Enabling this property in addition to the com.ibm.jsse2.checkRevocation property enables
revocation checking. The remote LDAP server must contain a valid certificate revocation list
and the server must be accessible. If the revocation status cannot be determined then the
check will fail and SSL communication will fail and the server will not function correctly.

default
none

com.ibm.security.ldap.certstore.port
This property specifies the LDAP server port. A port value of 389 will be used by default if no
LDAP server port is specified.

default
389

The following Java Development Kit (JDK) properties apply to enabling certificate revocation checking with
the default IbmPKIX trust manager:

v ocsp.enable

v ocsp.responder

v ocsp.responderCertSubjectName

v ocsp.responderCertIssuerName

v ocsp.responderCertSerialNumber

These JDK properties can be set using the administrative console. You should reference Java(TM)
Certification Path API Programmer's Guide - SDK 6.0 for descriptions of these properties and their
allowable settings.

Note: In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for
certificates that contain CRL distribution points. This process is known as extended CRL checking.
By default, CRL distribution point revocation checking is disabled. To enable CRL distribution point
revocation checking, you must set the following properties to true using the administrative console:

v com.ibm.security.enableCRLDP

v com.ibm.jsse2.checkRevocation

OCSP properties and CRL properties affect certificate revocation checking. By default OCSP
properties are checked first. If there is an error validating the certificate with OCSP, then validation
uses a CRL distribution point instead.

Chapter 8. Securing communications 663

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html

When you select a trust manager, its associated properties are automatically set as Java system
properties so that the IBMCertPath and IBMJSSE2 providers are aware that CRL checking is
enabled or disabled. Similarly, the same applies for OCSP properties, which are
java.security.Security properties.

Client considerations

You can also enable revocation checking for WebSphere application and administrative clients by directly
setting the properties in the ssl.client.props file. An example of the ssl.client.props file follows:
#---
Default Revocation Checking Properties
These properties are used for certificate revocation checking with the IBM
PKIX TrustManager.
#
To enable CRL Distribution Points extension checking, use the system property
com.ibm.security.enableCRLDP.
#
OCSP checking is not enabled by default. It is enabled by setting the
ocsp.enable property to "true". Use of the other ocsp properties is optional.
#
Note: Both OCSP and CRLDP checking is only effective if revocation checking
has also been enabled by setting com.ibm.jsse2.checkRevocation to "true".
#
#---
com.ibm.jsse2.checkRevocation=false
com.ibm.security.enableCRLDP=false
#ocsp.enable=true
#ocsp.responderURL=http://ocsp.example.net
#ocsp.responderCertSubjectName=CN=OCSP Responder, O=XYZ Corp
#ocsp.responderCertIssuerName=CN=Enterprise CA, O=XYZ Corp
#ocsp.responderCertSerialNumber=2A:FF:00

Note: In order for these properties to be effective, you must ensure that the IbmPKIX trust manager is
initialized by setting com.ibm.ssl.trustManager=IbmPKIX.

In addition, for revocation checking to be processed successfully on the client, you are required to turn off
the signer exchange prompt. To do this, change the value of the
com.ibm.ssl.enableSignerExchangePrompt property to false, in the ssl.client.props file.

For more information on these properties, see Java(TM) Certification Path API Programmer's Guide - SDK
6.0.

Keystore configurations for SSL
Use keystore configurations to define how the runtime for WebSphere Application Server loads and
manages keystore types for Secure Sockets Layer (SSL) configurations.

By default, the java.security.Security.getAlgorithms("KeyStore") attribute does not display a predefined list
of keystore types in the administrative console. Instead, WebSphere Application Server retrieves all of the
KeyStore types that can be referenced by the java.security.KeyStore object, including hardware
cryptographic, z/OS platform, IBM i platform, IBM Java Cryptography Extension (IBMJCE), and Java-based
content management system (CMS)-provider keystores. If you specify a keystore provider in the
java.security file or add it to the provider list programmatically, WebSphere Application Sever also
retrieves custom keystores. The retrieval list depends upon the java.security configuration for that platform
and process.

IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)

A typical IBMJCE file-based keystore configuration is shown in the following sample code:

664 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"
password="{xor}349dkckdd=" provider="IBMJCE"
location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell
/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"
hostList="" initializeAtStartup="true" readOnly="false"
description="Default key store for myhostNode01" usage="SSLKeys"
managementScope="ManagementScope_1"/>

For more information about default keystore configurations, see “Default chained certificate configuration in
SSL” on page 676.

Table 1 describes the attributes that are used in the sample code.

Table 78. keystore configurations. This table describes the keystore configurations.
Attribute name Default Description

xmi:id Varies A value that issued to reference the keystore from another area in the
configuration, for example, from an SSL configuration. Make this
value unique within the security.xml file.

name For JSSE keystore: CellDefaultKeyStore. For
JSSE truststore: CellDefaultTrustStore.

A name that is used to identify the keystore by sight. The name can
determine if the keystore is a default keystore based upon whether
the name ends with DefaultKeyStore or DefaultTrustStore.

password The default keystore password is WebAS. It is
recommended that this be changed as soon as
possible. See Updating default key store
passwords using scripting for more information.

The password that is used to access the keystore name is also the
default that is used to store keys within the keystore.

description No default A description of the keystore.

usage An attribute specifying what the keystore is used
for.

Valid values are: SSLKeys, KeySetKeys, RootKeys, DeletedKeys,
DefaultSigners, RSATokenKeys.

provider The default provider is IBMJCE. The Java provider that implements the type attribute (for example,
PKCS12 type). The provider can be left unspecified and the first
provider that implements the keystore type specified is used.

location The default varies, but typically references a
key.p12 file or a trust.p12 file in the node or cell
directories of the configuration repository. These
files are PKCS12 type keystores.

The keystore location reference. If the keystore is file-based, the
location can reference any path in the file system of the node where
the keystore is located. However, if the location is outside of the
configuration repository, and you want to manage the keystore
remotely from the administrative console or from the wsadamin
utility, then specify the hostList attribute that contains the host name
of the node where it resides.

type The default Java crypto device keystore type is
PKCS12.

This type specifies the keystore. Valid types can be those returned by
the java.security.Security.getAlgorithms("KeyStore") attribute. These
types include the following keystore types, and availability depends
on the process and platform java.security configuration:

v JKS

v JCEKS

v PKCS12

v PKCS11 (Java crypto device)

v CMSKS

v IBMi5OSKeyStore

v JCERACFKS

v JCECCAKS keystores (replacing JCE4758KS) - (z/OS crypto
device)

fileBased The default is true. This option is required for default keystores. It indicates a file-system
keystore so you can use a FileInputStream or FileOutputStream for
loading and storing the keystore.

hostList The hostList attribute is used to specify a remote
hostname so that the keystore can be remotely
managed. There are no remotely managed
keystores by default. All default keystores are
managed locally in the configuration repository
and synchronized out to each of the nodes.

The option manages a keystore remotely. You can set the host name
of a valid node for a keystore. When you use either the administrative
console or the wsadmin utility to manage certificates for this keystore,
an MBean call is made to the node where the keystore exists for the
approved operation. You can specify multiple hosts, although
synchronization of the keystore operations are not guaranteed. For
example, one of the hosts that is listed might be down when a
specific operation is performed. Therefore, use multiple hosts in this
list.

initializeAtStartup The default is true. This option informs the runtime to initialize the keystore during
startup. This option can be important for hardware cryptographic
device acceleration.

Chapter 8. Securing communications 665

Table 78. keystore configurations (continued). This table describes the keystore configurations.
Attribute name Default Description

readOnly The default is false. This option informs the configuration that you cannot write to this
keystore. That is, certain update operations on the keystore cannot
be attempted and are not allowed. An example of a read-only
keystore type is JCERACFKS on the z/OS platform. This type is
read-only from the WebSphere certificate management standpoint,
but you can also update it using the keystore management facility for
RACF.

Optionally, you can configure writable keyring support that enables
additional keystore configurations for use by the certificate
management function. See “Creating writable SAF keyrings” on page
772 and “Using writable SAF keyrings” on page 770 for more
information on configuring and using writable key store configuration
objects.

managementScope The default scope is the node scope for a base
Application Server environment and the cell
scope for a Network Deployment environment.

This option references a particular management scope in which you
can see this keystore. For example, if a hardware cryptographic
device is physically located on a specific node, then create the
keystore from a link to that node in the topology view under Security
> Security Communications > SSL configurations. You can also
use management scope to isolate a keystore reference. In some
cases, you might need to allow only a specific application server to
reference the keystore; the management scope is for that specific
server.

z/OS keystores

WebSphere Application Server supports IBMJCE file-based keystores, Java Cryptography Extension Key
Stores (JCEKS), Java Key Stores (JKS), and Public Key Cryptography Standards 12 (PKCS12), and
z/OS-specific keystores. The IBMJCE file-based keystore support on z/OS is fully compatible with and
similar to the support on the distributed platform.

The IBMJCECCA provider extends and replaces the IBMJCE4758 provider from earlier releases. The
IBMJCECCA provider and the IBMJCE4758 provider are functionally equivalent. The IBMJCECCA provider
supports four keystores: JCECCAKS (JCE4758KS) and JCECCARACFKS (JCE4758RACFKS).

The JCECCAKS keystore uses keys that are stored in the z/OS hardware and managed by ICSF. The
JCECCARACFKS keystore handles certificates managed and stored in RACF keyrings, and the keys are
stored in the z/OS hardware. The JCE4758KS and JCE4758RACFKS keystores are included for
downward compatibility and are deprecated. The JCECCAKS keystore extends and replaces the
JCE4758KS keystore. The JCECCARACFKS keystore extends and replaces the JCE4758RACFKS
keystore.

The z/OS platform offers three additional keystores types that can be used for WebSphere Application
Server on z/OS:

v JCECCAKS keystores (replacing JCE4758KS) use keys that are stored in the z/OS hardware and keys
that are managed in Integrated Cryptographic Services Facility (ICSF).

v JCERACFKS keystores are a Resource Access Control Facility (RACF) - based keystores that are used
to support keys and certificates that are contained in a RACF keystore. Key material stored in ICSF is
not supported with this keystore type.

v JCECCARACFKS (extending and replacing JCE4758RACFKS) keystores are RACF - based keystores
that are used to support certificates that are contained in a RACF keystore along with keys stored in
z/OS hardware. The ICSF option with RACF RACDCERT must be specified.

Notes:

v The keystore type, JCERACFKS for the IBMJCE provider and JCECCARACFKS for the
IBMJCECCA provider, are only available on the z/OS platform where SAF is available.

666 Securing applications and their environment

v You can use the administrative console to extract a personal certificate into HFS as a
Base64-encoded ASCII data type or as a Binary DER data type. However, if the keystore type
of the SSL configuration is JCERACFKS, a 0 bytes file is created in HFS.

v To be compatible with the JCE keystore in requiring a password, the JCERACFKS require a
password but that password must be password. Security for this keystore is not really protected
using a password as other keystore types, but rather it is based on the identity of the executing
thread for protection with RACF. This password is for the keystore file that you specified in the
Path field.

An IBMJCE provider can only support the JCERACFKS keystore in the set of z/OS-specific keystores that
are listed previously. The IBMJCE provider cannot use the JCECCAKS or JCECCARACFKS keystore
material since it is specific to the hardware.

An IBMJCECCA provider can support software key materials for the JCERACFKS, JKS, and JCEKS
keystores, and take advantage of the hardware acceleration.

A new keystore class, JceRACFKeyStore, has been added to the IBMJCE and IBMJCECCA providers.
Use this class when you retrieve certificates and keys from a keyring because this keystore allows
WebSphere Application Server to read from a keyring. However, if the server attempts to write data to the
keyring, an IOException is thrown. While the RACFInputStream works with any keystore, it is possible that
data stored in RACF could be inadvertently written to an Hierarchical File System (HFS) file if the server
uses a keystore other than the JceRACFKeyStore class.

RACFInputStream can access keys and certificates that are stored in a System Authorization Facility
(SAF) keyring implementation using either of the following methods:

v Use RACFInputStream directly to pass in a newly-created instance to the JceRACFKeyStore class

v Use URLStreamHandler to call RACFInputStream, then pass the instance to the JceRACFKeyStore
class

For more information, see “RACF keyring setup” on page 138.

All JAVA RACF services, including the JceRACFKeyStore and RACFInputStream, use the R_datalib
(IRRSDL00) service to retrieve certificates from RACF. However, to use this service, you must obtain
authorization for R_datalib before you use any JAVA RACF classes. For more information on how to setup
the necessary authorizations, see OS/390® Security Server Callable Services guide.

CMS keystores

You can set some provider-specific attributes in CMS keystores.

If the CMSKS provider supports the createStashFileForCMS attribute, and you set the attribute to true for
CMSKS keystores, WebSphere Application Server creates an .sth file in the keystore location that is
referenced by the attribute. The .sth extension is appended to the keystore name. For example, if the
CMSKS keystore is available for a plug-in configuration and you set createStashFileForCMS to true, the
stash file that is represented in the following sample code is created in the ${USER_INSTALL_ROOT}\
profiles\AppSrv01/config/cells/myhostCell01/nodes/myhostNode01/servers/webserver1/plugin-key.sth
path.
<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"
password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMCMSProvider"
location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01
/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="CMSKS"
fileBased="true" createStashFileForCMS="true"
managementScope="ManagementScope_1132071489569"/>

When you create a CMS keystore, the CMS provider is IBMi5OSJSSEProvider, and the CMS type is
IBMi5OSKeyStore, as shown in the following sample code:

Chapter 8. Securing communications 667

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"
password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMi5OSJSSEProvider"
location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01
/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="IBMi5OSKeyStore"
fileBased="true" createStashFileForCMS="true"
managementScope="ManagementScope_1132071489569"/>

Hardware cryptographic keystores

For cryptographic device configuration, see “Key management for cryptographic uses” on page 796.

You can add a slot either as the custom property, com.ibm.ssl.keyStoreSlot, or as the configuration
attribute, slot="0". The custom property is read before the attribute for backwards compatibility.

Dynamic outbound selection of Secure Sockets Layer configurations
WebSphere Application Server provides dynamic outbound selection that enables you to choose a specific
Secure Sockets Layer (SSL) configuration and certificate alias for each outbound protocol, target host,
target port, or any combination of these attributes. You can specify the dynamic selection information for
outbound connections from a pure client or from a server that is acting as a client.

Before the SSL runtime for WebSphere Application Server starts an outbound connection, the runtime
attempts to match the outbound protocol, target host, and target port attributes with the dynamic outbound
selection information that is associated with an SSL configuration and certificate alias in the configuration.

The runtime caches both selection misses and selection hits, so the impact on performance can be
minimal. However, a relationship exists between the amount of dynamic outbound selection information
and its impact on the initial connection performance.

Dynamic selection information for outbound administrative SOAP connections

The default dynamic outbound selection configuration specifies that all outbound administrative SOAP
connections use the same SSL configuration and certificate alias within the entire cell.

The management scope of the SSL configuration is at the cell level so every process in the cell sees this
configuration. When an administrative SOAP client makes an outbound connection, the client provides
protocol, target host, and target port information to the SSL runtime, as shown in the following sample
code:
<dynamicSSLConfigSelections xmi:id="DynamicSSLConfigSelection_1"
name="AdminSSLOutbound" description="Uses the AdminSSL configuration
for all outbound SOAP calls." dynamicSelectionInfo="ADMIN_SOAP,*,*"
certificateAlias="default" sslConfig="SSLConfig_2"
managementScope="ManagementScope_1"/>

The SSL runtime checks the configuration and confirms that certificateAlias="default" and
sslConfig="SSLConfig_2" for the ADMIN_SOAP protocol when you enable client certificate authentication.

Note: The configured target host and port are represented by the * character because both the host and
the port attributes can be any value.

Target information during outbound connections

The dynamic outbound selection configurations are only effective when the outbound protocol uses the
JSSEHelper application programming interface (API) when you select an SSL configuration with a
specified connectionInfo hash map. This hash map must contain the following properties:

com.ibm.ssl.direction
The value for outbound connections is OUTBOUND.

668 Securing applications and their environment

com.ibm.ssl.remoteHost
The format should match what the protocol provides. Typically this is the canonical Domain Name
Space (DNS), but it also could be the IP address.

com.ibm.ssl.remotePort
The port is target port.

com.ibm.ssl.endPointName
The value for an outbound connection must be one of the following protocol strings:

v IIOP

v HTTP

v SIP

v LDAP

v ADMIN_IPC

v ADMIN_SOAP

v BUS_TO_BUS

v BUS_CLIENT

v BUS_TO_WEBSPHERE_MQ

v WEBSPHERE_MQ_CLIENT

Central management of SSL configurations
By default, Secure Sockets Layer (SSL) configurations for servers are managed from a central location in
the topology view of the administrative console. You can associate an SSL configuration and certificate
alias with a specific management scope. This method is the most efficient method to manipulate and
modify configurations when the server topology changes.

In prior releases, SSL configurations are managed for each process. You have to maintain individual
settings for each SSL configuration in the topology. In this release of WebSphere Application Server,
management control of your SSL configurations offers more options and additional flexibility. You are able
to make coarse-grained changes for the entire topology using the cell-scope and also make fine-grained
changes using a particular endpoint name for a specific application server process. Because the SSL
configuration associations manifest an inheritance behavior, you can simplify the number of associations
by referencing only the highest level management scope that needs a unique configuration.

The topology view provides the scoping mechanism. The SSL configuration inherits its scope, which can
be seen as its display in the topology. The scope encompasses the level where you created the
configuration and all the levels below that point. For example, when you create an SSL configuration at a
specific node, that configuration can be seen by that node agent and by every application server that is
part of that node. Any application server or node that is not part of this particular node can not see this
SSL configuration.

Your security environment influences issues such as the uniqueness of the SSL configurations, as well as
the SSL configuration and the certificate alias placement in the topology. You are also able to configure
different certificate aliases and different SSL configurations for inbound connections versus outbound
connections.

To configure the inbound and outbound topologies, which must be done separately in the administrative
console, click Security > SSL certificates and key management > Manage endpoint security
configurations > Inbound | Outbound.

Default centrally managed SSL configuration

It is simpler to manage SSL configurations centrally in the topology view of the administrative console, but
you can also use wsadmin scripting within AdminTasks to manage SSL configurations.

Chapter 8. Securing communications 669

The configuration element of the security.xml file can be used to manage SSL configuration associations.
The sslConfigGroup configuration object is the mechanism that is used to associate a connection direction
and management scope with a specific SSL configuration and certificate alias. The default
sslConfigGroups cell attribute has a predefined inbound and outbound cell-scoped configuration that each
endpoint in the cell inherits. Because rules of precedence must guide you when you select SSL
configurations, see “Secure communications using Secure Sockets Layer (SSL)” on page 650 before you
modify your configurations using wsadmin scripting.
<sslConfigGroups xmi:id="SSLConfigGroup_1"
name="myhostCell01" direction="inbound" certificateAlias="default"
sslConfig="SSLConfig_1" managementScope="ManagementScope_1"/>
<sslConfigGroups xmi:id="SSLConfigGroup_2" name="myhostCell01"
direction="outbound" certificateAlias="default" sslConfig="SSLConfig_1"
managementScope="ManagementScope_1"/>

<managementScopes xmi:id="ManagementScope_1"
scopeName="(cell):myhostCell01" scopeType="cell"/>

In the previous sample code, the sslConfigGroups attribute references the cell management scope. For
that example, if a different scope was intended the following list shows the precedence order for selecting
management scopes, from the highest order of precedence to the lowest. Each time an endpoint scope is
defined, it uses the specified SSL configuration and certificate alias.

Endpoint scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01:
(node):myhostNode01:(server):server1:(endpoint):ENDPOINT_NAME_IN_SERVERINDEX"
scopeType="endpoint"/>

Server scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01:
(node):myhostNode01:(server):server1" scopeType="server"/>

Cluster scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01:
(cluster):myCluster" scopeType="cluster"/>

Node scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01:
(node):myhostNode01" scopeType="node"/>

Nodegroup scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01:
(nodegroup):DefaultNodeGroup" scopeType="nodegroup"/>

Cell scope
<managementScopes xmi:id="ManagementScope_1" scopeName="(cell):myhostCell01"
scopeType="cell"/>

Secure Sockets Layer node, application server, and cluster isolation
Secure Sockets Layer (SSL) enables you to ensure that any client that attempts to connect to a server
during the handshake first performs server authentication. Using SSL configurations at the node,
application server, and cluster scopes, you can isolate communication between severs that should not be
allowed to communicate with each other over secure ports.

Before you attempt to isolate communications controlled by WebSphere Application Server, you must have
a good understanding of the deployment topology and application environment. To isolate a node,
application server, or cluster, you must be able to control the signers that are contained in the truststores
that are associated with the SSL configuration. When the client does not contain the server signer, it
cannot establish a connection to the server. By default, WebSphere uses chained certificates and each
node has a unique root certificate signer. Because they the node shares the same root signer, all of the
server in that node can connect to each other because they share the same root signer. However, if you
use self-signed certificates, the server that created the personal certificate controls the signer, although
you do have to manage the self-signed certificates. If you obtain certificates from a certificate authority
(CA), you must obtain multiple CA signers because all of the servers can connect to each other if they
share the same signer.

670 Securing applications and their environment

Authenticating only the server-side of a connection is not adequate protection when you need to isolate a
server. Any client can obtain a signer certificate for the server and add it to its trust store. SSL client
authentication must also be enabled between servers so that the server can control its connections by
deciding which client certificates it can trust. For more information, see “Enabling Secure Sockets Layer
client authentication for a specific inbound endpoint” on page 730, which applies as well to enabling SSL
client authentication at the cell level.

Isolation also requires that you use centrally managed SSL configurations for all or most endpoints in the
cell. Centrally managed configurations can be scoped, unlike direct or end point configuration selection,
and they enable you to create SSL configurations, key stores, and trust stores at a particular scope.
Because of the inheritance hierarchy of WebSphere Application Server cells, if you select only the
properties that you need for an SSL configuration, only these properties are defined at your selected
scope or lower. For example, if you configure at the node scope, your configuration applies to the
application server and individual end point scopes below the node scope. For more information, see
“Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes” on page
727, “Selecting an SSL configuration alias directly from an endpoint configuration” on page 728, and
“Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote
secure endpoint” on page 724

When you configure the key stores, which contain cryptographic keys, you must work at the same scope
at which you define the SSL configuration and not at a higher scope. For example, if you create a key
store that contains a certificate whose host name is part of the distinguished name (DN), then store that
keystore in the node directory of the configuration repository. If you decide to create a certificate for the
application server, then store that keystore on the application server in the application server directory.

When you configure the trust stores, which control trust decisions on the server, you must consider how
much you want to isolate the application servers. You cannot isolate the application servers from the node
agents or the deployment manager. However, you can configure the SOAP connector end points with the
same personal certificate or to share trust. Naming persistence requires IIOP connections when they pass
through the deployment manager. Because application servers always connect to the node agents when
the server starts, the IIOP protocol requires that WebSphere Application Server establish trust between the
application servers and the node agents.

Establishing node SSL isolation

By default, WebSphere Application Server installation uses a single chained certificate for each node so
you can isolate nodes easily. A common trust store, which is located in the cell directory of the
configuration repository, contains all of the signers for each node that is federated into the cell. After
federation, each cell process trusts all of the other cell processes because every SSL configuration
references the common trust store.

You can modify the default configuration so that each node has its own trust store, and every application
server on the node trusts only the node agent that uses the same personal certificate. You must also add
the signer to the node trust store so that WebSphere Application Server can establish trust with the
deployment manager. To isolate the node, ensure that the following conditions are met:

v The deployment manager must initiate connections to any process

v The node agent must initiate connections to the deployment manager and its own application servers

v The application servers must initiate connections to the applications servers on the same node, to its
own node agent, and the deployment manager

Figure 1 shows Node Agent A contains a key.p12 keystore and a trust.p12 trust store at the node level of
the configuration repository for node A.

Figure 29.

Chapter 8. Securing communications 671

When you associate an SSL configuration with this keystore and truststore, you break the link with the
cell-scoped trust store. To isolate the node completely, repeat this process for each node in the cell.
WebSphere Application Server SSL configurations override the cell scope and use the node scope instead
so that each process at this scope uses the SSL configuration and certificate alias that you selected at this
scope. You establish proper administrative trust by ensuring that nodeA signer is in the common trust store
and the cell signer is in the nodeA trust store. The same logic applies to node B as well. For more
information, see “Associating Secure Sockets Layer configurations centrally with inbound and outbound
scopes” on page 727.

Establishing application server SSL isolation

Isolating application server processes from one another is more challenging than isolating nodes. You
must consider the following application design and topology conditions:

v An application server process might need to communicate with the node agent and deployment
manager

v Isolating application server processes from each other might disable single sign-on capabilities for
horizontal propagation

If you configure outbound SSL configurations dynamically, you can accommodate these conditions. When
you define a specific outbound protocol, target host, and port for each different SSL configuration, you can
override the scoped configuration.

Figure 2 shows how you might isolate an application server completely, although in practice this approach
would be more complicated.

The dynamic configuration enables server1 on Node A to communicate with server 1 on Node B only over
IIOP. The dynamic outbound rule is IIOP,nodeBhostname,*. For more information, see “Associating a
Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint”
on page 724

Establishing cluster SSL isolation

You can configure application servers into clusters instead of scoping them centrally at the node or
dynamically at the server to establish cluster SSL isolation. While clustered servers can communicate with
each other, application servers outside of the cluster cannot communicate with the cluster, thus isolating
the clustered servers. For example, you might need to separate applications from different departments
while maintaining a basic level of trust among the clustered servers. Using the dynamic outbound SSL
configuration method described for servers above, you can easily extend the isolated cluster as needed.

Figure 3 shows a sample cluster configuration where cluster 1 contains a key.p12 with its own self-signed
certificate, and a trust.p12 that is located in the config/cells/<cellname>/clusters/<clustername> directory.

In the example, cluster1 might contain web applications, and cluster2 might contain EJB applications.
Considering the various protocols, you decide to enable IIOP traffic between the two clusters. Your task is
to define a dynamic outbound SSL configuration at the cluster1 scope with the following properties:
IIOP,nodeAhostname,9403|IIOP,nodeAhostname,9404|IIOP,nodeBhostname,9403|IIOP,nodeBhostname,9404

Figure 30.

Figure 31.

672 Securing applications and their environment

You must create another SSL configuration at the cluster1 scope that contains a new trust.p12 file with the
cluster2 signer. Consequently, outbound IIOP requests go either to nodeAhostname ports 9403 and 9404
or to nodeBhostname ports 9403 and 9404. The IIOP SSL port numbers on these two application server
processes in cluster2 identify the ports.

As you review Figure 3, notice the following features of the cluster isolation configuration:

v The trust.p12 for cluster1 contains signers that allow communications with itself (cluster1 signer),
between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell
signer).

v The trust.p12 for cluster2 contains signers that allow communications with itself (cluster2 signer),
between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell
signer).

v Node agent A and Node agent B can communicate with themselves, the deployment manager, and both
clusters.

For more information, see “Associating a Secure Sockets Layer configuration dynamically with an
outbound protocol and remote secure endpoint” on page 724.

Although this article presents an overview of isolation methods from an SSL perspective, you must also
ensure that non-SSL ports are closed or applications require the confidentiality constraint in the
deployment descriptor. For example, you can set the CSIv2 inbound transport panel to require SSL and
disable the channel ports that are not secure from the server ports configuration.

Also, you must enable SSL client authentication for SSL to enforce the isolation requirements on both
sides of a connection. Without mutual SSL client authentication, a client can easily obtain a signer for the
server programmatically and thus bypass the goal of isolation. With SSL client authentication, the server
would require the client's signer for the connection to succeed. For HTTP/S protocol, the client is typically
a browser, a web service, or a URL connection. For the IIOP/S protocol, the client is typically another
application server or a Java client. WebSphere Application Server must know the clients to determine if
SSL client authentication enablement is possible. Any applications that are available through a public
protocol must not enable SSL client authentication because the client may fail to obtain a certificate to
authenticate to the server.

Note: It is beyond the scope of this article to describe all of the factors you must consider to achieve
complete isolation.

Certificate options during profile creation
Starting in WebSphere Application Server Version 7.0, you have several options available during profile
creation concerning the default certificate and root certificate of the server.

The new certificate options enable you to:

v Import the default certificate of the server

v Import the root certificate of the server

v Customize the default certificate subjectDN and validity period of the server

v Customize the root certificate subjectDN and validity period of the server

Two new panels are available during profile creation that enable you to make decisions about the default
certificate and root certificate of the server.

The first panel, titled Security Certificate (Part 1), enables you to choose to import a certificate or to have
WebSphere Application Server create the default certificate or the default root certificate of the server for
you.

Chapter 8. Securing communications 673

The second panel, titled Security Certificate (Part 2), either displays the information from the certificate
imported from the previous panel, or, if you choose to have WebSphere Application Server create the
certificate, enables you to change the subjectDN and the certificate validity period.

Customization of certificates can also be performed by using the manageprofile command and from a
silent install response file.

Importing the default certificate of the server during profile creation

If the default certificate of the server is imported during profile creation, it is added to NodeDefaultKeyStore
if on a stand-alone application server, or to CellDefaultKeyStore if on a deployment manager. The imported
certificate signer is added to NodeDefaultTrustStore or CellDefaultTrustStore.

To import the default certificate of the server, you must have a personal certificate stored and a keystore
that you have access to. You must know the location, type and password of the keystore. On the Security
Certificate (Part 1) panel, do the following:

1. Select Import an existing default personal certificate.

2. Type or select the keystore file name.

3. Enter the password of the keystore.

4. Select a keystore type from the pull-down list.

5. If you have correctly filled in all information from the previous 3 steps, you are able to select a
certificate alias from the pull-down list.

The certificate you choose is imported to the default keystore of the server. The next panel, Security
Certificate (Part 2) displays the issuedTo and issuedBy certificate information.

If you use the manageprofiles command to import the default certificate, the options are:

-importPersonalCertKS keystore_path
the keystore file location

-importPersonalCertKSType keystore_type
the type of the keystore

-importPersonalCertKSPassword keystore_password
the password to open the keystore

-importPersonalCertKSAlias keystore_alias
the alias of the certificate used from the keystore

Importing the root certificate of the server during profile creation

If the server root certificate is imported during profile creation, the certificate is added to
NodeDefaultRootStore on a stand-alone application server or to DmgrDefaultRootStore on a deployment
manager. The signer is pulled from the imported root certificate and added to NodeDefaultTrustStore or
CellDefaultTrustStore. The root certificate is used by WebSphere Application Server to sign any chained
certificates it creates. If no default certificate is provided during profile creation, WebSphere Application
Server uses the root certificate to sign the default certificate of the server.

To import the default certificate of the server, you must have a personal certificate stored and a keystore
that you have access to. You must know the location, type and password of the keystore. On the Security
Certificate (Part 1) panel, do the following:

1. Select Import an existing root signing certificate.

2. Type or select the keystore file name.

3. Enter the password of the keystore.

4. Select a keystore type from the pull-down list.

674 Securing applications and their environment

5. If you have correctly filled in all information from the previous 3 steps, you are able to select a
certificate alias from the pull-down list.

The certificate you choose is imported to the root keystore of the server. The next panel, Security
Certificate (Part 2) displays the issuedTo and issuedBy certificate information.

If you use the manageprofiles command to import the root certificate, the options are:

-importSigninglCertKS keystore_path
the keystore file location

-importSigningCertKSType keystore_type
the type of the keystore

-importSigningCertKSPassword keystore_password
the password to open the keystore

-importSigningCertKSAlias keystore_alias
the alias of the certificate used from the keystore

Customizing the default certificate created by WebSphere Application Server

If you choose to let WebSphere Application Server create the default certificate of the server, you can
customize the subject distinguished name (DN) and the life span of the certificate.

To customize the default certificate of the server on the Security Certificate (Part 1) panel, do the following:

1. Select Create a new default personal certificate.

2. On the next panel, Security Certificate (Part 2), the Issued to distinguished name field contains the
WebSphere Application Server default DN. Replace this with your customized DN.

3. In Expiration period in years, select the number of years you want the certificate to be valid for.

If you use the manageprofiles command to customize the default certificate, the options are:

-personalCertDN distinguished_name
the DN to give to the certificate

-personalCertValidityPeriod validity_period
the life span to give to the certificate

Customizing the root certificate created by WebSphere Application Server

If you choose to let WebSphere Application Server create the root certificate, you can customize the DN of
the certificate and the life span of the certificate.

To customize the root certificate of the server on the Security Certificate (Part 1) panel, do the following:

1. Select Create a new root signing certificate.

2. On the next panel, Security Certificate (Part 2), the Issued by distinguished name field contains the
WebSphere Application Server default root certificate DN. Replace this with your customized DN.

3. In Expiration period in years, select the number of years you want the root certificate to be valid for.

If you use the manageprofiles command to customize the root certificate, the options are:

-signingCertDN distinguished_name
the DN to give to the root certificate

-signingCertValidityPeriod validity_period
the life span to give to the root certificate

Chapter 8. Securing communications 675

Default chained certificate configuration in SSL
When a WebSphere Application Server process starts for the first time, the Secure Sockets Layer (SSL)
runtime initializes the default keystores and truststores that are specified in the SSL configuration.

The chained certificates created during profile creation have a 1 year life span by default. The default root
certificate used to signer the default chained certificate has a life span of 15 years. The life span of the
default and the root certificates can be customized during profile creation. An advantage in this type of
chained certificate is that only the signer from the root certificate is needed to establish trust. When the
chained certificate is regenerated with the same root certificate, clients using that root signer certificate for
trust do not lose their trust.

Default keystore and truststore properties
WebSphere Application Server creates the key.p12 default keystore file and the trust.p12 default
truststore file during profile creation. A default, chained certificate is also created in the key.p12
file. The root signer, or public key, of the chained certificate is extracted from the key.p12 file and
added to the trust.p12 file. If the files do not exist during process startup, they are recreated
during startup.

You can identify keystore and truststore defaults because of their suffixes: DefaultKeyStore and
DefaultTrustStore. Also, in the SSL configuration, you must set the fileBased attribute to true so
that the runtime only uses the default keystores and truststore.

On a base application server, default key and truststores are stored in the node directory of the
configuration repository. For example, the default key.p12 and trust.p12 stores are created with
the default profile name, the myhostNode01Cell name, and the myhostNode01 node name. The
keystore and truststore are located in the following directories:

v ${WAS_INSTALL_ROOT}/profile/default/config/cells/myhostNode01Cell/nodes/myhostNode01/
key.p12

v ${WAS_INSTALL_ROOT}/profile/default/config/cells/myhostNode01Cell/nodes/myhostNode01/
trust.p12

The default password is WebAS for all default keystores generated by WebSphere Application
Server. Change the default password after the initial configuration for a more secure environment.

Default chained certificate
The default chained certificate of the server along with a root self-signed certificate used to sign
the default chained certificate are created during profile creation.

You can recreate the certificates with different information simply by deleting the *.p12 files in
/config and /etc. Change the four properties in the next code example to the values you want the
certificates to contain, then restart the processes. This causes the server certificate in /config and
the client certificate in /etc to differ.

The certificate properties in the next code example exist in the ssl.client.props file, but do not
exist in the server configuration. However, you can use these values in the server configuration by
adding them as custom security properties in the administrative console. Click Security > Global
security > Custom properties to change the following properties:

com.ibm.ssl.defaultCertReqAlias=default_alias
com.ibm.ssl.defaultCertReqSubjectDN=cn=${hostname},ou=myhostNode01,ou=myhostNode01Cell,o=IBM,c=US
com.ibm.ssl.defaultCertReqDays=365
com.ibm.ssl.defaultCertReqKeySize=1024
com.ibm.ssl.rootCertSubjectDN=cn=${hostname},ou=Root Certificate, ou=myhostNode01,
ou=myhostNode01Cell,o=IBM,c=US
com.ibm.ssl.rootCertValidDays=7300
com.ibm.ssl.rootCertAlias=root
com.ibm.ssl.rootCertKeySize=1024

After changing the properties, complete the following actions:

1. Delete the default key.p12 keystore and trust.p12 truststore files for the deployment manager,
which contain the default chained certificate. If the keystore and truststore file do not exist,
WebSphere Application Server automatically generates them and creates new default
certificates using the previously listed property values.

676 Securing applications and their environment

2. Delete the root keystore, which is the root-key.p12 file, to regenerate the root certificate with
the previously listed properties.

3. Restart the deployment manager, its node, and all of the servers.

4. Sign each node using the root certificate.

v If the nodes are not federated, federate each node into the deployment manager using the
addNode command. The default certificate for the node is regenerated using the root
certificate for the cell.

v If the nodes are federated, renew the certificate for each node using the root certificate for
the cell. You can renew the certificate using the administrative console or using the
renewCertificate command. For more information, see the renewing a certificate and the
renewCertificate command documentation.

If a default_alias value already exists, the runtime appends _#, where the number sign (#) is a
number that increases until it is unique in the keystore. ${hostname} is a variable that is resolved
to the host name where it was originally created. The default expiration date of chained certificates
is one year from their creation date.

The runtime monitors the expiration dates of chained certificates using the certificate expiration
monitor. These chained certificates are automatically replaced along with any signer certificates
when they are within the expiration threshold, which is typically 30 days before expiration. You can
increase the default key size beyond 1024 bits only when the Java runtime environment policy
files are unrestricted (that is, not exported). For more information, see “Certificate expiration
monitoring in SSL” on page 684.

Default keystore and truststore configurations for new Base Application Server processes
The following sample code shows the default SSL configuration for a base application server.
References to the default keystores and truststores files are highlighted.

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"
managementScope="ManagementScope_1">
<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"
securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"
keyStore="KeyStore_1" trustStore="KeyStore_2" trustManager="TrustManager_1"
keyManager="KeyManager_1"/>
</repertoire>

Default keystore
In the following sample code, the keystore object that represents the default keystore is similar to
the XML object.

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"
password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}/config
/cells/myhostNode01Cell/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"
hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

The NodeDefaultKeyStore keystore contains the personal certificate that represents the identity
of the secure endpoint. Any keystore reference can use the ${WAS_INSTALL_ROOT} variable, which
is expanded by the runtime. The PKCS12 default keystore type is in the most interoperable format,
which means that it can be imported into most browsers. The myhostNode01Cell password is
encoded. The management scope determines which server runtime loads the keystore
configuration into memory, as shown in the following code sample:

<managementScopes xmi:id="ManagementScope_1" scopeName="
(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

Any configuration objects that are stored in the security.xml file whose management scopes are
outside the current process scope are not loaded in the current process. Instead, the management
scope is loaded by servers that are contained within the myhostNode01 node. Any application
server that is on the specific node can view the keystore configuration.

When you list the contents of the key.p12 file to show the chained certificate, note that the
common name (CN) of the distinguished name (DN) is the host name of the resident machine.
This listing enables you to verify the host name by its URL connections. Additionally, you can verify
the host name from a custom trust manager. For more information, see “Trust manager control of
X.509 certificate trust decisions” on page 659.

Chapter 8. Securing communications 677

Contents of default keystore
The following sample code shows the contents of the default key.p12 file in a keytool list:
${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list
-v -keystore ${WAS_INSTALL_ROOT}/profile/default/config/cells/myhostNode01Cell
/nodes/myhostNode01/key.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12
Keystore provider: IBMJCE

Your keystore contains 1 entry

Alias name: default
Creation date: Dec 31, 1969
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48f29aafea6
Valid from: 2/7/08 1:03 PM until: 2/6/09 1:03 PM
Certificate fingerprints:
MD5: DB:FE:65:DB:40:13:F4:48:A4:CE:2F:4F:60:A5:FF:2C
SHA1: A1:D4:DD:4B:DE:7B:45:F7:4D:AA:6A:FC:92:38:78:53:7A:99:F1:DC

Certificate[2]:
Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48e5fd4eae3
Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM
Certificate fingerprints:
MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75
SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

The default alias name and the keyEntry entry type indicate that the private key is stored with the
public key, which represents a complete personal certificate. The certificate is owned
byCN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US and it is
issued by the default root certificate, which is owned byCN=myhost.austin.ibm.com, OU=Root
Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US By default, the certificate is
valid for one year from the date of creation.

Additionally, in some signer-exchange situations, the certificate fingerprint ensures that the sent
certificate has not been modified. The fingerprint, which is a hash algorithm output for the
certificate, is displayed by the WebSphere Application Server runtime during an automated signer
exchange on the client side. The client fingerprint must match the fingerprint that is displayed on
the server. The runtime typically uses the SHA1 hash algorithm to generate certificate fingerprints.

Default truststore
In the following sample code, the keystore object represents the default trust.p12 truststore. The
truststore contains signer certificates that are necessary for making trust decisions:

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"
password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}
/config/cells/myhostNode01Cell/nodes/myhostNode01/trust.p12" type="PKCS12"
fileBased="true" hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Contents of default truststore
The following sample code shows the contents of the default trust.p12 truststore in a keytool
listing. By default, for the sample chained certificate, the root certificate signer is included in the
trust store. The root signer alias name and the trustedCertEntry entry type indicate that the
certificate is the public key. The private key is not stored in this truststore. In addition, all
truststores contain the default DataPower certificate.
${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list
-v -keystore ${WAS_INSTALL_ROOT}/profile/default/config/cells/myhostNode01Cell
/nodes/myhostNode01/trust.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12
Keystore provider: IBMJCE

Your keystore contains 2 entries

Alias name: root
Creation date: Dec 31, 1969
Entry type: trustedCertEntry

678 Securing applications and their environment

Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48e5fd4eae3
Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM
Certificate fingerprints:

MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75
SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

Alias name: datapower
Creation date: Dec 31, 1969
Entry type: trustedCertEntry

Owner: OU=Root CA, O="DataPower Technology, Inc.", C=US
Issuer: OU=Root CA, O="DataPower Technology, Inc.", C=US
Serial number: 0
Valid from: 6/11/03 1:23 PM until: 6/6/23 1:23 PM
Certificate fingerprints:

MD5: 18:AC:86:D1:9A:90:A2:AE:8B:28:F9:A8:75:C8:A9:DB
SHA1: A9:BA:A4:B5:BC:26:2F:5D:2A:80:93:CA:BA:F4:31:05:F2:54:14:17

Secure installation for client signer retrieval in SSL
Each profile in the WebSphere Application Server environment contains a unique chained certificate
signed by a unique long lived root certificate that was created when the profile was created. This certificate
replaces the default self-signed certificate that ships with WebSphere Application Server Version 6.1 as
well as the default dummy certificate that ships in releases prior to Version 6.1. When a profile is federated
to a deployment manager, the signer for the root signing certificate is added to the common truststore for
the cell, establishing trust for all certificates signed by that root certificate.

Note: Do not use the dummy keystore and truststore files, which are referenced in this topic, in a
production environment. These files contain the same certificates and are used everywhere, which
is not secure. Also, change the passwords for the keystore and truststore so that it does not use
the WebAS default password.

By default, clients do not trust servers from different profiles in the WebSphere Application Server
environment. That is, they do not contain the root signer for these servers. There are some things that you
can do to assist in establishing this trust:

1. Enable the signer exchange prompt to except the signer during the connection attempt.

2. Run the retrieveSigners utility to download the signers from that system prior to making the
connection.

3. Copy the trust.p12 file from the /config/cells/<cell_name>/nodes/<node_name> directory of the
server profile to the /etc directory of the client. Update the SSL configuration to reflect the new file
name and password, if they are different. Copying the file provides the client with a trust.p12 that
contains all signers from servers in that cell. Also, you might need to perform this step for back-level
clients that are still using the DummyClientTrustFile.jks file. In this case, you might need to change
the sas.client.props or soap.client.props file to reflect the new truststore, truststore password, and
truststore type (PKCS12).

For clients to perform an in-band signer exchange, you must specify the ssl.client.props file as a
com.ibm.SSL.ConfigURL property in the SSL configuration. For managed clients, this is done
automatically. Signers are designated either as in-band during the connection or out-of-band during
runtime. You must also set the com.ibm.ssl.enableSignerExchangePrompt attribute to true.

Tip: You can configure a certificate expiration monitor to replace server certificates that are about to
expire. For more information about how clients can retrieve the new signer from the configuration,
see “Certificate expiration monitoring in SSL” on page 684.

Using the signer exchange prompt to retrieve signers from a client

When the client does not already have a signer to connect to a process, you can enable the signer
exchange prompt. The signer exchange prompt displays once for each unique certificate and for each

Chapter 8. Securing communications 679

node. After the signer for the node is added, the signer remains in the client truststore. The following
sample code shows the signer exchange prompt retrieving a signer from a client:
C:\WASX_e0540.11\AppServer\profiles\AppSrv01\bin\serverStatus -all ADMU0116I: Tool information is being logged in file
C:\WASX_e0540.11\AppServer\profiles\AppSrv01\logs\serverStatus.log ADMU0128I: Starting tool with the
AppSrv01 profile ADMU0503I:
Retrieving server status for all servers ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: dmgr
*** SSL SIGNER EXCHANGE PROMPT *** SSL signer from target host 192.168.1.5 is not found in truststore
C:\WebSphere\AppServer\profiles\AppSrv01\etc\trust.p12.

Here is the signer information (verify the digest value matches what is displayed at the server):
Subject DN: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer DN: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01,
O=IBM, C=US
Serial number: 2510775664686266 Expires: Thu Feb 19 15:58:49 CST 2009
SHA-1 Digest: 2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3
MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D

Subject DN: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell,
OU=myhostNode01, O=IBM, C=US Issuer DN: CN=myhost.austin.ibm.com, OU=Root
Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US Serial number:
2510773295548841 Expires: Tue Feb 15 15:58:46 CST 2028 SHA-1 Digest:
2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3
MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D
Add signer to the truststore now? (y/n) y A retry of the request may need to occur. ADMU0508I:
The Deployment Manager "dmgr" is STARTED

To automate this process, see “retrieveSigners command” on page 682.

When a prompt occurs to accept the signer, a socket timeout can occur and the connection might be
broken. For this reason, the message A retry of the request may need to occur. displays after
answering the prompt. The message informs the user to resubmit the request. This problem should not
happen frequently, and it might be more prevalent for some protocols than others.

A retry of the request may need to occur if the socket times out while waiting for a prompt response. If the
retry is required, note that the prompt will not be re-displayed if (y) is entered, which indicates the signer
has already been added to the trust store.

Verify the displayed SHA-1 digest, which is the signature of the certificate that is sent by the server. If you
look at the certificate on the server, verify that the same SHA-1 digest displays.

You can disable the prompt when you do not want it to display by running the retrieveSigners utility to
retrieve all of the signers for a particular cell. You can download or upload the signers from any remote
keystore to any local keystore by referencing a common truststore with this client script. For more
information, see “Default chained certificate configuration in SSL” on page 676.

Using the retrieveSigners utility to download signers for a client

You can run the retrieveSigners utility to retrieve all of the signers from the remote keystore for a
specified client keystore.

The typical remote keystore to reference is CellDefaultTrustStore.

The truststore contains the signers that enable the client to connect to its processes. The retrieveSigners
utility can point to any keystore in the target configuration, within the scope of the target process, and can
download the signers (certificate entries only) to any client keystore in the ssl.client.props file.

The following sample code shows the retrieveSigners utility in a deployment manager environment.

680 Securing applications and their environment

C:\WASX_e0540.11\AppServer\profiles\AppSrv01\bin\retrieveSigners.bat CellDefaultTrustStore
ClientDefaultTrustStore -autoAcceptBootstrapSigner CWPKI0308I: Adding signer alias
"CN=myhost.austin.ibm.com,
O=IBM, C=US" to local keystore "ClientDefaultTrustStore" with the following SHA
digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA CWPKI0308I:
Adding signer alias "default" to
local keystore "ClientDefaultTrustStore" with the following SHA digest:
40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Use the –autoAcceptBootstrapSigner option to enable WebSphere Application Server automatically to
retrieve and accept the signer for administrative connections. The SHA-1 digest is printed while the signer
is added so you can verify the digest after the operation is complete.

Obtaining signers for clients and servers from a previous release

Note: When a client from a release prior to version 7.0 connects to the current release, the client must
obtain signers for a successful handshake. Clients using previous releases of WebSphere
Application Server cannot obtain signers as easily as in the current release. You can copy the
deployment manager common truststore to your back-level client or server, and then re-configure
the SSL configuration to directly reference that truststore. This common truststore of type PKCS12 is
located in the /config/cells/<cell_name>/nodes/<node_name> directory in the configuration
repository and has a default password of WebAS.

To collect all of the signers for the cell in a single trust.p12 keystore file, complete following steps:

1. Copy the trust.p12 keystore file on the server and replicate it on the client. The client references the
file directly from the sas.client.props and soap.client.props files that specify the SSL properties for
previous releases.

2. Change the client-side keystore password so that it matches the default cell name that is associated
with the copied keystore.

3. Change the default keystore type for the trust.p12 file to PKCS12 in the client configuration.

The following two code samples show you a before and an after view of the changes to make.

Default SSL configuration of sas.client.props for a previous release
com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=file\:/// C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/
DummyClientKeyFile.jks com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.trustStore=
file\:/// C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientTrustFile.jks
com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=
com.ibm.ssl.trustStoreType=JKS

SSL configuration changes that are required to common truststore file in the /etc directory of the
client
com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=file\:/// C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/
DummyClientKeyFile.jks com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.trustStore=file\:/// C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/trust.p12
com.ibm.ssl.trustStorePassword=myhostNode01Cell com.ibm.ssl.trustStoreType=PKCS12

Tip: You can run the PropsFilePasswordEncoder script, which is located in the /bin directory to encode
the password.

You can also make these changes in the soap.client.props file and specify the key.p12 file in place of
the DummyClientKeyFile.jks file. However, you must also change the keyStorePassword and
keyStoreType values to match those in the default key.p12 file.

In releases of WebSphere Application Server prior to Version 7.0, you must edit the SSL configuration on
the server to replace the common truststore. The trust.p12 file, which is used by the server, also must

Chapter 8. Securing communications 681

contain the default dummy certificate signer for connections among servers at previous release levels. You
might need to manually extract the default certificate from the DummyServerKeyFile.jks file and then import
the certificate into the trust.p12 file that you added to the configuration.

retrieveSigners command:

The retrieveSigners command creates a new client self-signed certificate, keystore, and SSL configuration
in the ssl.client.props file. Using this command you can optionally extract the signer to a file.

For more information about where to run this command, read about Using command tools.

Syntax

Use the following command syntax to create a new client self-signed certificate, keystore, and SSL
configuration in the ssl.client.props file.
retrieveSigners <remoteKeyStoreName> <localKeyStoreName> [options]

The <remoteKeyStoreName> and <localKeyStoreName> parameters are required. The following optional
parameters are available:
[-remoteAlias aliasFromRemoteStore]
[-localAlias storeAsAlias]
[-listRemoteKeyStoreNames][-listLocalKeyStoreNames]
[-autoAcceptBootstrapSigner][-uploadSigners] [-host host]
[-port port][-conntype JSR160RMI|RMI|SOAP|IPC][-user user]
[-password password]
[-trace] [-logfile filename]
[-replacelog] [-quiet] [-help]

Parameters

The following parameters are available for the retrieveSigners command:

-remoteKeyStoreName
The name of a truststore that is located in the server configuration from which to retrieve the signers.
This parameter is typically the CellDefaultTrustStore file for a managed environment or the
NodeDefaultTrustStore file for an unmanaged environment.

-localKeyStoreName
The name of the truststore that is located in the ssl.client.props file for the profile to which the
retrieved signers is added. This parameter is typically the ClientDefaultTrustStore file for either a
managed or unmanaged environment.

-remoteAlias <aliasFromRemoteStore>
Specifies one alias from the remote truststore that you want to retrieve. Otherwise, all signers from the
remote truststore are retrieved.

-localAlias <storeAsAlias>
Determines the name of the alias stored in the local truststore. This option is only valid if you specify
the –remoteAlias option. If you do not specify the -localAlias option, then the alias name from the
remote truststore is used, if possible. If an alias clash occurs, then the alias name is used and has an
incremented number appended to the end of it until a unique alias is found.

-listRemoteKeyStoreNames
Sends a remote request to the server to list all keystores that you can specify for the
remoteKeyStoreName parameter. Use this command when you are unsure of the name of the remote
truststore from which you want to download the signers.

-listLocalKeyStoreNames
Lists the keystores located in the ssl.client.props file that you can specify for the localKeyStoreName
parameter. This truststore receives the signers from the server. Use this parameter when you are
unsure of the name of the local truststore into which you want to retrieve the signers. The default
name of the truststore is ClientDefaultTrustStore and is located in the ssl.client.props file.

682 Securing applications and their environment

-autoAcceptBootstrapSigner
Automatically adds a signer to make a secure connection to the server. The purpose of the option is to
support automation of the command so that you do not need to accept the signer. After the signer is
added to the local truststore, an SHA hash prints so that you can verify the certificate.

-uploadSigners
Converts the signer download into a signer upload. The signers from the localKeyStoreName
parameter is sent to the remoteKeyStoreName parameter instead.

-host <host>
Specifies the target host from which the signers are retrieved.

-port <port>
Specifies the target administrative port to which you want to connect. You must specify the port based
on the -conntype parameter. If the conntype is SOAP, the default port is 8879. This value can vary for
different servers. If the conntype is RMI, the default port is 2809.

-conntype <JSR160RMI|IPC|RMI|Soap>
Determines the administrative connector type that is used for the MBean call to retrieve the signers.

Note: Eventually switch from the RMI connector to the JSR160RMI connector because support for the
RMI connector is deprecated.

-user <user>
When the -uploadSigners flag is used, you are required to specify this option to supply the user name
that is authenticated for the MBean operation. If you do not specify this parameter when the
-uploadSigners flag is used, then you are prompted for credentials by default.

-password <password>
When the -uploadSigners flag is used, you are required to specify this option to supply the password
that is authenticated for the MBean operation. The password goes along with the –user parameter.

-trace
When specified, this parameter enables tracing of the trace specification necessary to debug this
component. By default, the trace is located in the profiles/profile_name/log/retrieveSigners.log file.

-logfile <filename>
Overrides the default trace file. By default, the trace will appear in the profiles/profile_name/log/
retrieveSigners.log file.

-replacelog
Causes the existing trace file to be replaced when the command runs.

-quiet
Suppresses most messages from printing to the console.

-help
Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax for using the retrieveSigners command:

v The following example lists remote and local keystores:
retrieveSigners.bat -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Windows]

retrieveSigners.sh -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Unix]

Example output
CWPKI0306I: The following remote keystores exist on the specified server:

CMSKeyStore, NodeLTPAKeys, NodeDefaultTrustStore, NodeDefaultKeyStore
CWPKI0307I: The following local keystores exist on the client:

ClientDefaultKeyStore, ClientDefaultTrustStore

Chapter 8. Securing communications 683

v The following example retrieves all signers from NodeDefaultTrustStore:
retrieveSigners.bat NodeDefaultTrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner
-conntype RMI -port 2809 [Windows]

retrieveSigners.sh NodeDefaultTrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner
-conntype RMI -port 2809 [Unix]

Example output
CWPKI0308I: Adding signer alias "CN=BIRKT40.austin.ibm.com, O=IBM, C=US" to

local keystore "ClientDefaultTrustStore" with the following SHA
digest: 40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Certificate expiration monitoring in SSL
The certificate expiration monitor administrative task is a scheduled task that cycles through all the
keystores in the security configuration and reports on any certificates that are expired, certificates that fall
within the expiration threshold, and certificates that fall within the pre-notification period.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The certificate expiration monitor also replaces self-signed and chained certificates that have a root in the
root keystore if configured to do so. If the monitor is configured to replace certificates, then certificates that
are expired or fall in the expiration threshold are replaced. Certificates that are imported from an external
Certificate authority (CA) are reported but not replaced.

Certificate expiration monitoring relies on the following definitions:

Expired certificates
Certificates are created with a finite life span. Self-signed or chained certificates that have reached
the end of their life span are reported and replaced, if possible. Certificate authority signed
certificates cannot be replaced but will be reported. Replacing CA-signed certificates is the
responsibility of the administrator.

Certificates within the expiration threshold
There is a period of time before a certificate expires. A certificate in this period of time is one
within the expiration threshold. The server replaces certificates within the expiration threshold so
that the certificate does not expire and cause outages. By default the expiration threshold is 60
days, but can be configured as required.

Pre-notification period
Before a certificate falls within the expiration threshold there are warnings issued that indicate that
the certificate will be replaced, when the expiration threshold date is reached. The period of time
prior to the expiration threshold date is called the pre-notification period and is set at 90 days for
the certificate.

The certificate expiration monitor performs the following:

1. Clears out the NodeDefaultDeletedStore or DmgrDefaultDeletedStore. This operation is performed
silently without reporting that the certificates are deleted.

2. Checks the root key stores, DmgrDefaultRootStore or NodeDefaultRootStore and the
DmgrRSATokenRootStore or NodeRSATokenRootStore. If any root certificates are expired, falls in
the threshold period, or the pre-notification period, then the certificate is noted in the report.

3. If there are any root certificates that are expired or fall in the threshold period that root certificate is
recreated using all the information used to create the original one. Any signer certificates from the
original root certificate are replaced with the signers from the new root certificate.

684 Securing applications and their environment

4. If a root certificate is replaced, then all the keystores are checked to see if there are any chained
certificates signed with the original root certificate. If there are, then the chain certificate is renewed
(recreated with the new root certificate). Any signer certificate from the original certificate is replaced
with the signer from the recreated certificate.

5. After all root keystores are processed, the rest of the keystores are checked for expired certificates,
certificates in the expiration threshold, or certificates in the pre-notification period. Any certificate falling
in any one of these categories is noted in the report.

6. If there are any expired certificates or certificates in the expiration threshold period and these
certificates are self-signed certificates or chained certificates created by WebSphere, then they are
replaced. If the chained certificates root is not in the root key store then it will be recreated as a default
root certificate. Any signer certificates from the original certificate are replaced with the signer from the
new certificate."

7. A report is generated and returned, written to a log file, or mailed.

The server default certificate is a chained certificate with a 365 day life span. It is signed with the default
root certificate which has a 15 year life span.

You can configure this monitor task to run according to a particular schedule. The schedule produces the
next start date that persists in the configuration and, when the date is reached, WebSphere Application
Server starts the monitor to check all of the keystores for certificates that meet the expiration threshold.
You can start the task manually to run at any time.

The following security.xml configuration object specifies when the monitor task starts, determines the
certificate expiration threshold, and indicates whether you are notified in an email using Simple Mail
Transfer Protocol (SMTP) or in a message log.
<wsCertificateExpirationMonitor xmi:id="WSCertificateExpirationMonitor_1"
name="Certificate Expiration Monitor" daysBeforeNotification="30"
isEnabled="true" autoReplace="true" deleteOld="true"
wsNotification="WSNotification_1" wsSchedule="WSSchedule_2"
nextStartDate="1134358204849"/>

The expiration monitor replaces self-signed certificates and chained personal certificates that are signed by
a root certificate in DmgrDefaultRootStore or NodeDefaultRootStore. Self-signed certificates are
renewed using all the information that was used to create the original self-signed certificate. A chained
certificate is renewed using the same root certificate that was used to sign the original certificate.

The expiration monitor automatically replaces only self-signed certificates and chained certificates that are
expired or that meet the expiration threshold criteria. To replace all of the signers from the old certificate
with the signer that belongs to the new certificate in all the keystores in the configuration for that cell, set
the autoReplace attribute to true. When the deleteOld attribute is true, the old personal certificate and old
signers also are deleted from the keystores. The isEnabled attribute determines whether the expiration
monitor task runs based upon the nextStartDate attribute that is derived from the schedule. The
nextStartDate attribute is derived from the schedule in milliseconds since 1970, and is identical to the
System.currentTimeMillis(). If the nextStartDate has already passed when an expiration monitor process
begins, and the expiration monitor is enabled, the task is started, but a new nextStartDate value is
established based on the schedule.

The following sample the schedule object shows the frequency attribute as the number of days between
each run of the certificate monitor.
<wsSchedules xmi:id="WSSchedule_2" name="ExpirationMonitorSchedule"
frequency="30" dayOfWeek="1" hour="21" minute="30"/>

The dayOfWeek attribute adjusts the schedule to run on a specified day of the week, which is always the
same day regardless of whether the frequency is set to 30 or 31 days. Based on 24-hour clock, the hour
and minute attributes determine when the expiration monitor is started on the specified day.

Chapter 8. Securing communications 685

The following sample code of the notification object shows the notification configuration, which notifies you
after the expiration monitor runs.
<>wsNotifications xmi:id="WSNotification_1" name="MessageLog" logToSystemOut="true" emailList=""/

For expiration monitor notifications, you can select message log, email using SMTP server, or both
methods of notification. When you configure the email option, use the format user@domain@smtpserver. If
you do not specify an SMTP server, WebSphere Application Server defaults to the same domain as the
email address. For example, if you configure joeuser@ibm.com, WebSphere Application Server attempts
to call smtp-server.ibm.com. To specify multiple email addresses using scripting, you must add a pipe (|)
character between entries. When you specify the logToSystemOut attribute, the expiration monitor results
are sent to the message log for the environment, which is typically the SystemOut.log file.

The expiration monitor clears out the deleted certificates keystore. The monitor first clears out the deleted
keystore. Due to the nature of the PKCS12 keystore, there must be at lease one entry in the keystore so
the signer certificates from the dummy key store will remain in the deleted keystore. There is no reporting
on the certificate being deleted from the deleted keystore.

Important: When the expiration monitor replaces certificates, this can dynamically affect the runtime when
the following configuration option is enabled:

Security > SSL certificate and key management. Under configuration settings, check the
checkbox for Dynamically update the run time when SSL configuration changes occur.

When enabled, any certificates that are replaced causes the client SSL runtime to begin using
the new certificates immediately, which in turn, flushes SSL and keystore caches and causes
some ports using SSLServerSockets (RMI/IIOP on distributed and Admin SOAP) to restart.
Restarting ports breaks existing connections. These connections can be reconnected after the
port restart is completed. Endpoints using the channel framework (HTTP, BUS, RMI/IIOP on
z/OS) leave existing connections unaffected but still use the new certificates for new
connections.

When the dynamic change property is disabled and before the new certificates become
effective, the administrator needs to recycle all processes in the entire cell after each node
has the synchronized configuration. Regardless of which method is chosen, you should always
check the health of your cell after the certificate expiration monitor has run (based on the
schedule specified). The schedule should be set to run the certificate expiration monitor during
a maintenance period so that if a restart is required after the certificate replacement, it will not
cause unexpected outages.

Dynamic configuration updates in SSL
During the Secure Sockets Layer (SSL) runtime, dynamic configuration updates affect both inbound and
outbound SSL endpoints. For inbound SSL endpoints, the changes that are implemented by the SSL
channel are only affected by dynamic changes. For outbound SSL endpoints, all outbound connections
inherit the new configuration changes.

In this release, dynamic update functionality provides you with greater flexibility and efficiency. You can
change SSL configurations without restarting WebSphere Application Server for the changes to take effect.

To make dynamic changes, in the administrative console click Security > SSL certificates and key
management, then select the Dynamically update the runtime when SSL configuration changes
occur check box. You must save your changes and then synchronize the security.xml file with remote
systems. A remote system must be able to confirm that dynamicallyUpdateSSLConfig=true is in the
security.xml file.

686 Securing applications and their environment

The SSL runtime reloads the modified SSL configuration and creates a new SSLEngine for the modified
connections that are associated with inbound endpoints. New outbound connections use the new
configuration while existing connections continue to use the old SSLEngine object and are not affected.

Tip: Make dynamic changes to the SSL configuration during off-peak hours. Synchronization delays can
negatively affect connections when you update SSL configurations during peak hours.

You can turn on and off the dynamicallyUpdateSSLConfig attribute in the security.xml file to ensure
successful updates by doing the following actions:

1. Set dynamicallyUpdateSSLConfig=On.

2. Save the updated configuration.

3. Synchronize the security.xml file with remote systems.

4. Set the dynamicallyUpdateSSLConfig attribute to Off.

You must verify that all of the nodes receive the changes before turning off the
dynamicallyUpdateSSLConfig attribute. Test the changes in a test environment before updating the
production environment.

Tip: Some SSL changes, especially administrative SSL changes, can cause server outages if you fail to
test them first. When a change prevents trust between two endpoints, the endpoints cannot
communicate with each other. Additionally, if administrative SSL connection updates cause system
outages, you might need to disable the nodes after you make corrective changes using the
deployment manager. From the command line, you can manually synchronize the server to retrieve
the new SSL changes, then restart the nodes.

Management scope configurations
Inbound and outbound management scopes represent opposing directions during the connection
handshake process. To view inbound and outbound management scopes, use the topology tree view in
the administrative console. You can define Secure Sockets Layer (SSL) configurations to distinguish the
connection requirements for each direction inbound or outbound.

When expanded, the topology tree represents inbound and outbound connections for each management
scope, cell, node group, node, server, cluster, and endpoint. Inbound endpoints require a server certificate.
The SSL configuration specifies the server certificate for server authentication. Outbound endpoints require
validated signers. Outbound endpoints connect to one or more target servers; inbound endpoints receive
requests from one or more clients. The set of peer endpoints for outbound connections is typically a
subset of the set of peer endpoints for inbound connections, which means you must define different
requirements for inbound and outbound connections.

The following figure shows an example of two nodes: Node1 and Node2. These two nodes are isolated
from one another because their SSL configurations, truststore files, and keystore files are different.

In the example of two nodes, note that Node1 cannot communicate with Node2, but each of the two nodes
must be able to communicate with the deployment manager and its administrative functions. With dynamic
outbound selection, you can choose an SSL configuration and a certificate alias that reference a common
truststore. When a process requires the ADMIN_SOAP protocol for an outbound connection, the server
uses this single SSL configuration. Because all of the scopes under the cell level inherit this configuration,
all outbound connections can communicate with the deployment manager. See additional information
about dynamic outbound selection of Secure Sockets Layer configurations.

Another way to accomplish this same result is to associate the SSL configuration with the ADMIN_SOAP
endpoint for each individual process, deployment manager, Node1, Node2, Node1Server1, Node1Server2,
Node2Server1, and Node2Server2. However, it is recommended that you use dynamic outbound selection
because it is more efficient when defining a basic SSL configuration, its keystores, and its truststores at

Chapter 8. Securing communications 687

the cell scope. The example shows how to apply the node scope association, but the same principles
apply for node groups, clusters, servers, and endpoints.

Note: If your topology includes clusters that span nodes or if your applications need to communicate
between nodes, the configuration that is shown in the example does not work.

Certificate management using iKeyman prior to SSL
Starting in WebSphere Application Server Version 6.1, you can manage your certificates from the
administrative console. When using versions of WebSphere Application Server prior to Version 6.1, use
iKeyman for certificate management. iKeyman is a key management utility.

WebSphere Application Server certificate management requires that you define the keystores in your
WebSphere Application Server configuration. With iKeyman, you need access to the keystore file only. You
can read a keystore file with personal certificates and signers that is created in iKeyman. A keystore file
can be read into the WebSphere Application Server configuration by using the createKeyStore command.

The majority of certificate management functions are the same between WebSphere Application Server
and iKeyman, especially for personal certificates and signer certificates. However, certificate requests are
special. The underlying behavior is different in the two certificate management schemes. Because of the
different behavior, when a certificate request is generated from iKeyman, the process must be completed
in iKeyman. For example, a certificate that is generated by a certificate request that originated in iKeyman
must be received in iKeyman as well.

The same is true for WebSphere Application Server. For example, when a certificate is generated from a
certificate request that originated in WebSphere Application Server, the certificate must be received in
WebSphere Application Server.

You can perform the following certificate operations using iKeyman:

Table 79. Available certificate operations using iKeyman. This table describes the available certificate operations using
iKeyman.

Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a
keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal
certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another
keystore.

Extract a certificate Extracts the signer part of a personal certificate to a
file.

Receive a certificate Reads a certificate that comes from a certificate
authority (CA) into a keystore.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer
certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

688 Securing applications and their environment

Table 79. Available certificate operations using iKeyman (continued). This table describes the available certificate
operations using iKeyman.

Types of certificates Functions Description

Extract a signer certificate Extracts a signer certificate from a keystore, and
stores the certificate in a file.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a
CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate
request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Certificate management in SSL
You can manage certificate operations that involve personal certificates, signer certificates, and personal
certificate requests on the administrative console.

Types of certificates

WebSphere Application Server uses the certificates that reside in keystores to establish trust for a Secure
Sockets Layer (SSL) connection. Click Security > SSL certificate and key management > Manage
endpoint security configurations > Inbound | Outbound > SSL_configuration_name > Key stores
and certificates, then select an existing or create a new keystore. After selecting a keystore, and
depending on the type of certificate you need, choose one of the following types of certificates under
Related Items:

v Personal certificate

v Signer certificate

v Certificate Authority (CA) certificates

v Personal certificate request

Table 80. Certificate operations. The following table describes the certificate operations that you can perform on the
administrative console

Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a
keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal
certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another
keystore.

Extract a certificate Extracts the signer part of a personal certificate to
a file.

Exchange signer certificates Exchange signer part of a personal certificate
between key store.

Receive a certificate Reads a certificate that comes from a certificate
authority (CA) into a keystore.

Chapter 8. Securing communications 689

Table 80. Certificate operations (continued). The following table describes the certificate operations that you can
perform on the administrative console

Types of certificates Functions Description

Replace a certificate Replaces all occurrences of a personal certificate
alias in the WebSphere Application Server
configuration with another certificate. Also, replaces
all occurrences of the personal certificates signer
with the new personal certificate signer.

Create a chained certificate Creates a chained certificate and stores it in a
keystore.

Renew a certificate Renews a certificate with a new public/private key
pair and stores it in a keystore.

Request a CA certificate Makes a request to a CA using a CA client to
obtain a CA certificate.

Certificate authority (CA)
certificates

Create CA certificate Sends a certificate request to an external certificate
authority (CA).

Revoke CA certificate Sends a revocation request to an external
certificate authority (CA).

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer
certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and
stores the certificate in a file.

Retrieve a signer from a port Retrieves a signer certificate from a port, and
stores it in a key store.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a
CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate
request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Personal certificates

Table 81. Personal certificate operations. The following table lists the operations that you can perform on personal
certificates, the AdminTask object that you can use to perform that operation, and how to navigate to the certificate on
the console:

Function AdminTask object Administrative console

Create a self-signed
certificate

createSelfSignedCertificate Security > Secure Communications > Key store and
certificates > key store > Create a Self-Signed
Certificate

List personal certificates listPersonalCertificates Security > Secure Communications > Key store and
certificates > key store > personal certificates

Get information about a
personal certificate

getPersonalCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates > alias

690 Securing applications and their environment

Table 81. Personal certificate operations (continued). The following table lists the operations that you can perform on
personal certificates, the AdminTask object that you can use to perform that operation, and how to navigate to the
certificate on the console:

Function AdminTask object Administrative console

Delete a personal certificate deletePersonalCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
delete

Import a certificate importCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
import

Export a certificate exportCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
export

Extract a certificate extractCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
extract

Exchange signer certificates exchangeSignerCertificates Security > Secure Communications > Key store and
certificates > Exchange signers

Create a chained certificate createChainedCertificate Security > SSL certificate and key management >
Key store and certificates > keystore name >
Personal certificates. Click Create button and select
Chained certificate

Renew a certificate renewChainedCertificate Security > SSL certificate and key management >
Key store and certificates > keystore name >
Personal certificates. Select a certificate. Click Renew
button.

Create a chained Certificate createChainedCertificate Security > Secure communications > Key store and
certificates > keystore > Create a chained
certificate.

Request a CA certificate requestCACertificate Security > Secure communications > Key store and
certificates > keystore > Request a CA certificate.

Certificate authority (CA) certificates

Table 82. CA certificate operations. The following table lists the operations that you can perform on CA certificates, the
AdminTask object that you can use to perform that operation, and how to navigate to the certificate on the console:

Function AdminTask object Administrative console

Create a CA certificate createCACertificate Security > Secure Communications > Key store and
certificates > key store > Personal certificates >
Create > CA-signed certificate

Revoke a CA certificate revokeCACertificate Security > Secure Communications > Key store and
certificates > key store > Personal certificates
personal certificate > Revoke

Chapter 8. Securing communications 691

Signer certificates

Table 83. Signer certificate operations. The following table lists the operations that you can perform with signer
certificates, the AdminTask object that you can use to perform the operation, and how to navigate to the certificate on
the console:

Function AdminTask object Administrative console

Add a signer certificate addSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates > Add

List signer certificates listSignerCertificates Security > Secure communications > Key store and
certificates > key store > signer certificates

Get information about a
signer certificate

getSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates > alias

Delete a signer certificate deleteSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificate >delete

Extract a signer certificate to
a file

extractSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates >
extract

Retrieve a signer certificate
from a port

retrieveSignerFromPort Security > Secure communications > Key store and
certificates > key store > signer certificates >
retrieve from port

Personal certificate requests

Table 84. Personal certificate request operations. The following table lists the operations that you can perform on
personal certificate requests, the AdminTask object that you can use to perform that operation, and how to navigate to
the certificate request on the console:

Function AdminTask object Administrative console

Create a personal certificate
request

createCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
Requests > Add

List personal certificate
requests

listCertificateRequests Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests

Get information about a
personal certificate request

getCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > alias

Delete a personal certificate
request

deleteCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > delete

Extract a personal certificate
request to a file

extractCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > Extract

Using the retrieveSigners command in SSL to enable server to server
trust
You can add a signer certificate to a server's trust.p12 file, allowing that server to securely communicate
with another server. This can be done using the retrieveSigners command to add a signer to a server's
trust.p12 file after making changes to the ssl.client.props file.

692 Securing applications and their environment

Before you begin

The server that will be communicating as a client must be identified before the server to server trust can
be established. You will make change to the ssl.client.props file and run the retrieveSigners command
on the server communicating as a client. If both servers will be acting as a client , these steps will be
required for both servers.

About this task

The ssl.client.props file is setup by default to configure Secure Socket Layer (SSL) communication for
clients. This makes the default behavior of the retrieveSigners command work on the client's trust.p12
file and key.p12 file in the profile_root/etc directory. You can add a signer certificate to a server's
trust.p12 file, allowing that server to act as a client communicating to another server. Using the
retrieveSigners command to add a signer to a server's trust.p12 file requires some changes to the
ssl.client.props file.

Procedure
1. Open the ssl.client.props file. The ssl.client.props file is located in profile_root/properties

ditrectory.

2. Uncomment the section of ssl.client.props that starts with com.ibm.ssl.alias=AnotherSSLSettings
property.

3. Uncomment the section of ssl.client.props that starts with
com.ibm.ssl.trustStoreName=AnotherTrustStore property.

4. Enter the location of the trust store that the signer should be added. If you are using the server trust
store for a deployment manager then it is located in profile_root/config/cells/cell name/trust.p12.
If using the trust store for an application server, it is located in profile_root/config/cells/cell
name/nodes/node name/trust.p12.

5. Update the remaining properties in this section with the values associated with the trust store being
used. A description of the properties can be found in ssl.client.props client configuration file.

6. Optional: Uncomment and update section that starts with
com.ibm.ssl.trustStoreName=AnotherKeyStore property. Most scenarios only require a signer to be
added to the trust store. This example only adds a signer to the trust store, but you can also add a
signer to the key store by updating the properties as you did for the trust store in steps 3 through 5.

7. Save the changes made to ssl.client.props.

8. Run the retrieveSigners command. For more information see the page about the retrieveSigners
command.

retrieveSigners NodeDefaultTrustStore AnotherTrustStore -host ademyers.austin.ibm.com -port 8879

Example output:
CWPKI0308I: Adding signer alias "default_1" to local keystore

"AnotherTrustStore" with the following SHA digest:
F4:71:97:79:3E:C1:DC:E7:9F:8F:3D:F0:A0:15:1E:D1:44:73:2C:06

Results

After the steps have been successfully completed. the server acting as a client has the signing certificate
of the other server. This allows that server to establish a SSL connection to the other server.

Example

The example shows the modified section of the ssl.client.props file assuming that the server's
trust.p12 file is being used. Any trust store existing trust store can be used if the properties are provided
for that trust store.
#---
com.ibm.ssl.alias=AnotherSSLSettings
com.ibm.ssl.protocol=SSL_TLS
com.ibm.ssl.securityLevel=HIGH

Chapter 8. Securing communications 693

com.ibm.ssl.trustManager=IbmX509
com.ibm.ssl.keyManager=IbmX509
com.ibm.ssl.contextProvider=IBMJSSE2
com.ibm.ssl.enableSignerExchangePrompt=true
#com.ibm.ssl.keyStoreClientAlias=default
#com.ibm.ssl.customTrustManagers=
#com.ibm.ssl.customKeyManager=
#com.ibm.ssl.dynamicSelectionInfo=
#com.ibm.ssl.enabledCipherSuites=

KeyStore information
#com.ibm.ssl.keyStoreName=AnotherKeyStore
#com.ibm.ssl.keyStore=${user.root}/etc/key.p12
#com.ibm.ssl.keyStorePassword={xor}CDo9Hgw=
#com.ibm.ssl.keyStoreType=PKCS12
#com.ibm.ssl.keyStoreProvider=IBMJCE
#com.ibm.ssl.keyStoreFileBased=true

TrustStore information
com.ibm.ssl.trustStoreName=AnotherTrustStore
com.ibm.ssl.trustStore=${user.root}/config/cells/localhostCell01/trust.p12
com.ibm.ssl.trustStorePassword={xor}CDo9Hgw=
com.ibm.ssl.trustStoreType=PKCS12
com.ibm.ssl.trustStoreProvider=IBMJCE
com.ibm.ssl.trustStoreFileBased=true

What to do next

After the signer has been added, edit the ssl.client.props file to comment out the sections that were to
used to add the signer certificate.

Creating a Secure Sockets Layer configuration
Secure Sockets Layer (SSL) configurations contain the attributes that you need to control the behavior of
client and server SSL endpoints. You create SSL configurations with unique names within specific
management scopes on the inbound and outbound tree in the configuration topology. This task shows you
how to define SSL configurations, including quality of protection and trust and key manager settings.

Before you begin

You must decide at which scope you need to define an SSL configuration, for instance, the cell, node
group, node, server, cluster, or endpoint scope, from the least specific to the most specific scope. When
you define an SSL configuration at the node scope, for example, only those processes within that node
can load the SSL configuration; however, any processes at the endpoint in the cell can use an SSL
configuration at the cell scope, which is higher in the topology.

You must also decide which scope to associate with the new SSL configuration, according to the
processes that the configuration affects. For example, an SSL configuration for a hardware cryptographic
device might require a keystore that is available only on a specific node, or you might need an SSL
configuration for a connection to a particular SSL host and port. For more information, see “Dynamic
outbound selection of Secure Sockets Layer configurations” on page 668.

gotcha: The security.xml file is restricted. Therefore, if you need to make changes to the security.xml file,
verify that your user ID has administrator role authorization. If you are using a user ID with
operator role authorization, you can perform a node synchronization, but any changes that you
made to the security.xml file are not synchronized.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

694 Securing applications and their environment

2. Select an SSL configuration link on either the Inbound or Outbound tree, depending on the process
you are configuring.

v If the scope is already associated with a configuration and alias, the SSL configuration alias and
certificate alias are noted in parentheses.

v If the parenthetical information is not included, then the scope is not associated. Instead, the scope
inherits the configuration properties of the first scope above it that is associated with an SSL
configuration and certificate alias.

The cell scope must be associated with an SSL configuration because it is at the top of the topology
and represents the default SSL configuration for the inbound or outbound connection.

3. Click SSL configurations under Related Items. You can view and select any of the SSL
configurations that are configured at this scope. You can also view and select these configuration at
every scope that is lower on the topology.

4. Click New to display the SSL configuration panel. You cannot select links under Additional Properties
until you type a configuration name and click Apply.

5. Type an SSL configuration name. This field is required. The configuration name is the SSL
configuration alias. Make the alias name unique within the list of SSL configuration aliases that are
already created at the selected scope. The new SSL configuration uses this alias for other
configuration tasks.

6. Select a truststore name from the drop-down list. A truststore name refers to a specific truststore that
holds signer certificates that validate the trust of certificates sent by remote connections during an
SSL handshake. If there is no truststore in the list, see “Creating a keystore configuration for a
preexisting keystore file” on page 746 to create a new truststore, which is a keystore whose role is to
establish trust during the connection.

7. Select a keystore name from the drop-down list. A keystore contains the personal certificates that
represent a signer identity and the private key that WebSphere Application Server uses to encrypt
and sign data.

v If you change the keystore name, click Get certificate aliases to refresh the list of certificates from
which you can choose a default alias. WebSphere Application Server uses a server alias for
inbound connections and a client alias for outbound connections.

v If there is no keystore in the list, see “Creating a keystore configuration for a preexisting keystore
file” on page 746 to create a new keystore.

8. Choose a default server certificate alias for inbound connections. Select the default only when you
have not specified an SSL configuration alias elsewhere and have not selected a certificate alias. A
centrally managed SSL configuration tree can override the default alias. For more information, see
“Central management of SSL configurations” on page 669.

9. Choose a default client certificate alias for outbound connections. Select the default only when the
server SSL configuration specifies an SSL client authentication.

10. Review the identified management scope for the SSL configuration. Make the management scope in
this field identical to the link you selected in Step 2. If you want to change the scope, you must click a
different link in the topology tree and continue at Step 3.

11. Click Apply if you intend to configure Additional Properties. If not, go to Step 24.

12. Click Quality of protection (QoP) settings under Additional Properties. QoP settings define the
strength of the SSL encryption, the integrity of the signer, and the authenticity of the certificate.

13. Select a client authentication setting to establish an SSL configuration for inbound connections and
for clients to send their certificates, if appropriate.

v If you select None, the server does not request that a client send a certificate during the
handshake.

v If you select Supported, the server requests that a client send a certificate. However, if the client
does not have a certificate, the handshake might still succeed.

v If you select Required, the server requests that a client send a certificate. However, if the client
does not have a certificate, the handshake fails.

Chapter 8. Securing communications 695

Important: The signer certificate that represents the client must be in the truststore that you select
for the SSL configuration. By default, servers within the same cell trust each other
because they use the common truststore, trust.p12, that is located in the cell directory
of the configuration repository. However, if you use keystores and truststores that you
create, perform a signer exchange before you select either Supported or Required.

14. Select a protocol for the SSL handshake.

v The default protocol, SSL_TLS, supports client protocols TLSv1, SSLv3, and SSLv2.

v The TLSv1 protocol supports TLS and TLSv1. The SSL server connection must support this
protocol for the handshake to proceed.

v The SSLv3 protocol supports SSL and SSLv3. The SSL server connection must support this
protocol for the handshake to proceed.

Important: Do not use the SSLv2 protocol for the SSL server connection. Use it only when
necessary on the client side.

15. Select one of the following options:

v A predefined Java Secure Socket Extension (JSSE) provider. The IBMJSSE2 provider is
recommended for use on all platforms which support it. It is required for use by the channel
framework SSL channel. When Federal Information Processing Standard (FIPS) is enabled,
IBMJSSE2 is used in combination with the IBMJCEFIPS crypto provider.

v A custom JSSE provider. Type a provider name in the Custom provider field.

16. Select from among the following cipher suite groups:

v Strong: WebSphere Application Server can perform 128-bit confidentiality algorithms for
encryption and support integrity signing algorithms. However, a strong cipher suite can affect the
performance of the connection.

v Medium: WebSphere Application Server can perform 40-bit encryption algorithms for encryption
and support integrity signing algorithms.

v Weak: WebSphere Application Server can support integrity signing algorithms but not to perform
encryption. Select this option with care because passwords and other sensitive information that
cross the network are visible to an Internet Protocol (IP) sniffer.

v Custom: you can select specific ciphers. Any time you change the ciphers that are listed from a
specific cipher suite group, the group name changes to Custom.

17. Click Update selected ciphers to view a list of the available ciphers for each cipher strength.

18. Click OK to return to the new SSL configuration panel.

19. Click Trust and key managers under Additional Properties.

20. Select a default trust manager for the primary SSL handshake trust decision.

v Choose IbmPKIX when you require certificate revocation list (CRL) checking using CRL distribution
points in the certificates or the online certificate status protocol (OCSP).

v Choose IbmX509 when you do not require CRL checking but do need increased performance. You
can configure a custom trust manager to perform CRL checking, if necessary.

21. Define a custom trust manager, if appropriate. You can define a custom trust manager that runs with
the default trust manager you select. The custom trust manager must implement the JSSE
javax.net.ssl.X509TrustManager interface and, optionally, the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain product-specific information.

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations > SSL_configuration > Trust and key managers > Trust managers > New.

b. Type a unique trust manager name.

c. Select the Custom option.

d. Type a class name.

696 Securing applications and their environment

e. Click OK. When you return to the Trust and key managers panel, the new custom trust manager
displays in the Additional ordered trust managers field. Use the left and right list boxes to add
and remove custom trust managers.

22. Select a key manager for the SSL configuration. By default, IbmX509 is the only key manager unless
you create a custom key manager.

Important: If you choose to implement your own key manager, you can affect the alias selection
behavior because the key manager is responsible for selecting the certificate alias from
the keystore. The custom key manager might not interpret the SSL configuration as the
WebSphere Application Server key manager IbmX509 does. To define a custom key
manager, click Security > Secure communications > SSL configurations >
SSL_configuration > Trust and key managers > Key managers > New.

23. Click OK to save the trust and key manager settings and return to the new SSL configuration panel.

24. Click Save to save the new SSL configuration.

Results

Important: You can override the default trust manager when you configure at least one custom trust
manager and set the com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined property to
true. Click Custom Property on the SSL configuration panel. However, if you change the
default, you leave all the trust decisions to the custom trust manager, which is not
recommended for production environments. In test environments, use a dummy trust manager
to avoid certificate validation. Remember that these environment are not secure.

What to do next

In this release of WebSphere Application Server, you can associate SSL configurations with protocols
using one of the following methods:

v Set the SSL configuration on the thread programmatically

v Associate the SSL configuration with an outbound protocol, and target host and port. For more
information, see “Associating a Secure Sockets Layer configuration dynamically with an outbound
protocol and remote secure endpoint” on page 724

v Associate the SSL configuration directly using the alias. For more information, see “Selecting an SSL
configuration alias directly from an endpoint configuration” on page 728

v Manage the SSL configurations centrally by associating them with SSL configuration groups or zones
that are scoped for endpoints. For more information, see “Associating Secure Sockets Layer
configurations centrally with inbound and outbound scopes” on page 727.

SSL certificate and key management
Use this page to configure security for Secure Socket Layer (SSL) and key management, certificates, and
notifications. The SSL protocol provides secure communications between remote server processes or
endpoints. SSL security can be used for establishing communications inbound to and outbound from an
endpoint. To establish secure communications, a certificate and an SSL configuration must be specified for
the endpoint.

To view this administrative console page, click Security > SSL certificate and key management.

Configuration settings
Specifies the following administrative console tasks:

v Manage endpoint security configurations

v Manage certificate expiration

Chapter 8. Securing communications 697

Use Federal Information Processing Standard (FIPS) algorithms
Specifies the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine is
enabled.

v Does not affect the SSL cryptography that is performed by the application server for z/OS System
Secure Sockets Layer (SSSL).

v Does not change the JSSE provider if this cell includes any Application Server versions before the
application server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight
Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal
Information Processing Standard (FIPS)-approved cryptographic algorithms for Data Encryption Standard
(DES), Triple DES, and Advanced Encryption Standard (AES). Although the LTPA keys are backwards
compatible with prior releases of the application server, the LTPA token is not compatible with prior
releases. In prior releases, the application server did not generate the LTPA token using a FIPS-approved
algorithm.

The IBMJSSE2 JSSE provider does not perform cryptographic functions directly, and therefore does not
need to be FIPS-approved. Instead, the IBMJSSE2 JSSE provider uses the JCE framework for
cryptographic functions and uses IBMJCEFIPS when FIPS mode is enabled.

Default: Disabled

Dynamically update the runtime when SSL configuration changes occur
Specifies that all of the SSL-related attributes and LTPA keys that change must be read from the
configuration dynamically after they have been saved, then reused for new connections. To avoid customer
impact, it is recommended that changes to production servers be made during off-peak periods.

Default: Enabled

When this option is selected, the configuration is updated each time you configure an SSL communication.

SSL configurations for selected scopes
Use this page to display Secure Socket Layer (SSL) configurations for selected scopes, such as a cell,
node, server, or cluster. From this page you can navigate to configuration panels for the following: SSL
configurations, dynamic inbound and outbound endpoint SSL configurations, key stores, key sets, key set
groups, key managers, and trust managers.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration.

Name
Specifies the SSL configuration scope, which is derived from the selected object in the hierarchy.

Data type: Text

Direction
Specifies the direction for which the SSLConfig applies. Inbound refers to any listener port. Outbound
refers to outbound end point connections.

Data type: Text

698 Securing applications and their environment

SSL configuration
Specifies the SSL configuration that is used by requests at this scope.

Data type: Text

Update certificate alias list
Specifies the certificate aliases contained in the key store for this SSL configuration can be selected from
the Certificate alias in key store list. You must update the certificate list after choosing a different SSL
configuration alias. If you do not update the list, you will save a certificate alias that is not contained in the
SSL configuration.

Manage certificates
Specifies to open the keystore panel for the key store in this SSL configuration, which enables you to
manage personal certificates, signers, and certificate requests.

Certificate alias in key store
Specifies the certificate to use in the key store.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the key store, the key manager might not consistently select the
same certificate.

Data type: Text

SSL configurations collection
Use this page to define a list of Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click SSL configurations.

Table 85. SSL configurations buttons. This table lists the SSL configurations buttons.
Button Resulting action

New JSSE configuration The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL communications. You
can define a new JSSE configuration that can be used to create an SSLContext, URLStreamHandler,
SSLSocketFactory, SSLServerSocketFactory, and so on, using the
com.ibm.websphere.ssl.JSSEHelper API.

New SSSL configuration The System Secure Sockets Layer (SSSL) repertoire is used for HTTPS and Internet InterORB
Protocol (IIOP) communication, which are used by the native transports. If you want to use the
administrative console after security is enabled, you must define and select a System SSL type
repertoire for HTTP. You must define a System SSL repertoire and select if IIOP security requires or
supports SSL transport, or if a secure Remote Method Invocation (RMI) connector is selected for
administrative requests.

Delete Deletes an existing JSSE configuration (administrator only). Be careful that any references to the
SSL configuration have been removed prior to deleting this SSL configuration.

Name
Specifies the unique name of the SSL configuration in the management scope.

SSL configuration settings
Use this page to define Secure Sockets Layer (SSL) configuration properties.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
nodes name. Under Related items, click SSL configurations > New.

Chapter 8. Securing communications 699

Name
Specifies the unique name of the SSL configuration within the management scope in which it resides. For
ways to programmatically access the properties that are configured for this SSL configuration, see the
com.ibm.websphere.ssl.JSSEHelper application programming interface (API).

Data type: Text

Keyring name
Specifies the name of the keyring for the System SSL configuration. This field implies the keystore and
trust store.

This field applies to System SSL repertoires only

Secure Sockets Layer client certificate authentication
Client software that wants to establish a secure connect to a server by using Secure Socket Layer (SSL)
protocol initiates by leveraging SSL protocol or the enhanced protocol called Transport Layer Security
(TLS) to perform a SSL handshake with SSL certificates. A personal certificate can represent the server or
it can represent a particular client, and is signed by a Certificate Authority (CA) to ensure that the personal
certificate is correctly identified.

SSL ensures that the administrator has the CA signer certificate available that is used to sign the personal
certificate, and that it is stored in both the client and or the server trusted store. SSL client certificate
authentication takes place during the connection handshake by using SSL certificates.

The following events must occur during this process:

v The server side must determine if client authentication is going to take place. The client authentication
must be enabled in the SSL configuration of the server and the Common Secure Interoperability version
2 (CSIv2) configuration if Inter-ORB Protocol (IIOP) is used.

v The CSIv2 configuration must take place in global security, not in a security domain.

v The signer certificate of the client must be extracted from the key store of the client and added to the
trust store of the server.

v The signer certificate of the server must to be extracted from the key store of the server and added to
the trust store of the client.

Configuring a WebSphere server for client authentication

Client certificate authentication occurs if the server side requests that the client side send a certificate. A
Websphere server can be configured for client certificate authentication on the SSL configuration.
However, if client authentication is needed for IIOP then it must be configured on the CSIv2 configuration.

To configure client certificate authentication on the SSL configuration using the administrative console:

1. Click Security > SSL certificate and key management > SSL configurations.

2. Select a SSL configuration.

3. Under Additional Properties, select Quality of protection (QoP) settings.

4. Under Client authentication, select Required.

5. Click OK to save the changes.

Note: You can also use the modifySSLConfig command with the -clientAuthentication flag set to true to
enable client authentication. See SSLConfigCommands command group for the AdminTask object
for more information about this command.

.

700 Securing applications and their environment

To configure client certificate authentication on a CSIv2 inbound connection using the administrative
console:

1. Click Security > Global Security.

2. Under RMI/IIOP security, select CSIv2 inbound communications.

3. In the CSIv2 Transport Layer section, and under Client certificate authentication, select Required.

4. Click OK to save the changes

Note: You can also use the configureCSIInbound command with the -clientCertAuth flag set to Required
to enable client authentication on CSIv2. Read SecurityConfigurationCommands command group
for the AdminTask object for more information about this command.

If the client side is set up for client authentication, the signer certificate of the client must be added to the
trust store of the server. When you have a certificate from the client in a certificate file it can be added to
the trust store of the server.

To add a signer to the trust store of the server using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the trust store that is configured for client authentication.

3. Under Additional Properties, select Signer Certificates.

4. Click Add.

5. In the Alias field, type an alias name under which to store the certificate.

6. In the File name box, type the full path to the certificate file.

7. Click OK to save the changes

Note: You can also use the addSignerCertificate command to add a signer to the trust store of the server.
Read SignerCertificateCommands command group for the AdminTask object for more information
about this command.

Note: If you are using client authentication in a cluster environment, client authentication must be
configured for each node that the servers in the cluster are located in.

Setting up the client side for client authentication

Clients:

Administrative clients, thin clients or pure clients must have a personal certificate in their key stores. The
WebSphere client default key store that is created when WebSphere Application Server is installed already
has a personal certificate in it. This key store can be found in the ssl.client.props file in the
com.ibm.ssl.keyStore property. The client key stores are not managed by WebSphere Application Server,
so the Key Management utility (iKeyman) or Java keytool utility can be used to extract the certificate to a
certificate file.

To extract a certificate using iKeyman:

1. Start iKeyman.

2. Select Key Database File > open.

3. Enter the path to the keystore file. You can obtain this from the ssl.client.props file.

4. Click OK.

5. Enter the password to the key store and click OK

6. Under Personal Certificates, select the client default certificate.

7. Enter a path and file name for the certificate file and click OK.

Chapter 8. Securing communications 701

The file that contains the extracted certificate can be used to add the signer to the trust store of the server.
Follow the steps in the "Configuring a WebSphere server for client authentication" section to add that
signer to the server trust store.

If the communication is over IIOP, the following properties must be set in the sas.client.props file.

v Enable SSL:
com.ibm.CSI.performTransportAssocSSLTLSSupported=true
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

v Disable client authentication at the message layer:
com.ibm.CSI.performClientAuthenticationRequired=false
com.ibm.CSI.performClientAuthenticationSupported=false

v Enable client authentication at the transport layer (this is supported, but not required):
com.ibm.CSI.performTLClientAuthenticationRequired=false
com.ibm.CSI.performTLClientAuthenticationSupported=true

Thin clients and pure clients might not use the WebSphere Application Server SSL properties file,
ssl.client.props. They most likely use the Java system properties to set the client key store and trust
store. The signer certificate of the server must be added to the trust store that is specified with the
java.net.ssl.trustStore system property. Keytool or iKeyman can be used to add the signer certificate. The
signer must be extracted from the personal certificate in the key store specified by the
javax.net.ssl.keyStore system property, and added to the trust store of the server.

For example:
javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.keyStoreType
javax.net.ssl.trustStore
javax.net.ssl.trustStorePassword
javax.net.ssl.trustStoreType

Server acting as a client:

The client can be a WebSphere server acting as a client. If so, determine which SSL configuration is being
used as the client side of the communication, extract it's certificate's signer and add it to the server side
trust store. It is recommended that the root certificate signer be used.

To extract the root certificate using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Under the Keystore usages pull-down, select Root certificate keystore.

3. Select either DmgrDefaultRootStore (for a network deployment server) or NodeDefaultRootStore
(for an application server).

4. Under Additional Properties, select Personal certificates.

5. Select the default root certificate (usually called root), and then click Extract.

6. In the Certificate file name box, type a full path to the file in which to hold the certificate.

7. Click OK to save.

Note: You can also use the extractCertificate command to extract the root certificate. Read
PersonalCertificateCommands command group for the AdminTask object for more information about
this command.

The certificate file that is created can be carried to the server side and added to the trust store of the
server.

702 Securing applications and their environment

When a server acts as a client, the client side server requires the signer from the destination server. The
signer can be retrieved using the signer certificate Retrieve from port option.

To retrieve the signer from the port using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the trust store of the server from the collection.

3. Under Additional Properties, select Signer certificates.

4. Click Retrieve from port.

5. Enter a destination host name and a destination port name.

6. Enter an alias name for the certificate.

7. Click Retrieve signer information.

8. Click OK to save.

You can also use the retrieveSignerFromPort command to retrieve the signer from the port. Read
SignerCertificateCommands command group for the AdminTask object for more information about this
command.

Setting up a browser for client authentication:

When WebSphere Application Server is configured for client certificate authentication, and an attempt is
made to access the server from a browser, the browser must have a certificate for the client certificate
authentication. If the default SSL configuration of the server was modified to enable client certificate
authentication you are unable to login to the administrative console.

You can create a certificate for the browser by using the administrative console. You must first create a
key store and then create a chained certificate. After the certificate is created, use the instructions for your
browser to import a certificate. Browsers require that each part of the chain be added to verify the
certificate, so the root certificate must be extracted and added to the browser. Follow the instructions in the
"Setting up the client side for client authentication" section for information about extracting the root
certificate.

To create a key store using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Click New.

3. Enter a name for the key store.

4. Enter the full path to the key store file.

5. Enter a password for the key store and then confirm.

6. Click OK to save.

To create a chained certificate using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the key store you created previously.

3. Under Additional Properties, click Personal certificates.

4. In the pull-down list under the Create button, select Chained Certificate.

5. Enter an alias name for the certificate.

6. Provide a common name for the certificate. The name is the "CN=" part of the subject DN.

7. You can enter information in any of the remaining fields to build the subject DN of the chained
certificate.

8. Click OK to save.

Chapter 8. Securing communications 703

You can also use the createKeyStore command to create a key store. Read KeyStoreCommands
command group for the AdminTask object for more information about this command.

You can also use the createChainedCertificate command to create a chained certificate. Read
PersonalCertificateCommands command group for the AdminTask object for more information about this
command.

Note: When client certificate authentication is enabled, web certificate authentication can then be
performed as discussed in the next section.

Web certificate authentication

Certificate base authentication can be performed on Java 2 Platform, Enterprise Edition (J2EE) web
modules when the module is configured for client certificate authentication. This enables a user to login to
a web module using a certificate to authenticate, and to map that certificate to a user from the registry.

Enabling web certificate authentication requires that the SSL configuration of the server be configured for
client certificate authentication on the server where the module is installed.

The server side determines that client authentication is to take place. See the "Configuring a WebSphere
server for client authentication" section for information about how to configure client authentication. The
client side must have the signer from the server to add to the client truststore. See the "Setting up the
client side for client authentication" section for more information.

The web.xml file of the web module must have the authentication method set to CLIENT-AUTH in the
login-config section of the web.xml file:
<login-config>
<auth-method>CLIENT-CERT</auth-method>
</login-config>

The certificate must map to a user in the registry or you are unable to login to that web module.

For localOS user registries, the CN value of the certificate subject DN must map to a user in the local OS
user registry. For example, if the certificate subject DN is CN=tester,o=ibm,c=us, then tester is the user
searched for in the local user registry. If that user does not exist in the local registry then the
authentication fails.

The Lightweight Directory Access Protocol (LDAP) user registry provides more options for mapping a
certificate to a user identity. The default certificate mapping mode in LDAP is used for an exact DN match
between the entry in the LDAP registry and the subject DN in the certificate. For example, if the certificate
DN is CN=user1,o=ibm,c=us, then there must be an entry in the LDAP registry with that exact value. The
LDAP user registry also has a certificate filter option that can provide a match to a particular part of the
certificate subject DN against entries in the LDAP repository. For more detail on LDAP certificate mapping,
read "Lightweight Directory Access Protocol repository configuration settings".

A federated repository file-based registry does not support certificate mapping, but the federated repository
LDAP registry does. It uses the same mapping rules and properties that the LDAP user registry uses.

Custom user registry can map certificates to a user if the custom registry implemented the mapCertificate()
method.

Certificate authority (CA) client configuration
Use this page to create, modify, and configure a certificate authority (CA) client.

704 Securing applications and their environment

To view this administrative console page, click Security > SSL Configurations and key management .
Under Related Items, click Certificate Authority (CA) client configurations. Then click either the New
button or select an existing CA client by clicking on its <client_name>.

Name
Specifies the unique name of the CA client configuration. This is the name to identify the CA client object.
This name needs to be unique to the scope.

Data type: String

Implementation class
Specifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is
used to act as a client to a CA. This implementation class connects to the CA server and performs a
certificate create, revoke, or replace.

Default: String

CA server host name
Specifies the host name of the CA server, if the implementation requires a host name.

Data type: String

Port
Specifies the port where the CA server will communicate, if the implementation requires a port.

Data type: String

User name
Specifies the user Id used to connect to the CA server, if the implementation requires a user to login to the
CA.

Data type: String

Password
Specifies the password for the connection to the CA server.

Data type: String

Confirm password
Confirms the password that is provided in the password field.

Data type: String

Number of times to poll
Specifies the number of times to check the CA server to see if the certificate is complete. This poll number
applies to the CA that does not return certificates right away.

Default: 5

Polling interval when requesting certificates
Specifies the amount of time, in minutes, between checks to the CA server to see if the certificate is
complete.

Chapter 8. Securing communications 705

Default: 10

Custom properties
Specifies arbitrary name and value pairs of data. The name is a property key, and the value is a string
value that can be used to set internal system configuration properties.

Data type: string

Certificate authority (CA) client configuration collections
Use this page to define and manage certificate authority (CA) clients or view and modify existing CA
clients.

This panel allows you to create a certificate authority (CA) client object in the configuration. You can also
view and modify existing CA clients. The information in the CA client object can then be used by the
runtime to connect to a CA server to request, revoke, or query a certificate.

To view this administrative console page, click Security > SSL Configurations and key management > .
Under Related Items, click Certificate Authority (CA) client configurations.

Table 86. CA client configuration buttons.

This table describes the CA client configuration buttons.

Button Resulting action

New Adds a new CA client object that can be referenced by Secure Sockets Layer
(SSL) configurations.

Delete Deletes an existing CA client object.

Name
Identifies the unique name of the CA client configuration.

Implementation class
Identifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is
used to act as a client to a CA.

Management Scope
Identifies the scope where this secure sockets layer (SSL) configuration is visible.

Writable SAF Keyring settings
Use this page to manage existing writable System Authorization Facility (SAF) keyrings on the z/OS
platform.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related Items, click Key stores and certificates. Click an existing keystore.
Under Writable SAF Keyrings, click Control region keyring to manage the control region keyring
information or click Servant region keyring to manage the servant region keyring information.

Note: Any changes made to this panel are permanent.

Name
Specifies the unique name to identify the writable SAF keyring. The name is the name of the keystore
specified on the create command that corresponds to the keyring owned by the RACF ID of the control

706 Securing applications and their environment

region process. Or it is the name of the keystore specified on the create command that corresponds to the
keyring owned by the RACF ID of the servant region process. The name is <your_keystore_name> -CR
for the control region user and<your_keystore_name> -SR for the servant region user.

Data type: Text

Description
Specifies the description of the writable SAF keyring (either the control region keyring or the servant region
keyring).

Data type: Text

Management scope
Specifies the management scope associated with the writable SAF keyring. These keystores are created
in the same scope as <your_keystore_name> and can be accessed from the administrative console from
the <your_keystore_name> collection panel.

Data type: Text

Path
Specifies the location of the keyring file in the format needed by the keystore type. This file is a URL of the
form, safkeyring:///your_keyring_name.

Data type: text

Change password [existing SAF keyring]
Specifies the password used to protect the keystore. For the default keyring (names ending in
DefaultKeyStore or DefaultTrustStore) for which this keyring is associated, the password is WebAS. This
default password must be changed.

This field can be edited. This password is for the keystore file that you specified in the Path field.

Data type: Text

Type
Specifies the implementation for keyring management. This value defines the tool that operates on this
keyring type. For a writable SAF keyring, the type is JCERACFKS. For writable SAF keyrings, the tool that
operates on this SAF keyring is RACF.

Data type: Text

Read only
Specifies whether the writable SAF keyring can be written to or not. If the keyring cannot be written to,
certain operations cannot be performed, such as creating or importing certificates.

Default: Disabled

Initialize at startup
Specifies whether the writable keyring needs to be initialized before it can be used for cryptographic
operations. If enabled, the keyring is initialized at server startup.

Default: Disabled

Chapter 8. Securing communications 707

Enable cryptographic operations on hardware device
Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations
that require a login are not supported when using this option.

Default: Disabled

Creating a chained personal certificate in SSL
A chained personal certificate is a personal certificate that is created by using another personal certificate
to sign it. This chaining allows a certificate to be signed with a certificate (a root certificate) that has a long
life span. Root certificates are stored in the DmgrDefaultRootStore or NodeDefaultRootStore. The
server's default personal certificate is a chained certificate created when the profile is created. Chained
certificates can also be created after profile creation

Before you begin

You use the administrative console to create a chained personal certificate.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the chained personal certificate.

4. Under Additional Properties, click Personal certificates .

5. Click the Create button and select Chained Certificate The listCertificates AdminTask can be used
to generate the list of root certificates available to sign the certificate.

6. Fill in the following information to the General Properties section as follows:

v Supply an alias name.

v Select Root certificate from the pull down list.

v Key size

v Common name

v Validity period

v Organization

v Organization Unit

v Locality

v State/Province

v Zip code

v Country or region

v

7. Click Apply then OK.

Results

The certificate is created, signed by the root certificate specified, and stored in the keystore. Once a
chained personal certificate is created, the certificate can be used by the runtime for SSL communication.

Recovering deleted certificates in SSL
The SSL configuration contains a keystore created to hold personal certificates that were deleted from
other keystores in the configuration. Perform this task to recover deleted certificates.

708 Securing applications and their environment

Before you begin

The SSL configuration contains a keystore created to hold personal certificates that were deleted from
other keystores in the configuration. On a stand alone application server the keystore is called
NodeDefaultDeletedStore and on a deployment manager the keystore is called DmgrDefaultDeletedStore.

When a personal certificate is deleted from a keystore using the administrative console or in a script using
the deleteCertificate AdminTask, a copy of the certificate is stored in the DmgrDeletedKeyStore or
NodeDeletedKeyStore. The personal certificate takes the alias of <keystore>_<alias> > in the deleted
keystore. If the alias name is already used in that deleted keystore a <unique number> is appended to the
alias.

A personal certificate can be recovered from the deleted keystore by importing or exporting the personal
certificate to a keystore in the configuration. To recover a personal certificate using the administrative
console perform the following steps:

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. From the Keystore usages drop-down list, select "Deleted certificates keystore".

4. Click DmgrDefaultDeletedStore or NodeDefaultDeletedStore.

5. Under Additional Properties, click Personal certificates.

6. Select a certificate.

7. Select Export

8. Click OK.

9. Perform the following:

v v Enter the keystore password of the deleted keystore.

v v Enter The alias to be assigned to the certificate (in the key store that will receive the certificate).

v v Select the ‘Managed key store’ radio button.

v v Select the key store from the drop down list that will receive the certificate.

v Click Apply then OK.

Results

Note: To recover a personal certificate you can also use the exportCertToManagedKS AdminTask
command.

Renewing a certificate in SSL
If a personal certificate has been compromised or is about to expire, then it should be renewed. Renewing
a certificate recreates the certificate with all the information from the original certificate, but with a new
expiration period and public/private key pair. Only self-signed certificates and chained certificates created
by WebSphere can be renewed. If the certificate used to sign the chained certificate is not in the root
keystore then the default root certificate is used to renew the certificate.

Before you begin

You use the administrative console to renew the certificate.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

Chapter 8. Securing communications 709

3. Click the appropriate <keystore name> to which you want to add the new certificate.

Note: Only self-signed certificates and chained certificates signed with root certificates from the root
keystore can be renewed.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. Select a personal certificate from the list.

6. Click the Renew button.

7. Click Apply then OK.

Results

The certificate is renewed in the key store selected in the path to this panel . If the certificate is not a
self-signed certificate or a chained certificate signed with a root certificate from the default root store, an
error is returned.

Note: If this command is used with a CA certificate, an error occurs.

Revoking a CA certificate in SSL
If a certificate authority (CA) certificate is compromised and the servers cannot trust it anymore that CA
certificate can be revoked. To revoke a CA certificate, you perform the following task.

Before you begin

You use the administrative console to replace or revoke a CA certificate.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. Select a certificate to revoke (a CA certificate)

6. Click the Revoke button.

7. Fill in the following information to the CA certificate section.

v Revocation password

v Revocation reason

8. Click Apply then OK.

Results

The certificate is revoked in the key store selected in the path. If the certificate selected was not a CA
certificate, then an error is returned.

What to do next

Using a CA client to create a personal certificate to be used as the
default personal certificate
An external certificate authority (CA) certificate can be used as the server default personal certificate. The
CA certificate can be created using a CA client.

710 Securing applications and their environment

Before you begin

What you need to have before you perform this task is as follows:

v A certificate authority (CA) to make the certificate request to.

v A module that implements the com.ibm.wsspi.ssl.WSPKIClient interface. This module is needed to
connect to the CA server and request a certificate.

You use the administrative console to view or modify a CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Certificate Authority (CA) client configurations. A panel displaying the
existing CA clients appears.

3. Click the New button.

4. Enter the CA client information as required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requesting certificates.

v Custom properties.

5. Click Apply then Save.

6. Navigate to the Server default key store personal certificate. Security > SSL configuration and
certificate management > Key stores and certificates > <server_default_keystore> . Under
Additional properties, click Personal certificates

7. Click the Create button and select CA-signed certificate

8. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client that applies to this CA certificate.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for Predefined request alias if you have a predefined alias.

– If you do not have a predefined alias, fill in the following fields:

- Type an alias name in the Alias field. The alias identifies the certificate request in the
keystore.

- Type a common name (CN) value. This value is the CN value in the certificate distinguished
name (DN).

- Optional: Type an organization value. This value is the O value in the certificate DN.

- Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and
8192. The default key size value is 2048 bits.

- Locality

- Optional: Type the State or Province value. This value is the ST value in the certificate DN.

Chapter 8. Securing communications 711

- Optional: Type a zip code value. The zip code value is the POSTALCODE value in the
certificate DN.

- Optional: Type a country or region value from the list. This country value is the C= value in
the certificate request DN.

- Validity period

9. Click Apply then Save.

10. Navigate to the Server Default Key store's personal certificates Security > SSL configuration and
certificate management > Key stores and certificates > <server_default_keystore> . Under
Additional properties, click Personal certificates

11. Select the server default personal certificate and click the Replace button.

12. Select the CA certificate alias from the list of aliases.

13. Click Apply then Save.

Results

The CA certificate alias replaces the alias of the default certificate in places where it is referenced in the
configuration. All signer certificates from the default certificate are replaced with the signer certificate from
the CA certificate.

Creating a CA certificate in SSL
Certificates can be created by a certificate authority (CA) when a CAClient object is configured to connect
to the CA to create the certificate. Certificates created by a certificate authority (CA) with a CA client are
tracked in the security configuration in an object called CACertificate. The certificate is stored in a
keystore and a CACertificate object is added to the configuration to reference the certificate. CA
certificates are personal certificates.

Before you begin

Before you begin, a CA client must be created to connect to the CA server. You then use the
administrative console to create a CA certificate.

Note: In this release of WebSphere Application Server, the valid key size values are 512, 1024, 2048,
4096, and 8192. The default key size value is 2048 bits.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to create a new CA certificate in the
configuration.

Note: You can also create a CA certificate by using the requestCACertificate AdminTask .

5. Click the Create button and select CA-signed Certificate

6. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client from the pull down list.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for a predefined request alias if a certificate request is already created.

712 Securing applications and their environment

– If you do not have a predefined certificate request alias, fill in the following fields:

a. Type an alias name in the Alias field. The alias identifies the certificate request in the
keystore.

b. Type a common name (CN) value. This value is the CN value in the certificate distinguished
name (DN).

c. Optional: Type an organization value. This value is the O value in the certificate DN.

d. Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and
8192. The default key size value is 2048 bits.

e. Locality

f. Optional: Type the State or Province value. This value is the ST value in the certificate DN.

g. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the
certificate DN.

h. Optional: Type a country or region value from the list. This country value is the C= value in
the certificate request DN.

7. Click Apply then OK.

Results

The certificate is stored in the keystore selected in the path to this panel and a CACertificate configuration
object is created. Once a CA certificate is created the certificate can be used by the runtime for SSL
communication.

An existing certificate request can be used to create the CA certificate or a new certificate request can be
created. This panel uses the requestCAClient AdminTask to create the CA certificate.

Developing the WSPKIClient interface for communicating with a
certificate authority
Implementing the WSPKIClient interface enables WebSphere Application Server security to communicate
with a remote certificate authority (CA).

Procedure
1. Initialize the WSPKIClient method, with init(java.util.HashMap).

public void init(java.util.HashMap initAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to set up connection information to a
CA.

2. v Request a certificate with requestCertificate(byte[], X500Principal, byte[], java.util.HashMap).
public X509Certificate[] requestCertificate(byte[] certReq,
X500Principal SubjectDN, byte[] revocationPassword,
java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to connect to a CA and requests a
certificate signed by the authority. A X509Certificate[] is returned if the requested certificate is created.
If a null is returned then queryCertificate() is called to check if the certificate is ready. This method is
used when the CA requires manual intervention to process a certificate request.

You can invoke this operation from the administrative console using the “Creating a CA certificate in
SSL” on page 712 task and from a client using the requestCertificate script.

3. v Revoke a certificate with revokeCertificate(X509Certiifcate[], byte[], String, java.util.HashMap).
public void revokeCertificate(X509Certificate[] cert, byte[] revocationPassword,
String revocationReason, java.util.HashMap customAttrs) throws WSPKIException;

Chapter 8. Securing communications 713

This method called by WebSphere Application Server runtime to submit a request to a CA to revoke a
certificate.

You can invoke this operation from the administrative console using the revoke CA certificate task,
“Revoking a CA certificate in SSL” on page 710, or using the revokeCertificate script.

4. v Query a certificate with queryCertificate(X509Certiifcate[], byte[], java.util.HashMap).
public X509Certificate[] queryCertificate(byte[] certReq,
java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to query if certificate creation is
completed on the CA. A X509Certificate[] is returned if certificate request is complete. A null is returned
if the certificate request is pending.

You perform this operation from the administrative console using the Query (link to
usec_sslperscertreqs.html) option, see “Personal certificate requests collection” on page 763and from a
client using the queryCertificate script.

Results

the WSPKIClient interface for communicating with a certificate authority (CA) is implemented.

Creating a custom trust manager configuration for SSL
You can create a custom trust manager configuration at any management scope and associate the new
trust manager with a Secure Sockets Layer (SSL) configuration.

Before you begin

You must develop, package, and locate a Java Archive JAR file for a custom key manager in the
was.install.root/lib/ext directory on WebSphere Application Server. For more information, see
“Example: Developing a custom trust manager for custom SSL trust decisions” on page 718.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the custom trust manager at the cell scope or below the cell

scope at the node, server, or cluster, for example.

Important: When you create a custom trust manager at a level below the cell scope, you can
associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or
higher. An SSL configuration at a scope lower than the trust manager does not see the
trust manager configuration.

v To create a custom trust manager at the cell scope, click Security > SSL certificate and key
management > Trust managers. Every SSL configuration in the cell can select the trust manager
at the cell scope.

v To create a custom trust manager at a scope below the cell level, click Security > SSL certificate
and key management > Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration > Trust managers.

2. Click New to create a new custom trust manager.

3. Type a unique trust manager name.

4. Select the Custom implementation setting. The custom setting enables you to define a Java class
with an implementation of the javax.net.ssl.X509TrustManager Java interface and, optionally, the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo WebSphere Application Server interface.

714 Securing applications and their environment

Note: The standard implementation setting applies only when the trust manager is already defined in
the Java security provider list as a provider and an algorithm, which is not the case for a
custom trust manager.

5. Type a class name, for example, com.ibm.test.CustomTrustManager.

6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to
the new custom trust manager. When you are finished adding custom properties, click OK and
Save, then go to the next step.

v Click OK and Save, then go to the next step.

7. Click SSL certificate and key management in the page navigation at the top of the panel.

8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

9. Click the link for the existing SSL configuration that you want to associate with the new custom trust
manager. You can create a new SSL configuration instead of associating the custom trust manager
with an existing configuration. For more information, see “Creating a Secure Sockets Layer
configuration” on page 694.

10. Click Trust and Key managers under Additional Properties. If the new custom trust manager is not
listed in the Additional ordered trust managers list, verify that you selected an SSL configuration
scope that is at the same level or below the scope that you selected in Step 8.

11. Click Add. This action adds the new trust manager to the list of custom trust managers.

12. Click OK and Save.

Results

You have created a custom trust manager configuration that references a JAR file in the install directory of
WebSphere Application Server and associates it with an SSL configuration during the connection
handshake.

What to do next

You can create a custom trust manager for a pure client. For more information, see the
TrustManagerCommands command group for the AdminTask object topic.

Trust and key managers settings
Use this page to specify trust and key managers for the selected SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items click SSL configurations > SSL_configuration_name . Under
Additional Properties click Trust and key managers.

Attention: The application server checks the default trust managers first before checking the additional
ordered trust managers in descending order.

Default trust manager:

Specifies the default trust manager. The default trust manager is IbmPKIX, which can be selected when
certificate revocation checks must be made using the X509Certificate CRL distribution list. The other
default trust manager is IbmX509.

Data type: Text
Default: ibmPKIX

Chapter 8. Securing communications 715

Additional ordered trust managers:

Specifies additional trust managers that are used in the order shown for this SSL configuration.

Add:

Specifies to add the selection to the Additional ordered trust managers right-hand list.

Remove:

Specifies to remove the selection from the Additional ordered trust managers right-hand list.

Key manager:

Specifies the key manager that runs for this SSL configuration.

Data type: Text
Default: IbmX509

Trust managers collection
Use this page to define the implementation settings for the trust manager. A trust manager is a class that
is invoked during a Secure Sockets Layer (SSL) handshake to make trust decisions about the remote end
point. A default trust manager is used to validate the signature and expiration of the certificate. Custom
trust managers can be plugged in to perform an extended certificate and host name check.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Trust managers.

Table 87. Trust managers buttons. This table describes the trust manager buttons.
Button Resulting action

New Adds a new trust manager that can be selected by an SSL configuration. A trust manager is invoked
during an SSL handshake and can decide whether the handshake should be accepted based on the
information it knows about the remote certificate and host.

Delete Deletes an existing trust manager. Make sure the trust manager is not referenced by any SSL
configuration before you delete it.

Name:

Specifies the name of the trust manager. This name is used as a selection in the SSL configuration panel.

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can
implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the
connection. The class can use the information to verify the host name and so on.

Algorithm:

Specifies the algorithm name of the trust manager that is implemented by the selected provider.

Trust managers settings
This page enables you to view and set definitions for trust manager implementation settings. A trust
manager is a class that gets invoked during a Secure Sockets Layer (SSL) handshake to make trust

716 Securing applications and their environment

decisions about the remote end point. A default trust manager is used to validate the signature and
expiration of the certificate. Custom trust managers can be plugged in to perform an extended certificate
and hostname check.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under
Related items click Trust managers > New .

Name:

Specifies the name of the trust manager.

Data type: Text
Default: ibmX509TrustManager

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

This field is not editable and provides information only.

Standard:

Specifies that the trust manager selection is available from a Java provider that is installed in the
java.security file. This provider might be shipped by the Java Secure Sockets Extension (JSSE) or might
be a custom provider that implements the javax.net.ssl.X509TrustManager interface.

Default: Enabled

Provider:

Specifies the provider name that has an implementation of the javax.net.ssl.X509TrustManager interface.
This provider is typically set to IBMJSSE2.

Enabled when Standard is selected.

Default IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

Enabled when Standard is selected.

Default ibmX509 or IbmPKIX
Range ibmX509, IbmPKIX

Custom:

Specifies that the trust manager selection is based on a custom implementation class that implements the
javax.net.ssl.X509TrustManager interface and optionally the com.ibm.wsspi.ssl.TrustManagerExctendedInfo
interface to obtain additional connection information that is not otherwise available.

Chapter 8. Securing communications 717

Default: Disabled

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can
implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the
connection. The class can use the information to verify the host name and so on.

Enabled when Custom is selected.

Data type: Text

Example: Developing a custom trust manager for custom SSL trust decisions
The following example is of a sample custom trust manager. The custom trust manager makes no trust
decisions but instead uses the information in the X.509 certificate that it references to make decisions.

After you build and package the custom trust manager, configure it either from the ssl.client.props file
for a pure client or the SSLConfiguration TrustManager link in the administrative console. See “Trust
manager control of X.509 certificate trust decisions” on page 659 for more information about trust
managers.

Note: This example should only be used as a sample, and is not supported.
import java.security.cert.X509Certificate;
import javax.net.ssl.*;
import com.ibm.wsspi.ssl.TrustManagerExtendedInfo;

public final class CustomTrustManager implements X509TrustManager,
TrustManagerExtendedInfo
{

private static ThreadLocal threadLocStorage = new ThreadLocal();
private java.util.Properties sslConfig = null;
private java.util.Properties props = null;

public CustomTrustManager()
{
}

/**
* Method called by WebSphere Application Server run time to set the target
* host information and potentially other connection info in the future.
* This needs to be set on ThreadLocal since the same trust manager can be
* used by multiple connections.
*
* @param java.util.Map - Contains information about the connection.
*/
public void setExtendedInfo(java.util.Map info)
{

threadLocStorage.set(info);
}

/**
* Method called internally to retrieve information about the connection.
*
* @return java.util.Map - Contains information about the connection.
*/
private java.util.Map getExtendedInfo()
{

return (java.util.Map) threadLocStorage.get();
}

/**
* Method called by WebSphere Application Server run time to set the custom
* properties.
*
* @param java.util.Properties - custom props
*/
public void setCustomProperties(java.util.Properties customProps)
{

props = customProps;
}

/**
* Method called internally to the custom properties set in the Trust Manager
* configuration.

718 Securing applications and their environment

*
* @return java.util.Properties - information set in the configuration.
*/
private java.util.Properties getCustomProperties()
{

return props;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* configuration properties being used for this connection.
*
* @param java.util.Properties - contains a property for the SSL configuration.
*/
public void setSSLConfig(java.util.Properties config)
{

sslConfig = config;
}

/**
* Method called by TrustManager to get access to the SSL configuration for
* this connection.
*
* @return java.util.Properties
*/
public java.util.Properties getSSLConfig ()
{

return sslConfig;
}

/**
* Method called on the server-side for establishing trust with a client.
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public void checkClientTrusted(X509Certificate[] chain, String authType)

throws java.security.cert.CertificateException
{

for (int j=0; j<chain.length; j++)
{

System.out.println("Client certificate information:");
System.out.println(" Subject DN: " + chain[j].getSubjectDN());
System.out.println(" Issuer DN: " + chain[j].getIssuerDN());
System.out.println(" Serial number: " + chain[j].getSerialNumber());
System.out.println("");

}
}

/**
* Method called on the client-side for establishing trust with a server.
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public void checkServerTrusted(X509Certificate[] chain, String authType)

throws java.security.cert.CertificateException
{

for (int j=0; j<chain.length; j++)
{

System.out.println("Server certificate information:");
System.out.println(" Subject DN: " + chain[j].getSubjectDN());
System.out.println(" Issuer DN: " + chain[j].getIssuerDN());
System.out.println(" Serial number: " + chain[j].getSerialNumber());
System.out.println("");

}
}

/**
* Return an array of certificate authority certificates which are trusted
* for authenticating peers. You can return null here since the IbmX509
* or IbmPKIX will provide a default set of issuers.
*
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public X509Certificate[] getAcceptedIssuers()
{

return null;
}

}

Creating a custom key manager for SSL
You can create a custom key manager configuration at any management scope and associate the new
key manager with a Secure Sockets Layer (SSL) configuration.

Chapter 8. Securing communications 719

Before you begin

You must develop, package, and locate a Java Archive (.JAR) file for a custom key manager in the
was.install.root/lib/ext directory on WebSphere Application Server.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the custom key manager at the cell scope or below the cell scope

at the node, server, or cluster, for example.

Important: When you create a custom key manager at a level below the cell scope, you can
associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or
higher. An SSL configuration at a scope lower than the key manager does not see the
key manager configuration.

v To create a custom key manager at the cell scope, click Security > SSL certificate and key
management > Key managers. Every SSL configuration in the cell can select the key manager at
the cell scope.

v To create a custom key manager at a scope below the cell level, click Security > SSL certificate
and key management > Manage endpoint security configurations > {Inbound | Outbound} >
SSL_configuration > Key managers.

2. Click New to create a new key manager.

3. Type a unique key manager name.

4. Select the Custom implementation setting. With the custom setting, you can define a Java class that
has an implementation on the Java interface javax.net.ssl.X509KeyManager and, optionally, the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo WebSphere Application Server interface. The standard
implementation setting applies only when the key manager is already defined in the Java security
provider list as a provider and an algorithm, which is not the case for a custom key manager. The
typical standard key manager is algorithm = IbmX509, provider = IBMJSSE2.

5. Type a class name. For example, com.ibm.test.CustomKeyManager.

6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to
the new custom key manager. When you are finished adding custom properties, click OK and
Save, then go to the next step.

v Click OK and Save, then go to the next step.

7. Click SSL certificate and key management in the page navigation at the top of the panel.

8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

9. Click the link for the existing SSL configuration that you want to associate with the new custom key
manager. You can create a new SSL configuration instead of associating the custom key manager
with an existing configuration. For more information, see example below.

10. Click Trust and Key managers under Additional Properties.

11. Select the new custom key manager in the Key manager drop-down list. If the new custom key
manager is not listed, verify that you selected an SSL configuration scope that is at the same level or
below the scope that you selected in Step 8.

12. Click OK and Save.

720 Securing applications and their environment

Results

You have created a custom key manager configuration that references a JAR file in the installation
directory of WebSphere Application Server and associates the custom configuration with an SSL
configuration during the connection handshake.

Example

Developing a custom key manager for custom Secure Sockets Layer key selection. The following
example is of a sample custom key manager. This simple key manager returns the configured alias if it is
set using the alias properties com.ibm.ssl.keyStoreClientAlias or com.ibm.ssl.keyStoreServerAlias,
depending on which side of the connection the key manager is used. The key manager defers to the JSSE
default IbmX509 key manager to select an alias if these properties are not set.

After you build and package a custom key manager, you can configure it from either the ssl.client.props
file for a pure client or by using the SSLConfiguration KeyManager link in the administrative console. See
“Key manager control of X.509 certificate identities” on page 660 for more information about key
managers.

Because only one key manager can be configured at a time for any given Secure Sockets Layer (SSL)
configuration, the certificate selections on the server side might not work as they would when the default
IbmX509 key manager is specified. When a custom key manager is configured, it is up to the owner of
that key manager to ensure that the selection of the alias from the SSL configuration supplied is set
properly when chooseClientAlias or chooseServerAlias are called. Look for the
com.ibm.ssl.keyStoreClientAlias and com.ibm.ssl.keyStoreServerAlias SSL properties.

Note: This example should only be used as a sample, and is not supported.
package com.ibm.test;

import java.security.cert.X509Certificate;
import com.ibm.wsspi.ssl.KeyManagerExtendedInfo;

public final class CustomKeyManager
implements javax.net.ssl.X509KeyManager, com.ibm.wsspi.ssl.KeyManagerExtendedInfo
{

private java.util.Properties props = null;
private java.security.KeyStore ks = null;
private javax.net.ssl.X509KeyManager km = null;
private java.util.Properties sslConfig = null;
private String clientAlias = null;
private String serverAlias = null;
private int clientslotnum = 0;
private int serverslotnum = 0;

public CustomKeyManager()
{
}

/**
* Method called by WebSphere Application Server runtime to set the custom
* properties.
*
* @param java.util.Properties - custom props
*/
public void setCustomProperties(java.util.Properties customProps)
{

props = customProps;
}

private java.util.Properties getCustomProperties()
{

return props;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* configuration properties being used for this connection.
*
* @param java.util.Properties - contains a property for the SSL configuration.
*/
public void setSSLConfig(java.util.Properties config)
{

sslConfig = config;

Chapter 8. Securing communications 721

}

private java.util.Properties getSSLConfig()
{

return sslConfig;
}

/**
* Method called by WebSphere Application Server runtime to set the default
* X509KeyManager created by the IbmX509 KeyManagerFactory using the KeyStore
* information present in this SSL configuration. This allows some delegation
* to the default IbmX509 KeyManager to occur.
*
* @param javax.net.ssl.KeyManager defaultX509KeyManager - default key manager for IbmX509
*/
public void setDefaultX509KeyManager(javax.net.ssl.X509KeyManager defaultX509KeyManager)
{

km = defaultX509KeyManager;
}

public javax.net.ssl.X509KeyManager getDefaultX509KeyManager()
{

return km;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* KeyStore used for this connection.
*
* @param java.security.KeyStore - the KeyStore currently configured
*/
public void setKeyStore(java.security.KeyStore keyStore)
{

ks = keyStore;
}

public java.security.KeyStore getKeyStore()
{

return ks;
}

/**
* Method called by custom code to set the server alias.
*
* @param String - the server alias to use
*/
public void setKeyStoreServerAlias(String alias)
{

serverAlias = alias;
}

private String getKeyStoreServerAlias()
{

return serverAlias;
}

/**
* Method called by custom code to set the client alias.
*
* @param String - the client alias to use
*/
public void setKeyStoreClientAlias(String alias)
{

clientAlias = alias;
}

private String getKeyStoreClientAlias()
{

return clientAlias;
}

/**
* Method called by custom code to set the client alias and slot (if necessary).
*
* @param String - the client alias to use
* @param int - the slot to use (for hardware)
*/
public void setClientAlias(String alias, int slotnum) throws Exception
{

if (!ks.containsAlias(alias))
{

throw new IllegalArgumentException ("Client alias " + alias + "
not found in keystore.");

}
this.clientAlias = alias;
this.clientslotnum = slotnum;

}

/**
* Method called by custom code to set the server alias and slot (if necessary).

722 Securing applications and their environment

*
* @param String - the server alias to use
* @param int - the slot to use (for hardware)
*/
public void setServerAlias(String alias, int slotnum) throws Exception
{

if (! ks.containsAlias(alias))
{

throw new IllegalArgumentException ("Server alias " + alias + "
not found in keystore.");

}
this.serverAlias = alias;
this.serverslotnum = slotnum;

}

/**
* Method called by JSSE runtime to when an alias is needed for a client
* connection where a client certificate is required.
*
* @param String keyType
* @param Principal[] issuers
* @param java.net.Socket socket (not always present)
*/
public String chooseClientAlias(String[] keyType, java.security.Principal[]
issuers, java.net.Socket socket)
{

if (clientAlias != null && !clientAlias.equals(""))
{

String[] list = km.getClientAliases(keyType[0], issuers);
String aliases = "";

if (list != null)
{

boolean found=false;
for (int i=0; i<list.length; i++)
{

aliases += list[i] + " ";
if (clientAlias.equalsIgnoreCase(list[i]))

found=true;
}

if (found)
{

return clientAlias;
}

}
}

// client alias not found, let the default key manager choose.
String[] keyArray = new String [] {keyType[0]};
String alias = km.chooseClientAlias(keyArray, issuers, null);
return alias.toLowerCase();

}

/**
* Method called by JSSE runtime to when an alias is needed for a server
* connection to provide the server identity.
*
* @param String[] keyType
* @param Principal[] issuers
* @param java.net.Socket socket (not always present)
*/
public String chooseServerAlias(String keyType, java.security.Principal[]
issuers, java.net.Socket socket)
{

if (serverAlias != null && !serverAlias.equals(""))
{

// get the list of aliases in the keystore from the default key manager
String[] list = km.getServerAliases(keyType, issuers);
String aliases = "";

if (list != null)
{

boolean found=false;
for (int i=0; i<list.length; i++)
{

aliases += list[i] + " ";
if (serverAlias.equalsIgnoreCase(list[i]))

found = true;
}

if (found)
{

return serverAlias;
}

}
}

Chapter 8. Securing communications 723

// specified alias not found, let the default key manager choose.
String alias = km.chooseServerAlias(keyType, issuers, null);
return alias.toLowerCase();

}

public String[] getClientAliases(String keyType, java.security.Principal[] issuers)
{

return km.getClientAliases(keyType, issuers);
}

public String[] getServerAliases(String keyType, java.security.Principal[] issuers)
{

return km.getServerAliases(keyType, issuers);
}

public java.security.PrivateKey getPrivateKey(String s)
{

return km.getPrivateKey(s);
}

public java.security.cert.X509Certificate[] getCertificateChain(String s)
{

return km.getCertificateChain(s);
}

public javax.net.ssl.X509KeyManager getX509KeyManager()
{

return km;
}

}

What to do next

You can create a custom key manager for a pure client. For more information, see the
keyManagerCommands command group for the AdminTask object.

Associating a Secure Sockets Layer configuration dynamically with an
outbound protocol and remote secure endpoint
After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure outbound
management scope with the new configuration. In this release, you can associate one SSL configuration
with one remote secure endpoint and a different SSL configuration to another remote secure endpoint.
Both endpoints can use the same outbound protocol, if appropriate. This task describes how to create the
association dynamically.

Before you begin

Dynamic outbound selection requires that you provide only the outbound protocol name, the target host,
and the target port so that WebSphere Application Server can make a connection between the SSL
configuration and the outbound protocol or remote secure endpoint. The dynamic outbound selection
method takes precedence over other selection methods, such as central management and direct selection,
but is second to the programmatic method, that is, setting an SSL configuration on the running thread. For
more information about the selection types and precedence rules, see “Secure communications using
Secure Sockets Layer (SSL)” on page 650.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > Outbound.

2. Select the management scope that you want to associate with an SSL configuration on the topology
tree.

724 Securing applications and their environment

3. Under Related Items, click Dynamic outbound endpoint SSL configurations. The default dynamic
outbound configuration name, the target protocol, host, and port connection information, and the SSL
configuration name display.

4. Click New to create a new dynamic outbound configuration.

5. Type a dynamic outbound configuration name. Use a name that is descriptive of the purpose of the
dynamic selection configuration.

6. Optionally, type a dynamic selection configuration description.

7. Type the connection information that you want to associate with the configuration that is displayed in
the SSL configuration drop-down list. The connection information must be in the format protocol
name, target host, target port. You can substitute an asterisk (*) for any value, as in the following
examples, where 443 is a port, www.mycompany.com is a host, HTTP is a protocol, and
.hometown.mycompany.com is a target host. You can add multiple connections, but each additional
connection can affect outbound performance.

v *,*,443

v *,www.mycompany.com,443

v HTTP,.hometown.mycompany.com,*

v *,*,*

gotcha: Do not use this configuration because it matches all outbound specifications. Therefore,
no other SSL configuration is used for outbound connections.

gotcha:

v Unless the intention is to set the protocol property through the JSSEHelper API, the
protocol filter should be set to * (as in the first two examples). See "Dynamic Selection" in
“Secure communications using Secure Sockets Layer (SSL)” on page 650 for more
information.

v The connection protocols that are used for dynamic outboud SSL configuration selection,
that are illustrated in the preceding examples, which are not corresponding the protocol
name of the URL. To use one of these protocols from a user-written application,
programmatic SSL configuration selection must be implemented.

8. Click Add to add the new connection to the set of SSL configuration connections. To remove a
connection, select it and click Remove.

9. Select an SSL configuration from the list.

10. Click Get certificate aliases to refresh the certificate aliases that are contained in the associated key
store.

11. Choose a certificate alias from the list.

12. Click OK and Save.

Results

WebSphere Application Server is ready to connect one or more SSL configurations to one or more remote
secure endpoints.

What to do next

You can return to the outbound tree and select another management scope to associate with the same or
a new outbound configuration.

Chapter 8. Securing communications 725

Programmatically specifying an outbound SSL configuration using JSSEHelper
API
WebSphere Application Server provides a way to specify programmatically which Secure Sockets Layer
(SSL) configurations to use prior to making an outbound connection. The
com.ibm.websphere.ssl.JSSEHelper interface provides a complete set of application programming
interfaces (APIs) for handling SSL configurations.

About this task

Perform the following steps for your application when using the JSSEHelper API to establish an SSL
properties object on the thread for use by the runtime. Some of these APIs have Java 2 Security
permission requirements. See the JSSEHelper API documentation for more information about the
permissions required by your application.

Select the approach that best fits your connection situation when you specify programmatically which
Secure Sockets Layer (SSL) configurations to use prior to making an outbound connection.

Procedure
1. Obtain an instance of the JSSEHelper API.
com.ibm.websphere.ssl.JSSEHelper jsseHelper = com.ibm.websphere.ssl.JSSEHelper.getInstance();

2. Obtain SSL properties from the WebSphere Application Server configuration or use those provided by
your application. Use one of the following options.

v By direction selection of an alias name, within the same management scope or higher as in the
following example:

try
{ String alias = "NodeAServer1SSLSettings";
// As specified in the WebSphere SSL configuration Properties
sslProps = jsseHelper.getProperties(alias); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

v By using the getProperties API for programmatic, direction, dynamic outbound, or management
scope selection (based on precedence rules and inheritance). The SSL runtime uses the
getProperties API to determine which SSL configuration to use for a particular protocol. This
decision is based on both the input (sslAlias and connectionInfo) and the management scope from
which the property is called. The getProperties API makes decisions in the following order:

a. The API checks the thread to see if properties already exist.

b. The API checks for a dynamic outbound configuration that matches the ENDPOINT_NAME,
REMOTE_HOST, and or REMOTE_PORT.

c. The API checks to see if the optional sslAlias property is specified. You can configure any
protocol as direct or centrally managed. When a protocol is configured as direct, the sslAlias
parameter is null. When a protocol is configured as centrally managed, the sslAlias parameter
is also null.

d. If no selection has been made, the API chooses the dynamic outbound configuration based on
the management scope it was called from. If the dynamic outbound configuration is not defined
in the same scope, it then searches the hierarchy to locate one.

The last choice is the cell-scoped SSL configuration (in WebSphere Application Server, Network
Deployment) or the node-scoped SSL configuration (in Base Application Server). The
com.ibm.websphere.ssl.SSLConfigChangeListener parameter is notified when the SSL configuration
that is chosen by a call to the getProperties API changes. The protocol can then call the API again
to obtain the new properties as in the following example:

try { String sslAlias = null;
// The sslAlias is not specified directly at this time. String host = "myhost.austin.ibm.com";
// the target host String port = "443";
// the target port HashMap connectionInfo = new HashMap();
connectionInfo.put(JSSEHelper.CONNECTION_INFO_DIRECTION, JSSEHelper.DIRECTION_OUTBOUND);
connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_HOST, host);
connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_PORT, Integer.toString(port));

726 Securing applications and their environment

connectionInfo.put(JSSEHelper.CONNECTION_INFO_ENDPOINT_NAME, JSSEHelper.ENDPOINT_IIOP);
java.util.Properties props = jsseHelper.getProperties(sslAlias, connectionInfo, null); }

catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

v By creating your own SSL properties and then passing them to the runtime, as in the following
example:

try {
// This is the recommended "minimum" set of SSL properties. The trustStore can
// be the same as the keyStore. Properties sslProps = new Properties();
sslProps.setProperty("com.ibm.ssl.trustStore", "some value");
sslProps.setProperty("com.ibm.ssl.trustStorePassword", "some value");
sslProps.setProperty("com.ibm.ssl.trustStoreType", "some value");
sslProps.setProperty("com.ibm.ssl.keyStore", "some value");
sslProps.setProperty("com.ibm.ssl.keyStorePassword", "some value");
sslProps.setProperty("com.ibm.ssl.keyStoreType", "some value");
jsseHelper.setSSLPropertiesOnThread(sslProps); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

3. Use the JSSEHelper.setSSLPropertiesOnThread(props) API to set the Properties object on the thread
so that the runtime picks it up and uses the same JSSEHelper.getProperties API. You can also obtain
properties from the thread after they are set with the jsseHelper.getSSLPropertiesOnThread() API, as
in the following example:

try
{ Properties sslProps = jsseHelper.getProperties(null, connectionInfo, null);
jsseHelper.setSSLPropertiesOnThread(sslProps); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

4. When the connection is completed, you must clear the SSL properties from the thread by passing the
null value to the setPropertiesOnThread API.

try
{ jsseHelper.setSSLPropertiesOnThread(null); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

Associating Secure Sockets Layer configurations centrally with inbound and
outbound scopes
After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure inbound or
outbound management scope with the new configuration. You can manage the association centrally so
that you can easily make changes that affect all the scopes that are lower on the topology and that are
associated with the configuration. Beginning with WebSphere Application Server version 6.1, the
recommended and the default configuration method is centrally managed SSL configurations.

Before you begin

You can simplify the number of associations that you need to make for an SSL configuration by
associating the configuration with the highest level management scope requiring a unique configuration.
SSL configuration associations manifest inheritance behaviors. Because of the inheritance behaviors, all of
the scopes that are lower on the topology inherit this SSL configuration. For example, an association you
make at the cell level affects nodes, servers, clusters, and endpoints. For more information, see “Central
management of SSL configurations” on page 669.

A precedence rule determines which SSL configuration association is used at a particular scope. The
highest precedence is given to endpoints on the topology. If you establish an association at the endpoint,
this association overrides any prior association that you made higher up on the management scope
topology.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management.

Chapter 8. Securing communications 727

2. Select the Dynamically update the runtime when SSL configuration changes check box if you
want changes that you make to an existing SSL configuration to occur dynamically. All outbound SSL
communications honor the dynamic SSL changes. Protocols that do not use the channel frameworks
SSL channel for inbound communications, including Object Request Broker (ORB) and administrative
SOAP protocols, do not honor dynamic updates. For more information, see “Dynamic configuration
updates in SSL” on page 686.

3. Click Manage endpoint security configurations.

4. Select either the inbound or the outbound tree. After finishing the selected tree, you can return to this
step to repeat the following steps for the other tree.

5. Click the link for the selected cell, node, node group, server, cluster, or endpoint on the topology tree.
If the scope already has an associated SSL configuration and alias, these objects display in
parentheses immediately following the scope name, for example:
Node01(NodeDefaultSSLSettings,default). If the deployment manager has federated a node, the node
scope SSL configuration overrides the cell scope configuration above it in the topology.

6. Decide whether to override the inherited values that display in the read-only fields. Read-only fields
include the management scope name, the direction, and the inherited SSL configuration name and
certificate alias.

v If you are satisfied with these values, do not override them.

v If you want to override the inherited values, select the Override inherited values check box.

7. Select an SSL configuration from the list.

8. Click Update certificate alias list. The certificate alias list comes from the key store that is
referenced by the new SSL configuration.

9. Click Manage certificates if you want to manage the personal certificates that are contained in the
key store that is referenced in the SSL configuration.

10. Click Update certificate alias list to refresh the list of aliases.

11. Select a certificate alias in the key store to represent the identity of the endpoint.

12. Click OK to save your changes.

13. Click Manage endpoint security configurations and trust zones to return to the topology tree.

14. Configure the opposite direction on the topology tree using the steps in this task. You can also select
additional scopes to associate with the SSL configuration, as needed.

Results

Each SSL configuration at the selected scope and at scopes beneath it on the topology tree have the
same SSL configuration properties. The following SSL configuration methods override the centrally
managed configurations that you associate in the tree view:

v Direct selection at the endpoint

v Dynamic outbound SSL configuration associations

v Programmatic specifications

What to do next

At any management scope, you can configure the following objects: dynamic outbound endpoint SSL
configurations, key stores, key sets, key set groups, key managers, and trust managers. Like SSL
configurations, these objects are scoped automatically so that they are not visible higher up in the tree nor
are they loaded during runtime by processes that are higher up in the tree.

Selecting an SSL configuration alias directly from an endpoint configuration
You can associate a secure outbound endpoint with a new Secure Sockets Layer (SSL) configuration
directly. If you are migrating from a release prior to version 6.1, WebSphere Application Server still
supports configurations that were selected directly at an endpoint. Direct selection always overrides
centrally managed configurations and preserves migrated configurations.

728 Securing applications and their environment

About this task

Select an SSL configuration alias directly at the following endpoints:

v Security > Global security > RMI/IIOP security > CSIv2 outbound transport

v Security > Global security > RMI/IIOP security > CSIv2 inbound transport

v System administration > Deployment manager > Transport Chain > WCInboundAdminSecure >
SSL inbound channel (SSL_1)

v System administration > Deployment manager > Administration Services > JMX connectors >
SOAPConnector > Custom Properties > sslConfig

v System administration > Node agents > nodeagent > Administration Services > JMX connectors
> SOAPConnector > Custom Properties > sslConfig

v Servers > Application servers > server1 > Messaging engine inbound transports >
InboundSecureMessaging > SSL inbound channel (SIB_SSL_JFAP)

v Servers > Application servers > server1 > WebSphere MQ link inbound transports >
InboundSecureMQLink > SSL inbound channel (SIB_SSL_MQFAP)

v Servers > Application servers > server1 > SIP Container Settings > SIP container transport
chains > SIPCInboundDefaultSecure > SSL inbound channel (SSL_5)

v Servers > Application servers > server1 > Web Container Settings > Web container transport
chains > WCInboundAdminSecure > SSL inbound channel (SSL_1)

v Servers > Application servers > server1 > Web Container Settings > Web container transport
chains > WCInboundDefaultSecure > SSL inbound channel (SSL_2)

Attention: The central management of SSL configurations can be a more efficient strategy because
multiple configurations can be contained within a single SSLConfigGroup. If you need to convert
configuration references that are already directly managed to centrally managed configurations, modify
each endpoint individually. Use the AdminConfig.modify command to set the sslConfigAlias value to an
empty string (""). Below is an example of doing this:

v Using Jacl:
set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]
set sslChannel [lindex [$AdminConfig list SSLInboundChannel $s1] 0]
$AdminConfig modify $sslChannel [list[list sslConfigAlias ""]]

For more information on using this command, see the information about configuring processes using
scripting.

For more information on specific wsadmin commands that affect a repertoire as opposed to individual
endpoints, see the SSLConfigGroupCommands group for the AdminTask topic.

Complete the following steps in the administrative console:

Note: These steps provide an example to follow when you directly select any of the endpoints listed
above.

Procedure
1. Click Security > Global security > RMI/IIOP security > CSIv2 outbound transport.

2. Click Use specific SSL alias. When you identify a specific SSL alias, you override the centrally
managed scope associations.

3. Select an SSL configuration alias from the drop-down list.

4. Click OK.

5. Repeat these steps for additional protocols or endpoints, if desired.

Chapter 8. Securing communications 729

Results

By associating the endpoint directly, you have overridden a centrally managed SSL configuration.

What to do next

If you decide to use management scopes instead of endpoints to associate an SSL configuration, follow
the steps above, but click Centrally managed instead of Use specific SSL alias, then click Manage
endpoint security configurations. The console is redirected to Security > SSL certificate and key
management > Manage endpoint security configurations.

Enabling Secure Sockets Layer client authentication for a specific inbound
endpoint
When you establish a Secure Sockets Layer (SSL) configuration, you can enable client authentication for a
specific inbound endpoint.

Before you begin

The endpoint configuration must already exist in the SSL topology.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound > SSL_configuration. If you want to enable SSL client authentication for all processes,
define an SSL configuration for the new endpoint at the node or cell level so that it is visible to all
processes on the same node or on the entire cell. For more information, see “Creating a Secure
Sockets Layer configuration” on page 694.

2. Select Override inherited values. The SSL configuration is used for the current scope and any lower
scopes that have not already designated an SSL configuration. This field displays for server and node
groups within the object hierarchy and does not display for the top-level node or cell.

3. Select an SSL configuration from the drop-down list.

4. Click Update certificate alias list.

5. Select a Certificate alias from the drop-down list.

6. Click OK to save the configuration.

Results

You can repeat the previous steps for each endpoint that uses the same SSL configuration to enable client
authentication for the inbound endpoints.

What to do next

CSIv2 Protocol Exception:

The Common Secure Interoperability Version 2 (CSIv2) secure endpoints, used for Remote Method
Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security, cannot override inherited values. While
the rest of the SSL properties are effective for CSIv2 when they are selected at the centrally-managed
Secure Communications panel, the client authentication selection is controlled by the CSIv2 protocol
configuration.

730 Securing applications and their environment

To enable SSL client certificate authentication for the CSIv2 protocol, you must use the CSIv2 inbound and
outbound authentication panels. For SSL client authentication to occur between two servers, you must
enable (support or require) SSL client certificate authentication for both the inbound and the outbound
policies.

WebSphere Application Server can either request (support) clients to provide signer certificates for the
SSL handshake, or the server can require clients to provide a valid signer certificate for the SSL
handshake, which is a more secure method. However, when the server requires certificates, the server
must obtain a signer for each client that connects to the server, which involves more server-side
management.

The client certificate should not be used for the identity when it is used from server-to-server. However,
when a pure client sends the client certificate it is used for the identity unless a message level identity is
specified, such as a user ID or a password.

Do the following to enable client certificate authentication for the CSIv2 protocol for server-to-server:

1. Click Security > Global security.

2. Expand the RMI/IIOP security section.

3. Click CSIv2 inbound authentication.

4. Under Client authentication, select either supported or required. When you select required, only one
SSL port is opened (CSV2_SSL_MUTUALAUTH_LISTENER_ADDRESS). When you select supported,
two SSL ports are opened (both CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS).

If there are two ports, the client can select either based on the security configuration policy of the port.

5. Click OK to save.

6. If you want server-to-server SSL client authentication, then complete the remaining steps. If you don't
complete the remaining steps, only pure clients are enabled to send client certificates.

7. Expand the RMI/IIOP security section.

8. Click CSIv2 outbound authentication.

9. Under Client authentication, select either supported or required.

The SSL configuration for the inbound secure endpoints for which you enable SSL client certificate
authentication must have the signer certificate from any client that attempts to open a connection to that
inbound secure endpoint. You must collect those signers and then add them to the trust store associated
with the inbound secure endpoints SSL configuration.

Manage endpoint security configurations
Use this page to select a Secure Socket Layer (SSL) configuration from the Local Topology hierarchy,
which includes cells, nodes, node groups, servers, and clusters.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations.

Local topology:

The Local topology represents the hierarchy of nodes, node groups, clusters, servers, and end points
within the cell that comprise a centralized SSL configuration.

The topology acts as a hierarchical tree in terms of inheritance. For example, if an SSL configuration has
been associated with a specific node, then all servers within that node will inherit that SSL configuration
selection, provided the servers are not associated with an SSL configuration at the server scope.
Centralized management of SSL is the default configuration; however, it can be overridden at various
locations to directly select a specific SSL alias as in previous releases for backwards compatibility.

Chapter 8. Securing communications 731

Scope Description

Inbound/Outbound Specifies the topology tree in terms of connection
direction. For example, the inbound tree represents all
server endpoints that receive connections at the various
servers within the cell. The outbound tree represents the
client side of connections from the various servers within
the cell.

Nodes Specifies the nodes that are part of the cell. The list of
nodes is updated anytime a node gets federated into the
cell.

Servers Specifies the servers that are part of a specific node. You
can enable a specific server to have an SSL configuration
associated with it so that resources within the same
server can use the associated SSL configuration.

Clusters Specifies the clusters that are part of the cell. When an
SSL configuration is associated with a cluster, all servers
within the cluster will use the same SSL configuration
unless specified at a lower level in the topology.

Nodegroups Specifies the node groups that are part of the cell. When
an SSL configuration is associated with a node group, all
nodes within that node group may use the same SSL
configuration unless one is specified at a lower scope in
the topology or the specific end point has chosen a direct
alias reference.

Secure port and transport Specifies an endpoint name to associate with an SSL
configuration when more specific SSL settings are
needed at this level. You could select an alias directly at
the endpoint panel; however, when you use Secure port
and transport, you can maintain more centralized control
of the SSL configuration and make changes more easily.

Dynamic inbound and outbound endpoint SSL configurations collection
Use this page to manage dynamic endpoint Secure Sockets Layer (SSL) configurations, which represent
associations between Secure Socket Layer (SSL) configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Dynamic outbound endpoint SSL configurations.

When an outbound connection is attempted, this association is checked ahead of the SSL configuration
scope association. Based on the target protocol,host,port, the outbound SSL configuration used can be
different from the default specified in the SSL scope configuration.

Table 88. Dynamic inbound and outbound endpoint SSL configurations buttons. This table lists the dynamic inbound
and outbound endpoint SSL configuration buttons.
Button Resulting action

New Adds a new dynamic outbound selection criteria. The outbound connection selects an SSL
configuration based upon connection information, including DNS host name and domain, port, and
protocol type. When an outbound connection is being made, the dynamic outbound selection criteria
are queried for a match, and if found the SSL configuration associated is used.

Delete Deletes an existing dynamic outbound endpoint SSL configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

732 Securing applications and their environment

Connection information:

Specifies the set of target protocol, host, port for the outbound request in the form protocol,host,port.

SSL Configuration:

Specifies the SSL configuration that is used by requests at this scope when a match occurs for the given
selection criteria.

Dynamic outbound endpoint SSL configuration settings
Use this page to set properties for dynamic outbound endpoint SSL configurations, which represent
associations between SSL configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Dynamic [inbound | outbound] endpoint SSL
configurations. Then click the New button.

When an outbound connection is attempted, this association is checked ahead of the Secure Sockets
Layer (SSL) configuration scope association. This means based on the target protocol,host,port, the
outbound SSL configuration used can be different than the default specified in the SSL scope
configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Data type: Text

Description:

Specifies text that describes the purpose of this dynamic selection criteria.

Data type: Text

Add connection information:

Specifies select information in the form protocol,host,port for the outbound connection. Multiple selection
criteria can be entered. All of the connection information for dynamic outbound selection might not be
available, and you may have to adjust the dynamic outbound selection connection filter and fill in an
asterisk (*) for the missing part of the connection information. An asterisk (*) can be used to mean all
protocols, hosts, or ports. You can use an asterisk(*) for any field.

Data type: Text

An example of selection criteria is *,www.ibm.com,*, which means that any time the target host is
www.ibm.com, you must use the SSL configuration specified here. Another example selection criteria is
IIOP,*,*, which means that any outbound IIOP request uses the SSL configuration that is specified in the
SSL configuration field. When there is a conflict between two selection criteria, the application server uses
the first match. The list of valid protocols you can use include: IIOP, HTTP, JMS, LDAP, SIP,
ADMIN_SOAP, ADMIN_IIOP, or WEBSERVICES_HTTP.

When user written applications are expecting to take advantage of dynamic outbound selections, know that
not all connection information may be available. For example, the openConnection() call on an URL object
ultimately calls createSocket(java.net.Socket socket, String host, int port, boolean autoClose).

Chapter 8. Securing communications 733

The connection information can be built with the host and port provided, but there is no protocol provided.
In this case, a wild card, an asterisk (*), should be used for the protocol part of the dynamic selection
connection information.

Add:

Specifies to add the selected information from the Add select information menu to the right-hand list.

Remove:

Specifies to remove the selection from the right-hand list.

SSL Configuration:

Specifies the SSL configuration to be used by requests at this scope when a match occurs for the given
selection criteria.

Data type: Text

Get certificate alias:

When selected, the keystore within the selected SSL configuration is queried for a list of personal
certificates from which to choose.

Certificate alias:

Specifies the certificate alias that is used as the identity for the connection.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the keystore, the key manager might not consistently select the
same certificate.

Data type: Text
Default: (none)

Quality of protection (QoP) settings
Use this page to specify security level, ciphers, and mutual authentication settings for the Secure Socket
Layer (SSL) configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related Items, click SSL configurations > {SSL_configuration_name}. Under
Additional Properties, click Quality of protection (QoP) settings.

Client authentication
Specifies the whether SSL client authentication should be requested if the SSL connection is used for the
server side of the connection.

If None is selected, the server does not request that a client certificate be sent during the handshake. If
Supported is selected, the server requests that a client certificate be sent. If the client does not have a
certificate, the handshake might still succeed. If Required is selected, the server requests that a client
certificate be sent. If the client does not have a certificate, the handshake fails.

Data type: Text
Default: None

734 Securing applications and their environment

Protocol
Specifies the Secure Sockets Layer (SSL) handshake protocol. This protocol is typically SSL_TLS, which
supports all handshake protocols except for SSLv2 on the server side. When United States Federal
Information Processing standard (FIPS) option is enabled, Transport Layer Security (TLS) is automatically
used regardless of this setting.

Data type: text
Default: SSL_TLS

Cipher suite groups
Specifies the various cipher suite groups that can be chosen depending upon your security needs. The
stronger the cipher suite strength, the better the security; however, this can result in performance
consequences.

Data type: Text
Default: Strong

Update selected ciphers
When selected, the cipher suites that are contained within the selected Cipher suite group are added to
the list of Selected ciphers. Any change to this list changes the Cipher suite group to custom.

Selected ciphers
Specifies the ciphers that are effective when the configuration is saved. These ciphers are used to
negotiate with the remote side of the connection during the handshake. A common cipher needs to be
selected or the handshake fails.

Data type: Text

Add
Specifies to add the selected cipher to the Selected ciphers list.

Remove
Specifies to remove the selected cipher from the Selected ciphers list.

ssl.client.props client configuration file
Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of
WebSphere Application Server, SSL properties were specified in the sas.client.props or
soap.client.props files or as system properties. By consolidating the configurations, WebSphere
Application Server enables you to manage security in a manner that is comparable to server-side
configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Setting up the SSL configuration for clients

Client runtimes are dependent on the WebSphere Application Server ssl.client.props configurations.

Use the setupCmdLine.sh script on the command line to specify the com.ibm.SSL.ConfigURL system
property.

The com.ibm.SSL.ConfigURL property references a file URL that points to the ssl.client.props file. You
can reference the CLIENTSSL variable on the command line of any script that uses the setupCmdLine.sh
file.

Chapter 8. Securing communications 735

When you specify the com.ibm.SSL.ConfigURL system property, the SSL configuration is available to all
protocols that use SSL. SSL configurations, which are referenced in the ssl.client.props file, also have
aliases that you can reference. In the following sample code from the sas.client.props file, all of the SSL
properties are replaced with a property that points to an SSL configuration in the ssl.client.props file:
com.ibm.ssl.alias=DefaultSSLSettings

The following sample code shows a property in the soap.client.props file that is similar to the
com.ibm.SSL.ConfigURL property. This property references a different SSL configuration on the client side:
com.ibm.ssl.alias=DefaultSSLSettings

In the ssl.client.props file, you can change the administrative SSL configuration to avoid modifying the
soap.client.props file.

Tip: Support for SSL properties is still specified in the sas.client.props and soap.client.props files.
However, consider moving the SSL configurations to the ssl.client.props file, because this file is
the new configuration model for client SSL.

When you are configuring a client which does not call setupCmdLine.sh to connect to an application server
using security, you must ensure that the following system property is defined on the client configuration:
-Djava.security.properties=profile_root/properties/java.security

Properties of the ssl.client.props file

This section describes the default ssl.client.props file properties in detail, by sections within the file. Be
aware that if you specify javax.net.ssl system properties, these will override the settings in
ssl.client.props file.

Global properties

Global SSL properties are process-specific properties that include Federal Information Processing
Standard (FIPS) enablement, the default SSL alias, the user.root property for specifying the root location of
the key and truststore paths, and so on.

Table 89. Properties of the ssl.client.props file. This table describes the properties of the ssl.client.props file.

Property Default Description

com.ibm.ssl.defaultAlias DefaultSSLSettings Specifies the default alias that is used whenever an alias is
not specified by the protocol that calls the JSSEHelper API to
retrieve an SSL configuration. This property is the final arbiter
on the client side for determining which SSL configuration to
use.

com.ibm.ssl.validationEnabled false When set to true, this property validates each SSL
configuration as it is loaded. Use this property for debug
purposes only, to avoid unnecessary performance overhead
during production.

com.ibm.ssl.performURLHostNameVerificationfalse When set to true, this property enforces URL host name
verification. When HTTP URL connections are made to target
servers, the common name (CN) from the server certificate
must match the target host name. Without a match, the host
name verifier rejects the connection. The default value of
false omits this check. As a global property, it sets the default
host name verifier. Any javax.net.ssl.HttpsURLConnection
object can choose to enable host name verification for that
specific instance by calling the setHostnameVerifier method
with its own HostnameVerifier instance.
gotcha: This property does not apply to SSL channels.

com.ibm.security.useFIPS false When set to true, FIPS-compliant algorithms are used for
SSL and other Java Cryptography Extension (JCE)-specific
applications. This property is typically not enabled unless the
property is required by the operating environment.

736 Securing applications and their environment

Table 89. Properties of the ssl.client.props file (continued). This table describes the properties of the
ssl.client.props file.

Property Default Description

user.root ${WASROOT} This property can be used by key and truststore location
properties as a single property for specifying the root path to
the key and truststores. Typically, this property is the profile
root. However, you can modify this property to any root
directory on the local machine that has the proper read and
potentially write authority to that directory.

Certificate creation properties

Use certificate creation properties to specify the default self-signed certificate values for the major
attributes of a certificate. You can define the distinguished name (DN), expiration date, key size, and alias
that are stored in the keystore.

Table 90. Certificate creation properties. This table describes the certificate creation properties.

Property Default Description

com.ibm.ssl.defaultCertReqAlias default_alias This property specifies the default alias to use to
reference the self-signed certificate that is created in the
keystore. If the alias already exists with that name, the
default alias is appended with _#, where the number
sign (#) is an integer that starts with 1 and increments
until it finds a unique alias.

com.ibm.ssl.defaultCertReqSubjectDNcn=${hostname},
o=IBM,c=US

This property uses the property distinguished name
(DN) that you set for the certificate when it is created.
The ${hostname} variable is expanded to the host name
on which it resides. You can use correctly formed DNs
as specified by the X.509 certificate.

com.ibm.ssl.defaultCertReqDays 365 This property specifies the validity period for the
certificate and can be as small as 1 day and as large as
the maximum number of days that a certificate can be
set, which is approximately 15 years.

com.ibm.ssl.defaultCertReqKeySize 1024 This property is the default key size. The valid values
depend upon the Java Virtual Machine (JVM) security
policy files that are installed. By default, the product
JVMs ship with the export policy file that limits the key
size to 1024. To get a large key size such as 2048, you
can download the restricted policy files from the
website.

Certificate revocation checking

To enable certificate revocation checking, you can set a combination of Online Certificate Status Protocol
(OCSP) properties. These properties are not used unless you set the com.ibm.ssl.trustManager property to
IbmPKIX. In addition, to successfully process revocation checking on the client, you must turn off the signer
exchange prompt. To turn off the signer exchange prompt, change the
com.ibm.ssl.enableSignerExchangePrompt property to false. For more information, see the related link to
the "Enabling certificate revocation checking with the default IbmPKIX trust manager" topic.

SSL configuration properties

Use the SSL configuration properties section to set multiple SSL configurations. For a new SSL
configuration specification, set the com.ibm.ssl.alias property because the parser starts a new SSL
configuration with this alias name. The SSL configuration is referenced by using the alias property from

Chapter 8. Securing communications 737

another file, such as sas.client.props or soap.client.props, through the default alias property. The
properties that are specified in the following table enable you to create a javax.net.ssl.SSLContext, among
other SSL objects.

Table 91. SSL configuration properties. This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.alias DefaultSSLSettings This property is the name of this SSL configuration and must be
the first property for an SSL configuration because it references
the SSL configuration. If you change the name of this property
after it is referenced elsewhere in the configuration, the runtime
defaults to the com.ibm.ssl.defaultAlias property whenever the
reference is not found. The error trust file is null or key
file is null might display when you start an application using
an SSL reference that is no longer valid.

com.ibm.ssl.protocol SSL_TLS This property is the SSL handshake protocol that is used for this
SSL configuration. This property attempts Transport Layer
Security (TLS) first, but accepts any remote handshake
protocol, including SSLv3 and TLS. Valid values for this property
include SSLv2 (client side only), SSLv3, SSL, TLS, TLSv1, and
SSL_TLS.

com.ibm.ssl.securityLevel STRONG This property specifies the cipher group that is used for the SSL
handshake. The typical selection is STRONG, which specifies
128-bit or higher ciphers. The MEDIUM selection provides 40-bit
ciphers. The WEAK selection provides ciphers that do not
perform encryption, but do perform signing for data integrity. If
you specify your own cipher list selection, uncomment the
property com.ibm.ssl.enabledCipherSuites.
Note: The use of javax.net.ssl system properties causes this
value to always be HIGH.

com.ibm.ssl.trustManager IbmX509 This property specifies the default trust manager that you must
use to validate the certificate sent by the target server. This trust
manager does not perform certificate revocation list (CRL)
checking. You can choose to change this value to IbmPKIX for
CRL checking using CRL distribution lists in the certificate,
which is a standard way to perform CRL checking. When you
want to perform custom CRL checking, you must implement a
custom trust manager and specify the trust manager in the
com.ibm.ssl.customTrustManagers property. The IbmPKIX
option might affect performance because this option requires
IBMCertPath for trust validation. Use IbmX509 unless CRL
checking is necessary. If you are using the Online Certificate
Status Protocol (OCSP) properties, set this property value to
IbmPKIX.

com.ibm.ssl.keyManager IbmX509 This property specifies the default key manager to use for
choosing the client alias from the specified keystore. This key
manager uses the com.ibm.ssl.keyStoreClientAlias property to
specify the keystore alias. If this property is not specified, the
choice is delegated to Java Secure Socket Extension (JSSE).
JSSE typically chooses the first alias that it finds.

com.ibm.ssl.contextProvider IBMJSSE2 This property is used to choose the JSSE provider for the SSL
context creation. It is recommended that you default to
IBMJSSE2 when you use a Java virtual machine (JVM). The
client plug-in can use the SunJSSE provider when using a Sun
JVM.

738 Securing applications and their environment

Table 91. SSL configuration properties (continued). This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.enableSignerExchangePrompt true This property determines whether to display the signer
exchange prompt when a signer is not present in the client
truststore. The prompt displays information about the remote
certificate so that WebSphere Application Server can decide
whether or not to trust the signer. It is very important to validate
the certificate signature. This signature is the only reliable
information that can guarantee that the certificate has not been
modified from the original server certificate. For automated
scenarios, disable this property to avoid SSL handshake
exceptions. Run the retrieveSigners script, which sets up the
SSL signer exchange, to download the signers from the server
prior to running the client. If you are using the Online Certificate
Status Protocol (OCSP) properties, set this property value to
false.

com.ibm.ssl.keyStoreClientAlias default This property is used to reference an alias from the specified
keystore when the target does not request client authentication.
When WebSphere Application Server creates a self-signed
certificate for the SSL configuration, this property determines the
alias and overrides the global com.ibm.ssl.defaultCertReqAlias
property.

com.ibm.ssl.customTrustManagers Commented out by
default

This property enables you to specify one or more custom trust
managers, which are separated by commas. These trust
managers can be in the form of algorithm|provider or
classname. For example, IbmX509|IBMJSSE2 is in the
algorithm|provider format, and the
com.acme.myCustomTrustManager interface is in the classname
format. The class must implement the
javax.net.ssl.X509TrustManager interface. Optionally, the class
can implement the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface. These
trust managers run in addition to the default trust manager that
is specified by the com.ibm.ssl.trustManager interface. These
trust managers do not replace the default trust manager.

com.ibm.ssl.customKeyManager Commented out by
default

This property enables you to have one, and only one, custom
key manager. The key manager replaces the default key
manager that is specified in the com.ibm.ssl.keyManager
property. The form of the key manager is algorithm|provider or
classname. See the format examples for the
com.ibm.ssl.customTrustManagers property. The class must
implement the javax.net.ssl.X509KeyManager interface.
Optionally, the class can implement the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. This key
manager is responsible for alias selection.

com.ibm.ssl.dynamicSelectionInfo Commented out by
default

This property enables dynamic association with the SSL
configuration. The syntax for a dynamic association is
outbound_protocol, target_host, or target_port. For multiple
specifications, use the vertical bar (|) as the delimiter. You can
replace any of these values with an asterisk (*) to indicate a
wildcard value. Valid outbound_protocol values include: IIOP,
HTTP, LDAP, SIP, BUS_CLIENT, BUS_TO_WEBSPHERE_MQ,
BUS_TO_BUS, and ADMIN_SOAP. When you want the
dynamic selection criteria to choose the SSL configuration,
uncomment the default property, and add the connection
information. For example, add the following on one line

com.ibm.ssl.dynamicSelectionInfo=HTTP,
.ibm.com,443|HTTP,.ibm.com,9443

com.ibm.ssl.enabledCipherSuites Commented out by
default

This property enables you to specify a custom cipher suite list
and override the group selection in the
com.ibm.ssl.securityLevel property. The valid list of ciphers
varies according to the provider and JVM policy files that are
applied. For cipher suites, use a space as the delimiter.

Chapter 8. Securing communications 739

Table 91. SSL configuration properties (continued). This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property references a keystore configuration name. If you
have not already defined the keystore, the rest of the keystore
properties must follow this property. After you define the
keystore, you can specify this property to reference the
previously specified keystore configuration. New keystore
configurations in the ssl.client.props file have a unique name.

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property references a truststore configuration name. If you
have not already defined the truststore, the rest of the truststore
properties must follow this property. After you define the
truststore, you can specify this property to reference the
previously specified truststore configuration. New truststore
configurations in the ssl.client.props file should have a
unique name.

The default values of keystore and truststore configuration properties depend on the security configuration
that you select on the Administrative Security Selection panel of the z/OS Profile Management Tool. The
following options are available on the Administrative Security Selection panel:

v If you indicate the Use a z/OS security product option, which is the first option, the default values for
the keystore and truststore configuration properties point to a keystore with a JCERACFKS type. This
type uses keys and certificates that are stored and managed by a z/OS security product such as RACF.
For more information, see the "z/OS keystores" section in the "Keystore configurations" topic.

v If you indicate the Use WebSphere Application Server security option, which is the second option, or
the Do not enable security option, which is the third option, the default values for the keystore and
truststore configuration properties point to a keystore with a PKCS12 file. For more information on
file-based keystores, see the "IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)" section in the
"Keystore configurations" topic.

Keystore configurations

SSL configurations reference keystore configurations whose purpose is to identify the location of
certificates. Certificates represent the identity of clients that use the SSL configuration. You can specify
keystore configurations with other SSL configuration properties. However, it is recommended that you
specify the keystore configurations in this section of the ssl.client.props file after the
com.ibm.ssl.keyStoreName property identifies the start of a new keystore configuration. After you fully
define the keystore configuration, the com.ibm.ssl.keyStoreName property can reference the keystore
configuration at any other point in the file.

In the following table, the values in the "Default values for a z/OS security product" column correspond to
the default values that are used when the Use a z/OS security product option is indicated on the
Administrative Security Selection panel of the z/OS Profile Management Tool. This option is the first option
on the Administrative Security Selection panel. The values in the "Default values for WebSphere
Application Server security" column correspond to the default values that are used with the Use
WebSphere Application Server option is indicated on the Administrative Security Selection panel of the
z/OS Profile Management Tool. This option is second option on the Administrative Security Selection
panel.

740 Securing applications and their environment

Table 92. Keystore configuration properties. This table lists the keystore configuration properties.

Property Default values for a z/OS
security product

Default values for
WebSphere Application
Server security

Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore ClientDefaultKeyStore This property specifies the
name of the keystore as it is
referenced by the runtime.
Other SSL configurations
can reference this name
further down in the
ssl.client.props file to
avoid duplication.

com.ibm.ssl.keyStore safreyring:///your_keyring

This value is set on the SSL
Customization panel of the
z/OS Profile Management
Tool.

${user.root}/etc/key.p12 This property specifies the
location of the keystore in
the required format of the
com.ibm.ssl.keyStoreType
property. Typically, this
property references a
keystore file name.
However, for cryptographic
token types, this property
references a Dynamic Link
Library (DLL) file.

com.ibm.ssl.keyStorePasswordpassword WebAS This property is the default
password, which is the cell
name for the profile when it
is created. The password is
typically encoded using an
{xor} algorithm. You can use
iKeyman to change the
password in the keystore,
then change this reference.
If you do not know the
password and if the
certificate is created for you,
change the password in this
property, then delete the
keystore from the location
where it resides. Restart the
client to recreate the
keystore by using the new
password, but only if the
keystore name ends with
DefaultKeyStore and if the
fileBased property is true.
Delete both the keystore
and truststore at the same
time so that a proper signer
exchange can occur when
both are recreated together.

Chapter 8. Securing communications 741

Table 92. Keystore configuration properties (continued). This table lists the keystore configuration properties.

Property Default values for a z/OS
security product

Default values for
WebSphere Application
Server security

Description

com.ibm.ssl.keyStoreType JCERACFKS PKCS12 This property is the keystore
type. Use the default,
PKCS12, because of its
interoperability with other
applications. You can
specify this property as any
valid keystore type that is
supported by the JVM on
the provider list. The type
can be JCERACFKS,
JCECCARACFKS, or
JCECCAKS for
cryptographic devices.

com.ibm.ssl.keyStoreProvider IBMJCE IBMJCE The IBM Java Cryptography
Extension property is the
keystore provider for the
keystore type. The provider
is typically IBMJCE or
IBMPKCS11Impl for
cryptographic devices.

com.ibm.ssl.keyStoreFileBasedfalse true This property indicates to
the runtime that the
keystore is file-based,
meaning it is located on the
file system.

com.ibm.ssl.keyStoreReadOnlytrue false This property indicates to
the run time for WebSphere
Application Server whether
the keystore can be
modified during the run
time. For example, you
cannot modify read-only key
stores using the
Administrative Console or
through scripting. SAF
Keyrings, which are used by
WebSphere Application
Server for z/OS, are always
read-only.

Truststore Configurations

SSL configurations reference truststore configurations, whose purpose is to contain the signer certificates
for servers that are trusted by this client. You can specify these properties with other SSL configuration
properties. However, it is recommended that you specify truststore configurations in this section of the
ssl.client.props file after the com.ibm.ssl.trustStoreName property has identified the start of a new
truststore configuration. After you fully define the truststore configuration, the com.ibm.ssl.trustStoreName
property can reference the configuration at any other point in the file.

A truststore is a keystore that JSSE uses for trust evaluation. A truststore contains the signers that
WebSphere Application Server requires before it can trust the remote connection during the handshake. If
you configure the com.ibm.ssl.trustStoreName=ClientDefaultKeyStore property, you can reference the

742 Securing applications and their environment

keystore as the truststore. Further configuration is not required for the truststore because all of the signers
that are generated through signer exchanges are imported into the keystore where they are called by the
runtime.

In the following table, the values in the "Default values with a z/OS security product" column correspond to
the default values that are used when the Use a z/OS security product option is indicated on the
Administrative Security Selection panel of the z/OS Profile Management Tool. This option is the first option
on the Administrative Security Selection panel. The values in the "Default values with WebSphere
Application Server security" column correspond to the default values that are used with the Use
WebSphere Application Server option is indicated on the Administrative Security Selection panel of the
z/OS Profile Management Tool. This option is the second option on the Administrative Security Selection
panel.

Table 93. Truststore Configuration properties. This table lists the truststore configuration properties.

Property Default values
with a z/OS
security product

Default values
with WebSphere
Application
Server security

Description

com.ibm.ssl.trustStoreName ClientDefaultTrustStoreClientDefaultTrustStoreThis property specifies the name of the
truststore as it is referenced by the runtime.
Other SSL configurations can reference further
down in the ssl.client.props file to avoid
duplication.

com.ibm.ssl.trustStore safreyring:///
your_keyring

This value is set
on the SSL
Customization
panel of the z/OS
Profile
Management
Tool.

${user.root}/etc/
trust.p12

This property specifies the location of the
truststore in the format that is required by the
truststore type that is referenced by the
com.ibm.ssl.trustStoreType property. Typically,
this property references a truststore file name.
However, for cryptographic token types, this
property references a DLL file.

com.ibm.ssl.trustStorePasswordpassword WebAS This property specifies the default password,
which is the cell name for the profile when it is
created. The password is typically encoded
using an {xor} algorithm. You can use iKeyman
to change the password in the keystore, then
change the reference in this property. If you do
not know the password and if the certificate was
created for you, change the password in this
property, then delete the truststore from the
location where it resides. Restart the client to
recreate the truststore by using the new
password, but only if the keystore name ends
with DefaultTrustStore and the fileBased
property is true. It is recommended that you
delete the keystore and the truststore at the
same time so that a proper signer exchange
can occur when both are recreated together.

com.ibm.ssl.trustStoreType JCERACFKS PKCS12 This property is the truststore type. Use the
default PKCS12 type because of its
interoperability with other applications. You can
specify this property as any valid truststore type
that is supported by the JVM functionality on
the provider list. The type can be JCERACFKS,
JCECCARACFKS, or JCECCAKS for
cryptographic devices.

Chapter 8. Securing communications 743

Table 93. Truststore Configuration properties (continued). This table lists the truststore configuration properties.

Property Default values
with a z/OS
security product

Default values
with WebSphere
Application
Server security

Description

com.ibm.ssl.trustStoreProvider IBMJCE IBMJCE This property is the truststore provider for the
truststore type. The provider is typically IBMJCE
or IBMPKCS11Impl for cryptographic devices.

com.ibm.ssl.trustStoreFileBasedfalse true This property indicates to the runtime that the
truststore is file-based, meaning it is located on
the file system.

com.ibm.ssl.trustStoreReadOnlytrue false This property indicates to the run time for
WebSphere Application Server whether the
truststore can be modified during the run time.
For example, you cannot modify read-only
truststores using the Administrative Console or
through scripting. SAF Keyrings, which are used
by WebSphere Application Server for z/OS, are
always read-only.

Creating a CA client in SSL
A plug point is provided to allow users to connect to a certificate authority (CA) to request, query, and
revoke certificates. A security configuration object, called a CAClient, must be created for WebSphere to
communicate with the CA. The CAClient object must contain a WSPKIClient() implementation, and it will
handle the connection and communicate with the CA server. Users can also create there own
implementation.

Before you begin

The WSPKIClient interface must be implemented and the class name provided as part of the CAClient
when it is created.

You use the administrative console to create a new CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel of existing CA clients appears.

3. Click New to create a new CA client in the configuration.

Note: You can also create a CA client by using the createCAClient AdminTask .

4. Fill in the following information for the CA client

v Name of the CA client.

v The management scope (selected from the drop-down list).

v WSPKIClient implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

744 Securing applications and their environment

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or
replace a certificate.

Deleting a CA client in SSL
You can delete the CAClient object from the security configuration if a connection to a certificate authority
(CA) is no longer needed.

Before you begin

You use the administrative console to delete a CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients
appears.

3. Click the CA client name you want to delete.

4. Click the Delete button.

Note: You can also use the deleteAClient AdminTask to delete the CA client.

Results

The CA client is deleted from the configuration.

Note: When you use the deleteCAClient AdminTask to delete the CA client, the CA client cannot be
deleted if a CA certificate that exists in the keystore was obtained from the certificate authority and
is still referenced by the CA client. For example, when such CA certificate still exists, the user
receives the following message:
wsadmin>$AdminTask deleteCAClient {-caClientName myca}
WASX7015E: Exception running command:
"$AdminTask deleteCAClient {-caClientName myca}"; exception information:
com.ibm.websphere.management.cmdframework.CommandValidationException:
CWPKI0687E: The Certificate Authority (CA) client myca is still referenced by:
[Certificate alias myca21 in key store CellDefaultKeyStore].
wsadmin>

Viewing or modifying a CA client in SSL
You can view or modify the CAClient object settings in the security configuration. The CAClient object
contains all the information needed to connect and communicate with a certificate authority (CA). A
connection to a Certificate Authority is used to request a certificate, query a certificate, or revoke a
certificate.

Before you begin

You use the administrative console to view or modify a CA client.

Procedure
1. Click Security > SSL certificate and key management.

Chapter 8. Securing communications 745

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients
appears.

3. Click the CA client name you want to examine and modify.

Note: You can also use the getCAClient AdminTask to get information about the existing CA client
and the modifyCACleint AdminTask to make changes to the CA client.

4. Make the changes to the CA client information as required. Modify the following information as
required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or
replace a certificate

What to do next

Creating a keystore configuration for a preexisting keystore file
A Secure Sockets Layer (SSL) configuration references keystore configurations during WebSphere
Application Server runtime. Whether a keystore file was created by another keystore tool or saved from a
previous configuration, the file must be referenced by a keystore configuration object to be used by the
server. A keystore configuration object can be created to reference a pre-existing keystore object.

Before you begin

A keystore must already exist.

Alternative Method: To create a keystore by using the wsadmin tool, use the createKeyStore command
of the AdminTask object. For more information, see the KeyStoreCommands
command group for the AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound}.

2. Under Related Items, click Key stores and certificates, then click New.

3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

746 Securing applications and their environment

4. Type the location of the keystore file in the Path field. The location can be a file name or a file URL to
an existing keystore file.

5. Type the Control region Started Task user ID in which the Control region System Authorization Facility
(SAF) keyring is to be created in the Control region user field. The user ID must match the exact ID
being used by the Control region.

Note: This option only applies when creating writable SAF keyrings on z/OS.

6. Type the servant region Started Task user ID in which the servant region System Authorization
Facility (SAF) keyring is to be created in the Servant region user field. The user ID must match the
exact ID being used by the Control region.

Note: This option only applies when creating writable SAF keyrings on z/OS.

7. Type the keystore password in the Password field.

This password is for the keystore file that you specified in the Path field.

To be compatible with the JCE keystore in requiring a password, the JCERACFKS password is
password. Security for this keystore is not really protected using a password as other keystore types,
but rather it is based on the identity of the executing thread for protection with RACF.

8. Type the keystore password again in the Confirm Password field to confirm the password.

9. Select a keystore type from the list. The type that you select is for the keystore file that you specified
in the Path field.

10. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore
file. If this option is selected, the keystore file that you specified in the Path field must already
exist.

v The Initialize at startup selection initializes the keystore during runtime.

v The Enable cryptographic operations on a hardware device specifies whether a hardware
cryptographic device is used for cryptographic operations only.

Note: Operations that require login are not supported when using this option.

11. Click Apply and Save.

Results

You have created a keystore configuration object for the keystore file that you specified. This keystore can
now be used in an SSL configuration.

Note: You also can use this method to add a z/OS keyring file to the configuration. The keyring file must
be read only, not file-based.

What to do next

You can create additional keystore configurations, as needed.

Managing keystore configurations remotely
You can manage keystores remotely in a WebSphere Application Server, Network Deployment
environment on separate machines. A node server can hold the configuration for a keystore, while the
actual keystore resides on another system. After you set up a remotely managed configuration, you can
perform all of the certificate and keystore operations for the keystore on the remote machine from the
server that contains the keystore remote configuration.

Chapter 8. Securing communications 747

Before you begin

Key stores can be remotely managed only in network deployed environments.

Alternative Method: To manage a self-signed certificates by using the wsadmin tool, use the
PersonalCertificateCommands group commands of the AdminTask object. For
more information, see the PersonalCertificateCommands command group for the
AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Click New.

3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

4. Type the location of the keystore file in the Path field. The location can be a file name or a file
Uniform Resource Locator (URL) to an existing keystore file.

5. Type the keystore password in the Password field. This password is for the keystore file that you
specified in the Path field.

6. Type the keystore password again in the Confirm Password field to confirm the password.

7. Select a keystore type from the list. The type you select is for the keystore file that you specified in
the Path field.

8. Select the Remotely managed check box, and then fill in one or more hosts names of the systems
where the keystore file is to be located. If you provide multiple host names, separate the host names
with a pipe (|).

9. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore
file. If this option is selected, the keystore file that you specified in the Path field must already
exist.

v The Initialize at startup selection initializes the keystore during run time.

10. Select Apply and Save.

Results

A keystore configuration object is created on the server from where the command was run. The keystore
file for the configuration will be created on each system that you specified in the host list.

What to do next

Now, you can perform all certificate management operations on the keystore from the system where the
keystore configuration resides. For example, you can perform certificate management operations, such as:
creating a self-signed certificate, extracting a certificate, or extracting a signer certificate.

Keystores and certificates collection
Use this page to manage keystore types, including cryptography, Resource Access Control Facility
(RACF), Certificate Management Services (CMS), Java, and all trust store types.

748 Securing applications and their environment

gotcha: In most cases, having unused and expired signer certificates in a trust store does not cause
problems. However, if you experience a problem because the trust store includes an unused or
expired signer certificate, you can safely delete the following expired signer certificates from the
dummy keystores files:

v DummyClientKeyFile.jks

v DummyClientTrustFile.jks

v DummyServerKeyFile.jks

v DummyServerTrustFile.jks

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Keystores and certificates.

Table 94. Keystores and certificates buttons. This table describes the keystores and certificates buttons.
Button Resulting action

New Adds a new keystore object that can be referenced by Secure Sockets Layer (SSL) configurations or
KeySets. The Keystore management scope is based on the part of the topology tree from which it
was created.

Delete Deletes an existing keystore. The keystore should not be referenced by any other parts of the
configuration before you delete it.

Change password Allows for changing a keystore password.

Exchange signers Refers to exchanging signers in a keystore. You can select two keystores, along with personal
certificates or signer certificates from a selected keystore, then add them as a signer to another
selected keystore.

Keystore usages
Filters the keystore usage types in the keystore collection.

The default value for the keystore usage filter depends on the navigation path that you followed to get to
the Keystores and certificates panel. You can change the value of the keystore usage filter by clicking on
the drop-down list and selecting a different filter value.

Navigation path Keystore usage default value

Security > SSL certificate and key management >
Keystores and certificates

SSL keystores

Security > SSL certificate and key management > Key
sets > CellLTPAKeyPair > Keystores and certificates

Key set keystores

Security > SSL certificate and key management > SSL
configurations > CellDefaultSSLSettings > Keystores and
certificates

SSL keystores

Security > SSL certificate and key management >
Manage endpoint security configurations > node name >
Keystores and certificates

SSL keystores

Name
Specifies the unique name that is used to identify the keystore. This name is typically scoped by the
ManagementScope scopeName and based upon the location of the keystore. The name must be unique
within the existing keystore collection.

This is a user-defined name.

Description
Specifies the description of the keystore.

This is a user-defined description.

Chapter 8. Securing communications 749

Path
Specifies the location of the keystore file in the format needed by the keystore type. This file can be a
card-specific configuration file for cryptographic devices or a filename or file URL for file-based keystores.
It can be a safkeyring URL for RACF keyrings.

Key store settings
Use this page to create all keystore types, including cryptographic, Resource Access Control Facility
(RACF), Certificate Management Services (CMS), Java, and all truststore types.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound}. Under
Related Items, click Key stores and certificates. Click either New or an existing keystore.

Links to Personal certificates, Signer certificates, and Personal certificate requests enable you to manage
certificates in a manner similar to iKeyman capabilities. A keystore can be file-based, such as CMS or
Java keystore types, or it can be remotely managed.

Note: Any changes made to this panel are permanent.

Name
Specifies the unique name to identify the keystore. The keystore is typically scoped by the
ManagementScope scopeName based on the location of the keystore. The name must be unique within
the existing keystore collection.

Data type: Text

Description
Specifies the description of the keystore.

Data type: Text

Management scope
Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Data type: Text

Path
Specifies the location of the keystore file in the format needed by the keystore type. This file can be a
dynamic link library (DLL) for cryptographic devices or a filename or file URL for file-based keystores. It
can be a safkeyring URL for RACF keyrings.

Data type: Text

Control region user
Specifies the Control region Started Task user ID in which the Control region System Authorization Facility
(SAF) keyring is created. The user ID must match the exact ID being used by the Control region. Note:
This option only applies when creating writable SAF keyrings on z/OS.

Data type: Text

750 Securing applications and their environment

Servant region user
Specifies the Servant region Started Task user ID in which the Servant region System Authorization
Facility (SAF) keyring is created. The user ID must match the exact ID being used by the Servant region.
Note: This option only applies when creating writable SAF keyrings on z/OS.

Data type: Text

Password [new keystore] | Password [existing keystore]
Specifies the password used to protect the physical keystore in the operating system. For the default
keystore (names ending in DefaultKeyStore or DefaultTrustStore), the password is WebAS. This default
password must be changed.

This field can be edited.

Data type: Text

Note: If you want to push the key store to all nodes, the path should be: ${CONFIG_ROOT}/cells/
CELLNAME/yourkeystore.kdb.

Confirm password
Specifies confirmation of the password to open the keystore file or device.

Data type: Text

Type
Specifies the implementation for keystore management. This value defines the tool that operates on this
keystore type.

The list of options is returned by java.security.Security.getAlgorithms("KeyStore"). Some options might be
filtered and some might be added based on the java.security configuration.

Data type: Text
Default: PKCS12

Read only
Specifies whether the keystore can be written to or not. If the keystore cannot be written to, certain
operations cannot be performed, such as creating or importing certificates.

Default: Disabled

Remotely managed
Specifies whether the key store is remotely managed, which means that a remote MBean call is needed to
update the key store based on the host name specified in the host list field. Most hardware cryptographic
token devices are remotely managed. If a key store is marked remotely managed, list the host name of the
server where the device is installed in the Host list field.

Default:

Initialize at startup
Specifies whether the keystore needs to be initialized before it can be used for cryptographic operations. If
enabled, the keystore is initialized at server startup.

Default: Disabled

Chapter 8. Securing communications 751

Enable cryptographic operations on hardware device
Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations
that require a login are not supported when using this option.

Default: Disabled

Key managers collection
Use this page to define the implementation settings for key managers. A key manager is invoked during a
Secure Sockets Layer (SSL) handshake to determine which certificate alias is used. The default key
manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, define a
custom key manager on the Manage endpoint security configurations panel.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key managers.

Table 95. Key managers buttons. This table describes the key managers buttons.
Button Resulting action

New Adds a new key manager that can be selected by an SSL configuration. A key manager is invoked
during an SSL handshake to select a specific certificate alias to use from a key store.

Delete Deletes an existing key manager. The key manager should not be referenced by any SSL
configuration before you can delete it.

Name
Specifies the name of the key manager, which you can select on the SSL configuration panel.

Class name
Specifies the name of the key manager implementation class. This class implements
javax.net.ssl.X509KeyManager interface and, optionally, the com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface.

Algorithm
Specifies the algorithm name of the key manager that is implemented by the selected provider.

Key managers settings
Use this page to define key managers implementation settings. A key manager gets invoked during an
Secure Sockets Layer (SSL) handshake to determine the certificate alias to be used. The default key
manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, a custom
key manager can be specified here and selected in the SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key managers. On the next panel, click New.

Name
Specifies the name of the key manager, which you can select on the SSL configuration panel.

Data type: Text

752 Securing applications and their environment

Management scope
Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Data type List
Range: Applicable scopes

Standard
Specifies the key manager selection that is available from a Java provider that is installed in the
java.security file. This provider might be shipped by Java Secure Sockets Extension (JSSE) or be a
custom provider that implements an X509KeyManager interface.

Default: Enabled

Provider
Specifies the provider name that has an implementation of an X509KeyManager interface. This provider is
typically set to IBMJSSE2.

Data type: Text
Default: IBMJCE

Algorithm
Specifies the algorithm name of the trust manager implemented by the selected provider.

Data type: Text
Default: IbmX509

Custom
Specifies that the key manager selection is based on a custom implementation class that implements the
javax.net.ssl.X509KeyManager interface and optionally the com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface to obtain additional connection information not otherwise available.

Default: Disabled

Class name
Specifies the name of the key manager implementation class.

Data type: Text

Creating a self-signed certificate
You can create a self-signed certificate. WebSphere Application Server uses the certificate at runtime
during the handshake protocol. Self-signed certificates are located in the default keystore.

Before you begin

You must create a keystore before you can create a self-signed certificate.

Alternative Method: To create a self-signed certificate by using the wsadmin tool, use the
createSelfSignedCertificate command of the AdminTask object. For more
information, see the PersonalCertificateCommands command group for the
AdminTask object article.

Chapter 8. Securing communications 753

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. From Additional Properties, click Personal certificates.

3. Click Create a self-signed certificate.

4. Type a certificate alias name. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name
(DN).

6. Type the validity period The default validity period value is 365 days.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 2048 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the
certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

f. Optional: Type a zip code value. This zip code value is the POSTALCODE value in the certificate
DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate
request DN.

8. Click Apply.

Results

You have created a self-signed certificate that resides in the keystore. The SSL configuration for the
WebSphere Application Server runtime uses this certificate for SSL communication. Extract the signer of
the self-signed certificate to add the signer to another keystore.

Replacing an existing personal certificate
Occasionally, you need to replace an existing personal certificate with a new certificate. This task
discusses how to replace the existing personal certificate in the keystore. It searches all keystores for a
signer certificate extracted from the original personal certificate, and places the signer of the new personal
certificate in it's place. It also updates all of the certificate alias references in the security configuration with
the new one.

Before you begin

The current certificate and the certificate replacement must exist in the same keystore before you can
replace a certificate.

Alternative Method: To replace a self-signed certificate by using the wsadmin tool, use the
replaceCertificate command of the AdminTask object. For more information, see
the PersonalCertificateCommands command group for the AdminTask object article

About this task

Complete the following steps in the administrative console:

754 Securing applications and their environment

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select the certificate to be replaced. The alias list must include the certificate to be replaced and the
certificate to replace it with.

4. Click Replace.

5. Select a replacement certificate alias from the list.

6. You can delete one of the following types of certificates:

v Select Delete old certificate to delete the existing or expired certificate.

v Select Delete old signers to delete the existing signer certificates.

7. Click Apply.

Results

Your results depend on what you selected:

v If you selected Delete old certificate, the new certificate alias replaces all of the references to the
certificate alias in the configuration.

v If you selected Delete old signers, the new signer certificate replaces all of the occurrences of the old
signer certificates.

v If the new certificate alias replaces the existing alias, the WebSphere Application Server runtime checks
to make sure that:

– All of the SSL Configurations objects reference the certificate

– The Dynamic SSL Configuration Selections objects and the SSL Configuration group objects
reference the certificate.

v If you selected Delete old signers, the existing signer certificates are replaced.

v If you selected Delete old certificate, the existing certificate is deleted.

Creating a new SSL certificate to replace an existing one in a node
When using the -asExistingNode option on the addNode command, you might be adding an existing node
to a different machine. The default Secure Sockets Layer (SSL) certificate of the node does not contain
the name of the machine the node is located on. In most scenarios, the subject DN of the default
certificate does not make a difference. However, you might want to change the default certificate of the
node to contain the hostname of the node.

Before you begin

To replace the default certificate of a node, you must create a new NodeDefaultKeyStore for the certificate
and then replace the old certificate with the new one.

The certificate created by default on the WebSphere Application Server subjectDN is of the form
cn=<hostname>, ou=<cell name>, ou=<node name>, o=ibm, c=us. When creating a new certificate you
can also customize the subjectDN.

About this task

To create a new SSL certificate in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the NodeDefaultKeyStore of the node you want to change.

Chapter 8. Securing communications 755

3. Under Additional Properties, select Personal certificates.

4. Under the Create pull-down, select Chained Certificate.

5. Enter a certificate and alias name. This can be any name you choose as long as the alias does not
already exist. It is just a label to identify the certificate in the keystore.

6. Enter a common name. This is typically the hostname the node is running on.

7. Optional: Fill in any of the other Subject DN related fields. If you want the subject DN to look like the
default subjectDN on WebSphere Application Server, then enter:

v IBM in the Organization field.

v <cell name>,ou=<node name> in the Organization unit field.

v Under the Country or region pull-down, select US.

8. You can use the defaults for Root certificate used to sign the certificate, Key Size, and Validity Period
or supply your own values.

9. Click Apply.

Note: You can also create a new chained certificate using the createChainedCertificate command.
Read PersonalCertificateCommands command group for the AdminTask object for more
information.

You must now replace the old certificate with the one you just created. The replace certificate option
not only replaces the old default certificate with a new one but also replaces any occurrences of the
signer of the old certificate with the signer of the new certificate. The configuration is also checked for
references to the alias name of the old certificate and replaces it with the alias name of the new
certificate. To replace the old certificate with the new one, complete the remaining steps.

10. Click Security > SSL certificate and key management > Key stores and certificates.

11. Select the NodeDefaultKeyStore of the node you want to change.

12. Under Additional Properties, select Personal certificates.

13. Select the default certificate of the node, usually called default.

14. Click Replace.

15. Select the certificate alias name for the certificate you just created from the Replace with pull-down.

16. Click Delete old Certificate after replacement.

17. Click Apply.

Note: You can also create a new chained certificate using the replaceCertificate command. Read
PersonalCertificateCommands command group for the AdminTask object for more information.

What to do next

You can also replace default certificates in an entire cell. Read Creating new SSL certificates to replace
existing ones in a cell for more information.

Creating new SSL certificates to replace existing ones in a cell
To replace default Secure Socket Layer (SSL) certificates in an entire cell, you must create a new
self-signed root certificate in the root keystore, DmgrDefaultRootStore, and replace the old root certificate
with the new one.

About this task

For the default certificate of the cell in CellDefaultKeyStore and the default certificate of each node in
NodeDefaultKeyStore, create a new chained certificate and replace the old default certificate with the new
certificate.

756 Securing applications and their environment

The root certificate is created by default on WebSphere Application Server, and has a subjectDN in the
form cn=<hostname>, ou=Root Certificate, ou=<cell name>, ou=<node name>, o=ibm, c=us. When you
create a new root certificate you can also customize the subject DN.

To create a new SSL root certificate in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Under the Keystore usages pull-down, select Root certificate keystore.

3. Select the DmgrDefaultRootStore in the keystore collection.

4. Under Additional Properties, select Personal certificates.

5. Under the Create pull-down, select Self-signed Certificate.

6. Enter a certificate and alias name. This can be any name you choose as long as the alias does not
already exist. It is just a label to identify the certificate in the keystore.

7. Enter a common name. This is typically the hostname the node is running on.

8. Optional: Fill in any of the other Subject DN related fields. If you want the subject DN to look like the
default subjectDN on WebSphere Application Server, then enter:

v IBM in the Organization field.

v <cell name>,ou=<node name> in the Organization unit field.

v Under the Country or region pull-down, select US.

9. You can use the defaults for Root certificate used to sign the certificate, Key Size, and Validity Period
or supply your own values.

10. Click Apply.

Note: You can also create a self-signed certificate using the createSelfSignedCertificate command.
Read PersonalCertificateCommands command group for the AdminTask object for more
information.

You must now replace the old root certificate with the one you just created. The replace certificate
option not only replaces the old default certificate with a new one but also replaces any occurrences
of the signer of the old certificate with the signer of the new certificate. The configuration is also
checked for references to the alias name of the old certificate and replaces it with the alias name of
the new certificate. To replace the old certificate with the new one, complete the remaining steps.

11. Click Security > SSL certificate and key management > Key stores and certificates.

12. Select the CellDefaultKeyStore of the node you want to change.

13. Under Additional Properties, select Personal certificates.

14. Select the default certificate of the node, usually called default.

15. Click Replace.

16. Select the certificate alias name for the new certificate you just created from the Replace with
pull-down.

17. Click Delete old Certificate after replacement.

18. Click Apply.

What to do next

You can also replace default certificates in a node. Read Creating a new SSL certificate to replace an
existing one in a node for more information

Chapter 8. Securing communications 757

Creating a certificate authority request
To ensure Secure Sockets Layer (SSL) communication, servers require a personal certificate that is either
self-signed, chained or signed by an external certificate authority (CA). You must first create a personal
certificate request to obtain a certificate that is signed by a CA.

Before you begin

The keystore that contains a personal certificate request must already exist.

Alternative Method: To create a certificate request by using the wsadmin tool, use the
createCertificateRequest command of the AdminTask object. For more information,
see the CertificateRequestCommands command group of the AdminTask object
article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates > keystore.

2. Click Personal certificate requests > New.

3. Type the full path of the certificate request file. The certificate request is created in this location.

4. Type an alias name in the Key label field. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name
(DN).

6. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and 8192.
The default key size value is 2048 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the
certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

f. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the certificate
DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate
request DN.

7. Click Apply.

Results

The certificate request is created in the specified file location in the keystore. The request functions as a
temporary placeholder for the signed certificate until you manually receive the certificate in the keystore.

Note: Key store tools (such as iKeyman and keyTool) cannot receive signed certificates that are
generated by certificate requests from WebSphere Application Server. Similarly, WebSphere
Application Server cannot accept certificates that are generated by certificate requests from other
keystore utilities.

758 Securing applications and their environment

What to do next

Now you can receive the CA-signed certificate into the keystore to complete the process of generating a
signed certificate for your server.

Certificate request settings
Use this page to verify the properties of a personal certificate request.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Personal certificate requests > certificate request .

File for certificate request
Specifies the fully qualified name of the file that contains the certificate request that can be sent to a
certificate authority (CA) server.

Key label
Specifies the certificate alias name for the signer in the key store.

Key size
Specifies the size of the keys that are generated.

Requested by
Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Fingerprint (SHA Digest)
Specifies the SHA hash of the personal certificate, which can be used to verify that the certificate has not
been altered when it is used in a remote connection.

Signature algorithm
Specifies the algorithm used to sign the certificate.

Personal certificates collection
Use this page to manage personal certificates.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates.

The Personal certificates page lists all personal certificates in the selected key store. You can do most
certificate management operations in this panel, including creating a new self-signed certificate, deleting a
certificate, receiving one generated from a CA, replacing a certificate (simultaneous delete and create,
replacing references across all key stores), extracting the signer, and importing or exporting a personal
certificate.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate
authority (CA).

The Key store collection must contain at least two key store files. You must select one file in order to
replace, extract, or export a key store,

Chapter 8. Securing communications 759

Table 96. Personal certificates buttons. This table lists the personal certificates buttons.
Button Resulting action

Create (drop-down list) Enables the application server to create the following certificates:

v Self-signed Certificate

The create a self-signed certificate function is not available using the administrative console for
certificates that are stored in Resource Access Control Facility (RACF), unless the server is
configured for writable keyring support. See “Creating writable SAF keyrings” on page 772 and
“Using writable SAF keyrings” on page 770 for more information on using writable keyring support.
Optionally, this function is supported using the RACF administration interfaces.

v CA-signed Certificate

The create CA signed certificate function is not available using the administrative console for
certificates that are stored in RACF, unless the server is configured for writable keyring support.
See “Creating writable SAF keyrings” on page 772 and “Using writable SAF keyrings” on page 770
for more information on using writable keyring support. Optionally, this function is supported using
the RACF administration interfaces.

v Chained Certificate

The create a chained certificate function is not available using the administrative console for
certificates that are stored in RACF, unless the server is configured for writable keyring support.
See “Creating writable SAF keyrings” on page 772 and “Using writable SAF keyrings” on page 770
for more information on using writable keyring support. Optionally, this function is supported using
the RACF administration interfaces.

Delete The delete function is not available using the administrative console for certificates that are stored in
RACF unless the server is configured for writable keyring support. See “Creating writable SAF
keyrings” on page 772 and “Using writable SAF keyrings” on page 770 for more information on using
writable keyring support. Optionally, this function is supported using the RACF administration
interfaces.

Receive a certificate from a certificate
authority

Enables the application server to receive a certificate authority (CA)-generated certificate from a file to
complete a certificate request.

The receive a certificate from a certificate authority function is not available using the administrative
console for certificates that are stored in RACF unless the server is configured for writable keyring
support. See “Creating writable SAF keyrings” on page 772 and “Using writable SAF keyrings” on
page 770 for more information on using writable keyring support. Optionally, this function is supported
using the RACF administration interfaces.

Replace Replaces a personal certificate with another personal certificate. All key stores in the configuration
looking for signer certificate form the original personal certificate and replaces them with the new
personal certificates signer. Any place in the security configuration where the certificate alias is
referenced will be replaced with the new certificate alias.

The replace function is not available using the administrative console for certificates that are stored in
RACF unless the server is configured for writable keyring support. See “Creating writable SAF
keyrings” on page 772 and “Using writable SAF keyrings” on page 770 for more information on using
writable keyring support. Optionally, this function is supported using the RACF administration
interfaces.

Extract Extracts the signer part of personal certificate from the key store and stores it to a file. The file can
then be used to add the signer to another key store.

Import Imports a certificate, including the private key, from a key store file or managed key store.

The import function is not available using the administrative console for certificates that are stored in
RACF unless the server is configured for writable keyring support. See “Creating writable SAF
keyrings” on page 772 and “Using writable SAF keyrings” on page 770 for more information on using
writable keyring support. Optionally, this function is supported using the RACF administration
interfaces.

Export Exports a certificate, including the private key, to a specified key store file or manage key store.

The export function is not available using the administrative console for certificates that are stored in
RACF unless the server is configured for writable keyring support. See “Creating writable SAF
keyrings” on page 772 and “Using writable SAF keyrings” on page 770 for more information on using
writable keyring support. Optionally, this function is supported using the RACF administration
interfaces.

Revoke Revokes a CA-signed certificate.

Renew Renews a self signed or chained certificate.

Alias
Specifies the alias by which the personal certificate is referenced in the key store.

When you select an alias, the View Certificate panel opens.

760 Securing applications and their environment

Issued by
Specifies the distinguished name of the entity by which the certificate was issued. This name is the same
as the issued-to distinguished name when the personal certificate is self-signed.

Issued to
Specifies the distinguished name of the entity to which the certificate was issued.

Serial number
Specifies the certificate serial number that is generated by the issuer of the certificate.

Expiration
Specifies the expiration date of the signer certificate for validation purposes.

Self-signed certificates settings
Use this page to create self-signed certificates.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > keystore. Under Additional
Properties, click Personal certificates > Create (drop-down list) > Self-signed certificate.

This same help file is available when you create a new certificate or view an existing certificate. The fields
in this help file are described according to how they appear and are used on the administrative console.

Alias
Specifies the alias for the personal certificate in the keystore.

You enter the alias name for the personal certificate in the keystore when you are creating a certificate.
The alias name is read-only when you view an existing certificate.

Data type: Text

Version
Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1. It is
recommended to use X509 V3 certificates.

This field is read-only when you create or view a certificate.

Data type: Text
Default: X509 V3
Range:

Key size
Specifies the key size of the private key that is used by the personal certificate.

When you are creating a certificate you can select the key size from the drop-down list. This field is
read-only when you view a certificate.

Data type: Integer
Default: 1024
Other valid key sizes: 512, 2048, 4096

Chapter 8. Securing communications 761

Common name
Specifies the common name portion of the distinguished name (DN). It is recommended that this name be
the host name of the machine on which the certificate resides. In some cases, the common name is used
to login during Secure Socket Layer (SSL) certificate authentication; therefore, in some cases, this name
might be used as a user ID for a local operating system registry.

When you create a new certificate you can enter the common name in this field. This field does not
display when you view an existing certificate.

Data type: Text

Serial number
Identifies the certificate serial number that is generated by the issuer of the certificate. When creating a
certificate this field does not appear.

This field is read-only when you view an existing certificate.

Validity period
Specifies the length in days during which the certificate is valid. The default is 365 days. You can enter
any number of days you wish.

This field is read-only when you view an existing certificate. This field displays a validity period as a range
of days between two dates. For example, Valid from March 16, 2008 to March 16, 2009.

Data type: Text

Organization
You enter the organization portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Data type: Text

Organization unit
Specifies the organization unit portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Data type: Text

Locality
Specifies the locality portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Data type: Text

State/Province
Specifies the state portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Data type: Text

762 Securing applications and their environment

Zip code
Specifies the zip code portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Data type: Integer

Country or region
Select the country portion of the distinguished name from the drop-down list. This field is optional.

This field displays only when you create a new certificate.

Data type: Text
Default: (none)

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of
ISO 3166 country codes.

Validity period
Identifies the length, in days, when the certificate is valid. The default is 365 days.

This field is read-only when you view an existing certificate and shows the start and end dates.

Issued to
Identifies the distinguished name of the entity to which the certificate was issued.

This field is read-only when you view an existing certificate.

Issued by
Identifies the distinguished name of the entity that issued the certificate. When the personal certificate is
self-signed, this name is identical to the Issued to distinguished name.

This field is read-only when you view an existing certificate.

Fingerprint (SHA Digest)
Identifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the
certificate's hash at another location, such as the client side of a connection.

This field is read-only when you view an existing certificate.

Signature algorithm
Identifies the algorithm used to sign the certificate.

This field is read-only when you view an existing certificate.

Personal certificate requests collection
Use this page to manage personal certificate requests. Personal certificate requests are temporary place
holders for certificates that will be signed by a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificate requests.

Chapter 8. Securing communications 763

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

A private key is generated during the certificate request generation, but only the certificate is sent to the
CA. The CA generates a new certificate, signed by the CA. This can be added in the Personal Certificates
panel.

Table 97. Personal certificate requests buttons. This table lists the personal certificate requests buttons.
Button Resulting action

New Creates a personal certificate request that can be given to a certificate authority to complete.

Delete Deletes a personal certificate request.

Extract Extracts a personal certificate request. Only one certificate request can be selected at a time.

Query Queries a personal certificate request. Only one certificate request can be selected at a time.

Note: Any changes made to this panel are permanent.

Key label
Specifies the alias that represents the personal certificate request in the key store.

Requested by
Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Personal certificate requests settings
Use this page to create a new certificate request that can be extracted and sent to a certificate authority
(CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates requests. Then click the New button.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate
authority (CA). The private key is generated during the certificate request generation, but only the
certificate is sent to the CA. The CA generates a new certificate, signed by the CA.

Note: Any changes made to this panel are permanent.

File for certificate request
Specifies the fully qualified file name from which the certificate request is exported. This portion of the
certificate request can be given to the certificate authority to generate the real certificate. After the real
certificate is generated, you can perform a "Receive a certificate from a certificate authority" from the
personal certificate collection view.

Data type: String

Key label
Specifies the alias that represents the personal certificate request in the key store.

Data type: String

Key size
Specifies the size of the keys that are generated.

Data type: Integer
Default: 2048

764 Securing applications and their environment

Common name
Specifies the name of the entity that the certificate represents. This common name can represent a
person, company, or machine. For websites, the common name is frequently the DNS host name where
the server resides.

Data type: String

Organization
Specifies the organization portion of the distinguished name.

Data type: String

Organizational unit
Specifies the organization unit portion of the distinguished name. This field is optional.

Data type: String

Locality
Specifies the locality portion of the distinguished name. This field is optional.

Data type: String

State or province
Specifies the state portion of the distinguished name. This field is optional.

Data type: String

Zip code
Specifies the zip code portion of the distinguished name. This field is optional.

Data type: Integer

Country or region
Specifies the country portion of the distinguished name.

Data type: String

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of
ISO 3166 country codes.

Extract certificate request
Use this page to extract a certificate request to a file so it can be sent to a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificate requests > Extract.

Key label
Specifies the alias that represents the personal certificate request in the key store.

Chapter 8. Securing communications 765

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

File for certificate request
Specifies the filename where the extracted certificate request is placed.

Data type: Text

Receiving a certificate issued by a certificate authority
When a certificate authority (CA) receives a certificate request, it issues a new certificate that functions as
a temporary placeholder for a CA-issued certificate. A keystore receives the certificate from the CA and
generates a CA-signed personal certificate that WebSphere Application Server can use for Secure Sockets
Layer (SSL) security.

Before you begin

The keystore must contain the certificate request that was created and sent to the CA. Also, the keystore
must be able to access the certificate that is returned by the CA.

Note: To receive a certificate by using the wsadmin tool, use the receiveCertificate command of the
AdminTask object. For more information, see the PersonalCertificateCommands command group for
the AdminTask object article.

About this task

WebSphere Application Server can receive only those certificates that are generated by a WebSphere
Application Server certificate request. It cannot receive certificates that are created with certificate requests
from other keystore tools, such as iKeyman and keyTool.

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Receive a certificate from a certificate authority.

5. Type the full path and name of the certificate file.

6. Select a data type from the list.

7. Click Apply and Save.

Results

The keystore contains a new personal certificate that is issued by a CA. The original certificate request is
changed to a personal certificate.

What to do next

The SSL configuration is ready to use the new CA-signed personal certificate.

Export certificate to a keystore file or a managed keystore
Use this page to specify a personal certificate to export to a keystore file or a managed keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

766 Securing applications and their environment

ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional
Properties, click Personal certificates. Select a personal certificate using the check box. Then click the
Export button.

Certificate alias to export:

Displays the name of the certificate that you selected to export on the previous panel.

Data type: Text

Keystore Password:

Type in the password of the keystore to use for the export.

Data type: Text

Alias:

Specifies the alias that the personal certificate is referenced by in the destination keystore.

Data type: Text

Managed key store:

Select this option with the radio button. Then select a keystore from the pull-down list, which is managed
by the security configuration, to export the certificate to.

Data type: Drop-down list

Key file name:

Select this option with the radio button. Then type the keystore file name into which the exported certificate
is added. If the keystore file name already exists, the exported certificate is added. If the keystore file
name does not already exist, a keystore file name is created, and the exported certificate is added.

Data type: Text

Type:

Specifies the type of keystore file. The valid types are listed in the drop-down list.

Data type: Text
Default: PKCS12

Key file password:

Specifies the password that is used to access the keystore file.

Data type: Text

Import certificate from a key file or managed keystore
Use this page to specify a personal certificate to import from a keystore or key file.

Chapter 8. Securing communications 767

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional
Properties, click Personal certificates. Select a personal certificate using the check box. Then click the
Import button.

Managed key store:

Select this option with the radio button. This selection indicates that the keystore that contains the
certificate to import is a managed keystore.

Data type: radio button

Key store:

Select an alias of the keystore from the pull-down list of managed keystores that are managed by the
security configuration. The alias you select identifies the keystore that contains the certificate to import.

Data type: drop-down list

Key store password:

Specifies the password for the keystore to use for import.

Data type: Text

Key store file:

Select this option with the radio button. This selection indicates a keystore file that contains the certificate
to import.

Data type: radio button

Key file name:

Specifies the fully qualified path to keystore file that contains the certificate to import.

Data type: Text

Type:

Specify the type of keystore file. Select a valid type from the drop-down list.

Data type: Text

Key file password:

Type the password that is used to access the keystore file.

Data type: Text

Certificate alias to import:

768 Securing applications and their environment

Specifies the certificate alias identified as the Key file name that you want to import into the current
keystore.

Data type: Text
Default: (none)

Imported certificate alias:

Specifies the new alias that you want the certificate to be named in the current keystore.

Data type: Text

Receive certificate from CA
Use this page to import your personal certificate from the certificate authority (CA). The imported certificate
replaces the temporary certificate associated with the public/private keys in the certificate request that is
stored in the key store.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates > Receive certificate from certificate authority.

Certificate file name:

Specifies the filename that contains the certificate generated by the certificate authority (CA).

Data type: Text

Data type:

Specifies the format of the file that is either Base64 encoded ASCII data or Binary DER data.

Data type: Text
Default: Base64-encoded ASCII data

Replace a certificate
Use this page to specify two certificates: the first selected certificate is replaced by the second selected
certificate. The replace function replaces all the old signer certificates in key stores that are managed
throughout the cell with the new signer from the new certificate. The same level of trust that was
established with the old certificate is maintained. All places the certificate's alias is referenced in the
security configuration will be replaced with the certificate's alias. The alias could be referenced on a
security object like the SSL configuration, the dynamic outbound endpoint SSL configuration and key set
groups.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties click Personal certificates. Select a personal certificate, then click the Replace button.

Old certificate
Specifies the certificate that you want to replace.

Data type: Text

Chapter 8. Securing communications 769

Replace with
Specifies the certificate that you want to replace the old certificate.

Data type: Text
Default: (none)

Delete old certificate after replacement
Specifies that you want to delete the old certificate and all associated signer certificates after the new
certificate replaces it. If you do not replace the old personal certificate, it might be assigned a new alias
name.

Default: Disabled

Delete old signers
Specifies that you want to delete the old signer certificates that are associated with the old certificate after
the new signer certificates replace them. If you do not delete the old signer certificates, they might be
assigned new alias names.

Default: Disabled

Using writable SAF keyrings
WebSphere Application Server provides the function to allow a WebSphere Application Server
administrator to perform certificate management operations on System Authorization Facility (SAF)
keyrings by utilizing the (Open Cryptographic Services Facility) OCSF Data library functions for SAF
keyrings.

Before you begin

You must enable support for writable keyrings using the profile management tool prior to generating the
application server profiles. Writable keyring support is only configurable when running z/OS Release 1.9 or
at z/OS Release 1.8 with APAR OA22287 - resource access control facility (RACF) (or the APAR for your
equivalent security product) and APAR OA22295 – SAF.

About this task

Defining RACF Authority for Clients and Servers

By default, if writable keyring support is enabled during profile management, the default RACF
configuration scripts generate the necessary commands to grant write authority. As an option, when you
migrate from an existing installation, you can configure RACF using the procedure below.

Note: The control region performs all server certificate management write operations, and the RACF
administrator must explicitly grant authority to the RACF ID of the control region to update the
control region and servant region keyrings.

The procedure below uses ring-specific profile checking to grant authority. Ring-specific profile checking
applies only to a specific keyring and does not allow global access to any keyring.

With ring-specific profile checking, a resource with the format, <ringOwner>.<ringName>.LST is used to
provide access control to a specific keyring on the R_datalib READ functions.

A resource with the format <ringOwner>.<ringName>.UPD is used to provide access control to a specific
keyring on the UPDATE functions.

770 Securing applications and their environment

The procedure to define RACF authority for clients and servers is as follows:

Procedure
1. Use ring-specific profile checking for the RDATALIB class. You use the following commands:

SETR CLASSACT(RDATALIB)
SETR RACLIST(RDATALIB) GENERIC(RDATALIB)

2. Define a ring-specific LST profile for the control region RACF ID and the servant region RACF ID.

RDEFINE RDATALIB CRRACFID.**.LST UACC(NONE)
RDEFINE RDATALIB SRRACFID.**.LST UACC(NONE)

3. Give CONTROL access for the CRRACFID.**.LST and SRRACFID.**.LST profiles in the RACF
RDATALIB class to the control region RACF user ID. For example, if the control region RACF user ID
is CRRACFID and your servant region RACF user ID is SRRACFID, issue the following commands:

PERMIT CRRACFID.**.LST CLASS(RDATALIB) ID(CRRACFID) ACC(CONTROL)
PERMIT SRRACFID.**.LST CLASS(RDATALIB) ID(CRRACFID) ACC(CONTROL)
PERMIT SRRACFID.**.LST CLASS(RDATALIB) ID(SRRACFID) ACC(CONTROL)

Also, give READ access to all IDs in the WASCFGGROUP for the CRRACFID.**.LST profile.
PERMIT CRRACFID.**.LST CLASS(RDATALIB) ID(WASCFGGROUP) ACC(READ)

4. Define a ring-specific UPD profile for the control region RACF ID and the servant region RACF ID.

RDEFINE RDATALIB CRRACFID.**.UPD UACC(NONE)
RDEFINE RDATALIB SRRACFID.**.UPD UACC(NONE)

5. Give CONTROL access for the CRRACFID.**.UPD and SRRACFID.**.UPD profiles in the RACF
RDATALIB class to the control region RACF user ID. For example, if your control region RACF user ID
is CRRACFID, issue the following command:

PERMIT CRRACFID.**.UPD CLASS(RDATALIB) ID(CRRACFID) ACC(CONTROL)
PERMIT SRRACFID.**.UPD CLASS(RDATALIB) ID(CRRACFID) ACC(CONTROL)

6. Grant write access to the WebSphere Application Server administrator ID to permit write operations on
WebSphere Application Server client keyrings.

RDEFINE RDATALIB ADMINUSERID.**.LST UACC(NONE)
PERMIT ADMINRACFID.**.LST CLASS(RDATALIB) ID(WASCFGGROUP) ACC(READ)
PERMIT ADMINRACFID.**.LST CLASS(RDATALIB) ID(ADMINRACFID) ACC(CONTROL)
RDEFINE RDATALIB ADMINRACFID.**.UPD UACC(NONE)
PERMIT ADMINUSERID.**.LST CLASS(RDATALIB) ID(ADMINRACFID) ACC(CONTROL)

7. Refresh the RDATALIB class.

SETR RACLIST(RDATALIB) REFRESH

Note: If RACF authority is not granted you receive the following message when attempting certificate
write operations on a keyring:
Error Message: An error occurred creating the key store: R_datalib (IRRSDL00) error: One or more
updates could not be completed. Not RACF authorized to use the requested service.
Function code: (7) Return Codes: (8, 8, 8)

Note: If you attempt to create a new keyring or perform a specific certificate write operation and do
not have native writable support, you receive the following message:
R_datalib (IRRSDL00) error: One or more updates could not be completed. Requested Function_code not defined.
Function code: (7) Return Codes: (8, 8, 20)

Remember: You must be running at z/OS release 1.9 or 1.8 with APAR's OA22287 and OA22295 to
use writable keyring support.

You can link to the following documents in the z/OS internet library http://www-03.ibm.com/servers/
eserver/zseries/zos/bkserv/ for more information:

v Security Server RACF Callable Services (SA22-7691) for a complete guide to RACF Callable
Services and the R_Datalib service

Chapter 8. Securing communications 771

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

v z/OS Security Server RACF Security Administrator's Guide (SA22-7683) for a complete guide to
RACF commands

Creating writable SAF keyrings
WebSphere provides the function to allow a WebSphere administrator to perform certificate management
operations on System Authorization Facility (SAF) keyrings by utilizing the (Open Cryptographic Services
Facility) OCSF Data library functions for SAF keyrings. This task creates new keystore configurations and
their associated keyrings.

Before you begin

The JCERACFKS keystore is used with the IBMJCE provider or the IBMJCECCA provider. You can use
the JCERACFKS keystore for certificates and keys that are managed and stored by resource access
control facility (RACF). The uniform resource identifier (URI) path reference for the JCERACFKS keystore
is in the form of safkeyring:///your_keyring_name.

Attention: The JCERACFKS keystore type, is only available on the z/OS platform.

Important: You must enable support for writable keyrings using the profile management tool prior to
generating the application server profiles. Writable keyring support is only configurable when
running at z/OS Release 1.9 or at z/OS Release 1.8 with APAR OA22287 - RACF (or the
APAR for your equivalent security product) and APAR OA22295 – SAF.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management . Under Configuration settings, click Manage

endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under Related
items, click Key stores and certificates. Then click the New button.

2. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

3. Type the location of the keystore file in the Path field. The URI must contain safkeyring, for example,
safkeyring:///your_keyring_name.

4. Type the keystore password in the Password field as "password". To be compatible with the JCE
keystore in requiring a password, the JCERACFKS password is "password". Security for this keystore
is not really protected using a password as other keystore types, but rather it is based on the identity
of the executing thread for protection with RACF. This password is for the keystore file that you
specified in the Path field.

5. Select JCERACFKS for the Type and complete the rest of the fields as appropriate.

6. Deselect the Read only check box.

7. For the control region user field, specify the control region started task user ID (RACF ID) under which
the control region SAF keyring is created. The user ID must match the exact RACF ID being used by
the control region.

Note: This option only applies when creating writable SAF keyrings on z/OS.

8. For the servant region user field, specify the servant region started task user ID (RACF ID) in which
the servant region SAF keyring is created. The user ID must match the exact RACF ID being used by
the servant region.

Note: This option only applies when creating writable SAF keyrings on z/OS.

9. Click OK then click Save to apply these changes to the master configuration.

772 Securing applications and their environment

Results

A keystore is now available to configure SSL connections. Two additional keystore objects are created that
may be accessed via the administrative console for performing certificate write operations on the
appropriate keyring. The keystore objects are named your_keystore_name -CR and
your_keystore_name -SR, where your_store_name is the name of the keystore specified on the create
command. your_keystore_name -CR corresponds to the keyring owned by the RACF ID of the control
region process and your_keystore_name -SR corresponds to the keystore owned by the RACF ID of the
servant region process. These keystores are created in the same scope as your_keystore_name and can
be accessed from the administrative console from the your_keystore_name collection panel.

What to do next

You can continue securing communication between the client and server using this keystore file when
setting up an SSL configuration. Additionally, you are now able to perform certificate management
operations from the administrative console or command task framework on the writable keystore
configurations generated by this command.

RACF keyring considerations

Certificate Deletion
When a certificate is deleted from a RACF keyring, the certificate is not deleted from RACF. It is
only disconnected from the keyring. The certificate can be reconnected through RACF if it is
accidentally removed from the keyring. If you want the certificate completely deleted from RACF, it
must be removed by the RACF administrator.

Import and Export of Certificates
During the import and export of certificates to and from managed SAF keystores, if the certificate
already exists in RACF under a different label, then it will be connected to the keyring with the
existing label regardless of the label you assign the certificate on the import or export command.

Renewing Certificates
Certificates are not physically deleted from RACF. The existing certificate label still exists in RACF
and renewing certificates will increment the alias (label) of the certificate by appending _1, _2, etc.,
to the existing certificate label.

Configuring the root certificate keyring
WebSphere Application Server provides the function to allow a WebSphere Application Server
administrator to perform certificate management operations on System Authorization Facility (SAF)
keyrings by utilizing the (Open Cryptographic Services Facility) OCSF Data library functions for SAF
keyrings. This task configures the root certificate keyring.

Before you begin

You must enable support for writable keyrings using the profile management tool prior to generating the
application server profiles. Writable keyring support is only configurable when running z/OS Release 1.9 or
at z/OS Release 1.8 with APAR OA22287 - resource access control facility (RACF) (or the APAR for your
equivalent security product) and APAR OA22295 – SAF.

About this task

The root certificate authority (CA) certificate is used to sign other certificates for WebSphere Application
Server. By default, during profile management, the default root keying (NodeDefaultRootStore or
DmgrDefaultRootStore for a deployment manager), and the root CA certificate, are automatically
configured. Alternatively, if migrating from a pervious WebSphere Application Server installation, you can
set up the root keyring for a keystore object using the following steps.

Chapter 8. Securing communications 773

Procedure
1. Create a keyring for the control region RACF ID for your sever. For example, if your server is running

with a RACF user ID called CRRACFID, issue the following command:
RACDCERT ADDRING(keyring_name.Root) ID(CRRACFID)

CRRACFID is the RACF ID for the application server control region. keyring_name is the name of the
z/OS keyring that is used by the servers in the cell.

2. To create chained certificates with the root CA certificate, the keyring created in the step (1) must
include the public/private key CA certificate generated for your WebSphere Application Server
installation. To connect the certificate, you must complete the following step:

Determine the label name of the root CA certificate for your installation and issue the following
command:
RACDCERT ID(CRRACFID) CONNECT (RING(keyring_name.Root) LABEL(’rootcalabel’) CERTAUTH USAGE(PERSONAL))

CRRACFID is the RACF ID for the application server control region. keyring_name is the name of the
z/OS keyring that is used by the servers in the cell. rootcalabel is the root CA certificate

3. Modify NodeDefaultRootStore (DmgrDefaultRootStore for deployment manager) to point to the
keyring created in step (1).

a. Click Security > SSL certificate and key management > Key stores and certificates

b. Select Root Certificates Keystore under Keystore usages

c. Select NodeDefaultRootStore (or DmgrDefaultRootStore for deployment manager).

d. Under General Properties

1) Modify the Path
safkeyring://CRRACFID/keyring_name.Root

CRRACFID is the RACF ID for the application server control region. keyring_name is the name
of the z/OS keyring that is used by the servers in the cell.

2) Change the type to JCERACFKS

3) Enter the password, password.

e. Click Apply.

Results

After completing these steps, a new z/OS keyring is created that contains the root CA certificate attached
with the personal usage.

What to do next

Verify that the keystore was modified successfully.

1. Under Additional Properties, on the keystore collection panel, click Personal Certificates.

2. Verify that the certificate appears in the list.

Known error conditions

v When attempting to create a new keyring the follow error message can occur:
R_datalib (IRRSDL00) error: One or more updates could not be completed.
Requested Function_code not defined.
Function code: (7) Return Codes: (8, 8, 20)

This message indicates that you attempted to create a new keyring and did not have native writable
support installed. You must be running at z/OS release 1.9 or 1.8 with APAR's OA22287 and OA22295.

v The following message can occur when attempting to perform write operations on a SAF keyring,
operations such as, creating or deleting a certificate:

774 Securing applications and their environment

Error Message: An error occurred creating the key store: R_datalib (IRRSDL00) error: One or more updates could not be completed.
Not RACF authorized to use the requested service. Function code: (7) Return Codes: (8, 8, 8)

This message is received if you have not defined the correct RACF authority. See the document
Defining RACF authority for Clients and Servers in the z/OS internet library http://www-03.ibm.com/
servers/eserver/zseries/zos/bkserv/.

v The following message can occur when performing write operations if the underlying keyring does not
exist in RACF.
R_datalib (IRRSDL00) error: profile for ring not found (8, 8, 84)

Ensure the keyring exists in RACF prior to performing certificate management write operations.

Enabling writable SAF keyrings
WebSphere Application Server provides the function to allow a WebSphere Application Server
administrator to perform certificate management operations on System Authorization Facility (SAF)
keyrings by utilizing the (Open Cryptographic Services Facility) OCSF Data library functions for SAF
keyrings. This task migrates existing configurations and enables writable SAF keyrings.

Before you begin

This task is used for migrating keystore objects that have not been enabled for writable support through
profile creation. Writable keyring support is only configurable when running z/OS Release 1.9 or at z/OS
Release 1.8 with APAR OA22287 - resource access control facility (RACF) (or the APAR for your
equivalent security product) and APAR OA22295 – SAF.

Before starting this task, the wsadmin tool must be running. See the information about starting the
wsadmin scripting client.

About this task

By default, if writable keyring support is enabled during profile management, the default keystore
configurations are enabled for writable keyrings. Alternatively, if migrating from a pervious WebSphere
Application Server installation, you can enable writable keyrings for a keystore object using the following
steps.

AdminTask can be used in interactive mode and batch mode. For automation the batch mode options
should be used. AdminTask batch mode can be called in a JACL or Jython script. Interactive mode steps
you through all the parameters the task needs, required ones are marked with a ‘*'. Before the AdminTask
runs the task, it echoes the batch mode syntax of the task to the screen. This can be helpful when writing
batch mode scripts for automation.

The following attributes are needed to create writable SAF keyring keystore objects:

v keyStoreName

v controlRegionUser

v servantRegionUser

The interactive mode procedure to enable writable SAF keyrings is as follows:

Procedure
1. Use interactive mode to step through all attributes and use any default values for attributes (if desired).

The default value is in ‘[]' on the prompt line. The actual flag used in batch mode is in ‘()' on each
prompt line. If you are using the default value then the flag will not show up on the batch command
line.

v Using Jacl:

Chapter 8. Securing communications 775

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

$AdminTask enableWritableKeyrings -interactive

v Using Jython:
AdminTask.enableWritableKeyings (’[interactive]’)

2. An example of output from step (1) appears below:
*Keystore Name (keyStoreName): NodeDefaultKeyStore
Management Scope Name (scopeName):
*Control region userid for z/OS (SAF) (controlRegionUser): CRRACFID
*Servant region userid for z/OS (SAF) (servantRegionUser): SRRACFID

Modify keystore for writable SAF support

F (Finish)
C (Cancel)

Select [F, C]: [F] F
WASX7278I: Generated command line: $AdminTask enableWritableKeyrings {-keyStoreName NodeDefaultKeyStore
-controlRegionUser CRRACFID -servantRegionUser SRRACFID })

Results

Two additional keystore objects are created that can be accessed using the administrative console to
perform certificate operations on the appropriate keyring. The keystore objects are named
your_keystore_name -CR and your_keystore_name -SR, where your_keystore_name is the name of the
keystore specified on the create command.

your_keystore_name -CR corresponds to the keyring owned by the RACF ID of the control region
process and your_keystore_name -SR corresponds to the keystore owned by the RACF ID of the servant
region process.

These keystores are created in the same scope as your_keystore_name and can be accessed using the
administrative console from the your_keystore_name collection panel.

What to do next

Accessing writable SAF keyrings

1. Click Security > SSL certificate and key management > Manage endpoint security configurations
> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Writable SAF Keyrings, click either Control Region Keyring or Servant Region Keyring to
display the keystore collection panel for either the control region keyring or servant region keyring,
respectively.

3. Under Additional Properties, navigate to the certificate collection panels to perform certificate
management operations.

SAF keyring support for audit signing and encryption
When you enable auditing, logging occurs in both the servant and control regions. When audit uses a
certificate for signing and encryption that are stored in SAF keyrings, the certificate and the SAF keyring
must be accessible by both the servant and the control region RACF IDs.

Determining the accessibility of the certificate

You must determine whether a certificate is accessible by both the servant and control region RACF IDs
by reviewing the keyring information in RACF. There are multiple methods for determining whether a
certificate is accessible. Complete one of the following processes:

v Use the following RACDCERT LISTING commands to list the certificates that are associated with a
particular RACF ID for a specific keyring and compare the listings:

776 Securing applications and their environment

RACDCERT ID(CRRACFID) LISTRING(keyring_name)
RACDCERT ID(SRRACFID) LISTRING(keyring_name)

– CRRACFID is the control region RACF ID

– SRRACFID is the servant region RACF ID

– keyring_name is the specified key ring

v List information about a certificate in RACF. Use the following RACDCERT LIST command to obtain a
list of the keyrings and the RACF IDs that have access to the certificate and determine whether both
the servant and control region RACF IDs are listed:
RACDCERT LIST (LABEL(’certificate_label’)) CERTAUTH

If the certificate is accessible by one RACF ID and not the other RACF ID, you can use the following
RACDCERT CONNECT command to connect the certificate with the other RACF ID:
RACDCERT ID(CRRACFID) CONNECT (ID(CRRACFID) LABEL(’certificate_label’) RING(keyring_name) DEFAULT)

For auditing, a keystore object must be associated with a keyring in WebSphere Application Server. If the
keystore object and a keyring are not associated, then you can create this association in the administrative
console or use the CreateKeyStore wsadmin command. For more information, read about the keystore
settings or the KeyStoreCommands command group.

Accessing writable SAF keyrings

If you enable writable SAF keyrings and the keyring has a configuration object in WebSphere Application
Server, you can use the administrative console or the wsadmin task to verify that the certificate is
accessible by both the servant and control region RACF IDs. Typically, the following three keystore objects
are associated with a writable SAF keyring:

v A read-only view for the keyring

v The servant region view of the keyring

v The control region view of the keyring

If the certificate is seen by both the servant region and the control region keystore objects, you can use
the certificate for audit signing and encryption. You can look at the keystore object using the administrative
console or using the listPersonalCertificates command. For more information, read about certificate
management in SSL or the PersonalCertificateCommands command group.

If you can see the certificate in one keystore object, but cannot see it in another keystore object, you can
import the missing certificate into the other keystore object. For example, you would need to import the
certificate into the servant region keystore object if you can see it in the control region keystore object, but
cannot see it in the servant region keystore object. You can import the certificate from the control region
keystore object to the servant region keystore object using either the administrative console or the
importCertificate command. For more information, read about importing a certificate or the
PersonalCertificateCommands command group.

For more information about writable SAF keyrings, read about using, creating, and enabling writable SAF
keyrings.

Using certificates in SAF keyrings for audit

After the certificate is accessible by both the servant and control region RACF IDs of the SAF keyring, you
can use the certificate for audit signing and encryption. If you are using writable SAF keyrings, use the
read-only keystore object with the audit configuration. For more information about using certificates for
audit signing and encryption, read about protecting your security audit data.

Chapter 8. Securing communications 777

Extracting a signer certificate from a personal certificate
Personal certificates contain a private key and a public key. You can extract the public key, called the
signer certificate, to a file, then import the certificate into another keystore. The client requires the signer
portion of a personal certificate for Security Socket Layer (SSL) communication.

Before you begin

The keystore that contains a personal certificate must already exist.

Alternative Method: To extract a signer certificate from a personal certificate using the wsadmin tool, use
the extractCertificate command of the AdminTask object. For more information, see
the PersonalCertificateCommands command group for the AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore .

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Extract.

5. Type the full path for the certificate file name. The signer certificate is written to this certificate file.

6. Select a data type from the list.

7. Click Apply.

Results

The signer portion of the personal certificate is stored in the file that is provided.

What to do next

This signer can now be imported into other keystores.

Extract certificate
Use this page to extract the signer from the personal certificate and store it in a file. The certificate can be
added to a trust store for trust verification. When extracting the signer from a chained personal certificate,
the signer at the top level of the chain is extracted.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates > Extract.

Certificate alias to extract
Displays the name of the certificate that you selected for extraction on the previous panel.

Data type: Text

778 Securing applications and their environment

Certificate file name
Specifies the fully qualified path where the certificate file will reside.

Data type: Text

Data type
Specifies the format of the file, which is either Base64-encoded ASCII data or Binary DER data.

Data type: Text
Default: Base64-encoded ASCII data

Extract signer certificate
Use this page to extract a signer certificate from the keystore to a file so that it can be added elsewhere.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates . Select a signer certificate, then click the Extract button

File name
Specifies the fully qualified file name where the extracted signer certificate is placed.

Data type: Text

Data type
Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

Data type: Text

Retrieving signers using the retrieveSigners utility at the client
The client requires the signer certificates from the server to be able to communicate with WebSphere
Application Server. Use the retrieveSigners command to get the signer certificate from a server.

Before you begin

The retrieveSigners utility is located in one of the following directories, depending on your operating
system:

In this release, a Java client that does not have access to a stdin console prompt should use the
retrieveSigners utility to download the signers from the remote server key store when signers are needed
for a Secure Sockets Layer (SSL) handshake. For example, you might interpret the client as failing to
respond if an applet client or Java Web Start Client application cannot access the stdin signer exchange
prompt. Thus, you must add the WebSphere Java method call
com.ibm.wsspi.ssl.RetrieveSignersHelper.callRetrieveSigners to your client application to retrieve the
signers and to avoid running the retrieveSigners utility manually.

Use the retrieveSigners utility for situations where you cannot verify whether or not the
com.ibm.ssl.enableSignerExchangePrompt= property is enabled or disabled when the application makes a
request. Set the com.ibm.ssl.enableSignerExchangePrompt= property to false in the ssl.client.props file if
you cannot see the console.

Alternatively, you can manually create the server key in the client truststore.

Chapter 8. Securing communications 779

About this task

Complete the following steps, as required:

Procedure
1. Use the retrieveSigners command to get the signer certificate from a server. You can find details

about the retrieveSigners parameters in “Secure installation for client signer retrieval in SSL” on page
679.

2. If the client and server are on the same machine, you will need only the remoteKeyStoreName and
localKeyStoreName parameters. The most typical key store to reference on a remote system is
CellDefaultTrustStore on a network deployed environment and NodeDefaultTrustStore on an
application server.

3. When retrieving signers from a remote server, add these required connection-related parameters:
–host host, –port port, –conntype {RMI | SOAP}.

4. Use the –autoAcceptBootstrapSigner parameter if you want to enable automation of the signer
retrieval. This parameter automatically adds to the server all the signers that are needed to make the
connection.

Results

After running, the command displays the SHI-1 digest of the signers added. The output looks similar to the
following output:
C:\WebSphere\AppServer\profiles\AppSrv01\bin\retrieveSigners.bat
CellDefaultTrustStore ClientDefaultTrustStore

CWPKI0308I: Adding signer alias "default_signer" to local keystore
"ClientDefaultTrustStore" with the following SHA digest:

Example

The following examples illustrate how to call the retrieveSigners.bat file.

To retrieve signers on the same system, enter:
profile_root\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

To retrieve signers on a remote system with a SOAP connection, enter:
profile_root\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore
-host myRemoteHost -port 8879 -conntype SOAP -autoAcceptBootstrapSigner

To retrieve signers on a remote system with an RMI connection, enter:
profile_root\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore
-host myRemoteHost -port 2809 -conntype RMI -autoAcceptBootstrapSigner

To retrieve signers on a remote system that has security enabled, enter:
profile_root\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore
-host myRemoteHost -port 8879 -conntype SOAP -user testuser -password testuserpwd
-autoAcceptBootstrapSigner

Changing the signer auto-exchange prompt at the client
For clients to communicate with WebSphere Application Server, clients must obtain a signer certificate
from the server. Clients can use the retrieveSigners command to connect to a server to obtain the
appropriate signer. A prompt displays that asks whether or not you want to add a signer to the truststore. If
the Secure Sockets Layer (SSL) configuration uses an automated script that might hang, use the prompt
to obtain the certificate.

780 Securing applications and their environment

Before you begin

The com.ibm.ssl.enableSignerExchangePrompt property in the profile_home/properties/
ssl.client.props file controls the signer certificate prompt. By default, this property is set to true,
meaning the prompt is enabled.

About this task

Complete the following steps to disable or enable the signer-exchange prompt at the client:

Procedure
1. Open the profile_home/properties/ssl.client.props file using an editor.

2. Locate the section containing the SSL configuration information for the client that you are working with.

3. Change the value of the com.ibm.ssl.enableSignerExchangePrompt property to false if you do not
want the signer-exchange prompt, or set it to true if you want to be prompted.

4. Save and close the file.

Results

When the com.ibm.ssl.enableSignerExchangePrompt property is set to false, no prompt displays if a
signer is not trusted. In this case the SSL handshake fails. Once the proper signer for the connection
being made is manually installed in the trust store, the SSL handshake can succeed.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to gui or true, a signer-exchange
window is displayed, and you are asked to accept or reject the certificate. If you accept the certificate, it is
installed in the trust store automatically and the handshake succeeds. If you reject the certificate, it does
not get installed in the trust store and the handshake fails since the certificate is not trusted.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to stdin, a signer-exchange ASCII
prompt is displayed, and you are asked to accept or reject the certificate. If you accept the certificate, it is
installed in the trust store automatically and the handshake succeeds. If you reject the certificate, it does
not get installed in the trust store and the handshake fails since the certificate is not trusted.

The prompt looks like the following example:

Example
C:\WebSphere\AppServer\profiles\dmgr\bin>serverStatus -all
ADMU0116I: Tool information is being logged in file

C:\WebSphere\AppServer\profiles\Dmgr\logs\serverStatus.log
ADMU0128I: Starting tool with the dmgr profile
ADMU0503I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: dmgr

*** SSL SIGNER EXCHANGE PROMPT ***
SSL signer from target host 192.174.1.5 is not found in truststore
C:/WebSphere/AppServer/profiles/Dmgr/etc/trust.p12.

Verify that the digest value matches what is displayed at the server in the following signer information:
Subject DN: CN=hostname.austin.ibm.com, O=IBM, C=US
Issuer DN: CN=hostname.austin.ibm.com, O=IBM, C=US
Serial number: 1128544457
Expires: Thu Oct 20 15:34:17 CDT 2006
SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA
MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y
A retry of the request might need to occur.
ADMU0508I: The Application Server "server1" is STARTED.

Chapter 8. Securing communications 781

What to do next

Clients can instigate communications for various processes using signer certificates obtained from
WebSphere Application Server.

Importing a signer certificate from a truststore to a z/OS keyring
You can import a signer certificate, which is also called a certificate authority (CA) certificate, from a
truststore on a non-z/OS platform server to a z/OS keyring.

Procedure
1. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat (Windows) or ikeyman.sh (UNIX). The install_root variable refers to
the installation path for WebSphere Application Server.

2. Within the iKeyman utility, open the server truststore. The default server truststore is called the
trust.p12 file. The file is located in the $[USER_INSTALL_ROOT}/config/cells/<cell_name>/nodes/
<node_name> directory. The default password is WebAS.

3. Extract the signer certificate from the truststore using the ikeyman utility. Complete the following steps
to extract the signer certificate:

a. Select Signer certificates from the menu.

b. Select root from the list.

c. Select Extract.

d. Select the correct data type. The signer_certificate can have either a Base64-encoded ASCII data
type or a Binary DER data type.

e. Specify the fully qualified path and the file name of the certificate.

4. From an FTP prompt on the non-z/OS platform server, type ascii to change the file transfer to ascii
mode.

5. You can ftp the certificate to the z/OS platform either as a file in the Hierarchical File System (HFS) or
as an MVS dataset. To ftp as a dataset:, from an FTP prompt on the non-z/OS platform server, type
put 'signer_certificate' mvs.dataset. The signer_certificate variable refers to the name of the
signer certificate on the non-z/OS platform server. The mvs.dataset variable is the data set name to
which the certificate was exported.

To ftp as a file in the HFS from an FTP prompt on the non-z/OS platform server, type put
'signer_certificate' file_name. The signer_certificate variable refers to the name of the signer
certificate on the non-z/OS platform server. The file_name variable is the name of the file in the HFS to
which the certificate was exported.

The RACDCERT CERTAUTH ADD command in the next step works with a Multiple Virtual Storage (MVS)
data set only. You can either turn the certificate file into a binary MVS data set or use the put
command with an HFS file, and then use the following command to copy the file into a MVS data set:

cp -B /u/veser/Cert/W21S01N.p12 "//’VESER.CERT.W21S01N’"

6. On the z/OS platform server, go to option 6 in the Interactive System Productivity Facility (ISPF) dialog
panels and issue the following commands as a super user to add the signer certificate to the z/OS
keyring:

a. Type RACDCERT CERTAUTH ADD ('signer_certificate') WITHLABEL('WebSphere Root Certificate')
TRUST . The WebSphere Root Certificate variable refers to the label name for the certificate
authority (CA) certificate that you are importing from a non-z/OS platform server. The
keyring_name variable refers to the name of the z/OS keyring that is used by the servers in the
cell.

b. Type RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL('WebSphere Root Certificate')
RING(keyring_name)

c. Type RACDCERT ID(DMCR1) CONNECT(CERTAUTH LABEL('WebSphere Root Certificate')
RING(keyring_name)

782 Securing applications and their environment

d. Type RACDCERT ID(DMSR1) CONNECT(CERTAUTH LABEL('WebSphere Root Certificate')
RING(keyring_name) In the previous commands, ASCR1, DMCR1, and DMSR1 are the RACF IDs under
which the started tasks for the cell run in WebSphere Application Server for z/OS. The ASCR1 value
is the RACF ID for the application server control region. The DMCR1 value is the RACF ID for the
deployment manager control region. The DMSR1 value is the RACF ID for the deployment manager
server region.

Results

After completing these steps, the z/OS keyring contains the signer certificates that originated on the
non-z/OS platform server.

What to do next

To verify that the certificates were added, use option 6 on the ISPF dialog panel and type the following
command:
RACDCERT ID(CBSYMSR1) LISTRING(keyring_name)

The CBSYMSR1 value is the RACF ID for the application server region.

Note: Although iKeyman is supported for WebSphere Application Server Version 6.1, customers are
encouraged to use the administrative console to export signer certificates.

Exporting a signer certificate from WebSphere Application Server for
z/OS to a truststore
You can export a signer certificate, which is also called a certificate authority (CA) certificate, from
WebSphere Application Server for z/OS to a truststore.

Before you begin

WebSphere Application Server, WebSphere Application Server, Network Deployment, or WebSphere
Application Server, Express can use the certificate in the truststore.

Procedure
1. Export the z/OS® signer certificate to a data set by issuing the following Resource Access Control

Facility (RACF) command as a super user using Time Sharing Option (TSO) option 6:
RACDCERT CERTAUTH EXPORT(LABEL(’signer_certificate’)) DSN(’mvs.dataset’)FORMAT(CERTDER)

The signer_certificate variable is the RACF label name of the certificate that is used by the cell. The
signer_certificate can have either a Base64-encoded ASCII data type or a Binary DER data type. The
mvs.dataset variable is the data set name to which the certificate is exported. You do not need to
pre-allocate this data set because it is created by RACF.

2. From a command line on the non-z/OS platform server, type cd and change to the following directory:
$[USER_INSTALL_ROOT}/config/cells/<cell_name>/nodes/<node_name>

3. From an FTP prompt on the non-z/OS platform server, type bin to change to binary mode.

4. From an FTP prompt on the non-z/OS platform server, type the following command:
get ’mvs.dataset’ signer_certificate

5. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman
utility, which is called ikeyman.bat for Windows or ikeyman.sh for UNIX. Within the iKeyman utility,
open the server truststore. The default server truststore is called the trust.p12 file. The file is located
in the ${USER_INSTALL_ROOT}/config/cells/<cell_name>/nodes/<node_name>/ directory. The default
password is WebAS.

6. Add your exported signer certificate to the server truststore using the iKeyman utility. Complete the
following steps to add your exported signer certificate:

Chapter 8. Securing communications 783

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data
type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

7. Within the iKeyman utility, open the client truststore. The default client truststore is called the
trust.p12 file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The default password
is WebAS.

8. Add your exported signer certificate to the client truststore using the iKeyman utility. Complete the
following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data
type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

9. Restart the server process to use the new signer certificates.

What to do next

After completing these steps, you can use the exported signer certificates with the WebSphere Application
Server, WebSphere Application Server, Network Deployment, or WebSphere Application Server, Express
products.

Retrieving signers from a remote SSL port
To perform Secure Sockets Layer (SSL) communication with a server, WebSphere Application Server must
retrieve a signer certificate from a secure remote SSL port during the handshake. After the signer
certificate is retrieved, you can add the signer certificate to a keystore.

Before you begin

The keystore that is to contain the signer certificate must already exist.

Alternative Method: To retrieve a signer certificate from a port using the wsadmin tool, use the
retrieveSignerFromPort command of the AdminTask object. For more information,
see the SignerCertificateCommands command group for the AdminTask object
article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > Key stores and certificates > keystore > Signer certificates > Retrieve
from port.

2. Click Retrieve from port.

3. Type the host name of the machine on which the signer resides.

4. Type the port location on the host machine on which the signer resides. The port location is not limited
to ports on WebSphere Application Server. The ports can include Lightweight Directory Access
Protocol (LDAP) ports or ports on any server on which an SSL port is already configured, such as
SIB_ENDPOINT_SECURE_ADDRESS.

5. Select an SSL configuration for the outbound connection from the list.

6. Type an alias name for the certificate.

784 Securing applications and their environment

7. Click Retrieve signer information. A message window displays information about the retrieved signer
certificate, such as: the serial number, issued-to and issued-by identities, SHA hash, and expiration
date. If a chained certificate is on the port, information about the root is displayed.

8. Click Apply. This action indicates that you accept the credentials of the signer.

Results

The signer certificate that is retrieved from the remote port is stored in the keystore.

What to do next

An SSL configuration or client process that requires an SSL connection to the server can use the retrieved
and approved signer certificate.

Retrieve from port
Use this page to retrieve a signer certificate from a remote SSL port. The system connects to the specified
remote SSL host and port and receives the signer during the handshake using an SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates. Then click the Retrieve from port button.

To retrieve a signer certificate from a specific port, you enter the host and port, select an SSL configuration
from the pull-down list, and enter an alias to identify the signer certificate. Click Retrieve Signer
Information and information about the signer certificate is displayed, such as the serial number of the
certificate, who the certificate is issued to and by, the certificate finger print, and the expiration information
for the certificate. If you want the certificate to be stored in the keystore, click Apply or Save.

Host
Specifies the host name to which you connect when attempting to retrieve the signer certificate from the
Secure Sockets Layer (SSL) port.

Data type: Text

Port
Specifies the SSL port to which you connect when attempting to retrieve the signer certificate.

Note: In a network deployment environment, you need to specify the correct secure sockets layer (SSL)
port number when attempting to retrieve a signer certificate from a remote SSL port.

v Use the port number associated with the port name, WC_adminhost_secure, when retrieving a
signer certificate from the deployment manager.

v Use the port number associated with the port name,
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS, when retrieving a signer certificate from a
node.

All certificates must be in place prior to retrieving them from the deployment manager or from base
servers.

Data type: Text

Chapter 8. Securing communications 785

SSL configuration for outbound connection
Specifies the SSL configuration that is used to connect to the previously specified SSL port. This
configuration is also the SSL configuration that contains the signer after retrieval. This SSL configuration
does not need to have the trusted certificate for the SSL port as it is retrieved during validation and
presented here.

Data type: Text

Alias
Specifies the certificate alias name that you want to reference the signer in the key store, which is
specified in the SSL configuration.

Data type: Text

Retrieved signer information
Specifies the signer certificate information if it is retrieved from the remote host and port.

Adding a signer certificate to a keystore
Signer certificates establish the trust relationship in SSL communication. You can extract the signer part of
a personal certificate from a keystore, and then you can add the signer certificate to other keystores.

Before you begin

The keystore that you want to add the signer certificate to must already exist.

Alternative Method: To add a signer certificate to a keystore by using the wsadmin tool, use the
addSignerCertificate command of the AdminTask object. For more information, see
the SignerCertificateCommands command group for the AdminTask object article.

Note: If the security custom property com.ibm.websphere.security.OverwriteAndReplaceOnImport is set to
true then import certificate imports a certificate and overwrites an existing certificate. It then
perform the certificate replace operation on that certificate. Typically, an existing certificate cannot
be overwritten by a certificate that is being imported. The task also replaces all signer certificates
from the original certificate and replaces them with the signer certificate from the new certificate that
is being imported

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound | Outbound > ssl_configuration > Key stores and certificates.

2. Select a keystore from the list of keystores.

3. Click Signer certificates.

4. Click Add.

5. Enter an alias for the signer certificate in the Alias field

6. Enter the full path to the signer certificate file in the File name field.

7. Select a data type from the list in the Data type field.

8. Click Apply.

786 Securing applications and their environment

Results

When these steps are completed, the signer from the certificate file is stored in the keystore. You can see
the signer in the keystore files list of signer certificates. Use the keystore to establish trust relationships for
the SSL configurations.

Add signer certificate settings
Use this page to add a signer certificate in a certificate file to the keystore in the security configuration.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration > Key stores
and certificates > keystore > Signer certificates > Add.

Alias
Specifies the alias that is used to identify the signer certificate in the keystore.

Data type: String

File name
Specifies the path to the filename where the signer certificate is located.

Data type: String

Data type
Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

Data type: String

Signer certificates collection
Use this page to manage signer certificates in key stores. Signer certificates are used by Java Secure
Socket Extensions (JSSE) to validate certificates sent by the remote side of the connection during a
Secure Sockets Layer (SSL) handshake. If a signer does not exist in the trust store that can validate the
certificate sent, the handshake fails and generates an "unknown certificate" error.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates.

Table 98. Signer certificates buttons. This table lists the signer certificates buttons.
Button Resulting action

Add Adds a new trusted (signer) certificate.

Delete Deletes an existing signer certificate.

Extract Extracts a signer certificate from a personal certificate to a file.

Retrieve from port Makes a test connection to an SSL port and retrieves the signer from the server during the
handshake. The information from the certificate will be displayed so you can decide whether to trust
it based upon the MD5 and/or SHA hash.

Alias
Specifies the alias for this signer certificate in the key store.

Issued to
Specifies the distinguished name of the entity that requested the certificate.

Chapter 8. Securing communications 787

Fingerprint (SHA digest)
Specifies the Secure Hash Algorithm (SHA hash) of the certificate. This can be used to verify the hash for
the certificate at another location, such as the client side of a connection.

Expiration
Specifies the expiration date of the signer certificate for validation purposes.

Signer certificate settings
Use this page to verify the general properties of the selected signer certificate.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates. Then click on a signer certificate.

Alias
Specifies the alias for this signer certificate in the key store.

Version
Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1.

Key size
Specifies the key size of the public key used by the signer certificate.

Serial number
Specifies the certificate serial number that is generated by the issuer of the certificate.

Validity period
Specifies the begin and end dates of the certificate.

Issued to
Specifies the distinguished name of the entity that requested the certificate.

Issued by
Specifies the distinguished name of the entity that issued the certificate. This name is the same as the
issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest)
Specifies the Secure Hash Algorithm (SHA) hash of the certificate, which can be used to verify the hash
for the certificate at another location such as the client side of a connection.

Signature algorithm
Specifies the algorithm that is used to sign the certificate.

Adding a signer certificate to the default signers keystore
Signer certificates are added to a keystore on the client side of an SSL communication to establish trust
with the server. There is common practice for keystores to have trust established when they are created.
The DmgrDefaultSignersStore on a deployment manager and the NodeDefaultSignersStore on a stand
alone application server are created to hold signer certificates used to establish trust by default in newly
create keystores.

Before you begin

The default signers key store is created during profile creation and contains the signer certificate of the
server default root certificate. Additional signer certificates can be added to the default signers key store at

788 Securing applications and their environment

any time. Anytime a keystore is created using the admin console or by using the createKeyStore
AdminTask object in scripting, all signer certificates from the default signer store are added to the newly
created keystore.

Alternative Method:

v To add a signer certificate to a default signer keystore by using the wsadmin tool,
use the addSignerCertificate command of the AdminTask object.

v To create a new keystore by using the wsadmin tool, use the createKeyStore
command of the AdminTask object.

v To extract the signer from a personal certificate using the wsadmin tool, use the
extractCertificate of the AdminTask object.

v To exchange a signer certificate using the wsadmin tool, use the
KeyStoreCommands command group for the AdminTask object.

For more information, see the SignerCertificateCommands command group for the
AdminTask object article and the KeyStoreCommands command group for the
AdminTask object article.

Procedure
1. If the certificate is in a certificate file, it can be added to the default signer keystore using the

administrative console.

a. Click Security > SSL certificate and key management.

b. Under Related Items, click Key stores and certificates.

c. c. Select Default signers keystore under KeyStore Usages. A panel displaying a list of keystores
appears.

d. Click on DmgrDefaultSignersStore.

e. Under Additional Properties, click Signer certificates.

f. Click Add .

g. Enter an alias in the alias box, a path to the certificate file in the filename box, and an asterisk (v).
Select the format of the certificate file from the pull down list in the “Data type” box.

h. Click Apply then Save.

Note: You can also perform this addition using the AdminTask, addSignerCertificate.

2. If the signer certificate form of a personal certificate needs to be added to default signers keystore, you
can extract the signer from the personal certificate to a certificate file or the signer can be extracted
directly to the default signers keystore. To extract a signer certificate from a personal certificate to a
certificate file,

a. Click Security > SSL certificate and key management.

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the keystore name

e. Under Additional Properties, click Personal certificates.

f. Select a personal certificate.

g. Click Extract.

h. Enter the path to the certificate file in “Certificate file name” box and select a format type from the
pull down list in “Data type” box

i. Click Apply then Save.

j. The signer can be added to the default signers keystore by following step 1.

Chapter 8. Securing communications 789

Note: You can also extract the signer from a personal certificate using scripting and the AdminTask
extractCertificate.

3. To extract a signer certificate to the default signers keystore, an exchange of the signer certificate can
be performed from the administrative console.

a. Click Security > SSL certificate and key management

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the default signers keystore and the keystore that contains the personal certificate whose
signer certificate is needed.

e. Click Exchange Signers.

f. Select the personal certificate whose signer is needed.

g. Click Add.

h. Click Apply then Save.

Note: You can also perform the exchange using the AdminTask, exchangeSigner.

Note: A DataPower certificate can be removed from the default signers keystore if it is present. If you
are not using the DataPower appliance manager you should remove the DataPower certificate
from the default trust store to avoid unintentional trust relationships. However, if you start to use
DataPower appliance manager at a later date you must add the DataPower certificate back to
the default trust store.

Results

When these steps are completed, the signer from the certificate file is stored in the default signers
keystore. You can see the signer in the keystore files list of signer certificates.

What to do next

The new keystore will contain the default signers that were added to the default signers keystore.

Exchanging signer certificates
To establish trust relationships, you can exchange signer certificates between keystores. When you
exchange signer certificates, you are extracting a personal certificate from one keystore and adding it to
another keystore as a signer certificate.

Before you begin

To exchange signer certificates, there must be two keystores.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Select two keystores from the list of keystores.

3. Click Exchange signers.

4. Select any of the certificates in the first personal certificates list, and click Add. After adding, the signer
part of the selected personal certificate appears in the other (second) keystore signers list.

790 Securing applications and their environment

5. Select any of the certificates in the second personal certificates list, and click Add. After adding, the
signer part of the selected personal certificate appears in the other (first) keystore signers list.

6. Optional: If you need to remove any of the certificates from either of the signers lists, highlight one or
more of the certificates, and click Remove.

7. Click Apply and Save.

Results

The signer certificate appears in the list for each keystore.

What to do next

The extracted signer certificate is available to both keystores during the connection handshake.

Keystores and certificates exchange signers
Use this page to extract the signer part of a personal certificate from one keystore and add it to another
keystore as a signer certificate. Signer certificates can also be listed, and they will be added to the other
keystore as well.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates then select two key stores to
exchange and click the Exchange signers.

Note: Any changes made to this panel are permanent.

[keystore] personal certificates
Specifies the personal certificates and signer certificates that are currently stored in the specified keystore.

Press and hold the Ctrl key to select more than one item from the list.

Data type: Text

[keystore] signers
Specifies the trusted signer certificates that are currently stored in the specified keystore and selected for
the exchange.

Press and hold the Ctrl key to select more than one item from the list.

Data type: Text

Add
Specifies to extract the signer from the selected personal certificate in the keystore list on the left and add
it to the signers list of the keystore on the right.

After the certificate is added, it no longer displays in the left-hand list. The personal certificate is still in the
keystore, but it is no longer selectable

Remove
Specifies to remove a selected signer from the signers list of the keystore on the right. The removed
certificate displays in the keystore list on the left.

Chapter 8. Securing communications 791

Configuring certificate expiration monitoring
When certificates expire, they can no longer be used by the system. WebSphere Application Server
provides a utility to monitor certificates that are close to expiration or have already expired. You can
schedule certificate monitoring, or you can request certificate monitoring on demand. You can also
configure options for deleting expired certificates and for recreating certificates.

Before you begin

Important: The Certificate Expiration Monitor does not handle replacing client self-signed certificates and
is not capable of sending the new signer certificate needed for trust. If the client is a web
server plug-in, it will not be able to securely communicate with the application server after
self-signed certificate replacement.

WebSphere Application Server notifies you when a certificate is about to expire. Complete the information
required for notification messaging in “Notifications” on page 795.

About this task

Complete the following configuration steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage certificate expiration.

2. Type a number for the number of days threshold in the Expiration notification threshold field.
WebSphere Application Server issues an expiration warning n number of days before expiration.

3. Select or check one or more of the following options:

v Expiration check notification. Select the method from the list that you want to use to receive your
notification.

v Automatically replace expiring self-signed certificates. If you do not want to recreate the
self-signed certificate, clear the check box.

Attention: When using writable System Authorization Facility (SAF) keyrings in your configuration,
the certificate expiration monitor does not replace expired certificates in the writable SAF keyrings,
but only provides a notification of the expiration.

v Delete expiring certificates and signers after replacement. If you do not want to delete the
expired certificates and signers, clear the check box.

v Enable checking. If you do not want to have certificate monitoring enabled, clear the check box.

4. Enter the time of day when you want certificate monitoring to take place to schedule the running of the
certificate expiration monitor.

5. Select one of the following options:

v Check by calendar. For Weekday, enter the day of week that you want to run the certificate
expiration monitor. For Repeat Interval, specify the frequency to run the certificate monitor.

v Check by number of days. Enter a number for how frequently the monitor runs, in number of days.

6. Type the number of days before the threshold date in which the certificate monitor warns that a
certificate is about to be replaced. When a certificate is within the expiration threshold, and automatic
replacement is enabled, certificates are replaced. This value specifies the time period before the
threshold when warnings are issued by the certificate monitor concerning upcoming replacement dates.

7. Click Apply.

792 Securing applications and their environment

Results

After completing the settings, a certificate expiration monitor object and a schedule are set up in the
configuration. The certificate expiration monitor runs according to the configurations options that you
configured.

What to do next

You can generate reports that state which certificates have expired. The reports identify the notifications of
certificate replacements and deletions. The report is sent according to the notification option that you
specified.

Manage certificate expiration settings
Use this page to configure the certificate expiration monitor.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage certificate expiration.

Attention: To see the changes to the Expiration checking fields, you must click Apply.

Start now
Specifies to start certificate monitoring. When the monitor runs, it visits all the key stores and checks to
see if they are within certificate expiration range. If you set the option to delete or replace expired
certificates, you can run these operations immediately by pressing Start now.

Expiration notification threshold
Specifies the period of time that occurs chronologically just before the expiration day of the certificate,
within which, if the ExpirationMonitor thread runs, and Automatically replace expiring self-signed and
chained certificates is enabled, a new self-signed or chained certificate is generated. By default, the
replacement period for the certificate is 60 days in length or less as defined in the daysBeforeNotification
property.

There is a pre-notification period where the certificate is added to the notification list but not touched for 90
days prior to the 60 days. By default, this pre-notification period is 90 days in length as defined in the
com.ibm.ws.security.expirationMonitorNotificationPeriod property.

Data type: Integer
Default: 60 days or less

Enable checking
Specifies the certificate monitor is active and will run as scheduled.

Scheduled time of day to check for expired certificates
Specifies the scheduled time that the system checks for expired certificates.

You can type the scheduled time in hours and minutes, specify either A.M. or P.M., or 24-hour.

Data type Integer
Default: 0, 0
Range: 1–12, 0–59

Check by calendar
Indicates that you want to schedule a specific day of the week on which the expiration monitor runs. For
example, it might run on Sunday.

Chapter 8. Securing communications 793

Default: Enabled

Weekday
Specifies the day of the week on which the expiration monitor runs if Check on a specific day is
selected.

Default: Sunday
Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval
Specifies the period of time between each schedule time to check for expired certificates or the interval
between schedule checks.

Default: Daily
Range: Daily, Weekly

Check by number of days
Specifies that you want to schedule a specific number of days between each run of the expiration monitor.
The day of the week on which this occurs is not counted. For example, if you set the interval to check for
expired certificates every seven days, the expiration monitor runs on day eight.

Default: Disabled

Next start date
Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and
restarted without resetting the date.

Expiration check notification
Specifies the notification type (either email, or an entry in the system log) when an expiration monitor runs.

Default:

Automatically replace expiring self-signed certificates and chained certificates
Specifies a new self-signed certificate or chained certificate be generated using the same certificate
information if the expiration notification threshold is reached. The old certificate is replaced and uses the
same alias. All old signers are managed by the key store configuration are also replaced. The system only
replaces self-signed certificates.

Note: This checkbox is only applicable when using file based keystores.

Default: Enabled

Delete expiring certificates and signers after replacement
Specifies whether to completely remove old, self-signed certificates from the key store during a replace
operation or leave them there under a renamed alias. If an old certificate is not deleted, the system
renames the alias so that the new certificate can use the old alias, which might be referenced elsewhere
in the configuration.

Note: This checkbox is only applicable when using file based keystores.

Default: Enabled

794 Securing applications and their environment

Notifications
Use this page to specify the generic notification definitions that are used in certificate expiration monitors.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage certificate expiration. Under Related items, click Notifications.

Table 99. Notifications buttons. This table lists the notifications buttons.
Button Resulting action

New Adds a notification. The notification configures how the expiration monitor notifies the administrator
of certificates that will expire within the specified threshold.

Delete Deletes an existing notification.

Notification name
Specifies the notification name.

Message log
Specifies that this configuration intends to log certificate expiration information to the message log file.

Send Email
Specifies that this configuration intends to send certificate expiration information to the list of users in the
email list.

List of email addresses
Specifies the email addresses that are sent notifications when certificates fall within the expiration
threshold. You must specify the SMTP server for each email address. If an email address is not specified,
by default the application server assumes that the SMTP server is "smtp-server." For example, if you type
name@domain, the SMTP server will be smtp-server.domain.

Notifications settings
Use this page to set properties for new notifications used in certificate expiration monitors or for security
audit subsystem failures.

To view this administrative console page perform one of the following:

v Click Security > SSL certificate and key management > Manage certificate expiration
>Notifications > New.

v Click Security > Security auditing > Audit monitor > New

.

Notification name
Specifies the name of the notification configuration.

Data type: Text

Message log
Specifies that this configuration will log the notification to a message log file.

Default: Disabled

Email sent to notification list
Specifies that this configuration send a notification as an email to the email list.

Default: Disabled

Chapter 8. Securing communications 795

Email address to add
Specifies the email addresses that are sent notifications. You must specify the SMTP server for each email
address. If an email address is not specified, by default the application server assumes that the SMTP
server is "smtp-server." For example, if you type name@domain, the SMTP server will be
smtp-server.domain.

Data type: Text (format as valid Internet mail address)

Add
Adds the email address to the right-hand list.

Remove
Removes the email address from the right-hand list.

Outgoing mail (SMTP) server
Specifies the SMTP server to be used with the email address. If none is specified, the email realm will be
used.

Key management for cryptographic uses
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that
applications use to perform cryptographic operations on data. The key management framework provides
an application programming interface (API) for retrieving these keys. Keys are managed in keystores so
the keystore type can be supported by WebSphere Application Server, provided that the keystores can
store the referenced key type. You can configure keys and scope keystores so that they are visible only to
particular processes, nodes, clusters, and so on.

The key management infrastructure is based on two key configuration object types: key sets and key set
groups. WebSphere Application Server uses a key set to manage instances of keys of the same type. You
can configure a key set to generate a single key or a key pair, depending on the key or key pair generator
class. A key set group manages one or more key sets and enables you to configure and generate different
key types at the same time. For example, if your application needs both a secret key and key pair for
cryptographic operations, you can configure two key sets, one for the key pair and one for the secret key
that the key set group manages. The key set group controls the auto-generation characteristics of the
keys, including the schedule. The framework can automatically generate keys on a scheduled basis, such
as on a particular day of the week and time of day, so that key generation is done during off-peak hours.

Figure 1 shows an example of a key set group that is configured to manage two key sets: key set 1 and
key set 2.

Key set 1 generates key pairs. Key set 2 generates secret keys. The application needs both types of keys
for its cryptographic operations, signing and encryption, on data. The keys for each key set need to be
generated in tandem. The application stores the key set group name with the encrypted data. The key set
group generates a new set of keys every Sunday night at 11 P.M.. The application maintains key
generation data for two weeks.

Creating a key set configuration
You can use key sets to manage multiple instances of cryptographic keys. WebSphere Application Server
uses keys to encrypt or sign outbound data, and decrypt or verify inbound data during cryptographic
operations.

Figure 32.

796 Securing applications and their environment

Before you begin

You must have write-access to the keystore that will contain the keys after you generate them from a key
set. However, if you want to generate keys outside of WebSphere Application Server, you can reference
the keys from a read-only keystore that contains a secret key that you can access when you generate the
keys. If you are creating a key pair using an X509Certificate and a PrivateKey object , see “Example:
Developing a key or key pair generation class for automated key generation” on page 803.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the key set at the cell scope or below the cell scope at the node,

server, or cluster, for example:

v To create a key set at the cell scope, click Security > SSL certificate and key management >
Key sets.

v To create a key set at a scope below the cell level, click Security > SSL certificate and key
management > Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration > Key sets.

2. Click New to create a new key set.

3. Type a key set name. For example, CellmyKey.

4. Type a key alias prefix name. For example, myKey. This field specifies the prefix for the key alias
when the new key is generated and stored in the keystore. Following the prefix is the key reference
version number, for example, 2, so that the full key alias name would be myKey_2. If the key reference
already has a specified alias for a key that exists in the keystore, then WebSphere Application Server
ignores this field.

5. Type a key password. The key password protects the key in the keystore. This password is ignored
by WebSphere Application Server if you already specified a password for the key alias reference. To
check for a key reference password, click Active key history under Additional Properties. The key
reference password protects keys that are generated by a key generator class.

6. Type the password again to confirm it.

7. Optional: Type the key generator class name. For example,
com.ibm.ws.security.ltpa.LTPAKeyGenerator. The class name generates keys. If the class
implements com.ibm.websphere.crypto.KeyGenerator, then a getKey method returns a
java.security.Key object that is set in the keystore using the setKey method without a certificate chain.
If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair method
returns a com.ibm.websphere.crypto.KeyPair object that contains either a java.security.PublicKey and
java.security.PrivateKey or a java.security.cert.Certificate and a java.security.PrivateKey object. The
key generator class and the KeySetHelper API specify the details of the keys that are generated.

8. Optional: Select Delete key references that are beyond the maximum number of keys if you do
not want old keys saved in the keystore after WebSphere Application Server removes their references
from the Active key history listing. The Active key history lists the keys that the KeySetHelper API is
currently tracking. The number of keys in the list is equal to the number of keys that you specify in
Maximum number of keys referenced.

9. Type a numeric value for the maximum number of keys referenced. For example, if you type 3 and
select Delete key references that are beyond the maximum number of keys, the fourth key
version generation automatically triggers WebSphere Application Server to delete the first key version
from the keystore. If you choose not to delete the old keys, they do not display in the Active key
history list but instead remain in the keystore where you can remove them manually.

10. Select a keystore from the drop-down list.

v Select a JCEKS keystore if you are storing a secret key.

Chapter 8. Securing communications 797

v Select any keystore if you are storing a key pair with an X509Certificate and PrivateKey object.

11. Optional: Select Generates key pair if your key generator class name implements the
com.ibm.websphere.crypto.KeyPairGenerator interface instead of the
com.ibm.websphere.crypto.KeyGenerator interface. This option designates that the key references a
key pair instead of a single key. A key pair contains both a public key and a private key. The
WebSphere Application Server run time determines whether or not key pairs are stored and loaded
differently than single keys.

12. Optional: Click Apply if you want to select Active key history under Additional Properties to add
alias references or generate more keys.

a. Click Active key history.

b. Click Add key alias reference if you are not using the key generator class name to add key alias
references to the keys that already exist in the keystore. Use this option to retrieve the keys from
a read-only keystore without the key set generating them.

c. Type an alias reference.

d. Click Generate key if you want to generate a key using the class name that you defined in the
key sets panel. Each new key increments numerically, for example, myAlias_2.

e. Click Apply.

13. Click the key set name in the navigation path at the top of the panel.

14. Click OK and Save.

Results

You have created a key set that you can manage using the Active key history link. You can generate
keys manually to associate them with specified key sets.

What to do next

After you generate new keys from a key set, you can access them programmatically using the
com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to
access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following
code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see
“Example: Retrieving the generated keys from a key set group” on page 802. To generate multiple key
types at the same time or to schedule the key generation on a specific schedule, see “Creating a key set
group configuration” on page 801.

Active key history collection
Use this page to manage key alias references.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration > Key Sets >
key set > Active key history.

Table 100. Active key history buttons. This table lists the active key history buttons.
Button Resulting action

Add key alias reference Adds a reference to a key that already exists in a key store. If a key generation class is configured,
the references are added automatically during generation and do not need to be added manually.

Delete Deletes an existing key reference. This action does not delete the key in the keystore.

Generate key Generates a key. The button is displayed only if a generator class name is specified for the key set,
and the selected key store is editable.

Alias reference
Specifies the name of the alias as it appears in the keystore.

798 Securing applications and their environment

Add key alias reference settings
Use this page to access key alias reference information.

To view this administrative console page, Under Configuration settings, click Manage endpoint security
configurations > {Inbound | Outbound} > ssl_configuration. Under Related items, click Key Sets >
key set. Under Additional Properties, click Active key history then click the Add key alias reference
button.

Alias reference
Specifies the name of the alias as it appears in the key store.

Data type: Text

Password
Specifies the key password to get access to the key. This password is enforced by the keystore for that
specific key. If the key does not have a password, this field can be left blank.

Data type: Text

Confirm password
Confirms the password entered in the previous field.

Data type: Text

Key sets collection
Use this page to manage key sets, which control a set of key instances of the same type for use in
cryptographic operations. The keys can either be generated using a custom class or reference keys that
already exist in a keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key sets.

Table 101. Key set buttons. This table lists the key set buttons.
Button Resulting action

New Adds a new key set.

Delete Deletes an existing key set. Make sure the key set is not referenced by a key set group before
deleting it.

Key set name
Specifies the key set name that is used to select the key set from a key set group and from runtime
application programming interfaces (API).

Key store
Specifies the key store that contains the keys for storage, retrieval, or both.

Key alias prefix name
Specifies the prefix for the key alias when a new key is generated and stored in a key store. The rest of
the key alias comes from the key reference version number.

For example, if the alias prefix is mykey and the key reference version is 2, the keystore references the key
using alias mykey_2. If the key reference already has a specified alias for a key already existing in the
keystore, this field is ignored.

Chapter 8. Securing communications 799

Key sets settings
Use this page to set the properties for a new key set.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key sets > New.

Key set name
Specifies the key set name that is used to select the key set from a key set group and from runtime
application programming interfaces (API).

Data type: Text

Management scope
Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Data type List
Range: Applicable scopes

Key alias prefix name
Specifies the prefix for the key alias when a new key is generated and stored in a keystore. The rest of
the key alias comes from the key reference version number. For example, if the alias prefix is mykey and
the key reference version is 2, the keystore references the key using alias mykey_2. If the key reference
already has a specified alias for a key already existing in the keystore, this field is ignored.

Data type: Text

Key password
Specifies the password used to protect the key in the keystore. If a password is specified in the key
reference as well, this password is ignored. This password is used for keys that get generated by a key
generator class.

Data type: Text

Confirm password
Specifies the same password again to confirm it was entered correctly the first time.

Data type: Text

Key generator class name
Specifies the class name that generates keys. If the class implements
com.ibm.websphere.crypto.KeyGenerator, then a getKey() method should return a java.security.Key object
that is set in the key store using the setKey method without a certificate chain. The key store type
associated with the key set must support storing keys without certificates, such as JCEKS.

Data type: Text

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair() method should
return a com.ibm.websphere.crypto.KeyPair object containing either a java.security.PublicKey and
java.security.PrivateKey, or a java.security.cert.Certificate[] and a java.security.PrivateKey. The key

800 Securing applications and their environment

generator class and the caller of the KeySetHelper API should know the details of the keys that are
generated. This framework does not need to understand the key algorithms and lengths.

Delete key references that are beyond the maximum number of keys:

Specifies that the keys are deleted from the keystore at the same time that the key reference is deleted.
The server deletes the older key references as the Maximum number of keys referenced value is
exceeded.

Maximum number of keys referenced
Specifies the maximum number of key instances that are returned when keys from this key set are
requested. The oldest key reference gets removed whenever a new key reference gets generated after the
maximum has been reached.

Data type: Integer
Default: 3

Key store
Specifies the key store that contains the keys for storage, retrieval, or both.

Data type: Text

Generates key pair
Specifies that a key references a key pair instead of a key. The key pair contains both a public key and a
private key.

Creating a key set group configuration
A key set group manages one or more key sets. WebSphere Application Server uses key set groups to
automatically generate cryptographic keys or multiple synchronized key sets.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the key set group at the cell scope or below the cell scope at the

node, server, or cluster, for example.

v To create a key set group at the cell scope, click Security > SSL certificate and key
management > Key set groups.

v To create a key set group at a scope below the cell level, click Security > SSL certificate and
key management > Manage endpoint security configurations > {Inbound | Outbound} >
SSL_configuration > Key set groups.

2. You can choose to generate a key for an existing key set group, delete an existing key set group, or
create a new key set group.

v To generate a key for an existing key set group, select a key set group from the list of existing key
set groups, and click Generate keys. You have generated a new key for each key set in the
selected group.

v To delete an existing key set group, select a key set group from the list of existing key set groups,
and click Delete. You have deleted the key set group.

v To create a new key set group, go to step 3.

Chapter 8. Securing communications 801

CAUTION:
Do not delete the cell or node LTPAKeySetGroup, which is used by the Lightweight Third Party
Authentication (LPTA) mechanism.

3. Click New to create a new key set group.

4. Type a key set group name. You can reference this name by using the
com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

5. Select one or more key sets from the Key sets list.

Note: If the key set(s) you want is not listed, make sure that it was created at the same scope or a
higher scope than where you are creating the new key set group.

6. Click Add to add the selected key set(s) to the new key set group.

7. Select Automatically generate keys to generate the new keys on a schedule. If you decide to
generate keys automatically, then you must specify a scheduled time of day.

8. Specify the scheduled time to generate keys automatically in hours and minutes, A.M. or P.M., or
every 24 hours.

9. You can choose to generate new keys on a specific day or at an interval.

v Select Generate on a specific day. Select a day of the week from the drop-down list, and type a
repeat interval number for the number of days between each key generation. This choice enables
you to schedule key generation when your systems are least busy.

v Select Generate at an interval. Type a repeat interval number for the number of days between
each key generation. This choice enables you to schedule key generation more frequently than
once a week.

Note: The Next start date is a read-only field that specifies the date for the next scheduled
generation. You can stop and restart the deployment manager or base application server
without resetting this date. If you do not see the next start date appear after changing the
configuration, click OK to save it, then check that the next start date displays.

10. Click Save.

Results

You have created a new key set group to manage key sets and key generation on a schedule.

What to do next

After you generate new keys from a key set, you can access them programmatically using the
com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to
access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following
code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see
“Example: Retrieving the generated keys from a key set group.”

Example: Retrieving the generated keys from a key set group
This example shows how applications can use the com.ibm.websphere.crypto.KeySetHelper API to retrieve
managed keys from the KeySet or KeySetGroup configurations. Use the
com.ibm.websphere.crypto.KeySetHelper API to get either the latest set of keys or all the keys in the
KeySet or KeySetGroup object.

Use the latest keys when performing any new cryptographic operations. All of the other keys that are
defined in the KeySet or KeySetGroup object are for the validation of previously performed cryptographic
operations.

802 Securing applications and their environment

The following example uses a method that an application might use to initialize the keys in the associated
KeySetGroup object. The application might want to store the keys in two separate maps, one for
generation and one for validation. Refer to the API documentation for KeySetHelper API to determine
which Java 2 Security requirements are required.
/**

* Initializes the primary and secondary Maps used for initializing the keys.
*/

public void initializeKeySetGroupKeys() throws com.ibm.websphere.crypto.KeyException
{

java.util.Map generationKeys = null;
java.util.Map validationKeys = null;

PublicKey tempPublicKey = null;
PrivateKey tempPrivateKey = null;
byte[] tempSharedKey = null;

keySetGroupName = "ApplicationKeySetGroup";
com.ibm.websphere.crypto.KeySetHelper ksh = com.ibm.websphere.crypto.KeySetHelper.getInstance();
generationKeys = ksh.getLatestKeysForKeySetGroup(keySetGroupName);

/***
* Latest keys: {
* KeyPair_3=com.ibm.websphere.crypto.KeyPair@64ec64ec,
* Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7
* }
***/

if (generationKeys != null)
{

Iterator iKeySet = generationKeys.keySet().iterator();

while (iKeySet.hasNext())
{

String keyAlias = (String)iKeySet.next();

Object key = generationKeys.get(keyAlias);

if (key instanceof java.security.Key)
{

tempSharedKey = ((java.security.Key)key).getEncoded();
}
else if (key instanceof com.ibm.websphere.crypto.KeyPair)
{

java.security.Key publicKeyAsSecret =
((com.ibm.websphere.crypto.KeyPair)key).getPublicKey();

tempPublicKey = new PublicKey(publicKeyAsSecret.getEncoded());
java.security.Key privateKeyAsSecret =

((com.ibm.websphere.crypto.KeyPair)key).getPrivateKey();
tempPrivateKey = new PrivateKey(privateKeyAsSecret.getEncoded());

}
}

// save these for use later, if necessary
validationKeys = ksh.getAllKeysForKeySetGroup(keySetGroupName);

/***
* All keys: {
* version_1=
* {Secret_1=javax.crypto.spec.SecretKeySpec@178cf,
* KeyPair_1=com.ibm.websphere.crypto.KeyPair@1c121c12},
* version_2=
* {Secret_2=javax.crypto.spec.SecretKeySpec@17a77,
* KeyPair_2=com.ibm.websphere.crypto.KeyPair@182e182e},
* version_3=
* {Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7,
* KeyPair_3=com.ibm.websphere.crypto.KeyPair@4da04da0}
* }
***/

}
else
{

throw new com.ibm.websphere.crypto.KeyException("Could not generateKeys.");
}

}

Example: Developing a key or key pair generation class for automated
key generation
A class that generates keys for cryptographic operations can be created automatically. With this capability,
the key management infrastructure can maintain a list of keys for a predefined key set, and applications
can access these keys.

Chapter 8. Securing communications 803

You can schedule new key generation at predefined frequencies. Remember that key generation
frequency affects the security of your data. For example, for persistent data, you might schedule key
generation less frequently than for real time communications, which require that the keys be generated
more often as old keys expire.

When you develop a key generation class, decide if you are creating a shared key or a key pair because
this decision determines the interface you must use.

If you are developing shared keys, refer to the following example, which uses the KeyGenerator class to
implement the com.ibm.websphere.crypto.KeyGenerator interface. The interface returns a java.security.Key
key, which is stored as a SecretKey in a JCEKS keystore type. You can use any other keystore type that
supports storing secret keys.
package com.ibm.test;

import java.util.*;
import com.ibm.ws.ssl.core.*;
import com.ibm.ws.ssl.config.*;
import com.ibm.websphere.crypto.KeyException;

public class KeyGenerator implements com.ibm.websphere.crypto.KeyGenerator
{

private java.util.Properties customProperties = null;
private java.security.Key secretKey = null;

public KeyGenerator()
{
}

/**
* This method is called to pass any custom properties configured with
* the KeySet to the implementation of this interface.
*
* @param java.util.Properties
**/

public void init (java.util.Properties customProps)
{

customProperties = customProps;
}

/**
* This method is called whenever a key needs to be generated either
* from the schedule or manually requested. The key is stored in the
* KeyStore referenced by the configured KeySet that contains the
* keyGenerationClass implementing this interface. The implementation of
* this interface manages the key type. The user of the KeySet
* must know the type that is returned by this keyGenerationClass.
*
* @return java.security.Key
* @throws com.ibm.websphere.crypto.KeyException
**/

public java.security.Key generateKey () throws KeyException
{

try
{

// Assume generate3DESKey is there to create the key.
byte[] tripleDESKey = generate3DESKey();
secretKey = new javax.crypto.spec.SecretKeySpec(tripleDESKey, 0, 24, "3DES");

if (secretKey != null)
{

return secretKey;
}
else
{

throw new com.ibm.websphere.crypto.KeyException ("Key could not be generated.");
}

}
catch (Exception e)
{

e.printStackTrace(); // handle exception
}

}
}

If you are developing a key pair, refer to the following example, which uses the KeyPairGenerator class to
implement the com.ibm.websphere.crypto.KeyPairGenerator interface.
package com.ibm.test;

import java.util.*;
import javax.crypto.spec.SecretKeySpec;

804 Securing applications and their environment

import com.ibm.websphere.crypto.KeyException;

/**
* This implementation defines the method to generate a java.security.KeyPair.
* When a keyGeneration class implements this method, the generateKeyPair method
* is called and a KeyPair is stored in the keystore. The isKeyPair
* attribute is ignored since the KeyGenerationClass is an
* implementation of KeyPairGenerator. The isKeyPair attributes is for when
* the keys already exist in a KeyStore, and are just read (not
* generating them).
*
* @author IBM Corporation
* @version WebSphere Application Server 6.1
* @since WebSphere Application Server 6.1
**/
public class KeyPairGenerator implements com.ibm.websphere.crypto.KeyPairGenerator
{

private java.util.Properties customProperties = null;

public KeyPairGenerator()
{
}

/**
* This method is called to pass any custom properties configured with
* the KeySet to the implementation of this interface.
*
* @param java.util.Properties
**/

public void init (java.util.Properties customProps)
{

customProperties = customProps;
}

/**
* This method is called whenever a key needs to be generated either
* from the schedule or manually requested and isKeyPair=true in the KeySet
* configuration. The key is stored in the KeyStore referenced by
* the configured KeySet which contains the keyGenerationClass implementing
* this interface. The implementation of this interface manages the
* type of the key. The user of the KeySet must know the type that
* is returned by this keyGenerationClass.
*
* @return com.ibm.websphere.crypto.KeyPair
* @throws com.ibm.websphere.crypto.KeyException
**/

public com.ibm.websphere.crypto.KeyPair generateKeyPair () throws KeyException
{

try
{

java.security.KeyPair keyPair = generateKeyPair();

// Store as SecretKeySpec
if (keyPair != null)
{

java.security.PrivateKey privKey = keyPair.getPrivate();
java.security.PublicKey pubKey = keyPair.getPublic();

SecretKeySpec publicKeyAsSecretKey = new SecretKeySpec
(pubKey.getEncoded(), "RSA_PUBLIC");

SecretKeySpec privateKeyAsSecretKey = new SecretKeySpec
(privKey.getEncoded(), "RSA_PRIVATE");

com.ibm.websphere.crypto.KeyPair pair = new
com.ibm.websphere.crypto.KeyPair(publicKeyAsSecretKey, privateKeyAsSecretKey);

return pair;
}
else
{

throw new com.ibm.websphere.crypto.KeyException ("Key pair could
not be generated.");

}
}
catch (Exception e)
{

e.printStackTrace(); // handle exception
}

}
}

This interface returns a com.ibm.websphere.crypto.KeyPair key pair, which can contain either a
X509Certificate and PrivateKey object or PublicKey and PrivateKey objects. If the
com.ibm.websphere.crypto.KeyPair interface contains aX509Certificate and PrivateKey object, the
certificate and private key are stored in the keystore. Consequently, they can use any KeyStore type.

Chapter 8. Securing communications 805

If the com.ibm.websphere.crypto.KeyPair interface contains PublicKey and PrivateKey objects, you must
convert the encoded values to the SecretKeySpec object in order to store them. The WebSphere
Application Server runtime stores and retrieves the key pair as secret keys. The runtime converts the key
pair back to PublicKey and PrivateKey objects when the server retrieves the pair during the handshake.

Use the following constructors to develop the com.ibm.websphere.crypto.KeyPair interface:

v Public and private constructor
public KeyPair(java.security.Key publicKey, java.security.Key privateKey)

v Certificate and private constructor.
public KeyPair(java.security.cert.Certificate[] certChain,
java.security.Key privateKey)

The previous example code shows the KeyPairGenerator class using the public and private constructor.
Each call to this class generates a new and unique key pair, and this class is invoked by a KeySet to
create a new key pair when isKeyPair=true. The version number in the key set increments each time it is
called.

Key set groups collection
Use this page to manage groups of public, private, and shared keys. These key groups enable the
application server to control multiple sets of Lightweight Third Party Authentication (LTPA) keys.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key set groups.

Table 102. Key set groups buttons. This table lists the key set groups buttons.
Button Resulting action

New Adds a key set group. A key set group combines one or more key sets together as a single key set
group. It allows the generation of multiple different types of keys to occur at the same time. A single
key set represents one type of key, so a key set group allows you to group the different types.

Delete Deletes an existing key set group. You must be sure that there are no other references to this key set
group before you delete it.

Generate keys Generates keys for key set group. The system generates keys for each key set within the key set
group so that the keys remain synchronized with each other in terms of version. You must configure a
valid key generation class and a key store that is writable. See the
com.ibm.websphere.crypto.KeySetHelper application programming interfaces (APIs) to enable the use
of keys that are managed by a KeySetGroup or KeySet.

Key set group name
Specifies the name of the key set group used to reference it.

Automatically generate keys
Specifies that the keys are to be generated automatically on a schedule.

Key set groups settings
Use this page to create new key set groups.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key set groups > New.

Key set group name
Specifies the name of key set group used. This name can be referenced using the
com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

Data type: Text

806 Securing applications and their environment

Management scope
Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Data type List
Range: Applicable scopes

Key sets
Specifies a set of key instances of the same type for use in cryptographic operations.

This setting has the following options:

Add Specifies to add the selected key set part of this key set group.

Remove
Specifies to remove the selection from the Key sets list.

Automatically generate keys
Specifies that the keys are generated automatically on a schedule. When a new key is generated, the
security.xml is updated and saved by the runtime to track the key reference version. This can cause
save conflicts when updating the same file from admin applications.

gotcha: Starting with Versions 6.1.0.23 and 7.0.0.3, the default value for this property is Disabled.

If you try to enable this property, and automatic synchronization is off in any node, the following
administrative console message displays:
Warning: At least one node in the cell was unreachable or is not configured to automatically synchronize.
It is strongly recommended that you verify your node settings, and do not enable automatic
generation of LTPA keys while automatic synchronization is disabled on any node.

Default for Versions 7.0, and 7.0.0.1: Enabled
Default for Versions 7.0.0.3 and higher: Disabled

Scheduled time for generation
Specifies the scheduled time when the system generates selected key set group or groups. You can
specify the scheduled time in hours and minutes; specify either A.M. or P.M., or specify 24-hour. You can
also specify the day of the week you want the scheduled event to occur. It is recommended that you set
this event to occur during a low peak time, especially for keys that are used by runtime for token
validation.

Data type Integer
Default: 8, 0 A.M.
Range: 1–12, with a A.M. or P.M. setting

0–59, with a 24-hour setting

Generate on a specific day
Specifies whether to have the generation occur on a specific day of the week. It is best to auto-generate
keys during a low peak day.

This setting has the following options:

Weekday
Specifies the day of the week on which the expiration monitor will run if the Check on a specific
day option is selected.

Chapter 8. Securing communications 807

Default: Sunday
Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval
Specifies the period of time, in weeks, between each schedule time to check for expired
certificates or the interval between schedule checks.

Default: 4 weeks

Generate at an interval
Specifies to generate keys at the specified frequency regardless of the day of the week on which
generation occurs.

Default: Disabled

This setting has the following options:

Repeat interval
Specifies the period of time, in days, between each schedule time to check for expired certificates
or the interval between schedule checks.

Default: 7 days

Next start date
Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and
restarted without resetting the date.

808 Securing applications and their environment

Chapter 9. Developing extensions to the WebSphere security
infrastructure

WebSphere Application Server provides various plug points so that you can extend the security
infrastructure. Extending this security infrastructure involves several activities including: Developing custom
user registries, developing applications that use programmatic security, and customizing web application
login forms.

About this task

The following topics are covered in this section:

Procedure
v Developing custom user registries

v Developing applications that use programmatic security

v Customizing web application login forms

v Customizing application login forms with Java Authentication and Authorization Service (JAAS)

v Securing transports with Java Secure Sockets Extension (JSSE) and Java Cryptography Extension
(JCE) programming interfaces

v Implementing tokens for security attribute propagation

v Implementing a custom authentication provider using JASPI

Developing stand-alone custom registries
This development provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some notion of a user registry, other than LDAP or Local OS, already exists
in the operational environment.

Before you begin

WebSphere Application Server security supports the use of stand-alone custom registries in addition to the
local operating system registry, stand-alone Lightweight Directory Access Protocol (LDAP) registries, and
federated repositories for authentication and authorization purposes. A stand-alone custom-implemented
registry uses the UserRegistry Java interface as provided by WebSphere Application Server. A stand-alone
custom-implemented registry can support virtually any type or notion of an accounts repository from a
relational database, flat file, and so on.

Implementing a stand-alone custom registry is a software development effort. Implement the methods that
are defined in the com.ibm.websphere.security.UserRegistry interface to make calls to the appropriate
registry to obtain user and group information. The interface defines a general set of methods for
encapsulating a wide variety of registries. You can configure a stand-alone custom registry as the selected
repository when configuring WebSphere Application Server security on the Global security panel.

In WebSphere Application Server Version 8.0, make sure that your implementation of the stand-alone
custom registry does not depend on any WebSphere Application Server components such as data
sources, Enterprise JavaBeans (EJB) and Java Naming and Directory Interface (JNDI). You can not have
this dependency because security is initialized and enabled prior to most of the other WebSphere
Application Server components during startup. If your previous implementation used these components,
make a change that eliminates the dependency. For example, if your previous implementation used data
sources to connect to a database, instead use the JDBC java.sql.DriverManager interface to connect to
the database.

© Copyright IBM Corp. 2011 809

Note: The user registry is used in controllers and servants. There is an increased risk of integrity
exposure in that configuration if the registry implementation is not secured.

If your previous implementation uses data sources to connect to a database, change the implementation to
use Java database connectivity (JDBC) connections.

Procedure
1. Implement all the methods in the interface except for the CreateCredential method, which is

implemented by WebSphere Application Server.

2. Build your implementation.

To compile your code, you need the app_server_root/plugins/com.ibm.ws.runtime.jar and the
app_server_root/plugins/com.ibm.ws.security.crypto.jar files in your class path. For example:
app_server_root\java\bin\javac -classpath
app_server_root\plugins\com.ibm.ws.runtime.jar:
app_server_root\plugins\com.ibm.ws.security.crypto.jar your_implementation_file.java

3. Copy the class files that are generated in the previous step to the product class path.

The preferred location is the following directory:

v %install_root%\lib\ext

directory. Copy these class files to all of the product process class paths.

4. To configure your implementation using the administrative console, follow the steps in topics about
configuring stand-alone custom registries. This step is required to implement custom user registries.

Example

Viewing stand-alone custom registries.

Use these links to view registry examples.

A stand-alone custom registry is a customer-implemented registry that implements the UserRegistry Java
interface, as provided by WebSphere Application Server. A custom-implemented registry can support
virtually any type or form of an accounts repository from a relational database, flat file, and so on. The
custom registry provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some form of a registry, other than a federated repository, Lightweight
Directory Access Protocol (LDAP) registry, or local operating system registry, already exist in the
operational environment.

What to do next

If you enable security, make sure that you complete the remaining steps:

1. Save and synchronize the configuration and restart all of the servers.

2. Try accessing some J2EE resources to verify that the custom registry implementation is correct.

Result.java file
This module is used by user registries in WebSphere Application Server when calling the getUsers and
getGroups methods. The user registries use this method to set the list of users and groups and to indicate
if more users and groups in the user registry exist than requested.
//
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
//
package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {
/**

810 Securing applications and their environment

Default constructor
*/
public Result() {
}

/**
Returns the list of users and groups
@return the list of users and groups

*/
public List getList() {
return list;

}

/**
indicates if there are more users and groups in the registry

*/
public boolean hasMore() {
return more;

}
/**

Set the flag to indicate that there are more users and groups
in the registry to true

*/
public void setHasMore() {
more = true;

}

/*
Set the list of users and groups
@param list list of users/groups

*/
public void setList(List list) {
this.list = list;

}

private boolean more = false;
private List list;

}

UserRegistry.java files
The following file is a custom property that is used with a custom user registry.

For more information, see Configuring stand-alone custom registries.
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
//
// DESCRIPTION:
//
// This file is the UserRegistry interface that custom registries in WebSphere
// Application Server implement to enable WebSphere security to use the custom
// registry.
//

package com.ibm.websphere.security;

import java.util.*;
import java.rmi.*;
import java.security.cert.X509Certificate;
import com.ibm.websphere.security.cred.WSCredential;

/**
* Implementing this interface enables WebSphere Application Server Security
* to use custom registries. This interface extends java.rmi.Remote because the
* registry can be in a remote process.
*
* Implementation of this interface must provide implementations for:
*
* initialize(java.util.Properties)
* checkPassword(String,String)
* mapCertificate(X509Certificate[])
* getRealm
* getUsers(String,int)
* getUserDisplayName(String)
* getUniqueUserId(String)
* getUserSecurityName(String)
* isValidUser(String)
* getGroups(String,int)
* getGroupDisplayName(String)
* getUniqueGroupId(String)
* getUniqueGroupIds(String)
* getGroupSecurityName(String)
* isValidGroup(String)
* getGroupsForUser(String)
* getUsersForGroup(String,int)
* createCredential(String)

Chapter 9. Developing extensions to the WebSphere security infrastructure 811

**/

public interface UserRegistry extends java.rmi.Remote
{

/**
* Initializes the registry. This method is called when creating the
* registry.
*
* @param props the registry-specific properties with which to
* initialize the custom registry
* @exception CustomRegistryException
* if there is any registry specific problem
* @exception RemoteException
* as this extends java.rmi.Remote
**/
public void initialize(java.util.Properties props)

throws CustomRegistryException,
RemoteException;

/**
* Checks the password of the user. This method is called to authenticate a
* user when the user’s name and password are given.
*
* @param userSecurityName the name of the user
* @param password the password of the user
* @return a valid userSecurityName. Normally this is
* the name of same user whose password was checked but if the
* implementation wants to return any other valid
* userSecurityName in the registry it can do so
* @exception CheckPasswordFailedException if userSecurityName/
* password combination does not exist in the registry
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String checkPassword(String userSecurityName, String password)

throws PasswordCheckFailedException,
CustomRegistryException,
RemoteException;

/**
* Maps a certificate (of X509 format) to a valid user in the registry.
* This is used to map the name in the certificate supplied by a browser
* to a valid userSecurityName in the registry
*
* @param cert the X509 certificate chain
* @return the mapped name of the user userSecurityName
* @exception CertificateMapNotSupportedException if the particular
* certificate is not supported.
* @exception CertificateMapFailedException if the mapping of the
* certificate fails.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

/**
* Returns the realm of the registry.
*
* @return the realm. The realm is a registry-specific string indicating
* the realm or domain for which this registry
* applies. For example, for OS400 or AIX this would be the
* host name of the system whose user registry this object
* represents.
* If null is returned by this method realm defaults to the
* value of "customRealm". It is recommended that you use
* your own value for realm.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getRealm()

throws CustomRegistryException,
RemoteException;

/**
* Gets a list of users that match a pattern in the registry.
* The maximum number of users returned is defined by the limit
* argument.
* This method is called by administrative console and by scripting (command
* line) to make available the users in the registry for adding them (users)
* to roles.
*
* @parameter pattern the pattern to match. (For example., a* will match all
* userSecurityNames starting with a)

812 Securing applications and their environment

* @parameter limit the maximum number of users that should be returned.
* This is very useful in situations where there are thousands of
* users in the registry and getting all of them at once is not
* practical. A value of 0 implies get all the users and hence
* must be used with care.
* @return a Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public Result getUsers(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

/**
* Returns the display name for the user specified by userSecurityName.
*
* This method is called only when the user information displays
* (information purposes only, for example, in the administrative console) and not used
* in the actual authentication or authorization purposes. If there are no
* display names in the registry return null or empty string.
*
* In WebSphere Application Server Version 4.0 custom registry, if you had a display
* name for the user and if it was different from the security name, the display name
* was returned for the EJB methods getCallerPrincipal() and the servlet methods
* getUserPrincipal() and getRemoteUser().
* In WebSphere Application Server Version 6.0 for the same methods the security
* name is returned by default. This is the recommended way as the display name
* is not unique and might create security holes.
*
* See the documentation for more information.
*
* @parameter userSecurityName the name of the user.
* @return the display name for the user. The display name
* is a registry-specific string that represents a descriptive, not
* necessarily unique, name for a user. If a display name does
* not exist return null or empty string.
* @exception EntryNotFoundException if userSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUserDisplayName(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the unique ID for a userSecurityName. This method is called when
* creating a credential for a user.
*
* @parameter userSecurityName the name of the user.
* @return the unique ID of the user. The unique ID for a user is
* the stringified form of some unique, registry-specific, data
* that serves to represent the user. For example, for the UNIX
* user registry, the unique ID for a user can be the UID.
* @exception EntryNotFoundException if userSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueUserId(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the name for a user given its unique ID.
*
* @parameter uniqueUserId the unique ID of the user.
* @return the userSecurityName of the user.
* @exception EntryNotFoundException if the uniqueUserID does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUserSecurityName(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Determines if the userSecurityName exists in the registry
*
* @parameter userSecurityName the name of the user
* @return true if the user is valid. false otherwise
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote

Chapter 9. Developing extensions to the WebSphere security infrastructure 813

**/
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException,
RemoteException;

/**
* Gets a list of groups that match a pattern in the registry.
* The maximum number of groups returned is defined by the limit
* argument.
* This method is called by the administrative console and scripting
* (command line) to make available the groups in the registry for adding
* them (groups) to roles.
*
* @parameter pattern the pattern to match. (For e.g., a* will match all
* groupSecurityNames starting with a)
* @parameter limit the maximum number of groups to return.
* This is very useful in situations where there are thousands of
* groups in the registry and getting all of them at once is not
* practical. A value of 0 implies get all the groups and hence
* must be used with care.
* @return a Result object that contains the list of groups
* requested and a flag to indicate if more groups exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public Result getGroups(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

/**
* Returns the display name for the group specified by groupSecurityName.
*
* This method may be called only when the group information displayed
* (for example, the administrative console) and not used in the actual
* authentication or authorization purposes. If there are no display names
* in the registry return null or empty string.
*
* @parameter groupSecurityName the name of the group.
* @return the display name for the group. The display name
* is a registry-specific string that represents a descriptive, not
* necessarily unique, name for a group. If a display name does
* not exist return null or empty string.
* @exception EntryNotFoundException if groupSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getGroupDisplayName(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the unique ID for a group.

* @parameter groupSecurityName the name of the group.
* @return the unique ID of the group. The unique ID for
* a group is the stringified form of some unique,
* registry-specific, data that serves to represent the group.
* For example, for the UNIX user registry, the unique ID might
* be the GID.
* @exception EntryNotFoundException if groupSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueGroupId(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the unique IDs for all the groups that contain the unique ID of
* a user.
* Called during creation of a user’s credential.
*
* @parameter uniqueUserId the unique ID of the user.
* @return a list of all the group unique IDs that the unique user ID
* belongs to. The unique ID for an entry is the stringified
* form of some unique, registry-specific, data that serves
* to represent the entry. For example, for the
* UNIX user registry, the unique ID for a group could be the GID
* and the unique ID for the user could be the UID.
* @exception EntryNotFoundException if unique user ID does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/

814 Securing applications and their environment

public List getUniqueGroupIds(String uniqueUserId)
throws EntryNotFoundException,

CustomRegistryException,
RemoteException;

/**
* Returns the name for a group given its unique ID.
*
* @parameter uniqueGroupId the unique ID of the group.
* @return the name of the group.
* @exception EntryNotFoundException if the uniqueGroupId does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getGroupSecurityName(String uniqueGroupId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Determines if the groupSecurityName exists in the registry
*
* @parameter groupSecurityName the name of the group
* @return true if the groups exists, false otherwise
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException,
RemoteException;

/**
* Returns the securityNames of all the groups that contain the user
*
* This method is called by administrative console and scripting
* (command line) to verify the user entered for RunAsRole mapping belongs
* to that role in the roles to user mapping. Initially, the check is done
* to see if the role contains the user. If the role does not contain the user
* explicitly, this method is called to get the groups that this user
* belongs to so that checks are made on the groups that the role contains.
*
* @parameter userSecurityName the name of the user
* @return a List of all the group securityNames that the user
* belongs to.
* @exception EntryNotFoundException if user does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public List getGroupsForUser(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Gets a list of users in a group.
*
* The maximum number of users returned is defined by the limit
* argument.
*
* This method is used by the WebSphere Business Integration
* Server Foundation process choreographer when staff assignments
* are modeled using groups.
*

* In rare situations where you are working with a user registry and it is not
* practical to get all of the users from any of your groups (for example if
* a large number of users exist) you can create the NotImplementedException
* for those particular groups. Make sure that if the WebSphere Business
* Integration Server Foundation Process Choreographer is installed (or
* if installed later) that the users are not modeled using these particular groups.
* If no concern exists about the staff assignments returning the users from
* groups in the registry it is recommended that this method be implemented
* without throwing the NotImplemented exception.
*
* @parameter groupSecurityName that represents the name of the group
* @parameter limit the maximum number of users to return.
* This option is very useful in situations where lots of
* users are in the registry and getting all of them at
* once is not practical. A value of 0 means get all of
* the users and must be used with care.
* @return a Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @deprecated This method will be deprecated in the future.
* @exception NotImplementedException create this exception in rare situations
* if it is not practical to get this information for any of the
* groups from the registry.
* @exception EntryNotFoundException if the group does not exist in

Chapter 9. Developing extensions to the WebSphere security infrastructure 815

* the registry
* @exception CustomRegistryException if any registry-specific
* problem occurs
* @exception RemoteException as this extends java.rmi.Remote interface
**/
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* This method is implemented internally by the WebSphere Application Server
* code in this release. This method is not called for the custom registry
* implementations for this release. Return null in the implementation.
*
* Note that because this method is not called you can also return the
* NotImplementedException as the previous documentation says.
*
**/
public com.ibm.websphere.security.cred.WSCredential

createCredential(String userSecurityName)
throws NotImplementedException,
EntryNotFoundException,

CustomRegistryException,
RemoteException;

}

Developing a custom SAF EJB role mapper
WebSphere Application Server for z/OS allows an installation to map Java Platform, Enterprise Edition
(Java EE) role names to SAF EJBRole profile names.

Before you begin

WebSphere Application Server for z/OS supports the use of a custom SAF EJB role mapper. The custom
SAF EJB role mapper allows an installation to map J2EE role names to SAF EJBRole profile names.
Without the SAF EJB role mapper, you must deploy an application by using a role in the deployment
descriptor of a component that is identical to the name of an EJBROLE class profile. The security
administrator defines EJBROLE profiles and provides the permission to these profiles to SAF users or
groups.

Using SAF EJBROLE class profiles can conflict with the standard Java EE role naming conventions. Java
EE role names are Unicode strings of any length. RACF class profiles are restricted to 240 characters in
length and cannot be defined if these profiles contain any white spaces or extended code page characters.

If a Java EE role name for an installation conflicts with these RACF restrictions, an installation can use the
SAF EJB role mapper exit to map the desired Java EE role name to an acceptable class profile name.

The custom SAF role mapper is a Java-based exit to replace the EJBROLE class profile construction
algorithm. The custom SAF role mapper is called to generate a profile for authorization and delegation
requests. The role mapper passes the name of the application and the name of the role then passes back
the appropriate class profile name. Information about the server name, cell name, and the SAF profile
prefix (previously referred to as the z/OS security domain) is provided to the implementation during
initialization.

You can set the com.ibm.websphere.security.SAF.RoleMapper custom property on the z/OS SAF
authorization panel in the administrative console. You also can enable the role mapper by setting the
custom property com.ibm.websphere.security.SAF.RoleMapper to the name of the class that is to be given
control.

Procedure
1. Build your custom SAF role mapper. The SAFRoleMapper example (below) can be used as a

reference.

816 Securing applications and their environment

public class SAFRoleMapperImpl1 {
String domainPrefix = null;

public void initialize(Properties context) {
domainPrefix = context.get(SAFRoleMapper.DOMAIN_NAME);
}

public String getProfileNameFromRole(String app, String role) {
String profile = app + “.” + role;
if (domainPrefix != null) {
profile = domainPrefix + “.” + profile;
}
profile = profile.replaceAll(“\\%”, “#”);
profile = profile.replaceAll(“\\&”, “#”);
profile = profile.replaceAll(“*”, “#”);
profile = profile.replaceAll(“\\s”,“#”);

return profile;
}
}

2. Click Security > Global security > z/OS SAF authorization and enable the role mapper by providing
the name of the class that you want to give control in the SAF profile mapper field. You also can set
this property as a custom property by entering com.ibm.websphere.security.SAF.RoleMapper as the
name and providing the name of the class in the value field.

3. Click Security > Global security > External authorization providers and select the System
Authorization Facility (SAF) authorization option to enable SAF as the authorization provider. After
you select this option, click z/OS SAF authorization under Related items to configure the SAF
authorization options.

You also can set this property as a custom property by entering
com.ibm.websphere.security.SAF.authorization as the name and true as the value.

Implementing custom password encryption
WebSphere Application Server supports the use of custom password encryption.

Before you begin

An installation can implement any password encryption algorithm it chooses.

About this task

Complete the following steps to implement custom password encryption:

Procedure
1. Build your custom password encryption class. An example of a custom password encryption class

follows.
// CustomPasswordEncryption
// Encryption and decryption functions
public interface CustomPasswordEncryption {

public EncryptedInfo encrypt(byte[] clearText) throws PasswordEncryptException;
public byte[] decrypt(EncryptedInfo cipherTextInfo) throws PasswordEncryptException;
public void initialize(HashMap initParameters);

};
// Encapsulation of cipher text and label
public class EncryptedInfo {

public EncryptedInfo(byte[] bytes, String keyAlias);
public byte[] getEncryptedBytes();
public String getKeyAlias();

};

Chapter 9. Developing extensions to the WebSphere security infrastructure 817

2. If you need to custom encode passwords in property files, manually edit the
PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file.

a. Use a file editor to open the PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file.

b. Locate the following lines near the end of the file:
"%JAVA_HOME%/bin/java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
"-Dwas.install.root=%WAS_HOME%" com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.security.util.PropFilePasswordEncoder %1 %2

c. Add following lines to the call.

These custom properties will be passed to the command so that PropFilePasswordEncoder will
look for custom encoding classes and utilize it.
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionClass=(customEncoding class file)

The updated lines should look like the following lines:
"%JAVA_HOME%/bin/java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionClass=(customEncoding class file)
"-Dwas.install.root=%WAS_HOME%" com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.security.util.PropFilePasswordEncoder %1 %2

3. Enable custom password encryption.

a. Set the custom property com.ibm.wsspi.security.crypto.customPasswordEncryptionClass to
the name of the class that is to be given control.

b. Enable the function. Set the custom property,
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled to true.

Results

Custom password encryption at the installation is complete.

Developing applications that use programmatic security
For some applications, declarative security is not sufficient to express the security model of the application.
Use this topic to develop applications that use programmatic security.

About this task

IBM WebSphere Application Server provides security components that provide or collaborate with other
services to provide authentication, authorization, delegation, and data protection. WebSphere Application
Server also supports the security features that are described in the Java Platform, Enterprise Edition (Java
EE) specification. An application goes through three stages before it is ready to run:
v Development
v Assembly
v Deployment

Most of the security for an application is configured during the assembly stage. The security that is
configured during the assembly stage is called declarative security because the security is declared or
defined in the deployment descriptors. The declarative security is enforced by the security runtime. For
some applications, declarative security is not sufficient to express the security model of the application. For
these applications, you can use programmatic security.

Procedure
1. Develop secure web applications. For more information, see “Developing with programmatic security

APIs for web applications” on page 841.

2. Develop servlet filters for form login processing. For more information, see “Developing servlet filters
for form login processing” on page 856.

818 Securing applications and their environment

3. Develop form login pages. For more information, see “Customizing web application login” on page 852.

4. Develop enterprise bean component applications. For more information, see “Developing with
programmatic APIs for EJB applications” on page 848.

5. Develop with Java Authentication and Authorization Service to log in programmatically.

For more information, see topics about developing programmatic logins with the Java Authentication
and Authorization Service.

6. Develop your own Java EE security mapping module.

For more information, see topics about configuring programmatic logins for Java Authentication and
Authorization Service.

7. Develop custom user registries. For more information, see “Developing stand-alone custom registries”
on page 809.

8. Develop a custom interceptor for trust associations.

Protecting system resources and APIs (Java 2 security) for developing
applications
Java 2 security is a programming model that is very pervasive and has a huge impact on application
development.

Before you begin

Java 2 security is orthogonal to Java Platform, Enterprise Edition (Java EE) role-based security; you can
disable or enable it independently of administrative security.

However, it does provide an extra level of access control protection on top of the Java EE role-based
authorization. It particularly addresses the protection of system resources and application programming
interfaces (API). Administrators need to consider the benefits against the risks of disabling Java 2 security.

The following recommendations are provided to help enable Java 2 security in a test or production
environment:
1. Make sure the application is developed with the Java 2 security programming model. Developers have

to know whether or not the APIs that are used in the applications are protected by Java 2 security. It is
very important that the required permissions for the APIs used are declared in the policy file
(was.policy), or the application fails to run when Java 2 security is enabled. Developers can reference
the website for Development Kit APIs that are protected by Java 2 security. See the Programming
model and decisions section of the Security: Resources for Learning topic to visit this website.

2. Make sure that migrated applications from previous releases are given the required permissions.
Because Java 2 security is not supported or partially supported in previous WebSphere Application
Server releases, applications developed prior to Version 5 most likely are not using the Java 2 security
programming model. No easy way to find out all the required permissions for the application is
available. The following are activities you can perform to determine the extra permissions that are
required by an application:
v Code review and code inspection
v Application documentation review
v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a preproduction

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing
permissions in the application policy file. The trace specification is:
com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debugging. Do not use
this property in a production environment.

The default permission set for applications is the recommended permission set that is defined in the J2EE
1.3 Specification. The default is declared in the app_server_root/profiles/profile_name/config/cells/
cell_name/nodes/node_name/app.policy policy file with permissions defined in the Development Kit

Chapter 9. Developing extensions to the WebSphere security infrastructure 819

(JAVA_HOME/jre/lib/security/java.policy) policy file that grant permissions to everyone. However,
applications are denied permissions that are declared in the profiles/profile_name/config/cells/
cell_name/filter.policy file. Permissions that are declared in the filter.policy file are filtered for
applications during the permission check.

Define the required permissions for an application in a was.policy file and embed the was.policy file in
the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy, see “Configuring Java
2 security policy files” on page 822 for details.

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application
Server, Network Deployment and the server level for WebSphere Application Server, Express

Procedure
1. Click Security > Global security. The Global security panel is displayed.

2. Select the Use Java 2 security to restrict application access to local resources option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Results

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a
Java 2 security protected API is called.

When to use Java 2 security
1. Enable protection on system resources, for example when opening or listening to a socket connection,

reading or writing to operating system file systems, reading or writing Java virtual machine system
properties, and so on.

2. Prevent application code from calling destructive APIs, for example, calling the System.exit method
brings down the application server.

3. Prevent application code from obtaining privileged information (passwords) or gaining extra privileges
(obtaining server credentials).

What to do next

You can enforce Java 2 security on the server level for WebSphere Application Server, Network
Deployment by completing the following steps.

Note: Changes to Java 2 security settings on the server level override the settings on the cell level.

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Select the Security settings for this server override cell settings option.

4. Select the Use Java 2 security to restrict application access to local resources option.

5. Click OK or Apply.

6. Click Save to save the changes.

7. Restart the server for the changes to take effect.

The Java 2 security manager is enhanced to dump the Java 2 security permissions that are granted to all
classes on the call stack when an application is denied access to a resource. The
java.security.AccessControlException exception is created. However, this tracing capability is disabled by
default. You can enable this capability by specifying the server trace service with the
com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is
created, the trace dump provides hints to determine whether the application is missing permissions or the

820 Securing applications and their environment

product runtime code or the third-party libraries that are used are not properly marked as privileged when
accessing Java 2 security-protected resources.

Using PolicyTool to edit policy files for Java 2 security
Use the PolicyTool utility to update policy files.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The
Java Development Kit provides the PolicyTool tool to edit these policy files. This tool is recommended for
editing any policy file to verify the syntax of its contents. Syntax errors in the policy file cause an
AccessControlException exception when the application runs, including the server start. Identifying the
cause of this exception is not easy because the user might not be familiar with the resource that has an
access violation. Be careful when you edit these policy files.

To use the PolicyTool utility with WebSphere Application Server for z/OS, choose one of the following two
options:

v Copy the policy files to another platform such as Microsoft Windows and modify the files. To use this
option, you must issue the FTP command to transfer the files to the other platform, invoke the
PolicyTool, and transfer the updated files back to the z/OS system in binary mode.

v Invoke the PolicyTool that is supplied with the Software Development Kit (SDK) installed on your z/OS
system.

Procedure
1. Invoke the PolicyTool that is supplied with the Software Development Kit (SDK) installed on your

z/OS system.

a. Export the display to an Xwindows-enabled device. For example, in Open MVS (OMVS), type
export DISPLAY=<IP_address_of_the_Xwindows_device>:0.0

b. Enable the z/OS system to access the display of the Xwindows-enabled device. For example, on
AIX systems, type xhost + address_of_the_MVS_system.

c. Convert the policy file to the Extended Binary Coded Decimal Interchange Code (EBCDIC) format.

d. Invoke the PolicyTool on OMVS by typing $JAVA_HOME/policytool. The JAVA_HOME variable
represents the directory in which the SDK is installed.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that you need to update.
After selecting the policy file, click Open. The code base entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or click the code base and
click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the
selected code base.

b. Create a new code base entry by clicking Add Policy Entry.

The Policy Entry window opens. At the code base column, enter the code base information as a
URL format.

For example, you can enter:
app_server_root/InstalledApps/testcase.ear

where the app_server_root variable represents your installation location.

5. Modify or add the permission specification.

a. Modify the permission specification by double-clicking the entry that you want to modify, or by
selecting the permission and clicking Edit Permission. The Permissions window opens with the
selected permission information.

Chapter 9. Developing extensions to the WebSphere security infrastructure 821

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the
Permissions window are four rows for Permission, Target Name, Actions, and Signed By.

6. Select the permission from the Permission list. The selected permission displays. After a permission
is selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or
they enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Important: The Signed By keyword is not supported in the following policy files: app.policy,
spi.policy, library.policy, was.policy, and filter.policy files. However, the
Signed By keyword is supported in the following policy files: #java.policy,
server.policy, and client.policy files. The Java Authentication and Authorization
Service (JAAS) is not supported in the app.policy, spi.policy, library.policy,
was.policy, and filter.policy files. However, the JAAS principal keyword is
supported in a JAAS policy file when it is specified by the java.security.auth.policy
Java virtual machine (JVM) system property.

7. Click OK to close the Permissions window. Modified permission entries of the specified code base
display.

8. Click Done to close the window. Modified code base entries are listed. Repeat the previous steps
until you complete editing.

9. Click File > Save after you finish editing the file.

10. Convert the policy file back from the EBCDIC format to the ASCII format.

Results

A policy file is updated. If any policy files need editing, use the PolicyTool utility. Do not edit the policy file
manually. Syntax errors in the policy files can potentially cause application servers or enterprise
applications to not start or function incorrectly. For the changes in the updated policy file to take effect,
restart the Java processes.

Configuring Java 2 security policy files
Users can configure Java 2 security policy files so that the required permission is granted for the specified
WebSphere Application Server enterprise application.

Before you begin

Java 2 security uses several policy files to determine the permissions for each Java programs.

See the Java 2 security policy files topic for the list of available policy files that are supported by
WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static
policy files. Static policy files provide the default permissions. Dynamic policy files provide application
permissions. Six dynamic policy files are provided:

Table 103. Dynamic policy files. This table lists the dynamic policy files.

Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in the cell.
Note: Updates to the app.policy file only apply to the enterprise applications on the
node to which the app.policy file belongs.

was.policy Contains application-specific permissions for an WebSphere Application Server
enterprise application. This file is packaged in an enterprise archive (EAR) file.

822 Securing applications and their environment

Table 103. Dynamic policy files (continued). This table lists the dynamic policy files.

Policy file name Description

ra.xml Contains connector application specific permissions for a WebSphere Application Server
enterprise application. This file is packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or third-party resources that
are embedded in WebSphere Application Server. The default contents grant everything.
Update this file carefully when the cell requires more protection against SPI in the cell.
This file is applied to all of the SPIs that are defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise applications.

filter.policy Contains the list of permissions that require filtering from the was.policy file and the
app.policy file in the cell. This filtering mechanism only applies to the was.policy and
app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in
the was.policy or app.policy file. Without the thread permissions specified, the application cannot
manipulate threads and WebSphere Application Server creates a java.security.AccessControlException
exception. The app.policy file applies to a specified node. If you change the permissions in one
app.policy file, you must incorporate the new thread policy in the same file on the remaining nodes. Also,
if you add the thread permissions to the app.policy file, you must restart WebSphere Application Server to
enforce the new permissions. However, if you add the permissions to the was.policy file for a specific
application, you do not need to restart WebSphere Application Server. An administrator must add the
following code to a was.policy or app.policy file for an application to manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

Important: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,
library.policy, was.policy, and filter.policy files. However, the Signed By keyword is
supported in the following policy files:java.policy, server.policy, and client.policy files.
The Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,
spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS
principal keyword is supported in a JAAS policy file when it is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically
set the authorization policy files in java.security.auth.policy with auth.policy.url.n=URL,
where URL is the location of the authorization policy.

Procedure
1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file. Refer to “Configuring
static policy files in Java 2 security” on page 835.

v If the permission is required by all of the WebSphere Application Server enterprise applications in
the node, refer to “spi.policy file permissions” on page 831.

v If the permission is required only by specific WebSphere Application Server enterprise applications
and the permission is required only by connector, update the ra.xml file. Refer to Refer to the
Assembling resource adapter (connector) modules article for more information. Otherwise, update
the was.policy file. Refer to “Configuring the was.policy file for Java 2 security” on page 828 and
“Adding the was.policy file to applications for Java 2 security” on page 833.

v If the permission is required by shared libraries, refer to “library.policy file permissions” on page 832.

v If the permission is required by SPI libraries, refer to “spi.policy file permissions” on page 831.

Tip: Pick up the policy file with the smallest scope. You can avoid giving an extra permission to the
Java programs and protect the resources. You can update the ra.xml file or the was.policy file

Chapter 9. Developing extensions to the WebSphere security infrastructure 823

rather than the app.policy file. Use specific component symbols ($(ejbcomponent),
${webComponent},${connectorComponent} and ${jars}) than ${application} symbols. Update
dynamic policy files, rather than static policy files.

Add any permission that you never want granted to the WebSphere Application Server enterprise
application in the cell to the filter.policy file. Refer to “filter.policy file permissions” on page 826.

2. Restart the WebSphere Application Server enterprise application.

Results

The required permission is granted for the specified WebSphere Application Server enterprise application.

app.policy file permissions:

Java 2 security uses several policy files to determine the granted permissions for each Java program. The
union of the permissions that are contained in these following files is applied to the WebSphere Application
Server enterprise application. This union determines the granted permissions.

For the list of available policy files that are supported by WebSphere Application Server, see the topic
about Java 2 security policy files. The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. The union of the permissions that are contained in
the following files is applied to the WebSphere Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Changes made in these files are replicated to other nodes in the WebSphere Application Server, Network
Deployment cell.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread
permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the
application cannot manipulate threads and WebSphere Application Server creates a
java.security.AccessControlException exception. If an administrator adds thread permissions to the
app.policy file, the permission change requires a restart of the WebSphere Application Server. An
administrator must add the following code to a was.policy or app.policy file for an application to
manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal
keywords are not supported in the app.policy file. However, the Signed By keyword is
supported in the following files: java.policy, server.policy, and the client.policy files. The
JAAS principal keyword is supported in a JAAS policy file when it is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically set the
authorization policy files in the java.security.auth.policy property with
auth.policy.url.n=URL where URL is the location of the authorization policy.

If the default permissions for enterprise applications (the union of the permissions that is defined in the
java.policy file, the server.policy file and the app.policy file) are enough; no action is required. The

824 Securing applications and their environment

default app.policy file is used automatically. If a specific change is required to all of the enterprise
applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in
the application servers. Edit these policy files carefully.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

To extract the policy file, use a command prompt to enter the following command on one line using the
appropriate variable values for your environment:
wsadmin> set obj [$AdminConfig extract cells/cell_name/node/node_name/app.policy /temp/test/app.policy]

Edit the extracted app.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit
policy files for Java 2 security” on page 821. Changes to the app.policy file are local for the node.

To check in the policy file, use a command prompt to enter the following command on one line using the
appropriate variable values for your environment:
wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/app.policy temp/test/app.policy $obj

Table 104. Symbols used to associate permission lists to a specific type of resource. Several product-reserved
symbols are defined to associate the permission lists to a specific type of resource.
Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

file:${webComponent} Permissions apply to web resources within the application

file:${connectorComponent} Permissions apply to connector resources both within the application and within stand-alone connector
resources.

Table 105. Symbols provided to specify the path and name for the java.io.FilePermission permission. Five embedded
symbols are provided to specify the path and name for the java.io.FilePermission permission. These symbols enable
flexible permission specifications. The absolute file path is fixed after the installation of the application.
Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Tip: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file supplied by WebSphere Application Server is located in the profile_root/config/cells/
cell_name/nodes/node_name/app.policy, which contains the following default permissions:

Attention: In the following code sample, the first two lines that are related to java.io.FilePermission
permission are split into two lines for illustrative purposes only.
grant codeBase "file:${application}" {
// The following are required by JavaMail
permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";
permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

};

grant codeBase "file:${jars}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${connectorComponent}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

Chapter 9. Developing extensions to the WebSphere security infrastructure 825

grant codeBase "file:${webComponent}" {
permission java.io.FilePermission "${was.module.path}${/}-", "read, write";
permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${ejbComponent}" {
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not
defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the
app.policy file. The symptom of a missing permission is the java.security.AccessControlException
exception.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

When a Java program receives this exception and adding this permission is justified, add a permission to
the server.policy file, for example:

The previous permission information lines are split for the illustration. You actually enter the permission on
one line.

To decide whether to add a permission, refer to the AccessControlException topic.

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy
file takes effect.

filter.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java
2 security policy filtering is only in effect when Java 2 security is enabled.

Before modifying the filter.policy file, you must start the wsadmin tool.

Refer to “Protecting system resources and APIs (Java 2 security) for developing applications” on page
819. The filtering policy defined in the filter.policy file is cell wide. The filter.policy file is the only
policy file that is used when restricting the permission instead of granting permission. The permissions that
are listed in the filter policy file are filtered out from the app.policy file and the was.policy file.
Permissions that are defined in the other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions that are
defined in the app.policy file and the was.policy file are compound permissions like the
java.security.AllPermission permission, for example, the permission is not removed. A warning message is
logged. If the Issue Permission Warning flag is enabled (default) and if the app.policy file and the
was.policy file contain custom permissions (non-Java API permission, the permission package name
begins with characters other than java or javax), a warning message is logged and the permission is not
removed. You can change the value of the Warn if applications are granted custom permissions option
on the Global security panel. It is not recommended that you use the AllPermission permission for the
enterprise application.

Some default permissions that are defined in the filter.policy file. These permissions are the minimal
ones that are recommended by the product. If more permissions are added to the filter.policy file,
certain operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

826 Securing applications and their environment

You cannot use the Policy Tool to edit the filter.policy file. Editing must be completed in a text editor.
Be careful and verify that no syntax errors exist in the filter.policy file. If any syntax errors exist in the
filter.policy file, the file is not loaded by the product security runtime, which implies that filtering is
disabled.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract cells/cell_name/filter.policy /temp/test/filter.policy]

To check in the policy file, enter the following command using information from your environment:

$AdminConfig checkin cells/cell_name/filter.policy /temp/test/filter.policy $obj

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise
applications after the servers are restarted. The filter.policy file is managed by configuration and file
replication services.

Changes made in the file are replicated to other nodes in the cell.

The filter.policy file that is supplied by WebSphere Application Server resides at: app_server_root/
profiles/profile_name/config/cells/cell_name/filter.policy.

This fill contains these permissions as defaults:

filterMask {
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "setSecurityManager";
permission java.security.SecurityPermission "setPolicy";
permission javax.security.auth.AuthPermission "setLoginConfiguration"; };
runtimeFilterMask {
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "setSecurityManager";
permission java.security.SecurityPermission "setPolicy";
permission javax.security.auth.AuthPermission "setLoginConfiguration"; };

The permissions that are defined in filterMask filter are for static policy filtering. The security runtime tries
to remove the permissions from applications during application startup. Compound permissions are not
removed, but are issued with a warning, and application deployment is stopped if applications contain
permissions that are defined in the filterMask filter, and if scripting is used. The runtimeFilterMask filter
defines permissions that are used by the security runtime to deny access to those permissions to
application thread. Do not add more permissions to the runtimeFilterMask filter. Application start failure or
incorrect functioning might result. Be careful when adding more permissions to the runtimeFilterMask filter.
Usually, you only need to add permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that
can compromise the integrity of the system. For instance, WebSphere Application Server considers the
exitVM and setSecurityManager permissions as those permissions that most applications never have. If
these permissions are granted, the following scenarios are possible:

exitVM
A servlet, JavaServer Pages (JSP) file, enterprise bean, or other library that is used by the
aforementioned might call the System.exit API and cause the entire WebSphere Application Server
process to terminate.

setSecurityManager
An application might install its own security manager and either grant more permissions or bypass
the default policy that the WebSphere Application Server security manager enforces.

Chapter 9. Developing extensions to the WebSphere security infrastructure 827

Important: In application code, do not use the setSecurityManager permission to set a security manager.
When an application uses the setSecurityManager permission, a conflict exists with the
internal security manager within WebSphere Application Server. If you must set a security
manager in an application for Remote Method Invocation (RMI) purposes, you also must
select the Use Java 2 security to restrict application access to local resources option on
the Global security panel within the WebSphere Application Server administrative console.
WebSphere Application Server then registers a security manager, which the application code
can verify is registered by using the System.getSecurityManager application programming
interface (API).

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file for Java 2 security:

You should update the was.policy file if the application has specific resources to access.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The
was.policy file is an application-specific policy file for WebSphere Application Server enterprise
applications. This file is embedded in the META-INF/was.policy enterprise archive (.EAR) file. The
was.policy file is located in:
profile_root/config/cells/cell_name/applications/
ear_file_name/deployments/application_name/META-INF/was.policy

See Java 2 security policy files for the list of available policy files that are supported by WebSphere
Application Server Version 6.1.

The union of the permissions that are contained in the following files is applied to the WebSphere
Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Changes made in these files are replicated to other nodes in the cell.

Table 106. Symbols defined to associate permission lists to a specific type of resource. Several product-reserved
symbols are defined to associate the permission lists to a specific type of resource.
Symbol Definition

file:${application} Permissions apply to all resources used within the application.

file:${jars} Permissions apply to all utility Java archive (JAR) files within the
application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

file:${webComponent} Permissions apply to web resources within the application

file:${connectorComponent} Permissions apply to connector resources within the application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread
permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the
application cannot manipulate threads and WebSphere Application Server creates a
java.security.AccessControlException exception. If you add the permissions to the was.policy file for a

828 Securing applications and their environment

specific application, you do not need to restart WebSphere Application Server. An administrator must add
the following code to a was.policy or app.policy file for an application to manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

An administrator can add the thread permissions to the app.policy file, but the permission change
requires a restart of WebSphere Application Server.

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal
keywords are not supported in the was.policy file. The Signed By keyword is supported in the
java.policy, server.policy, and client.policy policy file. The JAAS principal keyword is
supported in a JAAS policy file when it is specified by the java.security.auth.policy Java
virtual machine (JVM) system property. You can statically set the authorization policy files in
the java.security.auth.policy file with the auth.policy.url.n=URL, where URL is the
location of the authorization policy.

Other than these blocks, you can specify the module name for granular settings. For example,
grant codeBase "file:DefaultWebApplication.war" {
permission java.security.SecurityPermission "printIdentity";

};

grant codeBase "file:IncCMP11.jar" {
permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",
"read,write,delete";

};

Table 107. Embedded symbols provided to specify the path and name for the java.io.FilePermission permission.
Five embedded symbols are provided to specify the path and name for the java.io.FilePermission permission. These
symbols enable flexible permission specification. The absolute file path is fixed after the application is installed.
Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

About this task

If the default permissions for the enterprise application are enough, an action is not required. The default
permissions are a union of the permissions that are defined in the java.policy file, the server.policy file,
and the app.policy file. If an application has specific resources to access, update the was.policy file. The
first two steps assume that you are creating a new policy file.

Tip: Syntax errors in the policy files cause the application server to fail. Use care when editing these
policy files.

Procedure

1. Create or edit a new was.policy file by using the PolicyTool. For more information, see “Using
PolicyTool to edit policy files for Java 2 security” on page 821.

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications for Java 2 security” on page
833.The following instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool.

b. Open the Project Navigator view.

Chapter 9. Developing extensions to the WebSphere security infrastructure 829

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF
directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor
and by clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate
the file.

h. Verify that the path directory that is listed in the Into directory field lists the correct META-INF
directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click
Run Validation.

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do
not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the
workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists. Modify the was.policy file with the Policy
Tool. For more information, see “Using PolicyTool to edit policy files for Java 2 security” on page 821.

a. Extract the policy file. Enter the following command from a command prompt:
wsadmin> set obj [$AdminConfig extract profiles/profile_name/cells/cell_name
/application/ear_file_name/deployments/application_name
/META_INF/was.policy c:/temp/test/was.policy]

Enter the three previous lines as one continuous line. They are display here for illustration only.

b. Edit the extracted was.policy file with the Policy Tool. For more information, see “Using PolicyTool
to edit policy files for Java 2 security” on page 821.

c. Check in the policy file. Enter the following at a command prompt:
wsadmin> $AdminConfig checkin profiles/profile_name/cells/cell_name/application/
ear_file_name/deployments/application_name/META_INF/was.policy
c:/temp/test/was.policy $obj

Enter the three previous lines as one continuous line. They are display here for illustration only.

Results

The updated was.policy file is applied to the application after the application restarts.

Example
java.security.AccessControlException: access denied (java.io.FilePermission
${was.install.root}/java/ext/mail.jar read)

If an application must access a specific resource that is not defined as a default in the java.policy file,
the server.policy file, and the app.policy, delete the was.policy file for that application. The symptom of
the missing permission is the java.security.AccessControlException exception. The missing permission is
listed in the exception data:

Note: Examples that appear below are split into several lines for illustration only. You actually enter the
permission on one line.

java.security.AccessControlException: access denied (java.io.FilePermission
${was.install.root}/java/ext/mail.jar read)

When a Java program receives this exception and adding this permission is justified, add the following
permission to the was.policy file:

830 Securing applications and their environment

grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";
};

To determine whether to add a permission, see Access control exception for Java 2 security.

What to do next

Restart all applications for the updated app.policy file to take effect.

spi.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server Version 6.0.x, see
Java 2 security policy files.

Because the default permission for the Service Provider Interface (SPI) is the AllPermission permission,
the only reason to update the spi.policy file is a restricted SPI permission. When a change in the
spi.policy is required, complete the following steps.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the filterMask and
runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization
Service (JAAS) Principal keywords are not supported in the spi.policy file. The Signed By
keyword is supported in the java.policy, server.policy, and client.policy policy files. The
JAAS Principal keyword is supported in a JAAS policy file that is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically set the
authorization policy files in java.security.auth.policy with auth.policy.url.n=URL, where
URL is the location of the authorization policy.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy
c:/temp/test/spi.policy]

Edit the file using the Policy Tool. For more information, see “Using PolicyTool to edit policy files for Java 2
security” on page 821.

To check in the policy file, enter the following command using information from your environment:

The updated spi.policy is applied to the Service Provider Interface (SPI) libraries after the Java process
is restarted.

$AdminConfig checkin profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy
c:/temp/test/spi.policy $obj

Examples

The spi.policy file is the template for SPIs or third-party resources embedded in the product. Examples
of SPIs are Java Message Services (JMS) (MQSeries®) and Java database connectivity (JDBC) drivers.
They are specified in the resources.xml file. The dynamic policy grants the permissions that are defined in
the spi.policy file to the class paths defined in the resources.xml file. The union of the permission that is
contained in the java.policy file and the spi.policy file are applied to the SPI libraries. The spi.policy
files are managed by configuration and file replication services.

Chapter 9. Developing extensions to the WebSphere security infrastructure 831

Changes made in these files are replicated to other nodes in the cell.

You can find the spi.policy file that is supplied by WebSphere Application Server in the following location:
app_server_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy. This file
contains the following default permission:

grant {
permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

library.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server, see Java 2
security policy files.

The library.policy file is the template for shared libraries (Java library classes). Multiple enterprise
applications can define and use shared libraries. Refer to Managing shared libraries for information on how
to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the
app.policy file and the library.policy file) are enough, no action is required. The default library policy is
picked up automatically. If a specific change is required to share a library in the cell, update the
library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed
By keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword
are not supported in the library.policy file. The Signed By keyword is supported in the
java.policy, the server.policy, and the client.policy policy files. The JAAS Principal
keyword is supported in a JAAS policy file when it is specified by the Java virtual machine
(JVM) system property, java.security.auth.policy. You can statically set the authorization policy
files in the java.security.auth.policy file with auth.policy.url.n=URL where URL is the
location of the authorization policy.

To extract the policy file, use a command prompt to enter the following command using the appropriate
variable values for your environment:The previous two lines were split onto two lines for illustrative
purposes only.

wsadmin> set obj [$AdminConfig extract cells/cell_name/nodes/
node_name/library.policy /temp/test/library.policy]

Edit the extracted library.policy file with the Policy Tool. For more information, see “Using PolicyTool to
edit policy files for Java 2 security” on page 821.

To check in the policy file, use a command prompt to enter the following command using the appropriate
variable values for your environment:An updated library.policy is applied to shared libraries after the
servers restart.

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/library.policy
temp/test/library.policy $obj

832 Securing applications and their environment

Example

The union of the permission that is contained in the java.policy file, the app.policy file, and the
library.policy file are applied to the shared libraries. The library.policy file is managed by
configuration and file replication services.

Changes made in the file are replicated to other nodes in the cell.

The library.policy file are supplied by WebSphere Application Server resides at: app_server_root/
config/cells/cell_name/nodes/node_name/ directory. The file contains an empty permission entry as a
default. For example:
grant {
};

If the shared library in a cell requires permissions that are not defined as defaults in the java.policy file,
the app.policy file and the library.policy file, update the library.policy file. The missing permission
causes the java.security.AccessControlException exception. The missing permission is listed in the
exception data.

When a Java program receives this exception and adding this permission is justified, add a permission to
the library.policy file.

To decide whether to add a permission, refer to Access control exception for Java 2 security.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications for Java 2 security:

An application might need a was.policy file if it accesses resources that require more permissions than
those granted in the default app.policy file.

About this task

When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on
WebSphere Application Server undergo a security check before accessing system resources. An
application might need a was.policy file if it accesses resources that require more permissions than those
granted in the default app.policy file. By default, the product security reads an app.policy file that is
located in each node and grants the permissions in the app.policy file to all the applications. Include any
additional required permissions in the was.policy file. The was.policy file is only required if an application
requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the
product security, is common to all applications, and you do not change this file. Add any new permissions
that are required for an application in the was.policy file.

The app.policy file supplied by WebSphere Application Server resides at app_server_root/config/cells/
profile/profile_name/config/cell_name/nodes/node_name/app.policy. The contents of the app.policy
file are presented in the following example:

Attention: In the following code sample, the two permissions that are required by JavaMail are split onto
two lines for illustration only. You actually enter the permission on one line.
// The following permissions apply to all the components under the application.

grant codeBase "file:${application}" {
// The following are required by JavaMail

permission java.io.FilePermission "
${was.install.root}${/}lib${/}activation-impl.jar",

"read";

Chapter 9. Developing extensions to the WebSphere security infrastructure 833

permission java.io.FilePermission "
${was.install.root}${/}lib${/}mail-impl.jar","read";

};
// The following permissions apply to all utility .jar files (other
// than enterprise beans JAR files) in the application.

grant codeBase "file:${jars}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to connector resources within the application
grant codeBase "file:${connectorComponent}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the web modules (.war files)
// within the application.
grant codeBase "file:${webComponent}" {
permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

// where "was.module.path" is the path where the web module is
// installed. Refer to Dynamic policy concepts for other symbols.

permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the EJB modules within the application.
grant codeBase "file:${ejbComponent}" {
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";
};

If additional permissions are required for an application or for one or more modules of an application, use
the was.policy file for that application. For example, use codeBase of ${application} and add required
permissions to grant additional permissions to the entire application. Similarly, use codeBase of
${webComponent} and ${ejbComponent} to grant additional permissions to all the web modules and all the
enterprise bean modules in the application. You can assign additional permissions to each module (.war
file or .jar file), as shown in the following example.

This example illustrates adding extra permissions for an application in the was.policy file:

Attention: In the following code sample, the permission for the EJB module was split onto two lines for
illustration only. You actually enter the permission on one line.
// grant additional permissions to a web module
grant codeBase " file:aWebModule.war" {
permission java.security.SecurityPermission "printIdentity";
};

// grant additional permission to an EJB module
grant codeBase "file:aEJBModule.jar" {

permission java.io.FilePermission "
${user.install.root}${/}bin${/}DefaultDB${/}-", "read,write,delete";

// where, ${user.install.root} is the system property whose value is
// located in the app_server_root directory.

};

To use a was.policy file for your application, perform the following steps:

Procedure

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using
PolicyTool to edit policy files for Java 2 security” on page 821.

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.
Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted and start an assembly tool.

Note: An assembly tool is not available. Use an assembly tool on another platform such as Linux Intel
or Windows.

834 Securing applications and their environment

5. Verify that the was.policy file in the application is syntactically correct. In an assembly tool, right-click
the enterprise application module and click Run Validation.

Results

An application EAR file is now ready to run when Java 2 security is enabled.

Example

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file
is not created and it does not contain required permissions, the application might not access system
resources.

The symptom of the missing permissions is the java.security.AccessControlException exception. The
missing permission is listed in the exception data, for example,
java.security.AccessControlException: access denied (java.io.FilePermission
${was.install.root}/java/ext/mail.jar read)

When an application program receives this exception and adding this permission is justified, include the
permission in the was.policy file, for example,
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";
};

The previous permission information lines are split for the illustration. Enter the permission on one line.

What to do next

Install the application.

Configuring static policy files in Java 2 security
By configuring the static policy files, the required permission will be granted for all of the Java programs.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program.

See the topic about Java 2 security policy files for the list of available policy files that are supported by
WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static
policy files. Static policy files provide the default permissions. Dynamic policy files provide application
permissions.

Table 108. Policy Files. This table lists the policy files.
Policy file name Description

java.policy Contains default permissions for all of the Java programs on the node. This file seldom changes.

server.policy Contains default permissions for all of the WebSphere Application Server programs on the node. This file is rarely
updated.

client.policy Contains default permissions for all of the applets and client containers on the node.

The static policy file is not a configuration file that is managed by the repository and the file replication
service. Changes to this file are local and do not get replicated to the other machine.

Procedure
1. Identify the policy file to update.

Chapter 9. Developing extensions to the WebSphere security infrastructure 835

v If the permission is required only by an application, update the dynamic policy file. Refer to
“Configuring Java 2 security policy files” on page 822.

v If the permission is required only by applets and client containers, update the client.policy file.
Refer to “client.policy file permissions” on page 839.

v If the permission is required only by WebSphere Application Server (servers, agents, managers and
application servers), update the server.policy file. Refer to “server.policy file permissions” on page
838.

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),
update the java.policy file. Refer to “java.policy file permissions.”

2. Stop and restart WebSphere Application Server.

Results

The required permission is granted for all of the Java programs that run with the restarted JVM.

Example

If Java programs on a node require permissions, the policy file needs updating. If the Java program that
required the permission is not part of an enterprise application, update the static policy file. The missing
permission results in the creation of the java.security.AccessControlException exception. The missing
permission is listed in the exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:/WAS_HOME/lib/mail-impl.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to
an adequate policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:/WAS_HOME/lib/mail-impl.jar",
"read";

};

To decide whether to add a permission, refer to Access control exception for Java 2 security.

java.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

See “Java 2 security policy files” on page 85 for the list of available policy files that are supported by
WebSphere Application Server.

The java.policy file is a global default policy file that is shared by all of the Java programs that run in the
Java virtual machine (JVM) on the node. A change to the java.policy file is local for the node. The default
Java policy is picked up automatically. Syntax errors in the policy files cause the application server to fail.
An updated java.policy file is applied to all the Java programs that run in all the JVMs on the local node.
Restart the programs for the updates to take effect. Modifying this file is not recommended. If a specific
change is required to some of the Java programs on a node and the java.policy file requires updating,
carefully modify the java.policy file with the policy tool. For more information, see “Using PolicyTool to
edit policy files for Java 2 security” on page 821.

836 Securing applications and their environment

Default permissions for the java.policy file

The java.policy file is not a configuration file that is managed by the repository and the file replication
service. Changes to this file are local and do not get replicated to the other machine. The java.policy file
that is supplied by WebSphere Application Server is located at install_root/java/jre/lib/security/
java.policy. This file contains these default permissions.
// Standard extensions get all permissions by default
grant codeBase "file:${java.home}/lib/ext/*" {

permission java.security.AllPermission;
};
// default permissions granted to all domains
grant {

// Allows any thread to stop itself using the java.lang.Thread.stop()
// method that takes no argument.
// Note that this permission is granted by default only to remain
// backwards compatible.
// It is strongly recommended that you either remove this permission
// from this policy file or further restrict it to code sources
// that you specify, because Thread.stop() is potentially unsafe.
// See "http://java.sun.com/notes" for more information.
// permission java.lang.RuntimePermission "stopThread";

// allows anyone to listen on un-privileged ports
permission java.net.SocketPermission "localhost:1024-", "listen";

// "standard" properties that can be read by anyone

permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.vendor", "read";
permission java.util.PropertyPermission "java.vendor.url", "read";
permission java.util.PropertyPermission "java.class.version", "read";
permission java.util.PropertyPermission "os.name", "read";
permission java.util.PropertyPermission "os.version", "read";
permission java.util.PropertyPermission "os.arch", "read";
permission java.util.PropertyPermission "file.separator", "read";
permission java.util.PropertyPermission "path.separator", "read";
permission java.util.PropertyPermission "line.separator", "read";

permission java.util.PropertyPermission "java.specification.version", "read";
permission java.util.PropertyPermission "java.specification.vendor", "read";
permission java.util.PropertyPermission "java.specification.name", "read";

permission java.util.PropertyPermission "java.vm.specification.version","read";
permission java.util.PropertyPermission "java.vm.specification.vendor","read";
permission java.util.PropertyPermission "java.vm.specification.name", "read";
permission java.util.PropertyPermission "java.vm.version", "read";
permission java.util.PropertyPermission "java.vm.vendor", "read";
permission java.util.PropertyPermission "java.vm.name", "read";
};

If some Java programs on a node require permissions that are not defined as defaults in the java.policy
file, consider updating the java.policy file. Most of the time, other policy files are updated instead of the
java.policy file. The missing permission causes the creation of the , java.security.AccessControlException
exception. The missing permission is listed in the exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to
the java.policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “Access control exception for Java 2 security” on page 89.

Restart all of the Java processes for the updated java.policy file to take effect.

Chapter 9. Developing extensions to the WebSphere security infrastructure 837

server.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

See “Java 2 security policy files” on page 85 for the list of available policy files that are supported by
WebSphere Application Server.

The server.policy file is a default policy file that is shared by all of the WebSphere Application Servers on
a node. The server.policy file is not a configuration file that is managed by the repository and the file
replication service. Changes to this file are local and do not replicate to the other machine.

If the default permissions for a server (the union of the permissions that is defined in the java.policy file
and the server.policy file) are enough, no action is required. The default server policy is picked up
automatically. If a specific change is required to some of the server programs on a node, update the
server.policy file with the Policy Tool. Refer to the “Using PolicyTool to edit policy files for Java 2
security” on page 821 topic to edit policy files. Changes to the server.policy file are local for the node.
Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully. An
updated server.policy file is applied to all the server programs on the local node. Restart the servers for
the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

When you do need to modify the server.policy file, locate this file at: profile_root/properties/
server.policy. This file contains these default permissions:
// Allow to use sun tools
grant codeBase "file:${java.home}/lib/tools.jar" {
permission java.security.AllPermission;
};

// Allow the WebSphere deploy tool all permissions
grant codeBase "file:${was.install.root}/deploytool/-" {
permission java.security.AllPermission;
};

grant codeBase "file:${was.install.root}/plugins/-" {
permission java.security.AllPermission;
};

grant codeBase "file:${was.install.root}/classes/-" {
permission java.security.AllPermission;
};

grant codeBase "file:${was.install.root}/lib/-" {
permission java.security.AllPermission;
};

grant codeBase "file:${smpe.install.root}/lib/-" {
permission java.security.AllPermission;
};

grant codeBase "file:${smpe.install.root}/-" {
permission java.security.AllPermission;
};

838 Securing applications and their environment

// Allow to use TAM
grant codeBase "file:${was.install.root}/java/jre/lib/ext/PD.jar" {
permission java.security.AllPermission;
};

If some server programs on a node require permissions that are not defined as defaults in the
server.policy file and the server.policy file, update the server.policy file. The missing permission
creates the java.security.AccessControlException exception. The missing permission is listed in the
exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail-impl.jar read)

The previous two lines are split into two lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add a permission to
the server.policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “Access control exception for Java 2 security” on page 89.

Restart all of the Java processes for the updated server.policy file to take effect.

client.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server, see “Java 2
security policy files” on page 85.

v The client.policy file is a default policy file that is shared by all of the WebSphere Application Server
client containers and applets on a node.

v The union of the permissions that is contained in the java.policy file and the client.policy file are
given to all of the client containers for WebSphere Application Server and applets running on the node.

v The client.policy file is not a configuration file that is managed by the repository and the file
replication service. Changes to this file are local and do not replicate to the other machine.

v The client.policy file supplied by WebSphere Application Server is located in the
profile_root/properties/client.policy.

v If the default permissions for a client (union of the permissions defined in the java.policy file and the
client.policy file) are enough, no action is required. The default client policy is picked up
automatically.

v If a specific change is required to some of the client containers and applets on a node, modify the
client.policy file with the Policy Tool. Refer to “Using PolicyTool to edit policy files for Java 2 security”
on page 821, to edit policy files. Changes to the client.policy file are local for the node.

This file contains these default permissions:
grant codeBase "file:${was.install.root}/java/ext/*" {
permission java.security.AllPermission;

};

// JDK classes
grant codeBase "file:${was.install.root}/java/ext/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/java/tools/ibmtools.jar" {
permission java.security.AllPermission;

Chapter 9. Developing extensions to the WebSphere security infrastructure 839

};
grant codeBase "file:/QIBM/ProdData/Java400/jdk14/lib/tools.jar" {
permission java.security.AllPermission;

};

// WebSphere system classes
grant codeBase "file:${was.install.root}/lib/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/plugins/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/classes/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/installedConnectors/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${user.install.root}/installedConnectors/-" {
permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedChannels/-" {
permission java.security.AllPermission;

};

// J2EE 1.4 permissions for client container WebSphere Application Server applications
// in $WAS_HOME/installedApps
grant codeBase "file:${user.install.root}/installedApps/-" {
//Application client permissions
permission java.awt.AWTPermission "accessClipboard";
permission java.awt.AWTPermission "accessEventQueue";
permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "loadLibrary";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.net.SocketPermission "localhost:1024-", "accept,listen";
permission java.io.FilePermission "*", "read,write";
permission java.util.PropertyPermission "*", "read";

};

// J2EE 1.4 permissions for client container - expanded ear file code base
grant codeBase "file:${com.ibm.websphere.client.applicationclient.archivedir}/-" {
permission java.awt.AWTPermission "accessClipboard";
permission java.awt.AWTPermission "accessEventQueue";
permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "loadLibrary";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.net.SocketPermission "localhost:1024-", "accept,listen";
permission java.io.FilePermission "*", "read,write";
permission java.util.PropertyPermission "*", "read";

};

All of the client containers and applets on the local node are granted the updated permissions when they
start. If some client containers or applets on a node require permissions that are not defined as defaults in
the java.policy file and the default client.policy file, update the client.policy file. The missing
permission creates the java.security.AccessControlException exception. The missing permission is listed in
the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines of sample code are one continuous line, but presented as such for illustrative
purposes only.

When a client program receives this exception and adding this permission is justified, add a permission to
the client.policy file, for example, grant codebase "file:user_client_installed_location" { permission
java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };.

To decide whether to add a permission, refer to “Access control exception for Java 2 security” on page 89.

If you update the policy file, you must restart the browser and any client applications.

840 Securing applications and their environment

Developing with programmatic security APIs for web applications
Use this information to programmatically secure APIs for web applications.

Before you begin

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application.

The authenticate, login, logout, getRemoteUser, isUserInRole and getAuthType servlet security methods
are methods of the javax.servlet.http.HttpServletRequest interface. For more detailed information about
these servlet security methods, read the Servlet security methods article.

Note:

The logout, login, and authenticate APIs are new for Java Servlet 3.0 in this release of WebSphere
Application Server.

You can configure several options for web authentication that determine how the web client interacts with
protected and unprotected Uniform Resource Identifiers (URI). Also, you can specify whether WebSphere
Application Server challenges the web client for basic authentication information if the certificate
authentication for the HTTPS client fails. For more information, see the Selecting an authentication
mechanism article.

You can enable a login module to indicate which principal class is returned by these calls. Refer to the
topic about mapping a registry principal to a System Authorization Facility user ID using a Java
Authentication and Authorization Services login module for more information.

When the isUserInRole method is used, declare a security-role-ref element in the deployment descriptor
with a role-name subelement containing the role name that is passed to this method, or use the
@DeclareRoles annotation. Because actual roles are created during the assembly stage of the application,
you can use a logical role as the role name and provide enough hints to the assembler in the description
of the security-role-ref element to link that role to the actual role. During assembly, the assembler creates
a role-link subelement to link the role name to the actual role. Creation of a security-role-ref element is
possible if an assembly tool, such as Rational Application Developer, is used. You also can create the
security-role-ref element during assembly stage using an assembly tool.

Procedure
1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created
during development, make sure it is created during the assembly stage.

Results

A programmatically secured servlet application.

Example

These steps are required to secure an application programmatically. This action is particularly useful when
a web application needs to access external resources and wants to control the access to external
resources using its own authorization table (external-resource to remote-user mapping). In this case, use
the getUserPrincipal or the getRemoteUser methods to get the remote user, then the application can
consult its own authorization table to perform authorization. The remote user information also can help
retrieve the corresponding user information from an external source such as a database or from an
enterprise bean. You can use the isUserInRole method in a similar way.

Chapter 9. Developing extensions to the WebSphere security infrastructure 841

After development, you can create a security-role-ref element:
<security-role-ref>

<description>Provide hints to assembler for linking this role
name to an actual role here<\description>

<role-name>Mgr<\role-name>
</security-role-ref>

During assembly, the assembler creates a role-link element:
<security-role-ref>

<description>Hints provided by developer to map the role
name to the role-link</description>

<role-name>Mgr</role-name>
<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet, doPost, doPut, and
doDelete service methods. The following example depicts using a programmatic security API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logoff the current user
request.logout();

// to login with a new user
request.login(“bob”,”bobpwd”)

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// use the above information in any way as needed by
// the application
....

}

You can programmatic login with a user ID and password inside any servlet doGet, doPost, doPut, and
doDelete service methods. The following example depicts using a programmatic login/logout API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logout the current user. If you are not already authenticate, then no need to call the logout() method.
request.logout();

// to login with a new user
request.login(“utle”,”mypwd”)

// the user utle subject now set on the thread and the LTPA SSO cookie is set in the response
....

}

You can programmatic authenticate with a different identity inside any servlet doGet, doPost, doPut, and
doDelete service methods. In this example, if the web servlet is configured to use basicAuth, the web
server returns a response code 401, the login prompt is displayed, and you can enter the user ID and
password to authenticate. The following example depicts using a programmatic login/logout API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logout the current user. If you are not already authenticate, then no need to call the logout() method.

// to login with a new user
request.authenticate(response);

// the new user subject now set on the thread and the LTPA SSO cookie is set in the response
....

}

842 Securing applications and their environment

When developing Servlet 3.0 modules, the value of the rolename argument in isCallerInRole method can
be defined using Java annotations instead of declaring a security-role-ref elements in the deployment
descriptor.
@javax.annotation.security.DeclareRoles("Mgr")
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// use the above information in any way as needed by
// the application
....

}

The following example depicts a web application or servlet using the programmatic security model.

This example illustrates one use and not necessarily the only use of the programmatic security model. The
application can use the information that is returned by the getUserPrincipal, isUserInRole, and the
getRemoteUser methods in any other way that is meaningful to that application. Use the declarative
security model whenever possible.

File : HelloServlet.java
public class HelloServlet extends javax.servlet.http.HttpServlet {

public void doPost(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
}
public void doGet(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {

String s = "Hello";

// get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUserName = "";
if(principal != null)
remoteUserName = principal.getName();

// get remote user using getRemoteUser()
String remoteUser = request.getRemoteUser();

// check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// display Hello username for managers and bob.
if (isMgr || remoteUserName.equals("bob"))

s = "Hello " + remoteUserName;

String message = "<html> \n" +
"<head><title>Hello Servlet</title></head>\n" +

"<body> /n +"
"<h1> " +s+ </h1>/n " +

byte[] bytes = message.getBytes();

// displays "Hello" for ordinary users
// and displays "Hello username" for managers and "bob".
response.getOutputStream().write(bytes);

}

}

After developing the servlet, you can create a security role reference for the HelloServlet servlet as shown
in the following example:

Chapter 9. Developing extensions to the WebSphere security infrastructure 843

<security-role-ref>
<description> </description>
<role-name>Mgr</role-name>

</security-role-ref>

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. See the information about securing web applications using an
assembly tool.

Servlet security methods
The authenticate, login, logout, getRemoteUser, isUserInRole and getAuthType servlet security methods
are methods of the javax.servlet.http.HttpServletRequest interface.

authenticate

Note: The authenticate, login and logout servlet security methods are new for Java Servlet 3.0 in this
release of WebSphere Application Server.

The authenticate method authenticates a user by using the WebSphere Application Server container login
mechanism configured for the servlet context.

The syntax of the authenticate method is as follows:
boolean authenticate(HttpServletResponse response))

The previous example uses the following element:

response
The HttpServletResponse associated with the HttpServletRequest.

The authenticate method returns true when authentication has been established or authentication is
successful.

The authenticate method returns false if authentication is incomplete and the underlying login mechanism
has committed, in the response, the message and HTTP status code to be returned to the user.

A java.io.IOException occurs if an error occurs while writing the response.

A ServletException occurs if the authentication failed, and the caller is responsible for handling the error
(for example, the underlying login mechanism did not establish the message and the HTTP status code to
be returned to the user).

Note: When the authenticate method is called, be aware of the following:

v WebSphere Application Server returns HTTP 401 code to a client.

v The method depends on the WebSphere Application Server container login mechanism that is
configured for the servlet context. For example, if you have a form login defined for this servlet, it
prompts for a user name and password. The client sends the user ID and password to
WebSphere Application Server for authentication.

Important: Make sure that the authenticate method returns true before using the new subject to
call another service. For example:

Boolean authResultTrue = req.authenticate(response);
if (!authResultTrue) {
return;
} else {
// Use the new invocation subject to call other services.

}

844 Securing applications and their environment

login

The login method authenticates a user to the WebSphere Application Server with a user ID and password.
If authentication is successful, it creates a user subject on the thread and Lightweight Third Party
Authentication (LTPA) cookies (if single sign-on (SSO) is enabled).

The syntax of the login method is as follows:
login(java.lang.String username, java.lang.String password)

The previous example uses the following elements:

username
The string value that corresponds to the login identifier of the user.

password
The password of the user.

A ServletException occurs if the configured login mechanism does not support username and password
authentication, if an identity had already been authenticated (prior to the call to login), or if validation of the
provided username and password fails.

Note: You can set the security custom property com.ibm.websphere.security.webAlwaysLogin to true and
it will authenticate to the WebSphere application with the username and password, even if it is
already authenticated.

For more information about modifying security custom properties, read the Modifying an existing
custom property in a global security configuration or in a security domain configuration article.

Note: The login method always uses the user ID and password to authenticate to the WebSphere
application server and even the SSO information that is present in the HttpServletRequest.

Note: The authenticate and login methods set the invocation subject to the new subject. If the caller
subject is null, it then sets the caller subject to the new subject. If the caller subject is not null, then
the caller subject is not set to the new subject.

Since the authenticate and login methods set the invocation subject to the new subject, the RunAs
defined by the run-As attribute in deployment descriptor, security annotation or dynamic annotation
is ignored.

logout

The logout method logs the user out of the WebSphere Application Server and invalidates the HTTP
session. During this process, WebSphere Application Server completes the following processes:

v Clears the LTPA cookies if SSO is enabled

v Invalidates the HTTP session

v Removes the user from the authentication cache

v Removes the user subject from the thread

v Clears the caller and invocation subjects

v Sets the authentication type to null

After logging out, access to a protected web resource requires re-authentication and the getUserPrincipal,
getRemoteUser and getAuthType methods return null.

The syntax of the logout method is as follows:
logout()

Chapter 9. Developing extensions to the WebSphere security infrastructure 845

A ServletException occurs if the logout fails.

Audit event types for the authenticate, login and logout methods

To audit authenticate, login and logout methods, you must create or extend some audit event type files.
These event type are not part of the default event type files.

Table 109. Audit event types for the authenticate, login, and logout methods.

The audit event types required for the authenticate, login, and logout methods are:
Method Audit event name Audit outcome of the event

authenticate/login SECURITY_AUTHN SUCCESS and or FAILURE

logout SECURITY_AUTHN_TERMINATE SUCCESS

logout SECURITY_AUTHN_TERMINATE FAILURE

isUserInRole

(String role name): Returns true if the remote user is granted the specified security role. If the remote user
is not granted the specified role, or if no user is authenticated, it returns false.

getRemoteUser

The getRemoteUser method returns the login of the user that makes the request if the user has been
authenticated. If the user has not been authenticated, the getRemoteUser method returns null.

getAuthType

The getAuthType method returns the name of the authentication scheme that is used to protect the servlet.
If the servlet is not protected, the getAuthType method returns null.

The authentication schemes used are:

FORM when form-based authentication is used

BASIC
when basic authentication is used.

CLIENT_CERT
when client certificate authentication is used.

Note:

For both the getRemoteUser and getAuthType methods, the data that is returned depends upon
whether security is enabled in the application server where the servlet is deployed. The following
possibilities exist:

v If application security is enabled and a servlet is protected, then the getRemoteUser method
returns the login and the getAuthType method returns the configured authentication scheme.

v If application security is not enabled, both methods return null.

Web authentication settings
Use this page to specify the web authentication settings that are associated with a web client.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click General settings.

846 Securing applications and their environment

You can override the global Web authentication settings that you select on this panel by specifying one or
more of the following system properties for the controller and the servant. Complete the following steps to
specify one of these system properties for the controller:

1. Click Servers > Application servers > server_name.

2. Under Server infrastructure, click Java and Process Management > Process definition > Control.

3. Under Additional properties, click Java Virtual Machine > Custom properties > New

Complete the following steps to specify one of these system properties for the servant:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Server infrastructure, click Java and Process Management > Process definition > Servant.

3. Under Additional properties, click Java Virtual Machine > Custom properties > New

Table 110. Web authentication system property values. This table lists the web authentication system property
values.
Property name Value Explanation

com.ibm.wsspi.security.web.webAuthReq lazy This value is equivalent to the Authenticate
only when the URI is protected option.

Note: You can set webAuthReq differently
through the administrative console or scripting
when using a global or a security domain, but
the global level always takes precedence.

com.ibm.wsspi.security.web.webAuthReq persisting This value is equivalent to the Use available
authentication data when an unprotected URI
is accessed option.

com.ibm.wsspi.security.web.webAuthReq always This value is equivalent to the Authenticate
when any URI is accessed option.

com.ibm.wsspi.security.web.failOverToBasicAuth true This value is equivalent to the Default to basic
authentication when certificate authentication
for the HTTPS client fails option.

Authenticate only when the URI is protected:

The application server challenges the web client to provide authentication data when the web client
accesses a Uniform Resource Identifier (URI) that is protected by a Java 2 Platform, Enterprise Edition
(J2EE) role. The authenticated identity is available only when the web client accesses a protected URI.

This option is the default J2EE web authentication behavior that is also available in previous releases of
WebSphere Application Server.

Note: When you select this option, the administrative console login page is missing images. You might
encounter the following error in the administrative console: "CWLAA6003: Could not display the
portlet, the portlet may not be started. Check the error logs".

The missing images and the error message are a side-effect of this option. The images do not
display because the URIs for the images now need authentication, which requires you to log in. You
can ignore this error message.

Default: Enabled

Use available authentication data when an unprotected URI is accessed:

The web client can access validated authenticated data that it previously could not access. This option
enables the web client to call the getRemoteUser, isUserInRole, and getUserPrincipal methods to retrieve
an authenticated identity from an unprotected URI.

Chapter 9. Developing extensions to the WebSphere security infrastructure 847

When you select this option with the Authenticate only when the URI is protected option, the web client
can use authenticated data when the URI is protected or not protected.

When this option is selected and Form-based authentication is being used, a WASPostParam cookie is
generated during the authentication procedure of the HTTP POST request even if the target URL is
unprotected. A WASPOSTParam cookie is a temporary cookie used to store HTTP POST parameters. This
results in the Web client being sent the unnecessary cookie with an HTTP response. This might cause
unexpected behavior when the size of the cookie is larger than the browser limit. To avoid this behavior, a
custom property, com.ibm.websphere.security.util.postParamMaxCookieSize can be set to cause the
security code to stop generating the cookie if the maximum size is reached.

Important: This option does not challenge the web client to provide authenticated data if the web client
accesses an unprotected URI without authenticated data.

Default: Enabled

Authenticate when any URI is accessed:

The web client must provide authentication data regardless of whether the URI is protected.

Default: Disabled

Default to basic authentication when certificate authentication for the HTTPS client fails:

When the required HTTPS client certificate authentication fails, the application server uses the basic
authentication method to challenge the web client to provide a user ID and password.

The HTTP client certification authentication that is performed by the application server security is different
from the client authentication that is performed by the web server plug-in. If you configure the web server
plug-in for mutual authentication and client authentication fails, the following situations will occur:

v The web server produces a error and the web request is not processed by application server security.

v The application server cannot fail over to basic authentication.

Default: Disabled

Developing with programmatic APIs for EJB applications
Use this topic to programmatically secure your Enterprise JavaBeans (EJB) applications.

About this task

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application. The javax.ejb.EJBContext application
programming interface (API) provides two methods whereby the bean provider can access security
information about the enterprise bean caller.
v IsCallerInRole(String rolename): Returns true if the bean caller is granted the security role that is

specified by role name. If the caller is not granted the specified role, or if the caller is not authenticated,
it returns false. If the specified role is granted Everyone access, it always returns true.

v getCallerPrincipal: Returns the java.security. Principal object that contains the bean caller name. If the
caller is not authenticated, it returns a principal that contains an unauthorized name.

You can enable a login module to indicate which principal class is returned by these calls.

848 Securing applications and their environment

When the isCallerInRole method is used, declare a security-role-ref element in the deployment descriptor
with a role-name that is subelement containing the role name that is passed to this method. Because
actual roles are created during the assembly stage of the application, you can use a logical role as the
role name and provide enough hints to the assembler in the description of the security-role-ref element to
link that role to an actual role. During assembly, the assembler creates a role-link subelement to link the
role-name to the actual role. Creation of a security-role-ref element is possible if an assembly tool such as
Rational Application Developer is used. You also can create the security-role-ref element during the
assembly stage using an assembly tool.

Procedure
1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the
isCallerInRole method. If a security-role-ref element is not created during development, make sure it is
created during the assembly stage.

Results

Performing the previous steps result in a programmatically secured EJB application.

Example

Hard coding security policies in applications is strongly discouraged. The Java Platform, Enterprise Edition
(Java EE) security model capabilities of declaratively specifying security policies is encouraged wherever
possible. Use these APIs to develop security-aware EJB applications.

Using Java EE security model capabilities to specify security policies declaratively is useful when an EJB
application wants to access external resources and wants to control the access to these external
resources using its own authorization table (external-resource to user mapping). In this case, use the
getCallerPrincipal method to get the caller identity and then the application can consult its own
authorization table to perform authorization. The caller identification also can help retrieve the
corresponding user information from an external source, such as database or from another enterprise
bean. You can use the isCallerInRole method in a similar way.

After development, you can create a security-role-ref element:
<security-role-ref>
<description>Provide hints to assembler for linking this role-name to
actual role here<\description>
<role-name>Mgr<\role-name>
</security-role-ref>

During assembly, the assembler creates a role-link element:
<security-role-ref>
<description>Hints provided by developer to map role-name to role-link</description>
<role-name>Mgr</role-name>
<role-link>Manager</role-link>
</security-role-ref>

You can add programmatic EJB component security methods for example isCallerInRole and
getCallerPrincipal, inside any business methods of an enterprise bean. The following example of
programmatic security APIs includes a session bean:

public class aSessionBean implements SessionBean {

.....

// SessionContext extends EJBContext. If it is entity bean use EntityContext
javax.ejb.SessionContext context;

// The following method will be called by the EJB container

Chapter 9. Developing extensions to the WebSphere security infrastructure 849

// automatically
public void setSessionContext(javax.ejb.SessionContext ctx) {

context = ctx; // save the session bean’s context
}

....

private void aBusinessMethod() {
....

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerId= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");

// use the above information in any way as needed by the
//application

....
}

....
}

When developing EJB 3.x modules, the value of the rolename argument in isCallerInRole method can be
defined using Java annotations instead of declaring a security-role-ref elements in the deployment
descriptor.
@javax.annotation.security.DeclareRoles("Mgr")
@Stateless // annotation is used to indicate a session bean
public class aSessionBean implements MyBusinessInterface { //you don’t have to extend sessionbean interface

.....
// SessionContext extends EJBContext. In EJB 3.0 use Resource annotation to inject context

@Resource
javax.ejb.SessionContext context; }

....

private void aBusinessMethod() {
....

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerId= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");

// use the above information in any way as needed by the
//application

....
}

....
}

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. See the information about securing web applications using an
assembly tool.

Example: Enterprise bean application code
The following Enterprise JavaBeans (EJB) component example illustrates the use of the isCallerInRole and
the getCallerPrincipal methods in an EJB module.

850 Securing applications and their environment

Using declarative security is recommended. The following example is one way of using the isCallerInRole
and the getCallerPrincipal methods. The application can use this result in any way that is suitable.

A remote interface
File : Hello.java

package tests;
import java.rmi.RemoteException;
/**
* Remote interface for Enterprise Bean: Hello
*/
public interface Hello extends javax.ejb.EJBObject {

public abstract String getMessage()throws RemoteException;
public abstract void setMessage(String s)throws RemoteException;

}

A home interface
File : HelloHome.java
package tests;
/**
* Home interface for Enterprise Bean: Hello
*/
public interface HelloHome extends javax.ejb.EJBHome {
/**
* Creates a default instance of Session Bean: Hello
*/
public tests.Hello create() throws javax.ejb.CreateException,
java.rmi.RemoteException;

}

A bean implementation
File : HelloBean.java

package tests;
/**
* Bean implementation class for Enterprise Bean: Hello
*/
public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext mySessionCtx;
/**
* getSessionContext
*/
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
/**
* setSessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
}
/**
* ejbActivate
*/
public void ejbActivate() {
}
/**
* ejbCreate
*/
public void ejbCreate() throws javax.ejb.CreateException {
}
/**
* ejbPassivate
*/
public void ejbPassivate() {
}
/**
* ejbRemove

Chapter 9. Developing extensions to the WebSphere security infrastructure 851

*/
public void ejbRemove() {
}

public java.lang.String message;

//business methods

// all users can call getMessage()
public String getMessage() {

return message;
}

// all users can call setMessage() but only few users can set new message.
public void setMessage(String s) {

// get bean’s caller using getCallerPrincipal()
java.security.Principal principal = mySessionCtx.getCallerPrincipal();
java.lang.String callerId= principal.getName();

// check if bean’s caller is granted Mgr role
boolean isMgr = mySessionCtx.isCallerInRole("Mgr");

// only set supplied message if caller is "bob" or caller is granted Mgr role
if (isMgr || callerId.equals("bob"))

message = s;
else

message = "Hello";
}

}

After the development of the entity bean, create a security role reference in the deployment descriptor
under the session bean, Hello:
<security-role-ref>

<description>Only Managers can call setMessage() on this bean (Hello)</description>
<role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see Securing enterprise bean
applications. Use the information under Map security-role-ref and role-name to role-link to create the
element.

Customizing web application login
You can create a form login page and an error page to authenticate a user.

Before you begin

A web client or a browser can authenticate a user to a Web server using one of the following mechanisms:
v HTTP basic authentication: A web server requests the Web client to authenticate and the web client

passes a user ID and a password in the HTTP header.
v HTTPS client authentication: This mechanism requires a user (web client) to possess a public key

certificate. The web client sends the certificate to a web server that requests the client certificates. This
authentication mechanism is strong and uses the Hypertext Transfer Protocol with Secure Sockets
Layer (HTTPS) protocol.

v Form-based Authentication: A developer controls the look and feel of the login screens using this
authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the web
client to the web server in simple base64 encoding. Form-based authentication transmits a user password

852 Securing applications and their environment

from the browser to the web server in plain text. Therefore, both HTTP basic authentication and
form-based authentication are not very secure unless the HTTPS protocol is used.

The web application deployment descriptor contains information about which authentication mechanism to
use. When form-based authentication is used, the deployment descriptor also contains entries for login
and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login
page is displayed on the web client side when a secured resource (servlet, JSP file, HTML page) is
accessed from the application. On authentication failure, an error page is displayed. You can write login
and error pages to suit the application needs and control the look and feel of these pages. During
assembly of the application, an assembler can set the authentication mechanism for the application and
set the login and error pages in the deployment descriptor.

Form login uses the servlet sendRedirect method, which has several implications for the user. The
sendRedirect method is used twice during form login:
v The sendRedirect method initially displays the form login page in the web browser. It later redirects the

web browser back to the originally requested protected page. The sendRedirect(String URL) method
tells the web browser to use the HTTP GET request to get the page that is specified in the web
address. If HTTP POST is the first request to a protected servlet or JavaServer Pages (JSP) file, and
no previous authentication or login occurred, then HTTP POST is not delivered to the requested page.
However, HTTP GET is delivered because form login uses the sendRedirect method, which behaves as
an HTTP GET request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data
from users and then posts this data to protected servlets or JSP files for processing, but the users are
not logged in for the resource. To avoid this scenario, structure your web application or permissions so
that users are forced to use a form login page before the application performs any HTTP POST actions
to protected servlets or JSP files.

Procedure
1. Create a form login page with the required look and feel, including the required elements to perform

form-based authentication.

2. Create an error page. You can program error pages to retry authentication or to display an appropriate
error message.

3. Place the login page and error page in the web application archive (.war) file relative to the top
directory. For example, if the login page is configured as /login.html in the deployment descriptor,
place it in the top directory of the WAR file. An assembler can also perform this step using the
assembly tool.

4. Create a form logout page and insert it to the application only when the web application requires a
form-based authentication mechanism.

By default the URL to the logout page should point to the host to which the request was made or its
domain. Otherwise, a generic logout page is displayed. If you need to point this URL to a different
host, then you need to set the com.ibm.websphere.security.logoutExitPageDomainList property in the
security.xml file with a list of URLs that are allowed for the logout page. You can choose to allow any
logout exit page to be used by setting the com.ibm.websphere.security.allowAnyLogoutExitPageHost
property to a value of true. Setting this property to true might open your systems to a potential URL
redirect attacks.

Example: Form login

You can use the WebSphere Application Server login facilities to implement and configure form login
procedures. Use the following technologies for WebSphere Application Server and Java Platform,
Enterprise Edition (Java EE) login functionality:

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

Chapter 9. Developing extensions to the WebSphere security infrastructure 853

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see Accessing the samples.

Form login usage

For the authentication to proceed appropriately, the action of the login form must always have the
j_security_check action. The following example shows how to code the form into the HTML page:
<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="text" name="j_password">
<\form>

Use the j_username input field to get the user name, and use the j_password input field to get the user
password.

On receiving a request from a web client, the web server sends the configured form page to the client and
preserves the original request. When the web server receives the completed form page from the web
client, the server extracts the user name and password from the form and authenticates the user. On
successful authentication, the web server redirects the call to the original request. If authentication fails,
the web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">
<title> Security FVT Login Page </title>
<body>
<h2>Form Login</h2>
<FORM METHOD=POST ACTION="j_security_check">
<p>
 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">
 Password <input type="password" size="20" name="j_password">

 And then click this button:
<input type="submit" name="login" value="Login">
</p>

</form>
</body>
</html>

The following example depicts an error page in a JSP file:
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<head><title>A Form login authentication failure occurred</head></title>
<body>
<H1>A Form login authentication failure occurred</H1>
<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the
wrong case was used.
The user-id or password does not exist, has expired, or has been disabled.

</P>
</body>
</html>

After an assembler configures the web application to use form-based authentication, the deployment
descriptor contains the login configuration as shown:
<login-config id="LoginConfig_1">
<auth-method>FORM<auth-method>
<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config id="FormLoginConfig_1">
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.jsp</form-error-page>
</form-login-config>
</login-config>

854 Securing applications and their environment

A sample web application archive (WAR) file directory structure that shows login and error pages for the
previous login configuration follows:
META-INF

META-INF/MANIFEST.MF
login.html
error.jsp
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out
of the form logout mechanism, access to a protected web resource requires re-authentication. This feature
is not required by J2EE specifications, but it is provided as an additional feature in WebSphere Application
Server security.

Suppose that you want to log out after logging into a web application and perform some actions. A form
logout works in the following manner:
1. The logout-form URI is specified in the web browser and loads the form.
2. The user clicks Submit on the form to log out.
3. The WebSphere Application Server security code logs the user out. During this process, the

Application Server completes the following processes:
a. Clears the Lightweight Third Party Authentication (LTPA) / single sign-on (SSO) cookies
b. Invalidates the HTTP session
c. Removes the user from the authentication cache

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. The form-logout page is an HTML
or a JavaServer Pages (JSP) file that is included with the web application. The form-logout page is like
most HTML forms except that like the form-login page, the form-logout page has a special post action.
This post action is recognized by the web container, which dispatches the post action to a special internal
form-logout servlet. The post action in the form-logout page must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or a JSP
file within the same web application to which the user is redirected after logging out. Additionally, the
logout-exit page permits a fully qualified URL in the form of http://hostname:port/URL. The logout-exit
page is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default
logout HTML message is returned to the user.

Here is a sample form logout HTML form. This form configures the logout-exit page to redirect the user
back to the login page after logout.
<!DOCTYPE HTML PUBliC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">
<title>Logout Page </title>
<body>
<h2>Sample Form Logout</h2>

<FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">
<p>

 Click this button to log out:
<input type="submit" name="logout" value="Logout">
<INPUT TYPE="HIDDEN" name="logoutExitPage" VALUE="/login.html">
</p>
</form>

</body>
</html>

Chapter 9. Developing extensions to the WebSphere security infrastructure 855

What to do next

After developing login and error pages, add them to the Web application. Use the assembly tool to
configure an authentication mechanism and insert the developed login page and error page in the
deployment descriptor of the application.

Developing servlet filters for form login processing
You can control the look and feel of the login screen using the form-based login mechanism. In
form-based login, you specify a login page that is used to retrieve the user ID and password information.
You also can specify an error page that displays when authentication fails.

About this task

If additional authentication or additional processing is required before and after authentication, servlet
filters are an option. Servlet filters can dynamically intercept requests and responses to transform or to use
the information that is contained in the requests or responses. One or more servlet filters can be attached
to a servlet or to a group of servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and
HTML pages. All of the attached servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet Version 2.3 specification-complaint
web container. The form login servlet performs the authentication and servlet filters perform additional
authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login
page support or for the /j_security_check URL. The j_security_check is posted by a form login page with
the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use the user name parameter and password information to perform more
authentication or other special needs.

Procedure
1. A servlet filter implements the javax.servlet.Filter class. Implement three methods in the filter class:

v init(javax.servlet.FilterConfig cfg). This method is called by the container once, when the servlet
filter is placed into service. The FilterConfig passed to this method contains the init-parameters of
the servlet filter. Specify the init-parameters for a servlet filter during configuration using the
assembly tool.

v destroy. This method is called by the container when the servlet filter is taken out of a service.

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This method is called by
the container for every servlet request that maps to this filter before invoking the servlet. The
FilterChain chain that is passed to this method can be used to invoke the next filter in the chain of
filters. The original requested servlet runs when the last filter in the chain calls the chain.doFilter
method. Therefore, all filters call the chain.doFilter method for the original servlet to run after
filtering. If an additional authentication check is implemented in the filter code and results in failure,
the original servlet does not run. The chain.doFilter method is not called and can be redirected to
some other error page.

2. If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the web.xml
deployment descriptor of the application. Place the servlet filter class file in the WEB-INF/classes
directory of the application.

Example

An example of a servlet filter.

This login filter can map to the /j_security_check URL to perform pre-login and post-login actions.

856 Securing applications and their environment

import javax.servlet.*;
public class LoginFilter implements Filter {
protected FilterConfig filterConfig;
// Called once when this filter is instantiated.
// If mapped to j_security_check, called
// very first time j_security_check is invoked.
public void init(FilterConfig filterConfig) throws ServletException {

this.filterConfig = filterConfig;
}

public void destroy() {
this.filterConfig = null;
}

// Called for every request that is mapped to this filter.
// If mapped to j_security_check,
// called for every j_security_check action
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)

throws java.io.IOException, ServletException {
// perform pre-login action here
chain.doFilter(request, response);
// calls the next filter in chain.
// j_security_check if this filter is
// mapped to j_security_check.
// perform post-login action here.

}
}

Using servlet filters to perform pre-login and post-login processing during form login

This example illustrates one way that the servlet filters can perform pre-login and post-login processing
during form login.
Servlet filter source code: LoginFilter.java
/**
* A servlet filter example: This example filters j_security_check and
* performs pre-login action to determine if the user trying to log in
* is in the revoked list. If the user is on the revoked list, an error is
* sent back to the browser.
*
* This filter reads the revoked list file name from the FilterConfig
* passed in the init() method. It reads the revoked user list file and
* creates a revokedUsers list.
*
* When the doFilter method is called, the user logging in is checked
* to make sure that the user is not on the revoked Users list.
*
*/

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class LoginFilter implements Filter {

protected FilterConfig filterConfig;

java.util.List revokeList;

/**
* init() : init() method called when the filter is instantiated.
* This filter is instantiated the first time j_security_check is
* invoked for the application (When a protected servlet in the
* application is accessed).
*/
public void init(FilterConfig filterConfig) throws ServletException {

this.filterConfig = filterConfig;

// read revoked user list
revokeList = new java.util.ArrayList();
readConfig();

}

/**
* destroy() : destroy() method called when the filter is taken
* out of service.
*/
public void destroy() {

this.filterConfig = null;
revokeList = null;

}

/**
* doFilter() : doFilter() method called before the servlet to
* which this filter is mapped is invoked. Since this filter is
* mapped to j_security_check,this method is called before

Chapter 9. Developing extensions to the WebSphere security infrastructure 857

* j_security_check action is posted.
*/
public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse res = (HttpServletResponse)response;

// pre login action

// get username
String username = req.getParameter("j_username");

// if user is in revoked list send error
if (revokeList.contains(username)) {
res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
return;
}

// call next filter in the chain : let j_security_check authenticate
// user
chain.doFilter(request, response);

// post login action

}

/**
* readConfig() : Reads revoked user list file and creates a revoked
* user list.
*/
private void readConfig() {

if (filterConfig != null) {

// get the revoked user list file and open it.
BufferedReader in;
try {

String filename = filterConfig.getInitParameter("RevokedUsers");
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe) {
return;

}

// read all the revoked users and add to revokeList.
String userName;
try {

while ((userName = in.readLine()) != null)
revokeList.add(userName);

} catch (IOException ioe) {
}

}

}

}

Important: In the previous code sample, the line that begins public void doFilter(ServletRequest
request is broken into two lines for illustrative purposes only. The public void
doFilter(ServletRequest request line and the line after it are one continuous line.

An example of the web.xml file that shows the LoginFilter filter configured and mapped to the
j_security_check URL:
<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>

<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>RevokedUsers</param-name>
<param-value>c:\WebSphere\AppServer\installedApps\

<app-name>\revokedUsers.lst</param-value>
</init-param>

</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>

<url-pattern>/j_security_check</url-pattern>
</filter-mapping>

An example of a revoked user list file:

858 Securing applications and their environment

user1
cn=user1,o=ibm,c=us
user99
cn=user99,o=ibm,c=us

Configuring servlet filters for form login processing
IBM Rational Application Developer or an assembly tool can configure the servlet filters. Two steps are
involved in configuring a servlet filter.

Procedure
1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init method of the servlet filter.After
configuring the servlet filter, the web.xml application deployment descriptor contains a servlet filter
configuration similar to the following example:

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
<init-param>// optional
<param-name>ParameterName</param-name>
<param-value>ParameterName</param-value>

</init-param>
</filter>

2. Map the servlet filter to a URL or a servlet.

After mapping the servlet filter to a URL or a servlet, the web.xml application deployment descriptor
contains servlet mapping similar to the following example:

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>

// can be servlet <servlet>servletName</servlet>
</filter-mapping>

Example

You can use servlet filters to replace the CustomLoginServlet servlet, and to perform additional
authentication, auditing, and logging.

The WebSphere Application Server Samples provide a form login sample that demonstrates how to use
the WebSphere Application Server login facilities to implement and configure form login procedures. The
sample integrates the following technologies to demonstrate the WebSphere Application Server and Java
Platform, Enterprise Edition (Java EE) login functionality:

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package.

Note: If you install the application server on a z/OS system in which program control is enabled, when
you log into a form-based web application you might receive the following error message in the
system log file:

ICH420I PROGRAM BBORSMCT FROM LIBRARY WAS.SBBOLD2 CAUSED THE ENVIRONMENT TO BECOME UNCONTROLLED.
BPXP014I ENVIRONMENT MUST BE CONTROLLED FOR DAEMON (BPX.DAEMON)
PROCESSING.

Although program control is enabled on the z/OS system, the program control extended control bits
for the application server's native modules will not be enabled. To prevent or resolve this
problem enable the program control bits for all of the native load modules in the SMP/E HTTP
Server file system (HFS).

1. Add the necessary attributes to the modules:
cd SMPE_ROOT/usr/lpp/install_root/V7R0/lib/modules
extattr +p *

Chapter 9. Developing extensions to the WebSphere security infrastructure 859

2. Add the attributes to the *.so files and bbo* files in the lib directory:
cd SMPE_ROOT/usr/lpp/install_root/V7R0/lib
extattr +p *.so
extattr +p bbo*

Secure transports with JSSE and JCE programming interfaces
This topic provides detailed information about transport security using Java Secure Socket Extension
(JSSE) and Java Cryptography Extension (JCE) programming interfaces. Within this topic, there is a
description of the IBM version of the Java Cryptography Extension Federal Information Processing
Standard (IBMJCEFIPS).

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server.
JSSE provides the application programming interface (API) framework and the implementation of the APIs
for Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for
data encryption, message integrity, and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 5. The API package for
JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 6 API
documentation that is located at http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERefGuide.html.

Several JSSE providers ship with the Java 2 SDK Version 5 that comes with WebSphere Application
Server. The IBMJSSE provider is used in previous WebSphere Application Server releases. Associated
with the IBMJSSE provider is the IBMJSSEFIPS provider, which is used when FIPS is enabled on the
server. Both of these providers do not work with the Java Message Service (JMS) and HTTP transports in
WebSphere Application Server Version 8.0. These transports take advantage of the J2SDK Verison 5
network input/output (NIO) asynchronous channels.

For more information on the new IBMJSSE2 provider, please review the documentation located at
http://www.ibm.com/developerworks/java/jdk/security/60/.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography
Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key
manager factories, and trust manager factories. The following table summarizes which aspects can be
customized, what the defaults are, and which mechanisms are used to provide customization.

Table 111. Customizable items. You can customize the following key aspects:
Customizable item Default How to customize

X509Certificate X509Certificate implementation from
IBM

The cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM The java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE2 A security.provider.n= line in security properties file. See
description.

Default keystore None The * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists. Otherwise,
cacerts

The * javax.net.ssl.trustStore system property

Default key manager factory IbmX509 The ssl.KeyManagerFactory.algorithm security property

Default trust manager factory IbmX509 The ssl.TrustManagerFactory.algorithm security property

For aspects that you can customize by setting a system property, statically set the system property by
using the -D option of the Java command. You can set the system property using the administrative

860 Securing applications and their environment

console, or set the system property dynamically by calling the java.lang.System.setProperty method in
your code: System.setProperty(propertyName,"propertyValue").

For aspects that you can customize by setting a Java security property, statically specify a security
property value in the java.security properties file. The security property is propertyName=propertyValue.
Dynamically set the Java security property by calling the java.security.Security.setProperty method in your
code.

The java.security properties file is located in the following directory:

app_server_root/properties directory.

Application Programming Interface

The JSSE provides a standard application programming interface (API) that is available in packages of the
javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:
v Sockets and SSL sockets
v Factories to create the sockets and SSL sockets
v Secure socket context that acts as a factory for secure socket factories
v Key and trust manager interfaces
v Secure HTTP URL connection classes
v Public key certificate API

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The
Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. You can
access the samples in the following location:

Version 1.6

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ website.

2. Click Java 1.6.

3. Click jssedocs_samples.zip in the Java Secure Socket Extension (JSSE) Guide section.

Table 112. Extracted files. This table lists the following extracted files:
Files Description

ClientJsse.java Demonstrates a simple client and server interaction using JSSE. All enabled cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the PKCS12 keystore file. All
enabled cipher suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the PKCS12 keystore file. All
enabled cipher suites are used.

UseHttps.java Demonstrates accessing an SSL or non-SSL web server using the Java protocol handler of the
com.ibm.net.ssl.www.protocol class. The URL is specified with the http or https prefix. The HTML
that is returned from this site is displayed.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: This list is for reference only.
v java.util.PropertyPermission "java.protocol.handler.pkgs", "write"
v java.lang.RuntimePermission "writeFileDescriptor"
v java.lang.RuntimePermission "readFileDescriptor"
v java.lang.RuntimePermission "accessClassInPackage.sun.security.x509"
v java.io.FilePermission "${user.install.root}${/}etc${/}.keystore", "read"
v java.io.FilePermission "${user.install.root}${/}etc${/}.truststore", "read"

Chapter 9. Developing extensions to the WebSphere security infrastructure 861

http://www.ibm.com/developerworks/java/jdk/security/

For the IBMJSSE provider:
v java.security.SecurityPermission "putProviderProperty.IBMJSSE"
v java.security.SecurityPermission "insertProvider.IBMJSSE"

For the SUNJSSE provider:
v java.security.SecurityPermission "putProviderProperty.SunJSSE"
v java.security.SecurityPermission "insertProvider.SunJSSE"

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug
tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility. Use the administrative console to set the system property for
debugging the application server.

Documentation

See the Security: Resources for learning topic for documentation references to JSSE.

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere
Application Server. JCE provides a framework and implementations for encryption, key generation, key
agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes
symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE
cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to
SunJCE, except that the IBMJCE offers more algorithms:
v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)
v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)
v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)
v Message authentication code (HmacSHA1, HmacMD5)
v Key agreement algorithm (DiffieHellman)
v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)
v Key store (JKS, JCEKS, PKCS12, JCERACFKS [z/OS only])

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the information on JCE on the following website: http://www.ibm.com/
developerworks/java/jdk/security/60/.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard
(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere
Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

862 Securing applications and their environment

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the
JCE framework by implementing the APIs that are defined by the JCE. The JCE APIs cover:
v Symmetric bulk encryption, such as DES, RC2, and IDEA
v Symmetric stream encryption, such as RC4
v Asymmetric encryption, such as RSA
v Password-based encryption (PBE)
v Key agreement
v Message authentication codes

Samples using Java Cryptography Extension

There are samples located on the http://www.ibm.com/developerworks/java/jdk/security/ website in
the jceDocs_samples.zip file. Unzip the file and locate the following samples in the jceDocs/samples
directory:

Table 113. Samples using Java Cryptography Extension. This table describes samples using Java Cryptography
Extension.
File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a public key and a private key) and use the
key to digitally sign a message using the SHA1withDSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and how to do Mars encryption and
decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2 and MD5 algorithms

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how to do RSA encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a public key and a private key) and use the
key to digitally sign a message using the SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 certificates

Documentation

Refer to the Security: Resources for learning topic for documentation on JCE.

Using System Authorization Facility keyrings with Java Secure
Sockets Extension
WebSphere Application Server for z/OS customers running server W50100x or later, with Java
Development Kit 1.3 level SR20 or later, can modify their WebSphere Application Server systems to use
System Authorization Facility (SAF) for Java Secure Sockets Extension (JSSE) as well as Secure Sockets
Layer (SSL), which eliminates the need to maintain duplicate certificates in the hierarchical file system
(HFS).

Chapter 9. Developing extensions to the WebSphere security infrastructure 863

Before you begin

WebSphere Application Server for z/OS running at maintenance levels before W502000 stored digital
certificate information in two different places because of the following Software Development Kit (SDK)
restrictions:

v JSSE used digital certificates stored in hierarchical file system files

v SSL used digital certificate information stored in the SAF database

Systems customized at W502000 or above use the single SAF digital certificate repository by default, and
do not need the modifications described below.

About this task

WebSphere Application Server for z/OS customers running server W50100x or later, with Java
Development Kit 1.3 level SR20 or later, can modify their WebSphere Application Server systems to use
SAF for JSSE as well as SSL (eliminating the need to maintain duplicate certificates in the HFS). The
instructions below describe how to enable this support.

Note: Systems that are customized at maintenance levels at or after W502000 use the single (SAF digital
certificate repository by default, and these systems do not need the modifications described below.

To use SAF certificates with JSSE:

Procedure
1. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names

for the node.

a. Log in to the administrative console using an identity with administrator authority.

b. Click Servers > Application servers > server_name.

c. Under Server infrastructure, click Administration > Administration services.

d. Under Additional properties, click JMX connectors.

e. On the JMX Connectors panel, click SOAPConnector.

f. Under Additional Properties, click Custom Properties.

g. On the Custom properties page, click sslConfig.

h. On the sslConfig page, look at the Value field. Verify that this field says node_name/
DefaultSSLSettings, where nodename represents the node name where the application server
resides. Record the node name for a subsequent step.

i. Select node_name/RACFJSSESettings from the list next to the Value field, where node_name is
the same as the node name that you previously recorded.

j. Click OK. The Custom Properties page appears with a message indicating that changes are made
to your local configuration. Do not click Save because additional changes that are required.

2. Click Servers > Application servers and repeat the previous substeps for each of the other
application servers in the cell.

3. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names
for the deployment manager node.

a. Click System administration > Deployment manager.

b. Under Additional properties, click Administration services > JMX Connectors.

c. On the JMX Connectors panel, click SOAPConnector.

d. Under Additional properties, click Custom properties.

e. On the Custom properties page, click sslConfig.

864 Securing applications and their environment

f. On the sslConfig page, look at the Value field. This field displays dmnode/DefaultSSLSettings,
where dmnode represents the deployment manager node name. Record the node name for a
subsequent step.

g. Select dmnode/RACFJSSESettings from the list next to the Value field, where dmnode
represents the Deployment Manager node name.

h. Click OK. After a short time the Custom Properties page appears with a message at the top
indicating that changes have been made to your local configuration. Do not click Save at this point
because there are additional changes that are required.

4. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names
for the node agent.

a. Click System administration > Node agents > Node_name. Record the node agent name for the
next step.

b. Under Additional properties, click Administration services > JMX Connectors.

c. On the JMX Connectors panel, click SOAPConnector.

d. Under Additional properties, click Custom properties.

e. On the Custom properties page, click sslConfig.

f. On the sslConfig page, look at the Value field. This field displays nodename/DefaultSSLSettings,
where nodename is the node name where the node agent resides. Record the node name for a
subsequent step.

g. Select nodename/RACFJSSESettings from the list next to the Value field, where nodename is
the node name that you previously recorded.

h. Click OK. The Custom Properties page is displayed with a message indicating that changes have
been made to the local configuration. Do not click Save at this point because additional changes
are required.

5. Click System administration > Node agents and repeat the previous substeps for each of the other
node agents servers in the cell.

6. Click Save when the Changes have been made to your local configuration. Click Save to apply
changes to the master configuration message is displayed.

7. On the Save page, select the Synchronize changes with Nodes option and click Save. After the
changes are saved, the administrative console returns to the home page.

8. Update the soap.client.props file in the profile_root/properties directory to indicate the SAF
keyring names that are appropriate for your configuration. The soap.client.props file is used by the
wsadmin.sh script and is located in the application server or deployment manager
(user.install.root)/properties file. The purpose of the soap.client.props file is to specify the
values used by SOAP clients such as wsadmin.sh. In a cell configured before WebSphere Application
Server for z/OS maintenance level W502000, the soap.client.props file indicates the names of the
Java key stores used by JSSE. Once your cell is using SAF keyrings for JSSE administration, verify
that SAF keyrings are being used for SOAP clients.

The soap.client.props file is used by the wsadmin.sh script.

Changes to wsadmin client SAF keyrings require updates to the soap.client.props file and the
creation of a keyring for administrators. Specify the following values:

com.ibm.ssl.protocol=SSL
com.ibm.ssl.keyStoreType=JCERACFKS
com.ibm.ssl.keyStore=safkeyring:///yourkeyringName
com.ibm.ssl.keyStorePassword=password
com.ibm.ssl.trustStoreType=JCERACFKS
com.ibm.ssl.trustStore=safkeyring:///yourKeyringName
com.ibm.ssl.trustStorePassword=password

=

The password value specified does not represent a real password because you can use any string.
Replace the string yourKeyringName with your administrative SAF keyring. The keyring name used by
all WebSphere administrators and the administrative started task user ID (default WSADMSH) must be the
same. Additionally, a keyring must be created for each user that uses the wsadmin.sh file with the

Chapter 9. Developing extensions to the WebSphere security infrastructure 865

SOAP connector when using SAF keyrings and security is enabled. (A keyring is created by the
customization process for your initial administrative user ID, such as WSADMIN.)

A description of how to create keyrings for administrative users in SAF is described in SSL
considerations for WebSphere Application Server administrators.

9. Recycle the cell.

Configuring Federal Information Processing Standard Java Secure
Socket Extension files
Use this topic to configure Federal Information Processing Standard Java Secure Socket Extension files.

About this task

In WebSphere Application Server, the Java Secure Socket Extension (JSSE) provider used is the
IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java Cryptography
Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal Information Processing
Standard (FIPS)-approved because it does not perform cryptography. However, the JCE provider requires
FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can
utilize. The IBMJCEFIPS provider that is shipped in WebSphere Application Server Version 8.0 supports
the following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If
IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to
the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS. When enabling the Use the
United States Federal Information Processing Standard (FIPS) algorithms option on the server SSL
certificate and key management panel, the runtime always uses IBMJSSE2, despite the contextProvider
that you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS requires the SSL
protocol be TLS, the runtime always uses TLS when FIPS is enabled, regardless of the SSL protocol
setting in the SSL repertoire. This simplifies the FIPS configuration in Version 8.0 because an administrator
needs to enable only the Use the United States Federal Information Processing Standard (FIPS)
algorithms option on the server SSL certificate and key management panel to enable all transports using
SSL.

Procedure
1. Click Security > SSL certificate and key management.

2. Select the Use the United States Federal Information Processing Standard (FIPS) algorithms
option and click Apply. This option makes IBMJSSE2 and IBMJCEFIPS the active providers.

3. Accommodate Java clients that must access enterprise beans.

Change the com.ibm.security.useFIPS property value from false to true in the profile_root/
properties/ssl.client.props file.

4. Ensure that the com.ibm.ssl.protocol property within the profile_root/properties/ssl.client.props
file is set to SSL_TLS.

5. Ensure that the java.security file includes the provider.

866 Securing applications and their environment

Edit the java.security file to insert the IBMJCEFIPS provider
(com.ibm.crypto.fips.provider.IBMJCEFIPS) before the IBMJCE provider, and also renumber the other
providers in the provider list. The IBMJCEFIPS provider must be in the java.security file provider list.

The java.security file is located in the WAS_HOME/properties directory.

Note: In previous releases of WebSphere Application Server, the java.security file was located in the
WAS_HOME/java/lib/security directory. In WebSphere Application Server Version 8.0, the file is
now located in the WAS_HOME/properties directory.

Edit the java.security file to comment out the line with the IBMJCEFIPS provider and also renumber
the rest of the provider list. The IBMJCEFIPS provider must be in the java.security file provider list.

The java.security file is a symbolic link to the smpe_root/properties directory. Break the symbolic
link and copy the java.security file to the WAS_HOME/properties directory.

Edit the java.security file to comment out the line with the IBMJCE provider, uncomment the line with
the IBMJCEFIPS provider, and save the file.

The IBM SDK java.security file looks like the following example after completing this step:
security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.jsse.IBMJSSEProvider
security.provider.4=com.ibm.jsse2.IBMJSSEProvider2
security.provider.5=com.ibm.security.jgss.IBMJGSSProvider
security.provider.6=com.ibm.security.cert.IBMCertPath
security.provider.7=com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl
security.provider.8=com.ibm.security.cmskeystore.CMSProvider
security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.10=com.ibm.security.sasl.IBMSASL
security.provider.11=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.12=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.13=org.apache.harmony.security.provider.PolicyProvider

What to do next

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption
capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer might not have TLS enabled. To enable TLS, open the Internet
Explorer browser and click Tools > Internet Options. On the Advanced tab, select the Use TLS 1.0
option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

v If you have an administrative client that uses a SOAP connector and you enable FIPS, add the following
line to the profile_root/properties/soap.client.props file:
com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the SSL
certificate and key management panel, the Lightweight Third-Party Authentication (LTPA) token format is
not backwards-compatible with previous releases of WebSphere Application Server. However, you can
import the LTPA keys from a previous version of the application server.

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.
IBMJSSE2 must use IBMJCEFIPS when utilizing cryptographic services for FIPS.

The following FIPS 140-2 approved cryptographic providers that are the only devices that are supported
with the FIPS option:

v IBMJCEFIPS (certificate 376)

v IBM Cryptography for C (ICC) (certificate 384)

The relevant certificates are listed on the NIST website: Cryptographic Module Validation Program FIPS
140-1 and FIPS 140-2 Pre-validation List

Chapter 9. Developing extensions to the WebSphere security infrastructure 867

|
|
|
|
|
|
|
|
|
|
|
|
|

http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://csrc.nist.gov/cryptval/140-1/140val-all.htm

To unconfigure the FIPS provider, reverse the changes that you made in the previous steps. After you
reverse the changes, verify that you have made the following changes to the sas.client.props,
soap.client.props, and java.security files:

v In the ssl.client.props file, you must change the com.ibm.security.useFIPS value to false.

v In the java.security file, you must change the FIPS provider to a non-FIPS provider.

If you are using the IBM SDK java.security file, you must change the first provider to a non-FIPS
provider as shown in the following example:

#security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.1=com.ibm.crypto.provider.IBMJCE
security.provider.2=com.ibm.jsse.IBMJSSEProvider
security.provider.3=com.ibm.jsse2.IBMJSSEProvider2
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
#security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

If you are using the Sun JDK java.security file, you must change the third provider to a non-FIPS
provider as shown in the following example:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.security.jgss.IBMJGSSProvider
security.provider.3=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.4=com.ibm.crypto.provider.IBMJCE
security.provider.5=com.ibm.jsse.IBMJSSEProvider
security.provider.6=com.ibm.jsse2.IBMJSSEProvider2
security.provider.7=com.ibm.security.cert.IBMCertPath
#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

When you use the FIPS provider, the IBM Software Development Kit (SDK) might issue an error message
that refers to a bad certificate. Although this error message can result from a multitude of reasons, review
your security configuration and consider one of the following actions:

v Reduce the cipher suite level to Medium, if your cipher suite level is currently Strong.

Note: You can change the cipher suite level for different levels of your environment such as the node
or server level. Limit the change to the level of your environment where the change is necessary.

To change the cipher suite, see the cipher suite groups information within the quality of protection
settings documentation. If you change the cipher suite level to Medium, save and synchronize the
changes. If the Dynamically update the run time when SSL configuration changes occur option is
selected, you do not need to restart the server. However, if the option is not selected, you must restart
the server for the changes to be effective. The Dynamically update the run time when SSL
configuration changes occur option is available within the administrative console on the SSL
certificate and key management panel. To access the panel, click Security > SSL certificate and key
management.

v Install security level 3 FMID JCPT3A1 for the z/OS operating system.

Security Level 3 FMID JCPT3A1 is the z/OS operating system implementation of the FIPS 140-2
approved cryptographic providers.

Implementing tokens for security attribute propagation
As part of an extensible architecture, WebSphere Application Server enables you to implement your own
tokens in which to propagate security attributes.

About this task

The following topics are covered in this section:

Procedure
v Implementing a custom propagation token

v Implementing a custom authorization token

v Implementing a custom a single sign-on token

v Implementing a custom authentication token

868 Securing applications and their environment

v Propagating a custom Java serializable object

Implementing a custom propagation token for security attribute
propagation
This topic explains how you might create your own propagation token implementation, which is set on the
running thread and propagated downstream.

About this task

The default propagation token usually is sufficient for propagating attributes that are not user-specific.
Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread by plugging in a custom login module into the inbound system login
configurations. This task also might include encryption and decryption.

To implement a custom propagation token, you must complete the following steps:

Procedure
1. Write a custom implementation of the PropagationToken interface. Many different methods are

available for implementing the PropagationToken interface. However, make sure that the methods that
are required by the PropagationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the required permissions for the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
propagation token, might extend the abstract class and then most of the work is complete.

To see an implementation of the propagation token, see “Example:
com.ibm.wsspi.security.token.PropagationToken implementation” on page 870.

2. Add and receive the custom propagation token during WebSphere Application Server logins. This task
is typically accomplished by adding a custom login module to the various application and system login
configurations. You also can add the implementation from an application. However, to deserialize the
information, you need to plug in a custom login module, which is discussed in “Propagating a custom
Java serializable object for security attribute propagation” on page 897. The
WSSecurityPropagationHelper class has APIs that are used to set a propagation token on the thread
and to retrieve the token from the thread to make updates.

The code sample in “Example: Custom propagation token login module” on page 874 shows how to
determine if the login is an initial login or a propagation login. The difference between these login types
is whether the WSTokenHolderCallback callback contains propagation data. If the callback does not
contain propagation data, initialize a new custom propagation token implementation and set it on the
thread. If the callback contains propagation data, look for your specific custom propagation token
TokenHolder instance, convert the byte array back into your custom PropagationToken object, and set
it back on the thread. The code sample shows both instances.

You can add attributes any time your custom propagation token is added to the thread. If you add
attributes between requests and the getUniqueId method changes, the Common Secure
Interoperability Version 2 (CSIv2) client session is invalidated so that it can send the new information

Chapter 9. Developing extensions to the WebSphere security infrastructure 869

downstream. Adding attributes between requests can affect performance. In many cases, you want the
downstream requests to receive the new propagation token information.

To add the custom propagation token to the thread, call the
WSSecurityPropagationHelper.addPropagationToken method. This call requires the
WebSphereRuntimePerMission "setPropagationToken" Java 2 Security permission.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for
receiving serialized versions of your custom propagation token You can also add this login module to
any of the application logins where you might want to generate your custom propagation token on the
thread during the login. Alternatively, you can generate the custom PropagationToken implementation
from within your application. However, to deserialize it, you need to add the implementation to the
system login modules.

Results

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken implementation
Use this file to see an example of a propagation token implementation. The following sample code does
not extend an abstract class, but implements the com.ibm.wsspi.security.token.PropagationToken interface
directly. You can implement the interface directly, but it might cause you to write duplicate code. However,
you might choose to implement the interface directly if considerable differences exist between how you
handle the various token implementations.

For information on how to implement a custom propagation token, see “Implementing a custom
propagation token for security attribute propagation” on page 869.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.
token.PropagationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default
private static long expire_period_in_millis = 2*60*60*1000;
private long counter = 0;

/**
* The constructor that is used to create initial PropagationToken instance
*/

public CustomAbstractTokenImpl ()
{
// set the token version
addAttribute("version", "1");
// set the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

/**
* The constructor that is used to deserialize the token bytes received
* during a propagation login.
*/
public CustomAbstractTokenImpl (byte[] token_bytes)
{
try
{

hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

870 Securing applications and their environment

WSOpaqueTokenHelper.deserialize(token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)
{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long type.
* @return long
*/
public long getExpiration()
{
// get the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// expiration is the first element (should only be one)
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{

// You can choose whether your token gets propagated. In some cases
// you might want the token to be local only.

return true;
}

/**
* Gets the principal that this token belongs to. If this token is an
* authorization token, this principal string must match the authentication
* token principal string or the message is rejected.
* @return String
*/
public String getPrincipal()
{
// It is not necessary for the PropagationToken to return a principal,

// because it is not user-centric.
return "";
}

/**
* Returns the unique identifier of the token based upon information that
* the provider considers makes it a unique token. This identifier is used
* for caching purposes and might be used in combination with other token
* unique IDs that are part of the same Subject.
*
* This method should return null if you want the accessID of the user to
* represent its uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()

Chapter 9. Developing extensions to the WebSphere security infrastructure 871

{
// If you want to propagate the changes to this token, change the
// value that this unique ID returns whenever the token is changed.
// Otherwise, CSIv2 uses an existing session when everything else is
// the same. This getUniqueID is checked by CSIv2 to determine the
// session lookup.

return counter;
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// Do this if the object is set to read-only during login commit
// because this guarantees that no new data is set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

// You can deserialize this in the downstream login module using
// WSOpaqueTokenHelper.deserialize()

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, which is used to identify the byte[] in the
* protocol message.
* @return String
*/
public String getName()
{
return this.getClass().getName();
}

/**
* Gets the version of the token as a short type. This code also is used
* to identify the byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any setter methods check that this read-only flag has
* been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is readonly
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

872 Securing applications and their environment

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name and value pair. Returns the previous values set
* for the key, or returns null if the value is not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Increments the counter to change the uniqueID
counter++;

// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all of the attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep clone of this token. This is typically used by the session
* logic of the CSIv2 server to create a copy of the token as it exists in the
* session.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =
new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

Chapter 9. Developing extensions to the WebSphere security infrastructure 873

return deep_clone;
}
}

Example: Custom propagation token login module
This example shows how to determine if the login is an initial login or a propagation login.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
// (For more information on what to do during initialization, see

// Developing custom login modules for a system login configuration for JAAS.)
}

public boolean login() throws LoginException
{
// (For more information on what to do during login, see

// Developing custom login modules for a system login configuration for JAAS.)

// Handles the WSTokenHolderCallback to see if this is an initial
// or propagation login.

Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// handle exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom PropagationToken implementation
if (tokenHolder.getName().equals("

com.ibm.websphere.security.token.CustomPropagationTokenImpl") &&
tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom PropagationToken constructor

// to deserialize
customPropToken = new
com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

getBytes());

}
}
}
else // This is not a propagation login. Create a new instance of

// your PropagationToken implementation
{
// Adds a new custom propagation token. This is an initial login
customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

// Adds any initial attributes
if (customPropToken != null)
{
customPropToken.addAttribute("key1", "value1");
customPropToken.addAttribute("key1", "value2");
customPropToken.addAttribute("key2", "value1");
customPropToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the thread during commit in case
// something happens during the login.

}

public boolean commit() throws LoginException
{
// For more information on what to do during commit, see

// Developing custom login modules for a system login configuration for JAAS.
if (customPropToken != null)
{
// Sets the propagation token on the thread
try
{

874 Securing applications and their environment

System.out.println(tc, "*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***");
// Prints out the values in the deserialized propagation token
java.util.Enumeration keys = customPropToken.getAttributeNames();
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
String[] list = (String[]) customPropToken.getAttributes(key);
for (int k=0; k<list.length; k++)
System.out.println("Key/Value: " + key + "/" + list[k]);
}

// This sets it on the thread using getName() + getVersion() as the key
com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

customPropToken);
}
catch (Exception e)
{
// Handles exception
}

// Now you can verify that you have set it properly by trying to get
// it back from the thread and print the values.

try
{
// This gets the PropagationToken from the thread using getName()

// and getVersion() parameters.
com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =
com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken
("com.ibm.websphere.security.token.CustomPropagationTokenImpl", 1);

if (tempPropagationToken != null)
{
System.out.println(tc, "*** RECEIVED MY CUSTOM PROPAGATION

TOKEN FROM THE THREAD ***");
// Prints out the values in the deserialized propagation token
java.util.Enumeration keys = tempPropagationToken.getAttributeNames();
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
String[] list = (String[]) tempPropagationToken.getAttributes(key);
for (int k=0; k<list.length; k++)
System.out.println("Key/Value: " + key + "/" + list[k]);
}
}
}
catch (Exception e)
{
// Handles exception
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

Implementing a custom authorization token for security attribute
propagation
This task explains how you might create your own AuthorizationToken implementation, which is set in the
login Subject and propagated downstream.

About this task

The default AuthorizationToken usually is sufficient for propagating attributes that are user-specific.
Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() application programming interface
(API).

To implement a custom authorization token, you must complete the following steps:

Chapter 9. Developing extensions to the WebSphere security infrastructure 875

Procedure
1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by
the AuthorizationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the necessary permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:
com.ibm.wsspi.security.token.AuthorizationToken implementation”

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins. This task
is typically accomplished by adding a custom login module to the various application and system login
configurations. However, in order to deserialize the information, you must plug in a custom login
module, which is discussed in “Propagating a custom Java serializable object for security attribute
propagation” on page 897. After the object is instantiated in the login module, you can add the object
to the Subject during the commit() method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java
serializable object for security attribute propagation” on page 897. If you want to ensure that the
information is propagated, want to do you own custom serialization, or want to specify the uniqueness
for Subject caching purposes, then consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 880 shows how to
determine if the login is an initial login or a propagation login. The difference between these login types
is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain
propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.
If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder
instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the
Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do
not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving
serialized versions of your custom authorization token.

Because this login module relies on information in the sharedState added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your
custom login module to the existing login configurations, see Developing custom login modules for a
system login configuration for JAAS.

Results

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
Use this file to see an example of a AuthorizationToken implementation. The following sample code does
not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken
interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

876 Securing applications and their environment

However, you might choose to implement the interface directly if there are considerable differences
between how you handle the various token implementations.

For information on how to implement a custom AuthorizationToken, see “Implementing a custom
authorization token for security attribute propagation” on page 875.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.
token.AuthorizationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
private static long expire_period_in_millis = 2*60*60*1000;
// 2 hours in millis, by default

/**
* Constructor used to create initial AuthorizationToken instance
*/

public CustomAuthorizationTokenImpl (String principal)
{
// Sets the principal in the token
addAttribute("principal", principal);
// Sets the token version
addAttribute("version", "1");
// Sets the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a
* propagation login.
*/
public CustomAuthorizationTokenImpl (byte[] token_bytes)
{
try
{
hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

WSOpaqueTokenHelper.deserialize(token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)
{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

Chapter 9. Developing extensions to the WebSphere security infrastructure 877

/**
* Gets the expiration as a long.
* @return long
*/
public long getExpiration()
{
// Gets the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// The expiration is the first element. There should be only one expiration.
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{
// You can choose whether your token gets propagated. In some cases,

// you might want it to be local only.
return true;
}

/**
* Gets the principal that this Token belongs to. If this is an authorization token,
* this principal string must match the authentication token principal string or the
* message will be rejected.
* @return String
*/
public String getPrincipal()
{
// this might be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

/**
* Returns a unique identifier of the token based upon the information that provider
* considers makes this a unique token. This will be used for caching purposes
* and might be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the accessID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{
// if you don’t want to affect the cache lookup, just return NULL here.
// return null;

String cacheKeyForThisToken = "dynamic attributes";

// if you do want to affect the cache lookup, return a string of
// attributes that you want factored into the lookup.

return cacheKeyForThisToken;
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// Do this if the object is set to read-only during login commit,
// because this makes sure that no new data gets set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

878 Securing applications and their environment

// You can deserialize this in the downstream login module using
// WSOpaqueTokenHelper.deserialize()

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token used to identify the byte[] in the protocol message.
* @return String
*/
public String getName()
{
return this.getClass().getName();
}

/**
* Gets the version of the token as an short. This also is used to identify the
* byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any setter methods check that this flag has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is read-only
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name and value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{

Chapter 9. Developing extensions to the WebSphere security infrastructure 879

// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =
new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}
}

Example: custom AuthorizationToken login module
This file shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see Developing custom login modules
for a system login configuration for JAAS.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// Handles the WSTokenHolderCallback to see if this is an initial or

// propagation login.
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}

880 Securing applications and their environment

catch (Exception e)
{
// Handles exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation

if (tokenHolder.getName().equals("com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl") &&

tokenHolder.getVersion() == 1)
{

// Passes the bytes into your custom AuthorizationToken constructor
// to deserialize

customAuthzToken = new
com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

tokenHolder.getBytes());

}
}
}
else

// This is not a propagation login. Create a new instance of your
// AuthorizationToken implementation

{
// Gets the prinicpal from the default AuthenticationToken. This must match
// all tokens.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial login. Pass the
// principal into the constructor

customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes
if (customAuthzToken != null)
{
customAuthzToken.addAttribute("key1", "value1");
customAuthzToken.addAttribute("key1", "value2");
customAuthzToken.addAttribute("key2", "value1");
customAuthzToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case something
// happens during the login.

}

public boolean commit() throws LoginException
{
if (customAut // (hzToken != null)
{
// sSets the customAuthzToken token into the Subject
try
{
public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{

// Adds the custom authorization token if it is not null
// and not already in the Subject

if ((customAuthzTokenPriv != null) &&
(!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

{
subject.getPrivateCredentials().add(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;

Chapter 9. Developing extensions to the WebSphere security infrastructure 881

}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Implementing a custom single sign-on token for security attribute
propagation
You can create your own single sign-on token implementation. The single sign-on token implementation is
set in the login Subject and added to the HTTP response as an HTTP cookie.

About this task

The cookie name is the concatenation of the SingleSignonToken.getName application programming
interface (API) and the SingleSignonToken.getVersion API. There is no delimiter. When you add a single
sign-on token to the Subject, it also gets propagated horizontally and downstream in case the Subject is
used for other web requests. You must deserialize your custom single sign-on token when you receive it
from a propagation login. Consider writing your own implementation if you want to accomplish one of the
following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. Encrypt the information because it is out to the
HTTP response and is available on the Internet. You must deserialize or decrypt the bytes at the target
and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID API.

To implement a custom single sign-on token, complete the following steps:

Procedure
1. Write a custom implementation of the SingleSignonToken interface.

Many different methods are available for implementing the SingleSignonToken interface. However,
make sure the methods that are required by the SingleSignonToken interface and the token interface
are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the required permissions for the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces.
Basically, the token types are marker interfaces that implement the
com.ibm.wsspi.security.token.Token interface. This interface defines most of the methods. If you
plan to implement more than one token type, consider creating an abstract class that implements
the com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
single sign-on token, might extend the abstract class and then most of the work is complete.

To see an implementation of the single sign-on token, see “Example: A
com.ibm.wsspi.security.token.SingleSignonToken implementation” on page 883

2. Add and receive the custom single sign-on token during WebSphere Application Server logins. This
task is typically accomplished by adding a custom login module to the various application and system
login configurations. However, to deserialize the information, you need to plug in a custom login

882 Securing applications and their environment

module, which is discussed in a subsequent step. After the object is instantiated in the login module,
you can add it to the Subject during the commit method.

The code sample in “Example: A custom single sign-on token login module” on page 887, shows how
to determine if the login is an initial login or a propagation login. The difference is whether the
WSTokenHolderCallback callback contains propagation data. If the callback does not contain
propagation data, initialize a new custom single sign-on token implementation and set it into the
Subject. Also, look for the HTTP cookie from the HTTP request if the HTTP request object is available
in the callback. You can get your custom single sign-on token both from a horizontal propagation login
and from the HTTP request. However, it is recommended that you make the token available in both
places because then the information arrives at any front-end application server, even if that server
does not support propagation.

You can make your single sign-on token read-only in the commit phase of the login module. If you
make the token read-only, additional attributes cannot be added within your applications.

Restriction:

v HTTP cookies have a size limitation. Size restrictions should be included in the
documentation for your specific browser.

v The WebSphere Application Server runtime does not handle cookies that it does not
generate, so this cookie is not used by the runtime.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of
the Subject if you return something in the getUniqueID method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample
code that is found in “Example: An HTTP cookie retrieval” on page 888 shows how you can retrieve
the HTTP cookie from the HTTP request, decode the cookie so that it is back to your original bytes,
and create your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving
serialized versions of your custom propagation token. Because this login module relies on information
in the sharedState state that is added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module
after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module.

For information on adding your custom login module into the existing login configurations, see
Developing custom login modules for a system login configuration for JAAS.

Results

After completing these steps, you have implemented a custom single sign-on token.

Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation
Use this file to see an example of a single sign-on implementation. The following sample code does not
extend an abstract class, but implements the com.ibm.wsspi.security.token.SingleSignonToken interface
directly. You can implement the interface directly, but it might cause you to write duplicate code. However,
you might choose to implement the interface directly if considerable differences exist between how you
handle the various token implementations.

For information on how to implement a custom single sign-on token, see “Implementing a custom single
sign-on token for security attribute propagation” on page 882.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;

Chapter 9. Developing extensions to the WebSphere security infrastructure 883

import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.
token.SingleSignonToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default

private static long expire_period_in_millis = 2*60*60*1000;

/**
* Constructor used to create initial SingleSignonToken instance
*/

public CustomSingleSignonTokenImpl (String principal)
{
// set the principal in the token
addAttribute("principal", principal);
// set the token version
addAttribute("version", "1");
// set the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a propagation login.
*/
public CustomSingleSignonTokenImpl (byte[] token_bytes)
{
try
{
// you should implement a decryption algorithm to decrypt the cookie bytes
hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)
{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long.
* @return long
*/
public long getExpiration()
{
// get the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// expiration will always be the first element (should only be one)
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

884 Securing applications and their environment

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{
// You can choose whether your token gets propagated or not, in some cases

// you might want it to be local only.
return true;
}

/**
* Gets the principal that this Token belongs to. If this is an authorization token,
* this principal string must match the authentication token principal string or the
* message will be rejected.
* @return String
*/
public String getPrincipal()
{
// this could be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

/**
* Returns a unique identifier of the token based upon information the provider
* considers makes this a unique token. This will be used for caching purposes
* and may be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the access ID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{
// this could be any combination of attributes
return getPrincipal();
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// do this if the object is set read-only during login commit,
// since this guarantees no new data gets set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = some_encryption_algorithm (hashtable);

// you can deserialize the tokenBytes using a similiar decryption algorithm.
return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, used to identify the byte[] in the protocol message.
* @return String
*/
public String getName()
{
return "myCookieName";
}

/**
* Gets the version of the token as a short. This is also used to identify the
* byte[] in the protocol message.

Chapter 9. Developing extensions to the WebSphere security infrastructure 885

* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure any setter methods check that this has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is readonly
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name/value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// get the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// copy the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// allocate a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// add the String to the current array list
array.add(value);

// add the current ArrayList to the Hashtable
hashtable.put(key, array);

// return the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

886 Securing applications and their environment

/**
* Gets the List of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =
new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}
}

Example: A custom single sign-on token login module
This file shows how to determine if the login is an initial login or a propagation login.

For information on initialization and on what to do during login and commit, see “Developing custom login
modules for a system login configuration for JAAS” on page 442.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{

// Handles the WSTokenHolderCallback to see if this is an initial or
// propagation login.

Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// handle exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// iterate through the list looking for your custom token
for (int i=0; i
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom SingleSignonToken
// implementation

if (tokenHolder.getName().equals("myCookieName")
&& tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom SingleSignonToken constructor

// to deserialize
customSSOToken = new
com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

(tokenHolder.getBytes());

}

Chapter 9. Developing extensions to the WebSphere security infrastructure 887

}
}
else

// This is not a propagation login. Create a new instance of your
// SingleSignonToken implementation

{
// Gets the principal from the default SingleSignonToken. This principal
// must match all tokens.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom single sign-on (SSO) token. This is an initial login.
// Pass the principal into the constructor

customSSOToken = new com.ibm.websphere.security.token.
CustomSingleSignonTokenImpl(principal);

// add any initial attributes
if (customSSOToken != null)
{
customSSOToken.addAttribute("key1", "value1");
customSSOToken.addAttribute("key1", "value2");
customSSOToken.addAttribute("key2", "value1");
customSSOToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case something
// happens during the login.

}

public boolean commit() throws LoginException
{
if (customSSOToken != null)
{
// Sets the customSSOToken token into the Subject
try
{
public final SingleSignonToken customSSOTokenPriv = customSSOToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Adds the custom SSO token if it is not null and

// not already in the Subject
if ((customSSOTokenPriv != null) &&

(!subject.getPrivateCredentials().
contains(customSSOTokenPriv)))

{
subject.getPrivateCredentials().

add(customSSOTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Example: An HTTP cookie retrieval
The following example shows you how to retrieve a cookie from an HTTP request, decode the cookie so
that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.
This example shows how to complete these steps from a login module. However, you also can complete
these steps using a servlet.

888 Securing applications and their environment

For information on what to do during initialization, login and commit, see “Developing custom login
modules for a system login configuration for JAAS” on page 442.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{

// Handles the WSTokenHolderCallback to see if this is an
// initial or propagation login.

Callback callbacks[] = new Callback[2];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");
callbacks[1] = new WSServletRequestCallback("HttpServletRequest: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles the exception
}

// receive the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();
javax.servlet.http.HttpServletRequest request =

((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

if (request != null)
{

// Checks if the cookie is present
javax.servlet.http.Cookie[] cookies = request.getCookies();
String[] cookieStrings = getCookieValues (cookies, "myCookeName1");

if (cookieStrings != null)
{
String cookieVal = null;
for (int n=0;n<cookieStrings.length;n++)
{
cookieVal = cookieStrings[n];
if (cookieVal.length()>0)
{

// Removes the cookie encoding from the cookie to get
// your custom bytes

byte[] cookieBytes =
com.ibm.websphere.security.WSSecurityHelper.

convertCookieStringToBytes(cookieVal);
customSSOToken =
new com.ibm.websphere.security.token.

CustomSingleSignonTokenImpl(cookieBytes);

// Now that you have your cookie from the request,
// you can do something with it here, or add it
// to the Subject in the commit() method for use later.

if (debug || tc.isDebugEnabled())
{
System.out.println("*** GOT MY CUSTOM SSO TOKEN FROM

THE REQUEST ***");
}
}
}
}
}

}

public boolean commit() throws LoginException
{
if (customSSOToken != null)
{
// Sets the customSSOToken token into the Subject
try
{
public final SingleSignonToken customSSOTokenPriv = customSSOToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{

// Add the custom SSO token if it is not null and not

Chapter 9. Developing extensions to the WebSphere security infrastructure 889

// already in the Subject
if ((customSSOTokenPriv != null) &&

(!subject.getPrivateCredentials().
contains(customSSOTokenPriv)))

{
subject.getPrivateCredentials().add(customSSOTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Private method to get the specific cookie from the request
private String[] getCookieValues (Cookie[] cookies, String hdrName)
{
Vector retValues = new Vector();
int numMatches=0;
if (cookies != null)
{
for (int i = 0; i < cookies.length; ++i)
{
if (hdrName.equals(cookies[i].getName()))
{
retValues.add(cookies[i].getValue());
numMatches++;
System.out.println(cookies[i].getValue());
}
}
}

if (retValues.size()>0)
return (String[]) retValues.toArray(new String[numMatches]);
else
return null;

}

// Defines your login module variables
com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Implementing a custom authentication token for security attribute
propagation
This topic explains how you might create your own authentication token implementation, which is set in the
login Subject and propagated downstream.

About this task

With this implementation you can specify an authentication token that can be used by a custom login
module or application. Consider writing your own implementation if you want to accomplish one of the
following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID application programming interface
(API).

Important: Custom authentication token implementations are not used by the security runtime in
WebSphere Application Server to enforce authentication. WebSphere Application Security
runtime uses this token in the following situations only:

v Call the getBytes method for serialization

890 Securing applications and their environment

v Call the getForwardable method to determine whether to serialize the authentication token.

v Call the getUniqueId method for uniqueness

v Call the getName and the getVersion methods for adding serialized bytes to the token
holder that is sent downstream

All of the other uses are custom implementations.

To implement a custom authentication token, you must complete the following steps:

Procedure
1. Write a custom implementation of the AuthenticationToken interface. Many different methods are

available for implementing the AuthenticationToken interface. However, make sure the methods that
are required by the AuthenticationToken interface and the token interface are fully implemented. After
you implement this interface, you can place it in the install_dir/classes directory. Alternatively, you
can place the class in any private directory. However, make sure that the WebSphere Application
Server class loader can locate the class and that it is granted the appropriate permissions. You can
add the Java archive (JAR) file or directory that contains this class into the server.policy file so the
class has the necessary permissions required by the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
authentication token, might extend the abstract class and then most of the work is complete.

To see an implementation of the AuthenticationToken interface, see “Example: A
com.ibm.wsspi.security.token.AuthenticationToken implementation” on page 892.

2. Add and receive the custom authentication token during WebSphere Application Server logins. This
task is typically accomplished by adding a custom login module to the various application and system
login configurations. However, to deserialize the information you must plug in a custom login module.
After the object is instantiated in the login module, you can add the object to the Subject during the
commit method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java
serializable object for security attribute propagation” on page 897. If you want to ensure that the
information is propagated, do your own custom serialization, or specify the uniqueness for Subject
caching purposes, consider writing your own authentication token implementation.

The code sample in “Example: A custom authentication token login module” on page 895, shows how
to determine if the login is an initial login or a propagation login. The difference between these login
types is whether the WSTokenHolderCallback callback contains propagation data. If the callback does
not contain propagation data, initialize a new custom authentication token implementation and set it
into the Subject. If the callback contains propagation data, look for your specific custom authentication
token TokenHolder instance, convert the byte array back into your custom AuthenticationToken object,
and set it back into the Subject. The code sample shows both instances.

You can make your authentication token read-only in the commit phase of the login module. If you do
not make the token read-only, attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for
receiving serialized versions of your custom authorization token.

Because this login module relies on information in the shared state that is added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module
after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module. For
information on how to add your custom login module to the existing login configurations, see
“Developing custom login modules for a system login configuration for JAAS” on page 442.

Chapter 9. Developing extensions to the WebSphere security infrastructure 891

Results

After completing these steps, you have implemented a custom authentication token.

Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation
The following example illustrates an authentication token implementation. The following sample code does
not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthenticationToken
interface directly. You can implement the interface directly, but it might cause you to write duplicate code.
However, you might choose to implement the interface directly if considerable differences exist between
how you handle the various token implementations.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomAuthenticationTokenImpl implements com.ibm.wsspi.security.
token.AuthenticationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default
private static long expire_period_in_millis = 2*60*60*1000;

private String oidName = "your_oid_name";
// This string can really be anything if you do not want to use an OID.

/**
* Constructor used to create initial AuthenticationToken instance
*/
public CustomAuthenticationTokenImpl (String principal)
{
// Sets the principal in the token
addAttribute("principal", principal);
// Sets the token version
addAttribute("version", "1");
// Sets the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis()

+ expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a
* propagation login.
*/
public CustomAuthenticationTokenImpl (byte[] token_bytes)
{
try
{

// The data in token_bytes should be signed and encrypted if the
// hashtable is acting as an authentication token.

hashtable = (java.util.Hashtable) custom_decryption_algorithm (token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// If you set the expiration to 0, the token does not expire
if (expiration != 0)
{
// Returns a response that identifies whether this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);

892 Securing applications and their environment

System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long type.
* @return long
*/
public long getExpiration()
{
// Gets the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// The expiration is the first element and there should only be one expiration
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{

// You can choose whether your token gets propagated. In some cases
// you might want it to be local only.

return true;
}

/**
* Gets the principal to which this token belongs. If this is an
* authorization token, this principal string must match the
* authentication token principal string or the message is rejected.
* @return String
*/
public String getPrincipal()
{
// This value might be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

/**
* Returns a unique identifier of the token based upon information the provider
* considers makes this a unique token. This identifier is used for caching purposes
* and can be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the accessID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{

// If you do not want to affect the cache lookup, just return NULL here.
return null;

String cacheKeyForThisToken = "dynamic attributes";

// If you do want to affect the cache lookup, return a string of
// attributes that you want factored into the lookup.

return cacheKeyForThisToken;
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()

Chapter 9. Developing extensions to the WebSphere security infrastructure 893

{
if (hashtable != null)
{
try
{

// Do this if the object is set read-only during login commit
// because this ensures that new data is not set.

if (isReadOnly() && tokenBytes == null)
tokenBytes = custom_encryption_algorithm (hashtable);

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, which is used to identify the byte[] in the
* protocol message.
* @return String
*/
public String getName()
{
return oidName;
}

/**
* Gets the version of the token as a short type. This also is used
* to identify the byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any set methods check that this state has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is read-only
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**

894 Securing applications and their environment

* Sets the attribute name/value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.wsspi.security.token.AuthenticationToken deep_clone =
new com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}

/**
* This method returns true if this token is storing a user ID and password
* instead of a token.
* @return boolean
*/
public boolean isBasicAuth()
{
return false;
}
}

Example: A custom authentication token login module
This examples shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see “Developing custom login
modules for a system login configuration for JAAS” on page 442.

Chapter 9. Developing extensions to the WebSphere security infrastructure 895

public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// Handles the WSTokenHolderCallback to see if this is an initial or

// propagation login.
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthenticationToken
// implementation

if (tokenHolder.getName().equals("your_oid_name") && tokenHolder.getVersion() == 1)
{

// Passes the bytes into your custom AuthenticationToken constructor
// to deserialize

customAuthzToken = new
com.ibm.websphere.security.token.

CustomAuthenticationTokenImpl(tokenHolder.getBytes());

}
}
}
else

// This is not a propagation login. Create a new instance of your
// AuthenticationToken implementation

{
// Gets the principal from the default AuthenticationToken. This principal
// should match all default tokens.
// Note: WebSphere Application Server runtime only enforces this for
// default tokens. Thus, you can choose
// to do this for custom tokens, but it is not required.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authentication token. This is an initial login. Pass
// the principal into the constructor

customAuthToken = new com.ibm.websphere.security.token.
CustomAuthenticationTokenImpl(principal);

// Adds any initial attributes
if (customAuthToken != null)
{
customAuthToken.addAttribute("key1", "value1");
customAuthToken.addAttribute("key1", "value2");
customAuthToken.addAttribute("key2", "value1");
customAuthToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case
// something happens during the login.

}

public boolean commit() throws LoginException
{
if (customAuthToken != null)
{
// Sets the customAuthToken token into the Subject
try
{
private final AuthenticationToken customAuthTokenPriv = customAuthToken;

// Do this in a doPrivileged code block so that application code does
// not need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

896 Securing applications and their environment

{
public Object run()
{
try
{

// Adds the custom Authentication token if it is not
// null and not already in the Subject

if ((customAuthTokenPriv != null) &&
(!subject.getPrivateCredentials().

contains(customAuthTokenPriv)))
{
subject.getPrivateCredentials().add(customAuthTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Propagating a custom Java serializable object for security attribute
propagation
This document describes how to add an object into the Subject from a login module and describes other
infrastructure considerations to make sure that the Java object gets propagated.

Before you begin

Prior to completing this task, verify that security propagation is enabled in the administrative console.

About this task

With security attribute propagation enabled, you can propagate data either horizontally with single sign-on
(SSO) enabled or downstream using Common Secure Interoperability Version 2 (CSIv2). When a login
occurs, either through an application login configuration or a system login configuration, a custom login
module can be plugged in to add Java serialized objects into the Subject during login. This document
describes how to add an object into the Subject from a login module and describes other infrastructure
considerations to make sure that the Java object gets propagated.

Procedure
1. Add your custom Java object into the Subject from a custom login module. A two-phase process exists

for each Java Authentication and Authorization Service (JAAS) login module. WebSphere Application
Server completes the following processes for each login module present in the configuration:

login method
In this step, the login configuration callbacks are analyzed, if necessary, and the new objects
or credentials are created.

commit method
In this step, the objects or credentials that are created during login are added into the Subject.

After a custom Java object is added into the Subject, WebSphere Application Server serializes the
object on the sending server, deserializes the object on the receiving server, and adds the object back

Chapter 9. Developing extensions to the WebSphere security infrastructure 897

into the Subject downstream. However, some requirements exist for this process to occur successfully.
For more information on the JAAS programming model, see the JAAS information provided in the
Security: Resources for learning article.

Important: Whenever you plug a custom login module into the login infrastructure of WebSphere
Application Server, make sure that the code is trusted. When you put the classes together
in a Java archive (JAR) file and add the file to the app_server_root/lib/ext/ directory, the
login module has Java 2 Security AllPermissions permissions . It is recommended that you
add your login module and other infrastructure classes into any private directory. However,
you must modify the profile_root/properties/server.policy file to make sure that your
private directory, Java archive (JAR) file, or both have the permissions required to run the
application programming interfaces (API) that are called from the login module. Because
the login module might be run after the application code on the call stack, you might add
doPrivileged code so that you do not need to add additional properties to your
applications.

The following code sample shows how to add doPrivileged code. For information on what to do during
initialization, login and commit, see “Developing custom login modules for a system login configuration
for JAAS” on page 442.

public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

}

public boolean login() throws LoginException
{

// Construct callback for the WSTokenHolderCallback so that you
// can determine if
// your custom object has propagated
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{

_callbackHandler.handle(callbacks);
}
catch (Exception e)
{
throw new LoginException (e.getLocalizedMessage());
}

// Checks to see if any information is propagated into this login
List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

getTokenHolderList();

if (authzTokenList != null)
{

for (int i = 0; i< authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Look for your custom object. Make sure you use
// "startsWith"because there is some data appended
// to the end of the name indicating in which Subject
// Set it belongs. Example from getName():
// "com.acme.CustomObject (1)". The class name is
// generated at the sending side by calling the
// object.getClass().getName() method. If this object
// is deserialized by WebSphere Application Server,
// then return it and you do not need to add it here.
// Otherwise, you can add it below.
// Note: If your class appears in this list and does
// not use custom serialization (for example, an
// implementation of the Token interface described in
// the Propagation Token Framework), then WebSphere
// Application Server automatically deserializes the
// Java object for you. You might just return here if
// it is found in the list.

if (tokenHolder.getName().startsWith("com.acme.CustomObject"))
return true;

}
}

// If you get to this point, then your custom object has not propagated
myCustomObject = new com.acme.CustomObject();
myCustomObject.put("mykey", "mydata");

898 Securing applications and their environment

}

public boolean commit() throws LoginException
{
try
{

// Assigns a reference to a final variable so it can be used in
// the doPrivileged block

final com.acme.CustomObject myCustomObjectFinal = myCustomObject;
// Prevents your applications from needing a JAAS getPrivateCredential

// permission.
java.security.AccessController.doPrivileged(new java.security.

PrivilegedExceptionAction()
{
public Object run() throws java.lang.Exception
{

// Try not to add a null object to the Subject or an object
// that already exists.

if (myCustomObjectFinal != null && !subject.getPrivateCredentials().
contains(myCustomObjectFinal))

{
// This call requires a special Java 2 Security permission,
// see the JAAS application programming interface (API)
// documentation.

subject.getPrivateCredentials().add(myCustomObjectFinal);
}
return null;
}
});
}
catch (java.security.PrivilegedActionException e)
{
// Wraps the exception in a WSLoginFailedException
java.lang.Throwable myException = e.getException();
throw new WSLoginFailedException (myException.getMessage(), myException);
}
}

// Defines your login module variables
com.acme.CustomObject myCustomObject = null;
}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is added
to the Subject must be serialized if you want the object to propagate. For example, the object must
implement the java.io.Serializable interface. If the object is not serialized, the request does not fail, but
the object does not propagate. To make sure an object that is added to the Subject is propagated,
implement one of the token interfaces that is defined in topics about security attribute propagation or
add attributes to one of the following existing default token implementations:

AuthorizationToken
Add attributes if they are user-specific.

PropagationToken
Add attributes that are specific to an invocation.

If you are careful adding custom objects and follow all the steps to make sure that WebSphere
Application Server can serialize and deserialize the object at each hop, then it is sufficient to use
custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request.

When you add a custom object into the Subject and expect WebSphere Application Server to
propagate the object, put the class definitions together in a Java archive (JAR) file and add the file to
the app_server_root/lib/ext/ directory on all of the nodes where serialization or deserialization might
occur. Also, verify that the Java class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your
environment where you need to add your custom object during a login. Any login configuration that
interacts with WebSphere Application Server generates a Subject that might be propagated outbound
for an Enterprise JavaBeans (EJB) request. If you want WebSphere Application Server to propagate a
custom object in all cases, make sure that the custom login module is added to every login
configuration that is used in your environment. For more information, see “Developing custom login
modules for a system login configuration for JAAS” on page 442.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the
propagated information. When an EJB request is sent to a downstream server and security attribute
propagation is disabled on that server, only the authentication token is sent for backwards compatibility.

Chapter 9. Developing extensions to the WebSphere security infrastructure 899

Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that
might receive requests. You must check several places in the administrative console to make sure
propagation is fully enabled.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can
configure a property to exclude the propagation of objects that match specific class names, package
names, or both. For example, you can have a custom object that is related to a specific process. If the
object is propagated, it does not contain valid information. You must tell WebSphere Application Server
not to propagate this object. Complete the following steps to specify the object in the propagation
exclude list, using the administrative console:

a. Click Security > Global security > Custom properties > New.

b. Add com.ibm.ws.security.propagationExcludeList in the Name field.

c. Add the name of the custom object in the Value field. You can add a list of custom objects to the
propagation exclude list, separated by a colon (:). For example, you might enter
com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as
com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,
WebSphere Application Server does not propagate any class that equals
com.acme.CustomLocalObject or begins with com.acme.private.

Although you can add custom objects to the propagation exclude list, you must be aware of a side
effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,
in a local cache for the life of the single sign-on (SSO) token. The life of the SSO token, which has
a default of two hours, is configured in the SSO properties on the administrative console. The
information that is added to the opaque token includes only the objects not in the exclude list.

Ensure that your SSO token timeout value is greater that the authentication cache timeout value.
To modify the authentication cache, see the documentation about the authentication cache settings.

Results

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For
more information on the differences between horizontal and downstream propagation, see topics about
security attribute propagation or add attributes to one of the following existing default token
implementations:.

Developing a custom interceptor for trust associations
You can define the interceptor class method that you want to use. WebSphere Application Server supports
two trust association interceptor interfaces: com.ibm.wsspi.security.TrustAssociationInterceptor and
com.ibm.wsspi.security.tai.TrustAssociationInterceptor.

Before you begin

If you are using a third party reverse proxy server other than Tivoli WebSEAL, you must provide an
implementation class for the product interceptor interface for your proxy server. This article describes the
com.ibm.wsspi.security.TrustAssociationInterceptor.java interface that you must implement.

Note: The Trust Association Interceptor (TAI) interface
(com.ibm.wsspi.security.tai.TrustAssociationInterceptor) supports several new features and is
different from the existing com.ibm.wsspi.security.TrustAssociationInterceptor interface.

Procedure
1. Define the interceptor class method. WebSphere Application Server provides the interceptor Java

interface, com.ibm.wsspi.security.TrustAssociationInterceptor, which defines the following methods:
v public boolean isTargetInterceptor(HttpServletRequest req) creates

WebTrustAssociationException;.

900 Securing applications and their environment

The isTargetInterceptor method determines whether the request originated with the proxy server
associated with the interceptor. The implementation code must examine the incoming request object
and determine if the proxy server forwarding the request is a valid proxy server for this interceptor.
The result of this method determines whether the interceptor processes the request or not.

v public void validateEstablishedTrust (HttpServletRequest req) creates
WebTrustAssociationException;.

The validateEstablishedTrust method determines if the proxy server from which the request
originated is trusted or not. This method is called after the isTargetInterceptor method. The
implementation code must authenticate the proxy server. The authentication mechanism is
proxy-server specific. For example, in the product implementation for the WebSEAL server, this
method retrieves the basic authentication information from the HTTP header and validates the
information against the user registry used by WebSphere Application Server. If the credentials are
invalid, the code creates the WebTrustAssociationException, indicating that the proxy server is not
trusted and the request is to be denied.

v public String getAuthenticatedUsername(HttpServletRequest req) creates
WebTrustAssociationException;.

The getAuthenticatedUsername method is called after trust is established between the proxy server
and WebSphere Application Server. The product has accepted the proxy server authentication of the
request and must now authorize the request. To authorize the request, the name of the original
requestor must be subjected to an authorization policy to determine if the requestor has the
necessary privilege. The implementation code for this method must extract the user name from the
HTTP request header and determine if that user is entitled to the requested resource. For example,
in the product implementation for the WebSEAL server, the method looks for an iv-user attribute in
the HTTP request header and extracts the user ID associated with it for authorization.

2. Configuring the interceptor. To make an interceptor configurable, the interceptor must extend
com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor. Implement the following methods:
public int init (java.util.Properties props);

The init(Properties) method accepts a java.util.Properties object, which contains the set of
properties required to initialize the interceptor. All the properties set for an interceptor (by using
the Custom Properties link for that interceptor or using scripting) is sent to this method. The
interceptor then can use these properties to initialize itself. For example, in the product
implementation for the WebSEAL server, this method reads the hosts and ports so that a
request coming in can be verified to originate from trusted hosts and ports. A return value of 0
implies that the interceptor initialization is successful. Any other value implies that the
initialization is not successful and the interceptor is ignored.

Applicability of the following list

If a previous implementation of the trust association interceptor returns a different error status
you can either change your implementation to match the expectations or make one of the
following changes:
v Add the com.ibm.wsspi.security.trustassociation.initStatus property in the trust association

interceptor custom properties. Set the property to the value that indicates that the interceptor
is successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.

v Add the com.ibm.wsspi.security.trustassociation.ignoreInitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property
to the custom properties, WebSphere Application Server does not check the return status,
which is similar to previous versions of WebSphere Application Server.

public void cleanup ();
This method is called when the application server is stopped. It is used to prepare the
interceptor for termination.

public void setVersion (String s);
This method is optional. The method is used to set the version and is for informational purpose
only. The default value is Unspecified.

Chapter 9. Developing extensions to the WebSphere security infrastructure 901

You must configure the following methods implemented by the custom interceptor implementation. This
listing only shows the methods and does not include any implementation.
**
import java.util.*;
import javax.servlet.http.HttpServletRequest;
import com.ibm.websphere.security.*;

public class myTAIImpl extends WebSphereBaseTrustAssociationInterceptor
implements TrustAssociationInterceptor

{

public myTAIImpl ()
{
}

public boolean isTargetInterceptor (HttpServletRequest req)
throws WebTrustAssociationException

{

//return true if this is the target interceptor, else return false.
}

public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse res)
throws WebTrustAssociationFailedException

{
//validate the request and establish trust.
//create and return the TAIResult

public int initialize (Properties props)
{

//initialize the implementation. If successful return 0, else return 1.
}

public String getVersion()
{

//Return version
}

public String getType()
{

//Return type
}

public void cleanup ()
{

//Cleanup code.

}

}

Note: If the init(Properties) method is implemented as described previously in your custom interceptor,
this note does not apply to your implementation, and you can move on to the next step.
Previous versions of com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor include
the public int init (String propsfile) method. This method is no longer required since the
interceptor properties are not read from a file. The properties are now entered in the
administrative console Custom Properties link of the interceptor using the administrative
console or scripts. These properties then are made available to your implementation in the
init(Properties) method. However, for backward compatibility, the init(String) method still is
supported. The init(String) method is called by the default implementation of init(Properties) as
shown in the following example.

// Default implementation of init(Properties props) method. A Custom
// implementation should override this.
public int init (java.util.Properties props)
{

String type =
props.getProperty("com.ibm.wsspi.security.trustassociation.types");

902 Securing applications and their environment

String classfile=
props.getProperty("com.ibm.wsspi.security.trustassociation."
+type+".config");
if (classfile != null && classfile.length() > 0) {

return init(classfile);
} else {

return -1;
}

}

Change your implementation to implement the init(Properties) method instead of relying on init(String
propsfile) method. As shown in the previous example, this default implementation reads the properties
to load the property file. The com.ibm.wsspi.security.trustassociation.types property gets the file
containing the properties by concatenating .config to its value.

Note: The init(String) method still works if you want to use it instead of implementing the
init(Properties) method. The only requirement is that the file name containing the custom trust
association properties should now be entered using the Custom Properties link of the
interceptor in the administrative console or by using scripts. You can enter the property using
either of the following methods. The first method is used for backward compatibility with
previous versions of WebSphere Application Server.
Method 1:

The same property names used in the previous release are used to obtain the file
name. The file name is obtained by concatenating the .config to the
com.ibm.wsspi.security.trustassociation.types property value.

If the file name is called myTAI.properties and is located in the /properties directory,
set the following properties:
v com.ibm.wsspi.security.trustassociation.types = myTAItype
v com.ibm.wsspi.security.trustassociation.myTAItype.config = app_server_root/

myTAI.properties
Method 2:

You can set the com.ibm.wsspi.security.trustassociation.initPropsFile property in the
trust association custom properties to the location of the file. For example, set the
following property:
v

com.ibm.wsspi.security.trustassociation.initPropsFile=
app_server_root/myTAI.properties

Type the previous code as one continuous line.

The location of the properties file is fully qualified (for example,app_server_root/myTAI.properties).
Because the location can be different in a WebSphere Application Server, Network Deployment
environment, use variables such as ${USER_INSTALL_ROOT} to refer to the WebSphere Application
Server installation directory. For example, if the file name is called myTAI.properties, and it is located
in the /properties directory, then set the following properties:
v com.ibm.wsspi.security.trustassociation.types = myTAItype
v com.ibm.wsspi.security.trustassociation.myTAItype.config = app_server_root/myTAI.properties

3. Compile the implementation once you have implemented it. For example, app_server_root/java/bin/
javac -classpath install_root/plugins/com.ibm.ws.runtime.jar;<install_root>/dev/JavaEE/
j2ee.jar myTAIImpl.java

a. Copy the class file to a location in the class path (preferably the app_server_root/lib/ext
directory).

b. Restart all the servers.

4. Delete the default WebSEAL interceptor in the administrative console and click New to add your
custom interceptor. Verify that the class name is dot separated and appears in the class path.

5. Click the Custom Properties link to add additional properties that are required to initialize the custom
interceptor. These properties are passed to the init(Properties) method of your implementation when it
extends the com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor as described in the
previous step.

Chapter 9. Developing extensions to the WebSphere security infrastructure 903

6. Save and synchronize (if applicable) the configuration.

7. Restart the servers for the custom interceptor to take effect.

Example

Refer to the Security: Resources for Learning article for a reference to an example of a custom interceptor.

Trust association interceptor support for Subject creation
The trust association interceptor (TAI) com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface
supports several features that are different from the existing
com.ibm.websphere.security.TrustAssociationInterceptor interface.

The TAI interface supports a multiphase, negotiated authentication process. For example, some systems
require a challenge response protocol back to the client. The two key methods in this interface are:

Key method name
public boolean isTargetInterceptor (HttpServletRequest req)

The isTargetInterceptor method determines whether the request originated with the proxy server
that is associated with the interceptor. The implementation code must examine the incoming
request object and determine if the proxy server that forwards the request is a valid proxy server
for this interceptor. The result of this method determines whether the interceptor processes the
request.

Method result

A true value tells WebSphere Application Server to have the TAI handle the request.

A false value, tells WebSphere Application Server to ignore the TAI.

Key method name
public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse
res)

The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from
which the request originated. The implementation code must authenticate the proxy server. The
authentication mechanism is proxy-server specific. For example, in the product implementation for
the WebSEAL server, this method retrieves the basic authentication information from the HTTP
header and validates the information against the user registry that WebSphere Application Serve
uses. If the credentials are not valid, the code creates the WebTrustAssociationException
exception, which indicates that the proxy server is not trusted and the request is denied. If the
credentials are valid, the code returns a TAIResult result, which indicates the status of the request
processing with the client identity (Subject and principal name) to use for authorizing the web
resource.

Method result
Returns a TAIResult result, which indicates the status of the request processing. You can query
the Request object and modify the Response object can be modified.

The TAIResult class has three static methods for creating a TAIResult result. The TAIResult create
methods take an int type as the first parameter. WebSphere Application Server expects the result to be a
valid HTTP request return code and is interpreted in one of the following ways:

v If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server that the
TAI completed its negotiation. The response also tells WebSphere Application Server to use the
information in the TAIResult result to create a user identity.

v Other values tell WebSphere Application Server to return the TAI output, which is placed into the
HttpServletResponse response, to the web client. Typically, the web client provides additional
information and then places another call to the TAI.

904 Securing applications and their environment

Table 114. TAIResults definitions. The created TAIResults results have the following meanings:
TAIResult Explanation

public static TAIResult create(int status); Indicates a status to WebSphere Application Server. The status cannot be SC_OK because the
identity information is provided.

public static TAIResult create(int status, String
principal);

Indicates a status to WebSphere Application Server and provides the user ID or the unique ID for
this user. WebSphere Application Server creates credentials by querying the user registry.

public static TAIResult create(int status, String
principal, Subject subject);

Indicates a status to WebSphere Application Server, the user ID or the unique ID for the user, and a
custom Subject. If the Subject contains a hashtable, the principal is ignored. The contents of the
Subject become part of the eventual user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust method of a TAI.

The following code sample indicates that additional negotiation is required:
// Modify the HttpServletResponse object
// The response code is meaningful only on the client
return TAIResult.create(HttpServletResponse.SC_CONTINUE);

The following code sample indicates that the TAI determined the user identity. WebSphere Application
Server receives the user ID only and queries the user registry for additional information:
// modify the HttpServletResponse object
return TAIResult.create(HttpServletResponse.SC_OK, userid);

The following code sample indicates that the TAI determined the user identity. WebSphere Application
Server receives the complete user information that is contained in the hashtable. In this code sample, the
hashtable is placed in the public credential portion of the Subject:
// create Subject and place Hashtable in it
Subject subject = new Subject;
subject.getPublicCredentials().add(hashtable);
// the response code is meaningful for only the client
return TAIResult.create(HttpServletResponse.SC_OK, "ignored", subject);

The following code sample indicates that an authentication failure occured. WebSphere Application Server
fails the authentication request:
//log error message
//
throw new WebTrustAssociationFailedException("TAI failed for this reason");

The following methods are additional methods on the TrustAssociationInterceptor interface. These methods
are used for initialization, for shutdown, and for identifying the TAI to WebSphere Application Server. For
more information, see the Java documentation.

Method name
public int initialize(Properties props)

Method result
This method is called during TAI initialization and is called only if custom properties are configured
for the interceptor.

Method name
public String getVersion()

Method result
This method returns the version of the TAI.

Method name
public String getType()

Method result
This method returns the type of the TAI.

Chapter 9. Developing extensions to the WebSphere security infrastructure 905

Method name
public void cleanup()

Method result
This method is called when stopping the WebSphere Application Server process. Stopping the
WebSphere Application Server process provides an opportunity for the TAI to perform any
necessary cleanup. This method is not necessary if cleanup is not required.

Enabling a plugpoint for custom password encryption
Two properties govern the protection of passwords. By configuring these two properties, you can enable a
plugpoint for custom password encryption.

Before you begin

To view an example code sample that illustrates the
com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface, see “Plug point for custom password
encryption” on page 907.

About this task

The encryption method is called for password processing whenever the custom class is configured and
custom encryption is enabled. The decryption method is called whenever the custom class is configured
and the password contains the {custom:alias} tag. The custom:alias tag is stripped prior to decryption.

Procedure
1. To enable custom password encryption, you must configure two properties:

v com.ibm.wsspi.security.crypto.customPasswordEncryptionClass - Defines the custom class
that implements the com.ibm.wsspi.security.crypto.CustomPasswordEncryption password encryption
interface.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled - Defines when the custom
class is used for default password processing. When the passwordEncryptionEnabled option is not
specified or set to false, and the passwordEncryptionClass class is specified, the decryption
method is called whenever a {custom:alias} tag still exists in the configuration repository.

2. To configure custom password encryption, configure both of these properties in the server.xml file.
How you perform this configuration is dependent on your existing directory structure. Choose one of
the following ways to perform this configuration:

v Place The custom encryption class (com.acme.myPasswordEncryptionClass) in a Java archive
(JAR) file that resides in the ${WAS_INSTALL_ROOT}/classes directory. In this case, you have created
the ${WAS_INSTALL_ROOT}/classes directory for this purpose.

Note: WebSphere Application Server does not create the ${WAS_INSTALL_ROOT}/classes directory.

v Place the custom encryption class (com.acme.myPasswordEncryptionClass) in a Java archive (JAR)
file that resides in the ${WAS_HOME}/lib/ext directory or another valid existing directory.

Every configuration document that contains a password (security.xml and any application bindings
that contain RunAs passwords), must be saved before all of the passwords become encrypted with the
custom encryption class.

3. If the custom implementation class defaults to the
com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl interface, and this class is present in
the class path, then encryption is enabled by default. This simplifies the enablement process for all
nodes. It is not necessary to define any other properties except for those that the custom
implementation requires. To disable encryption, but still use this class for decryption, specify the
following class.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

906 Securing applications and their environment

What to do next

Whenever a custom encryption class encryption operation is called, and it creates a run-time exception or
a defined PasswordEncryptException exception, the WebSphere Application Server runtime uses the {xor}
algorithm to encode the password. This encoding prevents the storage of the password in plain text. After
the problem with the custom class has been resolved, it automatically encrypts the password the next time
the configuration document is saved.

When a RunAs role is assigned a user ID and password, it currently is encoded using the WebSphere
Application Server encoding function. Therefore, after the custom plug point is configured to encrypt the
passwords, it encrypts the passwords for the RunAs bindings as well. If the deployed application is moved
to a cell that does not have the same encryption keys, or the custom encryption is not yet enabled, a login
failure results because the password is not readable.

One of the responsibilities of the custom password encryption implementation is to manage the encryption
keys. This class must decrypt any password that it encrypted. Any failure to decrypt a password renders
that password to be unusable, and the password must be changed in the configuration. All encryption keys
must be available for decryption there and no passwords are left using those keys. The master secret
must be maintained by the custom password encryption class to protect the encryption keys.

You can manage the master secret by using a stash file for the keystore, or by using a password locator
that enables the custom encryption class to locate the password so that it can be locked down.

Plug point for custom password encryption
A plug point for custom password encryption can be created to encrypt and decrypt all passwords in
WebSphere Application Server that are currently encoded or decoded using Base64-encoding.

The implementation class of this plug point has the responsibility for managing keys, determining the
encryption algorithm to use, and for protecting the master secret. The WebSphere Application Server
runtime stores the encrypted passwords in their existing locations, preceded with {custom:alias} tags
instead of {xor} tags. The custom part of the tag indicates that it is a custom algorithm. The alias part of
the tag is specified by the custom implementation, which helps to indicate how the password is encrypted.
The implementation can include the key alias, encryption algorithm, encryption mode, or encryption
padding.

A custom provider of this plug point must implement an interface that is designed to encrypt and decrypt
passwords. The interface is called by the WebSphere Application Server runtime whenever the custom
plug point is enabled. The custom algorithm becomes one of the supported algorithms when the plug point
is enabled. Other supported algorithms include {xor} (standard base64 encoding) and {os400} which is
used on the iSeries platform.

The following example illustrates the com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface:
package com.ibm.wsspi.security.crypto;
public interface CustomPasswordEncryption
{

/**
* The encrypt operation takes a UTF-8 encoded String in the form of a byte[].
* The byte[] is generated from String.getBytes("UTF-8").
* An encrypted byte[] is returned from the implementation in the EncryptedInfo
* object. Additionally, a logical key alias is returned in the EncryptedInfo
* objectwhich is passed back into the decrypt method to determine which key was
* used to encrypt this password. The WebSphere Application Server runtime has
* no knowledge of the algorithm or the key used to encrypt the data.
*
* @param byte[]
* @return com.ibm.wsspi.security.crypto.EncryptedInfo
* @throws com.ibm.wsspi.security.crypto.PasswordEncryptException
**/
public EncryptedInfo encrypt (byte[] decrypted_bytes) throws PasswordEncryptException;

/**
* The decrypt operation takes the EncryptedInfo object containing a byte[]

Chapter 9. Developing extensions to the WebSphere security infrastructure 907

* and the logical key alias and converts it to the decrypted byte[]. The
* WebSphere Application Server runtime converts the byte[] to a String
* using new String (byte[], "UTF-8");
*
* @param com.ibm.wsspi.security.crypto.EncryptedInfo
* @return byte[]
* @throws com.ibm.wsspi.security.crypto.PasswordDecryptException
**/
public byte[] decrypt (EncryptedInfo info) throws PasswordDecryptException;

/**
* The following is reserved for future use and is currently not
* called by the WebSphere Application Server runtime.
*
* @param java.util.HashMap
**/
public void initialize (java.util.HashMap initialization_data);

}

The com.ibm.wsspi.security.crypto.EncryptedInfo class contains the encrypted bytes with the user-defined
alias that is associated with the encrypted bytes. This information is passed back into the encryption
method to help determine how the password was originally encrypted.
package com.ibm.wsspi.security.crypto;
public class EncryptedInfo
{

private byte[] bytes;
private String alias;

/**
* This constructor takes the encrypted bytes and a keyAlias as parameters.
* This constructor is used to pass to or from the WebSphere Application Server
* runtime to enable the runtime to associate the bytes with a specific key that
* is used to encrypt the bytes.
*/

public EncryptedInfo (byte[] encryptedBytes, String keyAlias)
{

bytes = encryptedBytes;
alias = keyAlias;

}

/**
* This command returns the encrypted bytes.
*
* @return byte[]
*/

public byte[] getEncryptedBytes()
{

return bytes;
}

/**
* This command returns the key alias. The key alias is a logical string that is
* associated with the encrypted password in the model. The format is
* {custom:keyAlias}encrypted_password. Typically, just the key alias is placed
* here, but algorithm information can also be returned.
*
* @return String
*/

public String getKeyAlias()
{

return alias;
}

}

The encryption method is called for password processing whenever the custom class is configured and
custom encryption is enabled. The decryption method is called whenever the custom class is configured
and the password contains the {custom:alias} tag . The custom:alias tag is stripped prior to decryption.
For more information, see Enabling custom password encryption.

Implementing a custom authentication provider using JASPI
You can implement a custom authentication provider using Java Authentication SPI for Containers (JASPI,
or sometimes called JASPIC) to handle the Java Platform, Enterprise Edition (Java EE) authentication of
HTTP request and response messages destined for web applications.

908 Securing applications and their environment

Before you begin

For JASPI authentication processing to take place, application security must be enabled in the global or
domain security configuration and the server must be restarted for the configuration changes to take effect.
Read the Application security topic for more information.

About this task

Note: This release of WebSphere Application Server supports the JSR 196: Java Authentication SPI for
Containers (JASPI, or sometimes called JASPIC) specification, which enables third-party security
providers to handle the Java Platform, Enterprise Edition (Java EE) authentication of HTTP request
and response messages destined for web applications. The JASPI specification extends the
pluggable authentication concepts of the Java Authentication and Authorization Service (JAAS) to
the authentication of HTTP request and response messages. When application security is enabled,
and a protected web resource is accessed, the web container and the security runtime collaborate
to make an authentication decision for the caller. When using a third-party JASPI provider, the
authentication decision is delegated to that provider.

The JASPI specification defines standard system programming interfaces that enable developers to write a
pluggable custom authentication provider that can handle Java EE web authentication mechanisms as well
as any extended authentication processing. The WebSphere Application Server runtime uses these
standard system programming interfaces to invoke the JASPI authentication provider. Read the Servlet
Container Profile section in the JSR 196: Java Authentication Service Provider Interface for Containers
specification for the requirements that third-party authentication providers must satisfy for more
information.

If application security is enabled with JASPI authentication, when the web resource (such as a servlet or a
JavaServer Pages (JSP) file) is accessed, the security runtime checks if the web resource is mapped to a
JASPI provider defined in the security configuration. If so, the runtime invokes the JASPI authentication
provider to perform authentication for the HTTP request and response messages.

To implement a custom authentication provider using JASPI you must do the following:

Procedure
1. Develop a custom JASPI authentication provider.

WebSphere Application Server provides support for the development of custom JASPI authentication
providers to be used to perform authentication for the HTTP request and response messages destined
for web applications. Read “Developing a custom JASPI authentication provider” on page 910 for more
information.

2. Configure a new JASPI authentication provider.

WebSphere Application Server allows an administrator to enable JASPI authentication and to define a
third-party JASPI authentication provider as part of the global or domain security configuration. Read
“Configuring a new JASPI authentication provider using the administrative console” on page 914 for
more information.

3. Associate a JASPI authentication provider with an application or specific web modules.

During application deployment, the administrator or deployer can use the Map JASPI Provider option to
associate web applications and specific web modules with an existing JASPI authentication provider as
defined in the security configuration. This association can also be made when editing the options for
an existing installed application. By default, an application inherits the JASPI settings defined in the
WebSphere Application Server global or domain security configuration, and web modules inherit the
application setting. The Map JASPI Provider option can be used to override these defaults. Read
“Enabling JASPI authentication using the Map JASPI provider option during application deployment” on
page 916 for more information.

Chapter 9. Developing extensions to the WebSphere security infrastructure 909

Developing a custom JASPI authentication provider
You can develop a custom Java Authentication SPI for Containers (JASPI) authentication provider by
creating classes that implement the required interfaces noted in the JSR 196: Java Authentication Service
Provider Interface for Containers specification.

Before you begin

Review the specific interface implementation requirements for JASPI authentication providers and modules
in the JSR 196: Java Authentication Service Provider Interface for Containers specification.

About this task

WebSphere Application Server supports the use of third-party authentication providers that are compliant
with the servlet container profile specified in Java Authentication SPI for Containers (JASPI) Version 1.0.

The servlet container profile defines interfaces that are used by the security runtime environment in
collaboration with the web container in WebSphere Application Server to invoke authentication modules
before and after a web request is processed by an application. Authentication using JASPI modules is
performed only when JASPI has been enabled in the security configuration and when a configured JASPI
provider has been associated with the web module that processes the received web request.

To develop a custom authentication provider, create classes that implement the required interfaces noted
in the JSR 196: Java Authentication Service Provider Interface for Containers specification. A provider can
use one or more authentication modules for authentication. Modules can use callbacks to perform
authentication, or they can manually add the necessary user identity information to the client subject.
Depending on the scope of the provider, the implementation classes can be stored in various locations on
the application server.

Procedure
1. Create a class that implements the javax.security.auth.message.config.AuthConfigProvider interface.

The AuthConfigProvider implementation class must define a public two-argument constructor and the
getServerAuthConfig public method:
import java.util.Map;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.config.AuthConfigFactory;
import javax.security.auth.message.config.AuthConfigProvider;
import javax.security.auth.message.config.ServerAuthConfig;

public class SampleAuthConfigProvider implements AuthConfigProvider {

public SampleAuthConfigProvider(Map<String, String> properties, AuthConfigFactory factory) {
...

}
public ServerAuthConfig getServerAuthConfig(String layer, String appContext, CallbackHandler handler)

throws AuthException {
...

}
}

An instance of the AuthConfigProvider implementation class is used by WebSphere Application Server
when a request arrives to be processed by the web module of the application. The
getServerAuthConfig method is used to obtain a ServerAuthConfig instance. The CallbackHandler
argument in the method call is used by the authentication module(s).

2. Create a class that implements the javax.security.auth.message.config.ServerAuthConfig interface.

The ServerAuthConfig implementation class must define the getAuthContextID and getAuthContext
public methods:

910 Securing applications and their environment

import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthConfig;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthConfig implements ServerAuthConfig {

public String getAuthContextID(MessageInfo messageInfo) throws IllegalArgumentException {
...

}
public ServerAuthContext getAuthContext(String authContextID, Subject serviceSubject, Map properties)

throws AuthException {
...

}
}

The getAuthContextID and getAuthContext methods in the ServerAuthConfig implementation class are
used to obtain a ServerAuthContext instance.

3. Create a class that implements the javax.security.auth.message.config.ServerAuthContext interface.

The ServerAuthContext implementation class must define the validateRequest and secureResponse
public methods:
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthContext implements ServerAuthContext {

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}
public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)

throws AuthException {
...

}
}

The validateRequest method in the ServerAuthContext implementation class is used to invoke the
module that authenticates the received web request message. If the authentication result is successful,
the web container dispatches the received web request message that the target web module
processes in the application. If the authentication result is not successful, the request is rejected with
the appropriate response status.

4. Create a class that implements the javax.security.auth.message.module.ServerAuthModule interface.

The ServerAuthModule implementation class must define the initialize, validateRequest, and
secureResponse public methods:
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.MessagePolicy;
import javax.security.auth.message.module.ServerAuthModule;

public class SampleAuthModule implements ServerAuthModule {

public void initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy, CallbackHandler handler, Map options)
throws AuthException {
...

}

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}

public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)

Chapter 9. Developing extensions to the WebSphere security infrastructure 911

throws AuthException {
...

}
}

The initialize method in the ServerAuthModule implementation class is called by the ServerAuthContext
implementation class to initialize the authentication module and to associate it with the
ServerAuthContext instance.

The validateRequest and secureResponse methods in this class are used respectively to authenticate
the javax.servlet.http.HttpServletRequest and javax.servlet.http.HttpServletResponse contained in the
javax.security.auth.message.MessageInfo that is received. These methods can use the
CallbackHandler instance received in the initialize method to interact with the WebSphere security
runtime to validate a user password, and the active user registry to retrieve a unique-id and
membership groups for a user. The retrieved data is placed in a Hashtable in the set of private
credentials in the client subject. The WebSphere Application Server implementation of CallbackHandler
supports three callbacks:

v CallerPrincipalCallback

v GroupPrincipalCallback

v PasswordValidationCallback

WebSphere Application Server expects the name values obtained with
PasswordValidationCallback.getUsername() and CallerPrincipalCallback.getName() to be identical. If
they are not, unpredictable results occur. The CallbackHandler's handle() method processes each
callback given in the argument array of the method sequentially. Therefore, the name value set in the
private credentials of the client subject is the one obtained from the last callback processed.

Note: Always use PasswordValidationCallback to validate a user password and to add the appropriate
credentials to the client subject during authentication:
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.callback.PasswordValidationCallback;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...
PasswordValidationCallback pvcb = new PasswordValidationCallback(clientSubject, username, password);
handler.handle(new Callback[] {pvcb});
...

}

If CallbackHandler is not used by the authentication module, and validateRequest returns a successful
status, WebSphere Application Server requires that a Hashtable instance be included in the
clientSubject with user identity information so that a custom login can be performed to obtain the
credentials for the user. This Hashtable can be added to the client subject as in the following example:
import java.util.Hashtable;
import java.util.String;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import com.ibm.wsspi.security.registry.RegistryHelper;
import com.ibm.wsspi.security.token.AttributeNameConstants.AttributeNameConstants;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...
UserRegistry reg = RegistryHelper.getUserRegistry(null);
String uniqueid = reg.getUniqueUserID(username);

Hashtable hashtable = new Hashtable();
hashtable.put(AttributeNameConstants.WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_SECURITYNAME, username);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_PASSWORD, password);

912 Securing applications and their environment

hashtable.put(AttributeNameConstants.WSCREDENTIAL_GROUPS, groupList); //optional
clientSubject.getPrivateCredentials().add(hashtable);
...

}

For more information about the Hashtable requirements and custom login, read about Developing
custom login modules for a system login configuration for JAAS.

To support the login and authenticate methods of the Java Servlet 3.0 specification, the following logic
must be added to the validateRequest method in the ServerAuthModule implementation class:
import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.servlet.http.HttpServletRequest;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...
Map msgMap = messageInfo.getMap();

if ("login".equalsIgnoreCase(msgMap.get("com.ibm.websphere.jaspi.request"))) {
// This request is for the login method
String username = msgMap.get("com.ibm.websphere.jaspi.user");
String password = msgMap.get("com.ibm.websphere.jaspi.password");
// Authenticate using the user name and password set above.

}
else if ("authenticate".equalsIgnoreCase(msgMap.get("com.ibm.websphere.jaspi.request"))) {

// this request is for the authenticate method
String authHeader

= ((HttpServletRequest) messageInfo.getRequestMessage()).getHeader("Authorization");
if (authHeader == null) {

// The user has not provided a username and password yet, return
// AuthStatus.SEND_CONTINUE to challenge

}
else {

// Authenticate using the user name and password in the authentication header.
}

}
else {

// This is not a Servlet 3.0 login or authenticate request; handle as usual.
}
...

}

5. Compile all newly created classes.

The following JAR files in your WebSphere Application Server installation must be specified in the
class path to successfully compile the new classes:

v app_server_root/dev/JavaEE/j2ee.jar

v app_server_root/dev/was_public.jar (if any public WebSphere APIs were used)

6. Create a JAR file with the compiled classes.

Depending on the requirements, the JAR file can be placed in one of three locations:

v app_server_root/lib

This location is always on the classpath for the WebSphere Application Server classloader. Using
this location, the provider can be registered for a set of web modules or applications as the cell or
domain default provider for all web modules and applications, and it can be registered manually as a
persistent provider.

v Shared library

Place the provider JAR file anywhere on the WebSphere Application Server system. Configure a
shared library that points to the JAR, and add that shared library to the application or server
classpath. In a shared library, the provider can be registered for a set of web modules or
applications, but the provider cannot be used as the cell or domain default provider. It also cannot

Chapter 9. Developing extensions to the WebSphere security infrastructure 913

be registered as a persistent provider because the shared library is not in the classpath for provider
registration during server startup. For more information about configuring a shared library, read
about Creating shared libraries.

v Embedded in the application

Include the provider JAR file in the application's EAR file as a utility JAR, or embed the compiled
class files in the web module WAR. The embedded provider can be registered for the web modules
in the application as long as the classes are included in the classpath for the web module. This
provider cannot be used as a cell or domain default provider, nor can it be registered as a persistent
provider. The classes in the application are not available for provider registration during server
startup.

7. Configure the provider in the security configuration using the administrative console or an
administration script.

Read about “Configuring a new JASPI authentication provider using the administrative console” for
more information.

Configuring a new JASPI authentication provider using the
administrative console
You can configure a new Java Authentication SPI (JASPI) authentication provider in the cell or in the given
security domain by using the administrative console.

About this task

This release of WebSphere Application Server supports integration of message authentication providers
that are compliant with the JASPI for Containers Version 1.0 specification.

When JASPI authentication providers are configured, and WebSphere Application Server receives an
HTTP request message, the security runtime environment determines if the target application is configured
to use JASPI authentication. If so, the runtime environment invokes the selected authentication provider to
validate the received message. Otherwise, authentication of the message request is done according to the
authentication mechanism provided by WebSphere Application Server for the appropriate messaging layer.

If you want to use JASPI message authentication services, you must supply an implementation of the
required interfaces as defined in the JASPI specification. Read “Developing a custom JASPI authentication
provider” on page 910 for more information on these interfaces.

Authentication of HTTP request and response messages destined for JASPI-enabled deployed
applications is performed according to the requirements of the Servlet Container Profile specified in the
new specification.

Note: JASPI is supported in a mixed-cell environment, but can only be used in nodes that are version 8
or higher. Back-level nodes use existing authentication mechanisms.

To configure a new JASPI authentication provider using the administrative console, do the following:

Procedure
1. Click Security > Global security.

2. Select Enable Java Authentication SPI (JASPI) to enable support for JASPI authentication.

3. Click Providers.

Note: It is not necessary to select Enable Java Authentication SPI (JASPI) until after you have
configured a new JASPI authentication provider.

914 Securing applications and their environment

Note: The Default provider option is used to specify a single JASPI authentication provider to perform
authentication for all web modules when JASPI authentication is enabled, and you do not
override the web module to JASPI provider mapping during application deployment. During
application deployment, you can override the default for every web module where it does not
apply by choosing not to use JASPI or by naming a different provider to use for authentication.
However, it is not recommended that you use this option unless you are certain that your default
provider is capable of handling all types of web authentication (basic authentication, form
authentication and client certificate authentication).

4. Click New.

5. Enter a name that uniquely identifies the JASPI authentication provider in the Provider name field.

6. Optional: Enter a textual description of the authentication provider in the Description field.

7. Enter the package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider) in the Class name field.

Note: In the Message layer field, WebSphere Application Server Version 8.0 supports only the
HttpServlet message layer profile as defined in the JASPI specification. You cannot change this
value.

8. Optional: Under Custom Properties, click New if you require more than one property. This parameter is
a list of key/value pairs.

9. Click OK or Apply.

What to do next

You can also configure a new JASPI authentication provider by using wsadmin commands. Read
JaspiManagement command group for the AdminTask object for more information.

Verify that your server has been restarted so that the changes to configure the JASPI provider will take
effect.

Modifying an existing JASPI authentication provider using the
administrative console
You can modify and configure an existing Java Authentication SPI (JASPI) authentication provider in the
cell or in the given security domain by using the administrative console.

About this task

To modify and configure an existing JASPI authentication provider using the administrative console, do the
following:

Procedure
1. Click Security > Global security.

2. Click Providers. You also have the option to change the Default provider from the drop-down list.

Note: You can modify the value of the Enable Java Authentication SPI (JASPI) checkbox to indicate
whether or not JASPI support is enabled at a later time.

3. Select an existing JASPI authentication provider to modify.

4. Enter a textual description of the authentication provider in the Description field.

5. Enter a new package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider) in the Class name field if you wish to change
it.

Chapter 9. Developing extensions to the WebSphere security infrastructure 915

Note: In the Message layer field, WebSphere Application Server Version 8.0 supports only the
HttpServlet message layer profile as defined in the JASPI specification. You cannot change this
value.

6. Optional: Under Custom Properties, select an existing custom configuration property. Click Delete to
remove the property, Edit to modify the property, or click New to create a new property. If you select
Edit to modify an existing property, you can enter new values for the Name field and Value field if you
wish to change them.

7. Click OK or Apply.

What to do next

You can also modify an existing JASPI authentication provider by using wsadmin commands. For more
information, read JaspiManagement command group for the AdminTask object.

Verify that your server has been restarted so that the changes to configure the JASPI provider will take
effect.

Deleting a JASPI authentication provider using the administrative
console
You can delete an existing Java Authentication SPI (JASPI) authentication provider in the cell or in the
given security domain by using the administrative console.

About this task

To delete an existing JASPI authentication provider using the administrative console, do the following:

Procedure
1. Click Security > Global security.

2. Click Providers, You can optionally select or deselect the Enable Java Authentication SPI (JASPI)
check box.

Note: You can modify the value of the Enable Java Authentication SPI (JASPI) checkbox to indicate
whether or not JASPI support is enabled at a later time.

3. Select an existing JASPI authentication provider to delete.

4. Click Delete.

What to do next

You can also delete a JASPI authentication provider by using wsadmin commands. For more information,
read JaspiManagement command group for the AdminTask object.

Verify that your server has been restarted so that the changes to the JASPI provider configuration will take
effect.

Enabling JASPI authentication using the Map JASPI provider option
during application deployment
An administrator or deployer can use the Map JASPI Provider option during application deployment to
associate web applications and specific web modules with an existing Java Authentication SPI (JASPI)
authentication provider as defined in the security configuration. This association can also be made when
editing the options for a previously installed application.

916 Securing applications and their environment

Before you begin

Before you perform this task, verify that a JASPI authentication provider is defined as part of the global or
domain security configuration. Read about “Configuring a new JASPI authentication provider using the
administrative console” on page 914 for more information.

About this task

By default, an application inherits the JASPI settings defined in the WebSphere Application Server global
or domain security configuration, and web modules inherit the application setting. However, you can
override these default values by using the Map JASPI Provider option during application deployment. Use
this option to associate a specific JASPI provider from the global or domain security configuration with the
entire application or with specific web modules. You can also use this option to specify that JASPI
authentication not be used for an application or specific web module.

To associate a web application or specific web modules with an existing JASPI provider:

Procedure
1. From the administrative console, click Applications > New Application > New Enterprise

Application. Complete the required steps until you see the step for Map JASPI Provider, or click the
Map JASPI Provider step from the installation options. A list containing the application name and
associated web modules is displayed. To update a JASPI provider association after an application has
been deployed, click Applications > Application Types > WebSphere enterprise applications, and
then select the application to be modified. Click JASPI Provider under the Detail properties.

2. Select the application or specific web module for which the JASPI provider setting is to be modified.

3. Click the Select JASPI Provider menu and select one of the following options:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain
security configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for
the selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are
the settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider name is used to perform
authentication of web requests for the selected application or web module.

4. Complete the remaining steps to finish installing and deploying the application.

What to do next

Verify that your server has been restarted to ensure that the configuration changes to define the JASPI
provider take effect. Read about “Configuring a new JASPI authentication provider using the administrative
console” on page 914 for more information.

JASPI authentication providers collection
The Java Authentication Service Provider Interface (JASPI) for Containers Version 1.0 specification defines
standard system programming interfaces that enable developers to write a pluggable custom
authentication provider that can handle Java EE web authentication mechanisms as well as any extended
authentication processing. The WebSphere Application Server runtime uses these standard system
programming interfaces to invoke the JASPI authentication provider.

Chapter 9. Developing extensions to the WebSphere security infrastructure 917

Read the Servlet Container Profile section in the JSR 196: Java Authentication Service Provider Interface
for Containers specification for the requirements that third-party authentication providers must satisfy for
more information.

If application security is enabled, and JASPI authentication is enabled with providers configured, when a
web resource (such as a servlet or a JavaServer Page (JSP) file) is accessed, the security runtime checks
if the web resource is mapped to a JASPI provider defined in the security configuration. If so, the runtime
invokes the JASPI authentication provider to perform authentication for the HTTP request and response
messages.

Note: WebSphere Application Server Version 8.0 supports only the HttpServlet message layer profile as
defined in the JASPI specification.

To view this administrative console page, click Security > Global security. Under Authentication, click
Providers.

To configure a new custom JASPI authentication provider in the cell or in the given security domain, click
New and specify provider settings.

Provider name
Specifies a name that uniquely identifies the authentication provider.

Select an existing custom JASPI authentication provider name to edit and configure it.

JASPI authentication provider details
Use this page to provide configuration details for your custom Java Authentication SPI (JASPI)
authentication service provider.

To view this administrative console page, click Security > Global security. Under Authentication, click
Providers. Select an existing authentication service provider name or click New to create a new one.

Provider name
Specifies a name that uniquely identifies the authentication provider.

Description
Specifies a textual description of the authentication provider.

Class name
Specifies the package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider).

Message layer
WebSphere Application Server Version 8.0 supports only the HttpServlet message layer profile as defined
in the JASPI specification.

Custom properties
Specifies additional custom properties needed to initialize the authentication provider. This parameter is a
list of key/value pairs.

Click Delete to remove a custom property or Edit to modify a custom property.

JASPI authentication enablement for applications
Use this page to enable or disable Java Authentication SPI (JASPI) authentication for an application or
web module, and to specify the name of a JASPI authentication provider to be used for authenticating
messages for the application or web module.

918 Securing applications and their environment

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications. Select an application, and under Detail Properties, select JASPI provider.

Select JASPI provider
Select to indicate the web modules in the application that you wish to specify or to override the default
JASPI authentication settings for.

Select one of the JASPI provider names to choose a provider to use to perform authentication of web
requests for the selected Web module or the application.

To specify how JASPI authentication is performed for the selected web module or the application, choose
one of the following:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain security
configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for the
selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are the
settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider is used to perform authentication of web
requests for the selected application or web module.

If JASPI authentication is enabled, and a specific provider name is not specified, then the default provider
name is used. For more information, read about configuring a new JASPI authentication provider using the
administrative console.

If JASPI authentication is disabled, or if no default provider is selected, JASPI authentication is not
performed. Web authentication is then performed according to another authentication mechanism as
selected in the cell or domain security configuration.

Chapter 9. Developing extensions to the WebSphere security infrastructure 919

920 Securing applications and their environment

Chapter 10. Auditing the security infrastructure

You can use the Auditing Facility to report and track auditable events to ensure the integrity of your
system.

Before you begin

Before enabling the security auditing subsystem, you must enable global security in your environment.

About this task

Note: The security auditing subsystem has been introduced as part of the security infrastructure. The
primary responsibility of the security infrastructure is to prevent unauthorized access and usage of
resources. Utilizing security auditing has two primary goals:

v Confirming the effectiveness and integrity of the existing security configuration.

v Identifying areas where improvement to the security configuration might be needed.

Security auditing achieves these goals by providing the infrastructure that allows you to implement
your code to capture and store supported auditable security events. During run time, all code other
than the Java EE 5 application code is considered to be trusted. Each time a Java EE 5 application
accesses a secured resource, any internal application server process with an audit point included
can be recorded as an auditable event.

The security auditing subsystem has the ability to capture the following types of auditable events:

v Authentication

v Authorization

v Principal/Credential Mapping

v Audit policy management

v Delegation

Restriction: Audit instrumentation has not been included in the web services client run time.

These types of events can be recorded into audit log files. Each audit log has the option to be signed and
encrypted to ensure data integrity. These audit log files can be analyzed to discover breaches over the
existing security mechanisms and to discover potential weaknesses in the current security infrastructure.
Security event audit records are also useful for providing evidence of accountability and nonrepudiation as
well as vulnerability analysis. The security auditing configuration provides four default filters, a default audit
service provider, and a default event factory. The default implementation write to a binary text-file based
log. Use this topic to customize your security auditing subsystem.

Procedure
1. “Enabling the security auditing subsystem” on page 922

Security auditing will not be performed unless the audit security subsystem has been enabled. Global
security must be enabled for the security audit subsystem to function, as no security auditing occurs if
global security is not also enabled.

2. Assign the auditor role to a user

A user with the auditor role is required to enable and configure the security auditing subsystem. It is
important to require strict access control for security policy management. The auditor role has been
created providing granularity to allow for separation of the auditing role from the authority of the
administrator. When Security Auditing is initially enabled, the cell administrator has auditor privileges. If
the environment requires separation of privileges, then changes will need to be made to the default
role assignments.

© IBM Corporation 2007 921

3. “Creating security auditing event type filters” on page 927

You can configure event type filters to only record a specific subset of auditable event types in your
audit logs. Filtering the event types that are recorded makes for easier analysis of your audit records
by ensuring only those records important to your environment are archived.

4. Configuring the audit service provider.

The audit service provider is used to format the audit data object that was passed to it before
outputting the data to a repository. A default audit service provider implementation is in included. See
“Configuring the default audit service providers for security auditing” on page 938 for more details on
the default implementation. A third party implementation can also be coded and used. See “Configuring
a third party audit service providers for security auditing” on page 942 for more details on this
implementation.

An implementation for SMF is also available. See “Configuring the SMF audit service providers for
security auditing” on page 943 for more details on this implementation.

5. “Configuring audit event factories for security auditing” on page 945

The audit event factory gathers the data associated with the auditable events and creates an audit
data object. The audit data object is then sent to the audit service provider to be formatted and
recorded to the repository.

6. “Protecting your security audit data” on page 948

It is important to secure and ensure the data integrity of the recorded audit data. To ensure that access
to the data is restricted and tamper proof, you can encrypt and sign your audit data.

7. “Configuring security audit subsystem failure notifications” on page 936

Notifications can be enabled to generate alerts when the security auditing subsystem experiences a
failure. Notifications can be configured to record an alert in the System logs or can be configured to
send an alert through email to a specified list of recipients.

Results

After successfully completing this task, you audit data will be recorded for the selected auditable events
that were specified in the configuration.

What to do next

After configuring security auditing, you can analyze your audit data for potential weaknesses in the current
security infrastructure and to discover security breaches that may have occurred over the existing security
mechanisms. You can also use the security auditing subsystem to provide data for problem determination.
If the default audit service provider was selected, the resulting binary audit log file can be read using the
Audit Reader.

Enabling the security auditing subsystem
Security auditing will not be performed unless the audit security subsystem has been enabled. Global
security must be enabled for the security audit subsystem to function, as no security auditing occurs if
global security is not also enabled.

Before you begin

Before enabling security auditing subsystem, enable global security in your environment.

About this task

The recording of auditable security events is achieved by enabled the security auditing subsystem. Follow
these steps to enable the security auditing subsystem.

922 Securing applications and their environment

Procedure
1. Click Security > Security auditing.

2. Select Enable security auditing. The Enable security auditing check box is not selected by default. This
check box must be selected to allow security auditing to be performed with the configurations that have
been specified in the audit.xml file.

Note: The audit.xml file is used to store the audit subsystem configurations. Changes to the security
auditing subsystem should be made with the user interface or the wsadmin utility. This file
should not be edited manually.

3. Select the action from the Audit subsystem failure action dropdown menu to be perform when an audit
subsystem failure occurs. Notifications configured to warn of a security auditing subsystem failure will
not be posted if the No Warning option is selected for this field. If you select either the Log warning or
the Terminate server option, then you must also configure a notification for the action to be performed.

4. Select the Auditor ID from the dropdown menu. The auditor role is needed to make changed to the
security auditing configurations. By default, when auditing is first enabled, the primary administrator is
also given the auditor role. The primary administrator can then add the auditor role to other users. After
the auditor role is added to other users, the auditor role can be removed from the administrator to
create a separation of authority between the auditor and the administrator. The Auditor ID is the user
considered to be the primary auditor.

5. Optional: Select Enable verbose auditing. When an auditable event is recorded, a default set of audit
data is included in the audit data object and recorded to the repository. An additional set of audit data
is made available by enabling verbose auditing.

6. Click Apply.

7. Restart the application server. The application server must be restarted before the changes go into
effect.

Results

The successful competition of these steps results in the security auditing subsystem being enabled.

What to do next

After enabling the security auditing subsystem, refinements can be made to the configuration. You might
want to modify the access control of the audit subsystem to separate the authority of the administrator
from the authority of the auditor. If no changes to your access control are needed, then you can configure
the types of auditable security events should be recorded. To configure the types of events that are
recorded, click Event type filters.

Security Auditing detail
The Security auditing subsystem can be enabled and configured from this panel, by users assigned the
auditor role.

To view this administrative console page, click Security > Security Auditing. If Enable security auditing is
not selected, then all of the other fields on this panel will be disabled.

Enable security auditing
The Enable security auditing check box allows users to enable or disable Security Auditing. By default,
Security Auditing will not be enabled. This field corresponds with the auditEnabled field in the audit.xml
file.

Audit subsystem failure action
The Audit subsystem failure action setting describes the behavior of the application server in the event of a
failure in the auditing subsystem. Audit Notifications must be configured in order for notifications of a
failure in the audit subsystem to be logged. If security auditing is not enabled, then these actions will not

Chapter 10. Auditing the security infrastructure 923

be performed. Failures can include an error in the interface or in the event processing. By default, the
audit subsystem failure action setting is set to No warning.

The Audit subsystem failure action dropdown menu has the following options:

v No warning

The No warning action specifies that the auditor will not be notified of a failure in the audit subsystem.
The product will continue processing but audit reporting will be disabled.

v Log warning

The Log warning action specifies that the auditor will be notified of a failure in the audit subsystem. The
product will continue processing but audit reporting will be disabled.

v Terminate server

The Terminate server action specifies the application server to gracefully quiesce when an
unrecoverable error occurs in the auditing subsystem. If email notifications are configured, the auditor
will be sent a notification that an error has occurred. If logging to the system log is configured, the
notification of the failure will be logged to the system file.

Primary auditor user name
The Primary auditor user name dropdown menu defines a valid user which exists in the current user
registry and for whom the auditor role has been given. By default, this field is blank and is a required field.

Enable verbose auditing
The Enable verbose auditing option determines the amount of audit data that is reported in an audit
record. Verbose mode captures all the auditable data points, whereas not enabling verbose mode captures
only a subset of the available data. This option is disabled by default.

Context object fields
Each auditable event has an associated set of information that is available for logging. This information is
grouped into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. This topic details the information that exists for each context object and
specifies whether the information is logged by default or is only logged when the verbose logging option is
enabled.

The SessionContextObj object

Table 115. SessionContextObj fields. This table lists the SessionContextObj fields.
Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

The PropagationContextObj object

Table 116. PropagationContextObj fields. This table lists the PropagationContextObj fields.
Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the
caller list

Default

callerList String array A list of names representing the
identities of the users

Verbose

924 Securing applications and their environment

The RegistryContextObj object

Table 117. RegistryContextObj fields. This table lists the RegistryContextObj fields.
Field Type Description Default or Verbose logging

type String The type of user registry being
used, such as LDAP or AIX

Default

The ProcessContextObj object

Table 118. ProcessContextObj fields. This table lists the ProcessContextObj fields.
Field Type Description Default or Verbose logging

domain String The domain to which the user
belongs

Verbose

realm String The registry partition to which the
user belongs

Default

The EventContextObj object

Table 119. EventContextObj fields. This table lists the EventContextObj fields.
Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given
transaction

Verbose

eventTrailId String array An array of IDs that allow events
that belong to a given transaction to
be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

The DelegationContextObj object

Table 120. DelegationContextObj fields. This table lists the DelegationContextObj fields.
Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,
method delegation or switch user
delegation

Default

roleName String The Run as role being used:
runAsClient, runAsSpecified,
runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

Table 121. AuthnContextObj fields. This table lists the AuthnContextObj fields.
Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

The ProviderContextObj object

Table 122. ProviderContextObj fields. This table lists the ProviderContextObj fields.
Field Type Description Default or Verbose logging

provider String The provider of the authentication
or authorization service

Default

providerStatus String Status of whether the authentication
or authorization event processed
successfully by the provider

Default

Chapter 10. Auditing the security infrastructure 925

The AuthnMappingContextObj object

Table 123. AuthnMappingContextObj fields. This table lists the AuthnMappingContextObj fields.
Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping
has occurred

Default

mappedRealm String The realm after mapping has
occurred

Default

mappedUserName String The user name after mapping has
occurred

Default

The AuthnTermContextObj object

Table 124. AuthnTermContextObj fields. This table lists the AuthnTermContextObj fields.
Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

Table 125. AccessContextObj fields. This table lists the AccessContextObj fields.
Field Type Description Default or Verbose logging

progName String The name of the program that was
involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an
application

Default

accessDecision String The decision of the authorization
call

Default

resourceName String The name of the resource in the
context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked
during the authorization call

Default

permissionsGranted String array The permissions that were granted
during the authorization call

Default

rolesChecked String array The roles that were checked during
the authorization call

Default

rolesGranted String array The roles that were granted during
the authorization call

Default

The PolicyContextObj object

Table 126. PolicyContextObj fields. This table lists the PolicyContextObj fields.
Field Type Description Default or Verbose logging

policyName String The name of the policy Default

policyType String The type of policy Default

The KeyContextObj object

Table 127. KeyContextObj fields. This table lists the KeyContextObj fields.
Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key
database

Default

certLifetime Date The date when a certificate expires Default

926 Securing applications and their environment

The CipherContextObj object

Table 128. CipherContextObj fields. This table lists the CipherContextObj fields.
Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

Table 129. MgmtContextObj fields. This table lists the MgmtContextObj fields.
Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command
that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more
secondary objects involved in this
operation

Verbose

The ResponseContextObj object

Table 130. ResponseContextObj fields. This table lists the ResponseContextObj fields.
Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers
provided by the client

Verbose

httpResponseHeaders Attributes array The HTTP response headers
returned by the server

Verbose

The CustomPropertyContextObj object

Table 131. CustomPropertyContextObj fields. This table lists the CustomPropertyContextObj fields.
Field Type Description Default or Verbose logging

key String The label representing the custom
property key name

Verbose

value Object The object value of the custom
property

Verbose

Creating security auditing event type filters
Event type filters are used to specify the types of auditable security events that are audited. Default event
type filters are included with the product, but you can also configure new event type filters to specify a
subset of auditable event types to be recorded by the security auditing subsystem.

Before you begin

Before configuring security auditing filters and the rest of the security auditing subsystem, enable global
security in your environment. You must be assigned the auditor role to complete this task. Event type
filters are used to specify what events are audited. The amount of data that is recorded for each event is
specified with the Enable verbose auditing check box on the same panel used to enable the auditing
subsystem. Navigate to Security > Security auditing to enable security auditing and determine the data
recorded for each event.

Chapter 10. Auditing the security infrastructure 927

About this task

Table 132. Commonly used event type filters by default in the audit.xml template file. The application server provides
the following commonly used event type filters by default in the audit.xml template file:
Name Event name Outcome of event

DefaultAuditSpecification_1 SECURITY_AUTHN SUCCESS

DefaultAuditSpecification_2 SECURITY_AUTHN DENIED

DefaultAuditSpecification_3 SECURITY_RESOURCE_ACCESS SUCCESS

DefaultAuditSpecification_4 SECURITY_AUTHN REDIRECT

New event type filters can be created, or the existing default filters can be extended, to capture more
event types and outcomes. Use this task to create new event type filters.

.

Procedure
1. Click Security > Security Auditing > Event type filters> New.

2. Enter the unique name that should be associated with this event type filter configuration in the Name
field.

3. Specify the events that should be recorded when this filter is applied:

a. Select the events that you want to be audited from the Selectable events list.

b. Click Add >> to add the selected events to the Enabled events list.

c. Select the outcomes that you want to be audited from the Selectable event outcomes list.

d. Click Add >> to add the selected outcomes to the Enabled event outcomes lists.

4. Click OK.

Results

The successful completion of this task results in the creation of an event type filter than can be selected
by the audit service providers and audit event factories to gather and record a specific set of auditable
security events.

What to do next

After creating an event type filter, the filter must be specified in the audit service provider and the audit
event factory to be used to gather or report audit data. The next step in configuring the security auditing
subsystem is you should configure an audit service provider to define where the audit data will be
archived.

Auditable security events
Auditable security events are security events that have audit instrumentation added to the security run time
code to enable them to be recorded. Event filters are configured to specify which auditable security events
are recorded to the audit log files.

The following list describes each valid auditable event that you can specify as an enabled event type when
creating an event filter:

Table 133. Event types. Valid auditable events can be specified as an enabled event type when creating an event
filter:
Event name Description

SECURITY_AUTHN Audits all authentication events

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities are involved

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated
logging out

928 Securing applications and their environment

Table 133. Event types (continued). Valid auditable events can be specified as an enabled event type when creating
an event filter:
Event name Description

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies

SECURITY_RUNTIME Audits runtime events such as the starting and the stopping of security servers. This event type is not
meant for administrative operations performed by a system administrator as such operations need to
use the other SECURITY_MGMT_* event types.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping
audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,
purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP
requests and responses to a given web page, and all accesses to a critical database table

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP
Message for web services

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for web services

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including identity assertion, RunAs, and low assertion. Used
when the client identity is propagated or when delegation involves the use of a special identity. This
event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity

For each audit event type, you must specify an outcome. Valid outcomes include SUCCESS, FAILURE,
REDIRECT, ERROR, DENIED, WARNING, and INFO. Not all outcomes are applicable with all event
types.

Note: Support for the SECURITY_RUNTIME auditing event type has been fully implemented for this
release of WebSphere Application Server. It audits runtime events such as the starting and the
stopping of security servers.

Table 134. Event Type SMF Codes. The following tables map the Security auditing event types and event outcomes
to the SMF interpretations.
Event name SMF Code SMF Unload Keyword

SECURITY_AUTHN 1 *WASAUTN

SECURITY_AUTHN_MAPPING 3 *WASAUTM

SECURITY_AUTHN_TERMINATE 2 *WASAUTT

SECURITY_AUTHZ 4 *WASAUTZ

SECURITY_MGMT_CONFIG 8 *WASCONF

SECURITY_MGMT_POLICY 5 *WASPOLM

SECURITY_MGMT_PROVISIONING 9 *WASPROV

SECURITY_MGMT_RESOURCE 10 *WASRESM

SECURITY_RUNTIME 7 *WASRUNT

SECURITY_RUNTIME_KEY 11 *WASKEYR

SECURITY_MGMT_KEY 12 *WASKEYM

SECURITY_MGMT_AUDIT 13 *WASAUDI

SECURITY_MGMT_REGISTRY 6 *WASREGM

SECURITY_RESOURCE_ACCESS 14 *WASACCE

SECURITY_SIGNING 15 *WASSIGN

SECURITY_ENCRYPTION 16 *WASCRYP

SECURITY_AUTHN_DELEGATION 17 *WASDELE

SECURITY_AUTHN_CREDS_MODIFY 18 *WASCRED

Table 135. Event Outcome SMF Qualifier. The following table lists the event outcome SMF Qualifier.
Event Outcome SMF Qualifier SMF Unload Keyword

SUCCESSFUL 0 SUCCESS

INFO 1 INFO

WARNING 2 WARNING

FAILURE 3 FAILURE

REDIRECT 4 REDIRECT

Chapter 10. Auditing the security infrastructure 929

Table 135. Event Outcome SMF Qualifier (continued). The following table lists the event outcome SMF Qualifier.
Event Outcome SMF Qualifier SMF Unload Keyword

DENIED 5 DENIED

Event type filter settings
The Event type filter settings panel is used by an auditor to manage and create event type filters. Default
event type filters have been included, this panel allows additional event type filters to be added. Existing
event type filters are also managed using this panel.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Event type filters > event_type_filter_name.

v Security > Security Auditing > Event type filters > New .

Name
The Name field specifies the unique name of the event type filter.

Enabled
The state of enablement of the filter is defined by the Enable check box. This field is represented as a
boolean value. A value of true specifies that the enable field associated with the audit specification in the
audit.xml is set to true. It does not imply that all configured event factories and service providers will be
using this filter.

Filters still need to be configured for each event factory and service provider. Filters are enabled by default
during configuration. However, if a filter has the enabled checkbox set to false, the filter will not gather or
report data for the events and outcomes defined in that filter.

Events to associate with an audit filter
The Events to associate with an audit filter field specifies the auditable security events to be associated
with this filter.

v Selectable events:

The Selectable events list displays the available auditable security events. To enable an event for this
filter, select the event from the Selectable event outcomes list and then click Add.

v Enabled events:

The Enabled events list displays the audit security events that are currently enabled for this filter. To
disable an event for this filter, select the event from the Enabled events list and then click Remove.

Event outcomes to associate with an audit filter
The Event outcomes to associate with an audit filter field specifies the auditable security event outcomes
to be associated with this filter.

v Selectable event outcomes:

The Selectable event outcomes list displays the available auditable security event outcomes. To enable
an event outcome for this filter, select the event outcome from the Selectable event outcomes list and
then click Add.

v Enabled event outcomes:

The Enabled event outcomes list displays the audit security event outcomes that are currently enabled
for this filter. To disable an event outcome for this filter, select the event outcome from the Enabled
event outcomes list and then click Remove.

Event type filters collection
The Event type filters panel displays a listing of all configured audit specifications with their unique names,
the state of their enablement, and the event types and event outcomes that are specified for each
configuration.

930 Securing applications and their environment

To view this administrative console page, click Security > Security Auditing > Event type filters.

Name
The Name field displays the unique name of the event type filter that is being represented.

Enable
The Enable check box species the state of enablement for the filter. This field is represented as a boolean
value. A value of true specifies that the enable field associated with the audit specification in the audit.xml
is set to true. It does not imply that all configured event factories and service providers will be using this
filter. Filters are enabled by default when they are created. Even though it is enabled by default when it is
created, the event type filter must be specified for the event factory and the audit service provider before it
is actually used,

Filters still need to be configured for each event factory and service provider. A filter that is configured for
an event factory or a service provider that has Enabled set to false, will not gather or report data for the
events and outcomes defined in that filter.

Events and outcomes
The event types and the event outcomes that are specified by this filter. The specifications are listed in the
form event_type:event_outcome and separated by commas if multiple combinations are specified by the
event type filter.

Example: Generic Event Interface
This interface is used for processing generic audit events. Other interfaces can be defined which extend
this interface to process specific audit event groupings, such as security events, transaction events, or
other custom groupings. For WebSphere Application Server version 7.0, only security types of events are
supported.

Generic Event Interface

Specific implementations might be developed to handle the data in a particular internal format. When the
buildEvent() method is called, the implementation must then build the specified base event type using the
internal information it has stored. After the information has been stored into a GenericEvent instance, the
GenericEvent interface provides a generic way of handling the event.
public interface GenericEvent {

/** * Property name used to specify the base event type to the
* {@link GenericEvent#buildEvent} method.
*/
public static final String BASE_EVENT_TYPE = GenericEvent.class.getName() + ".baseEventType";

/**
* Returns the eventType of the event. The eventType distinguishes between these
* related events.
* The eventType depends on the particular implementation
* of the GenericEvent. For example, the Security Event implmentation has
* eventTypes such as SECURITY_AUTHN and SECURITY_AUTHZ.
* @return eventType - the eventType of the event
*/

public String getEventType();
/**
* Returns the creationTime, the creation time of the event.
* @return creationTime - the creation time of the event
*/ public Date getCreationTime(); /** * Returns the version, the version of the event.
* @return version - the version of the event
*/

public String getVersion (Properties props) throws GenericEventConfigurationException;
/**
* Returns the globalInstanceId, which is a globally unique instance
* identifier for the event.
* @return globalInstanceId - a globally unique instance identifier for the event
*/

public Long getGlobalInstanceId();
/**
* Verifies whether the event is valid; which depends on the particular

Chapter 10. Auditing the security infrastructure 931

* implementation of the GenericEvent. If the event is not valid, an
* GenericEventValidationException error occurs.
*/

public void validate() throws GenericEventValidationException;
/**
* Returns the internally wrapped base event instance after
* completing and validating the current instance of the GenericEvent.
* An GenericEvent implementation can maintain its information
* in any undisclosed internal format. The buildEvent()
* method that specifies that a specific base event type be built
* using the internal information. This allows GenericEvent implementations
* to support multiple base event formats. Thus the GenericEvent implmentation
* provides a layer of abstraction higher than the base event type.
* @param properties The value of the property BASE_EVENT_TYPE
* defines the type of the base event * @return the internally wrapped base event instance
* @throws GenericEventConfigurationException if the base event type is invalid
* or the JAR files to support that event type are not available.
* @throws GenericEventCompletionException if event completion has failed.
* @throws GenericEventValidationException if the validation has failed. This is
* validation as is performed by the validate() method.
*/

public Object buildEvent(Properties properties)
throws GenericEventConfigurationException,

GenericEventValidationException,
GenericEventCompletionException;

/**
* Returns the wrapped base event instance as a string after
* completing and validating the current instance of the GenericEvent.
* An GenericEvent implementation can maintain its information
* in any undisclosed internal format. It is the buildEventString()
* method that specifies that a specific base event type be built
* using the internal information. This allows GenericEvent implementations
* to support multiple base event formats. Thus the GenericEvent implmentation
* provides a layer of abstraction higher than the base event type.
* @param properties The value of the property BASE_EVENT_TYPE
* defines the type of the base event
* @return the wrapped base event instance as a String
* @throws GenericEventConfigurationException if the base event type is invalid
* or the JAR files to support that event type are not available.
* @throws GenericEventCompletionException if event completion has failed.
* @throws GenericEventValidationException if the validation has failed. This is
* validation as is performed by the validate() method.
*/

public String buildEventString(Properties properties)
throws GenericEventConfigurationException,

GenericEventValidationException,
GenericEventCompletionException;

}

Context objects for security auditing
Each event has an associated set of information that is available for logging. This information is grouped
into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. All event types have the sessionContextObj, eventContextObj,
accessContextObj, propogationContextObj, processContextObj and registryContextObj objects. This topic
specifies which additional context objects are available for each event type.

Table 136. Context objects associated with event types. The following table describes the context objects associated
with event types.
Event Type Additional Context Objects

SECURITY_AUTHN authnContextObj, providerContextObj

SECURITY_AUTHN_DELEGATION delegationContextObj

SECURITY_AUTHN_MAPPING authnMappingContextObj, providerContextObj

SECURITY_AUTHZ providerContextObj, policyContextObj

SECURITY_ENCRYPTION keyContextObj

SECURITY_MGMT_AUDIT mgmtContextObj

SECURITY_RESOURCE_ACCESS responseContextObj

For more details on the auditable data that is gather for each of these context objects, see the information
for context object fields.

932 Securing applications and their environment

Context object fields
Each auditable event has an associated set of information that is available for logging. This information is
grouped into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. This topic details the information that exists for each context object and
specifies whether the information is logged by default or is only logged when the verbose logging option is
enabled.

The SessionContextObj object

Table 137. SessionContextObj fields. This table lists the SessionContextObj fields.
Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

The PropagationContextObj object

Table 138. PropagationContextObj fields. This table lists the PropagationContextObj fields.
Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the
caller list

Default

callerList String array A list of names representing the
identities of the users

Verbose

The RegistryContextObj object

Table 139. RegistryContextObj fields. This table lists the RegistryContextObj fields.
Field Type Description Default or Verbose logging

type String The type of user registry being
used, such as LDAP or AIX

Default

The ProcessContextObj object

Table 140. ProcessContextObj fields. This table lists the ProcessContextObj fields.
Field Type Description Default or Verbose logging

domain String The domain to which the user
belongs

Verbose

realm String The registry partition to which the
user belongs

Default

The EventContextObj object

Table 141. EventContextObj fields. This table lists the EventContextObj fields.
Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given
transaction

Verbose

eventTrailId String array An array of IDs that allow events
that belong to a given transaction to
be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

Chapter 10. Auditing the security infrastructure 933

The DelegationContextObj object

Table 142. DelegationContextObj fields. This table lists the DelegationContextObj fields.
Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,
method delegation or switch user
delegation

Default

roleName String The Run as role being used:
runAsClient, runAsSpecified,
runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

Table 143. AuthnContextObj fields. This table lists the AuthnContextObj fields.
Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

The ProviderContextObj object

Table 144. ProviderContextObj fields. This table lists the ProviderContextObj fields.
Field Type Description Default or Verbose logging

provider String The provider of the authentication
or authorization service

Default

providerStatus String Status of whether the authentication
or authorization event processed
successfully by the provider

Default

The AuthnMappingContextObj object

Table 145. AuthnMappingContextObj fields. This table lists the AuthnMappingContextObj fields.
Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping
has occurred

Default

mappedRealm String The realm after mapping has
occurred

Default

mappedUserName String The user name after mapping has
occurred

Default

The AuthnTermContextObj object

Table 146. AuthnTermContextObj fields. This table lists the AuthnTermContextObj fields.
Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

Table 147. AccessContextObj fields. This table lists the AccessContextObj fields.
Field Type Description Default or Verbose logging

progName String The name of the program that was
involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an
application

Default

accessDecision String The decision of the authorization
call

Default

934 Securing applications and their environment

Table 147. AccessContextObj fields (continued). This table lists the AccessContextObj fields.
Field Type Description Default or Verbose logging

resourceName String The name of the resource in the
context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked
during the authorization call

Default

permissionsGranted String array The permissions that were granted
during the authorization call

Default

rolesChecked String array The roles that were checked during
the authorization call

Default

rolesGranted String array The roles that were granted during
the authorization call

Default

The PolicyContextObj object

Table 148. PolicyContextObj fields. This table lists the PolicyContextObj fields.
Field Type Description Default or Verbose logging

policyName String The name of the policy Default

policyType String The type of policy Default

The KeyContextObj object

Table 149. KeyContextObj fields. This table lists the KeyContextObj fields.
Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key
database

Default

certLifetime Date The date when a certificate expires Default

The CipherContextObj object

Table 150. CipherContextObj fields. This table lists the CipherContextObj fields.
Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

Table 151. MgmtContextObj fields. This table lists the MgmtContextObj fields.
Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command
that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more
secondary objects involved in this
operation

Verbose

The ResponseContextObj object

Table 152. ResponseContextObj fields. This table lists the ResponseContextObj fields.
Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers
provided by the client

Verbose

Chapter 10. Auditing the security infrastructure 935

Table 152. ResponseContextObj fields (continued). This table lists the ResponseContextObj fields.
Field Type Description Default or Verbose logging

httpResponseHeaders Attributes array The HTTP response headers
returned by the server

Verbose

The CustomPropertyContextObj object

Table 153. CustomPropertyContextObj fields. This table lists the CustomPropertyContextObj fields.
Field Type Description Default or Verbose logging

key String The label representing the custom
property key name

Verbose

value Object The object value of the custom
property

Verbose

Configuring security audit subsystem failure notifications
Notifications can be generated by a failure of the security audit subsystem. The security audit subsystem
notifications can alert auditors that the security audit system is no longer recording auditable security
events. Notifications are generated by a failure of the auditing subsystem, they are not related to any
auditable security events or event outcome that has occurred. Notifications triggered by an event or an
event outcome are not supported.

Before you begin

Before configuring notifications, enable global security and the security audit subsystem in your
environment. You must be assigned the auditor role to complete this task.

About this task

If a problem is experienced with the security audit subsystem, then a notification can be generated. This is
an alert that security events are no longer being audited. Notification can be written to the system log file
or can be sent to a specified group of users as an email. You are able to configure notifications to alert the
auditor of a problem using both of these methods simultaneously. Notifications are only generated when
the Audit subsystem failure action field is set to Log warning or Terminate server.

Procedure
1. Optional: Click Security > Security Auditing.

2. Optional: Confirm the Audit subsystem failure action field is set to Log warning or Terminate server. If
the Audit subsystem failure action field is set to No warning, then notifications will not be generated.

3. Click Security > Security Auditing > Audit monitor .

4. Under Notifications, Click New

5. Enter the name that should be associated with this notification configuration in the Notification name
field.

6. Select the Message log check box to specify the failure notifications are recorded in the audit log.

7. Select the email sent to notification list check box to specify that failure notification email should be
sent to the addresses listed in the notification list.

8. Enter an email address in the email address to add field This step is not needed if email notifications
are not going to be sent.

9. Enter the mail server address in the Outgoing mail (STMP) server address. This step is not needed if
email notifications are not going to be sent.

10. Click Add >> to add the email address and associated mail server to the email notification list.

11. Repeat steps 5 through 7 for each email address you want to specify in the email notification list.

936 Securing applications and their environment

12. Click OK.

13. Select the Enable monitoring check box to turn on audit failure notifications.

14. Select the notification configuration to be used from the Monitor notification dropdown menu.

15. Click OK.

Results

After completing this task, a notification will be generated if the security auditing subsystem experiences
an unrecoverable error resulting in security events no longer being audited.

What to do next

After configuring notifications, you can analyze your audit data for potential weaknesses in the current
security infrastructure and to discover possible security breaches that might have occurred.

Audit notifications cannot be removed using the administrative console. To remove an audit notification you
first must run the deleteAuditNotificationMonitorByRef or the deleteAuditNotificationMonitorByName
command. After running one of those commands, remove the audit notification by running the
deleteAuditNotification command.

Audit monitor collection
Use this page to configure audit subsystem failure notifications. The Auditor monitor panel lists the existing
notification configurations and is the gateway for creating new notification configurations and for managing
the existing notification configurations.

To view this administrative console page, click Security > Security Auditing > Audit monitor.

Enable monitoring
Specifies whether to enable or disable notifications. If the check box is selected, then monitoring is
enabled. If the check box is not selected, then monitoring is disabled. This check box is disabled by
default.

Monitor notification
Specifies the notification configuration that will be used for reporting audit subsystem failures.

Notification name
Specifies a string that uniquely identifies a notification configuration.

Message log
Specifies if the configuration will send failure notifications to the message log file. If the value is true, then
failure notifications will be sent to the message log file. If the value is false, then failure notifications will be
not be sent to the message log file. When creating a notification, this field is in the form of a check box
and is not selected by default.

Send Email
Specifies whether an email notification is sent to the addresses listed in the List of email addresses
column.

List of email addresses
Specifies the email addresses listed as recipients for email notification in the event of an audit subsystem
failure. No email addresses are listed by default. Email addresses will appear in this column if they are
listed in the notification list in the notification, this applies even when the Email sent to notification list
check box is not selected in the notification.

Chapter 10. Auditing the security infrastructure 937

Audit notification settings
Use this page to create and manage notification configurations that define how auditors are made aware
of audit subsystem failures.

To view this administrative console page, click Security > Security Auditing > Audit monitor > New.

Notification name
Specifies a string that uniquely identifies a notification configuration.

Message log
Specifies if the configuration will send failure notifications to the message log file. If the check box is
selected, then failure notifications will be sent to the message log file. If the check box is not selected,
then failure notifications will be not be sent to the message log file. This check box is not selected by
default.

Send secure emails

Email sent to the notification list
Specifies whether the configuration will send a failure notification to the recipients listed in the notification
list. If the check box is selected, then failure notifications will be sent to the recipients in the notification list.
If the check box is not selected, then failure notifications will not be sent to the recipients in the notification
list. This check box is not selected by default.

Email address to add
Specifies the email address to be added to the notification list to received failure notification emails. To add
a recipient to the notification list, this field and the Outgoing mail (SMTP) server field must both be
completed before you click the Add.

Outgoing mail (SMTP) server
Specifies the SMTP server to be used with this email address. If no server is specified, then the email
realm will be used.

Configuring the default audit service providers for security auditing
The audit service provider is used to format the audit data object that was sent by the audit event factory.
After being formatted, the audit data is recorded to the repository defined in the audit service provider
configuration.

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

Procedure
1. Click Security > Security Auditing > Audit service provider.

2. Click New and then select Binary file based emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the file location of the binary log file in the Audit log file location field.

5. Optional: Enter the maximum size allowed for a single binary log file in the Audit log file size field.

This field is specified in megabytes. After the maximum audit file size is reached, a new audit file will
be created or an existing audit file will be overwritten. If the maximum number of audit log files has not

938 Securing applications and their environment

been set, the default maximum file value used is 10 megabytes. There is no audit archiving utility
included with the product. You are responsible for the archiving of your audit data.

6. Optional: In the Maximum number of audit log files field, enter the maximum number of audit logs to be
stored before the oldest is overwritten.

The default value for this field is 100. The value of 100 is also used if the field is empty.

Note: The maximum number of logs does not include the current binary log that is being written to. It
is a reference to the maximum number of archived (timestamped) logs. The total number of
binary logs that can exist for a server process is the maximum number of archived logs plus the
current log.

Also under this field, there are additional options to select the behavior when the maximum number of
logs is reached. The choices are:

oldest If you select this option, when the maximum audit logs are reached, the oldest audit log is
rewritten; notification is not sent to the auditor.

stop server
This option does not rewrite over the oldest audit log. It stops the audit service, sends a
notification to the SystemOut.log, and quiesces the application server.

stop logging
This option does not rewrite over the oldest audit log. It also stops the audit service, but does
allow the WebSphere process to continue. Notifications are not posted in the SystemOut.log.

7. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of
the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

8. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required
by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event
factory provide the audit data objects to the audit service provider. Next you should configure an audit
event factory.

Audit service provider collection
The Audit service provider panel displays a listing of all configured audit service provider implementations.
Using this panel, a user can define a new audit service provider implementation, delete an existing
implementation, and display or modify the fields associated with an existing implementation.

To view this administrative console page, click Security > Security Auditing > Audit service provider.

By default, the audit.xml will contain the IBM audit service provider implementation which emits audit
records to a binary filed-based text file. This implementation is used for Binary file- based audit service
provider configurations. For each existing audit service provider in the list on this panel, the unique name,
type and event formatting class associated with the audit service provider will be displayed.

Name
The Name field is the unique name associated with the audit service provider implementation.

Chapter 10. Auditing the security infrastructure 939

Type
The Type field specifies if the implementation is a binary file-based implementation, SMF implementation
or a third party implementation.

Event formatting module class name
The event formatting class is a class used to format the generic event data object into a format that is
specific to the audit service provider implementation. For example, a third party audit service provider
implementation might have an event formatting class that takes the generic event and translates it into
XML data. There is no Event formatting module class for binary file-based implementations nor for SMF
implementations.

Audit service provider settings
Use this page to define the implementation details of the audit service provider. There are three types of
audit service providers: binary file-based, third party and SMF.

To view this administrative console page, click one of the following paths:

v Security > Security auditing > Audit service provider > audit_service_provider_name.

v Security > Security auditing > Audit service provider > New > Binary File-based emitter.

v Security > Security auditing > Audit service provider > New > Third party emitter.

v Security > Security auditing > Audit service provider > New > SMF emitter.

Name
Specifies the unique name associated with the audit service provider.

Third party emitter class name
Specifies the name of the class for this implementation. This field is only present for Third party emitter
implementations.

Audit file location
Specifies the path to the binary log file.

Audit file size
Specifies the maximum size of a single binary log file. This value is defined in megabytes.

Maximum number of audit log files
Specifies the maximum number of binary log files to create before the oldest is replaced.

Note: The maximum number of logs does not include the current binary log that is being written to. It is a
reference to the maximum number of archived (timestamped) logs. The total number of binary logs
that can exist for a server process is the maximum number of archived logs plus the current log.

Audit log wrapping
Specifies the wrapping behavior of the binary audit log when the maximum number of binary audit log files
is reached.

Note: In this release of WebSphere Application Server, there are new customizable options available
when specifying the default audit log wrapping behavior. This is only applicable to the Binary Audit
Log implementation.

Choose from one of the following options:

WRAP
If you select this option, when the maximum audit logs are reached, the oldest audit log is
rewritten; notification is not sent to the auditor. This is the default option, and mimics the
default behavior in WebSphere Application Server Version 7.0.

940 Securing applications and their environment

NOWRAP
This option does not rewrite over the oldest audit log. It stops the audit service, sends a
notification to the SystemOut.log, and quiesces the application server.

SILENT_FAIL
This option does not rewrite over the oldest audit log. It also stops the audit service, but
does allow the WebSphere process to continue. Notifications are not posted in the
SystemOut.log.

Note: If audit notification of failures in the audit subsystem is configured, and SILENT_FAIL
is selected, the auditor is not notified of the audit subsystem failure. The
SILENT_FAIL option takes precedence

Note: If you use the NOWRAP or SILENT_FAIL options, when the server is stopped as a
result of the logs being maxed-out, a stopserver is performed, or because the server
abends in some way, you must archive the binary audit logs before you restart the
server.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Event formatting module class name
Specifies a class used to format the generic event into a format that is specific to the audit service
provider implementation. For example, a third party audit service provider implementation might have an
event formatting class that takes the generic event and translates it into XML data.

Selectable filters
Specifies the available event filters. To enable a filter for an implementation, select the filter from the
Selectable event filters list and then click >.

Enabled filters
Specifies the event filters that are currently enabled for an implementation. To disable a filter for an
implementation, select the filter from the Enabled filters list and then click <.

Custom properties
Specifies any custom properties that might be used to add properties to a third party implementation.
Custom properties are not available for binary file-based implementations or SMF implementations.

v Name

v Value

Example: Base Generic Emitter Interface
The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to
extend this interface and to process specific audit events groupings, such as security events, transactional
events, or some other custom grouping. Use this interface to create a custom implementation of the
emitter.

Base Generic Emitter Interface
/**
* This is the interface for the event emitter. Event sources use this interface
* to send events to an event service.
*
*/
public interface BaseGenericEmitter {

Chapter 10. Auditing the security infrastructure 941

/**
* Sends an event to the configured GenericEmitter implementation.
*
* @param event The event to be sent to the event service.
* This value cannot be null.
* @return The global instance ID of the event that was built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the event parameter is null.
*/
public String sendEvent(GenericEvent event) throws

GenericEventException;
/** * Sends an array of events to the configured GenericEmitter implementation.
* @param events The event array to be sent to the event service.
* This value cannot be null.
* @return The global instance IDs of the events that were built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the events parameter is null.
*/
public String[] sendEvents(GenericEvent events[]) throws

GenericEventException;
/**
* Causes the emitter to release all resources that are owned by this
* object and its dependents.
* Subsequent calls to this method have no effect.
*
* @throws GenericEmitterException If the emitter does release the
* held resources.
* resources.
* @throws GenericEventException If any other error occurs when releasing resources.
*/
public void close() throws

GenericEventException;
}

Configuring a third party audit service providers for security auditing
The audit service provider is used to format the audit data object that was sent by the audit event factory.
In addition to the default audit service provider, you may use a third party implementation as your audit
service provider.

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

Procedure
1. Click Security > Security Auditing > Audit service provider.

2. Click New and then select Third party emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the Third party emitter class name.

5. Enter the Event formatting module class name. This field specifies the class used to format the generic
event into a format that is specific to the audit service provider implementation. For example, your
implementation might have an event formatting class that takes the generic event and translates it into
XML data.

6. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of
the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

7. Optional: Enter any custom properties that you included in your third party emitter code.

8. Click Apply.

942 Securing applications and their environment

Results

After completing these steps, your audit data will be sent to the specified repository in the format required
by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event
factory provide the audit data objects to the audit service provider. Next you should configure an audit
event factory.

Example: Base Generic Emitter Interface
The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to
extend this interface and to process specific audit events groupings, such as security events, transactional
events, or some other custom grouping. Use this interface to create a custom implementation of the
emitter.

Base Generic Emitter Interface
/**
* This is the interface for the event emitter. Event sources use this interface
* to send events to an event service.
*
*/
public interface BaseGenericEmitter {
/**
* Sends an event to the configured GenericEmitter implementation.
*
* @param event The event to be sent to the event service.
* This value cannot be null.
* @return The global instance ID of the event that was built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the event parameter is null.
*/
public String sendEvent(GenericEvent event) throws

GenericEventException;
/** * Sends an array of events to the configured GenericEmitter implementation.
* @param events The event array to be sent to the event service.
* This value cannot be null.
* @return The global instance IDs of the events that were built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the events parameter is null.
*/
public String[] sendEvents(GenericEvent events[]) throws

GenericEventException;
/**
* Causes the emitter to release all resources that are owned by this
* object and its dependents.
* Subsequent calls to this method have no effect.
*
* @throws GenericEmitterException If the emitter does release the
* held resources.
* resources.
* @throws GenericEventException If any other error occurs when releasing resources.
*/
public void close() throws

GenericEventException;
}

Configuring the SMF audit service providers for security auditing
The audit service provider is used to format the audit data object that was sent by the audit event factory.
For z/OS systems you can choose to use the SMF emitter implementation to output audit records to the
Service Management Framework (SMF) as SMF Type 83 Subtype 5 Relocates.

Before you begin

Before configuring the audit service provider, enable global security in your environment. SMF recording
must be enabled at the operating system level before configuring the SMF audit service provider to be
used. If SMF recording is off and a SMF audit service provider implementation is used, then audit records
are not logged to SMF and no warning is presented to alert you that the records are not being recorded.

Chapter 10. Auditing the security infrastructure 943

About this task

This task configures the audit service provider used to record generated audit records.

Procedure
1. Click Security > Security Auditing > Audit service provider.

2. Click New and then select SMF emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of
the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected event type filters to the Enabled filter list.

5. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required
by that repository when an audit event factory is associated with this audit service provider

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event
factory that will provide the audit data objects to the audit service provider. Next you should configure an
audit event factory.

Audit records emitted to SMF may be read using the SMF Unload utility. See the z/OS Internet Library for
more information about the SMF Unload utility.

You can specify the com.ibm.audit.field.length.limit custom property to set the length at which
variable-length audit data is truncated. For more information, see the documentation about the security
custom properties.

Example: Base Generic Emitter Interface
The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to
extend this interface and to process specific audit events groupings, such as security events, transactional
events, or some other custom grouping. Use this interface to create a custom implementation of the
emitter.

Base Generic Emitter Interface
/**
* This is the interface for the event emitter. Event sources use this interface
* to send events to an event service.
*
*/
public interface BaseGenericEmitter {
/**
* Sends an event to the configured GenericEmitter implementation.
*
* @param event The event to be sent to the event service.
* This value cannot be null.
* @return The global instance ID of the event that was built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the event parameter is null.
*/
public String sendEvent(GenericEvent event) throws

GenericEventException;
/** * Sends an array of events to the configured GenericEmitter implementation.
* @param events The event array to be sent to the event service.
* This value cannot be null.
* @return The global instance IDs of the events that were built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the events parameter is null.

944 Securing applications and their environment

http://www.ibm.com/systems/z/os/zos/bkserv/

*/
public String[] sendEvents(GenericEvent events[]) throws

GenericEventException;
/**
* Causes the emitter to release all resources that are owned by this
* object and its dependents.
* Subsequent calls to this method have no effect.
*
* @throws GenericEmitterException If the emitter does release the
* held resources.
* resources.
* @throws GenericEventException If any other error occurs when releasing resources.
*/
public void close() throws

GenericEventException;
}

Configuring audit event factories for security auditing
The audit event factory collects the data associated with the auditable security events and builds the audit
data object. The object is then sent to the audit service provider to be formatted and recorded to a
specified repository.

Before you begin

Before configuring an event factory, enable global security in your environment. An event type filter and an
audit service provider need to be created before completing these steps

About this task

Procedure
1. Click Security > Security Auditing > Audit event factory configurations > New.

2. Enter the unique name that should be associated with this Audit event factory configuration in the
Name field.

3. Select either IBM audit event factory or Third party event factory.

a. Enter the Third party audit event factory class name. This step is only required if a Third party
event factory is being created.

4. Select the appropriate audit service provider implementation from the Audit service provider dropdown
menu,

5. Select the event type filter configuration to be used by this audit event factory. The Filters list consists
of a list of the event type filter configurations that have been created and are currently enabled.

a. Select the event type filters that should be used from the Selectable filter list.

b. Click Add >> to add the selected event type filter configurations to the Enabled filter lists.

6. Enter any Custom properties that need to be included with this audit event factory configuration.
Custom properties are only available for Third party event factory implementations.

7. Click Apply.

Results

After successful completion of these steps, you will have an event factory that can be used to gather
auditable event data.

What to do next

After configuring an audit event factory, you can optionally protect your data by configuring the security
auditing subsystem to sign and encrypt your audit logs.

Chapter 10. Auditing the security infrastructure 945

Audit event factory configuration collection
The Audit event factory configuration panel displays a list of all currently configured audit event factory
implementations. This panel allows a user with the auditor role to manage their configured audit event
factories. This includes the ability to configure a new implementation, which is done using the New button
on this panel.

To view this administrative console page, click Security > Security Auditing > Audit event factory
configuration.

Name
The Name field specifies the unique name associated with the audit event factory configuration.

Type
The Type field specifies this audit event factory configuration as either an IBM audit event factory or a
Third party audit event factory.

Class name
The Class name field specifies the class that is being implemented in an audit event factory configuration.

The class name is com.ibm.ws.security.audit.AuditEventFactoryImpl for an IBM event factory. For a
Third party audit event factory, the class name is the class specified in the Third party audit event factory
class name field.

Audit event factory settings
The Audit event factory settings panel displays the details of a specific audit event factory. The auditor
uses this panel to manage and create audit event factory configurations.

To view this administrative console page, click on of the following paths:

v Security > Security Auditing > Audit event factory configuration >
audit_event_factory_configuration_name.

v Security > Security Auditing > Audit event factory configuration > New.

Name
Specifies the unique name associated with the audit event factory configuration.

Type
Specifies this audit event factory configuration as either an IBM audit event factory or a Third party audit
event factory. This field does not appear on the panel during the creation of a new audit event factory. It is
included when viewing or modifying an existing audit event factory.

IBM audit event factory
Specifies that the Type field of this audit event factory is IBM audit event factory. This check box only
appears on the panel during the creation of a new audit event factory. This check box is selected by
default when creating a new audit event factory.

Third party audit event factory
Specifies that the Type field of this audit event factory is Third party audit event factory. This check box
only appears on the panel during the creation of a new audit event factory. This check box is not selected
by default when creating a new audit event factory.

v The Third party audit event factory class name field is active when the Third party audit event factory
check box is selected. This field represents the class name of the third-party implementation of the Audit
Event Factory interface

Class name
Specifies the class that is being implemented in a audit event factory configuration.

946 Securing applications and their environment

Although not specified during creation, the class name is
com.ibm.ws.security.audit.AuditEventFactoryImp for an IBM event factory.

Audit service provider
Specifies where the audit data objects gathered by this audit event factory will be sent.

Selectable filters
Specifies the filters that are currently available to be used for an implementation. To enable a filter for an
implementation, select the filter from the Selectable filter list and then click >.

Enabled filters
Specifies the filters that are currently enabled for an implementation. To disable a filter for an
implementation, select the filter from the Enabled filter list and then click <.

Custom properties
Specifies properties that the auditor can define to configure the Audit Event Factory implementation. This
might be used by third party implementation of the audit event factory interface. Custom properties are not
used for the IBM audit event factory implementation.

Each custom property has the following fields:

v Name

v Value

Example: Generic Event Factory Interface
This interface is used for processing generic audit events. Other interfaces can be defined which extend
this interface to process specific audit event groupings, such as security events, transaction events, or
some other custom grouping.

Generic Event Factory Interface
/**
* GenericEventFactory is the interface that is used to generate audit events.
* This interface may be extended to generate application specific audit events.
*
* One or more GenericEventFactory implementations each with a unique name can be defined in the
* security configuration and be used by WebSphere Application Server security auditing service.
* @author IBM Corporation
* @version WAS 7.0
* @since WAS 7.0
*/
public interface GenericEventFactory {
/**
* The init method allows a GenericEventFactory implementation to
* initialize its internal auditing configuration using the properties and context object.
*
* The properties and context objects are treated as read-only and must not be modified by the
* GenericEventFactory implementation.
*
* @param A String object represents the name of this GenericEventFactory.
* @param A Map properties object that contains the custom properties that can be defined in the
* the admin console or by using wsadmin scripting tool.
* @param A Map object that contains the context that includes cell name, node name, and server name.
* @exception ProviderFailureException might occur if the audit factory does not initialize
*/
public void init(String name, Map properties, Map context) throws ProviderFailureException;
/**
*
* The terminate method gracefully quiesces the event factory implementation.
*/
public void terminate();
/**
*
* The refresh method allows a GenericEventFactory implementation to
* update its internal auditing configuration using the properties object.
*
* The properties object is treated as read-only and must not be modified by the
* GenericEventFactory implementation.
*
* @param A Map object that contains the custom properties
* @exception ProviderFailureException might occur if the factory does not refresh
*/
public void refresh(java.util.Map properties) throws ProviderFailureException;

Chapter 10. Auditing the security infrastructure 947

/**
*
* The getName method returns the name of this GenericEventFactory.
*
* @param None
* @return a String object represents the name of the GenericEventFactory.
*/
public String getName();
/**
*
* The sendEvent method determines whether the specified audit event is generated by this
* GenericEventFactory.
*
* @param a String object represents an audit event
* @param a OutcomeType object represents the audit outcome value
* @exception ProviderFailureException might occur if the audit factory does not initialize
* @return a boolean success/failure
* @exception ProviderFailureException might occur if the audit factory does not send the event.
*/
public boolean sendEvent(String auditEventType, OutcomeType auditOutcome) throws
ProviderFailureException;
*
}

Protecting your security audit data
The security auditing subsystem allows for protection of your security audit data by increasing the
assurance that the audit data has not been tampered or modified outside of the auditing facility. This
option also protects the confidentiality of the data. The audit data is protected by encrypting and signing
the recording data.

Before you begin

Restriction: Signing and encrypting your audit data is only available for data created using the default
binary log audit service provider. If you are using the SMF emitter or a 3rd party emitter you
will not be able to sign or encrypt your data.

Before configuring protection for your security audit data, enable global security and security auditing in
your environment. You must be assigned the auditor role to complete the task of protecting your audit
data. You will also need the administrator role to configure your audit data to be signed.

About this task

The practice of auditing requires assurances that your audit data is accurate and uncompromised. Your
audit data has the option to be encrypted, signed, or encrypted and signed. You can protect your audit
data using these options to provide assurances that you data is only viewed by authorized users and can
not untraceably be modified . To protect the validity of your security auditing functionality, complete the
following steps:

Procedure
1. “Encrypting your security audit records” on page 949 Audit logs can be encrypted to ensure your audit

data is protected. The audit logs will be encrypted using a certificate that is saved to a keystore in the
audit.xml file. By encrypting your audit records, only users with the password to the keystore will be
able to view or update the audit logs.

2. “Signing your security audit records” on page 950 Audit logs can be signed to ensure the integrity of
your audit data. By signing your audit records, you ensure any modifications of the audit logs can be
traced.

Results

After completing these steps your data will be signed, encrypted or signed and encrypted to provide
assurances that the data is accurate and confidential.

948 Securing applications and their environment

What to do next

After protecting your data, you can configure notifications to ensure you are notified if a problem with the
security auditing subsystems occurs that prevents security events from being recorded.

Encrypting your security audit records
Audit logs can be encrypted to ensure your audit data is protected. By encrypting your audit records, only
users with access to the encrypting certificate will be able to view the audit logs.

Before you begin

Restriction: Encrypting audit data is only available for data created using the default audit service
provider. If you are using the SMF emitter or a 3rd party emitter you will not be able to
encrypt your data.

Before configuring your security audit records to be encrypted, enable global security and security auditing
in your environment. You must be assigned the auditor role to encrypt your security auditing records. If you
are using a certificate stored in the security.xml file, you also require the administrator role to complete
this task.

About this task

Procedure
1. Click Security > Security Auditing > Audit record encryption configuration.

2. Select the Enable encryption check box to specify that your audit records should be encrypted. All
other fields on this panel will be unavailable until this check box has been selected.

3. Select the keystore that contains the encrypting certificate from the dropdown menu or click New to
create a new certificate in an existing keystore. Use the following steps if you are creating a new
certificate:

a. Enter the name of the keystore in the Name field.

b. Enter the path to the keystore file in the Path field.

c. Enter the password to be associated with the keystore in the Password field.

d. Confirm the password associated with the keystore by retyping the password in the Confirm
password field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

4. If you are using an existing certificate to encrypt your audit records, ensure Certificate in keystore is
selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to encrypt your audit records, select Create a new certificate in
the selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select either Automatically generate certificate or Import a certificate. The certificate used to
encrypt the data in the audit log files can either be created or imported. If you selected to generate
a certificate, then skip to the last step on this page. If you selected to import a certificate, then
continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

Chapter 10. Auditing the security infrastructure 949

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

Results

After completing these steps, your audit logs will be encrypted to ensure only authorized users can view
the content of your audit log files.

What to do next

After you have finished configuring your audit logs to be encrypted, you can ensure the data integrity of
your audit logs by configuring the audit subsystem to sign your audit records.

Signing your security audit records
Audit logs can be signed to ensure the integrity of your audit data. By signing your audit records,
modifications of the audit logs can be traced.

Before you begin

Restriction: Signing audit data is only available for data created using the default audit service provider. If
you are using the SMF emitter or a 3rd party emitter you will not be able to sign your data.

Before configuring your security audit records to be signed, enable global security and security auditing in
your environment. You must be assigned the auditor role and the administrator role to configure audit
record signing.

About this task

Procedure
1. Click Security > Security Auditing > Audit record signing configuration.

2. Select the Enable signing check box to specify that your audit records should be signed. All other fields
on this panel will be unavailable until this check box has been selected.

3. Select the keystore that contains the signing certificate from the Managed keystore containing the
signing certificate dropdown menu.

4. If you are using an existing certificate to sign your audit records, ensure Certificate in keystore is
selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to sign your audit records, select Create a new certificate in the
selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select on of the following options: Import the encryption certificate, Automatically generate
certificate or Import a certificate. The certificate used to encrypt the data in the audit log files can
either be created or imported.

v If you selected Import the encryption certificate, then you will use the encryption certificate to
also sign your audit records. Skip to the last step on this page to complete this configuration.

v If you selected to generate a certificate, then skip to the last step on this page to complete this
configuration.

v If you selected to import a certificate from an existing keystore, then continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

950 Securing applications and their environment

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

Results

After you have completed these steps, your audit logs will be digitally signed to ensure the integrity of the
data.

What to do next

After you have finished configuring your audit logs to be signed, you can ensure the confidentiality of your
audit logs by configuring the audit subsystem to encrypt your audit records.

Audit encryption keystores and certificates collection
The Audit encryption keystores and certificates panel allows the auditor to manage the keystores and
certificates used for audit encryption.

To view this administrative console page, click Security > Security Auditing > Audit encryption
keystores and certificates.

Name
Specifies the unique name of the keystores used for storing the encryption certificate.

Path
Specifies the path to the listed keystore file.

The path to the keystore file can be listed using environment variables, ${PROFILE_ROOT}, or with a fully
qualified path.

Audit record encryption configuration settings
Use this page to enable encryption for your audit records. Encrypting your audit records ensures only a
user given access to the certificate used for encryption is allowed to view the audit records.

To view this administrative console page, click Security > Security auditing > Audit record encryption
configuration. If Enable encryption is not selected, then all of the other fields on this panel will be
disabled. Encryption is not enabled by default.

Enable encryption
Specifies whether your audit records will be encrypted. This check box is not selected by default.

Audit keystore containing the encryption certificate
Specifies the audit keystore specified to store the encryption certificate.

A new keystore can be created by clicking on the New... button.

Certificate in keystore
Specifies an existing certificate will be used from the keystore specified in the Audit keystore containing
the encryption certificate field. This field is selected by default. If a keystore in the security.xml file is
used, the administrator role is required.

v Certificate alias

When the Certificate in keystore field is selected, the certificate alias dropdown menu displays a list of
certificate aliases contained in the keystore defined by the Audit keystore containing the encryption
certificate field. Select the certificate from the dropdown menu to be used to encrypt your audit records.

Chapter 10. Auditing the security infrastructure 951

Create a new certificate in the selected keystore
Specifies that a new certificate will be created in the keystore defined by the Audit keystore containing
the encryption certificate field.

v Certificate alias

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is
used to define the name of the certificate to be created in the keystore defined by the Audit keystore
containing the encryption certificate field.

v Automatically generate certificate

When selected, the Automatically generate certificate field specifies that the application server will
automatically generate the certificate. This field is selected by default when the Create a new
certificate in the selected keystore field is selected.

v Import a certificate

When selected, the Import a certificate field specifies that an existing self-signed certificate will be
imported by the auditor into the keystore and used to encrypt your audit records. This field is not
selected by default when the Create a new certificate in the selected keystore field is selected. The
following fields need to be defined to import an existing certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains
the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

Audit record signing configuration settings
Use this page to enable signing for your audit records. Signing audit records ensures tamper-proof
recording of the auditable events. Both the auditor and administrator roles are required to configure the
signing of your audit data.

To view this administrative console page, click Security > Security auditing > Audit record signing
configuration. If Enable signing is not selected, then all of the other fields on this panel will be disabled.

Enable signing
Specifies whether your audit records will be encrypted. This check box is not selected by default.

Managed keystore containing the signing certificate
Specifies the keystore used to store the signing certificate.

Certificate in keystore
Specifies an existing certificate will be used from the keystore specified in the Managed keystore
containing the signing certificate field. This field is selected by default.

v Certificate alias

When the Certificate in keystore field is selected, the Certificate alias dropdown menu displays a list
of certificate aliases contained in the keystore defined by the Managed keystore containing the
signing certificate field. Select the certificate from the dropdown menu to be used to sign your audit
records.

Create a new certificate in the selected keystore
Specifies that a new certificate will be created in the keystore defined by the Managed keystore
containing the signing certificate field.

v Certificate alias

952 Securing applications and their environment

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is
used to define the name of the certificate to be created in the keystore defined by the Audit keystore
containing the encryption certificate field.

v Import the encryption certificate

Specifies the certificate used for encryption will be imported into the signing keystore file and used for
signing.

v Automatically generate certificate

Specifies the application server will automatically generate the certificate. This field is selected by
default when the Create a new certificate in the selected keystore field is selected.

v Import a certificate

Specifies an existing self-signed certificate will be imported by the auditor into the keystore and used to
encrypt your audit records. This field is not selected by default when the Create a new certificate in
the selected keystore field is selected. The following fields need to be defined to import an existing
certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains
the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

Audit record keystore settings
The Audit record keystore panel is used by an auditor to define the keystores used for storing the
encryption certificate used to encrypt the audit records. Keystores used for auditing are managed outside
of other keystores being used on the system to facilitate separation of the authority of the auditor for the
authority of the administrator.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Audit encryption keystores and certificates > keystore_name.

v Security > Security Auditing > Audit encryption keystores and certificates > New.

v Security > Security Auditing > Audit record encryption configuration > New

Name
The Name field specifies the unique name for the keystore. This is a required field.

Path
Specifies the path where the keystore file is located. This is a required field.

Password
Specifies the password to be used for this keystore. This is a required field.

Confirm Password
Specifies confirmation of the value provided in the Password field. This is a required field.

Type
The Type field specifies the type of the keystore. The Type dropdown menu has the following options for
defining the keystore type:

v JCEKS

v CMSKS

v PKCS12 - The default value for the Type field is PKCS12.

v Cryptographic Token Device (PKCS11)

Chapter 10. Auditing the security infrastructure 953

v JKS

v PKCS12JarSigner

Using the audit reader
The audit reader is a utility that can be used to read the binary audit logs generated by the default binary
emitter implementation. The audit reader parses the audit log to generate an HTML report. The audit
reader is invoked using wsadmin commands and is not accessible using the administrative console.

Before you begin

The audit reader can only be used to parse log files that are created by the default audit service provider.
Logs created by a third-party emitter can not be parsed by the audit reader.

About this task

Your audit logs might be encrypted, signed, encrypted and signed or neither encrypted nor signed. The
audit reader is able to parse any of these combinations to generate an HTML report. If the audit log file is
encrypted, the password of the keystore storing the certificate used to encrypt the log must be provided.
The showAuditLogEncryptionInfo wsadmin command can be used to get information to determine which
keystore was used to sign the audit log.

Depending on the selections you made in your audit service provider configuration, the size of the audit
logs can become large enough to make them cumbersome to review. What data has been recorded into
your log is dependant on the event type filers you are using and whether you specified to use verbose
logging. Options are provided for you to further limit the data included in the HTML report that is generated
by the audit reader to a subset that you specify. The audit reader can be used to parse the same data
multiple times to generate separate reports for your different requirements.

By default, all event types, outcome types, timestamps, and sequence numbers will be gathered from the
Binary Audit log and generated into a report. The ability to specify only specific event types, only specific
sequence numbers, only records with specific timestamps, as well as specific outcome types is provided. A
sequence number is a unique identifier assigned to each audit record. Options exist to limit which events,
outcomes, and sequence numbers are included in the report.

The report type controls what data is reported for each audit record in the log file. The default report type
includes the follow data for each audit record:

v creationTime

v action

v progName

v registryType

v domain

v realm

v remoteAddr

v remotePort

v remoteHost

v resourceName

v resourceType

v resourceUniqueId

The complete report type generates a report based on all the data that was logged for the selected audit
records. The complete report type includes all the data that is included by the default report type and all

954 Securing applications and their environment

the additional datapoints that were logged for these audit records. The additional available datapoints for
an audit record varies depending on the event type it represents.

A custom report type is also included. Use the custom report type to specify only the datapoints that you
want generated in the report. A report may be generated based on the following criteria:

v all or specific event types

v all or specific outcome types

v all or a specific sequence number range

v all or a specific timestamp range

Procedure

Run the binaryAuditLogReader wsadmin command to use the audit reader to generate a log report. See
the AuditReaderCommands command group for the AdminTask object article for more information.

Results

After you complete these steps, you will generated an HTML report containing the data specific to your
requirement.

Example

Audit Event Outcome Codes

In a binary audit log or the output of the audit reader tool, audit event outcomes are expressed with a
numeric code. Use this table to associate the audit event outcome code in the binary audit logs to a
generic error messages.

Table 154. Event Outcome Codes. This table lists the event outcome codes.
Outcome Reason Code Description

0 An error occurred while parsing the certificate.

1 The security context does not exist for the thread.

2 There is conflicting session evidence.

3 The session has been rejected.

4 The token has expired.

5 Successful authentication has occurred.

6 Successful authentication for accessing a resource has occurred.

7 Successful authentication occurred while mapping a user.

8 Successful authorization has occurred.

9 Login termination was successful.

10 Invalid evidence exists.

11 There was a GSS formatting error.

12 Credentials were unauthenticated.

13 Authentication failed.

14 An invalid resource was accessed.

15 Authentication was denied.

16 Authorization was denied.

17 Access was denied because of an authentication failure.

18 Authorization was excluded.

19 Authorization was excluded because of access without proper security role.

20 An unsupported authentication mechanism was used.

21 An authentication redirect occurred.

22 The context does not exist.

Chapter 10. Auditing the security infrastructure 955

Table 154. Event Outcome Codes (continued). This table lists the event outcome codes.
23 A TAI challenge occurred.

24 A TAI validation was not successful.

25 A TAI mapping was not successful.

26 A provider failure occurred.

27 A SSO token validation was not successful.

28 An invalid user id or password was provided.

29 A send login form

30 An invalid configuration exists.

31 An user id or password is missing.

32 Failure occurred for an unknown reason.

33 The account was disabled because of retry violations.

34 The account was locked out because of retry violations.

35 The account was locked out because the maximum number of unsuccessful login attempts has
occurred.

36 The account is disabled.

37 The account has expired.

38 The account is unlocked.

39 The maximum inactive time permitted for the account has elapsed.

40 The password has expired.

41 The minimum interval for a password change has unexpired.

42 The maximum interval permitted before a password must be changes has elapsed.

43 An authentication failure has occurred.

44 An invalid user name was provided.

45 A pin is required.

46 This outcome code is not used in this release.

47 A user mapping did not occur successfully.

48 A certificate failure occurred.

49 A policy violation has occurred.

50 A policy violation has occurred because of the time of day.

51 The policy allows access.

52 A policy violation has occurred because the maximum number of unsuccessful login attempts
has been reached.

53 A user name mismatch has occurred.

54 An invalid user password was provided.

55 A token signature violation has occurred.

56 The token is not yet valid.

57 The token is not supported.

58 The token is not in a valid format.

59 A credential mapping failure occurred.

60 The delegate is not authorized.

61 Access to a resource is unauthorized because of an authorization.

62 Access to a resource is unauthorized because of a time of day policy.

63 Access to a resource is unauthorized.

64 Access to a resource is unauthorized because of quality of protection.

65 Access to a resource is unauthorized because of an authorization level.

66 Access to a resource is unauthorized because reauthentication is required.

67 A password error has occurred because it does not meet password standards: minimum
alphabetic characters required.

68 A password error has occurred because it does not meet password standards: minimum
alphanumeric characters required.

69 A password error has occurred because it does not meet password standards: minimum
numeric characters required.

956 Securing applications and their environment

Table 154. Event Outcome Codes (continued). This table lists the event outcome codes.
70 A password error has occurred because it does not meet password standards: minimum

alphabetic low case characters required.

71 A password error has occurred because it does not meet password standards: minimum
alphabetic upper case characters required.

72 A password error has occurred because it does not meet password standards: minimum special
characters required.

73 A password error has occurred because it does not meet password standards: maximum
repeated characters exceeded.

74 A password error has occurred because it does not meet password standards: contains user
name

75 A password error has occurred because it does not meet password standards: reused
password.

76 A password error has occurred because it does not meet password standards: contains
previous password.

77 A password error has occurred because it does not meet password standards: violations in
number of characters.

78 A password error has occurred because it does not meet password standards: first or last
characters are numeric.

79 An illegal form login configuration exists.

80 Access is denied because of a incorrect URI.

81 Start was successful

82 Stop was successful.

83 The audit subsystem has been stopped.

84 The audit subsystem has successfully been enabled.

85 The audit subsystem has had a successful policy change.

86 Delegation was successful.

87 Delegation was not successful.

88 The audit subsystem has successfully been disabled.

89 An audit subsystem has occurred because a security header is missing.

90 An audit timestamp has been confirmed.

91 A bad audit timestamp has occurred.

92 Audit confidentially has been confirmed

93 Audit confidentially cannot be confirmed.

94 An audit decryption error has occurred.

103 A login attempt has been made by a user who has already logged in successfully.

Chapter 10. Auditing the security infrastructure 957

958 Securing applications and their environment

Chapter 11. Tuning, hardening, and maintaining security
configurations

After installing WebSphere Application Server, there are several considerations for tuning, strengthening,
and maintaining your security configuration.

About this task

The following topics are covered in this section:

Procedure
v Tuning security configurations You can tune your security configuration to balance performance with

function. You can achieve this balance following considerations for tuning general security, Common
Secure Interoperability version 2 (CSIv2), Lightweight Directory Access Protocol (LDAP) authentication,
web authentication, and authorization. For more information on tuning security, see “Tuning security
configurations.”

v Hardening security configurations Several methods exist that you can use to protect your infrastructure
and applications from different forms of attack. For more information on hardening your security, see
“Hardening security configurations” on page 967.

v Securing passwords in files Password encryption and encoding can add protection to passwords
existing in files. For more information on encoding and encrypting passwords, see “Securing passwords
in files” on page 970.

What to do next

For additional information about hardening security configurations, see the WebSphere Application Server
security web page.

Tuning security configurations
You can tune security to balance performance with function. You can achieve this balance following
considerations for tuning general security, Common Secure Interoperability version 2 (CSIv2), Lightweight
Directory Access Protocol (LDAP) authentication, web authentication, and authorization.

About this task

Performance issues typically involve trade-offs between function and speed. Usually, the more function
and the more processing that are involved, the slower the performance. Consider what type of security is
necessary and what you can disable in your environment. For example, if your application servers are
running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer
(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java
Platform, Enterprise Edition (Java EE) roles? These questions are things to consider when designing your
security infrastructure.

Procedure
v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server
and you do not need to protect process resources. Remember that in doing so, you put your local
resources at some risk.

– Consider propagating new security settings to all nodes before restarting the deployment manager
and node agents, to change the new security policy.

© Copyright IBM Corp. 2011 959

http://www.ibm.com/developerworks/websphere/zones/was/security/
http://www.ibm.com/developerworks/websphere/zones/was/security/

If your security configurations are not consistent across all servers, you get access denied errors.
Therefore, you must propagate new security settings when enabling or disabling administrative
security.

Configuration changes are generally propagated using configuration synchronization. If
auto-synchronization is enabled, you can wait for the automatic synchronization interval to pass, or
you can force synchronization before the synchronization interval expires. If you are using manual
synchronization, you must synchronize all the nodes.

If the cell is in a configuration state and the security policy is mixed with nodes that have security
enabled and disabled, you can use the syncNode utility to synchronize the nodes where the new
settings are not propagated.

For more detailed information about enabling security in a distributed environment, see “Enabling
security for the realm” on page 90.

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By
increasing these values, you have to re-authenticate less often. This action supports subsequent
requests to reuse the credentials that already are created. The downside of increasing the token
timeout is the exposure of having a token hacked and providing the hacker more time to hack into
the system before the token expires. You can use security cache properties to determine the initial
size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the
distribution of the hash algorithms.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to
Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely
stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the
application startup. Complete this action if applications contain many users or groups, or if
applications are stopped and started frequently. WebSphere Application Server maps user and group
names to unique access IDs in the authorization table. The exact format of the access ID depends
on the repository. The access ID can only be determined during and after application deployment.
Authorization tables created during assembly time do not have the proper access IDs. See the
Commands for the AdminApp article for more information about how to update access IDs.

– If using SSL, enable the SSL session tracking mechanism option as described in the information
about session management settings.

– Distributing the workload to multiple Java virtual machines (JVMs) instead of a single JVM on a
single machine can improve the security performance because there is less contention for
authorization decisions.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to
authenticate Java clients. Because you are already making the SSL connection, using mutual
authentication adds little overhead while it removes the service context that contains the user ID and
password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your
ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action
takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you
use identity assertion for downstream delegation. Use SSL mutual authentication between servers to
provide this trust. Adding this extra step in the SSL handshake performs better than having to fully
authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity
token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication
only on the first request and on any subsequent token expirations.

– Consider changing the values for the CSIv2 session cache. Changing these values can avoid
resource shortages. Refer to the Common Secure Interoperability Version 2 outbound
communications topic for more information.

960 Securing applications and their environment

– If you are communicating only with WebSphere Application Server Version 5 or higher servers, make
the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes an interceptor
invocation for every request on both the client and server sides.

Important: SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

1. In the administration console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the stand-alone LDAP registry configuration,
when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay directory type, if you are using an IBM
Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is
programmed to use the new group membership attributes to improve group membership searches.
However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you
are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance
in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune web authentication.

– Increase the cache and token timeout values if you feel your environment is secure enough. The
web authentication information is stored in these caches and as long as the authentication
information is in the cache, the login module is not invoked to authenticate the user. This supports
subsequent requests to reuse the credentials that are already created. A disadvantage of increasing
the token timeout is the exposure of having a token stolen and providing the thief more time to hack
into the system before the token expires.

– Enable single sign-on (SSO). To configure SSO, click Security > Global security. Under Web
security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the
Authentication mechanisms and expiration panel. Although you can select Simple WebSphere
Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication
mechanisms and expiration panel, SWAM is deprecated in Version 8.0 and does not support SSO.
When you select SSO, a single authentication to one application server is enough to make requests
to multiple application servers in the same SSO domain. Some situations exist where SSO is not a
desirable and you do not want to use it in those situations.

– Disable or enable the Web Inbound Security Attribute Propagation option on the Single sign-on
(SSO) panel if the function is not required. In some cases, having the function enabled can improve
performance. This improvement is most likely for higher volume cases where a considerable number
of user registry calls reduces performance. In other cases, having the feature disabled can improve
performance. This improvement is most likely when the user registry calls do not take considerable
resources.

– The following two custom properties might help to improve performance when security attribute
propagation is enabled:

- com.ibm.CSI.propagateFirstCallerOnly

The default value of this property is true. When this custom property is set to true the first caller
in the propagation token that stays on the thread is logged when security attribute propagation is
enabled. When this property is set to false, all of the caller switches are logged, which can affect
performance.

- com.ibm.CSI.disablePropagationCallerList

Chapter 11. Tuning, hardening, and maintaining security configurations 961

When this custom property is set to true the ability to add a caller or host list in the propagation
token is completely disabled. This function is beneficial when the caller or host list in the
propagation token is not needed in the environment.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java Platform,
Enterprise Edition (Java EE) roles. This association greatly improves performance when the number
of users increases.

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk
(*) to indicate all the methods in the method-name element. When all the methods in enterprise
beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.
This indication reduces the size of deployment descriptors and reduces the memory that is required
to load the deployment descriptor. It also reduces the search time during method-permission match
for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern
to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a
given URL, the exact match in the deployment descriptor takes precedence over the longest path
match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path
matches exist for a given URL in the security constraints.

v Use new tuning parameters when using Java 2 security. The new tuning parameters can improve
performance significantly, and introduce a new concept called Read-only Subject, which enables a new
cache for J2C Auth Subjects when using container-managed auth data aliases. If the J2C auth subject
does not need to be modified after it is created, the following new tuning parameters can be used to
improve Java 2 Security performance:

– com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true

– com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize=50 (This is the maximum
number of subjects in the hashtable of the cache. Once the cache reaches this size, some of the
entries are purged. For better performance, this size should be equal to the number of unique
subjects (cache based on uniqueness of user principal + auth data alias + managed connection
factory instance) when role-based security and Java 2 security are used together).

v Use new tuning parameters to improve the performance of Security Attribute Propagation. The new
tuning parameters can be set through custom properties in the administrative console to reduce the
extra overhead of Security Attribute Propagation:

– com.ibm.CSI.disablePropagationCallerList=true

– com.ibm.CSI.propagateFirstCallerOnly=true (use if you want to track the first caller only).

Results

You always have a trade off between performance, feature, and security. Security typically adds more
processing time to your requests, but for a good reason. Not all security features are required in your
environment. When you decide to tune security, create a benchmark before making any change to ensure
that the change is improving performance.

What to do next

In a large scale deployment, performance is very important. Running benchmark measurements with
different combinations of features can help you to determine the best performance versus the benefit of
configuration for your environment. Continue to run benchmarks if anything changes in your environment,
to help determine the impact of these changes.

Security tuning tips
As a general rule, two things happen when you increase security: the cost per transaction increases and
throughput decreases. Consider the following security information when you configure WebSphere
Application Server.

962 Securing applications and their environment

SAF class

When a SAF (RACF or equivalent) class is active, the number of profiles in a class will affect the overall
performance of the check. Placing these profiles in a (RACLISTed) memory table will improve the
performance of the access checks. Audit controls on access checks also affect performance. Usually, you
audit failures and not successes. Audit events are logged to DASD and will increase the overhead of the
access check. Because all of the security authorization checks are done with SAF (RACF or equivalent),
you can choose to enable and disable SAF classes to control security. A disabled class will cost a
negligible amount of overhead.

Additionally, if a SAF class is not RACLISTed, you must restart the application server to pick up any
changes made to profiles in the class.

gotcha: Enabling all auditing on classes that control access to objects in the UNIX System Services file
system, such as RACF DIRACC, DIRSRCH, FSOBJ and FSSEC, or their equivalent in other SAF
security managers, severely degrades performance.

EJBROLEs on methods

Use a minimum number of EJBROLEs on methods. If you are using EJBROLEs, specifying more roles on
a method will lead to more access checks that need to be executed and a slower overall method dispatch.
If you are not using EJBROLEs, do not activate the class.

Java 2 Security

If you do not need Java 2 security, disable it. For instructions on how to disable Java 2 security, refer to
“Protecting system resources and APIs (Java 2 security) for developing applications” on page 819.

Level of authorization

Use the lowest level of authorization consistent with your security needs. You have the following options
when dealing with authentication:
v Local authentication: Local authentication is the fastest type because it is highly optimized.
v UserID and password authentication: Authentication that utilizes a userID and password has a high

first-call cost and a lower cost with each subsequent call.
v Kerberos security authentication: We have not adequately characterized the cost of kerberos security

yet.
v SSL security authentication: SSL security is notorious in the industry for its performance overhead.

Luckily, there is a lot of assists available from hardware to make this reasonable on z/OS.

Level of encryption with SSL

If using Secure Sockets Layer (SSL), select the lowest level of encryption consistent with your security
requirements. WebSphere Application Server enables you to select which cipher suites you use. The
cipher suites dictate the encryption strength of the connection. The higher the encryption strength, the
greater the impact on performance.

RACF tuning

Follow these guidelines for RACF tuning:

v Use the RACLIST to place into memory those items that can improve performance. Specifically, ensure
that you RACLIST (if used):
– CBIND
– EJBROLE
– SERVER
– STARTED

Chapter 11. Tuning, hardening, and maintaining security configurations 963

– FACILITY
– SURROGAT

Example:
RACLIST (CBIND, EJBROLE, SERVER, STARTED, FACILITY, SURROGAT)

v Use of things like SSL come at a price. If you are a heavy SSL user, ensure that you have appropriate
hardware, such as PCI crypto cards, to speed up the handshake process.

v Here's how you define the BPX.SAFFASTPATH facility class profile. This profile allows you to bypass
SAF calls which can be used to audit successful shared file system accesses.
– Define the facility class profile to RACF.

RDEFINE FACILITY BPX.SAFFASTPATH UACC(NONE)

– Activate this change by doing one of the following:
- re-IPL
- invoke the SETOMVS or SET OMVS operator commands.

Note: Do not use this option if you need to audit successful HFS accesses or if you use the IRRSXT00
exit to control HFS access.

v Use VLF caching of the UIDs and GIDs as shown in the example COFVLFxx parmlib member below:

Example: sys1.parmlib(COFVLFxx):
********************************* Top of Data ********************.
.

CLASS NAME(IRRGMAP) EMAJ(GMAP)
CLASS NAME(IRRUMAP) EMAJ(UMAP)
CLASS NAME(IRRGTS) EMAJ(GTS)
CLASS NAME(IRRACEE) EMAJ(ACEE)
.
******************************** Bottom of Data ******************

To avoid a costly scan of the RACF databases, make sure all HFS files have valid GIDs and UIDs.

v Do not enable global audit ALWAYS on the RACF (SAF) classes that control access to objects in the
UNIX file system. If audit ALWAYS is specified in the SETR LOGOPTIONS for RACF classes DIRACC,
DIRSRCH, FSOBJ or FSSEC, severe performance degradation occurs. If auditing is required, audit only
failures using SETR LOGOPTIONS, and audit successes for only selected objects that require it. After
changing the audit level on these classes, always verify that the change has not caused an
unacceptable impact on response times and/or CPU usage.

Resource Access Control Facility Tips for customizing WebSphere Application
Server
It is important to understand the security mechanisms used to protect the server resources using the
CBIND, SERVER, and STARTED classes in RACF (or your security product). This paper describes these
mechanisms along with some techniques for managing the security environment.

The first part of this article provides details about the RACF profiles used to protect the WebSphere
servers and resources using the following classes:

v CBIND: Access to servers, and access to objects in the servers

v SERVER: Access to controller regions by servant regions

v STARTED: Associate user-ids and groups to started procedures (STCs)

The next part of the article describes adding the required RACF profiles and permissions for another
server in your cell.

The last part of the article shows how you can define the minimal set of users, groups, and profiles for a
testing environment (where security of individual servers is not the main focus or concern).

964 Securing applications and their environment

RACF Profiles (CBIND, SERVER, and STARTED): Basic information about the RACF profiles used by
WebSphere can be found in the “System Authorization Facility classes and profiles” on page 43. This
section adds some additional details about the CBIND, SERVER, and STARTED class profiles.

User IDs and Group IDs: As part of using the WebSphere z/OS Profile Management Tool or the zpmt
command, the BBOCBRAK job generates RACF commands that then can be run with the BBOWBRAK job. Key:
CR = Controller Region
SR = Servant Region
CFG = Configuration (group)
server = server short name
cluster = generic server (short) name (also called cluster transition name)

First, six users and six groups are defined as follows, which are shown symbolically to help you
understand how they are used in the various permissions later on:
<CR_userid> <CR_groupid>, <CFG_groupid>
<SR_userid> <SR_groupid>, <CFG_groupid>
<demn_userid> <demn_groupid>, <CFG_groupid>
<admin_userid> <CFG_groupid>
<client_userid> <client_groupid>
<ctracewtr_userid> <ctracewtr_groupid>

Below are the various profiles used to protect the WebSphere servers and resources, along with the
permissions and access levels.

CBIND Class Profiles: There are two formats and levels of CBIND class profiles for protecting access to
application servers and objects in those servers:
CBIND Class profiles - access to generic servers
CB.BIND.<cluster> UACC(READ); PERMIT <CR_group> ACC(CONTROL)

CBIND Class profiles - access to objects in servers
CB.<cluster> UACC(READ) PERMIT <CR_group> ACC(CONTROL)

SERVER Class Profiles: There are currently two formats of the SERVER class profiles for protecting access
to the server controller regions. You must define a single format SERVER profile, depending upon whether
or not Dynamic Application Environment (DAE) support is enabled. This is done using the WLM DAE
APAR OW54622, which is applicable to z/OS V1R2 or higher.

In the WebSphere z/OS Profile Management Tool or the zpmt command, both formats are predefined, and
one of these is actually required at runtime. The required format is determined dynamically by the
WebSphere Application Server for z/OS Runtime based on the availability of Dynamic Application
Environment (DAE) support.

v The following command provides access to controllers using static Application Environments (without
the APAR support): RDEFINE CB.&<server>.&<cluster> UACC(NONE); PERMIT &<SR_userid> ACC(READ)
For this example, server = server name, cluster = cluster name or cluster transition name if a
cluster has not yet been created, and SR = the MVS user ID of the Server Region.

v The following command provides access to controllers using dynamic Application Environments (with
the WLM DAE APAR support): CB.&<server>.&<cluster>.<cell> UACC(NONE); PERMIT &<SR_userid>
ACC(READ) For this example, server = server name, cluster = cluster name or cluster transition
name if a cluster has not yet been created, cell = cell short name, and SR = the MVS user ID of the
Server Region.

STARTED Class Profiles: There are two formats of STARTED class profiles used to assign user and group
IDs to controller regions and other STCs based on whether the started task is started with the MGCRE
interface or the address space create (ASCRE) interface used by Workload Manager (WLM) to start servant
regions:
STARTED Class profiles - (MGCRE)
<<CR_proc>.<CR_jobname> STDATA(USER(CR_userid) GROUP(CFG_groupid))
<demn_proc>.* STDATA(USER(demn_userid) GROUP(CFG_groupid))

STARTED Class profiles - (ASCRE)

Chapter 11. Tuning, hardening, and maintaining security configurations 965

<SR_jobname>.<SR_jobname> STDATA(USER(SR_userid) GROUP(CFG_groupid))

STARTED Class profiles for IJP - (MGCRE)
<MQ_ssname>.* STDATA(USER(IJP_userid) GROUP(CFG_groupid))

Generating new user IDs and Profiles for a new Server: If you want to use unique user IDs for each
new application server, you must define these users, groups, and profiles in the RACF database.

One technique is to edit a copy of the BBOWBRAK member using the WebSphere z/OS Profile Management
Tool or the zpmt command, .DATA partitioned data set, and change the following entries to the new users,
groups, and unique New_server name, and New_cluster name profiles:

v If unique user IDs for the new servers are desired, define three new users and connect them to the
following groups:

<New_CR_userid> <CR_groupid>, <CFG_groupid>
<New_SR_userid> <SR_groupid>, <CFG_groupid>
<New_client_userid> <client_groupid>

v CBIND class profiles for the new cluster (generic server short name):
CB.BIND.<New_cluster>
CB.<New_cluster>

v SERVER class profiles for the new server and cluster:
CB.<New_server>.<New_cluster>
CB.<New_server>.<New_cluster>.<cell>

v STARTED class profiles for the new server's controller and servant's regions:
<CR_proc>.<New_CR_jobname> STDATA(USER(New_CR_userid)

GROUP(CFG_groupid))
<New_SR_jobname>.* STDATA(USER(New_SR_userid) GROUP(CFG_groupid))

Minimalist Profiles: To minimize the number of users, groups, and profiles in the RACF data set, you can
use one user ID, one group ID, and very generic profiles so they cover multiple servers in the same cell.
Here is an example of profiles with one user (T5USR), one group (T5GRP), and a set of servers in the T5CELL
having server short names starting with T5SRV* and generic server names starting with T5CL*. This
technique can also be used with Integral JMS provider (IJP) and WebSphere Application Server, Network
Deployment (ND) configurations.
/* CBIND Class profiles (UACC) - access to generic servers */
CB.BIND.T5CL* UACC(READ); PERMIT ID(T5GRP) ACC(CONTROL)

/* CBIND Class profiles (UACC) - access to objects in servers */
CB.T5CL* UACC(READ); PERMIT ID(T5GRP) ACC(CONTROL)

/* SERVER Class profiles - access to controllers (old style) */
CB.*.T5CL* UACC(NONE); PERMIT ID(T5USR) ACC(READ)

/* SERVER Class profiles - acc to controllers (new style) */
CB.*.*.T5CELL UACC(NONE); PERMIT ID(T5USR) ACC(READ)

/* STARTED Class profiles - (MGCRE) - for STCs, except servants */
T5ACR.* STDATA(USER(T5USR) GROUP(T5GRP)) /* controller*/
T5DMN.* STDATA(USER(T5USR) GROUP(T5GRP)) /* daemon */
T5CTRW.* STDATA(USER(T5USR) GROUP(T5GRP)) /* CTrace WTR*/
WMQX*.* STDATA(USER(T5USR) GROUP(T5GRP)) /* IJP */

/* STARTED Class profiles - (ASCRE - for servants) */
T5SRV*.* STDATA(USER(T5USR) GROUP(T5GRP)) /* servant */

Tuning security performance
Use the following procedures to tune the performance, without compromising your security settings.

About this task

Enabling security decreases performance. The following tuning parameters provide ways to minimize this
performance impact.

While it is not practical to run WebSphere Application Server for z/OS without security enabled, it is
possible to perform certain tuning techniques to make the Application Server run better on z/OS. These
techniques are documented in detail in “Security tuning tips” on page 962.

966 Securing applications and their environment

Procedure
v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration

panel in the administrative console. For more information, see the “Global security settings” on page 93
topic.

v Configure the security cache properties. For more information, see the “Authentication cache settings”
on page 180 topic.

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative
console.

v Modify the RACF security settings as documented in the “Security tuning tips” on page 962 article.

v Read the “Tuning security configurations” on page 959 article for more information.

Hardening security configurations
There are several methods that you can use to protect the WebSphere Application Server infrastructure
and applications from different forms of attack. Several different techniques can help with multiple forms of
attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

About this task

For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords
can then be used to mount an application-level attack. The following issues are discussed in IBM
WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and
system hardening:

Procedure
v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

v At a minimum, ensure administrative security is enabled in all WebSphere processes. This protects
access to the administrative ConfigService interface and managed beans (MBeans) that enables control
over the WebSphere process if it is compromised.

v Ensure Secure Sockets Layer (SSL) is used whenever possible, and mutual SSL whenever possible.
However, mutual SSL requires all clients to supply a trusted personal certificate in order to connect.

v Remove any unnecessary certificate authority (CA) signer certificates from your trust stores.

v Change default keystore passwords during or after profile creation using the AdminTask
changeMultipleKeyStorePasswords command.

v Change your Lightweight Third-Party Authentication (LTPA) keys periodically. You can configure the
automatic regeneration of LTPA keys if necessary.

v Common Secure Interoperability version 2 (CSIv2) inbound Basic authentication is supported in this
release of WebSphere Application Server. The authentication default is 'required'.

What to do next

Note: In this release of WebSphere Application Server, more security hardening features of the server are
enabled by default. However, if the features are not enabled after migration you can enable them
yourself. See the Security hardening features enablement and migration article for more
information.

For additional information about hardening security configurations, see the WebSphere Application Server
security web page.

Chapter 11. Tuning, hardening, and maintaining security configurations 967

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www.ibm.com/developerworks/websphere/zones/was/security/
http://www.ibm.com/developerworks/websphere/zones/was/security/

Enablement and migration considerations of Security hardening
features
In this release of WebSphere Application Server, more security hardening features of the server are
enabled out-of-the-box by default. When migrating, the settings that were enabled prior to migration are
retained. However, if the features are not enabled after migration you can enable them yourself.

Note: To ensure that WebSphere Application Server configuration is set to be secure by default, the
following defaults have been changed as part of the new security hardening features in WebSphere
Application Server Version 8.0:

v Enablement of Secure Sockets Layer (SSL)-required on Common Secure Interoperability version
2 (CSIv2) transport by default

The following settings for the CSIv2 transport layer exist: TCP/IP for a TCP/IP connection,
SSL-supported for a TCP/IP or an SSL connection, and SSL-required for an SSL connection
only. SSL-required is the new default in this release of WebSphere Application Server. Switching
to SSL-required as the default setting ensures that all CSIv2 connections into and out of the
server are using the secure SSL connection.

v Enablement of the HttpOnly attribute on LTPA cookies by default

When the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property is set to true, the
HttpOnly attribute is added to those security cookies (LTPA and WASReqURL cookies) that are
created by the server. The HttpOnly attribute is a browser attribute created to prevent client side
applications (such as Java scripts) from accessing cookies to prevent some cross-site scripting
vulnerabilities. This attribute is now configurable in the administrative console. Prior to
WebSphere Application Server Version 8.0, the
com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property default was false. For
WebSphere Application Server Version 8.0, the default is now true for both the LTPA cookie and
the Session Cookie.

For more information see the custom property
com.ibm.ws.security.addHttpOnlyAttributeToCookies in the Security custom properties article.

v Enablement of session security integration by default

Only authenticated users can access sessions created in secure pages. The session
management facility uses the security infrastructure to determine the authenticated identity
associated with a client HTTP request, and either retrieves or creates a session. For more
information on session security, read the Session security support article.

Along with enabling session security integration, credential persistence is enabled as well. This
allows login information to be available to unprotected web clients to enable additional access to
user information. For more information on credential persistence, see the "Use available
authentication data when an unprotected URI is accessed" feature in the web authentication
settings article.

Enabling the new security hardening features after migration

If the new security features are not enabled after migration, you can enable them yourself using the
administrative console or by scripting.

Enablement of SSL by default on CSIv2
To enable SSL by default for inbound and outbound transports on CSIv2:

If you are using the administrative console, select Security > Global security > RMI/IIOP > CSIv2
inbound communications. In the Transport box, select SSL- required from the pull-down list and
then click Apply.

Repeat the same steps for CSIv2 outbound communications and click Security > Global security
> RMI/IIOP > CSIv2 outbound communications. In the Transport box, select SSL- required
from the menu list and then click Apply.

968 Securing applications and their environment

If you want to enable SSL by default for inbound and outbound transports on CSIv2 using
scripting, use the configureCSIInbound and configureCSIOutbound commands. See the
Configuring Common Secure Interoperability authentication using scripting topic for more
information.

For the client side, edit the sas.client.props file. Change
com.ibm.CSI.performTransportAssocSSLTLSRequired to true and change
com.ibm.CSI.performTransportAssocSSLTLSSupported to false.

Enablement of the HttpOnly cookie attribute
To enable the HttpOnly attribute on cookies attribute by default:

If you are using the administrative console, click Security > Global security > Custom
properties. Click New and enter com.ibm.ws.security.addHttpOnlyAttributeToCookies for the
Name and true for the Value.

You can also enable the HttpOnly attribute using the administrative console by clicking Security >
Global security > Single sign-on (SSO). Click Set security cookies to HTTPOnly to help
prevent cross-site scripting attacks, and then click Apply.

To enable the HttpOnly attribute on cookies attribute by default using scripting, use the
setAdminActiveSecuritySettings command.

Enablement of session security integration
To enable session security integration for each server by using the administrative console, select
Servers > Server types > WebSphere application servers > <server1> > Session
management. Select the security integration check box.

To enable persisting credentials from the administrative console, click Security > Global security
> Web and SIP security > General settings. Select the Use available authentication data
when an unprotected URI is accessed check box.

Security hardening features enablement troubleshooting

When the new security hardening features are enabled you might see some differences in system
behavior depending upon which environment you might have used in the past.

For example, if you are coming from an environment where CSIv2 transport was set to the previous
default of SSL-supported, you do not experience any differences, as SSL-supported communicates with
both TCP/IP and SSL connections. If a problem is encountered, however, certificates might not have been
exchanged correctly to enable the client and server to communicate. Read about the Secure
communications using Secure Sockets Layer (SSL) topic for more information.

If you worked in an environment where TCP/IP is used for the connection to CSIv2, you might experience
connection problem to the SSL-enabled CSIv2 connection. The server configuration can be modified to
SSL-supported or to TCP/IP if SSL is not required.

For the HttpOnly attribute, when the attribute is added to the security cookies, the browser prevents client
side scripts from accessing these cookies. In most case this should be the default behavior to minimize
cross-site scripting vulnerabilities. If there is an absolute need to allow client-side scripts to access
WebSphere security cookies, and you are aware of the possible consequences, then the setting of the
HttpOnly attribute can be disabled.

However, the HttpOnly attribute can possibly uncover client-side scripts that are used to access
WebSphere cookies, and can then use them even though it was not intended to do so. If this happens, the
web application that enables the scripts to access the WebSphere cookies must be evaluated.

For session security integration enablement, when session integrated security is enabled you might
receive an UnauthorizedSessionRequestException exception on servlets if they access a session that

Chapter 11. Tuning, hardening, and maintaining security configurations 969

belongs to authenticated identities other than to the identity that currently owns the session. If you do not
want this checking to occur, you can disable session security from the server that is experiencing the
problem.

Securing passwords in files
Password encoding and encryption deters the casual observation of passwords in server configuration and
property files.

About this task

The following topics can be used to add protection for passwords located in files:

Procedure
v Encoding passwords in files WebSphere Application Server contains some encoded passwords that are

not encrypted. The PropFilePasswordEncoder utility is included to encode these passwords. For more
information on encoding passwords in a file, see “Encoding passwords in files.”

v Enabling custom password encryption You need to protect passwords that are contained in your
WebSphere Application Server configuration. You can added protection by creating a custom class for
encrypting the passwords. For more information on custom password encryption, see “Enabling custom
password encryption” on page 973.

Encoding passwords in files
The purpose of password encoding is to deter casual observation of passwords in server configuration and
property files. Use the PropFilePasswordEncoder utility to encode passwords stored in properties files.
WebSphere Application Server does not provide a utility for decoding the passwords. Encoding is not
sufficient to fully protect passwords. Native security is the primary mechanism for protecting passwords
used in WebSphere Application Server configuration and property files.

About this task

WebSphere Application Server contains several encoded passwords in files that are not encrypted.
WebSphere Application Server provides the PropFilePasswordEncoder utility, which you can use to
encode passwords. The purpose of password encoding is to deter casual observation of passwords in
server configuration and property files. The PropFilePasswordEncoder utility does not encode passwords
that are contained within XML or XMI files.

Table 155. XML and XMI files that contain encoded passwords. Instead, WebSphere Application Server automatically
encodes the passwords in these files. XML and XMI files that contain encoded passwords include the following:
File name Additional information

profile_root/config/cells/cell_name/security.xml The following fields contain encoded passwords:
v LTPA password
v JAAS authentication data
v User registry server password
v LDAP user registry bind password
v Keystore password
v Truststore password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic authentication
for the run as bindings within all the descriptors

970 Securing applications and their environment

Table 155. XML and XMI files that contain encoded passwords (continued). Instead, WebSphere Application Server
automatically encodes the passwords in these files. XML and XMI files that contain encoded passwords include the
following:
File name Additional information

profile_root/config/cells/cell_name
/nodes/node_name/servers/
server_name/security.xml

The following fields contain encoded passwords:
v Keystore password
v Truststore password
v Session persistence password
v DRS client data replication password

profile_root/config/cells/cell_name
/nodes/node_name/servers/
server_name/resources.xml

The following fields contain encoded passwords:
v WAS40Datasource password
v mailTransport password
v mailStore password
v MQQueue queue mgr password

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

Table 156. The PropFilePasswordEncoder utility - Partial File List. You use the PropFilePasswordEncoder utility to
encode the passwords in properties files. These files include:
File name Additional information

profile_root
/properties/sas.client.props

Specifies the passwords for the following files:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/sas.tools.properties

Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/sas.stdclient.properties

Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/wsserver.key

profile_root/profiles/AppSrvXX/properties/sib.client.ssl.properties Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword

profile_root/UDDIReg/scripts/UDDIUtilityTools.properties Specifies passwords for:
v trustStore.password

To encode a password again in one of the previous files, complete the following steps:

Procedure
1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncoder.bat or the PropFilePasswordEncode.sh file in the profile_root/bin
directory to encode the password again.

If you are encoding files that are not z/SAS properties files, type PropFilePasswordEncoder
"file_name" password_properties_list

Important: When you use the PropFilePasswordEncoder utility, a prompt asks whether a backup
version of the original file is required. If a backup version is required, a backup file (.bak),
is created with the clear text password. Examine the results and then delete this backup
file. It contains the unencrypted password. If you do not want to see this prompt, edit the
PropFilePasswordEncoder utility and add the following Java system property as a
parameter: -Dcom.ibm.websphere.security.util.createBackup=true or
-Dcom.ibm.websphere.security.util.createBackup=false

Chapter 11. Tuning, hardening, and maintaining security configurations 971

A true value for the Java system property creates a backup file and a false value
disables the backup file.

where:

"file_name" is the name of the z/SAS properties file, and password_properties_list is the name of the
properties to encode within the file.

Note: Only the password should be encoded in this file using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files
only. The utility cannot encode passwords that are contained in XML files or other files that contain
open and close tags. To change passwords in these files, use the administrative console or an
assembly tool such as the Rational Application Developer.

Results

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not
provide a utility for decoding the passwords.

The reliance on passwords in configuration files can be minimized on WebSphere Application Server for
z/OS by taking advantage of z/OS-specific features:

v Use a System Authorization Facility (SAF) registry to remove the requirement for a user registry server
password.

v Select SAF authorization and delegation so role-to-user binding passwords are removed.

v Use a RACF keyring for all SSL repertoires, and trust and key file passwords are no longer required.

v Use native connectors, and configure sync-to-thread to possibly remove the need for Java
Authentication and Authorization Service (JAAS) authentication data.

Example

The following example shows how to use the PropFilePasswordEncoder tool:
PropFilePasswordEncoder C:\WASV8\WebSphere\AppServer\profiles\AppSrv\properties
\sas.client.props com.ibm.ssl.keyStorePassword,com.ibm.ssl.trustStorePassword

where:

PropFilePasswordEncoder is the name of the utility that you are running from the profile_root/profiles/
profile_name/bin directory.

C:\WASV6\WebSphere\AppServer\profiles\AppSrv\properties\sas.client.props is the name of the file
that contains the passwords to encode.

com.ibm.ssl.keyStorePassword is a password to encode in the file.

com.ibm.ssl.trustStorePassword is a second password to encode in the file.

PropFilePasswordEncoder command reference
The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.
This command encodes both Secure Authentication Server (SAS) property files and non-SAS property
files. After you encode the passwords, a decoding command does not exist.

To encode passwords, you must run this command from the directory:

v app_server_root/bin

972 Securing applications and their environment

Note: If you need to custom encode passwords in property files, manually edit the
PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file before issuing this command.
See the topic Implementing custom password encryption for a description of the lines that need to
be added to this file.

Syntax

The command syntax is as follows:
PropFilePasswordEncoder "file_name" { passwordPropertiesList | -SAS } { -noBackup | -Backup }

[-profileName profile] [-help | -?]

Parameters

The following option is available for the PropFilePasswordEncoder command:

file_name
This required parameter specifies the name of the file in which passwords are encoded.

passwordPropertiesList
This parameter is required if you are encoding passwords in property files other than the
sas.client.props file. Specify one or more password properties that you want to encode. The
password properties list should be delimited by commas.

-SAS
This parameter is required if you are encoding passwords in the sas.client.props file.

-noBackup
This parameter is optional and the default. The script does not create a backup file. The default value
can be altered by adding following Java System Property:
"-Dcom.ibm.websphere.security.util.createBackup=true".

-Backup
This parameter is optional. The script creates a backup file, <file_name>.bak, which contains
passwords in clear text.

-profileName
This parameter is optional. The profile value specifies an application server profile name. The script
uses the password encoding algorithm that it retrieves from the specified profile. If you do not specify
this parameter, the script uses the default profile.

-help or -?
If you specify this parameter, the script ignores all other parameters and displays usage text.

The following examples demonstrate correct uses of the syntax:

PropFilePasswordEncoder "file_name" password_properties_list
PropFilePasswordEncoder "file_name" -SAS

Enabling custom password encryption
You need to protect passwords that are contained in your WebSphere Application Server configuration.
After creating your server profile, you can added protection by creating a custom class for encrypting the
passwords.

Before you begin

Create your custom class for encrypting passwords. For more information, see “Plug point for custom
password encryption” on page 907.

Chapter 11. Tuning, hardening, and maintaining security configurations 973

About this task

Complete the following steps to enable custom password encryption.

Procedure
1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument
preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=
com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Tip: If the custom encryption class name is
com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when
this class is present in the classpath. Do not define the system properties that are listed
previously when the custom implementation has this package and class name. To disable
encryption for this class, you must specify
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system property.

2. Choose one of the following methods to configure the WebSphere Application Server runtime to load
the custom encryption implementation class:

v Place the custom encryption class in a Java archive (JAR) file that resides in the
${WAS_INSTALL_ROOT}/classes directory, which you have created.

gotcha: WebSphere Application Server does not create the ${WAS_INSTALL_ROOT}/classes directory.
For more information on the classes directory, see the topic, "Creating a classes
subdirectory in your profile for custom classes".

v Place the custom encryption class in a Java archive (JAR) file that resides in the
${WAS_HOME}/lib/ext directory.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password
fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is
enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even
though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except
for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder
(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system
properties in the script to encrypt new passwords instead of encoding them.

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as
system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this
function. The order in which enablement occurs is important. When adding a new node to a cell that
contains password encryption, the new node must contain the custom encryption classes prior to using
the addNode command. Consider the following WebSphere Application Server, Network Deployment
enablement scenarios:

a. The StandAloneProfile profile is encrypting passwords with a different key prior to federation to a
deployment manager cell. For this scenario, you must uninstall custom password encryption to
ensure that the configuration has {xor} tags preceding the passwords prior to running the addNode
command. The same implementation of the plug point must be in the /classes directory prior to
running the addNode command, and the proper configuration properties are set so that the new
node can recognize the encrypted password format of the security.xml file after federation
completes.

b. The StandAloneProfile profile does not have password encryption configured prior to federation to
a deployment manager cell. The same implementation of the plug point must be in the /classes

974 Securing applications and their environment

directory prior to running the addNode command, and the proper configuration properties are set
so that the new node can recognize the encrypted password format of the security.xml file after
federation completes.

c. If enabling custom password encryption in a cell with multiple nodes present, update the correct
configuration properties and have the custom password encryption implementation class located on
all nodes. Stop all processes in the cell, and then start the deployment manager. Use the
administrative console to edit the security configuration and then save it. Verify that the passwords
are encrypted by looking at the security.xml file to see if the passwords are preceded by
{custom:alias} tags.

d. Run the syncNode command on each node, and start each one individually. If any nodes fail to
start, make sure that they have custom password encryption enabled properly in each
security.xml file and that the implementation class is in the appropriate /classes directory for the
platform.

Results

Custom password encryption is enabled.

What to do next

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption
If custom password encryption fails or is no longer required, perform this task to disable custom password
encryption.

Before you begin

Enable custom password encryption.

About this task

Complete the following steps to disable custom password encryption.

Procedure
1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in

the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass
property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted
by using the customer password encryption class.

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To
recover a password, retype the password in the password field in plaintext and save the document.
The new password must be written out using encoding with the {xor} tag with scripting or from the
administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=
com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

4. Edit each configuration document that contains an encrypted password and save the configuration. All
password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the
presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after
the documents are saved.

Chapter 11. Tuning, hardening, and maintaining security configurations 975

5. Decrypt and encode any passwords that are in client-side property files using the
PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom
encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}
tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the
system properties listed previously to all client scripts. This action enables the code to decrypt
passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default
for encoding. Leave the custom password encryption class defined for a time in case any encrypted
passwords still exist in the configuration.

Results

Custom password encryption is disabled.

976 Securing applications and their environment

Chapter 12. Troubleshooting security configurations

The following topics help to troubleshoot specific problems that are related to configuring and enabling
security configurations.

About this task

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors that are
related to security.

Refer to SPNEGO TAI troubleshooting tips for instructions on how to troubleshoot errors that are related to
diagnosing Simple and Protected GSS-API Negotiation (SPNEGO) trust association interceptor (TAI)
problems and exceptions.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to provide
dynamic reload of the SPNEGO filters and to enable fallback to the application login method.

Procedure
v Errors when configuring or enabling security

v Errors after enabling security

v Access problems after enabling security

v Errors after configuring or enabling Secure Sockets Layer

v Single sign-on configuration troubleshooting tips

v Authorization provider troubleshooting tips

Security components troubleshooting tips
This document explains basic resources and steps for diagnosing security-related issues in WebSphere
Application Server.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Basic resources and steps for diagnosing security-related issues in WebSphere Application Server include:
v What to look at and what to look for “Using SDSF” on page 978.
v “General approach for troubleshooting security-related issues” on page 978 to isolating and resolving

security problems.
v When and how to “Trace security” on page 985. Setting up component trace (CTRACE) is a topic that

will aid your tracing activity.

The following security-related problems are addressed elsewhere in the information center:
v Errors and access problems after enabling security

© IBM Corporation 2005, 2006 977

After enabling security, a degradation in performance is realized. For more information about using
unrestricted policy files, see the Enabling security for the realm section of the Securing applications and
their environment PDF book.

v Errors after enabling SSL, or SSL-related error messages

If none of these steps solves the problem, check to see if the problem is identified and documented using
the links in the Diagnosing and fixing problems: Resources for learning article.

For an overview of WebSphere Application Server security components such as Secure Authentication
Services for z/OS (z/SAS) and how they work, refer to the Securing applications and their environment
PDF book..

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Using SDSF

When troubleshooting the security component, use System Display and Search Facility (SDSF) to browse
logs for the server that hosts the resource you are trying to access. The following sample of messages
helps you see from a server in which the security service has started successfully:

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful:
Does the problem occur when security is disabled?

This question is a good litmus test to determine that a problem is security related. However, just
because a problem only occurs when security is enabled does not always make it a security
problem. More troubleshooting is necessary to ensure the problem is really security-related.

Did security seem to initialize properly?
A lot of security code is visited during initialization. So you can see problems there first if the
problem is configuration related.
SASRas A CWWSA0001I: Security configuration initialized.
SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM
SASRas A CWWSA0003I: Authentication mechanism: SWAM
SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk
SASRas A CWWSA0005I: SecurityCurrent registered.
SASRas A CWWSA0006I: Security connection interceptor initialized.
SASRas A CWWSA0007I: Client request interceptor registered.
SASRas A CWWSA0008I: Server request interceptor registered.
SASRas A CWWSA0009I: IOR interceptor registered.
NameServerImp I CWNMS0720I: Do Security service listener registration.
SecurityCompo A CWSCJ0242A: Security service is starting
UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.
NTLocalDomainRegistryImpl has been initialized
SecurityCompo A CWSCJ0202A: Admin application initialized successfully
SecurityCompo A CWSCJ0203A: Naming application initialized successfully
SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully
SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully
SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code
initialization of an application server. Non-security messages have been removed from the
sequence that follows. This sequence will vary based on the configuration, but the messages are
similar:

Trace: 2005/05/06 17:27:31.539 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: printProperties
SourceId: com.ibm.ws390.orb.CommonBridge
Category: AUDIT

978 Securing applications and their environment

ExtendedMessage: BBOJ0077I java.security.policy =
/WebSphere/V6R1M0/AppServer/profiles/default/pr

Trace: 2005/05/06 17:27:31.779 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: printProperties
SourceId: com.ibm.ws390.orb.CommonBridge
Category: AUDIT
ExtendedMessage: BBOJ0077I java.security.auth.login.config =

/WebSphere/V6R1M0/AppServer/profiles/default/pr
Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.SecurityDM
SourceId: com.ibm.ws.security.core.SecurityDM
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0231I: The Security component’s FFDC

Diagnostic Module com.ibm.ws.security.core.Secur
red successfully: true.
Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0231I: The Security component’s FFDC

Diagnostic Module com.ibm.ws.security.core.Securit
d successfully: true.
Trace: 2005/05/06 17:27:41.054 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.audit.AuditServiceImpl
SourceId: com.ibm.ws.security.audit.AuditServiceImpl
Category: AUDIT
ExtendedMessage: BBOO0222I: SECJ6004I: Security Auditing is disabled.

Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl
SourceId: com.ibm.ws.security.core.distSecurityComponentImpl
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

Trace: 2005/05/06 17:27:42.239 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.auth.login.Configuration
SourceId: com.ibm.ws.security.auth.login.Configuration
Category: AUDIT
ExtendedMessage: BBOO0222I: SECJ0215I: Successfully set JAAS login

provider configuration class to com.ibm.ws.securit
Configuration.
Trace: 2005/05/06 17:27:42.253 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl
SourceId: com.ibm.ws.security.core.distSecurityComponentImpl
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

successfully pushed to login provider clas
Trace: 2005/05/06 17:27:42.254 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

successfully pushed to login provider class.
Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl
SourceId: com.ibm.ws.security.core.distSecurityComponentImpl
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0240I: Security service initialization

completed successfully
Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0240I: Security service initialization

completed successfully
Trace: 2005/05/06 17:27:42.952 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.objectpool.ObjectPoolService
SourceId: com.ibm.ws.objectpool.ObjectPoolService
Category: INFO
ExtendedMessage: BBOO0222I: OBPL0007I: Object Pool Manager service

is disabled.
Trace: 2005/05/06 17:27:53.512 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.registry.UserRegistryImpl
SourceId: com.ibm.ws.security.registry.UserRegistryImpl
Category: AUDIT
ExtendedMessage: BBOO0222I: SECJ0136I: Custom

Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl
has been init

Chapter 12. Troubleshooting security configurations 979

Trace: 2005/05/06 17:27:55.229 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.role.PluggableAuthorizationTableProxy
SourceId: com.ibm.ws.security.role.PluggableAuthorizationTableProxy
Category: AUDIT
ExtendedMessage: BBOO0222I: SECJ0157I: Loaded Vendor

AuthorizationTable: com.ibm.ws.security.core.SAFAuthorizationTab
Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl
SourceId: com.ibm.ws.security.core.distSecurityComponentImpl
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0243I: Security service started successfully

Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0243I: Security service started successfully

Trace: 2005/05/06 17:27:56.482 01 t=8E96E0 c=UNK key=P8 (13007002)
ThreadId: 0000000a
FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl
SourceId: com.ibm.ws.security.core.distSecurityComponentImpl
Category: INFO
ExtendedMessage: BBOO0222I: SECJ0210I: Security enabled true

Trace: 2005/05/06 17:27:56.483 01 t=8E96E0 c=UNK key=P8 (0000000A)
Description: Log Boss/390 Error
from filename: ./bborjtr.cpp
at line: 932
error message: BBOO0222I: SECJ0210I: Security enabled true

Is there a stack trace or exception printed in the system log file?
A single stack trace tells a lot about the problem. What code initiated the code that failed? What is
the failing component? Which class did the failure actually come from? Sometimes the stack trace
is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can
only give us a clue, and can actually be misleading. When support analyzes a stack trace, they
can request additional trace if it is not clear what the problem is. If it seems to be security-related
and the solution cannot be determined from the stack trace or problem description, you are asked
to gather the following trace specification:
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled from all processes involved.

Is this a distributed security problem or a local security problem?
v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is
local versus distributed because the behavior of the object request broker (ORB), among other
components, is different between the two. When a remote method invocation takes place, an
entirely different security code path is entered.

v When you know that the problem involves two or more servers, the techniques of
troubleshooting change. You need to trace all the servers involved simultaneously so that the
trace shows the client and server sides of the problem. Make sure the timestamps on all
machines match as closely as possible so that you can find the request and reply pair from two
different processes. Enable both Secure Authentication Services (SAS) or z/SAS and Security
trace using the trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see the Tracing and logging configuration article.

For more information on enabling trace, see Working with Trace.
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of
determining who the caller is. Authorization is the process of validating that the caller has the
proper authority to invoke the requested method. When authentication fails, typically this failure is
related to either the authentication protocol, authentication mechanism or user registry. When
authorization fails, this is usually related to the application bindings from assembly and deployment
and to the caller's identity who is accessing the method and the roles that are required by the
method.

Is this a web or EJB request?

Web requests have a completely different code path than Enterprise JavaBeans (EJB) requests.
Different security features exist for web requests than for EJB requests, requiring a completely
different body of knowledge to resolve. For example, when using the Lightweight Third-Party
Authentication (LTPA) authentication mechanism, the single sign-on feature (SSO) is available for
web requests but not for EJB requests. Web requests involve HTTP header information that is not

980 Securing applications and their environment

required by EJB requests due to the protocol differences. Also, the web container or servlet engine
is involved in the entire process. Any of these components can be involved in the problem and all
require consideration during troubleshooting, based on the type of request and where the failure
occurs.

Secure EJB requests are passed from the controller to the servant. Web requests are mostly
ignored by the controller. As a result, EJB requests are first processed and authenticated by the
zSAS or Common Security Interoperability Version 2 (CSIv2) layers of security. Authorization is
done by the servant. If an authentication failure occurs, the zSAS type level of tracing must be
turned on to diagnose the problem. Other problems can be diagnosed using the WebSphere
Application Server component tracing (CTRACE) facility.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

SSL is a totally distinct separate layer of security. Troubleshooting SSL problems is usually
separate from troubleshooting authentication and authorization problems, and you have many
considerations. Usually, SSL problems are first-time setup problems because the configuration can
be difficult. Each client must contain the signer certificate of the server. During mutual
authentication, each server must contain the client's signer certificate. Also, there can be protocol
differences (SSLv3 vs. Transport Layer Security (TLS)), and listener port problems related to stale
Interoperable Object References (IORs), that is IORs from a server, that reflect the port prior to the
server restarting.

In z/OS, two variations of SSL are used. To determine the cause of an SSL problem on z/OS, you
have to be aware of what protocol is being used.
v System SSL is used by the Internet Inter-ORB Protocol (IIOP) and HTTPS protocols
v Java Secure Socket Extension (JSSE) is used by all other protocols, for example, SOAP.
v System SSL requests are handled in the controller and are used by z/SAS and CSIv2 security.
v SJSSE is predominately used by the servant, but cases exist where JSSE is used in the

controller as well.

For SSL problems, sometimes you get a request for an SSL trace to determine what is happening
with the SSL handshake. The SSL handshake is the process that occurs when a client opens a
socket to a server. If anything goes wrong with the key exchange, cipher exchange, and so on, the
handshake fails and the socket is not valid. Tracing JSSE (the SSL implementation that is used in
WebSphere Application Server) involves the following steps:
v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add the system property to the generic JVM arguments property of the JVM
settings page. For more information on this task, refer to Java virtual machine settings section
of the Administering applications and their environment PDF book.

v Recreate the problem.

The SYSOUT data set for the region's started task contains the JSSE trace. Using SDSF, this
trace is similar to the following:

JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2139,localport=8878]]
JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2140,localport=8878]]
TrustManagerFactoryImpl: trustStore is :
/WebSphere/V6R10M0/AppServer/etc/DummyServerTrustFile.jks
TrustManagerFactoryImpl: trustStore type is : JKS
TrustManagerFactoryImpl: init truststore
JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2142,localport=8878]]
KeyManagerFactoryImpl: keyStore is :
/WebSphere/V6R1M0/AppServer/etc/DummyServerKeyFile.jks
KeyManagerFactoryImpl: keyStore type is : JKS
KeyManagerFactoryImpl: init keystore
KeyManagerFactoryImpl: init keystore
JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2143,localport=8878]]
JSSEContext: handleSession[Socket
[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,localport=2145]]
JSSEContext: confirmPeerCertificate
[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,
localport=2145]]
X509TrustManagerImpl: checkServerTrusted
X509TrustManagerImpl: Certificate [
[

Chapter 12. Troubleshooting security configurations 981

Version: V3
Subject: CN=jserver, OU=SWG, O=IBM, C=US
Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:
modulus:
10094996692239509074796828756118539107568369566313889955538950668
6622953008589748001058216362638201577071902071311277365773252660799
128781182947273802312699983556527878615792292244995317112436562491
489904381884265119355037731265408654007388863303101746314438337601
264540735679944205391693242921331551342247891
public exponent:
65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

To: Thu Mar 17 20:08:18 GMT 2005]
Issuer: CN=jserver, OU=SWG, O=IBM, C=US
SerialNumber: [3d1387b2]

0]
Algorithm: [MD5withRSA]
Signature:

0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1
0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25L..nK.G...%
0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..
0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72!J.,...0.tr
0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79;d....../y
0]
X509TrustManagerImpl: Certificate [
[
Version: V3
Subject: CN=jserver, OU=SWG, O=IBM, C=US
Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:
modulus:
1009499669223950907479682875611853910756836956631388995553895066866
22953008589748001058216362638201577071902071311277365773252660799
1287811829472738023126999835565278786157922922449953171124365624914
89904381884265119355037731265408654007388863303101746314438337601
264540735679944205391693242921331551342247891
public exponent:
65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

To: Thu Mar 17 20:08:18 GMT 2005]
Issuer: CN=jserver, OU=SWG, O=IBM, C=US
SerialNumber: [3d1387b2]

0]
Algorithm: [MD5withRSA]
Signature:

0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1
0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25L..nK.G...%
0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..
0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72!J.,...0.tr
0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79;d....../y
0]
JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=2144,localport=8878]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2145]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2146]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2147]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2148]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2149]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2150]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2151]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2152]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2153]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2154]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2155]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2156]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2157]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2158]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2159]]

982 Securing applications and their environment

JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2160]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2161]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2162]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2163]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2164]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2165]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2166]]

JSSEContext: handleSession[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
JSSEContext: confirmPeerCertificate[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
X509TrustManagerImpl: checkServerTrusted
X509TrustManagerImpl: Certificate [
[
Version: V3
Subject: CN=WAS z/OS Deployment Manager, O=IBM
Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

0 Key: IBMJCE RSA Public Key:
modulus:
12840948267119651469312486548020957441946413494498370439558603901582589
8755033448419534105183133064366466828741516428176579440511007
6258795528749232737808897160958348495006972731464152299032614592135114
19361539962555997136085140591098259345625853617389396340664766
649957749527841107121590352429348634287031501
public exponent:
65537
0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,

To: Mon Jul 26 04:59:59 GMT 2004]
Issuer: CN=WAS CertAuth, C=US
SerialNumber: [02]

0Certificate Extensions: 3
[1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false
Extension unknown: DER encoded OCTET string =
0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by
0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S
0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f
0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)
-[2]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 05 6A CD 7F AE AF 89 78 99 A8 F1 5B 64 8B 9F AF .j.....x...[d...
0010: 73 1B 58 65 s.Xe
]
]
0[3]: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8t......3....
0010: 36 51 57 16 6QW.
]
0]
0]

Algorithm: [SHA1withRSA]
Signature:

0000: 73 0D FC E1 8A B3 42 E1 04 73 72 B1 C6 C9 87 54 s.....B..sr....T
0010: 87 57 02 FA 41 32 D8 B0 39 09 86 CB 6B 03 B6 F9 .W..A2..9...k...
0020: 62 8D 95 36 56 0E D4 D2 F7 7A 8D 4B FB 0B FD 91 b..6V....z.K....
0030: 89 A8 08 41 30 E2 27 DC 15 5F 2C F4 CD 2F 6B 8E ...A0.’.._,../k.
0040: 21 2A 88 53 46 27 68 9B 55 14 38 8E 1F 50 95 BC !*.SF’h.U.8..P..
0050: A8 46 F6 68 97 9E 7B 65 9E E8 A7 34 B2 C8 63 CF .F.h...e...4..c.
0060: 73 C8 4E 25 0A EF C5 8F 04 A4 EB 8C CC 33 84 26 s.N%.........3.&
0070: 5D FD 7C AD 7B 02 13 5A 86 A1 89 93 1E A4 93 63]......Z.......c
0]
X509TrustManagerImpl: Certificate [
[
Version: V3
Subject: CN=WAS CertAuth, C=US
Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

0 Key: IBMJCE RSA Public Key:
modulus:
1167408593733331602218385578183389496484587418638676352829560040529918
40558681208199977833401609895748222369066230329785148883251144
2382911186804921983976695395381692334250582278359056431484427844566504
41491799952592864895242987037929408453455627552772317382077015
828713585220212502839546496071839496308430393
public exponent:
65537
0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,

To: Sat Jul 24 04:59:59 GMT 2010]
Issuer: CN=WAS CertAuth, C=US
SerialNumber: [0]

0Certificate Extensions: 4

Chapter 12. Troubleshooting security configurations 983

[1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false
Extension unknown: DER encoded OCTET string =
0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by
0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S
0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f
0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)
-[2]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8t......3....
0010: 36 51 57 16 6QW.
]
]
0[3]: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
Key_CertSign
Crl_Sign

]
0[4]: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
CA:true
PathLen:2147483647
]
0]

Algorithm: [SHA1withRSA]
Signature:

0000: 43 88 AB 19 5D 00 54 57 5E 96 FA 85 CE 88 4A BF C...].TW^.....J.
0010: 6E CB 89 4C 56 BE EF E6 8D 2D 74 B5 83 1A EF 9C n..LV....-t.....
0020: B3 82 F2 16 84 FA 5C 50 53 2A B4 FD EB 27 98 5D\PS*...’.]
0030: 43 48 D3 74 85 21 D1 E1 F2 63 9E FB 58 2A F3 6A CH.t.!...c..X*.j
0040: 44 D2 F5 7D B2 55 B9 5E 32 11 78 B6 34 8E 4B 1D D....U.^2.x.4.K.
0050: F3 82 1D C1 5F 7B 3F AD C9 29 FA FF D1 D1 13 2C_.?..).....,
0060: 57 F7 7B 51 02 99 6F ED 54 E1 51 34 B8 51 BE 97 W..Q..o.T.Q4.Q..
0070: 30 AC 4F 89 AB AA 8A B2 E1 40 89 2E 18 C7 0E 15 0.O......@......
0]
JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2168]]

JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=2235,localport=8878]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2236]]
JSSEContext: handleSession[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8880,localport=2238]]
JSSEContext: confirmPeerCertificate[Socket
[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8880,localport=2238]]
X509TrustManagerImpl: checkServerTrusted
X509TrustManagerImpl: Certificate [

[
Version: V3
Subject: CN=jserver, OU=SWG, O=IBM, C=US
Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:
modulus:
100949966922395090747968287561185391075683695663138899555389506686622953
008589748001058216362638201577071902071311277365773252660799
1287811829472738023126999835565278786157922922449953171124365624914
89904381884265119355037731265408654007388863303101746314438337601
264540735679944205391693242921331551342247891
public exponent:
65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

To: Thu Mar 17 20:08:18 GMT 2005]
Issuer: CN=jserver, OU=SWG, O=IBM, C=US
SerialNumber: [3d1387b2]

0]
Algorithm: [MD5withRSA]
Signature:

0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1
0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25L..nK.G...%
0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..
0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72!J.,...0.tr
0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79;d....../y
0]
X509TrustManagerImpl: Certificate [
[
Version: V3
Subject: CN=jserver, OU=SWG, O=IBM, C=US
Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:
modulus:
100949966922395090747968287561185391075683695663138899555389506
686622953008589748001058216362638201577071902071311277365773252660799

984 Securing applications and their environment

12878118294727380231269998355652787861579229224499531711243656249
1489904381884265119355037731265408654007388863303101746314438337601
264540735679944205391693242921331551342247891
public exponent:
65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

To: Thu Mar 17 20:08:18 GMT 2005]
Issuer: CN=jserver, OU=SWG, O=IBM, C=US
SerialNumber: [3d1387b2]

0]
Algorithm: [MD5withRSA]
Signature:

0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1
0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25L..nK.G...%
0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..
0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72!J.,...0.tr
0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79;d....../y
0]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2238]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2239]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2240]]
JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2241]]

Trace security

The classes that implement WebSphere Application Server security are:
v com.ibm.ws.security.*
v com.ibm.websphere.security.*
v com.ibm.WebSphereSecurityImpl.*
v com.ibm.ws.wim.* for tracing with a Virtual Member Manager (VMM) repository
Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than
com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can
specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can
specify com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or z/SAS Trace Settings
Situations arise where reviewing trace for the CSIv2 and z/SAS authentication protocols can assist
in troubleshooting difficult problems. This section describes how to enable to CSIv2 and z/SAS
trace.
Enabling Client-Side CSIv2 and z/SAS Trace

To enable CSIv2 and z/SAS trace on a pure client, the following steps need to be taken:
v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties

directory.
v In this file, change traceFileName= to point to the path in which you want the ouput file

created. Make sure you put a double backslash (\\) between each subdirectory. For
example, traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string: SASRas=all=enabled. Any additional trace
strings can be added on separate lines.

v Point to this file from within your client application. On the Java command line where
you launch the client, add the following system property:
-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make
sure that the TraceSettings.properties file is in your class path.

Enabling Server-Side CSIv2 and z/SAS Trace
To enable z/SAS trace in an application server, complete the following:
v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the administrative console.

Chapter 12. Troubleshooting security configurations 985

v Typically it is best to also trace the authorization security runtime in addition to the
authentication protocol run time. To do this, use the following two trace specifications in
combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2
and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace
specifications:
SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of
system properties that also need to be set. To set these properties, click Servers >
Server Types > WebSphere application servers > server_name > Container
services > ORB service. Select the ORB tracing option. This option sets two
properties that you had to manually set in a previous release. For more information, see
the Object Request Broker service settings topic.

CSIv2 CORBA minor codes

Whenever exceptions occur within the security code on either the client or server, the eventual exception
becomes a Common Object Request Broker Architecture (CORBA) exception. Any exception that occurs
gets embedded in a CORBA exception because the CORBA architecture is used by the security service
for its own inter-process communication. CORBA exceptions are generic and indicate a problem in
communication between two components. CORBA minor codes are more specific and indicate the
underlying reason that a component could not complete a request.

The following shows the CORBA minor codes that a client can expect to receive after running a
security-related request such as authentication. It also includes the CORBA exception type that the minor
code appears in.

The following exception shows an example of a CORBA exception where the minor code is 49424300 and
indicates Authentication Failure. Typically, a descriptive message is also included in the exception to assist
in troubleshooting the problem. Here, the detailed message is: "Exception caught invoking
authenticateBasicAuthData from SecurityServer for user jdoe. Reason:
com.ibm.WebSphereSecurity.AuthenticationFailedException" which indicates that the authentication failed
for user jdoe.

The completed field in the exception indicates whether the method was completed or not. In the case of a
NO_PERMISSION, never invoke the message; therefore it is always completed:No. Other exceptions that
are caught on the server side can have a completed status of "Maybe" or "Yes".
org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in
WSSecurityContext.acceptSecContext(),
reason: Major Code[0] Minor Code[0] Message[Exception caught invoking
authenticateBasicAuthData from SecurityServer for user jdoe. Reason:
com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300
completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.
map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request
(CSIServerRI.java:1569)

at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest
(InterceptorManager.java:739)

at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)
at com.ibm.rmi.iiop.ORB.process(ORB.java:313)
at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)
at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)
at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)
at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)
at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

986 Securing applications and their environment

Table 157. CORBA minor codes after running a security-related request such as authentication. The following table
shows the CORBA minor codes which a client can expect to receive after running a security-related request such as
authentication. The client can be either a stand-alone client or a server acting as a client. It also includes the CORBA
exception type that the minor code would appear in.
Minor code name Minor code

value (in
hex)

Exception type (all in
the package of
org.omg.CORBA .*)

Minor code description Retry performed by
stand-alone client (when
authenticationRetryEnabled =
true)

Retry performed by server acting as a client (when authenticationRetryEnabled = true

AuthenticationFailed 49424300 NO_PERMISSION This code is a generic
authentication failed error. It
does not give any details about
whether or not the user ID or
password is valid. Some user
registries can choose to use
this type of error code, others
can choose to use the next
three types that are more
specific.

Yes Yes

InterceptLocateException 494210B8 INTERNAL This indicates a problem when
processing an incoming locate
request.

No No

InvalidUserid 49424301 NO_PERMISSION This code occurs when the
registry returns bad user ID.

Yes No

InvalidPassword 49424302 NO_PERMISSION This code occurs when the
registry returns a bad
password.

Yes No

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic error
indicating that the credentials
are bad for some reason. It
might be that the right attributes
are not set.

Yes, if client has BasicAuth
credential (token based
credential was rejected in the
first place).

Yes

InvalidRealm 49424304 NO_PERMISSION This code occurs when the
REALM in the token received
from the client does not match
the server's current realm.

No No

ValidationFailed 49424305 NO_PERMISSION A validation failure occurs when
a token is sent from the client
or server to a target server but
the token format or the
expiration is not valid.

Yes, if client has BasicAuth
credential (token based
credential was rejected in the
first place).

Yes

CredentialTokenExpired 49424306 NO_PERMISSION This code is more specific
about why the validation failed.
In this case, the token has an
absolute lifetime and the
lifetime has expired. Therefore,
it is no longer a valid token and
cannot be used.

Yes, if client has BasicAuth
credential (token based
credential was rejected in the
first place).

Yes

InvalidCredentialToken 49424307 NO_PERMISSION This is more specific about why
the validation failed. In this
case, the token cannot be
decrypted or the data within the
token is not readable.

Yes, if client has BasicAuth
credential (token based
credential was rejected in the
first place).

No

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that the CSIv2
session does not exist on the
server. Typically, a retry occurs
automatically and successfully
creates a new session.

Yes Yes

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that a session
already exists on the server
that matches the context_id
sent over by the client.
However, the information
provided by the client for this
EstablishContext message is
different from the information
originally provided to establish
the session.

Yes Yes

Chapter 12. Troubleshooting security configurations 987

Table 157. CORBA minor codes after running a security-related request such as authentication (continued). The
following table shows the CORBA minor codes which a client can expect to receive after running a security-related
request such as authentication. The client can be either a stand-alone client or a server acting as a client. It also
includes the CORBA exception type that the minor code would appear in.
Minor code name Minor code

value (in
hex)

Exception type (all in
the package of
org.omg.CORBA .*)

Minor code description Retry performed by
stand-alone client (when
authenticationRetryEnabled =
true)

Retry performed by server acting as a client (when authenticationRetryEnabled = true)

SessionRejected 4942430A NO_PERMISSION This indicates that the session
referenced by the client has
been previously rejected by the
server.

Yes Yes

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs when the
server cannot contact the local
or remote security server in
order to authenticate or
validate.

No No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates that identity
cannot be obtained from the
identity token when Identity
Assertion is enabled.

No No

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that the server ID
of the sending server is not on
the target server's trusted
principal list.

No No

InvalidMessage 4942430E NO_PERMISSION This indicates that the CSIv2
message format is not valid for
the receiving server.

No No

MappingFailed 4942430F NO_PERMISSION This indicates an error occurred
mapping an inbound subject
using the RMI Inbound system
login configuration.

No No

RevokedSecurityName 49424310 NO_PERMISSION This indicates that the user id is
revoked.

Yes No No

ExpiredPassword 49424311 NO_PERMISSION This indicates that the
password is expired.

Yes No No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs when a
mechanism does not support
authentication (very rare).

No No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to indicate that the
specified security mechanism is
not known.

No No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a credential is
not available when it is
required.

No No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs when a
security mechanism that is
specified in the CSIv2 token is
not implemented on the server.

No No

ValidationNotSupported 49421094 NO_PERMISSION This error occurs when a
mechanism does not support
validation, such as LocalOS.
This error does not occur since
the LocalOS credential is not a
forwardable credential,
therefore, validation never
needs to be called on this
credential.

No No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to indicate that the
token inside the credential is
null.

No No

InvalidEvidence 49421096 NO_PERMISSION This error indicates that client
authentication is required at the
server. However, authentication
information is not present in the
method request from the client.

No No

988 Securing applications and their environment

Table 157. CORBA minor codes after running a security-related request such as authentication (continued). The
following table shows the CORBA minor codes which a client can expect to receive after running a security-related
request such as authentication. The client can be either a stand-alone client or a server acting as a client. It also
includes the CORBA exception type that the minor code would appear in.
Minor code name Minor code

value (in
hex)

Exception type (all in
the package of
org.omg.CORBA .*)

Minor code description Retry performed by
stand-alone client (when
authenticationRetryEnabled =
true)

Retry performed by server acting as a client (when authenticationRetryEnabled = true

UserRegistryMethod_Protected 49421098 NO_PERMISSION This error indicates that an
attempt was made to remotely
access a protected
UserRegistry method.

No No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used when a
connection attempt fails.

Yes (via ORB retry) Yes (via ORB retry)

CorbaSystemException 494210B0 INTERNAL This code is a generic CORBA
specific exception in system
code.

No No

JavaException 494210B1 INTERNAL This is a generic error that
indicated that an unexpected
Java exception occurred.

No No

ValueIsNull 494210B2 INTERNAL This code is used to indicate
that a value or parameter that
passed in is null.

No No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that an effective
policy object for CSIv2 is not
present. This object is used to
determine what security
configuration features are
specified.

No No

NullPointerException 494210B4 INTERNAL This code is used to indicate
that a NullPointerException is
caught in the runtime.

No No

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a problem
loading a class dynamically.

No No

MalFormedParameters 494210B6 INTERNAL This indicates parameters are
not valid.

No No

DuplicateSecurityAttributeType 494210B7 INTERNAL This indicates a duplicate
credential attribute that is
specified during the
set_attributes operation.

No No

MethodNotImplemented 494210C0 NO_IMPLEMENT This indicates that a method
invoked is not implemented.

No No

GSSFormatError 494210C5 BAD_PARAM This code indicates that a
Generic Security Services
(GSS) encoding or decoding
routine has created an
exception.

No No

TagComponentFormatError 494210C6 BAD_PARAM This code indicates that a tag
component cannot be read
properly.

No No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This code indicates an attribute
type specified during the
set_attributes operation is not a
valid type.

No No

SecurityConfigError 494210CA INITIALIZE This code indicates a problem
exists between the client and
server configuration.

No No

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Chapter 12. Troubleshooting security configurations 989

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

Security configuration and enablement errors
Use this information to troubleshoot problems with configuring or enabling security.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What kind of error are you seeing?
v “"LTPA password not set. validation failed" message displayed as error in the administrative console

after saving administrative or application security settings ”
v “The setupClient.bat or setupClient.sh file is not working correctly”
v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 991
v If you successfully configured security, but are now having problems accessing web resources or the

administrative console, refer to Errors or access problems after enabling security.
v “NMSV0610I: A NamingException is being thrown from a javax.naming.Context implementation” on page

991
v “When administrative security is enabled but application security is not enabled, the performance servlet

displays authorization errors and cannot provide statistics” on page 991
v “"Name value is invalid" displays when migrating users and groups after the JACC provider for Tivoli is

configured” on page 992
v “A Sun JDK can not read a PKCS12 keystore created by the Application Server” on page 992
v “Calling a secure resource from a non-secure resource is not supported when the non-secure resource

collects data from users and then posts this data to the secure resource” on page 992

"LTPA password not set. validation failed" message displayed as error in the
administrative console after saving administrative or application security settings

This error can be caused if, when configuring WebSphere Application Server security, LTPA is selected as
the authentication mechanism and the LTPA password field is not set. To resolve this problem:
v Select Security > Global security > Authentication mechanisms and expiration >LTPA .
v Complete the password and confirm password fields.
v Click OK.
v Try setting administrative or application security again.

The setupClient.bat or setupClient.sh file is not working correctly

The setupClient.bat file on Windows operating systems and the setupClient.sh file on Linux and
UNIX-based platforms incorrectly specify the location of the SOAP security properties file.

In the setupClient.sh file, the CLIENTSOAP variable is:
CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:$WAS_HOME/properties/soap.client.props

In the setupClient.bat and the setupClient.sh files, complete the following steps:
1. Remove the leading slash (/) after file:.
2. Change sas to soap.

990 Securing applications and their environment

WebSphere Application Server Version 6 is not working correctly with Enterprise
Workload Manager™ (EWLM)

To use WebSphere Application Server Version 6 with EWLM, you must manually update the WebSphere
Application Server server.policy files. For example:
grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {
permission java.security.AllPermission;
};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

For more information on configuring server.policy files, refer to the server.policy file permissions section in
the Developing and deploying applications PDF book.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

NMSV0610I: A NamingException is being thrown from a javax.naming.Context
implementation

If you use CSIv2 inbound authentication, basic authentication is required, and Java clients running with
com.ibm.CORBA.validateBasicAuth=true might fail with the following exception:
If you use CSIv2 inbound authentication, basic authentication is required, and Java™

clients running with com.ibm.CORBA.validateBasicAuth=true might fail with the
following exception:

NMSV0610I: A NamingException is being thrown from a javax.naming.Context
implementation. Details follow:

Context implementation: com.ibm.ws.naming.jndicos.CNContextImpl
Context method: lookupExt
Context name: TestaburgerNode01Cell/nodes/TestaburgerNode01/servers/server1
Target name: SecurityServer
Other data: ""
Exception stack trace: javax.naming.NoPermissionException: NO_PERMISSION
exception caught. Root exception is org.omg.CORBA.NO_PERMISSION:
vmcid: 0x49421000 minor code: 92 completed: No
...
SECJ0395E: Could not locate the SecurityServer at host/port:9.42.72.27/9100
to validate the userid and password entered. You may need to specify valid
securityServerHost/Port in (WAS_INSTALL_ROOT)/properties/sas.client.props file.

To fix this problem, modify the com.ibm.CORBA.validateBasicAuth=false property in the client's
sas.clients.props file, which is located in WAS_HOME/profiles/<profile-name>/properties, and then run
the client.

When administrative security is enabled but application security is not enabled,
the performance servlet displays authorization errors and cannot provide statistics

In WebSphere Application Server Version 6.1, when administrative security is enabled, the administration
service is locked down. However, if application security is not enabled, an authentication challenge does
not occur for incoming requests and, consequently, credentials do not exist for the performance servlet to
access the administration service.

If administrative security is enabled, you also must enable application security for the performance servlet
to process incoming requests.

Chapter 12. Troubleshooting security configurations 991

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

"Name value is invalid" displays when migrating users and groups after the JACC
provider for Tivoli is configured

When you use the migrateEAR utility to migrate the changes that were made to console users and groups
after the JACC provider for Tivoli Access Manager is configured, the following configuration error displays
in the appropriate output of the job log file.
<specialSubjects> name value is invalid

Note: Because the SystemOut log file does not exist on the z/OS operating system, check the output of
the appropriate job log on the z/OS operating system.

The migrateEAR utility migrates the user and group data that is contained in the admin-authz.xml file.
However, the migrateEAR utility does not convert the XML tags that are listed in the admin-authz.xml file if
the pdwas-admin group is added to the administrator access control list (ACL) in Tivoli Access Manager
prior to migration.

To resolve this error, enter the following command in padadmin to check whether the pdwas-admin group
is in the administrator ACL before you migrate:
acl show
_WebAppServer_deployedResources_Roles_administrator_admin-authz_ACL

The following result should display:
ACL Name:
_WebAppServer_deployedResources_Roles_administrator_admin-authz_ACL
Description: Created by the Tivoli Access Manager
for Websphere Application Server Migration Tool.
Entries:
User sec_master TcmdbsvaBR1
Group pdwas-admin T[WebAppServer]i

If the pdwas-admin group is not listed, then enter the following command in pdadmin to modify the ACL to
add the pdwas-admin group:
acl modify
_WebAppServer_deployedResources_Roles_administrator_admin
-authz_ACL set gruop pdwas-admin T [WebAppServer]i

A Sun JDK can not read a PKCS12 keystore created by the Application Server

A Sun JDK is not able to read a PKCS12 keystore created by the Application Server. The reason for this is
that the PKCS12 implementation used by the IBM SDK and the Application Server is different than the
implementation used by the Sun JDK. The difference causes problems when a Sun JDK is used to read
the default trustore, trust.p12, or keystore, key.P12 created by the Application Server.

Because the truststore can not be read by the Sun JDK, you must first extract the certificates from the
trustore using an IBM SDK. You can then import these certificates into a keystore that the Sun JDK can
recognize correctly, such as a JKS keystore.

Calling a secure resource from a non-secure resource is not supported when the
non-secure resource collects data from users and then posts this data to the
secure resource

If you have a non-secure resource (such as a JSP or a servlet) that calls a secure resource, the
application might fail if the non-secure resource collects data from users and then posts this data to secure
JSP or servlet files for processing.

To avoid this situation, structure your web application so that users are forced to login before the
application performs any HTTP POST actions to the secure JSP or servlet files. To accomplish this, secure
the first resource using whatever security mechanism that you choose (such as basic auth, form-login or
cert).

992 Securing applications and their environment

This restriction is because basic auth and form-login use the servlet sendRedirect method, which has
several implications for the user. The sendRedirect method is used twice during basic auth and form-login.

The sendRedirect method initially displays the basic auth or form-login page in the web browser. It later
redirects the web browser back to the originally requested protected page. The sendRedirect(String URL)
method tells the web browser to use the HTTP GET request to access the page that is specified in the
web address. If HTTP POST is the first request to a protected JSP or servlet file, and no previous
authentication or login occurred, then HTTP POST is not delivered to the requested page. However, HTTP
GET is delivered because basic auth and form-login use the sendRedirect method, which behaves as an
HTTP GET request which attempts to display a requested page after a login occurs.

Security enablement followed by errors
Use this information if you are experiencing errors after security is enabled.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What kind of error are you seeing?
v Authentication error accessing a web page
v Authorization error accessing a web page
v “Authentication fails when code pages differ between the client and the server” on page 994
v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation
v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server
v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server
v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}
v “Error Message: An unexpected exception occurred initializing the security

collaborator.java.lang.SecurityException: AuthConfigFactory error: java.lang.ClassNotFoundException:
org.apache.geronimo.components.jaspi.AuthConfigFactoryImpl” on page 997

v “Error Message: SECJ8032W: AuthConfigFactory is undefined, using the default JASPI factory
implementation class” on page 998

v “Error Message: SECJ0352E: Could not get the users matching the pattern {0} because of the following
exception {1}” on page 998

v “Generate keys error when using the Profile Management tool to create a new profile” on page 998
v “Some security roles are not immediately available for a secured application where LDAP has Tivoli

Access Manager enabled” on page 999
v “ABEND WITH ABEND EC3 REASON=020F2001” on page 1000

IBM Support has documents and tools that can save you time gathering information needed to resolve
problems as described in Troubleshooting help from IBM. Before opening a problem report, see the
Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Authentication error accessing a Web page

Possible causes for authentication errors include:

Chapter 12. Troubleshooting security configurations 993

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

v Incorrect user name or passwords. Check the user name and password and make sure that they are
correct.

v Security configuration error : User registry type is not set correctly. Check the user registry
property in administrative security settings in the administrative console. Verify that the user registry
property is the intended user registry.

v Internal program error. If the client application is a Java stand-alone program, this program might not
gather or send credential information correctly.

Authorization error accessing a Web page

If a user who is supposed to have access to a resource does not, a configuration step is probably missing.
For more information on configuring access to resources, review the chapter Authorizing access to
administrative roles in the Securing applications and their environment PDF book.

Specifically:
v Check the required roles for the accessed web resource.
v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.
v View required roles for the web resource in the deployment descriptor of the web resource.
v View the authorization table for the application that contains the web resource, using the administrative

console.
v Test with a user who is granted the required roles, to see if the user can access the problem resources.
v If the user is required to have one or more of the required roles, use the administrative console to

assign that user to required roles, stop, and restart the application.

Authentication fails when code pages differ between the client and the server

When a client uses a code page that is different from the server, and non-US-ASCII characters are used
for the user ID and password during basic authentication, the login does not succeed. The HTTP header
does not include the encoding method information that is necessary to translate the encoded data, so the
server does not know how to decode the information correctly.

Use a login form that relies on POST parameters, which are in the HTML body text. The encoding for the
text is sent by the browser and so is capable of being decoded properly.

Note: Web services customers are not able to use form login to resolve this problem. Users must ensure
there is consistency in the code pages between the client and the server.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential
violation on server

If you find errors on your server similar to:
Error Message: CWSCJ0314E: Current Java 2 Security policy reported a potential violation of
Java 2 Security Permission. Please refer to Problem Determination Guide for further information.
{0}Permission/:{1}Code/:{2}{3}Stack Trace/:{4}Code Base Location/:{5}

The Java security manager checkPermission method has reported a SecurityException exception .

The reported exception might be critical to the secure system. Turn on security trace to determine the
potential code that might have violated the security policy. Once the violating code is determined, verify if
the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2
security policy files and the application code.

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java
property.

994 Securing applications and their environment

v Specify the following property in the Application Servers > server_name > ProcessDefinition > Java
Virtual Machine panel from the administrative console in the Generic JVM arguments panel:
– Add the java.security.debug run-time flag
– Valid values:

access
Print all debug information including required permission, code, stack, and code base
location.

stack Print debug information including required permission, code, and stack.
failure Print debug information including required permission, and code.

For a review of Java security policies, see the Java 2 Security documentation at http://java.sun.com/j2se/
1.3/docs/guide/security/index.html.

Tip: If the application is running with a Java Mail application programming interface (API), this message
might be benign. You can update the installed Enterprise Application root/META-INF/was.policy file
to grant the following permissions to the application:
v permission java.io.FilePermission "${user.home}${/}.mailcap", "read";
v permission java.io.FilePermission "${user.home}${/}.mime.types", "read";
v permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";
v permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

Error message: CWMSG0508E: The JMS Server security service was unable to
authenticate user ID:" error displayed in SystemOut.log when starting an
application server

This error can result from installing the Java Message Service (JMS) API sample and then enabling
security. You can follow the instructions in the Configure and Run page of the corresponding JMS sample
documentation to configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,
selecting Custom, and browsing the components which are already installed in the Select the features you
like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under Embedded
Messaging.

You can also verify this installation by using the administrative console to open the properties of the
application server that contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration
attributes are null or not available after enabling security and starting the
application server

This error message can result from selecting Lightweight Third Party Authentication (LTPA) as the
authentication mechanism, but not generating the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:
1. Click Security > Global security > Authentication > Authentication mechanisms and expiration>

LTPA
2. Enter a password, which can be anything.
3. Enter the same password in Confirm Password.
4. Click Apply.
5. Click Generate Keys.
6. Click Save.

Chapter 12. Troubleshooting security configurations 995

http://java.sun.com/j2se/1.3/docs/guide/security/index.html
http://java.sun.com/j2se/1.3/docs/guide/security/index.html

The AccessControlException exception, is reported in the SystemOut.log

The problem is related to the Java 2 security feature of WebSphere Application Server, the API-level
security framework that is implemented in WebSphere Application Server. An exception similar to the
following example displays. The error message and number can vary.
CWSRV0020E: [Servlet Error]-[validator]: Failed to load servlet:
java.security.AccessControlException: access denied
(java.io.FilePermission
/WebSphere/V6R1M0/AppServer/systemApps/isclite.ear/isclite.war/WEB-INF/validation.xml read)

Possible causes of these errors include:
v Syntax errors in a policy file.
v Syntax errors in permission specifications in the ra.xml file that is bundled in a .rar file. This case

applies to resource adapters that support connector access to CICS or other resources.
v An application is missing the specified permission in a policy file, or in permission specifications in

ra.xml file bundled in a .rar file.
v The class path is not set correctly, preventing the permissions for the resource.xml file for Service

Provider Programming Interface (SPI) from being correctly created.
v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.
v Permission is specified in the wrong policy file.

To resolve these problems:
v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.
v Look for a related ParserException exception in the SystemOut.log file which reports the details of the

syntax error.
CWSCJ0189E: Caught ParserException while creating template for application policy

/WebSphere/V6R1M0/AppServer1/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy.

Where:
– V6R1M0 represents the version of WebSphere Application Server that you are using.
– cell_name represents the name of your cell.
– profile_name represents the name of your profile.
– node_name represents the name of your node.

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ';', found 'grant'
v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.
v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.
– The report shows:

Permission
The missing permission.

Code Which method has the problem.
Stack Trace

Where the access violation occurred.
CodeBaseLocation

The detail of each stack frame.

Where:
- app1 represents the name of your application.
- app_server_root represents the installation root directory for WebSphere Application Server

WebSphere Application Server, Network Deployment.
- profile_root represents the location and name of a particular profile in your system.
- profile1 or profile_name represents the name of your profile.
- server1 or server_namerepresents the name of your application server.

996 Securing applications and their environment

v If the method is SPI, check the resources.xml file to ensure that the class path is correct.
v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in
the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list
for a class path, search for Effective Policy for classpath.

v If there are any syntax errors in the policy file or the ra.xml file, correct them with the policy tool. Avoid
editing the policy manually, because syntax errors can result. For additional information about using this
tool, refer to the section Using PolicyTool to edit policy files in the Developing and deploying
applications PDF book.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name
is correct.

v If the class path that is specified in the resource.xml file is not correct, correct it.
v If a required permission does not exist in either the policy files or the ra.xml file, examine the

application code to see if you need to add this permission. If so, add it to the proper policy file or the
ra.xml file.

v If the permission is not granted outside of the specific method that is accessing this resource, modify
the code needs to use a doPrivileged block.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise
Application root/META-INF/was.policy file to grant the following permissions to the application:
v permission java.io.FilePermission "${user.home}${/}.mailcap", "read";
v permission java.io.FilePermission "${user.home}${/}.mime.types", "read";
v permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";
v permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the
following exception {1}

This error message results if the user ID that is indicated is not found in the Lightweight Directory Access
Protocol (LDAP) user registry. To resolve this problem:
1. Verify that your user ID and password are correct.
2. Verify that the user ID exists in the registry.
3. Verify that the base distinguished name (DN) is correct.
4. Verify that the user filter is correct.
5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.
6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Error Message: An unexpected exception occurred initializing the security
collaborator.java.lang.SecurityException: AuthConfigFactory error:
java.lang.ClassNotFoundException:
org.apache.geronimo.components.jaspi.AuthConfigFactoryImpl

This error message occurs when your java.security file is missing an entry for the JASPI Provider. The
default location for the java.security file is install_dir/properties. Edit the java.security file and add the
following lines to it:.
#
The fully qualified class name of the default JASPI factory implementation class.
#
authconfigprovider.factory=com.ibm.ws.security.jaspi.ProviderRegistry

Note: This error only appears if you explicitly set your configuration to use this class. Otherwise, you
might see error message SECJ8032W below.

Chapter 12. Troubleshooting security configurations 997

Error Message: SECJ8032W: AuthConfigFactory is undefined, using the default
JASPI factory implementation class

This error message occurs if the JASPI factory implementation is not defined. The default JASPI factory
implementation has been set in the server runtime. However, JASPI might not function for a client.

To resolve, set the fully qualified class name of the default JASPI factory implementation class as the
value for the property authconfigprovider.factory in the java.security file as in below:
#
The fully qualified class name of the default JASPI factory implementation class.
#
authconfigprovider.factory=com.ibm.ws.security.jaspi.ProviderRegistry

Error Message: SECJ0352E: Could not get the users matching the pattern {0}
because of the following exception {1}

This authentication failure message displays when an external user account repository is corrupted or
unavailable, and WebSphere Application Server is unable to authenticate the user name in the repository.
Generally, authentication error messages are followed by additional information that indicates the nature or
root cause of the problem, such as:
Make sure the users matching the pattern exist in the registry. Contact your service representative if the problem persists.

This additional information might not provide a clear user action if the user account repository is corrupted
or the user loses connectivity between WebSphere Application Server and an external user account
repository. The external user account repository, which is referred to as a repository in this document,
might be a Lightweight Directory Access Protocol (LDAP) product.

To resolve this problem, you might need to re-install the repository and verify that it installs successfully by
testing the connection.

CAUTION: Proceed with the following steps only if you have ensured that all WebSphere Application
Server-related configuration settings are accurate.

Complete the following steps to resolve the issue:

1. Restart both the repository and WebSphere Application Server.

2. Test the connection to the repository. If the connection attempt still fails, it might be necessary to
re-install the repository.

3. If diagnostics are provided with the repository, run them to avoid having to re-install the repository.

Attention: If the previous steps do not fix the problem, you might need to re-install the repository.
Before proceeding, generate a complete list of all the configured users and groups; you will need to
re-populate these fields after the re-installation.

4. If necessary, re-install the corrupted repository.

5. Populate the users and groups from your list into the newly installed repository.

6. Restart both the repository and WebSphere Application Server.

7. In the administrative console, navigate to Security > Global security, and select the appropriate user
account repository. For example, select Standalone LDAP registry if you are using a stand-alone
Lightweight Directory Access Protocol repository.

8. Click Test connection to ensure that WebSphere Application Server can connect to the repository.

Generate keys error when using the Profile Management tool to create a new
profile

When you create a new profile using either the Profile Management tool or the command-line
manageprofiles utility, an error message displays that indicates either partial success or failure. The error
message, which is located in the install_dir/logs/manageprofiles/profile_name_create.log file, might point to
an error in either the generateKeysforSingleProfile task or the generateKeysForCellProfile task.

998 Securing applications and their environment

The Profile Creation tool and the manageprofiles utility invoke several tasks. The
generateKeysForSingleProfile task is invoked when you create a stand-alone application server or a
deployment manager profile. The generateKeysForCellProfile task is invoked when you create a cell
profile. Both of these tasks are the first tasks to invoke the wsadmin commands. Although the log indicates
an error in one of these tasks, the error might actually result from a wsadmin command failure and not an
error in the security tasks.

To determine the actual cause of the problem, review the information that is provided in the following log
files:

v install_dir/logs/manageprofiles/profile_name_create.log file indicates the error code of the failure

v install_dir/logs/manageprofiles/profile_name/keyGeneration.log file

v install_dir/logs/manageprofiles/profile_name/wsadminListener.log file

Some security roles are not immediately available for a secured application where
LDAP has Tivoli Access Manager enabled

In some instances, some security roles might not be immediately available when you deploy a secured
application where LDAP has Tivoli Access Manager enabled.

You might see an error such as the following:
"Exception: java.lang.OutOfMemoryError"

You might be able to address this issue by doing the following:

1. Allocate more memory to the minimum and maximum java heap size.

a. In the administrative console, select Servers/server types/WebSphere Application servers -->
server1.

b. Select Server Infrastructure/Java and Process Management/Process Definition.

c. Select Java Virtual Machine.

d. Set the initial heap size to 512 MB and the maximum heap size to 1024 MB.

e. Select OK and then Save.

f. Restart WebSphere Application Server.

2. While WebSphere Application Sever is stopped, add some performance tuning properties for
embedded Tivoli Access Manager.

a. In the config/cells/CELLNAME directory, edit the amwas.amjacc.template.properties file by adding
the following properties to it:

com.tivoli.pd.as.jacc.DBRefresh=0
com.tivoli.pd.as.jacc.AuthTableRemoteMode=yes
com.tivoli.pd.as.rbpf.NoUncheckedRoles=true

This helps when embedded Tivoli Access Manager is re-configured

b. Because embedded Tivoli Access Manager is already configured, you can update the generated
configuration files with the above properties. For each WebSphere Application Server instance in
the ND (dmgr, NAs and servers), go to the profiles/NAME/etc/tam directory and do the following.

For each file that ends in amjacc.properties, add the 3 properties above:
com.tivoli.pd.as.jacc.DBRefresh=0
com.tivoli.pd.as.jacc.AuthTableRemoteMode=yes
com.tivoli.pd.as.rbpf.NoUncheckedRoles=true

For each file that ends in pdperm.properties, update the appsvr-dbrefresh property to be:
appsvr-dbrefresh=0

For each file that ends in authztable.pdperm.properties, update the appsvr-mode property to be:
appsvr-mode=remote

3. Restart the cell.

Chapter 12. Troubleshooting security configurations 999

ABEND WITH ABEND EC3 REASON=020F2001

If security is not enabled either with zPMT dialogs or with ISPF customization dialogs immediately at
installation time of the WebSphere Application Server for z/OS, the RACF definitions will not have been
completely generated. When security is enabled later using the administrative console, a missing RACF
statement prevents the WebSphere Application Server control region from starting. Review APAR PK36598
for more details on resolving this problem.

Access problems after enabling security
Use this information if you are experiencing access problems after enabling security.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What kind of error are you seeing?
v “I cannot access all or part of the administrative console or use the wsadmin tool after enabling security”
v “I cannot access a web page after enabling security” on page 1001
v “Authentication error accessing a Web page” on page 993
v “Authorization error accessing a Web page” on page 994
v “The client cannot access an enterprise bean after enabling security” on page 1001
v “Client program never gets prompted when accessing secured enterprise bean” on page 1002
v “Cannot stop an application server, node manager, or node after enabling security” on page 1002
v “After enabling single sign-on, I cannot logon to the administrative console” on page 1003
v “The following exception displays in the SystemOut.log file after I start the server and enable security:

"SECJ0306E: No received or invocation credential exists on the thread." ” on page 1003
v “A Name NotFoundException error occurs when initially connecting to the federated repositories.” on

page 1003

I cannot access all or part of the administrative console or use the wsadmin tool
after enabling security
v If you cannot access the administrative console, or view and update certain objects, look in the logs of

the application server which hosts the administrative console page for a related error message.

Note: You will need to use the administrative console to complete the next two items. If you are having
a problem accessing the administrative console, you will have to turn off security and restart the
administrative console. To turn off security, enter the following command at the system command
prompt:

wsadmin.sh -conntype NONE

When the system command prompt displays again, enter:
securityoff

Restart the deployment manager after you turn off security.
v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:
– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId, accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 while invoking method getProcessType on resource Server and
module Server.

1000 Securing applications and their environment

– Exception message: "CWWMN0022E: Access denied for the getProcessType operation on Server
MBean"

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot
establish "SOAP" connection to host "BIRKT20" because of an authentication failure. Ensure
that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >
Console Users and validate that the ID is a member. If the ID is not a member, add the ID with at least
monitor access privileges, for read-only access.

v Verify that the trusted application functionality is enabled. The trusted application functionality is enabled
if WebSphere Application Server has SAF access of READ to the RACF class of FACILITY, and profile
of BBO.TRUSTEDAPPS.<cell short name>.<cluster short name>.

Remember: You could encounter synchronization problems if you are in a WebSphere Application Server,
Network Deployment environment and save your security settings and the node agent was
down.

I cannot access a web page after enabling security

When secured resources are not accessible, probable causes include:
v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:
– Authorization failed. Retry? message is displayed after an attempt to log in.
– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.
– A typical browser message displays: Error 401: Basic realm='Default Realm'.

On an Internet Explorer browser:
– Login prompt displays again after an attempt to log in.
– Allows three attempts to retry login.
– Displays Error 401 message after three unsuccessful retries.

v Authorization errors - The security function has identified the requesting person or process as not
authorized to access the secured resource. Symptoms of authorization errors include:
– Netscape browser: "Error 403: AuthorizationFailed" message is displayed.
– Internet Explorer:

- "You are not authorized to view this page" message is displayed.
- "HTTP 403 Forbidden" error is also displayed.

v SSL errors - WebSphere Application Server security uses Secure Sockets Layer (SSL) technology
internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL
settings can cause problems. Also you might have enabled SSL encryption for your own web application
or enterprise bean client traffic which, if configured incorrectly, can cause problems regardless of
whether WebSphere Application Server security is enabled.
– SSL-related problems are often indicated by error messages that contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting
context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If the client access to an enterprise bean fails after security is enabled:
v Review the steps for securing and granting access to resources.
v Browse the server logs for errors that relate to enterprise bean access and security. Look up any errors

in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource
securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles
roles indicate that:

Chapter 12. Troubleshooting security configurations 1001

– An unprotected servlet or JavaServer Pages (JSP) file accessed a protected enterprise bean. When
an unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as
UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected, the
servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make
sure that the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.
This situation can happen if the file that is read by the sas.client.props properties file that is used
by the client program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its
securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource securityName:/
username;accessId:xxxxxx not granted any of the required roles roles indicate that a client
attempted to access a secured enterprise bean resource, and the supplied user ID is not assigned the
required roles for that enterprise bean.
– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the web resource.
– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that
contains the enterprise bean resource using the administrative console.

v If you are using Local OS and System Authorization Facility (SAF) Authorization, check the SAF
EJBROLEs setup. Specifically, verify that
– the EJBROLE class is activated.
– The role is defined to SAF.
– The userid is permitted to the role.
– The class is refreshed after the permit operation.

Client program never gets prompted when accessing secured enterprise bean

Even though it seems that security is enabled and an enterprise bean is secured, occasions can occur
when the client runs the remote method without prompting. If the remote method is protected, an
authorization failure results. Otherwise, run the method as an unauthenticated user.

Possible reasons for this problem include:
v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the
security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file
to ensure the property com.ibm.CORBA.securityEnabled is set to true.

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL is
specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL does not have a valid URL syntax, or the sas.client.props that is pointed to
cannot be found. Verify that the com.ibm.CORBA.ConfigURL property is valid. Check the Java
documentation for a description of URL formatting rules. Also, validate that the file exists at the specified
path.

Cannot stop an application server, node manager, or node after enabling security

If you use command-line utilities to stop WebSphere Application Server processes, apply additional
parameters after enabling security to provide authentication and authorization information.

1002 Securing applications and their environment

After enabling single sign-on, I cannot logon to the administrative console

This problem occurs when single sign-on (SSO) is enabled, and you attempt to access the administrative
console using the short name of the server, for example http://myserver:port_number/ibm/console. The
server accepts your user ID and password, but returns you to the logon page instead of the administrative
console.

To correct this problem, use the fully qualified host name of the server, for example http://
myserver.mynetwork.mycompany.com:9060/ibm/console.

The following exception displays in the SystemOut.log file after I start the server
and enable security: "SECJ0306E: No received or invocation credential exists on
the thread."

The following message displays when one or more nodes within the cell was not synchronized during
configuration:
SECJ0306E: No received or invocation credential exists on the thread. The Role based
authorization check will not have an accessId of the caller to check. The parameters
are: access check method getServerConfig on resource FileTransferServer and module
FileTransferServer. The stack trace is java.lang.Exception: Invocation and received
credentials are both null.

Make sure that each of the nodes are synchronized and then restart the deployment manager.

A Name NotFoundException error occurs when initially connecting to the
federated repositories.

When the server attempts an indirect lookup on the java:comp/env/ds/wimDS name and makes its initial
EJB connection to the federated repositories, the following error message displays in the output of the
appropriate job log:
NMSV0612W: A NameNotFound Exception

Note: Because the SystemOut.log file does not exist on the z/OS operating system, check the output of
the appropriate job log on the z/OS operating system.

The NameNotFoundException error is caused by the reference binding definition for the jdbc/wimDS Java
Naming and Directory interface (JNDI) name in the ibm-ejb-jar-bnd.xmi file. You can ignore this warning
message. The message does not display when the wimDS database repository is configured.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Chapter 12. Troubleshooting security configurations 1003

SSL errors for security
You might encounter various problems after configuring or enabling Secure Sockets Layer (SSL). You may
not be able to stop the deployment manager after configuring the SSL. You may not be able to access
resource using HTTPS. The client and the server may not be able to negotiate the proper level of security.
The problems mentioned here are only a few of the possibilities. Solving these problems is imperative to
the successful operation of WebSphere Application Server.

What type of problem are you having?
v “Stopping the deployment manager after configuring Secure Sockets Layer”
v “Accessing resources using HTTPS”
v “javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired level of

security. Reason: handshake failure” on page 1005
v “javax.net.ssl.SSLHandshakeException: unknown certificate” on page 1005
v “javax.net.ssl.SSLHandshakeException: bad certificate” on page 1006
v

v “"Catalog" tablet is blank (no item displayed) in GUI application client” on page 1006
v “Modifying SSL Configurations after migration using -scriptCompatibility true” on page 1007
v “Stand-Alone configuration fails when digital certificates are defined with the NOTRUST option” on page

1007

Stopping the deployment manager after configuring Secure Sockets Layer

After configuring the Secure Sockets Layer repertoires, if you stop the deployment manager without also
stopping the node agents, you might receive the following error message when you restart the deployment
manager:
CWWMU0509I: The server "nodeagent" cannot be reached. It appears to be stopped.
CWWMU0211I: Error details may be seen in the file:

/opt/WebSphere/AppServer/logs/nodeagent/stopServer.log

The error occurs because the deployment manager did not propagate the new SSL certificate to the node
agents. The node agents are using an older certificate file than the deployment manager and the
certificate files are incompatible. To work around this problem, you must manually stop the node agent and
deployment manager processes.

To end the processes, use the MVS console and type c process_name.

You need to consider certain items when identifying the specific process to stop. For each process that is
stopped, WebSphere Application Server stores the process ID in a pid file and you need to find these
*.pid files. For example, the server1.pid for a stand-alone install action might be found at:
install_root/logs/server1.pid

Accessing resources using HTTPS

If you are unable to access resources using a Secure Sockets Layer (SSL) URL (beginning with https:),
or encounter error messages that indicate SSL problems, verify that your HTTP server is configured
correctly for SSL. Browse the welcome page of the HTTP server using SSL by entering the URL:
https://host_name.

If the page works with HTTP, but not HTTPS, the problem is with the HTTP server.
v Refer to the documentation for your HTTP server for instructions on correctly enabling SSL. If you are

using the IBM HTTP Server or Apache, go to: http://www.ibm.com/software/webservers/httpservers/
library.html. Click Frequently Asked Questions> SSL.

v If you use the IBM Key Management (IKeyman) tool to create certificates and keys, remember to stash
the password to a file when creating the Key Database (KDB) file with the IBM Key Management Tool.
1. Go to the directory where the KDB file is created, and see if an .sth file exists.

1004 Securing applications and their environment

http://www.ibm.com/software/webservers/httpservers/library.html
http://www.ibm.com/software/webservers/httpservers/library.html

2. If not, open the KDB file with the IBM Key Management Tool, and click Key Database File > Stash
Password. The following message is displayed: The password has been encrypted and saved in
the file.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved (for example, traffic
flows from a Java client application directly to an enterprise bean that is hosted by WebSphere Application
Server, or the problem displays only after enabling WebSphere Application Server security), what kind of
error are you seeing?

System SSL: See z/OS System Secure Sockets Layer Programming SC24-5901 for information on using
the System Secure Sockets Layer (SSL) callable services programming interfaces.
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: handshake failure
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: unknown certificate
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: bad certificate

For general tips on diagnosing and resolving security-related problems, see “Security components
troubleshooting tips” on page 977

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, see Troubleshooting help from IBM

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:
[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_
SSL_CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client
and server could not negotiate the desired level of security. Reason: handshake
failure:host=MYSERVER,port=1079 minor code: 4942F303 completed: No] at
com.ibm.CORBA.transport.TransportConnectionBase.connect
(TransportConnectionBase.java:NNN)

Some possible causes are:
v Not having common ciphers between the client and server.
v Not specifying the correct protocol.

To correct these problems:
1. Review the SSL settings. In the administrative console, click Security > SSL certificate and key

management. Under Configuration settings, click Manage endpoint security configurations >
endpoint_configuration_name. Under Related items, click SSL configurations >
SSL_configuration_name. You can also browse the file manually by viewing the install_root/
properties/sas.client.props file.

2. Check the property that is specified by the com.ibm.ssl.protocol file to determine which protocol is
specified.

3. Check the cipher types that are specified by the com.ibm.ssl.enabledCipherSuites interface. You
might want to add more cipher types to the list. To see which cipher suites are currently enabled, click
Quality of protection settings (QoP), and look for the Cipher Suites property.

4. Correct the protocol or cipher problem by using a different client or server protocol and cipher
selection. Typical protocols are SSL or SSLv3.

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the
personal certificate for the server in the client truststore file:

Chapter 12. Troubleshooting security configurations 1005

ERROR: Could not get the initial context or unable to look up the starting context.
Exiting. Exception received: javax.naming.ServiceUnavailableException: A
communication failure occurred while attempting to obtain an initial context using
the provider url: "corbaloc:iiop:localhost:2809". Make sure that the host and port
information is correct and that the server identified by the provider url is a
running name server. If no port number is specified, the default port number 2809
is used. Other possible causes include the network environment or workstation
network configuration. [Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: CWWJE0080E:
javax.net.ssl.SSLHandshakeException - The client and server could not
negotiate the desired level of security. Reason: unknown
certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To correct this problem:
1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the
personal certificate. For a certificate authority (CA)-signed server personal certificate, the signer
certificate is the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

javax.net.ssl.SSLHandshakeException: bad certificate

A Java exception stack error might display if the following situations occur:

v A personal certificate exists in the client keystore that is used for SSL mutual authentication.

v The signer certificate is not extracted into the server truststore file, and thus the server cannot trust the
certificate whenever the SSL handshake is made.

The following message is an example of the Java exception stack error:
ERROR: Could not get the initial context or unable to look
up the starting context. Exiting.
Exception received: javax.naming.ServiceUnavailableException:
A communication failure occurred while attempting to obtain an
initial context using the provider url: "corbaloc:iiop:localhost:2809".
Make sure that the host and port information is correct and that the
server identified by the provider url is a running name
server. If no port number is specified, the default port number 2809
is used. Other possible causes include the network environment or
workstation network configuration.
[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_
CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client and
server could not negotiate the desired level of security. Reason:
bad certificate: host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To verify this problem, check the server truststore file to determine if the signer certificate from the client
personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public
key of the personal certificate. For a certificate authority-signed client personal certificate, the signer
certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

"Catalog" tablet is blank (no item displayed) in GUI application client

This error message occurs when you install an ActiveX client sample application that uses the
PlantsByWebSphere Active X to EJB Bridge.

The cause is that the server certificate is not in the client trustore that is specified in the client.ssl.props
file. Although the "com.ibm.ssl.enableSignerExchangePrompt" signer property might be set to true, the
auto-exchange prompt only supports a command-line prompt. If the sample application relies on a
graphical user interface and does not provide access to a command prompt, for example using standard in
and standard out, the auto-exchange prompt does not function.

Note: The applet client under the Client Technology Samples does not have access to the command
prompt and it cannot see the auto-exchange prompt. Thus, the applet client cannot rely on the
auto-exchange prompt feature.

1006 Securing applications and their environment

To correct this problem, retrieve the certificate manually using the retrieveSigners utility.

Modifying SSL Configurations after migration using -scriptCompatibility true

After migrating using scriptCompatibility true, all attributes of the SSL configurations cannot be edited
through the administrative console. In particular, the hardware cryptography settings cannot be displayed
or edited.

By using the scriptCompatibility true flag, the SSL configurations are not migrated to the new format for
support in the Version 6.1 and later releases. New capabilities were added that are not supported when
the configurations are not migrated to the latest format. If you are migrating from a release prior to Version
6.1, you can use the convertSSLConfig task to convert your SSL configuration information to the
centralized SSL configuration format.

Stand-Alone configuration fails when digital certificates are defined with the
NOTRUST option

If your digital certificates are defined with the NOTRUST option, it is possible that you might receive the
following error message:
Trace: 2008/06/18 16:57:57.798 01 t=8C50B8 c=UNK key=S2 (0000000A)
Description: Log Boss/390 Error
from filename: ./bbgcfcom.cpp
at line: 376
error message: BBOO0042E Function AsynchIOaccept failed with RV=-1, RC=124, RSN=050B0146, ?EDC5124I
Too many open files. (errno2=0x0594003D)??

If this error appears, enter ’D OMVS,P. If you have a NOTRUST issue a large number appears under
'OPNSOCK'.

Check your digital certificates and make sure they are not marked with the NOTRUST option. This can
occur if the certificates were created with a date beyond the expiration date of the CERTAUTH that was
used to create it.

Single sign-on configuration troubleshooting tips for security
Several common problems can occur when you configure single sign-on (SSO) between a WebSphere
Application Server and a Domino server. Some such problems are: Failure to save the Domino Web SSO
configuration, authentication failures when accessing a protected resource, and SSO failures when
accessing a protected resource. You can take some actions to correct these error situations and restore
the SSO.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web
SSO configuration document is encrypted for the servers that you specify. The home server that is
indicated by the client location record must point to a server in the Domino domain where the
participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,
then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys
are used to encrypt the document by finding the listed servers, authors, and administrators in the
document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP
server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session
Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration
document during startup. The Domino server console reports the following information if a valid
document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

Chapter 12. Troubleshooting security configurations 1007

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a
server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to
single-server session authentication.

Verify that only one Web SSO configuration document is in the web configurations view of the Domino
directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but
you can insert additional documents during replication.

If you can verify only one Web SSO configuration document, consider another condition. When the
public key of the server document does not match the public key in the ID file, this same error message
can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error
message is generated.

This situation can occur when the ID file is created multiple times, but the Server document is not
updated correctly. Usually, an error message is displayed on the Domino server console stating that the
public key does not match the server ID. If this situation occurs, SSO does not work because the
document is encrypted with a public key for which the server does not possess the corresponding
private key.

To correct a key-mismatch problem:
1. Copy the public key from the server ID file and paste it into the Server document.
2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a web user is repeatedly prompted for a user ID and password, SSO is not working because either
the Domino or the WebSphere Application Server security server cannot authenticate the user with the
Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:
– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.
– Verify that the LDAP user is defined in the LDAP directory. Use the idsldapsearch utility to confirm

that the user ID exists and that the password is correct. For example, you can run the following
command, entered as a single line:

% ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword
-h myhost.mycompany.com -p 389 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

The percent character (%) indicates the prompt and is not part of the command. A list of directory
entries is expected. Possible error conditions and causes are contained in the following list:
- No such object: This error indicates that the directory entry referenced by either the user's

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which
is specified after the -b option, does not exist.

- Credentials that are not valid: This error indicates that the password is not valid.
- Cannot contact the LDAP server: This error indicates that the host name or the port specified for

the server is not valid or that the LDAP server is not running.
- An empty list means that the base directory that is specified by the -b option does not contain any

directory entries.
– If you are using the user's short name or user ID instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short
name/UserID field of the Person document. For other LDAP directories, verify the userid property of
the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the
configuration settings of the LDAP server in the Directory assistance document in the Directory
assistance database. Also verify that the Server document refers to the correct Directory assistance
document. The following LDAP values that are specified in the Directory Assistance document must
match the values specified for the user registry in the WebSphere Application Server administrative
domain:
- Domain name
- LDAP host name
- LDAP port
- Base DN

1008 Securing applications and their environment

Additionally, the rules that are defined in the Directory assistance document must refer to the base
distinguished name (DN) of the directory that contains the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server
notes.ini file:
webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as
Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not
configured correctly. Check the following possibilities:
– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino administrative documentation for the correct way to specify the user's DN. For
example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list
must be set as John Doe/Rochester/IBM/US.

– For resources that are protected by WebSphere Application Server, verify that the security
permissions are set correctly.
- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by
using the following website to display the directory contents: Ldap://myhost.mycompany.com:389/
ou=Rochester, o=IBM, c=US??sub

- If you changed the LDAP configuration information (host, port, and base DN) in a WebSphere
Application Server administrative domain since the permissions were set, the existing permissions
are probably not valid and need to be recreated.

v SSO failure when accessing protected resources.

If a web user is prompted to authenticate with each resource, SSO is not configured correctly. Check
the following possibilities:
1. Configure both WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie that is used for SSO stores the full DN of the user, for example, cn=John
Doe, ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

2. Define web users by hierarchical names if the Domino directory is used. For example, update the
User name field in the Person document to include names of this format as the first value: John
Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for websites issued to
Domino servers and WebSphere Application Servers that are configured for SSO. For browsers to
send cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS
domain in the cookie must match the web address. This requirement is why you cannot use cookies
across TCP/IP domains.

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify
that the DNS domain value is exactly the same, including capitalization. You need the name of the
DNS domain in which WebSphere Application Server is configured. For additional information about
configuring DNS domains for SSO, refer to the Single sign-on topic in the Securing applications and
their environment PDF book.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server
name in the server document. By using the full DNS server name, Domino Internet Cluster Manager
(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM
redirects web addresses to clustered web servers by using the host name of the server only. ICM
cannot send the SSO cookie because the DNS domain is not included in the web address. To
correct the problem:
a. Edit the Server document.
b. Click Internet Protocols > HTTP tab.
c. Enter the full DNS name of the server in the Host names field.

6. If a port value for an LDAP server is specified for a WebSphere Application Server administrative
domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

Chapter 12. Troubleshooting security configurations 1009

the value of the LDAP Realm field before the colon character (:). For example, replace
myhost.mycompany.com:389 with myhost.mycompany.com\:389.

v Users are not logged out after the HTTP session timer expires.

If users of WebSphere Application Server log onto an application and sit idle longer than the specified
HTTP session timeout value, the user information is not invalidated and user credentials stay active until
LTPA token timeout occurs.

After you apply PK25740, complete the following steps to log out users from the application after the
HTTP session has expired.

1. In the administrative console, click Security > Global security.

2. Under Custom properties, click New.

3. In the Name field, enter com.ibm.ws.security.web.logoutOnHTTPSessionExpire.

4. In the Values field, enter true.

5. Click Apply and Save to save the changes to your configuration.

6. Resynchronize and restart the server.

Unexpected re-authentications: When you set the
com.ibm.ws.security.web.logoutOnHTTPSessionExpire custom
property to true, unexpected re-authentications might occur when you
are working with multiple web applications. By default, each web
application has its own unique HTTP session, but the web browser
has one session cookie. To address this issue, you can change the
HTTP session configuration by giving each application a unique
session cookie name or path setting. As a result, each application
gets its own session cookie. Alternatively, you can configure multiple
web applications with the same enterprise application to share the
same HTTP session. For more information, see the Assembling so
that session data can be shared topic.

v Possible issues when SSO is enabled and Firefox v3.6.11 is configured to accept third-party cookies.

If you have SSO enabled, and when using Firefox v3.6.11 one of the following is true:

– It is configured to accept third-party cookies that are kept until they expire or until Firefox is closed

– You have one session open but are switching to different applications

– More than one session is opened for different applications that require different users for
authorization

you might see the following error message: Error 403: AuthorizationFailed.

To resolve, clear the third-party cookies before launching a new application by doing the following:

1. Select Firefox Tools > Options > Privacy.

2. Ensure that the history is set to Remember History.

3. Click on Remove individual cookies to delete the cookies.

You can also close other sessions if Firefox is configured to accept third-party cookies that are kept until
Firefox is closed.

Security authorization provider troubleshooting tips
This article describes the issues you might encounter using a Java Authorization Contract for Containers
(JACC) authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an
authorization provider. However, you also can plug in your own authorization provider.

1010 Securing applications and their environment

Tivoli Access Manager as a Java Authorization Contract for Containers
authorization provider

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization
provider:

v The configuration of JACC might fail.

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean
uninstall did not take place after unconfiguring JACC.

v An "HPDIA0202w An unknown user name was presented to Access Manager" error might occur.

v An "HPDAC0778E The specified user's account is set to invalid" error might occur.

v An WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl" error might occur.

v “Access denied exceptions accessing applications when using JACC” on page 1014

v “An "HPDBA0219E: An error occurred reading data from an SSL connection" might occur” on page
1014

v A "There are no ports available in the port set" error might occur

External providers for Java Authorization Contract for Containers authorization
provider

You might encounter the following issues when you use an external provider for JACC authorization:

v An "HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry" error might
occur.

The configuration of JACC might fail

If you have problems configuring JACC, check the following items:

v Ensure that the parameters are correct. For example, you do not want a number after
TAM_Policy_server_hostname:7135, but you do want be a number after
TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can't be contacted” is displayed, it is possible that the host names or port
numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers
have not started.

v Ensure that the password for the sec_master user is correct.

v Check the SystemOut.log file and search for the AMAS string to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC is configured, check the following items:

v Ensure that WebSphere Application Server and Tivoli Access Manager use the same Lightweight
Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed" is displayed, ensure that the:

Chapter 12. Troubleshooting security configurations 1011

– WebSphere Application Server LDAP server ID is the same as the “Administrator user” in the Tivoli
Access Manager JACC configuration panel.

– Verify that the Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Verify that the password of the Tivoli Access Manager administrator has not expired and is valid.

– Ensure that the account is valid for the Tivoli Access Manager administrator.

v If a message such as socket can't be opened for xxxx (where xxxx is a number) is displayed, take
the following actions:

1. Go to the profile_root/etc/tam directory.

2. Change xxxx to an available port number in the amwas.commomconfig.properties file, and the
amwas*cellName_dmgr.properties file if the deployment manager failed to start. If the node failed to
start, change xxx to an available port number in the amwas*cellName_nodeName_.properties file. If
the Application Server failed to start, change xxxx in the
amwas*cellname_nodeName_serverName.properties file.

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy.
This process might take some time to finish. If the save fails, you must uninstall the application and then
reinstall it.

To access an application after it is installed, you must wait 30 seconds, by default, to start the application
after you save.

The startServer command might fail after you configure Tivoli Access Manager or
a clean uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC is configured, take the following
actions:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each
application server in a WebSphere Application Server, Network Deployment (ND) environment with N
servers defined (for example, server1, server2).

The following files must be removed.
install_root/tivoli/tam/PdPerm.properties
install_root/tivoli/tam/PdPerm.ks
profile_root/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before you
configure the JACC provider for Tivoli Access Manager. The utility removes all of the
PDLoginModuleWrapper entries as well as the Tivoli Access Manager authorization table entry from the
security.xml file, effectively removing the JACC provider for Tivoli Access Manager. Backup the
security.xml file before running this utility.

Enter the following commands:
install_root/java/jre/bin/java -classpath
"install_root/lib/AMJACCProvider.jar:CLASSPATH"
com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

An "HPDIA0202w An unknown user name was presented to Access Manager" error
might occur

You might encounter the following error message if you try to use an existing user in a Local Directory
Access Protocol (LDAP) user registry with Tivoli Access Manager:
AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:
AWXJR0007E A Tivoli Access Manager exception was caught. Details are:
"HPDIA0202W An unknown user name was presented to Access Manager."

1012 Securing applications and their environment

This problem might be caused by the host name exceeding predefined limits with Tivoli Access Manager
when it is configured against MS Active Directory. In WebSphere Application Server, the maximum length
of the host name can not exceed 46 characters.

Check that the host name is not fully qualified. Configure the machine so that the host name does not
include the host domain.

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:
pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:
pdadmin -a administrator1 -p passw0rd

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access
Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:
user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user
account to valid. The following syntax shows how to use this command:
user modify user_name account-valid yes

For example:
user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access
Manager documentation.

An "HPDAC0778E The specified user's account is set to invalid" error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and
restart the client:
AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:
AWXJR0007E A Tivoli Access Manager exception was caught.
Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax
shows how to use this command:
user modify user_name account-valid yes

For example:
user modify jstar account-valid yes

An "HPDJA0506E Invalid argument: Null or zero-length user name field for the
ACL entry" error might occur

You might encounter an error similar to the following message when you propagate the security policy
information from the application to the provider using the wsadmin propagatePolicyToJACCProvider
command:
AWXJR0035E An error occurred while attempting to add member,

cn=agent3,o=ibm,c=us, to role AgentRole
HPDJA0506E Invalid argument: Null or zero-length user name field for

the ACL entry

Chapter 12. Troubleshooting security configurations 1013

To correct this error, create or import the user, that is mapped to the security role to the Tivoli Access
Manager. For more information on propagating the security policy information, see the documentation for
your authorization provider.

An WASX7017E: Exception received while running file
"InsuranceServicesSingle.jacl" error might occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application,
which is configured with security roles using the wsadmin command, the following error might occur:
WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl";
exception information: com.ibm.ws.scripting.ScriptingException: WASX7111E:
Cannot find a match for supplied option:
"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro
up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp MapRolesToUsers task option is no longer valid when Tivoli Access Manager is used as
the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Access denied exceptions accessing applications when using JACC

In the case of Tivoli Access Manager, you might see the following error message.
AWXJR0044E: The access decision for Permission, {0}, was denied because either the
PolicyConfiguration or RoleConfiguration objects did not get created successfully at
application installation time. RoleConfiguration exists = {false}, PolicyConfiguration
exists = {false}."

If the access denied exceptions are not expected for the application, check the SystemOut.log files to see
if the security policy information was correctly propagated to the provider.

If the security policy information for the application is successfully propagated to the provider, the audit
statements with the message key SECJ0415I appear. However, if there was a problem propagating the
security policy information to the provider (for example: network problems, JACC provider is not available),
the SystemOut.log files contain the error message with the message keys SECJ0396E (during install) or
SECJ0398E (during modification). The installation of the application is not stopped due to a failure to
propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error
messages appear during the save operation. When the problem causing this failure is fixed, run the
propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without
reinstalling the application. For more information about this task, see the Propagating security policy of
installed applications to a JACC provider using wsadmin scripting topic in the Securing applications and
their environment PDF book.

An "HPDBA0219E: An error occurred reading data from an SSL connection" might
occur

An error message (HPDBA0219E) might appear in dmgr SystemOut.log when you install an application on
WebSphere Application Server, Network Deployment (ND) and a managed node with Tivoli Access
Manager is enabled.

If the error occurs, then the security policy data of recently deployed applications might not be immediately
available. The policy data is available based on the server replicate time of the Tivoli Access Manager.
This is defaulted to 30 seconds after all updates have been completed. To ensure that the latest policy
data is available, log on to the pdadmin console and type: server replicate.

A "There are no ports available in the port set" error might occur

When you use Tivoli Access Manager as the JACC provider and stop WebSphere Application Server using
the administrative console or the wsadmin script, there is a clean up process that runs for Tivoli Access
Manager. WebSphere Application Server is unable to complete the clean up process.

1014 Securing applications and their environment

WebSphere Application Server uses a different port number for each new process. Eventually, the
application server runs out of port numbers to connect to the Tivoli Access Manager server and displays a
"There are no ports available in the port set" error.

If this error occurs, you must manually clean up the ports that are available to WebSphere Application
Server processes. A script is provided to complete this process. For more information, see Cancelling
multiple processes with Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)
provider might cause a "There are no ports available in the port set" error .

SPNEGO trust association interceptor (TAI) troubleshooting tips
(deprecated)
Presented here is a list of trouble shooting tips useful in diagnosing Simple and Protected GSS-API
Negotiation (SPNEGO) TAI problems and exceptions.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The IBM Java Generic Security Service (JGSS) and IBM Simple and Protected GSS-API Negotiation
(SPNEGO) providers use a Java virtual machine (JVM) custom property to control trace information. The
SPNEGO TAI uses the JRas facility to allow an administrator to trace only specific classes. The following
important trace specifications or JVM custom properties should be used to debug the TAI using tracing.

Table 158. SPNEGO TAI trace specifications.

This table describes the SPNEGO TAI trace specifications.

Trace Use

com.ibm.security.jgss.debug Set this JVM Custom Property to all to trace through JGSS code.
Messages appear in the trace.log file, and SystemOut.log.

com.ibm.security.krb5.Krb5Debug Set this JVM Custom Property to all to trace through the
Kerberos5-specific JGSS code. Messages appear in the trace.log file, and
SystemOut.log.

com.ibm.ws.security.spnego.* Set this trace on using the administrative console > troubleshooting >
Logging and Tracing > server1 > Change Log Detail Levels >
com.ibm.ws.security.spnego.*. Messages appear in the trace.log file.

Chapter 12. Troubleshooting security configurations 1015

http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611
http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611
http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611

Problem: WebSphere Application Server and the Active Directory (AD) Domain
Controller's time are not synchronized within 5 minutes.

Symptom [2/24/06 13:12:46:093 CST] 00000060 Context 2 com.ibm.ws.security.spnego.Context
begin GSSContext accepted

[2/24/06 13:12:46:093 CST] 00000060 Context E com.ibm.ws.security.spnego.Context
begin

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a
HttpServletRequest:

0000: 60820160 06062b06 01050502 a1820154 `..` ..+.T
0010: 30820150 a0030a01 01a10b06 092a8648 0..P*.H
0020: 82f71201 0202a282 013a0482 01366082:.. .6`.
0030: 01320609 2a864886 f7120102 0203007e .2.. *.H.~
0040: 82012130 82011da0 03020105 a1030201 ..!0
0050: 1ea41118 0f323030 36303232 34313931200 6022 4191
0060: 3234365a a5050203 016b48a6 03020125 246ZkH. ...%
0070: a9161b14 57535345 432e4155 5354494e WSSE C.AU STIN
0080: 2e49424d 2e434f4d aa2d302b a0030201 .IBM .COM .-0+
0090: 00a12430 221b0448 5454501b 1a773230 ..$0 "..H TTP. .w20
00a0: 30337365 63646576 2e617573 74696e2e 03se cdev .aus tin.
00b0: 69626d2e 636f6dab 81aa1b81 a76f7267 ibm. com.org
00c0: 2e696574 662e6a67 73732e47 53534578 .iet f.jg ss.G SSEx
00d0: 63657074 696f6e2c 206d616a 6f722063 cept ion, maj or c
00e0: 6f64653a 2031302c 206d696e 6f722063 ode: 10, min or c
00f0: 6f64653a 2033370a 096d616a 6f722073 ode: 37. .maj or s
0100: 7472696e 673a2044 65666563 74697665 trin g: D efec tive
0110: 20746f6b 656e0a09 6d696e6f 72207374 tok en.. mino r st
0120: 72696e67 3a20436c 69656e74 2074696d ring : Cl ient tim
0130: 65204672 69646179 2c204665 62727561 e Fr iday , Fe brua
0140: 72792032 342c2032 30303620 61742031 ry 2 4, 2 006 at 1
0150: 3a31323a 34352050 4d20746f 6f20736b :12: 45 P M to o sk
0160: 65776564 ewed

User Action The preferred way to resolve this issue is to synchronize the WebSphere Application Server system time to
within 5 minutes of the AD server's time. A best practice is to use a time server to keep all systems
synchronized. You can also add or adjust the clockskew parameter in the Kerberos configuration file.
Note: The default for the clockskew parameter is 300 seconds (or 5 minutes).

Problem: No factory available to create a name for mechanism 1.3.6.1.5.5.2.

Problem Getting an exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2. There is no factory
available to process the creation of a name for the specific mechanism.

Symptom [4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider
IBMJGSSProvider version 1.01 does not support mech 1.3.6.1.5.5.2

[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent >
com.ibm.ws.security.spnego.ServerCredential initialize ENTRY

SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2,
minor code: 0

major string: Unsupported mechanism
minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2
at com.ibm.security.jgss.i18n.I18NException.throwGSSException

(I18NException.java:30)
at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)
at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)
at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)

User Action Check the java.security file to ensure it contains the IBMSPNEGO security provider and that the provider is
defined correctly. The java.security file should contain a line similar to:

security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Problem: Getting an exception as the JGSS library is trying to process the
SPNEGO token.

Symptom The following error is displayed as the JGSS library is trying to process the SPNEGO token.

Error authenticating request. Reporting to client
Major code = 11, Minor code = 31
org.ietf.jgss.GSSException, major code: 11, minor code: 31
major string: General failure, unspecified at GSSAPI level
minor string: Kerberos error while decoding and verifying token:

com.ibm.security.krb5.internal.KrbException, status code: 31
message: Integrity check on decrypted field failed

1016 Securing applications and their environment

Description This exception is the result of encoding the ticket using one key and attempting to decode it using a different
key. There are number of possible reasons for this condition:

1. The Kerberos keytab file has not been copied to the server machine after it has been regenerated.

2. The Kerberos configuration points to the wrong Kerberos keytab file.

3. The Kerberos service principal name (SPN) has been defined to the Active Directory more than once. You
have another userid defined with the same SPN or defined with the same SPN with a port defined also. The
following example demonstrates how this condition can occur:

SAME SPN but different user ids
setspn -a HTTP/myHost.austin.ibm.com user1
setspn -a HTTP/myHost.austin.ibm.com user2

SAME SPN and same user ids, one without a port number, one with a port number
setspn -a HTTP/myHost.austin.ibm.com user
setspn -a HTTP/myHost.austin.ibm.com:9080 user

User Action If the problem is with the Kerberos keytab file, then regenerate the keytab file. If the problem is with multiple
SPN definitions, then remove the extra or conflicting SPN, confirm that the SPN is no longer registered with the
Active Directory, and then add the SPN. The Active Directory may need to be searched for other entries with
SPNs defined that clash with the SPN.

To confirm that the SPN is not registered, the command:

setspn –l userid

should return with the following response:

Cannot find account userid

Problem: Single sign-on is not occurring.

Symptom When tracing is enabled, the following message appears:

[2/27/06 14:28:04:191 CST] 00000059 SpnegoHandler <
com.ibm.ws.security.spnego.SpnegoHandler handleRequest: Received a
non-SPNEGO Authorization Header RETURN

Description The client is returning an NT LAN manager (NTLM) response to the authorize challenge, not a SPNEGO token.
This condition can be occur due to any of the following reasons:

v The client has not been configured properly.

v The client is not using a supported browser. For example, when using Microsoft Internet Explorer 5.5, SP1
responds with a non-SPNEGO authentication header.

v The user has not logged into the Active Directory domain, or into a trusted domain, or the client used does not
support integrated authentication with Windows – in this case, the SPNEGO TAI is working properly.

v The user is accessing a service defined on the same machine upon which the client is running (local host).
Microsoft Internet Explorer resolves the host name of the URL to http://localhostsomeURL instead of a fully
qualified name.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com. The
command to add the SPN is

setspn –a HTTP/server.realm.com userid

v The Kerberos service principal name (SPN) has been defined to the Active Directory more than once. You
have either another user ID defined with the same SPN or another userid defined with the same SPN with a
port number defined. The following categories describe these conditions:

Same SPN but with differing user IDs

– setspn -a HTTP/myappserver.austin.ibm.com user1

– setspn -a HTTP/myappserver.austin.ibm.com user2

Same SPN and same user IDs, one with a port number defined

– setspn -a HTTP/myappserver.austin.ibm.com user3

– setspn -a HTTP/myappserver.austin.ibm.com:9080 user3

Chapter 12. Troubleshooting security configurations 1017

User Action If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM, then
delete the user, redefine the user, and redefine the SPN.

If the problem is with the Kerberos keytab file, then regenerate the keytab file.

If the problem is with either category of multiple SPN definitions, then remove the extra or conflicting SPN,
confirm that the SPN is no longer registered with the Active Directory, and then add the SPN. You can search
the Active Directory for other SPN entries that are causing multiple SPN definitions. The following commands are
useful to determine multiple SPN definitions:

setspn ?L userid
Returns the message, cannot find account userid, if the SPN is not registered.

setspn -L
Displays the SPNs that exist.

Problem: Credential Delegation is not working.

Symptom An invalid option is detected. When tracing is enabled, the following message is displayed:

com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in
ticket request

Description The Kerberos configuration file is not properly configured.

User Action Ensure that neither renewable, nor proxiable are set to true.

Problem: Unable to get SSO working using RC4-HMAC encryption.

Symptom Examine the following message in the trace that you receive when trace is turned on:

com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0
message: Checksum error; received checksum does not match computed checksum

Description RC4-HMAC encryption is not supported with a Microsoft Windows version prior to 2003 Kerberos key distribution
center (KDC). To confirm this condition, examine the trace and identify where the exception is thrown. The
content of the incoming ticket should be visible in the trace. Although the incoming ticket is encrypted, the SPN
for the service is readable. If a Microsoft Windows version prior to 2003 KDC is used and the system is
configured to use RC4-HMAC, the string representing the ticket for userid@REALM (instead of the expected
HTTP/hostname.realm@REALM) is displayed. For example, this is beginning of the ticket received from a Microsoft
Windows version prior to 2003 KDC:

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........
0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03
0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........
0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..
0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 730...userid
0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:

0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......
0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03
0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......
0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...
0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 750...HTTP..u
0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.
0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

User Action To correct the problem, either use the Single data encryption standard (DES) or use a Microsoft Windows 2003
Server for a KDC. Remember to regenerate the SPN, and the Kerberos keytab file.

Problem: User receives the following message when accessing a protected URL
through the SPNEGO SSO.

Symptom Examine the following message:

Bad Request

Your browser sent a request that this server could not understand.
Size of request header field exceeds server limit.

Authorization: Negotiate YII......

1018 Securing applications and their environment

Description This message is generated by the Apache/IBM HTTP Server. This server is indicating that the authorization
header returned by the user's browser is too large. The long string that follows the word Negotiate (in the error
message above) is the SPNEGO token. This SPNEGO token is a wrapper of the Microsoft Windows Kerberos
token. Microsoft Windows includes the user's PAC information in the Kerberos token. The more security groups
that the user belongs to, the more PAC information is inserted in the Kerberos token, and the larger the
SPNEGO becomes. IBM HTTP Server 2.0 (also Apache 2.0 and IBM HTTP Server 6.0) limit the size of any
acceptable HTTP header to be 8K. In Microsoft Windows domains having many groups, and with user
membership in many groups, the size of the user's SPNEGO token may exceed the 8K limit.

User Action If possible, reduce the number of security groups the user is a member of. IBM HTTP Server 2.0.47 cumulative
fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K. WebSphere Application
Server Version 6.0 users can obtain this fix in fixpack 6.0.0.2.
Note: Non-Apache based web servers may require differing solutions.

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages
appear in the SystemOut.log.

Symptom Examine the SystemOut.log and note the some KRB_DBG_KDC messages appear
there even with JGSS tracing disabled.

Description While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug
property, a small set of messages are controlled by the
com.ibm.security.krb5.Krb5Debug property. The com.ibm.security.krb5.Krb5Debug
property has a default value to put some messages to the SystemOut.log

User Action .To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM
property as follows:

-Dcom.ibm.security.krb5.Krb5Debug=none

Problem: When an application contains a custom HTTP 401 error page, the
SPNEGO TAI-generated HTTP response page is not displayed in a browser.

Symptom When an application contains a custom HTTP 401 error page, the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor
(TAI)-generated HTTP response page is not displayed in a browser.

Description When an application contains a custom HTTP 401 error page, the SPNEGO
TAI-generated HTTP response page is not displayed in a browser. The custom HTTP
401 error page is displayed instead.

User Action You can customize your HTTP 401 page to include information concerning how to
configure your browser to use SPNEGO. For more information, see “Configuring the
client browser to use SPNEGO TAI (deprecated)” on page 407 and “SPNEGO TAI
custom properties configuration (deprecated)” on page 402.

Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI,
when stepping down to userid/password login.

Symptom Note that HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping down to
userid/password login.

"Stepping down to userid/password login" means that the Microsoft Internet Explorer tries to respond initially with
a SPNEGO token. If this response is unsuccessful, then the Microsoft Internet Explorer tries to respond with a
NTLM token that is obtained through a userid/password challenge.

Description The Microsoft Internet Explorer maintains state during a user's request. If a request was given the response of
an "HTTP 401 Authenticate Negotiate", and the browser responds with a NTLM token obtained through a
userid/password challenge, the browser resubmits the request. If this second request is given a response of an
HTML page containing a redirection to the same URL but with new arguments (via Javascript) then the browser
does not resubmit the POST parameters.
Note: To avoid this problem, it is critical to NOT perform the automatic redirection. If the user clicks on a link,
the problem does not occur.

Chapter 12. Troubleshooting security configurations 1019

User Action The browser responds to the Authenticate/Negotiate challenge with an NTLM token, not an SPNEGO token. The
SPNEGO TAI sees the NTLM, and returns back a HTTP 403 response, along with the HTML page. When the
browser runs the Javascript redirTimer function, any POST of GET parameters that were present on the original
request are lost.

By leveraging the SPN<id>.NTLMTokenReceivedPage property, an appropriate message page can be returned
to the user. The default message that is returned (in the absence of a user defined property) is:

"<html><head><title>An NTLM Token was Received.</title></head>"
+ "<body>Your browser configuration is correct, but you have not logged into

a supported Windows Domain."
+ "<p>Please login to the application using the normal login page.</html>";

Using the SPN<id>.NTLMTokenReceivedPage property, you can customize the exact response. It is critical that
the returned HTML not perform a redirection.

When the SPNEGO TAI has been configured to use the shipped default HTTPHeaderFilter class as the
SPN<id>.filterClass, then the SPN<id>.filter can be used to allow the second request to flow directly to the
normal WebSphere Application Server security mechanism. In this way, the user experiences the normal
authentication mechanism.

An example of such a configuration follows showing the required SPNEGO TAI properties necessary and the
HTML file content.

****** SPNEGO TAI Property Name ****** ****** HTML File Content ******
com.ibm.ws.security.spnego.SPN1.hostName server.wasteched30.torolab.ibm.com
com.ibm.ws.security.spnego.SPN1.filterClass com.ibm.ws.security.spnego.HTTPHeaderFilter
com.ibm.ws.security.spnego.SPN1.filter request-url!=noSPNEGO
com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage File:///C:/temp/NTLM.html

Note: Observe that the filter property instructs the SPNEGO TAI to NOT intercept any HTTP request that
contains the string “noSPNEGO”.

Here is an example of a generating a helpful response.

<html>
<head>
<title>NTLM Authentication Received </title>
<script language="javascript">
var purl=""+document.location;
if (purl.indexOf("noSPNEGO")<0) {
if(purl.indexOf(’?’)>=0) purl+="&noSPNEGO";
else purl+="?noSPNEGO";
}
</script>
</head>
<body>
<p>An NTLM token was retrieved in response to the SPNEGO challenge. It is likely that
you are not logged into a Windows domain.

Click on the following link to get the requested website.
<script language="javascript">
document.write("");
document.write("Open the same page using the normal authentication
mechanism.");
document.write("
");
</script>
You will not automatically be redirected.
</body>
</html>

Problem: The trust association interceptor (TAI) does not call the
initialize(Properties) method

Tracing might show that TAI is loaded, but that the initialize(Properties) method is not called. Only the
getVersion() method appears to be called during startup.

WebSphere's TAI processing only calls initialize(Properties) when there are custom properties defined
for the TAI.

To fix this issue, define an unused TAI custom property, such as
com.ibm.issw.spnegoTAI.NumberOfServers=0.

1020 Securing applications and their environment

Problem: The trust association interceptor (TAI) is not loading properly

Tracing might show that TAI is not loading and the following exception text is received:
SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 13, minor code: 0
major string: Invalid credentials
minor string: SubjectKeyFinder: no JAAS Subject
at com.ibm.security.jgss.i18n.I18NException.throwGSSException(I18NException.java:12)
...

A possible cause for this is that the JVM custom property javax.security.auth.useSubjectCredsOnly is
not set to a value of false.

To fix this issue, define a JVM custom property on each JVM that is enabled for the TAI,
javax.security.auth.useSubjectCredsOnly=false.

Problem: JACL scripts default characters for adding trust association interceptor
(TAI) parameters can cause issues

JACL scripts for adding TAI parameters accept positional parameters. To accept the defaults, a “.” is
specified. On some WebSphere platforms, if you specify a “.” it can cause the property to be added with a
value of “.”.

Always (regardless of platform), confirm that the properties added are as expected using the administrative
console. If they are not, manually correct them.

SPNEGO troubleshooting tips
You can securely negotiate and authenticate HTTP requests for secured resources in WebSphere
Application Server by using the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO). This
article describes the issues you might encounter using Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) as the web authentication service for WebSphere Application Server.

SPNEGO issues and their possible solutions

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The following are some issues you might encounter when you use SPNEGO as the web authentication
service for WebSphere Application Server and their possible solutions.

v “Unable to resolve the Kerberos principal name” on page 1022

v “WebSphere Application Server and the time on the Active Directory (AD) domain controller are not
synchronized within 5 minutes” on page 1022

v “No factory is available to create name for mechanism 1.3.6.1.5.5.2” on page 1023

v “ A Kerberos error is received while decoding and verifying the SPNEGO token” on page 1023

v “Single sign-on does not occur” on page 1024

v “Unable to use sign-on (SSO) with RC4-HMAC encryption” on page 1024

v “Problems when accessing a protected URL through the SPNEGO single sign-on (SSO)” on page 1025

v “Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the SystemOut.log” on
page 1026

Chapter 12. Troubleshooting security configurations 1021

v “ktpass is unable to find the userid” on page 1026

v “Credential delegation might not work due to an invalid option in the ticket request” on page 1025

v “A user is challenged for credentials even though the browser is properly configured” on page 1027

v “A user using the Novell client cannot authenticate using SPNEGO” on page 1027

v “Accessing SPNEGO sites via some caching proxy servers can cause SPNEGO authentication issues”
on page 1027

v “Virtual Private Networks (VPN) software and firewalls might interfere with SPNEGO operations” on
page 1027

v “Possible browser issue when accessing a SPNEGO protected application” on page 1028

v “Possible browser issue with Internet Explorer 6.0” on page 1028

v “Error pages defined for the NTLMTokenReceivedPage or the SpnegoNotSupportedPage properties do
load from an http:// URL” on page 1028

v “A client browser single sign-on (SSO) attempt fails to authenticate with WebSphere Application Server
when you use a SPNEGO token with Microsoft Internet Security Acceleration Server” on page 1028

v “Microsoft Windows Version 7 and Internet Explorer Version 8 disables DES encryption type by default”
on page 1029

Unable to resolve the Kerberos principal name

If you are unable to resolve the Kerberos principal name, as shown in the following trace example:
[11/11/03 1:42:29:795 EST] 1d01b21e GetKrbToken > Negotiation (GSS): Begin handshake
[11/11/03 1:42:29:795 EST] 1d01b21e Context > GSS Context init, servername:HTTP@johnwang5.jwcmd.com
[11/11/03 1:42:29:866 EST] 1d01b21e TraceNLS u No message text associated with key Error.getting.the.Token,
.GSS.Exception:org.ietf.jgss.GSSException,.major.code:.13,.minor.code:.0
major.string:.Invalid.credentials
minor.string:.Cannot.get.credential.from.JAAS.Subject.for.principal:.HTTP/192.168.0.4@168.0.4 in bundle
com.ibm.ejs.resources.security
[11/11/03 1:42:29:866 EST] 1d01b21e GetKrbToken E Error getting the Token, GSS Exception:org.ietf.jgss.GSSException,
major code: 13, minor code: 0
major string: Invalid credentials
minor string: Cannot get credential from JAAS Subject for principal: HTTP/192.168.0.4@168.0.4
[11/11/03 1:42:29:876 EST] 1d01b21e TraceNLS u No message text associated with key SpnegoTAI.exits.due.to.an.exception.
in bundle com.ibm.ejs.resources.security
[11/11/03 1:42:29:876 EST] 1d01b21e SpnegoTAI E SpnegoTAI exits due to an exception.

add the IP address of the server in its host file. You must also recycle the application server to load the
new host file.

WebSphere Application Server and the time on the Active Directory (AD) domain
controller are not synchronized within 5 minutes

The trace.log file for this issue is similar to the following:
[11/11/03 1:44:09:499 EST] 1d01b21e GetKrbToken > Negotiation (GSS): Begin handshake
[11/11/03 1:44:09:499 EST] 1d01b21e Context > GSS Context init, servername:HTTP@backendrc4.ibm.net
[11/11/03 1:44:09:499 EST] 1d01b21e Context > GSS Context init, done.
[11/11/03 1:44:09:679 EST] 1d01b21e SpnegoTAI > Server response token as follows...
0000: 6082014f 06062b06 01050502 a1820143 `?.O..+.....¡?.C
0010: 3082013f a0030a01 01a10b06 092a8648 0?.?¡...*?H
0020: 82f71201 0202a282 01290482 01256082 ?÷....¢?.).?.%`?
0030: 01210609 2a864886 f7120102 0203007e .!..*?H?÷......~
0040: 82011030 82010ca0 03020105 a1030201 ?..0?..¡...
0050: 1ea41118 0f323030 33313131 31303634 .¤...20031111064
0060: 3430395a a5050203 0a3548a6 03020125 409Z¥....5H¦...%
0070: a90b1b09 4a57434d 442e434f 4daa2630 ©.....IBM.NETª&0
0080: 24a00302 0100a11d 301b1b04 48545450 $¡.0...HTTP
0090: 1b136a6f 686e7761 6e67352e 6a77636d ..backendrc4.ibm
00a0: 642e636f 6dab81ab 1b81a86f 72672e69 .net.«?«.?}org.i
00b0: 6574662e 6a677373 2e475353 45786365 etf.jgss.GSSExce
00c0: 7074696f 6e2c206d 616a6f72 20636f64 ption, major cod
00d0: 653a2031 302c206d 696e6f72 20636f64 e: 10, minor cod
00e0: 653a2033 370a096d 616a6f72 20737472 e: 37..major str
00f0: 696e673a 20446566 65637469 76652074 ing: Defective t
0100: 6f6b656e 0a096d69 6e6f7220 73747269 oken..minor stri
0110: 6e673a20 436c6965 6e742074 696d6520 ng: Client time
0120: 54756573 6461792c 204e6f76 656d6265 Tuesday, Novembe
0130: 72203131 2c203230 30332061 7420313a r 11, 2003 at 1:
0140: 33353a30 3120414d 20746f6f 20736b65 35:01 AM too ske
0150: 776564 wed

1022 Securing applications and their environment

You can fix this issue in one of two ways. The preferred method is to synchronize the WebSphere system
time to within 5 minutes of the time of the AD server. A best practice is to use a time server to keep all of
the systems synchronized. Alternatively, you can also add or adjust the clockskew parameter in the
Kerberos configuration file. Note that the default is 300 seconds (5 minutes).

No factory is available to create name for mechanism 1.3.6.1.5.5.2

If the systemout.log file contains an exception error similar to the following:
[4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider IBMJGSSProvider version 1.01
does not support mech 1.3.6.1.5.5.2
[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent E com.ibm.issw.spnegoTAI.ServerCredential initialize() SPNEGO014:
Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2, minor code: 0
major string: Unsupported mechanism
minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2
at com.ibm.security.jgss.i18n.I18NException.throwGSSException(I18NException.java:30)
at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)
at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)
at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)
.
.

make sure that the java.security file contains the IBMSPNEGO security provider and is defined correctly.
It should contain a line similar to the following:
security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

A Kerberos error is received while decoding and verifying the SPNEGO token

You might receive the following exception error as the Java Generic Security Service (JGSS) library
attempts to process the SPNEGO token:
Error authenticating request. Reporting to client
Major code = 11, Minor code = 31
org.ietf.jgss.GSSException, major code: 11, minor code: 31
major string: General failure, unspecified at GSSAPI level
minor string: Kerberos error while decoding and verifying token: com.ibm.security.krb5.internal.KrbException, status code: 31
message: Integrity check on decrypted field failed

This error is caused when the ticket is encoded by using one key and then an attempt is made to decode
the ticket by using another key. There are number of possible explanations for this:

v The keytab file has not been copied to the server machine after it has been regenerated.

v The Kerberos configuration points to the wrong keytab file.

v The SPN was defined to Active Directory more than once. This is also caused by another userid with a
similarly defined SPN (either the same name or it might differ by having a port defined as part of the
SPN).

v If the encryption type is DES, the password associated with the Service userid might only exist for
RC4-HMAC encryption. This occurs when a new userid is created, the SPN is defined, and the keytab
is generated with the +DesOnly option. The service ticket generated for this SPN is encrypted with one
secret that does not match that found in the keytab.

v An older version of the Microsoft ktpass tool is being used. Older versions of the tool create keytab files
that are incorrect and might result in this error. If you are using Windows Server 2003 as your Domain
controller, use the version of ktpass.exe that is part of Windows Server 2003 SP 2 (specifically, version
5.2.3790.2825).

If the problem is with the keytab file, then fix it. If the problem is with multiple SPN definitions, remove the
extra or conflicting SPN, confirm that the SPN is no longer registered with AD, and then add the SPN
again. Read about Creating a Kerberos service principal name and keytab file for more information. The
Active Directory might need to be searched for other entries with SPNs defined that clash with the SPN
using an LDAP browser.

To confirm that the SPN is not registered, the following command:
setspn –l userid

Chapter 12. Troubleshooting security configurations 1023

should return with:
Cannot find account userid

If the userid and keytab are for DES-CBC-MD5, after you create the userid, change the password for the
userid and then create the keytab file. If you are using Windows Server 2003 upgrade to the latest version
of ktpass.

Single sign-on does not occur

When trace is turned on, the following error message might appear:
Client sent back a non-SPNEGO authentication header, SpnegoTAI exits

A possible reason for this error is that the client is returning an NT LAN manager (NTLM) response to the
authorize challenge, not an SPNEGO token. This can occur due to one or more of the following issues:

v The client has not been properly configured.

v The client is not using a supported browser. For instance, users of Internet Explorer 5.5 SP1 respond
with a non-SPNEGO authentication header.

v The user has not logged into the AD domain or into a trusted domain, or the client used does not
support Integrated Authentication with Windows. In this case, the TAI is working properly.

v The user accesses a service defined on the same machine as the client is running (the localhost).
Internet Explorer resolves the hostname of the URL to http://localhost<someURL> instead of to the
fully-qualified name that is provided.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com.
The command to add the SPN is:

setspn –a HTTP/server.realm.com userid

If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM,
then delete the user, redefine it, and then redefine the SPN.

v The hostname is resolved as a DNS Alias, not as a HOST record. Change the hostname to a HOST
record.

v The account in AD that holds the ServicePrincipalName is in an AD domain that is remote from the AD
domain that the user has logged into, and these domains are not Windows 2003 domains. Migrate the
domains to Windows 2003, or limit SSO to users within the same domain as the ServicePrincipalName
userid.

Unable to use sign-on (SSO) with RC4-HMAC encryption

When trace is turned on you might receive the following error message:
com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0
message: Checksum error; received checksum does not match computed checksum

Some possible reasons for this error include the following

v RC4-HMAC encryption is not supported with a Windows version prior to 2003 KDC. To confirm that this
is a problem, examine the trace above where the exception is thrown. The content of the incoming
ticket should be visible in the trace. While it is encrypted, the SPN name for the service is readable. If a
Windows version prior to 2003 KDC is used, and the system is configured to use RC4-HMAC, the string
representing the ticket for userid@REALMinstead of the expected HTTP/hostname.realm@REALM is shown.
For example, this is beginning of the ticket received from a Windows version prior to 2003 KDC:

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........
0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03
0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........
0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..
0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 730...userid
0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:
0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......
0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03
0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......

1024 Securing applications and their environment

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...
0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 750...HTTP..u
0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.
0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

To correct the problem, either use single DES encryption or use a Windows Server 2003 for a KDC.
Remember to regenerate the SPN and the keytab file.

v RC-HMAC encryption does not work when the credential delegation feature is used. To determine if you
have this problem, enable JGSS and Krb5 tracing. If the SPN name is correct, messages such as the
following might appear:

[JGSS_DBG_CTX] Successfully decrypted ticket
[JGSS_DBG_CTX] Put authz info in cache
[JGSS_DBG_CTX] Session key type = rc4-hmac
...
[JGSS_DBG_CTX] Successfully decrypted authenticator
[JGSS_DBG_CTX] Error authenticating request. Reporting to client
...
Major code = 11, Minor code = 0
org.ietf.jgss.GSSException, major code: 11, minor code: 0
major string: General failure, unspecified at GSSAPI level
minor string: Kerberos error converting KRBCred: com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0
message: Checksum error; received checksum does not match computed checksum

This indicates that the delegated credential contained in the SPNEGO token was not encrypted with the
proper key.

Obtain APAR IY76826. This replaces ibmjgssprovider.jar with a version that can accept the Microsoft
defined RC4 encrypted delegated credential.

v The password used when generating the keytab file with ktpass does not match the password assigned
to the service account. When the password changes you should regenerate and redistribute the keys.,
even if it is reset to the same password.

In addition, the ktpass tool might generate a keytab file with a non-matching password as in the
following cases:

– If the password entered to ktpass matches the password for the service account, then the produced
keytab file does work.

– If the password entered to ktpass does not match the password for the service account, and is less
than 7 characters in length, ktpass stops and does not produce a keytab file.

– If the password entered to ktpass does not match the password for the service account, and is
greater than 6 characters in length, ktpass does not stop. Instead, it produces a keytab file
containing an invalid key. Use of this key to decrypt a SPNEGO token produces the checksum error
listed above.

Use a non-null password for the service account, and then use that password when invoking ktpass.

v The ktpass version 1830 (in Support Tools SP1) can produce the error in some Windows 2003 Server
environments. Use the SP2 version of the tool to avoid the error.

Use the Support Tools SP2 version of ktpass to generate the keytab file.

Credential delegation might not work due to an invalid option in the ticket request

When trace is turned on, if the following error message appears:
com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in ticket request

the Kerberos configuration file is not properly configured. Ensure that neither renewable nor proxiable are
set to true.

Problems when accessing a protected URL through the SPNEGO single sign-on
(SSO)

You might receive an error similar to the following when accessing a protected URL through the SPNEGO
SSO:

Chapter 12. Troubleshooting security configurations 1025

Bad Request

Your browser sent a request that this server could not understand.
Size of request header field exceeds server limit.

Authorization: Negotiate YII......

This message is generated by the Apache/IBM HTTP Server, and indicates that the authorization header
that your browser has returned is too large. The long string that follows the word Negotiate is the
SPNEGO token. This SPNEGO token is a wrapper of the Windows Kerberos token. Windows includes the
PAC information of the user in the Kerberos token. The more security groups that the user belongs to, the
more PAC information is inserted in the Kerberos token, and the larger SPNEGO becomes. IBM HTTP
Server 2.0 (as well as Apache 2.0 and IBM HTTP Server 6.0) limit the size of any acceptable HTTP
header to be 8K. In Windows domains with many groups, and with user membership in many groups, the
size of the user's SPNEGO token can exceed the 8K limit.

If possible, reduce the number of security groups that the user is a member of. IBM HTTP Server 2.0.47
cumulative fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K.

After applying the fix you must specify the LimitRequestFieldSize parameter in the httpd.conf file to
increase the size of allowable headers from the default of 8192.

Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the
SystemOut.log

While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug property, a small set of
messages are controlled by the com.ibm.security.krb5.Krb5Debug property. The default value of the krb5
property is to emit some messages to SystemOut.log.

To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM property to
-Dcom.ibm.security.krb5.Krb5Debug=none.

ktpass is unable to find the userid

When using ktpass, you might receive an error message similar to the following:
DsCrackNames returned 0x2 in the name entry for server3
Failed getting target domain for specified user.

In an Active Directory forest, the userid lookup used by the ktpass.exe does not have a default domain
name to be used. This does not occur when the domain controller is not in a forest.

To fix this problem, instead of specifying option -mapUser userid, use -mapUser userid@domain instead.
For example, specify –mapUser server3@WIBM.NET.

Credential delegation does not work for any userid

If in the trace.log, an error exception similar to the following appears:
> com.ibm.issw.spnegoTAI.Context getDelegateCred() Entry
d com.ibm.issw.spnegoTAI.Context getDelegateCred() unable to get Delegate Credential
< com.ibm.issw.spnegoTAI.Context getDelegateCred() Exit
W com.ibm.issw.spnegoTAI.SpnegoHandler handleRequest() SPNEGO021: No delegated credentials were found for user: nauser@NA.IBM.NET

the domain account on which the SPN is attached does not have the “Account is trusted for Delegation”
property defined.

To address this issue, ensure that the domain account does define the “Account is trusted for Delegation”
property.

1026 Securing applications and their environment

A user is challenged for credentials even though the browser is properly
configured

A user might be challenged for credentials even though the browser is configured properly. The TAI might
have obtained the user's credentials from the SPNEGO token, and the user might have failed to log in. In
the trace.log an exception error similar to the following appears:
< com.ibm.issw.spnegoTAI.SpnegoTAI getAuthenticatedUsername(): lansche Exit
d com.ibm.issw.spnegoTAI.SpnegoTAI negotiateValidateandEstablishTrust(): Handshake finished, sending 200 :SC_OK
< com.ibm.issw.spnegoTAI.SpnegoTAI negotiateAndValidateEstablishedTrust Exit
A SECJ0222E: An unexpected exception occurred when trying to create a LoginContext. The LoginModule alias is system.WEB_INBOUND
and the exception is...

The userid (which is lansche in the example above) does not exist in the registry in use by WebSphere.
This problem can be caused when:

v The registry used by WebSphere is not the Active Directory domain LDAP, or Global Catalogue, but is
some other virtual registry (for example, a file-based custom user registry).

v A custom IClientToServerUseridMapper implementation modifies the username such that the name it is
mapped to does not exist in the registry.

v The attribute mapped to by the WebSphere LDAP User Filter property is incorrect.

To fix this problem, ensure that the user that is being asserted to WebSphere Application Server by the TAI
is the configured WebSphere registry.

A user using the Novell client cannot authenticate using SPNEGO

If a user using the Novell client cannot authenticate using SPNEGO they might receive a “An NTLM token
is received.” message.

The user might have logged into the Novell Client but did not perform a Windows Kerberos login (this can
be confirmed using the Kerbtray utility). If a user has logged onto the Windows domain and has a
Kerberos ticket, the user cannot utilize SPNEGO authentication.

To fix this problem, remove the Novell client and use the default Windows domain login.

Accessing SPNEGO sites via some caching proxy servers can cause SPNEGO
authentication issues

If you access SPNEGO sites via some caching proxy servers you might not be able to authenticate using
SPNEGO. The message “SPNEGO authentication not supported on this client” might be displayed.

It is possible that the caching proxy is changing the hostname that returns on the HTTP 401 Authenticate
Negotiate response.

If you have this issue, contact your proxy vendor for a possible solution.

Virtual Private Networks (VPN) software and firewalls might interfere with SPNEGO
operations

You might experience problems with VPN software and firewalls that might interfere with SPNEGO
operations.

To resolve these issues, contact your VPN and or firewall vendors for any configuration changes that might
be necessary.

Chapter 12. Troubleshooting security configurations 1027

Possible browser issue when accessing a SPNEGO protected application

There might be a browser issue if you log onto a domain machine using one password (for example,
passwordA) and then log onto a second domain machine by changing your original password (for
example, you might change your password on the second domain machine to passwordB).

Once you return to the original domain machine, you might not be able to obtain either a
SPNEGO/Kerberos or an NTLM response to the Negotiate challenge. After two attempts, the browser
displays an HTTP 404 error message.

To resolve this issue, log off the original domain machine and log back on with the new password
(passwordB).

Possible browser issue with Internet Explorer 6.0

When WebSphere Application Server is configured with SPNEGO and fallback is enabled for a request,
Internet Explorer 6.0 might fail to login to the form login pages.

To avoid this situation, complete one of the following actions:

v From the Global security > SPNEGO Web Authentication panel, deselect the Allow fall back to
application authentication mechanism option if it is selected.

v Upgrade to Internet Explorer Version 7.0

v Configure Internet Explorer Version 6.0 to use a different authentication page. The issue is with the
basic authentication versus the form login authentication preference.

Error pages defined for the NTLMTokenReceivedPage or the
SpnegoNotSupportedPage properties do load from an http:// URL

The error pages defined for the NTLMTokenReceivedPage or the SpnegoNotSupportedPage properties do
load from an http:// URL. The following trace message might appear:
Could not load the SPNEGO not supported content, going with the default content.
Exception received: java.net.ProtocolException: Server redirected too many times (20)

This issue occurs when the loaded file performs an automatic redirect. It is not possible to both load the
file from a web server and also use an automatic redirection

To resolve this issue, load the content from a file:/// URL, not an http:// URL.

A client browser single sign-on (SSO) attempt fails to authenticate with
WebSphere Application Server when you use a SPNEGO token with Microsoft
Internet Security Acceleration Server

When tracing is enabled, the following messages exist:
com.ibm.ws.security.spnego.SpnegoHandler isAuthHeaderNotSPNEGO
ENTRY Negotiate

com.ibm.ws.security.spnego.SpnegoHandler isAuthHeaderNotSPNEGO
Client sent back a non-SPNEGO authentication header

When a Microsoft Internet Security Acceleration Server (ISA) exists between a client browser and
WebSphere Application Server, ISA might intercept the SPNEGO authentication header from the client
browser request. ISA converts the SPNEGO object identifier (OID) to a Kerberos OID. The authentication
attempt with WebSphere Application Server fails because the SPNEGO OID has been converted and is
now missing.

1028 Securing applications and their environment

For information about how to fix this issue, see the "Users cannot access a web site that is published in
ISA Server 2006 if the web site accepts only the SPNEGO authentication package" topic on the Microsoft
Corporation Support site.

Microsoft Windows Version 7 and Internet Explorer Version 8 disables DES
encryption type by default

If you are using Microsoft Windows Version 7 with Internet Explorer Version 8, and you cannot get
SPNEGO Single Sign On (SSO) to function, it could be because Windows Version 7 disabled DES
encryption type for Kerberos by default. When trace is turned on the following message appears:
Client sent back a non-SPNEGO authentication header....

It is recommended that you change your encryption type to RC4-HMAC or to AES. If you still choose to
use the DES encryption type, however, you must refer to the Windows 7 documentation for help on how to
enable the DES encryption type.

The following is an example of how to change your encryption type from DES to RC4:

1. Make sure the Microsoft Active Directory account that you use to map to the SPN does not have the
Use DES encryption type for this account box checked. In the Microsoft Active Directory machine:

a. Click Start->Programs->Administrative Tools->Active Directory Users and Computers->Users.

b. Click on the Microsoft Active Directory account that you use to map to the SPN.

c. Select the account, and then make sure that the Use DES encryption type for this account box
is not checked.

2. Reset the password for the Microsoft Active Directory account that you use to map to the SPN. You
can reset it to the same password.

3. Regenerate the keytab with the RC4 encryption type.

4. Copy the new keytab file to the WebSphere Application Server servers.

5. Update the Kerberos configuration (krb5.ini/krb5.conf) files to list RC4 first for the default_tkt_enctypes
and default_tgs_enctypes attributes.

For example:
default_tkt_enctypes = rc4-hmac des-cbc-md5
default_tgs_enctypes = rc4-hmac des-cbc-md5

.

6. Stop and restart all WebSphere Application Server servers.

Note: If you have more than one Microsoft Active Directory account that you use to map to different
SPNs, then you must repeat steps 1 through 3 above for each SPN and the merging of all the
keytab files.

Chapter 12. Troubleshooting security configurations 1029

1030 Securing applications and their environment

Chapter 13. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© Copyright IBM Corp. 2011 1031

1032 Securing applications and their environment

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© IBM Corporation 2005, 2009 1033

1034 Securing applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2011 1035

1036 Securing applications and their environment

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 1037

http://www.ibm.com/legal/copytrade.shtml

1038 Securing applications and their environment

Index

A
access control

Local OS Registry 140
active key history 798
administrative authorization

fine-grained security
administrative console 642

administrative authorization group
fine-grained security

administrative console 640
administrative group roles 624
administrative roles 549

authorization access 621
administrative security

disabling 66
enabling 64
fine-grained security 632

heterogeneous environments 644
single-server environments 644

APIs
programmatic outbound configurations

JSSEHelper 726
programmatic security development 841
SCA

request contexts 647
single sign-on 372

application environments
class profiles 133

application login
web customizations 852

application servers
security 129

application Synch 75, 76
applications

security 80
security propagation 621

attribute mapping
federated repositories 253

audit encryption keystores and certificates 951
audit event factories

configuration 946
for security auditing 945

audit monitor 937
audit reader

usage 954
audit service providers 939
authentication

default token 471
JAAS 438
JASPI

administrative console 914
custom implementations 909

JASPI development
custom providers 910

JASPI enablement
application deployment 917
applications 919

authentication (continued)
JASPI modification

administrative console 915
Kerberos 348

setting up 356
mechanisms 39
message-layer authentication 364, 521
settings

cache 180
single sign-on 370

LTPA cookies 370
SPNEGO 377

alias host name usage 394
HTTP requests 381

users 183
authentication cache

configuration 484
authentication mechanisms 344, 364
authentication protocol support 518
authorization 40

administrative roles 540
checking 40
clusters 49
naming service 540
resource access 539
running identity mapping 453
SCA 645
technology 539

authorization checking 50
authorization providers 552

built-in providers 586
authorization roles 546

C
CBIND

access control 141
certificate expiration monitoring

configuration 792
certificate requests

extraction 765
certificate signers

clients
auto-exchange prompt change 781

utilities
signer retrieval 779

certificates 749
authority request creation 758
certificate replacement 754
exporting 766
extraction 778
from certificate authorities 766, 769
importing 768
replacement 769
self-signed certificates 753
signer certificate extraction 778
signer certificates

adding to keystore files 786

© Copyright IBM Corp. 2011 1039

certificates (continued)
signer exchange 791

commands
command reference

PropFilePasswordEncoder 972
FileRegistryCommands 260
signer retrieval 682, 693
Tivoli Access Manager configuration 609

common object request brokers
C++ interoperation 19

communications
security 649

configuration files
clients

ssl.client.props 735
Connection Manager RunAs Identity

enabled 75
system security 75

context objects
fields 924, 933

controls summary 40
cookies

HTTP cookie retrieval
example 889

CORBA naming service groups 624
CSIV2 518

client configuration 510
configuration 493
inbound communications 485

custom login migration
CustomLoginServlet class 24

custom properties
federated repositories 253

D
data sources

configuration 306
delegations 585
directory

installation
conventions 1031, 1033

dynamic annotations
servlet security 568

dynamic group support
directory servers 211
Tivoli Directory Server 212

dynamic groups
LDAP 340
nested groups 340

dynamic member attributes 337
federated repositories 336

dynamic roles
caching properties 597

E
EJB applications

programmatic API development 848
EJB security

authentication protocol 515

emitters
interfaces

base generic emitters 941, 943, 944
endpoint security

configuration management 731
enterprise beans

application code
example 851

entity types 311
errors

security configuration 990
security enablement 990, 993
SSL 1004

event type filters 931

F
Federal Information Processing Standard

JSSE files 866
federated repository wizard 259
FileRegistrySample.java 223
FIPS

JSSE files 866
form login processing

servlet filters configuration 859

G
generic events

interface
example 931

global security
custom properties 128

adding 127
deleting 129

group attribute definitions
configurations 331

I
identification 40
identities

Java thread 72
operating system thread 72

identity assertions
downstream servers 519
trust validation 520

identity mapping
custom login module 460
inbound configuration 455
outbound configuration 462

inbound transports
configuration 501

interfaces
generic event factories

example 947
interoperating

previous versions 17

1040 Securing applications and their environment

J
JAAS 438

application login customization 452
custom login module development 442
identify assertion enablement 452
web authentication 440

JACC 553
ContextID format 557
external provider enablement 591
interface support 604
policy context handlers 557
policy propagation 557
provider implementation class registration 558
providers 556

JASPI
authentication provider deletion

administrative console 916
JASPI authentication providers 918
Java 2 security 81

access control exception 89
API protection

application development 819
editing policies

PolicyTool 821
policies

was.policy file 828, 833
policy files 86

configuration 822
resource protection

application development 819
static policy files

configuration 835
Java EE

identities 77
Java Servlet 3.0

security support 566
job managers

security 436
JSSE

repertoire alias 63

K
key generation classes

development
example 804

key generation retrieval
from key set groups 802

key management
cryptographic usage 796

key managers 752
X.509 certificate identities 660

key set groups 806
configuration creation 801

key sets 799
configuration creation 797

keystore configurations
preexisting keystore files 746
remote management 748

keystore files 749

keystore files (continued)
signer exchange 791

L
LDAP

advanced LDAP settings 199
bindings 215
directory servers 205
key set groups 347
key sets 347
performance 316
RACF

z/OS 217
search filters 202
security failover 341
settings 274
stand-alone registry settings 194
user group memberships 208

LDAP entity types 330
federated repositories 329

local operating system wizard 190
login configuration

WSLogin 463
login modules

custom authorization tokens
example 880

LTPA 346
keys 347
single sign-on 370

M
management scopes 687
member attributes 334

federated repository 333
messages

inbound configuration 508
outbound configuration 509

methods
servlet security 844

N
naming roles

user assignment 626
nested group support

directory servers 211
Tivoli Directory Server 212

new administrative authorization groups 637, 638
notifications 795

security audit subsystem failures 936

O
objects

caching properties 598
outbound transports

configuration 506

Index 1041

P
password encoding 970
password encryption

disablement 975
enablement 973
plug points 907
plugpoint enablement 906

passwords
securing passwords 970

permissions
applications 55
policies

app.policy file 824
client.policy file 839
filter.policy files 826
java.policy file 836
library.policy file 832
server.policy file 838
spi.policy file 831

personal certificate requests 763
personal certificates 759
policies

Java 2 security migration 25
security identity 645

policy files
migration 31

port retrieval 785
principal mapping

global sign-on configuration 432
Profile Management Tool

security
z/OS 35

settings
z/OS 35

profiles
certificate options 673

programmatic login migration 22
programmatic security

application development 818
properties files

group.props file 241
users.props file 241

property extensions
DB2 304

protection wizard 100
proxy servers

third-party HTTP reverse servers 366

R
RACF 134

class profiles 133
DB2 56
keyring setup 138
tips 964

realms
configuration settings 251
security 90

registries
custom properties 811

registries (continued)
custom user registry development 242
custom user registry storage

DB2 241
federated repositories 327
getGroups methods 810
getUsers methods 810
LDAP 191, 215

RACF 217
stand-alone LDAP 339
user group memberships 208

local operating systems 186, 187
selecting 183
stand-alone custom development 809

reports
security configuration 124

repositories 314
federated 250, 257, 262

changing passwords 255
configurations 312
custom adapters 319, 320, 321, 322
custom properties 253
entity types 310
entry mapping 306
external repositories 284
file details 253
LDAP 264, 266, 267, 269, 271
limitations 254
performance 315
property extensions 285, 299
realm management 248
user registries 324

LDAP 263
replication 313
selecting 183

role-based policy framework 599

S
SAF

application levels 38
classes 44
customization jobs 35
distributed identity mapping 578
fine-grained administrative authorization 638
keyring support for audit signing 776
keyring support for encryption 776
keyrings

JSSE 864
naming role access control 576
operating systems 38
pluggable login module enablement 631
profiles 35, 44
role-based security 569
system login configurations 466
user registries 572
z/OS 573

SAF keyrings
HTTP requests 60

SAS
client configuration 510

1042 Securing applications and their environment

secure transports
programming interfaces

JCE 860
JSSE 860

security
administrative 70
application servers 129
applications 80
authorization token implementation

example 877
coexisting 15
configuration tuning 959
custom properties 102, 122
domains 172, 179
enabling 15, 66
installation 31
interoperating 15
job managers 436
migrating 15
multiple domains

copying 168
creating 164
deleting 168
inbound trusted realms 172

nodes 79
overview 13
performance tuning 966
post installation 32
realm names 179
realms 90, 179
servers 71
settings

add key alias references 799
add signer certificates 787
administrative user password 258
administrative user roles 622
advanced LDAP 199
audit event factories 946
audit notifications 938
audit record encryption 951
audit record keystore files 953
audit record signing configurations 952
audit service providers 940
authentication cache 180
authentication protocol for client

configurations 511
certificate expiration management 793
certificate requests 759
CSIV2 authentication 500
CSIV2 authentication protocol 514
CSIV2 communications 484
CSIV2 inbound communications 487
CSIV2 outbound communications 494
CSIV2 outbound transport communications 507
CSIV2 transport inbound communications 502
custom properties 122
dynamic member attributes 338
dynamic outbound endpoint SSL

configuration 733
entity types 312
entry mapping repository 308

security (continued)
settings (continued)

event type filters 930
external authorization providers 587
global security 93
group attribute definitions 331, 332
inbound authentication 492
JACC providers 588
key managers 752
key set groups 806
key sets 800
keystore files 750
LDAP entity types 330
local operating system 189
member attributes 335
naming service users 622
notifications 795
personal certificate requests 764
property extension repositories 289
quality of protection 734
reference 314
SAS for z/OS 504
self-signed certificates 761
sever-level security 131
signer certificates 788
single sign-on 421
SSL 699
stand-alone custom registries 221
stand-alone LDAP registry 194
Tivoli Access Manager JACC providers 595
trust and key managers 715
trust association interceptors 370
trust associations 369
trust managers 717
web authentication 846

setup 15
testing 123
z/OS 100

security annotations 563
security attributes

default authorization token 475
default propagation token 478
default single sign-on 483
propagation 467, 472

custom Java serialization objects 897
security audit data

protection 948
security auditing

context objects 932
security auditing subsystems

enablement 922
security audits 923

default service provider configuration 938
event type filter creation 927
events 928
infrastructure 921
record encryption 949
records signing 950
SMF configuration 943
third-party service providers

configuration 942

Index 1043

Security Configuration wizard 124
security configurations

hardening considerations 959
maintenance considerations 959
tuning considerations 959

security domains 147
configuration 143

security hardening
configurations 967
enablement 968
migration 968

security infrastructure
extension development 809

security tuning
tips 963

servlet filters
for form login processing 856

signer certificates 787
exchange 790
exporting 783
extraction 779
importing

z/OS keyrings 782
single sign-on

configuration 430
RMI_OUTBOUND 464
Tivoli Access Manager 421
trust associations 430

HTTP requests 377
implementation

example 883
principle mapping 373
token login module

example 887
tokens

security attribute propagation 882
web user authentication 374

SPNEGO
troubleshooting 1021

SSL 650, 699
alias selection 729
application server 670
CA client creation 744
central management 669
certificate expiration monitoring 684
certificate management 689, 697
certificates

iKeyman usage 688
client authentication enablement 730
client certificate authentication 700
clients 58
cluster isolation 670
configuration creation 694
configurations 656
considerations for administrators 59
custom key manager creation 720
custom trust decisions

custom trust managers 718
custom trust managers 714
daemon 54
default chained certificates 676

SSL (continued)
dynamic configuration associations 724
dynamic configuration updates 686
dynamic inbound and outbound endpoints 732
dynamic outbound selections 668
HTTP requests 60
inbound endpoints 730
inbound scope associations 727
Java clients 64
key management 697
keyrings 58
keystore configurations 664
nodes 670
outbound scope associations 727
programmatic outbound configurations 726
remote ports

signer retrieval 784
repertoire alias 62
repertoires 54
replacement certificates

cells 756
nodes 755

scopes 698
secure installations 679
servers 57, 58
z/OS 51

stand-alone custom registries 219
configuration 218

Stand-alone custom registry wizard 222
Stand-alone LDAP registry wizard 198
static roles

caching properties 597
Synch 74
system-dependent configuration 599

T
Tivoli Access Manager 562

administrative role changes
propagation 627

administrative user creation 593
authentication

node migration 28, 29
authorization server configuration 601
configuration

web servers 429
embedded enablement 608

administrative console 620
group configuration 601
JACC 594

provider configuration properties 596
JACC provider enablement 607
JACC providers 560

administrative console 591
unconfiguration 620

Java EE resource access 586
logs 602, 603
role-based security 559
security roles 600
security users 600
single sign-on 421, 423, 424

1044 Securing applications and their environment

Tivoli Access Manager (continued)
trusted user accounts 427
utilities

EAR file migration 628
Tivoli Directory Server

group support 212
token login modules

custom authentication
example 895

custom propagation
example 874

tokens
custom authorization implementation

security attribute propagation 875
implementation

security attribution propagation 868
token propagation 870

implementations
token authentication 892

security attribute propagation
authentication token 890
propagation token 869

troubleshooting
security authorization providers 1011
security components 977
security configurations 977
security enablement

access problems 1000

troubleshooting (continued)
SPNEGO 1021

trust association interceptors 369
trust association migration 19
trust associations 366

custom interceptor development 900
interceptor support

subject creation 904
trust managers 716

X.509 certificate identities 659

W
WebSEAL

configuration 428
single sign-on 421

WebSphere Application Server
z/OS 34

wsadmin commands
repository setup 290

wsadmin scripts
removeMapPlatformSubject 584

Z
z/OS security

distributed identity filters 581

Index 1045

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Overview and new features for securing applications and their environment
	Security planning overview

	Chapter 2. How do I secure applications and their environments?
	Chapter 3. Task overview: Securing resources
	Chapter 4. Setting up, enabling and migrating security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Interoperating with a C++ common object request broker architecture client
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORB
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy
	Migrating with Tivoli Access Manager for authentication enabled on a single node
	Migrating with Tivoli Access Manager for authentication enabled on multiple nodes
	Migrating unrestricted jurisdiction policy files, local_policy.jar and US_export_policy.jar

	Preparing for security at installation time
	Securing your environment after installation
	WebSphere Application Server security for z/OS
	z/OS Profile Management Tool security settings
	SAF profile prefixes and the customization jobs
	System Authorization Facility considerations for the operating system and application levels
	Authentication mechanisms
	Specifics about identification and authentication
	Authorization checking
	Secure Sockets Layer security for WebSphere Application Server for z/OS
	Setting permission for files created by applications
	RACF protection for DB2
	System Authorization Facility (SAF) profile names

	Defining Secure Sockets Layer security for servers
	Setting up a keyring for use by Daemon Secure Sockets Layer
	Defining SSL security for clients and servers
	Secure Sockets Layer (SSL) considerations for WebSphere Application Server administrators

	Creating Secure Sockets Layer digital certificates and System Authorization Facility keyrings that applications can use to in
	Creating a new System SSL repertoire alias
	Creating a new Java Secure Socket Extension repertoire alias
	Setting up SSL connections for Java clients

	Enabling administrative security and the default application security policy
	Disabling administrative security

	Enabling security
	Administrative security
	Server and administrative security
	Java thread identity and an operating system thread identity

	Security considerations when in a multi-node WebSphere Application Server WebSphere Application Server, Network Deployment en
	Application security
	Java 2 security
	Java 2 security policy files
	Access control exception for Java 2 security

	Enabling security for the realm
	Global security settings
	Specify extent of protection wizard settings
	z/OS security options
	Security custom properties
	Security custom property collection
	Security custom property settings

	Testing security after enabling it
	Security Configuration Wizard
	Security configuration report
	Adding a new custom property in a global security configuration or in a security domain configuration
	Modifying an existing custom property in a global security configuration or in a security domain configuration
	Deleting an existing custom property in a global security configuration or in a security domain configuration

	Securing specific application servers
	Server-level security settings
	Security settings for this server override cell settings
	Enable application security
	Use Java 2 security to restrict application access to local resources
	Warn if applications are granted custom permissions
	Restrict access to resource authentication data
	Use domain-qualified user names
	Authentication cache timeout
	Active protocol
	RMI/IIOP security for this server overrides cell settings

	Controlling application environments with RACF server class profiles
	Resource Access Control Facility Tools
	RACF keyring setup

	Controlling access to console users when using a Local OS Registry
	Using CBIND to control access to clusters

	Chapter 5. Configuring multiple security domains
	Multiple security domains
	Creating new multiple security domains
	Deleting multiple security domains
	Copying multiple security domains
	Configuring inbound trusted realms for multiple security domains
	Configure security domains
	Name
	Description
	Assigned Scopes
	Application Security:
	Enable application security
	Java 2 security:
	Use global security settings
	Customize for this domain
	Use Java 2 security to restrict application access to local resources
	Warn if applications are granted custom permissions
	Restrict access to resource authentication data
	User Realm:
	Trust Association:
	Interceptors
	Enable trust association
	SPNEGO Web Authentication:
	RMI/IIOP Security:
	CSIv2 inbound communications
	CSIv2 outbound communications
	JAAS Application logins
	Use global and domain-specific logins
	JAAS System Logins:
	System Logins
	JAAS J2C Authentication Data:
	Use global and domain-specific entries
	Java Authentication SPI (JASPI)
	Authentication Mechanism Attributes:
	Authorization Provider:
	z/OS security options:
	Enable application server and z/OS thread identity synchronization
	Custom properties
	Web Services Bindings

	External realm name
	External realm name

	Trust all realms
	Trust all realms (including those external to this cell)
	Trust realms as indicated below
	Add External Realm...

	Security domains collection
	Maximum rows
	Retain filter criteria
	Copy selected domain
	Copy global security

	Authentication cache settings
	Enable authentication cache
	Cache timeout:
	Initial cache size:
	Maximum cache size
	Use basic authentication cache keys (password one-way hashed):

	Chapter 6. Authenticating users
	Selecting a registry or repository
	Configuring local operating system registries
	Local operating system registries
	Local operating system settings
	Local operating system wizard settings

	Configuring Lightweight Directory Access Protocol user registries
	Standalone LDAP registry settings
	Standalone LDAP registry wizard settings
	Advanced Lightweight Directory Access Protocol user registry settings
	Configuring Lightweight Directory Access Protocol search filters
	Using specific directory servers as the LDAP server
	Locating user group memberships in a Lightweight Directory Access Protocol registry
	Configuring multiple LDAP servers for user registry failover
	Testing an LDAP server for user registry failover
	Deleting LDAP endpoints using wsadmin
	Updating LDAP binding information
	Configuring to secure Lightweight Directory Access Protocol user registry using Resource Access Control Facility based on z/O

	Configuring stand-alone custom registries
	Stand-alone custom registries
	Stand-alone custom registry settings
	Stand-alone custom registry wizard settings
	FileRegistrySample.java file
	Using a DB2 database to hold custom user registry data
	Developing the UserRegistry interface for using custom registries

	Managing the realm in a federated repository configuration
	Federated repositories
	Realm configuration settings
	User attribute mapping for federated repositories
	Custom properties details for federated repositories
	File details for federated repositories
	Federated repositories limitations
	Changing the password for a repository under a federated repositories configuration
	Using a single built-in, file-based repository in a new configuration under Federated repositories
	Configuring a single built-in, file-based repository in a new configuration under federated repositories using wsadmin
	Changing a federated repository configuration to include a single built-in, file-based repository only
	Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under Federated repositories
	Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol repository only
	Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository configuration
	Configuring a single built-in, file-based repository and one or more Lightweight Directory Access Protocol repositories in a
	Manually configuring an Lightweight Directory Access Protocol repository in a federated repository configuration
	Configuring Lightweight Directory Access Protocol in a federated repository configuration
	Migrating a stand-alone LDAP repository to a federated repositories LDAP repository configuration
	Adding an external repository in a federated repository configuration
	Configuring a property extension repository in a federated repository configuration
	Configuring an entry mapping repository in a federated repository configuration
	Configuring supported entity types in a federated repository configuration
	Managing repositories in a federated repository configuration
	Increasing the performance of the federated repository configuration
	Using custom adapters for federated repositories
	Establishing custom adapters for federated repositories
	Configuring custom adapters for federated repositories using wsadmin
	Configuring the user registry bridge for federated repositories using wsadmin scripting
	Configuring Lightweight Directory Access Protocol entity types in a federated repository configuration
	Configuring group attribute definition settings in a federated repository configuration
	Configuring member attributes in a federated repository configuration
	Configuring dynamic member attributes in a federated repository configuration

	Standalone Lightweight Directory Access Protocol registries
	Dynamic groups and nested group support for LDAP
	Security failover among multiple LDAP servers

	Selecting an authentication mechanism
	Lightweight Third Party Authentication
	Lightweight Third Party Authentication key sets and key set groups

	Configuring LTPA and working with keys
	Kerberos (KRB5) authentication mechanism support for security
	Setting up Kerberos as the authentication mechanism for WebSphere Application Server
	RSA token authentication mechanism
	Configuring the RSA token authentication mechanism
	RSA token authentication settings
	RSA token certificate use

	Simple WebSphere authentication mechanism (deprecated)
	Message layer authentication

	Integrating third-party HTTP reverse proxy servers
	Trust associations
	Trust association settings
	Enable trust association

	Trust association interceptor collection
	Interceptor class name

	Trust association interceptor settings
	Interceptor class name

	Single sign-on for authentication
	Single sign-on for authentication using LTPA cookies
	Using a WebSphere Application Server API to achieve downstream web single sign-on with an LtpaToken2 cookie
	Global single sign-on principal mapping for authentication

	Implementing single sign-on to minimize web user authentications
	Single sign-on for HTTP requests using SPNEGO web authentication
	Creating a single sign-on for HTTP requests using SPNEGO Web authentication
	Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)
	Single sign-on for HTTP requests using SPNEGO TAI (deprecated)
	Creating a Kerberos service principal and keytab file that is used by the WebSphere Application Server SPNEGO TAI (deprecated
	Configuring WebSphere Application Server and enabling the SPNEGO TAI (deprecated)
	Configuring the client browser to use SPNEGO TAI (deprecated)
	Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in WebSphere Application Server (deprecat
	Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)
	Single sign-on capability with SPNEGO TAI - checklist (deprecated)
	Filtering HTTP requests for SPNEGO TAI (deprecated)

	Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
	Single sign-on settings
	com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on
	com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on
	Creating a trusted user account in Tivoli Access Manager
	Configuring WebSEAL for use with WebSphere Application Server
	Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application Server
	Configuring single sign-on using trust association
	Configuring single sign-on using trust association interceptor ++
	Configuring global sign-on principal mapping

	Configuring administrative authentication
	Job manager security
	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Using the Java Authentication and Authorization Service programming model for web authentication
	Developing custom login modules for a system login configuration for JAAS
	Customizing application login with Java Authentication and Authorization Service

	Performing identity mapping for authorization across servers in different realms
	Configuring inbound identity mapping
	Example: Custom login module for inbound mapping

	Configuring outbound identity mapping to a different target realm
	Example: Using the WSLogin configuration to create a basic authentication subject
	Example: Sample login configuration for RMI_OUTBOUND

	Updating system login configurations to perform a System Authorization Facility identity user mapping

	Security attribute propagation
	Default authentication token

	Propagating security attributes among application servers
	Using the default authorization token to propagate security attributes
	Using the default propagation token to propagate security attributes
	Using the default single sign-on token with default or custom token factory to propagate security attributes

	Configuring the authentication cache
	Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication settings
	Configuring Common Secure Interoperability Version 2 inbound communications
	Common Secure Interoperability Version 2 inbound communications settings
	Additional Common Secure Interoperability inbound authentication settings

	Configuring Common Secure Interoperability Version 2 outbound communications
	Common Secure Interoperability Version 2 outbound communications settings
	Additional Common Secure Interoperability outbound authentication settings

	Configuring inbound transports
	Common Secure Interoperability Version 2 transport inbound settings
	z/OS Secure Authentication Service settings

	Configuring outbound transports
	Common Secure Interoperability Version 2 outbound transport settings

	Configuring inbound messages
	Configuring outbound messages
	Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client configuration
	Authentication protocol settings for a client configuration
	Common Secure Interoperability version 2 (CSIv2) authentication protocol client settings

	Authentication protocol for EJB security
	Authentication protocol support
	Common Secure Interoperability Version 2 features
	Identity assertion to the downstream server
	Identity assertions with trust validation
	Message layer authentication

	Using Microsoft Active Directory for authentication
	Authentication using Microsoft Active Directory
	Groups spanning domains with Microsoft Active Directory
	Microsoft Active Directory Global Catalog
	Options for finding group membership within a Microsoft Active Directory forest
	Authenticating users with LDAP registries in a Microsoft Active Directory forest

	Chapter 7. Authorizing access to resources
	Authorization technology
	Administrative roles and naming service authorization
	Administrative roles for business level applications

	Role-based authorization
	Administrative roles
	Authorization providers
	JACC support in WebSphere Application Server
	JACC providers
	JACC policy context handlers
	JACC policy context identifiers (ContextID) format
	JACC policy propagation
	JACC registration of the provider implementation classes
	Role-based security with embedded Tivoli Access Manager
	Tivoli Access Manager integration as the JACC provider
	Tivoli Access Manager security for WebSphere Application Server
	Security annotations
	Java Servlet 3.0 support for security
	Servlet security dynamic annotations

	System Authorization Facility for role-based authorization
	System Authorization Facility user registries
	Special considerations for controlling access to naming roles using SAF authorization
	System Authorization Facility (SAF) delegation

	Using distributed identity mapping for SAF
	Distributed identity mapping using SAF
	Distributed identity filters configuration in z/OS security
	removeMapPlatformSubject script

	Delegations

	Authorizing access to Java EE resources using Tivoli Access Manager
	Using the built-in authorization provider
	External authorization provider settings
	External Java Authorization Contract for Containers provider settings

	Enabling an external JACC provider
	Configuring the JACC provider for Tivoli Access Manager using the administrative console
	Administering security users and roles with Tivoli Access Manager
	Configuring Tivoli Access Manager groups
	Configuring additional authorization servers for Tivoli Access Manager
	Logging Tivoli Access Manager security
	Interfaces that support JACC
	Enabling the JACC provider for Tivoli Access Manager
	Enabling embedded Tivoli Access Manager
	TAMConfig command group for the AdminTask object
	Disabling embedded Tivoli Access Manager client using the administrative console
	Forcing the unconfiguration of the Tivoli Access Manager JACC provider
	Propagating security policies and roles for previously deployed applications

	Authorizing access to administrative roles
	Administrative user roles settings and CORBA naming service user settings
	User (Administrative user roles)
	User (CORBA naming service users)
	Role (Administrative user roles)
	Role (CORBA naming service users)
	Login status (Administrative user roles)

	Administrative group roles and CORBA naming service groups
	Group (CORBA naming service groups)
	Role (CORBA naming service groups)
	Group (Administrative group roles)
	Role (Administrative group roles)

	Assigning users to naming roles
	Propagating administrative role changes to Tivoli Access Manager
	migrateEAR utility for Tivoli Access Manager
	Assigning users from a foreign realm to the admin-authz.xml

	Enabling pluggable login modules to map Java EE identities to System Authorization Facility (SAF)
	Fine-grained administrative security
	New Administrative Authorization Group
	Name
	Resources

	Administrative Authorization Group collection
	Name
	New
	Delete

	System Authorization Facility for fine-grained administrative authorization
	Creating a fine-grained administrative authorization group using the administrative console
	Editing a fine-grained administrative authorization group using the administrative console
	Fine-grained administrative security in heterogeneous and single-server environments
	Using SCA authorization and security identity policies
	Using the SCA RequestContext.getSecuritySubject() API

	Chapter 8. Securing communications
	Secure communications using Secure Sockets Layer (SSL)
	SSL configurations
	Trust manager control of X.509 certificate trust decisions
	Key manager control of X.509 certificate identities
	Example: Enabling certificate revocation checking with the default IbmPKIX trust manager

	Keystore configurations for SSL
	Dynamic outbound selection of Secure Sockets Layer configurations
	Central management of SSL configurations
	Secure Sockets Layer node, application server, and cluster isolation
	Certificate options during profile creation
	Default chained certificate configuration in SSL
	Secure installation for client signer retrieval in SSL
	Certificate expiration monitoring in SSL

	Dynamic configuration updates in SSL
	Management scope configurations
	Certificate management using iKeyman prior to SSL
	Certificate management in SSL
	Using the retrieveSigners command in SSL to enable server to server trust

	Creating a Secure Sockets Layer configuration
	SSL certificate and key management
	Configuration settings
	Use Federal Information Processing Standard (FIPS) algorithms
	Dynamically update the runtime when SSL configuration changes occur

	SSL configurations for selected scopes
	Name
	Direction
	SSL configuration
	Update certificate alias list
	Manage certificates
	Certificate alias in key store

	SSL configurations collection
	Name

	SSL configuration settings
	Name
	Keyring name

	Secure Sockets Layer client certificate authentication
	Certificate authority (CA) client configuration
	Name
	Implementation class
	CA server host name
	Port
	User name
	Password
	Confirm password
	Number of times to poll
	Polling interval when requesting certificates
	Custom properties

	Certificate authority (CA) client configuration collections
	Name
	Implementation class
	Management Scope

	Writable SAF Keyring settings
	Name
	Description
	Management scope
	Path
	Change password [existing SAF keyring]
	Type
	Read only
	Initialize at startup
	Enable cryptographic operations on hardware device

	Creating a chained personal certificate in SSL
	Recovering deleted certificates in SSL
	Renewing a certificate in SSL
	Revoking a CA certificate in SSL
	Using a CA client to create a personal certificate to be used as the default personal certificate
	Creating a CA certificate in SSL
	Developing the WSPKIClient interface for communicating with a certificate authority
	Creating a custom trust manager configuration for SSL
	Trust and key managers settings
	Trust managers collection
	Trust managers settings
	Example: Developing a custom trust manager for custom SSL trust decisions

	Creating a custom key manager for SSL
	Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint
	Programmatically specifying an outbound SSL configuration using JSSEHelper API
	Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes
	Selecting an SSL configuration alias directly from an endpoint configuration
	Enabling Secure Sockets Layer client authentication for a specific inbound endpoint
	Manage endpoint security configurations
	Dynamic inbound and outbound endpoint SSL configurations collection
	Dynamic outbound endpoint SSL configuration settings

	Quality of protection (QoP) settings
	Client authentication
	Protocol
	Cipher suite groups
	Update selected ciphers
	Selected ciphers
	Add
	Remove

	ssl.client.props client configuration file

	Creating a CA client in SSL
	Deleting a CA client in SSL
	Viewing or modifying a CA client in SSL
	Creating a keystore configuration for a preexisting keystore file
	Managing keystore configurations remotely
	Keystores and certificates collection
	Keystore usages
	Name
	Description
	Path

	Key store settings
	Name
	Description
	Management scope
	Path
	Control region user
	Servant region user
	Password [new keystore] | Password [existing keystore]
	Confirm password
	Type
	Read only
	Remotely managed
	Initialize at startup
	Enable cryptographic operations on hardware device

	Key managers collection
	Name
	Class name
	Algorithm

	Key managers settings
	Name
	Management scope
	Standard
	Provider
	Algorithm
	Custom
	Class name

	Creating a self-signed certificate
	Replacing an existing personal certificate
	Creating a new SSL certificate to replace an existing one in a node
	Creating new SSL certificates to replace existing ones in a cell

	Creating a certificate authority request
	Certificate request settings
	File for certificate request
	Key label
	Key size
	Requested by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificates collection
	Alias
	Issued by
	Issued to
	Serial number
	Expiration

	Self-signed certificates settings
	Alias
	Version
	Key size
	Common name
	Serial number
	Validity period
	Organization
	Organization unit
	Locality
	State/Province
	Zip code
	Country or region
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificate requests collection
	Key label
	Requested by

	Personal certificate requests settings
	File for certificate request
	Key label
	Key size
	Common name
	Organization
	Organizational unit
	Locality
	State or province
	Zip code
	Country or region

	Extract certificate request
	Key label
	File for certificate request

	Receiving a certificate issued by a certificate authority
	Export certificate to a keystore file or a managed keystore
	Import certificate from a key file or managed keystore
	Receive certificate from CA

	Replace a certificate
	Old certificate
	Replace with
	Delete old certificate after replacement
	Delete old signers

	Using writable SAF keyrings
	Creating writable SAF keyrings
	Configuring the root certificate keyring
	Enabling writable SAF keyrings
	SAF keyring support for audit signing and encryption

	Extracting a signer certificate from a personal certificate
	Extract certificate
	Certificate alias to extract
	Certificate file name
	Data type

	Extract signer certificate
	File name
	Data type

	Retrieving signers using the retrieveSigners utility at the client
	Changing the signer auto-exchange prompt at the client
	Importing a signer certificate from a truststore to a z/OS keyring
	Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore

	Retrieving signers from a remote SSL port
	Retrieve from port
	Host
	Port
	SSL configuration for outbound connection
	Alias
	Retrieved signer information

	Adding a signer certificate to a keystore
	Add signer certificate settings
	Alias
	File name
	Data type

	Signer certificates collection
	Alias
	Issued to
	Fingerprint (SHA digest)
	Expiration

	Signer certificate settings
	Alias
	Version
	Key size
	Serial number
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Adding a signer certificate to the default signers keystore
	Exchanging signer certificates
	Keystores and certificates exchange signers
	[keystore] personal certificates
	[keystore] signers
	Add
	Remove

	Configuring certificate expiration monitoring
	Manage certificate expiration settings
	Start now
	Expiration notification threshold
	Enable checking
	Scheduled time of day to check for expired certificates
	Check by calendar
	Weekday
	Repeat interval
	Check by number of days
	Next start date
	Expiration check notification
	Automatically replace expiring self-signed certificates and chained certificates
	Delete expiring certificates and signers after replacement

	Notifications
	Notification name
	Message log
	Send Email
	List of email addresses

	Notifications settings
	Notification name
	Message log
	Email sent to notification list
	Email address to add
	Add
	Remove
	Outgoing mail (SMTP) server

	Key management for cryptographic uses
	Creating a key set configuration
	Active key history collection
	Alias reference

	Add key alias reference settings
	Alias reference
	Password
	Confirm password

	Key sets collection
	Key set name
	Key store
	Key alias prefix name

	Key sets settings
	Key set name
	Management scope
	Key alias prefix name
	Key password
	Confirm password
	Key generator class name
	Maximum number of keys referenced
	Key store
	Generates key pair

	Creating a key set group configuration
	Example: Retrieving the generated keys from a key set group
	Example: Developing a key or key pair generation class for automated key generation
	Key set groups collection
	Key set group name
	Automatically generate keys

	Key set groups settings
	Key set group name
	Management scope
	Key sets
	Automatically generate keys
	Scheduled time for generation
	Generate on a specific day
	Generate at an interval
	Next start date

	Chapter 9. Developing extensions to the WebSphere security infrastructure
	Developing stand-alone custom registries
	Result.java file
	UserRegistry.java files

	Developing a custom SAF EJB role mapper
	Implementing custom password encryption
	Developing applications that use programmatic security
	Protecting system resources and APIs (Java 2 security) for developing applications
	Using PolicyTool to edit policy files for Java 2 security
	Configuring Java 2 security policy files
	Configuring static policy files in Java 2 security

	Developing with programmatic security APIs for web applications
	Servlet security methods
	Web authentication settings

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code

	Customizing web application login
	Developing servlet filters for form login processing
	Configuring servlet filters for form login processing

	Secure transports with JSSE and JCE programming interfaces
	Using System Authorization Facility keyrings with Java Secure Sockets Extension
	Configuring Federal Information Processing Standard Java Secure Socket Extension files
	Implementing tokens for security attribute propagation
	Implementing a custom propagation token for security attribute propagation
	Example: com.ibm.wsspi.security.token.PropagationToken implementation
	Example: Custom propagation token login module

	Implementing a custom authorization token for security attribute propagation
	Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
	Example: custom AuthorizationToken login module

	Implementing a custom single sign-on token for security attribute propagation
	Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation
	Example: A custom single sign-on token login module
	Example: An HTTP cookie retrieval

	Implementing a custom authentication token for security attribute propagation
	Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation
	Example: A custom authentication token login module

	Propagating a custom Java serializable object for security attribute propagation

	Developing a custom interceptor for trust associations
	Trust association interceptor support for Subject creation

	Enabling a plugpoint for custom password encryption
	Plug point for custom password encryption

	Implementing a custom authentication provider using JASPI
	Developing a custom JASPI authentication provider
	Configuring a new JASPI authentication provider using the administrative console
	Modifying an existing JASPI authentication provider using the administrative console
	Deleting a JASPI authentication provider using the administrative console
	Enabling JASPI authentication using the Map JASPI provider option during application deployment
	JASPI authentication providers collection
	Provider name

	JASPI authentication provider details
	Provider name
	Description
	Class name
	Message layer
	Custom properties

	JASPI authentication enablement for applications
	Select JASPI provider

	Chapter 10. Auditing the security infrastructure
	Enabling the security auditing subsystem
	Security Auditing detail
	Enable security auditing
	Audit subsystem failure action
	Primary auditor user name
	Enable verbose auditing

	Context object fields

	Creating security auditing event type filters
	Auditable security events
	Event type filter settings
	Name
	Enabled
	Events to associate with an audit filter
	Event outcomes to associate with an audit filter

	Event type filters collection
	Name
	Enable
	Events and outcomes

	Example: Generic Event Interface
	Context objects for security auditing
	Context object fields

	Configuring security audit subsystem failure notifications
	Audit monitor collection
	Enable monitoring
	Monitor notification
	Notification name
	Message log
	Send Email
	List of email addresses

	Audit notification settings
	Notification name
	Message log
	Send secure emails
	Email sent to the notification list
	Email address to add
	Outgoing mail (SMTP) server

	Configuring the default audit service providers for security auditing
	Audit service provider collection
	Name
	Type
	Event formatting module class name

	Audit service provider settings
	Name
	Third party emitter class name
	Audit file location
	Audit file size
	Maximum number of audit log files
	Audit log wrapping
	Event formatting module class name
	Selectable filters
	Enabled filters
	Custom properties

	Example: Base Generic Emitter Interface

	Configuring a third party audit service providers for security auditing
	Example: Base Generic Emitter Interface

	Configuring the SMF audit service providers for security auditing
	Example: Base Generic Emitter Interface

	Configuring audit event factories for security auditing
	Audit event factory configuration collection
	Name
	Type
	Class name

	Audit event factory settings
	Name
	Type
	IBM audit event factory
	Third party audit event factory
	Class name
	Audit service provider
	Selectable filters
	Enabled filters
	Custom properties

	Example: Generic Event Factory Interface

	Protecting your security audit data
	Encrypting your security audit records
	Signing your security audit records
	Audit encryption keystores and certificates collection
	Name
	Path

	Audit record encryption configuration settings
	Enable encryption
	Audit keystore containing the encryption certificate
	Certificate in keystore
	Create a new certificate in the selected keystore

	Audit record signing configuration settings
	Enable signing
	Managed keystore containing the signing certificate
	Certificate in keystore
	Create a new certificate in the selected keystore

	Audit record keystore settings
	Name
	Path
	Password
	Confirm Password
	Type

	Using the audit reader

	Chapter 11. Tuning, hardening, and maintaining security configurations
	Tuning security configurations
	Security tuning tips
	Resource Access Control Facility Tips for customizing WebSphere Application Server

	Tuning security performance

	Hardening security configurations
	Enablement and migration considerations of Security hardening features
	Securing passwords in files
	Encoding passwords in files
	PropFilePasswordEncoder command reference

	Enabling custom password encryption
	Disabling custom password encryption

	Chapter 12. Troubleshooting security configurations
	Security components troubleshooting tips
	Security configuration and enablement errors
	Security enablement followed by errors
	Access problems after enabling security
	SSL errors for security
	Single sign-on configuration troubleshooting tips for security
	Security authorization provider troubleshooting tips
	SPNEGO trust association interceptor (TAI) troubleshooting tips (deprecated)
	SPNEGO troubleshooting tips

	Chapter 13. Directory conventions
	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	A
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Z

