IBM WebSphere eXtreme Scale Version 7.1

Product Overview
June 15, 2011

<||I

This edition applies to version 7, release 1, of WebSphere eXtreme Scale and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures .

Tables .

About the Product Overview .

Chapter 1. WebSphere eXtreme Scale
overview .

What is new in this release

Release notes .

WebSphere eXtreme Scale technrcal overview
Planning overview

Integrate with WebSphere products

Product name changes .

Directory conventions

Free trial - .
Programming and Admmlstratlon Guldes .

Chapter 2. Caching overview

Caching architecture: Maps, containers, clients, and

catalogs.
Maps .
Container servers, part1t10ns and shards
Clients .
Catalog service . .
Caching topology: In-memory and dlstrlbuted
caching.

Database integration: Wrrte-behmd 1n—11ne and srde

caching . .
Sparse and complete cache
Side cache.
In-line cache . .
Write-behind caching .
Loaders. . .
Data pre-loading and Warm-up
Map pre-loading. .
Database synchronization technlques
Invalidating stale cache data.
Indexing .

Java object caching concepts
Class loader and classpath con51derat10ns
Relationship management
Cache key considerations .
Serialization performance. .
Inserting data for different time zones

_

. Vil

.
-—h

S O O 0N o 01w

.
-—h
-—h

.11
.11
.12
.14
.15

. 16

. 33
. 34
. 35
. 35
. 38
.42
.44
. 45
. 49
. 50
. 51
. 53
. 54
. 54
. 55
. 56
. 57

Chapter 3. Cache integration overview 59

JPA Loaders .

JPA cache plug-in .

HTTP session management . .o
Listener-based session replication manager .
Dynamic cache provider .

Chapter 4. Scalability overview

© Copyright IBM Corp. 2009, 2011

. 59
. 61
. 65
. 67
. 69

. 81

Data grids, partitions, and shards .
Partitioning .
Placement and partrtrons

Single-partition and cross-data- gr1d transactlons .

Scaling in units or pods

Chapter 5. Availability overview .
High availability.
Replication for avarlabrhty
High-availability catalog service .
Catalog server quorums .
Replicas and shards
Shard placement
Reading from replicas
Load balancing across replicas.
Shard life cycles
Configuring zones for replica placement
Multi-master data grid replication topologies .

Available topologies for multi-master rephcatlon

Topology considerations for multi-master
replication .

Distributing transactions.

Map sets for replication .

Chapter 6. Transaction processing
overview

Transactions . .

CopyMode attribute .

Map entry locking.

Locking strategies .

Distributing transactions.

Single-partition and cross-data- gr1d transactlons

Chapter 7. Security overview.

Chapter 8. REST data services
overview

Chapter 9. Spring framework.

Chapter 10. Tutorials, examples, and
samples.

Running the getting started sample appllcatlon .

Entrty manager tutorial: Overview

Entity manager tutorial: Creating an entlty class

Entity manager tutorial: Forming entity
relationships.

Entity manager tutorlal Order Entlty Schema
Entity manager tutorial: Updating entries .

entries with an index.

Entity manager tutorial: Updatmg and removmg
. 175
. 175

entries by using a query.
ObjectQuery tutorial .

.81
. 83
. 84
. 88
.94

. 97

. 97
. 99

. 105
. 107
. 111
. 114
. 115
. 116
. 116
. 121

. 126
126

. 130
. 135
. 136

. 137
. 137
. 138
. 139
. 140
. 143

144

. 151

. 155

. 159

. 161

. 162
. 167

167

. 169

170

. 173
Entity manager tutorial: Updating and removing

. 174

iii

ObjectQuery tutorial - step 1
ObjectQuery tutorial - step 2
ObjectQuery tutorial - step 3
ObjectQuery tutorial - step 4
Java SE security tutorial: overview .
Java SE security tutorial - Step 1 .
Java SE security tutorial - Step 2 .
Java SE security tutorial - Step 3 .
Java SE security tutorial - Step 4 .
REST data services sample and tutorlal
Directory conventions
Enabling the REST data service

Configuring apphcatlon servers for the REST

data service .

. 176
. 177
. 178
. 180
. 182
. 183
. 186
. 192
. 196
. 199
. 200
. 202

. 209

Using a browser with REST data services . . . 216
Using a Java client with REST data services . . 218
Visual Studio 2008 WCF client with REST data

service.22

Notices.223

Trademarks225

Index.227

iv IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Figures

_
PESw©

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

PN WD

High-level topology
Map . .

Map sets

Container server .

Partition

Shard

ObjectGrid .

Possible topologies .

Catalog service

Catalog service domain

Local in-memory cache scenario.

Peer-replicated cache with changes that are

propagated with JMS

Peer-replicated cache with changes that are
propagated with the high availability manager.

Distributed cache

Near cache. .
Embedded cache.
ObjectGrid as a database buffer
ObjectGrid as a side cache
Side cache . -
In-line cache .o
Read-through caching .
Write-through caching .
Write-behind caching
Write-behind cachmg
Loader . .

Loader plug-in

Client loader .

Periodic refresh .

JPA Loader architecture
JPA embedded topology

JPA embedded, partitioned topology .

© Copyright IBM Corp. 2009, 2011

.11
.12
.13
.13
.14
.14
.15
.15
. 16
.17

.18

19

.21
.22
. 33
. 34
. 35
. 36
. 37
. 37
. 38
. 39
. 43
. 44
. 45
. 50
. 60
. 62
. 63

32.
33.

34.

35.

36.

37.
38.

39.

40.
41.
42.
43.
44.

45.
46.
47.

JPA remote topology

HTTP session management topology W1th a

remote container configuration .

Communication path between a primary

shard and replica shards .

Placement of an ObjectGrid mapset w1th a
deployment policy of 3 partitions with a

minSyncReplicas value of 1, a
maxSyncReplicas value of 1, and a
maxAsyncReplicas value of 1

Example placement of an ObjectGrid map set
for the partition0 partition. The deployment
policy has a minSyncReplicas value of 1, a

maxSyncReplicas value of 2, and a
maxAsyncReplicas value of 1. .

The container for the primary shard fails
The synchronous replica shard on ObjectGrid
container 2 becomes the primary shard .
Machine B contains the primary shard.
Depending on how automatic repair mode is
set and the availability of the containers, a
new synchronous replica shard might or

might not be placed on a machine.
Microsoft WCF Data Services .

WebSphere eXtreme Scale REST data service

Order Entity Schema . .
Getting started sample topology .

Microsoft SQL Server Northwind sample

schema diagram

Customer and Order ent1ty schema d1agram
Category and Product entity schema diagram
Customer and Order entity schema diagram

. 64

. 66

. 112

. 115

. 118

119

. 119

. 120
. 155

156

. 170
. 200

. 202

203
204
205

vi IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Tables

—_

PN TN

New features in WebSphere eXtreme Scale
Version 7.1 . .

Arbitration approaches.

Status value and response. .
Commit sequence on the primary .
Synchronous commit processing

Feature comparison.

Seamless technology integration.
Programming interfaces

© Copyright IBM Corp. 2009, 2011

.31
. 47
. 48
. 48
.72
.73
.73

10.
11.
12.
13.
14.
15.
16.

Failure discovery and recovery summary
Status value and response

Commit sequence on the primary .
Synchronous commit processing .
Arbitration approaches

Available articles by feature.

Archive to repository .

Installation values .

99

. 101
. 102
. 103
. 133
. 162
. 213
. 214

vii

viii IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

About the Product Overview

The WebSphere® eXtreme Scale documentation set includes three volumes that
provide the information necessary to use, program for, and administer the
WebSphere eXtreme Scale product.

WebSphere eXtreme Scale library

The WebSphere eXtreme Scale library contains the following books:

* The Product Overview contains a high-level view of WebSphere eXtreme Scale
concepts, including use case scenarios, and tutorials.

¢ The Installation Guide describes how to install common topologies of WebSphere
eXtreme Scale.

* The Administration Guide contains the information necessary for system
administrators, including how to plan application deployments, plan for
capacity, install and configure the product, start and stop servers, monitor the
environment, and secure the environment.

* The Programming Guide contains information for application developers on how
to develop applications for WebSphere eXtreme Scale using the included API
information.

To download the books, go to the [WebSphere eXtreme Scale library page}

You can also access the same information in this library in the [WebSphere eXtreme]
Scale information center]

Who should use this book

This book is intended for anyone that is interested in learning about WebSphere
eXtreme Scale.

Getting updates to this book

You can get updates to this book by downloading the most recent version from the
[WebSphere eXtreme Scale library page}

How to send your comments

Contact the documentation team. Did you find what you needed? Was it accurate
and complete? Send your comments about this documentation by e-mail to
wasdoc@us.ibm.com]

© Copyright IBM Corp. 2009, 2011 ix

http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
mailto:wasdoc@us.ibm.com?subject=WebSphere eXtreme Scale

X IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 1. WebSphere eXtreme Scale overview

WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. The data
grid dynamically caches, partitions, replicates, and manages application data and
business logic across multiple servers. WebSphere eXtreme Scale performs massive
volumes of transaction processing with high efficiency and linear scalability. With
WebSphere eXtreme Scale, you can also get qualities of service such as
transactional integrity, high availability, and predictable response times.

WebSphere eXtreme Scale can be used in different ways. You can use the product
as a very powerful cache, as an in-memory database processing space to manage
application state, or to build Extreme Transaction Processing (XTP) applications.
These XTP capabilities include an application infrastructure to support your most
demanding business-critical applications.

Elastic scalability

Elastic scalability is possible through the use of distributed object caching. With
elastic scalability, the data grid monitors and manages itself. The data grid can add
or remove servers from the topology, which increases or decreases memory,
network throughput, and processing capacity as needed. When a scale-out process
is initiated, capacity is added to the data grid while it is running without requiring
a restart. Conversely, a scale-in process immediately removes capacity. The data
grid is also self-healing by automatically recovering from failures.

WebSphere eXtreme Scale versus an in-memory database

WebSphere eXtreme Scale cannot be considered an actual in-memory database. An
in-memory database is too simple to handle some of the complexities that
WebSphere eXtreme Scale can manage. If an in-memory database has a server that
fails, it cannot repair the issue. A failure can be disastrous if your entire
environment is on that one server.

To tackle the problem of this type of failure, eXtreme Scale splits the given data set
into partitions, which are equivalent to constrained tree schemas. Constrained tree
schemas describe the relationship between entities. When you are using partitions,
the entity relationships must model a tree data structure. In this structure, the head
of the tree is the root entity and is the only entity that is partitioned. All other
children of the root entity are stored in the same partition as the root entity. Each
partition exists as a primary copy, or shard. A partition also contains replica shards
for backing up the data. An in-memory database cannot provide this function
because it is not structured and dynamic in this way. With an in-memory database,
you must implement the operations that WebSphere eXtreme Scale does
automatically. You can run SQL operations on in-memory databases, improving the
processing speed compared to databases that are not in memory. WebSphere
eXtreme Scale has its own query language instead of SQL support. This query
language is more elastic, enables partitioning of data, and provides dependable
failure recovery.

WebSphere eXtreme Scale with databases

With the write-behind cache feature, WebSphere eXtreme Scale can serve as a
front-end cache for a database. By using this front-end cache, throughput increases

© Copyright IBM Corp. 2009, 2011 1

Application Clients

(

T
(- =

while reducing database load and contention. WebSphere eXtreme Scale provides
predictable scaling in and scaling out at predictable processing cost.

The following image shows that in a distributed, coherent cache environment, the
eXtreme Scale clients send and receive data from the data grid. The data grid can
be automatically synchronized with a backend data store. The cache is coherent
because all of the clients see the same data in the cache. Each piece of data is
stored on exactly one writable server in the cache. Having one copy of each piece
of data prevents wasteful copies of records that might contain different versions of
the data. A coherent cache holds more data as more servers are added to the data
grid, and scales linearly as the data grid grows in size. The data can also be
optionally replicated for additional fault tolerance.

/ eXtreme Scale Grid \

Catalog Service
! 1
(|)
(|] Backend Data Store

ObjectGrid) ~

Figure 1. High-level topology

WebSphere eXtreme Scale has servers, called container servers, that provide its
in-memory data grid. These servers can run inside WebSphere Application Server,
or on simple Java Standard Edition (J2SE) Java virtual machines. More than one
container server can run on a single physical server. As a result, the in-memory
data grid can be large. The data grid is not limited by, and does not have an
impact on, the memory or address space of the application or the application
server. The memory can be the sum of the memory of several hundred, or
thousand, Java virtual machines, running on many different physical servers.

As an in-memory database processing space, WebSphere eXtreme Scale can be
backed by disk, database, or both.

While eXtreme Scale provides several Java APIs, many use cases require no user
programming, just configuration and deployment in your WebSphere
infrastructure.

2 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Data grid overview

The fundamental data grid paradigm is a key-value pair, where the data grid
stores values (Java objects), with an associated key (another Java object). The key is
later used to retrieve the value. In eXtreme Scale, a map consists of entries of such
key-value pairs.

WebSphere eXtreme Scale offers a number of data grid configurations, from a
single, simple local cache, to a large distributed cache, using multiple Java virtual
machines or servers.

In addition to storing simple Java objects, you can store objects with relationships.
You can use a query language that is like SQL, with SELECT ... FROM ... WHERE
statements to retrieve these objects. For example, an order object might have a
customer object and multiple item objects associated with it. WebSphere eXtreme
Scale supports one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

WebSphere eXtreme Scale also supports an EntityManager programming interface
for storing entities in the cache. This programming interface is like entities in Java
Enterprise Edition. Entity relationships can be automatically discovered from an
entity descriptor XML file or annotations in the Java classes. You can retrieve an
entity from the cache by primary key using the find method on the EntityManager
interface. Entities can be persisted to or removed from the data grid within a
transaction boundary.

Consider a distributed example where the key is a simple alphabetic name. The
cache might be split into four partitions by key: partition 1 for keys starting with
A-E, partition 2 for keys starting with F-L, and so on. For availability, a partition
has a primary shard and a replica shard. Changes to the cache data are made to
the primary shard, and replicated to the replica shard. You configure the number
of servers that contain the data grid data, and eXtreme Scale distributes the data
into shards over these server instances. For availability, replica shards are placed in
separate physical servers from primary shards.

WebSphere eXtreme Scale uses a catalog service to locate the primary shard for
each key. It handles moving shards among eXtreme Scale servers when the
physical servers fail and later recover. For example, if the server containing a
replica shard fails, eXtreme Scale allocates a new replica shard. If a server
containing a primary shard fails, the replica shard is promoted to be the primary
shard. As before, a new replica shard is constructed.

The simplest eXtreme Scale programming interface is the ObjectMap interface,
which is a simple map interface that includes: a map.put(key,value) method to put
a value in the cache, and a map.get(key) method to later retrieve the value.

What is new in this release

WebSphere eXtreme Scale includes many new features in Version 7.1, including
integration with the dynamic cache, byte array maps, and more.

7.1.0.3+

Chapter 1. WebSphere eXtreme Scale overview 3

What is new in WebSphere eXtreme Scale Version 7.1.0.3

Feature Description
URL rewriting You can now persist sessions that use URL rewriting as a session tracking mechanism. Set the useURLEncoding property to true in
support for the splicer.properties file to enable tracking for sessions that use URL rewriting. See the information about configuring HTTP
HTTP session session managers in the Administration Guide for more information.
persistence

7.1.0.2+

What is new in WebSphere eXtreme Scale Version 7.1.0.2
Feature Description

Byte array maps
are supported in
multi-master
topologies

Maps that are configured with COPY_TO_BYTES copy mode can replicate across catalog service domains. See the initial
considerations for multi-master topologies in the Administration Guide for more information about updating your multi-master
topology to use COPY_TO_BYTES copy mode.

New

and
-placementStatus
parameters in

the xsadmin

-triggerPlacement

You can use the new -triggerPlacement parameter in the xsadmin utility to force placement to occur. Forcing placement to occur
can be useful when you are completing maintenance tasks on the container servers. See the information about forcing placement
to occur in the Administration Guide for more information.

You can also use the -placementStatus parameter in the xsadmin utility to display the current configured and runtime placement
for your configuration. See xsadmin utility reference in the Administration Guide for more information.

profiles for the
xsadmin utility

utility
Fix 1+
What is new in WebSphere eXtreme Scale Version 7.1 Fix 1
Feature Description
Create You can save a configuration profile for the xsadmin utility so that your xsadmin utility calls are shorter. You can save parameters
configuration such as the user name, password, and other security options. See the information about creating a configuration profile in the

xsadmin utility for more information.

What is new in WebSphere eXtreme Scale Version 7.1

Table 1. New features in WebSphere eXtreme Scale Version 7.1

Feature Description

DB2° client Integrate eXtreme Scale JPA Loader plug-ins with DB2, so when DB2 is used as the backend database, the WebSphere eXtreme
information Scale information (username, workstation name, application name, and accounting information) can be made available in the DB2
integration Performance Monitor. This feature allows enabling and disabling configuration of client info to DB2. This function is disabled by

default. For more information, see the information about monitoring eXtreme Scale information in DB2 in the Administration Guide
for more information.

Catalog service
domain
configuration

Catalog service domains can be configured using the WebSphere Application Server administrative console or using administrative
tasks. Catalog service domains define a group. For more information, see the information on creating catalog service domains in
the Administration Guide.

Multi-master
replication

Multiple data centers can be linked together asynchronously, allowing data center to access data locally and maintain high
availability. See[Multi-master data grid replication topologies (AP)| for more information.

Last update time
TTL evictor

The TTL evictor has been updated to track the time in which an entry was updated, expanding on the time-to-live evictor. For
more information, see the information about the TimeToLive (TTL) evictor in the Programming Guide

usedBytes
statistics for
in-memory grids

The amount of memory that is used by cache entries in a BackingMap can be tracked using all of the statistics providers. For more
information, see the information about cache memory consumption sizing in the Administration Guide.

Dynamic Statistics can now be enabled and disabled on demand. For more information, see the information about monitoring with MBeans
statistics in the Administration Guide.

Monitoring The graphical monitoring console provides current and historical views into WebSphere eXtreme Scale server statistics. For more
console information, see the information about the web console in the Administration Guide.

Improved HTTP
Session Manager

Configuration of the HTTP session manager has been simplified. You can now configure the HTTP session manager in the
WebSphere Application Server administrative console. For more information, see the information about configuring the HTTP
session manager in the Administration Guide.

Multi-homed
client support

Clients can be configured to use a specific network adapter. For more information, see the information about the client properties
file in the Administration Guide.

4

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Table 1. New features in WebSphere eXtreme Scale Version 7.1 (continued)

Feature Description

ISA Lite IBM® Support Assistant Lite for WebSphere eXtreme Scale provides automatic data collection and symptom analysis support for
problem determination scenarios. For more information, see the information about the IBM support assistant for WebSphere
eXtreme Scale in the Administration Guide.

REST

The REST data service provides non-Java clients access to eXtreme Scale data, supporting the Open Data Protocol (OData),
providing full compatibility with Microsoft WCF Data Services. For more information, see [Chapter 8, "REST data servicey

loverview,” on page 155/

Client-only
installation

WebSphere eXtreme Scale clients can now be installed independently, decreasing the installation footprint for WebSphere eXtreme
Scale applications. For more information, see the information about installing and deploying WebSphere eXtreme Scale in the
Administration Guide.

Deprecated
features

For a list of deprecated properties and APIs, see the deprecated items in the Administration Guide.

Release notes

Links are provided to the product support Web site, to product documentation,
and to last minute updates, limitations, and known problems for the product.

* |“Accessing last-minute updates, limitations, and known problems”|

* |“Accessing system and software requirements”|

¢ [“Accessing product documentation”]

* |“Accessing the product support Web site”|

* ["Contacting IBM Software Support”|

Accessing last-minute updates, limitations, and known problems

The release notes are available on the product support site as technotes. To see a
list of all the technotes for WebSphere eXtreme Scale, go to the [Support Web page]
Clicking the links provided here will result in a search of the Support Web page
for the relevant release notes, which will be returned as a list.

« T4+ To see alist of the release notes for Version 7.1, go to the

* To see a list of the release notes for Version 7.0, go to the [Support Web pagel

+ To see a list of the release notes for Version 6.1, |go to the Release notes wikil

Accessing system and software requirements

The hardware and software requirements are documented on the following pages:

Detailed system requirements|

Accessing product documentation
For the entire information set, go to the
Accessing the product support Web site

To search for the latest technotes, downloads, fixes, and other support-related

information, go to the
Contacting IBM Software Support

If you encounter a problem with the product, first try the following actions:
* Follow the steps described in the product documentation

Chapter 1. WebSphere eXtreme Scale overview 5

http://www-306.ibm.com/software/webservers/appserv/extend/support/
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v71xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v71xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v7xsrnotes
 http://www.ibm.com/developerworks/wikis/x/-YAF
 http://www.ibm.com/developerworks/wikis/x/-YAF
http://www.ibm.com/support/docview.wss?rs=3023&uid=swg27018828
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www-306.ibm.com/software/webservers/appserv/extend/support/

* Look for related documentation in the online help
* Look up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods, contact IBM
Technical Support.

WebSphere eXtreme Scale technical overview

6

WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. It
dynamically caches, partitions, replicates, and manages application data and
business logic across multiple servers.

Because WebSphere eXtreme Scale is not an in-memory database, you must
consider specific configuration requirements. The first step to deploying a data grid
is to start a core group and catalog service, which acts as coordinator for all other
Java virtual machines that are participating in the data grid and manage
configuration information. WebSphere eXtreme Scale processes are started with
simple command script invocations from the command line.

The next step is to start WebSphere eXtreme Scale server processes for the data
grid to store and retrieve data. As servers are started, they automatically register
themselves with the core group and catalog service allowing them to cooperate in
providing data grid services. More servers increase both data grid capacity and
reliability.

A local data grid is a simple, single-instance grid where all the data is in the one
grid. To effectively use WebSphere eXtreme Scale as an in-memory database
processing space, you can configure and deploy a distributed data grid. The data
in the distributed grid is spread out over the various eXtreme Scale servers
containing it such that each server contains only some of the data, called a
partition.

A key distributed data grid configuration parameter is the number of partitions in
the grid. The grid data is partitioned into this number of subsets, each of which is
called a partition. The catalog service locates the partition for a given datum based
on its key. The number of partitions directly affects the capacity and scalability of
the data grid. A server cancontain one or more data grid partitions. Thus the
server's memory space limits the size of a partition. Conversely, increasing the
number of partitions increases the capacity of the data grid. The maximum
capacity of a data grid is the number of partitions times the usable memory size of
each server. A server can be a JVM, but you can define your eXtreme Scale server
to suit your deployment environment.

The data of a partition is stored in a shard. For availability, a data grid can be
configured with replicas, which can be synchronous or asynchronous. Changes to
the grid data are made to the primary shard, and replicated to the replica shards.
The total memory that is used or required by a data grid is thus the size of the
data grid times (1 (for the primary) + the number of replicas).

WebSphere eXtreme Scale distributes the shards of a data grid over the number of
servers comprising the grid. These servers may be on the same or different
physical servers. For availability, replica shards are placed in separate physical
servers from primary shards.

WebSphere eXtreme Scale monitors the status of its servers and moves shards
during shard or physical server failure and recovery. For example, if the server

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

containing a replica shard fails, WebSphere eXtreme Scale allocates a new replica
shard, and replicate data from the primary to the new replica. If a server that
contains a primary shard faisl, the replica shard is promoted to be the primary
shard, and, a new replica shard is constructed. If you start an additional server for
the data grid, the shards are balanced over all servers. This rebalancing is called
scale-out. Similarly, for scale-in, you might stop one of the servers to reduce the
resources that are used by a data grid. As a result, the shards are balanced over the
remaining servers.

Planning overview

Before using WebSphere eXtreme Scale in a production environment, consider the
following issues to optimize your deployment.

Installation considerations

You can install WebSphere eXtreme Scale in a stand-alone environment, or you can
integrate the installation with WebSphere Application Server. To ensure that you
are able to seamlessly upgrade your servers in the future, you must plan your
environment accordingly. For the best performance, catalog servers should run on
different machines than the container servers. If you must run your catalog servers
and container servers on the same machine, then use separate installations of
WebSphere eXtreme Scale for the catalog and container servers. By using two
installations, you can upgrade the installation that is running the catalog server
first. See the information about updating eXtreme Scale servers in the
Administration Guide for more information.

Caching topology considerations

Your architecture can use local in-memory data caching or distributed client-server
data caching. Each type of cache topology has advantages and disadvantages. The
caching topology you implement depends on the requirements of your
environment and application. For more information about the different caching
ologies, see|“Caching topology: In-memory and distributed caching” on paged

Data capacity considerations

The following list includes items to consider:

* Number of systems and processors: How many physical machines and
processors are needed in the environment?

* Number of servers: How many eXtreme Scale servers to host eXtreme Scale
maps?

* Number of partitions: The amount of data stored in the maps is one factor in
determining the number of partitions needed.

* Number of replicas: How many replicas are required for each primary in the
domain?

* Synchronous or asynchronous replication: Is the data vital so that synchronous
replication is required? Or is performance a higher priority, making
asynchronous replication the correct choice?

* Heap sizes: How much data will be stored on each server?

the information about capacity planning in the Administration Guide.

Chapter 1. WebSphere eXtreme Scale overview 7

Integrate with WebSphere products

You can integrate WebSphere eXtreme Scale with other server products, such as
WebSphere Application Server and WebSphere Application Server Community
Edition.

WebSphere Application Server Community Edition

WebSphere Application Server Community Edition can share session state, but not
in an efficient, scalable manner. WebSphere eXtreme Scale provides a high
performance, distributed persistence layer that can be used to replicate state, but
does not readily integrate with any application server outside of WebSphere
Application Server. You can integrate these two products to provide a scalable
session-management solution.

WebSphere Application Server

You can integrate WebSphere Application Server into various aspects of your
WebSphere eXtreme Scale configuration. You can deploy data grid applications and
use WebSphere Application Server to host container and catalog servers. You can
also use WebSphere Application Server security in your WebSphere eXtreme Scale
environment. See the following topics for more information:

¢ For information about configuring WebSphere eXtreme Scale withWebSphere
Application Server, see theAdministration Guide.

* For information about security integration withWebSphere Application Server,
see theAdministration Guide.

* For information about configuring the WebSphere eXtreme Scale session
manager to work with WebSphere Application Server, see theAdministration
Guide.

WebSphere Real Time

With support for WebSphere Real Time, the industry-leading real-time Java
offering, WebSphere eXtreme Scale enables Extreme Transaction Processing (XTP)
applications to have more consistent and predictable response times. See the
information about Real Time Support in the Administration Guide.

Product name changes

8

Be aware that WebSphere eXtreme Scale has formerly been known by other names.
Product name changes

When referencing other documentation, marketing materials or presentations, keep
in mind that eXtreme Scale has formerly been known by the following names.

* ObjectGrid
* WebSphere Extended Deployment Data Grid

Although the product itself is now known as WebSphere eXtreme Scale, the term
ObjectGrid appears in the documentation and elsewhere because it is the name of
the artifact that enables the data grid technology.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Directory conventions

The following directory conventions are used throughout the documentation to
must reference special directories such as wxs_install_root and wxs_home. You
access these directories during several different scenarios, including during
installation and use of command-line tools.

wxs_install_root
The wxs_install_root directory is the root directory where WebSphere
eXtreme Scale product files are installed. The wxs_install_root directory can
be the directory in which the trial zip file is extracted or the directory in which
the WebSphere eXtreme Scale product is installed.
¢ Example when extracting the trial:
Example: /opt/IBM/WebSphere/eXtremeScale

* Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale

* Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:

Example: /opt/IBM/WebSphere/AppServer

wxs_home
The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples and components. This is the same as the
wxs_install_root directory when the trial is extracted. For stand-alone
installations, the wxs_home directory is the ObjectGrid sub-directory within the
wxs_install_root directory. For installations that are integrated with
WebSphere Application Server, this directory is the optionalLibraries/
ObjectGrid directory within the wxs_install_root directory.

* Example when extracting the trial:
Example: /opt/IBM/WebSphere/eXtremeScale

* Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:

Example: /opt/IBM/eXtremeScale/ObjectGrid

* Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:

Example: /opt/IBM/WebSphere/AppServer/optionallLibraries/ObjectGrid
was_root

The was_root directory is the root directory of a WebSphere Application Server
installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home
The restservice_home directory is the directory in which the WebSphere
eXtreme Scale REST data service libraries and samples are located. This
directory is named restservice and is a sub-directory under the wxs_home
directory.

¢ Example for stand-alone deployments:
Example: /opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice
* Example for WebSphere Application Server integrated deployments:

Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/
restservice

Chapter 1. WebSphere eXtreme Scale overview 9

tomcat_root
The tomcat_root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

Example:/opt/IBM/WebSphere/AppServerCE

Jjava_home
The java_home is the root directory of a Java Runtime Environment (JRE)
installation.

Example:/opt/IBM/WebSphere/eXtremeScale/java

samples_home
The samples_home is the directory in which you extract the sample files that are
used for tutorials.

Example:/wxs-samples/

Free trial

To get started using WebSphere eXtreme Scale, download a free trial version. You
can develop innovative, high-performance applications by extending the data
caching concept using advanced features.

Trial download

You can download a free trial version of eXtreme Scale, from [Download eXtreme]

Scale tria

After downloading and unzipping the trial version of eXtreme Scale, navigate to
the gettingstarted directory, and read GETTINGSTARTED_README.txt. This
tutorial gets you started using eXtreme Scale, create a data grid on several servers,
and run some simple applications to store and retrieve data in a grid. Before
deploying eXtreme Scale in a production environment, there are several options to
consider, including the number of servers to use, the amount of storage on each
server, and synchronous or asynchronous replication.

Programming and Administration Guides

The Product Overview describes the fundamental concepts for understanding
WebSphere eXtreme Scale. Two additional guides are available that expand on the
concepts described in this guide.

Use the Administration Guide for configuration and general administrative tasks,

and the Programming Guide for descriptions of the Java APIs for accessing and
configuring the data grid.

10 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.ibm.com/developerworks/downloads/ws/wsdg/learn.html
http://www.ibm.com/developerworks/downloads/ws/wsdg/learn.html

Chapter 2. Caching overview

WebSphere eXtreme Scale can operate as an in-memory database processing space,
which you can use to provide in-line caching for a database back-end or to serve
as a side-cache. In-line caching uses eXtreme Scale as the primary means for
interacting with the data. When eXtreme Scale is used as a side-cache, the
back-end is used in conjunction with the data grid. This section describes various
cache concepts and scenarios and discusses the available topologies for deploying a
data grid.

Caching architecture: Maps, containers, clients, and catalogs

With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the eXtreme
Scale server, and clients remotely connect to the server.

Distributed caches offer increased performance, availability and scalability and can
be configured using dynamic topologies, in which servers are automatically
balanced. You can also add additional servers without restarting your existing
eXtreme Scale servers. You can create either simple deployments or large,
terabyte-sized deployments in which thousands of servers are needed.

Maps
A map is a container for key-value pairs, which allows an application to store a
value indexed by a key. Maps support indexes that can be added to index

attributes on the key or value. These indexes are automatically used by the query
runtime to determine the most efficient way to run a query.

Map
[Keyt][valuet |
[Key2][Value2 I

Figure 2. Map
A map set is a collection of maps with a common partitioning algorithm. The data

within the maps are replicated based on the policy defined on the map set. A map
set is only used for distributed topologies and is not needed for local topologies.

© Copyright IBM Corp. 2009, 2011 11

Figure 3. Map sets

/ MapSet \

Map Map
[Keyt][valuel JL—p[Keyt][vaiuet]
I Key2][Value2 I I Key2][Value2]
A
Y
Map Map Map
[keyt][vauet ||| [Keyt][vaet] |—{ [Keyt]| value1]
I Key2]I Value2] I Key2 “ Value2] I Key2]I Value2]
& /

A map set can have a schema associated with it. A schema is the metadata that
describes the relationships between each map when using homogeneous Object
types or entities.

WebSphere eXtreme Scale can store serializable Java objects in each of the maps
using the ObjectMap API. A schema can be defined over the maps to identify the
relationship between the objects in the maps where each map holds objects of a
single type. Defining a schema for maps is required to query the contents of the
map objects. WebSphere eXtreme Scale can have multiple map schemas defined.

See the ObjectMap API information in the Programming Guide for further details.

WebSphere eXtreme Scale can also store entities using the EntityManager API. Each
entity is associated with a map. The schema for an entity map set is automatically
discovered using either an entity descriptor XML file or annotated Java classes.
Each entity has a set of key attributes and set of non-key attributes. An entity can
also have relationships to other entities. WebSphere eXtreme Scale supports one to
one, one to many, many to one and many to many relationships. Each entity is
physically mapped to a single map in the map set. Entities allow applications to
easily have complex object graphs that span multiple Maps. A distributed topology
can have multiple entity schemas.

See the EntityManager API information in the Programming Guide for further
details.

Container servers, partitions, and shards

The container server stores application data for the data grid. This data is generally
broken into parts, which are called partitions, which are hosted across multiple
container servers. Each container server in turn hosts a subset of the complete data.
A JVM might host one or more container servers and each container server can
host multiple shards.

Remember: Plan out the heap size for the container servers, which host all of your
data. Configure the heap settings accordingly.

12 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

JVM

ObjectGrid Container

Figure 4. Container server

Figure 5. Partition

Partitions host a subset of the data in the grid. WebSphere eXtreme Scale
automatically places multiple partitions in a single container server and spreads
the partitions out as more container servers become available.

Important: Choose the number of partitions carefully before final deployment
because the number of partitions cannot be changed dynamically. A hash
mechanism is used to locate partitions in the network and eXtreme Scale cannot
rehash the entire data set after it has been deployed. As a general rule, you can
overestimate the number of partitions

JVM JVM

(Server Container \ (Server Container)

Primary Shard Partition 1 Replica Shard

Replica Shard Partition 2 Primary Shard

| I

Shards are instances of partitions and have one of two roles: primary or replica.
The primary shard and its replicas make up the physical manifestation of the
partition. Every partition has several shards that each host all of the data contained
in that partition. One shard is the primary, and the others are replicas, which are
redundant copies of the data in the primary shard. A primary shard is the only
partition instance that allows transactions to write to the cache. A replica shard is a
"mirrored" instance of the partition. It receives updates synchronously or
asynchronously from the primary shard. The replica shard only allows transactions
to read from the cache. Replicas are never hosted in the same container server as
the primary and are not normally hosted on the same machine as the primary.

Chapter 2. Caching 13

Figure 6. Shard

Figure 7. ObjectGrid

Map Map

I | N | | S —
I | | | — —

To increase the availability of the data, or increase persistence guarantees, replicate
the data. However, replication adds cost to the transaction and trades performance
in return for availability. With eXtreme Scale, you can control the cost as both
synchronous and asynchronous replication is supported, as well as hybrid
replication models using both synchronous and asynchronous replication modes. A
synchronous replica shard receives updates as part of the transaction of the
primary shard to guarantee data consistency. A synchronous replica can double the
response time because the transaction has to commit on both the primary and the
synchronous replica before the transaction is complete. An asynchronous replica
shard receives updates after the transaction commits to limit impact on
performance, but introduces the possibility of data loss as the asynchronous replica
can be several transactions behind the primary.

Clients

Clients connect to a catalog service, retrieve a description of the server topology,
and communicate directly to each server as needed. When the server topology
changes because new servers are added or existing servers have failed, the
dynamic catalog service routes the client to the appropriate server that is hosting
the data. Clients must examine the keys of application data to determine which
partition to route the request. Clients can read data from multiple partitions in a
single transaction. However, clients can update only a single partition in a
transaction. After the client updates some entries, the client transaction must use
that partition for updates.

The possible deployment combinations are included in the following list:

* A catalog service exists in its own grid of Java Virtual Machines. A single catalog
service can be used to manage multiple eXtreme Scale clients or servers.

* A container can be started in a JVM by itself or can be loaded into an arbitrary
JVM with other containers for different ObjectGrid instances.

14 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

* A client can exist in any JVM and communicate with one or more ObjectGrid
instances. A client can also exist in the same JVM as a container.

Java Virtual Machine (JVM) Java Virtual Machine (JVM) |
Java Virtual Machine (JVM)

Server container Server container

ava Virtual Machine (JVM) |
Java Virtual Machine (JVM)

RV IRRT VIRV VIl

Java Virtual Machine (JVM)

Catalog service

ObjectGrid
A

hel
9 -
© m
2
o)
o
Java Virtual Machine (JVM) Java Virtual Machine (JVM) ‘
Cliant Java Virtual Machine (JVM)

Java Virtual Machine (JVM) an
-

Figure 8. Possible topologies

Catalog service

The catalog service hosts logic that should be idle during a steady state and has
little influence on scalability. The catalog service is built to service hundreds of
containers becoming available simultaneously and runs services to manage the
containers.

JVM

Catalog Service

[Location Service] [Placement Service]

[Core Group Mgr][Administration]

Figure 9. Catalog service

The catalog responsibilities consist of the following services:

Location service
The location service provides locality for clients that are looking for
containers hosting applications and for containers that are looking to
register hosted applications with the placement service. The location
service runs in all of the grid members to scale out this function.

Placement service
The placement service is the central nervous system for the grid and is
responsible for allocating individual shards to their host container. The
placement service runs as a One of N elected service in the cluster. Because
the One of N policy is used, there is always exactly one instance of the
placement service running. If that instance should stop, another process

Chapter 2. Caching 15

takes over. All states of the catalog service are replicated across all servers
hosting the catalog service for redundancy.

Core group manager
The core group manager manages peer grouping for health monitoring,
organizes containers into small groups of servers, and automatically
federates the groups of servers. When a container first contacts the catalog
service, the container waits to be assigned to either a new or an existing
group of several Java virtual machines (JVM). Each group of Java virtual
machines monitors the availability of each of its members through
heartbeating. One of the group members relays availability information to
the catalog service to allow for reacting to failures by reallocation and
route forwarding.

Administration
The four stages of administering your WebSphere eXtreme Scale
environment are planning, deploying, managing, and monitoring.

For availability, configure a catalog service domain. A catalog service domain
consists of multiple Java virtual machines, including a master JVM and a number
of backup Java virtual machines.

Catalog service domain

JVM (Master)

Catalog Service

[Location Service]IPAacement Servlcsl

[corecrovpvar | [Administration)

Figure 10. Catalog service domain

16

Caching topology: In-memory and distributed caching

With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the eXtreme
Scale server, and clients remotely connect to the server.

In-memory environments

When you deploy in a local, in-memory environment, WebSphere eXtreme Scale
runs within a single Java virtual machine and is not replicated. To configure a local
environment you can use an ObjectGrid XML file or the ObjectGrid APIs.

Distributed environments

When you deploy in a distributed environment, WebSphere eXtreme Scale runs
across a set of Java virtual machines, increasing the performance, availability and
scalability. With this configuration, you can use data replication and partitioning.
You can also add additional servers without restarting your existing eXtreme Scale
servers. As with a local environment, an ObjectGrid XML file, or an equivalent
programmatic configuration, is needed in a distributed environment. You must also
provide a deployment policy XML file with configuration details

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

You can create either simple deployments or large, terabyte-sized deployments in
which thousands of servers are needed.

Local in-memory cache

In the simplest case, WebSphere eXtreme Scale can be used as a local
(non-distributed) in-memory data grid cache. The local case can especially benefit
high-concurrency applications where multiple threads need to access and modify
transient data. The data kept in a local data grid can be indexed and retrieved
using queries. Queries help you to work with large in memory data sets. The
support provided with the Java virtual machine (JVM), although it is ready to use,
has a limited data structure.

The local in-memory cache topology for WebSphere eXtreme Scale is used to
provide consistent, transactional access to temporary data within a single Java
virtual machine.

JVM
ObjectGrid
) A
1 >
] > Map,
Thread > E i
oL
pplication)

Figure 11. Local in-memory cache scenario

Advantages

* Simple setup: An ObjectGrid can be created programmatically or declaratively
with the ObjectGrid deployment descriptor XML file or with other frameworks
such as Spring.

* Fast: Each BackingMap can be independently tuned for optimal memory
utilization and concurrency.

* Ideal for single-Java virtual machine topologies with small dataset or for caching
frequently accessed data.

* Transactional. BackingMap updates can be grouped into a single unit of work
and can be integrated as a last participant in 2-phase transactions such as Java
Transaction Architecture (JTA) transactions.

Disadvantages
¢ Not fault tolerant.

* The data is not replicated. In-memory caches are best for read-only reference
data.

* Not scalable. The amount of memory required by the database might overwhelm
the Java virtual machine.

* Problems occur when adding Java virtual machines:
— Data cannot easily be partitioned

— Must manually replicate state between Java virtual machines or each cache
instance could have different versions of the same data.

— Invalidation is expensive.

— Each cache must be warmed up independently. The warm-up is the period of
loading a set of data so that the cache gets populated with valid data.

Chapter 2. Caching 17

When to use

The local, in-memory cache deployment topology should only be used when the
amount of data to be cached is small (can fit into a single Java virtual machine)
and is relatively stable. Stale data must be tolerated with this approach. Using
evictors to keep most frequently or recently used data in the cache can help keep
the cache size low and increase relevance of the data.

Peer-replicated local cache

You must ensure the cache is synchronized if multiple processes with independent
cache instances exist. To ensure that the cache instances are synchronized, enable a
peer-replicated cache with Java Message Service (JMS).

WebSphere eXtreme Scale includes two plug-ins that automatically propagate
transaction changes between peer ObjectGrid instances. The
JMSObjectGridEventListener plug-in automatically propagates eXtreme Scale
changes using JMS.

JVM
ObjectGrid
\
] >
Thread l > C L
L
Application)
JMS
JVM
ObjectGrid
\
] > Map
Thread l > C e
L
Application)

Figure 12. Peer-replicated cache with changes that are propagated with JMS

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability (HA) manager to propagate the changes to each peer cache
instance.

18 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

JVM

ObjectGrid

]
Thread |
A

pplication)

Map

Y VY

Map
3

HA Manager

JVM

ObjectGrid

]
Thread |
Al

pplication)

Map

YVY

Map
-

Figure 13. Peer-replicated cache with changes that are propagated with the high availability manager

Advantages

The data is more valid because the data is updated more often.

With the TranPropListener plug-in, like the local environment, the eXtreme Scale
can be created programmatically or declaratively with the eXtreme Scale
deployment descriptor XML file or with other frameworks such as Spring.
Integration with the high availability manager is done automatically.

Each BackingMap can be independently tuned for optimal memory utilization
and concurrency.

BackingMap updates can be grouped into a single unit of work and can be
integrated as a last participant in 2-phase transactions such as Java Transaction
Architecture (JTA) transactions.

Ideal for few-]JVM topologies with a reasonably small dataset or for caching
frequently accessed data.

Changes to the eXtreme Scale are replicated to all peer eXtreme Scale instances.
The changes are consistent as long as a durable subscription is used.

Disadvantages

Configuration and maintenance for the J]MSODbjectGridEventListener can be
complex. eXtreme Scale can be created programmatically or declaratively with
the eXtreme Scale deployment descriptor XML file or with other frameworks
such as Spring.

Not scalable: The amount of memory required by the database may overwhelm
the JVM.

Functions improperly when adding Java virtual machines:
— Data cannot easily be partitioned

— Invalidation is expensive.

— Each cache must be warmed-up independently

When to use

Use deployment topology only when the amount of data to be cached is small, can
fit into a single JVM, and is relatively stable.

Chapter 2. Caching 19

Distributed cache

WebSphere eXtreme Scale is most often used as a shared cache, to provide
transactional access to data to multiple components where a traditional database
would otherwise be used. The shared cache eliminates the need configure a

database.

Coherency of the cache

The cache is coherent because all of the clients see the same data in the cache. Each
piece of data is stored on exactly one server in the cache, preventing wasteful
copies of records that could potentially contain different versions of the data. A
coherent cache can also hold more data as more servers are added to the data grid,
and scales linearly as the grid grows in size. Because clients access data from this
data grid with remote procedural calls, it can also be known as a remote cache, or
far cache. Through data partitioning, each process holds a unique subset of the
total data set. Larger data grids can both hold more data and service more requests
for that data. Coherency also eliminates the need to push invalidation data around
the data grid because no stale data exists. The coherent cache only holds the latest

copy of each piece of data.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability component (HA Manager) of WebSphere Application Server to

propagate the changes to each peer ObjectGrid cache instance.

o T O
Application
s T O
\Application
JVM —
o
[
JUM (—
l—'_ I
E=E; LI

Application

Figure 14. Distributed cache

Near cache

Clients can optionally have a local, in-line cache when eXtreme Scale is used in a
distributed topology. This optional cache is called a near cache, an independent

20 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

ObjectGrid on each client, serving as a cache for the remote, server-side cache. The
near cache is enabled by default when locking is configured as optimistic or none
and cannot be used when configured as pessimistic.

JVM

ObjectGrid \

ObjectGrid

pplication

\
l |]
[Thread |
A J

Map,

D8

YVVY

Map

8

4 ﬁ I
300
300

/

Figure 15. Near cache

A near cache is very fast because it provides in-memory access to a subset of the
entire cached data set that is stored remotely in the eXtreme Scale servers. The near
cache is not partitioned and contains data from any of the remote eXtreme Scale
partitions.WebSphere eXtreme Scale can have up to three cache tiers as follows.

1. The transaction tier cache contains all changes for a single transaction. The
transaction cache contains a working copy of the data until the transaction is
committed. When a client transaction requests data from an ObjectMap, the
transaction is checked first

2. The near cache in the client tier contains a subset of the data from the server
tier. When the transaction tier does not have the data, the data is fetched from
the client tier, if available and inserted into the transaction cache

3. The data grid in the server tier contains the majority of the data and is shared
among all clients. The server tier can be partitioned, which allows a large
amount of data to be cached. When the client near cache does not have the
data, it is fetched from the server tier and inserted into the client cache. The
server tier can also have a Loader plug-in. When the grid does not have the
requested data, the Loader is invoked and the resulting data is inserted from
the backend data store into the grid.

To disable the near cache, set the numberOfBuckets attribute to 0 in the client
override eXtreme Scale descriptor configuration. See the topic on map entry
locking for details on eXtreme Scale lock strategies. The near cache can also be
configured to have a separate eviction policy and different plug-ins using a client
override eXtreme Scale descriptor configuration.

Advantage

* Fast response time because all access to the data is local. Looking for the data in
the near cache first saves a trip to the grid of servers, thus making even the
remote data locally accessible.

Disadvantages

* Increases duration of stale data because the near cache at each tier may be out of
synch with the current data in the grid.

* Relies upon an evictor to invalidate data to avoid running out of memory.
When to use

Use when response time is important and stale data can be tolerated.

Chapter 2. Caching 21

Embedded cache

WebSphere eXtreme Scale grids can run within existing processes as embedded
eXtreme Scale servers or you can manage them as external processes.

Embedded grids are useful when you are running in an application server, such as
WebSphere Application Server. You can start eXtreme Scale servers that are not
embedded by using command line scripts and run in a Java process.

JVM —
CJCJ
]
Application
JUM [—
I'== LT
Thread DD
\ Application
JVM [—
I'== [
/o)
\Application
JUM [—
F= L]
/]
\Application

Figure 16. Embedded cache

Advantages
* Simplified administration since there are less processes to manage.

 Simplified application deployment since the grid is using the client application
classloader.

* Supports partitioning and high availability.

Disadvantages

¢ Increased the memory footprint in client process since all of the data is
collocated in the process.

* Increase CPU utilization for servicing client requests.

* More difficult to handle application upgrades since clients are using the same
application Java archive files as the servers.

* Less flexible. Scaling of clients and grid servers cannot increase at the same rate.
When servers are externally defined, you can have more flexibility in managing
the number of processes.

When to use

22 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Use embedded grids when there is plenty of memory free in the client process for
grid data and potential failover data.

For more information, see the topic on enabling the client invalidation mechanism
in the Administration Guide.

Multi-master data grid replication topologies

Using the multi-master asynchronous replication feature, two or more data grids
can become exact mirrors of one other. This mirroring is accomplished using
asynchronous replication among links connecting the data grids together. Each data
grid is hosted in an independent catalog service domain, with its own catalog
service, container servers, and a unique name. With the multi-master asynchronous
replication feature, you can use links to interconnect a collection of these catalog
service domains. Then, you can synchronize the catalog service domains with
replication over the links. You can construct almost any topology because you
choose how to define links among catalog service domains.

7.1% Multi-master data grid replication is a significant new feature in Version
7.1. The feature is also called AP (availability and partitioning) replication in the
context of the CAP theorem. The CAP theorem states that a distributed computer
system cannot support more than two of the following three properties:
consistency, availability, and partition tolerance.

See [“Initial considerations for multi-master topologies”]| for map sets that are not
replicated.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. You can use a link between two
catalog service domains to track data changes. For more information about how to
set up communication between catalog service domains for multi-master
replication, see [“Available topologies for multi-master replication” on page 25]

Also, depending on the requirements of your environment, you can optimize the
topology design for multi-master replication by taking several factors into
consideration: arbitration, linking, and performance. Read more at
fconsiderations for multi-master replication” on page 28

Initial considerations for multi-master topologies:

Consider the following issues when you are deciding whether and how to use
multi-master replication topologies.

* Configuring class loaders with multiple catalog service domains

Domains must have access to all classes that are used as keys and values. Any
dependencies must be reflected in all class paths for data grid container JVMs
for all domains. If a CollisionArbiter plug-in retrieves the value for a cache
entry, then the classes for the values must be present for the domain that is
starting the arbiter.

e Avoid loaders

Loaders can be used to interface changes between a data grid and a database. It
is unlikely that all data grids or domains in a topology are collocated
geographically with the same database. WAN latency and other factors might
render this use case undesirable.

Grid preloading also requires careful design. Usually, when a data grid is
restarted, it is preloaded again. Preloading is not necessary or required when

Chapter 2. Caching 23

using multi-master replication. As soon as a catalog service domain is online, it
automatically reloads itself with the contents of the domains to which it is
linked. As a result, you are not required to initiate a manual preload for a data
grid that is a domain in a multi-master replication topology.

Loaders usually obey insert and update rules. With multi-master replication,
inserts must be treated as merges. When the data is being pulled remotely after
a domain restart, existing data will be merged into the local domain. Because the
data might already have been in the local database, a typical insert fails with a
duplicate key exception in the database. Use merge semantics instead.

WebSphere eXtreme Scale can be configured to do a shard-based preload with
the preload methods on Loader plug-ins. But you should avoid this technique in
a multi-master replication topology. Instead, use a client-based preload when the
topology is first started. The multi-master topology refreshes any restarted
domains with a current copy of what is stored in other domains in the topology.
After domains have been started, the multi-master topology keeps domains
synchronized.

* EntityManager is not supported

A map set containing an entity map is not replicated across catalog service
domains.

* Byte array maps are not supported in releases before Version 7.1.0.2

A map set containing a map that is configured with COPY_TO_BYTES copy
mode is not replicated across catalog service domains.

7.1.0.2+ In Version 7.1.0.2 or later, maps that are configured with
COPY_TO_BYTES copy mode can replicate across catalog service domains. To
enable this function, you must upgrade your entire configuration to Version
7.1.0.2 or later. All catalog servers, clients, and container servers, including
container servers that are running only replica shards, in all domains must be
upgraded. You cannot have COPY_TO_BYTES copy mode enabled on a catalog
service domain that contains any servers that are running a version before
Version 7.1.0.2. To upgrade your catalog service domains to support
COPY_TO_BYTES copy mode, use the following steps:

1. Use the xsadmin -dismissLink command to remove the multi-master link
between your catalog service domains. See the information about configuring
multi-master replication topologies in the Administration Guidefor more
information.

2. Shut down the data grid. You can use the xsadmin -teardown command to
stop a group of catalog and container servers. See the information about
stopping servers in the Administration Guide for more information.

3. Upgrade servers and clients in each domain to Version 7.1.0.2 or later. See
the information about updating eXtreme Scale servers in the Administration
Guide for more information.

4. Update your configuration to use the COPY_TO_BYTES copy mode. See the
information about byte array maps in the Programming Guide for more
information about editing the byte array configuration.

5. Restart the data grid. See the information about starting servers in the
Administration Guide for more information.

6. Use the xsadmin -establishLink command to reconnect the catalog service
domains. See the information about configuring multi-master replication
topologies in the Administration Guide for more information.

After all of your catalog service domains are upgraded, you cannot start servers
in any domains that are at a level that is lower than Version 7.1.0.2.

* Write-behind is not supported

24 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

A map set containing a map that is configured with write-behind support is not
replicated across catalog service domains.

Available topologies for multi-master replication:

You have several different options when choosing the topology for your
deployment that incorporates multi-master replication.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. With a link, two catalog service
domains can communicate data changes. For example, the simplest topology is a
pair of catalog service domains with a single link between them. The catalog
service domains are named alphabetically: A, B, C, and so on, from the left. A link
can cross a wide area network (WAN), spanning large distances. Even if the link is
interrupted, you can still change data in either catalog service domain. The
topology reconciles changes when the link reconnects the catalog service domains.
Links automatically try to reconnect if the network connection is interrupted.

&

After you set up the links, then eXtreme Scale first tries to make every catalog
service domain identical. Then, eXtreme Scale tries to maintain the identical
conditions as changes occur in any catalog service domain. The goal is for each
catalog service domain to be an exact mirror of every other catalog service domain
connected by the links. The replication links between the catalog service domains
help ensure that any changes made in one domain are copied to the other
domains.

Line topologies

Although it is such a simple deployment, a line topology demonstrates some
qualities of the links. First, it is not necessary for a catalog service domain to be
connected directly to every other catalog service domain to receive changes.
Domain B pulls changes from Domain A. Domain C receives changes from Domain
A through Domain B, which connects Domains A and C. Similarly, Domain D
receives changes from the other domains through Domain C. This ability spreads
the load of distributing changes away from the source of the changes.

o~~~

Notice that if Domain C fails, the following would occur:

1. Domain D would be orphaned until Domain C was restarted

2. Domain C would synchronize itself with Domain B, which is a copy of Domain
A

Chapter 2. Caching 25

26

3. Domain D would use Domain C to synchronize itself with changes on Domains
A and B. These changes initially occurred while Domain D was orphaned
(while Domain C was down).

Ultimately, Domains A, B, C, and D would all become identical to one other again.
Ring topologies

Another option you have with multi-master replication is a ring topology, which is
more resilient than the topologies described in the previous sections. A catalog
service domain or a single link can fail. Still, the surviving catalog service domains
can obtain changes by traveling around the ring, away from the failure. Each
catalog service domain has two links to the other catalog service domains. And
each catalog service domain has at most two links, no matter how large the ring
topology. Changes from a particular domain might travel through several domains
before all of them mirror each other. Going through several domains causes
potentially high latency, similar to the processes for a line topology.

-
2 %

% z
-

You can also deploy a more sophisticated ring topology, with a root catalog service
domain at the center of the ring. The root catalog service domain functions as the
central point of reconciliation. The other catalog service domains act as remote
points of reconciliation for changes occurring in the root catalog service domain.
The root catalog service domain can arbitrate changes among the catalog service
domains. If a ring topology contains more than one ring around a root catalog
service domain, the domain can only arbitrate changes among the innermost ring.
However, the results of the arbitration spread throughout the catalog service
domains in the other rings.

Hub-and-spoke topologies
With a hub-and-spoke topology, changes travel through a hub catalog service

domain. Because the hub is the only intermediate catalog service domain that is
specified, hub-and-spoke topologies have lower latency. The hub domain is

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

connected to every spoke domain through a link. The hub distributes changes
among the catalog service domains. The hub acts as a point of reconciliation for
collisions. In an environment with a high update rate, the hub might require run
on more hardware than the spokes to remain synchronized. WebSphere eXtreme
Scale is designed to scale linearly, meaning you can make the hub larger, as
needed, without difficulty. However, if the hub fails, then changes are not
distributed until the hub restarts. Any changes on the spoke catalog service
domains will be distributed after the hub is reconnected.

g

g

You can also use a strategy with fully replicated clients, a topology variation which
uses a pair of eXtreme Scale servers running as a hub. Every client creates a
self-contained single container data grid with a catalog in the client JVM. A client
uses its data grid to connect to the hub catalog. This connection causes the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration domain, distributing
changes to all connected clients. The fully replicated clients topology provides a
reliable L2 cache for an object relational mapper, such as OpenJPA. Changes are
distributed quickly among client JVMs through the hub. If the cache size can be
contained within the available heap space, the topology is a reliable architecture
for this style of L2.

Use multiple partitions to scale the hub domain on multiple JVMs, if necessary.
Because all of the data still must fit in a single client JVM, multiple partitions
increase the capacity of the hub to distribute and arbitrate changes. However,
having multiple partitions does not change the capacity of a single domain.

Chapter 2. Caching 27

28

Tree topologies

You can also use an acyclic directed tree. An acyclic tree has no cycles or loops,
and a directed setup limits links to existing only between parents and children.
You can use the tree topology when you have many catalog service domains such
that the ring topology would overwork the hub. You can also use a tree if you
require being able to add child catalog service domains without updating the root
catalog service domain.

4

A tree topology can still have a central point of reconciliation in the root catalog
service domain. The second level can still function as a remote point of
reconciliation for changes occurring in the catalog service domain beneath them.
The root catalog service domain can arbitrate changes between the catalog service

domains on the second level only. You can also use N-ary trees, each of which
have N children at each level. Each catalog service domain connects out to n links.

N

Topology considerations for multi-master replication:

When implementing multi-master replication, you must consider aspects in your
design such as: arbitration, linking, and performance.

Linking considerations in topology design

Ideally, a topology includes the minimum number of links while optimizing
trade-offs among change latency, fault tolerance, and performance characteristics.

e Change latency

Change latency is determined by the number of intermediate catalog service
domains a change must go through before arriving at a specific catalog service
domain.

A topology has the best change latency when it eliminates intermediate catalog
service domains by linking every catalog service domain to every other catalog
service domain. However, a catalog service domain must perform replication
work in proportion to its number of links. For large topologies, the sheer
number of links to be defined can cause an administrative burden.

The speed at which a change is copied to other catalog service domains depends
on additional factors, such as:

— Processor and network bandwidth on the source catalog service domain

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

— The number of intermediate catalog service domains and links between the
source and target catalog service domain

— The processor and network resources available to the source, target, and
intermediate catalog service domains

e Fault tolerance

Fault tolerance is determined by how many paths exist between two catalog
service domains for change replication.

If you have only one link between a given pair of catalog service domains, a link
failure disallows propagation of changes. Similarly, changes are not propagated
between catalog service domains if any of the intermediate domains experiences
link failure. Your topology could have a single link from one catalog service
domain to another such that the link passes through intermediate domains. If so,
then changes are not propagated if any of the intermediate catalog service
domains is down.

Consider the line topology with four catalog service domains A, B, C, and D:

o~~~

If any of these conditions hold, Domain D does not see any changes from A:

— Domain A is up and B is down

— Domains A and B are up and C is down
— The link between A and B is down

— The link between B and C is down

— The link between C and D is down

In contrast, with a ring topology, each catalog service domain can receive
changes from either direction.

-
z %

For example, if a given catalog service in your ring topology is down, then the

two adjacent domains can still pull changes directly from each other.

Chapter 2. Caching 29

30

All changes are propagated through the hub. Thus, as opposed to the line and
ring topologies, the hub-and-spoke design is susceptible to breakdown if the hub
fails.

g
&

g

A single catalog service domain is resilient to a certain amount of service loss.
However, larger failures such as wide network outages or loss of links between
physical data centers can disrupt any of your catalog service domains.

Linking and performance

The number of links defined on a catalog service domain affects performance.
More links use more resources and replication performance can drop as a result.
The ability to retrieve changes for a domain A through other domains effectively
off-loads domain A from replicating its transactions everywhere. The change
distribution load on a domain is limited by the number of links it uses, not how
many domains are in the topology. This load property provides scalability, so the
domains in the topology can share the burden of change distribution.

A catalog service domain can retrieve changes indirectly through other catalog
service domains. Consider a line topology with five catalog service domains.
A<=>B<=>(C<=>D<=>FE

— A pulls changes from B, C, D, and E through B

— B pulls changes from A and C directly, and changes from D and E through C

— C pulls changes from B and D directly, and changes from A through B and E
through D

— D pulls changes from C and E directly, and changes from A and B through C
— E pulls changes from D directly, and changes from A, B, and C through D

The distribution load on catalog service domains A and E is lowest, because they
each have a link only to a single catalog service domain. Domains B, C, and D
each have a link to two domains. Thus, the distribution load on domains B, C,
and D is double the load on domains A and E. The workload depends on the

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

number of links in each domain, not on the overall number of domains in the
topology. Thus, the described distribution of loads would remain constant, even
if the line contained 1000 domains.

Arbitration considerations in topology design

Change collisions might occur if the same records can be changed simultaneously
in two places. Set up each catalog service domain to have about the same amount
of processor, memory, network resources. You might observe that catalog service
domains performing change collision handling (arbitration) use more resources
than other catalog service domains. Collisions are detected automatically. They are
handled with one of two mechanisms:

* Default collision arbiter The default protocol is to use the changes from the
lexically lowest named catalog service domain. For example, if catalog service
domain A and B generate a conflict for a record, then the change from catalog
service domain B is ignored. Catalog service domain A keeps its version and the
record in catalog service domain B is changed to match the record from catalog
service domain A. This behavior applies as well for applications where users or
sessions are normally bound or have affinity with one of the data grids.

¢ Custom collision arbiter Applications can provide a custom arbiter. When a
catalog service domain detects a collision, it starts the arbiter. For information
about developing a useful custom arbiter, see [Developing custom arbiters for|
[multi-master replication}

For topologies in which collisions are possible, consider implementing a
hub-and-spoke topology or a tree topology. These two topologies are conducive to
avoiding constant collisions, which can happen in the following scenarios:

1. Multiple catalog service domains experience a collision
2. Each catalog service domain handles the collision locally, producing revisions
3. The revisions collide, resulting in revisions of revisions

To avoid collisions, choose a specific catalog service domain, called an arbitration
catalog service domain as the collision arbiter for a subset of catalog service domains.
For example, a hub-and-spoke topology might use the hub as the collision handler.
The spoke collision handler ignores any collisions that are detected by the spoke
catalog service domains. The hub catalog service domain creates revisions,
preventing unexpected collision revisions. The catalog service domain that is
assigned to handle collisions must link to all of the domains for which it is
responsible for handling collisions. In a tree topology, any internal parent domains
handle collisions for their immediate children. In contrast, if you use a ring
topology, you cannot designate one catalog service domain in the ring as the
arbiter.

The following table summarizes the arbitration approaches that are most
compatible with various topologies.

Table 2. Arbitration approaches. This table states whether application arbitration is
compatible with various technologies.

Application
Topology ration? Notes
A line of two catalog Yes Choose one catalog service domain as the
service domains arbiter.

Chapter 2. Caching 31

32

Table 2. Arbitration approaches (continued). This table states whether application
arbitration is compatible with various technologies.

(N-ary tree)

Application

Topology ration? Notes

A line of three catalog Yes The middle catalog service domain must be

service domains the arbiter. Think of the middle catalog
service domain as the hub in a simple
hub-and-spoke topology.

A line of more than three | No Application arbitration is not supported.

catalog service domains

A hub with N spokes Yes Hub with links to all spokes must be the
arbitration catalog service domain.

A ring of N catalog No Application arbitration is not supported.

service domains

An acyclic, directed tree | Yes All root nodes must rate their direct

descendants only.

Multi-master replication performance considerations

Take the following limitations into account when using multi-master replication

topologies:

* Change distribution tuning (Discussed in previous section, "Linking and

performance.")

* Replication link performance WebSphere eXtreme Scale creates a single TCP/IP
socket between any pair of JVMs. All traffic between the JVMs occurs through
the single socket, including traffic from multi-master replication. Catalog service
domains are hosted on at least n container JVMs, providing at least n TCP links
to peer catalog service domains. Thus, the catalog service domains with larger
numbers of containers have higher replication performance levels. More
containers require more processor and network resources.

* TCP sliding window tuning and RFC 1323 [REC 1323|support on both ends of a
link yields more data for a round trip. This support results in higher throughput,
expanding the capacity of the window by a factor of about 16,000.

Recall that TCP sockets use a sliding window mechanism to control the flow of
bulk data. This mechanism typically limits the socket to 64 KB for a round-trip
interval. If the round-trip interval is 100 ms, then the bandwidth is limited to
640 KB/second without additional tuning. Fully using the bandwidth available
on a link might require tuning that is specific to an operating system. Most
operating systems include tuning parameters, including RFC 1323 options, to
enhance throughput over high-latency links.

Several factors can affect replication performance:

— The speed at which eXtreme Scale retrieves changes.

— The speed at which eXtreme Scale can service retrieve replication requests.

— The sliding window capacity.

— With network buffer tuning on both sides of a link, eXtreme Scale retrieves

changes over the socket efficiently.

* Object Serialization All data must be serializable. If a catalog service domain is
not using COPY_TO_BYTES, then the catalog service domain must use Java
serialization or ObjectTransformers to optimize serialization performance.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.ietf.org/rfc/rfc1323.txt

¢ Compression WebSphere eXtreme Scale compresses all data sent between
catalog service domains by default. Disabling compression is not currently
available.

* Memory tuning The memory usage for a multi-master replication topology is
largely independent of the number of catalog service domains in the topology.

Multi-master replication adds a fixed overhead per Map entry to handle
versioning. Each container also tracks a fixed amount of data for each catalog
service domain in the topology. A topology with two catalog service domains
uses approximately the same memory as a topology with 50 catalog service
domains. WebSphere eXtreme Scale does not use replay logs or similar queues in
its implementation. Thus, there is no recovery structure ready in the case that a
replication link is unavailable for a substantial period and later restarts.

Database integration: Write-behind, in-line, and side caching

WebSphere eXtreme Scale is used to front a traditional database and eliminate read
activity that is normally pushed to the database. A coherent cache can be used
with an application directly or indirectly using an object relational mapper. The
coherent cache can then offload the database or backend from reads. In a slightly
more complex scenario, such as transactional access to a data set where only some
of the data requires traditional persistence guarantees, filtering can be used to
offload even write transactions.

You can configure eXtreme Scale to function as a highly flexible in-memory
database processing space. However, eXtreme Scale is not an object relational
mapper (ORM). It does not know where the data in eXtreme Scale came from. An
application or an ORM can place data in an eXtreme Scale server. It is the
responsibility of the source of the data to make sure that it stays consistent with
the database where data originated. This means eXtreme Scale cannot invalidate
data that is pulled from a database automatically. The application or mapper must
provide this function and manage the data stored in eXtreme Scale.

Y
/ ObjectGrid \ v

Database

)
0 £
T

\.
o

L
[
I

~

A /

Figure 17. ObjectGrid as a database buffer

Chapter 2. Caching 33

ObjectGrid O\ R

)
o

Database

0 0 £
i

-/ ~

-
—

o

(

=
N—
\
o

~—
\—
-

[

Figure 18. ObjectGrid as a side cache

34

Sparse and complete cache

WebSphere eXtreme Scale can be used as a sparse cache or a complete cache. A
sparse cache only keeps a subset of the total data, while a complete cache keeps all
of the data. and can be populated lazily, as the data is needed. Sparse caches are
normally accessed using keys (instead of indexes or queries) because the data is
only partially available.

Sparse cache

When a key is not present in a sparse cache, or the data is not available and a
cache miss occurs, the next tier is invoked. The data is fetched, from a database for
example, and is inserted into the data grid cache tier. If you are using a query or
index, only the currently loaded values are accessed and the requests are not
forwarded to the other tiers.

Complete cache

A complete cache contains all of the required data and can be accessed using
non-key attributes with indexes or queries. A complete cache is preloaded with
data from the database before the application tries to access the data. A complete
cache can function as a database replacement after data is loaded. Because all of
the data is available, queries and indexes can be used to find and aggregate data.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Side cache

Figure 19. Side cache

When WebSphere eXtreme Scale is used as a side cache, the back end is used with
the data grid.

Side cache

You can configure the product as a side cache for the data access layer of an
application. In this scenario, WebSphere eXtreme Scale is used to temporarily store
objects that would normally be retrieved from a back-end database. Applications
check to see if the data grid contains the data. If the data is in the data grid, the
data is returned to the caller. If the data does not exist, the data is retrieved from
the back-end database. The data is then inserted into the data grid so that the next
request can use the cached copy. The following diagram illustrates how WebSphere
eXtreme Scale can be used as a side-cache with an arbitrary data access layer such
as OpenJPA or Hibernate.

Side cache plug-ins for Hibernate and OpenJPA

Server Core Cache
(BackingMap)

A

Y

Transactional Cache
(ObjectMap)

A A
Y Y

ObjectGrid

Database

Data Access Layer
(OpenJPA or Hibernate)

A 4

Application \

Cache plug-ins for both OpenJPA and Hibernate are included inWebSphere
eXtreme Scale, so you can use the product as an automatic side-cache. Using
WebSphere eXtreme Scale as a cache provider increases performance when reading
and querying data and reduces load to the database. There are advantages
thatWebSphere eXtreme Scale has over built-in cache implementations because the
cache is automatically replicated between all processes. When one client caches a
value, all other clients can use the cached value.

In-line cache

You can configure in-line caching for a database back end or as a side cache for a
database. In-line caching uses eXtreme Scale as the primary means for interacting
with the data. When eXtreme Scale is used as an in-line cache, the application
interacts with the back end using a Loader plug-in.

In-line cache

When used as an in-line cache, WebSphere eXtreme Scale interacts with the back
end using a Loader plug-in. This scenario can simplify data access because
applications can access the eXtreme Scale APIs directly. Several different caching

Chapter 2. Caching 35

Figure 20. In-line cache

scenarios are supported in eXtreme Scale to make sure the data in the cache and
the data in the back end are synchronized. The following diagram illustrates how
an in-line cache interacts with the application and back end.

Database

A

Y

Back End
(Loader)

A

Y

Server Core Cache
(BackingMap)

A
Y

Transactional Cache
(ObjectMap)

A
Y

ObjectGrid

Application

The in-line caching option simplifies data access because it allows applications to
access the eXtreme Scale APIs directly. WebSphere eXtreme Scale supports several
in-line caching scenarios, as follows.

* Read-through

* Write-through

* Write-behind

Read-through caching scenario

A read-through cache is a sparse cache that lazily loads data entries by key as they
are requested. This is done without requiring the caller to know how the entries
are populated. If the data cannot be found in the eXtreme Scale cache, eXtreme
Scale will retrieve the missing data from the Loader plug-in, which loads the data
from the back-end database and inserts the data into the cache. Subsequent

requests for the same data key will be found in the cache until it is removed,
invalidated or evicted.

36 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Select v1
A -

>

Loader

Database

A

vi
A

get (k1) v1

A ’

Y

get (k1) v1

Y

Application \

Write-through caching scenario

Figure 21. Read-through caching

In a write-through cache, every write to the cache synchronously writes to the
database using the Loader. This method provides consistency with the back end,
but decreases write performance since the database operation is synchronous. Since
the cache and database are both updated, subsequent reads for the same data will
be found in the cache, avoiding the database call. A write-through cache is often
used in conjunction with a read-through cache.

insert into
Loader Database
A

batchUpdate
insert: k1,v1

A

Y
insert (k1,v1)

Application \

Write-behind caching scenario

Figure 22. Write-through caching

Database synchronization can be improved by writing changes asynchronously.
This is known as a write-behind or write-back cache. Changes that would normally
be written synchronously to the loader are instead buffered in eXtreme Scale and
written to the database using a background thread. Write performance is

Chapter 2. Caching 37

significantly improved because the database operation is removed from the client
transaction and the database writes can be compressed. See [“Write-behind caching’]
for more information.

insert into
Loader Database
batchUpdate
insert: k1,v1
/ Write \
Timer
Queue Map

A
\ 4
A
Y

\Q |

insert (k1,v1)

Application

Figure 23. Write-behind caching

See [“Write-behind caching”] for further information.

Write-behind caching

You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

38 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

insert into
A -

Loader »| Database
batchUpdate
insert: k1,v1
/ Write \
Timer
Queue Map
A
\4
A
Y
_
insert (k1,v1)

Application \

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.
When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

Figure 24. Write-behind caching

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Benefits

Enabling write-behind support has the following benefits:

* Back end failure isolation: Write-behind caching provides an isolation layer
from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

* Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

* Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Chapter 2. Caching 39

40

Application design considerations

Enabling write-behind support is simple, but designing an application to work
with write-behind support needs careful consideration. Without write-behind
support, the ObjectGrid transaction encloses the back-end transaction. The
ObjectGrid transaction starts before the back-end transaction starts, and it ends
after the back-end transaction ends.

With write-behind support enabled, the ObjectGrid transaction finishes before the
back-end transaction starts. The ObjectGrid transaction and back-end transaction
are de-coupled.

Referential integrity constraints

Each backing map that is configured with write-behind support has its own
write-behind thread to push the data to the back-end. Therefore, the data that
updated to different maps in one ObjectGrid transaction are updated to the
back-end in different back-end transactions. For example, transaction T1 updates
key keyl in map Mapl and key key2 in map Map2. The key1l update to map Mapl
is updated to the back-end in one back-end transaction, and the key2 updated to
map Map? is updated to the back-end in another back-end transaction by different
write-behind threads. If data stored in Map1l and Map?2 have relations, such as
foreign key constraints in the back-end, the updates might fail.

When designing the referential integrity constraints in your back-end database,
ensure that out-of-order updates are allowed.

Queue map locking behavior

Another major transaction behavior difference is the locking behavior. ObjectGrid
supports three different locking strategies: PESSIMISTIC, OPTIMISITIC, and
NONE. The write-behind queue maps uses pessimistic locking strategy no matter
which lock strategy is configured for its backing map. Two different types of
operations exist that acquire a lock on the queue map:

* When an ObjectGrid transaction commits, or a flush (map flush or session flush)
happens, the transaction reads the key in the queue map and places an S lock on
the key.

* When an ObjectGrid transaction commits, the transaction tries to upgrade the S
lock to X lock on the key.

Because of this extra queue map behavior, you can see some locking behavior
differences.

e If the user map is configured as PESSIMISTIC locking strategy, there isn't much
locking behavior difference. Every time a flush or commit is called, an S lock is
placed on the same key in the queue map. During the commit time, not only is
an X lock acquired for key in the user map, it is also acquired for the key in the
queue map.

e If the user map is configured as OPTIMISTIC or NONE locking strategy, the
user transaction will follow the PESSIMISTIC locking strategy pattern. Every
time a flush or commit is called, an S lock is acquired for the same key in the
queue map. During the commit time, an X lock is acquired for the key in the
queue map using the same transaction.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Loader transaction retries

ObjectGrid does not support 2-phase or XA transactions. The write-behind thread
removes records from the queue map and updates the records to the back-end. If
the server fails in the middle of the transaction, some back-end updates can be
lost.

The write-behind loader will automatically retry to write failed transactions and
will send an in-doubt LogSequence to the back-end to avoid data loss. This action
requires the loader to be idempotent, which means when the
Loader.batchUpdate(TxId, LogSequence) is called twice with the same value, it
gives the same result as if it were applied one time. Loader implementations must
implement the RetryableLoader interface to enable this feature. See the API
documentation for more details.

Loader failures

The loader plug-in can fail when it is unable to communicate to the database back
end. This can happen if the database server or the network connection is down.
The write-behind loader will queue the updates and try to push the data changes
to the loader periodically. The loader must notify the ObjectGrid run time that
there is a database connectivity problem by throwing a
LoaderNotAvailableException exception.

Therefore, the Loader implementation should be able to distinguish a data failure
or a physical loader failure. Data failure should be thrown or re-thrown as a
LoaderException or an OptimisticCollisionException, but a physical loader failure
should be thrown or re-thrown as a LoaderNotAvailableException. ObjectGrid
handles these two exceptions differently:

* If a LoaderException is caught by the write-behind loader, the write-behind
loader will consider it fails due to some data failure, such as duplicate key
failure. The write-behind loader will unbatch the update, and try the update one
record at one time to isolate the data failure. If A {{LoaderException}}is caught
again during the one record update, a failed update record is created and logged
in the failed update map.

 If a LoaderNotAvailableException is caught by the write-behind loader, the
write-behind loader will consider it fails because it cannot connect to the
database end, for example, the database back-end is down, a database
connection is not available, or the network is down. The write-behind loader
will wait for 15 seconds and then re-try the batch update to the database.

The common mistake is to throw a LoaderException while a
LoaderNotAvailableException should be thrown. All the records queued in the
write-behind loader will become failed update records, which defeats the purpose
of back-end failure isolation.

Performance considerations

Write-behind caching support increases response time by removing the loader
update from the transaction. It also increases database throughput because
database updates are combined. It is important to understand the overhead
introduced by write-behind thread, which pulls the data out of the queue map and
pushed to the loader.

Chapter 2. Caching 41

42

The maximum update count or the maximum update time need to be adjusted
based on the expected usage patterns and environment. If the value of the
maximum update count or the maximum update time is too small, the overhead of
the write-behind thread may exceed the benefits. Setting a large value for these
two parameters could also increase the memory usage for queuing the data and
increase the stale time of the database records.

For best performance, tune the write-behind parameters based on the following
factors:

* Ratio of read and write transactions
e Same record update frequency
* Database update latency.

Loaders

With a Loader plug-in, a data grid map can behave as a memory cache for data
that is typically kept in a persistent store on either the same system or another
system. Typically, a database or file system is used as the persistent store. A remote
Java virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using eXtreme Scale. A loader has the logic for
reading and writing data to and from a persistent store.

Overview

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). The Loader is invoked when the cache is unable to satisfy a request for a
key, providing read-through capability and lazy-population of the cache. A loader
also allows updates to the database when cache values change. All changes within
a transaction are grouped together to allow the number of database interactions to
be minimized. A TransactionCallback plug-in is used in conjunction with the loader
to trigger the demarcation of the backend transaction. Using this plug-in is
important when multiple maps are included in a single transaction or when
transaction data is flushed to the cache without committing.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Figure 25. Loader

Database

A

JVM

— T
~ -

Primary Shard
Loader
1]
§ © A
x Q \ 4
g 2 Server Core Cache
8 O (BackingMap)
AA

Y

n Y

Transactional Cache
(ObjectMap)

\/

The loader can also use overqualified updates to avoid keeping database locks. By
storing a version attribute in the cache value, the loader can see the before and
after image of the value as it is updated in the cache. This value can then be used
when updating the database or back end to verify that the data has not been
updated. A Loader can also be configured to preload the data grid when it is
started. When partitioned, a Loader instance is associated with each partition. If
the "Company" Map has ten partitions, there are ten Loader instances, one per
primary partition. When the primary shard for the Map is activated, the
preloadMap method for the loader is invoked synchronously or asynchronously
which allows loading the map partition with data from the back-end to occur
automatically. When invoked synchronously, all client transactions are blocked,
preventing inconsistent access to the data grid. Alternatively, a client preloader can
be used to load the entire data grid.

Two built-in loaders can greatly simplify integration with relational database back
ends. The JPA loaders utilize the Object-Relational Mapping (ORM) capabilities of
both the OpenJPA and Hibernate implementations of the Java Persistence API (JPA)
specification. See the information about JPA loaders in the Product Overview for
more information.

Loader configuration

To add a Loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map.

* A backing map can have only one loader.
* A client backing map (near cache) cannot have a loader.

* A loader definition can be applied to multiple backing maps, but each backing
map has its own loader instance.

Chapter 2. Caching 43

For more information about writing and configuring loaders, see the Programming
Guide.

Data pre-loading and warm-up

In many scenarios that incorporate the use of a loader, you can prepare your data
grid by pre-loading it with data.

When used as a complete cache, the data grid must hold all of the data and must
be loaded before any clients can connect to it. When you are using a sparse cache,

you can warm up the cache with data so that clients can have immediate access to
data when they connect.

Two approaches exist for pre-loading data into the data grid: Using a Loader
plug-in or using a client loader, as described in the following sections.

Loader plug-in

The loader plug-in is associated with each map and is responsible for
synchronizing a single primary partition shard with the database. The preloadMap
method of the loader plug-in is invoked automatically when a shard is activated.
For example, if you have 100 partitions, 100 loader instances exist, each loading the

data for its partition. When run synchronously, all clients are blocked until the
preload has completed.

Database

A

JVM

— T
S i

Primary Shard
Loader
12}
g o A
& % Y
533 2 Server Core Cache
8 o (BackingMap)
AA

Y

n Y

Transactional Cache
(ObjectMap)

\/

Figure 26. Loader plug-in

44

See the details on using a loader in the Programming Guide for more information.

Client loader

A client loader is a pattern for using one or more clients to load the grid with data.
Using multiple clients to load grid data can be effective when the partition scheme

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Figure 27. Client loader

is not stored in the database. You can invoke client loaders manually or
automatically when the data grid starts. Client loaders can optionally use the
StateManager to set the state of the data grid to pre-load mode, so that clients are
not able to access the grid while it is pre-loading the data. WebSphere eXtreme
Scale includes a Java Persistence API (JPA)-based loader that you can use to
automatically load the data grid with either the OpenJPA or Hibernate JPA

providers. For more information about cache providers, see I“]PA cache plug-in” on|

Partition O
Objed Partition 1 |

Objectq Partition 2
| i S ObjectGrid
Server Core Cache
(BackingMap)

7

ObjectGrid

Server Process

Server Process

erver Process

</!

A

JPA Client Loader

A

Client Process

JPA Provider <«

Database

Map pre-loading

Maps can be associated with Loaders. A loader is used to fetch objects when they
cannot be found in the map (a cache miss) and also to write changes to a back-end
when a transaction commits. Loaders can also be used for preloading data into a
map. The preloadMap method of the Loader interface is called on each map when
its corresponding partition in the MapSet becomes a primary. The preloadMap
method is not called on replicas. It attempts to load all the intended referenced
data from the back-end into the map using the provided session. The relevant map
is identified by the BackingMap argument that is passed to the preloadMap
method.

void preloadMap(Session session, BackingMap backingMap) throws LoaderException;
Preloading in partitioned MapSet

Maps can be partitioned into N partitions. Maps can therefore be striped across
multiple servers, with each entry identified by a key that is stored only on one of
those servers. Very large maps can be held in an eXtreme Scale because the
application is no longer limited by the heap size of a single JVM to hold all the
entries of a Map. Applications that want to preload with the preloadMap method
of the Loader interface must identify the subset of the data that it preloads. A fixed
number of partitions always exists. You can determine this number by using the
following code example:

Chapter 2. Caching 45

46

int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();
int myPartition = backingMap.getPartitionId();

This code example shows how an application can identify the subset of the data to
preload from the database. Applications must always use these methods even
when the map is not initially partitioned. These methods allow flexibility: If the
map is later partitioned by the administrators, then the loader continues to work
correctly.

The application must issue queries to retrieve the myPartition subset from the
backend. If a database is used, then it might be easier to have a column with the
partition identifier for a given record unless there is some natural query that
allows the data in the table to partition easily.

See details on writing a loader with a replica preload controller in the Programming
Guide for an example on how to implement a Loader for a replicated eXtreme
Scale.

Performance

The preload implementation copies data from the back-end into the map by storing
multiple objects in the map in a single transaction. The optimal number of records
to store per transaction depends on several factors, including complexity and size.
For example, after the transaction includes blocks of more than 100 entries, the
performance benefit decreases as you increase the number of entries. To determine
the optimal number, begin with 100 entries and then increase the number until the
performance benefit decreases to none. Larger transactions result in better
replication performance. Remember, only the primary runs the preload code. The
preloaded data is replicated from the primary to any replicas that are online.

Preloading MapSets

If the application uses a MapSet with multiple maps then each map has its own
loader. Each loader has a preload method. Each map is loaded serially by the
eXtreme Scale. It might be more efficient to preload all the maps by designating a
single map as the preloading map. This process is an application convention. For
example, two maps, department and employee, might use the department Loader
to preload both the department and the employee maps. This procedure ensures
that, transactionally, if an application wants a department then the employees for
that department are in the cache. When the department Loader preloads a
department from the back-end, it also fetches the employees for that department.
The department object and its associated employee objects are then added to the
map using a single transaction.

Recoverable preloading

Some customers have very large data sets that need caching. Preloading this data
can be very time consuming. Sometimes, the preloading must complete before the
application can go online. You can benefit from making preloading recoverable.
Suppose there are a million records to preload. The primary is preloading them
and fails at the 800,000th record. Normally, the replica chosen to be the new
primary clears any replicated state and starts from the beginning. eXtreme Scale
can use a ReplicaPreloadController interface. The loader for the application would
also need to implement the ReplicaPreloadController interface. This example adds
a single method to the Loader: Status checkPreloadStatus(Session session,
BackingMap bmap) ;. This method is called by the eXtreme Scale run time before the

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

preload method of the Loader interface is normally called. The eXtreme Scale tests
the result of this method (Status) to determine its behavior whenever a replica is
promoted to a primary.

Table 3. Status value and response

Returned status value

eXtreme Scale response

Status.PRELOADED_ALREADY eXtreme Scale does not call the preload method at all because this status
value indicates that the map is fully preloaded.

Status. FULL_PRELOAD_NEEDED eXtreme Scale clears the map and calls the preload method normally.

Status.PARTIAL_PRELOAD_NEEDED eXtreme Scale leaves the map as-is and calls preload. This strategy allows the

application loader to continue preloading from that point onwards.

Clearly, while a primary is preloading the map, it must leave some state in a map
in the MapSet that is being replicated so that the replica determines what status to
return. You can use an extra map named, for example, RecoveryMap. This
RecoveryMap must be part of the same MapSet that is being preloaded to ensure
that the map is replicated consistently with the data being preloaded. A suggested
implementation follows.

As the preload commits each block of records, the process also updates a counter
or value in the RecoveryMap as part of that transaction. The preloaded data and
the RecoveryMap data are replicated atomically to the replicas. When the replica is
promoted to primary, it can now check the RecoveryMap to see what has
happened.

The RecoveryMap can hold a single entry with the state key. If no object exists for
this key then you need a full preload (checkPreloadStatus returns
FULL_PRELOAD_NEEDED). If an object exists for this state key and the value is
COMPLETE, the preload completes, and the checkPreloadStatus method returns
PRELOADED_ALREADY. Otherwise, the value object indicates where the preload
restarts and the checkPreloadStatus method returns
PARTIAL_PRELOAD_NEEDED. The loader can store the recovery point in an
instance variable for the loader so that when preload is called, the loader knows
the starting point. The RecoveryMap can also hold an entry per map if each map is
preloaded independently.

Handling recovery in synchronous replication mode with a Loader

The eXtreme Scale run time is designed not to lose committed data when the
primary fails. The following section shows the algorithms used. These algorithms
apply only when a replication group uses synchronous replication. A loader is
optional.

The eXtreme Scale run time can be configured to replicate all changes from a
primary to the replicas synchronously. When a synchronous replica is placed, it
receives a copy of the existing data on the primary shard. During this time, the
primary continues to receives transactions and copies them to the replica
asynchronously. The replica is not considered to be online at this time.

After the replica catches up the primary, the replica enters peer mode and
synchronous replication begins. Every transaction committed on the primary is
sent to the synchronous replicas and the primary waits for a response from each
replica. A synchronous commit sequence with a Loader on the primary looks like
the following set of steps:

Chapter 2. Caching 47

Table 4. Commit sequence on the primary

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes to replicas and wait for same

acknowledgement

Commit to the loader through the plug-in commit called, but does
TransactionCallback plug-in nothing

Release locks for entries same

Notice that the changes are sent to the replica before they are committed to the
loader. To determine when the changes are committed on the replica, revise this
sequence: At initialize time, initialize the tx lists on the primary as below.
CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing, use the following sequence:

Table 5. Synchronous commit processing

Step with loader Step without loader
Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes with a committed transaction, roll back same

transaction to replica, and wait for acknowledgement

Clear list of committed transactions and rolled back same

transactions

Commit the loader through the TransactionCallBack plug-in | TransactionCallBack plug-in
commit is still called, but
typically does not do

anything
If commit succeeds, add the transaction to the committed no-op
transactions, otherwise add to the rolled back transactions
Release locks for entries same

For replica processing, use the following sequence:

Receive changes

Commit all received transactions in the committed transaction list
Roll back all received transactions in the rolled back transaction list
Start a transaction or session

Apply changes to the transaction or session

Save the transaction or session to the pending list

N O~

Send back reply

Notice that on the replica, no loader interactions occur while the replica is in
replica mode. The primary must push all changes through the Loader. The replica
does not make any changes. A side effect of this algorithm is that the replica
always has the transactions, but they are not committed until the next primary

48 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

transaction sends the commit status of those transactions. The transactions are then
committed or rolled back on the replica. Until then, the transactions are not
committed. You can add a timer on the primary that sends the transaction outcome
after a small period of time (a few seconds). This timer limits, but does not
eliminate, any staleness to that time window. This staleness is only a problem
when using replica read mode. Otherwise, the staleness does not have an impact
on the application.

When the primary fails, it is likely that a few transactions were committed or
rolled back on the primary, but the message never made it to the replica with these
outcomes. When a replica is promoted to the new primary, one of the first actions
is to handle this condition. Each pending transaction is reprocessed against the
new primary's set of maps. If there is a Loader, then each transaction is given to
the Loader. These transactions are applied in strict first in first out (FIFO) order. If
a transactions fails, it is ignored. If three transactions are pending, A, B, and C,
then A might commit, B might rollback and C might also commit. No one
transaction has any impact on the others. Assume that they are independent.

A loader might want to use slightly different logic when it is in failover recovery
mode versus normal mode. The loader can easily know when it is in failover
recovery mode by implementing the ReplicaPreloadController interface. The
checkPreloadStatus method is only called when failover recovery completes.
Therefore, if the apply method of the Loader interface is called before the
checkPreloadStatus method, then it is a recovery transaction. After the
checkPreloadStatus method is called, the failover recovery is complete.

Database synchronization techniques

When WebSphere eXtreme Scale is used as a cache, applications must be written to
tolerate stale data if the database can be updated independently from an eXtreme
Scale transaction. To serve as a synchronized in-memory database processing space,
eXtreme Scale provides several ways of keeping the cache updated.

Database synchronization techniques
Periodic refresh

The cache can be automatically invalidated or updated periodically using the Java
Persistence API (JPA) time-based database updater.The updater periodically queries
the database using a JPA provider for any updates or inserts that have occurred
since the previous update. Any changes identified are automatically invalidated or
updated when used with a sparse cache. If used with a complete cache, the entries
can be discovered and inserted into the cache. Entries are never removed from the
cache.

Chapter 2. Caching 49

select...
A -

>
JPA Provider
> Database
-
v
find (k1) v1
4 Y)
Read
Timer
insert (k1,v1)
|]

Figure 28. Periodic refresh

Eviction

Sparse caches can utilize eviction policies to automatically remove data from the
cache without affecting the database. There are three built-in policies included in
eXtreme Scale: time-to-live, least-recently-used, and least-frequently-used. All three
policies can optionally evict data more aggressively as memory becomes
constrained by enabling the memory-based eviction option.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify
clients when the server cache has any changes. This can decrease the amount of
time the client can see stale data.

Programmatic invalidation

The eXtreme Scale APIs allow manual interaction of the near and server cache
using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

Invalidating stale cache data

To reduce the window of time when clients may see stale data, you can use an
event-based or programmatic invalidation mechanism.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify

50 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

clients when the server cache changes. This type of notification decreases the
amount of time the client can see stale data.

Event-based invalidation normally consists of the following three components.

* Event queue: An event queue stores the data change events. It could be a JMS
queue, a database, an in-memory FIFO queue, or any kind of manifest as long as
it can manage the data change events.

¢ Event publisher: An event publisher publishes the data change events to the
event queue. An event publisher is usually an application you create or an
eXtreme Scale plug-in implementation. The event publisher knows when the
data is changed or it changes the data itself. When a transaction commits, events
are generated for the changed data and the event publisher publishes these
events to the event queue.

* Event consumer: An event consumer consumes data change events. The event
consumer is usually an application to ensure the target grid data is updated
with the latest change from other grids. This event consumer interacts with the
event queue to get the latest data change and applies the data changes in the
target grid. The event consumers can use eXtreme Scale APIs to invalidate stale
data or update the grid with the latest data.

For example, J]MSObjectGridEventListener has an option for a client-server model,
in which the event queue is a designated JMS destination. All server processes are
event publishers. When a transaction commits, the server gets the data changes
and publishes them to the designated JMS destination. All the client processes are
event consumers. They receive the data changes from the designated JMS
destination and apply the changes to the client's near cache.

See the topic on enabling the client invalidation mechanism in the Administration
Guide for more information.

Programmatic invalidation

The WebSphere eXtreme Scale APIs allow manual interaction of the near and
server cache using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

You can use programmatic invalidation with other techniques to determine when
to invalidate the data. For example, this invalidation method uses event-based
invalidation mechanisms to receive the data change events, and then uses APIs to
invalidate the stale data.

Indexing

Use the MapIndexPlugin to build an index or several indexes on a BackingMap to
support non-key data access.

Chapter 2. Caching 51

Index types and configuration

The indexing feature is represented by the MapIndexPlugin or Index for short. The
Index is a BackingMap plug-in. A BackingMap can have multiple Index plug-ins
configured, as long as each one follows the Index configuration rules.

You can use the indexing feature to build an index or several indexes on a
BackingMap. An index is built from an attribute or a list of attributes of an object
in the BackingMap. This feature provides a way for applications to find certain
objects more quickly. With the indexing feature, applications can find objects with a
specific value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you
must configure the index plug-in on the BackingMap before initializing the
ObjectGrid instance. You can do this configuration with XML or programmatic
configuration of the BackingMap. Static indexing starts building an index during
ObjectGrid initialization. The index is always synchronized with the BackingMap
and ready for use. After the static indexing process starts, the maintenance of the
index is part of the eXtreme Scale transaction management process. When
transactions commit changes, these changes also update the static index, and index
changes are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after
the initialization of the containing ObjectGrid instance. Applications have life cycle
control over the dynamic indexing process so that you can remove a dynamic
index when it is no longer needed. When an application creates a dynamic index,
the index might not be ready for immediate use because of the time it takes to
complete the index building process. Because the amount of time depends upon
the amount of data indexed, the DynamicIndexCallback interface is provided for
applications that want to receive notifications when certain indexing events occur.
These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application
index proxy object from the corresponding ObjectMap. Calling the getIndex
method on the ObjectMap and passing in the name of the index plug-in returns
the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as [MapIndex}[MapRangelndex} or a customized
index interface. After obtaining the index proxy object, you can use methods
defined in the application index interface to find cached objects.

The steps to use indexing are summarized in the following list:

e Add either static or dynamic index plug-ins into the BackingMap.

* Obtain an application index proxy object by issuing the getIndex method of the
ObjectMap.

* Cast the index proxy object to an appropriate application index interface, such as
MapIndex, MapRangelndex, or a customized index interface.

* Use methods that are defined in application index interface to find cached
objects.

The HashIndex class is the built-in index plug-in implementation that can support
both of the built-in application index interfaces: MapIndex and MapRangelndex.
You also can create your own indexes. You can add HashIndex as either a static or
dynamic index into the BackingMap, obtain either MapIndex or MapRangelndex
index proxy object, and use the index proxy object to find cached objects.

52 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

For information about configuring the HashIndex, refer to [Configuring the|

For more information about writing your own index plug-in, see the information
about writing an index plug-in in the Programming Guide..

For information about how to use indexing, see the information about using

indexing for non-key data access in the Programming Guide and

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of
time. No locks against data entries are obtained after the results return to the
application. Application has to be aware that data updates may occur on a
returned data set. For example, the application obtains the key of a cached object
by running the findAll method of MapIndex. This returned key object is associated
with a data entry in the cache. The application should be able to run the get
method on ObjectMap to find an object by providing the key object. If another
transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall
BackingMap performance. If indexing is not used properly, the performance of the
application might be compromised. Consider the following factors before using
this feature.

* The number of concurrent write transactions: Index processing can occur every
time a transaction writes data into a BackingMap. Performance degrades if many
transactions are writing data into the map concurrently when an application
attempts index query operations.

* The size of the result set that is returned by a query operation: As the size of
the resultset increases, the query performance declines. Performance tends to
degrade when the size of the result set is 15% or more of the BackingMap.

* The number of indexes built over the same BackingMap: Each index consumes
system resources. As the number of the indexes built over the BackingMap
increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal
cases are when the BackingMap has mostly read operations, the query result set is
of a small percentage of the BackingMap entries, and only few indexes are built
over the BackingMap.

Java object caching concepts

WebSphere eXtreme Scale is primarily used as a data grid and cache for Java
objects. You can use several APIs to interact with the eXtreme Scale grid to access
and store these objects.

This topic describes some of the common APIs and some of the concepts that you
must be aware of when choosing an API and deployment topology. See the
[“Caching architecture: Maps, containers, clients, and catalogs” on page 11| topic for
a description of the various services and topologies that eXtreme Scale provides.

Chapter 2. Caching 53

WebSphere eXtreme Scale's central component is the ObjectGrid. The ObjectGrid is
the namespace that stores related data, and contains sets of hash maps, each
holding key-value pairs. These maps can be grouped together and partitioned and
made highly available and scalable.

Because the grid holds Java objects by nature, there are some important
considerations when designing an application so that the grid can store and access
data efficiently. Factors that can affect scalability, performance and memory
utilization include the following.

Class loader and classpath considerations

Since eXtreme Scale stores Java objects in the cache by default, you must define
classes on the classpath wherever the data is accessed.

Specifically, eXtreme Scale client and container processes must include the classes
or JARs in the classpath when starting the process. When designing an application
for use with eXtreme Scale, separate out any business logic from the persistent
data objects.

See in the WebSphere Application Server Network Deployment

information center for more information.

For considerations within a Spring Framework setting, see the packaging section
under the topic on integrating with Spring framework in the Programming Guide.

For settings related to using the WebSphere eXtreme Scale instrumentation agent,
see the instrumentation agent topic in the Programming Guide.

Relationship management

Object-oriented languages such as Java, and relational databases support
relationships or associations. Relationships decrease the amount of storage through
the use of object references or foreign keys.

When you are using relationships in a data grid, the data must be organized in a
constrained tree. One root type must exist in the tree and all children must be
associated to only one root. For example: Department can have many Employees
and an Employee can have many Projects. But a Project cannot have many
Employees that belong to different departments. Once a root is defined, all access
to that root object and its descendants are managed through the root. WebSphere
eXtreme Scale uses the hash code of the root object's key to choose a partition. For
example:

partition = (hashCode MOD numPartitions).

When all of the data for a relationship is tied to a single object instance, the entire
tree can be collocated in a single partition and can be accessed very efficiently
using one transaction. If the data spans multiple relationships, then multiple
partitions must be involved which involves additional remote calls, which can lead
to performance bottlenecks.

Reference data

Some relationships include look-up or reference data such as: CountryName. With
look-up or reference data, the data should exist in every partition. The data can be
accessed by any root key and the same result is returned. Reference data such as
this should only be used in cases where the data is fairly static. Updating this data

54 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/trun_classload.html

can be expensive because the data needs to be updated in every partition. The
DataGrid API is a common technique to keeping reference data up-to-date.

Costs and benefits of normalization

Normalizing the data using relationships can help reduce the amount of memory
used by the data grid since duplication of data is decreased. However, in general,
the more relational data that is added, the less it will scale out. When data is
grouped together, it becomes more expensive to maintain the relationships and to
keep the sizes manageable. Since the grid partitions data based on the key of the
root of the tree, the size of the tree isn't taken into account. Therefore, if you have
a lot of relationships for one tree instance, the data grid may become unbalanced,
causing one partition to hold more data than the others.

When the data is denormalized or flattened, the data that would normally be
shared between two objects is instead duplicated and each table can be partitioned
independently, providing a much more balanced data grid. Although this increases
the amount of memory used, it allows the application to scale since a single row of
data can be accessed that has all of the necessary data. This is ideal for read-mostly
grids since maintaining the data becomes more expensive.

For more information, see [Classifying XTP systems and scaling}

Managing relationships using the data access APls

The ObjectMap API is the fastest, most flexible and granular of the data access

APIs, providing a transactional, session-based approach at accessing data in the
grid of maps. The ObjectMap API allows clients to use common CRUD (create,
read, update and delete) operations to manage key-value pairs of objects in the
distributed data grid.

When using the ObjectMap API, object relationships must be expressed by
embedding the foreign key for all relationships in the parent object.

An example follows.

public class Department {
Collection<String> employeelds;

}

The EntityManager API simplifies relationship management by extracting the
persistent data from the objects including the foreign keys. When the object is later
retrieved from the data grid, the relationship graph is rebuilt, as in the following
example.

@Entity
public class Department {
Collection<String> employees;

}

The EntityManager API is very similar to other Java object persistence technologies
such as JPA and Hibernate in that it synchronizes a graph of managed Java object
instances with the persistent store. In this case, the persistent store is an eXtreme
Scale data grid, where each entity is represented as a map and the map contains
the entity data rather than the object instances.

Cache key considerations

WebSphere eXtreme Scale uses hash maps to store data in the grid, where a Java
object is used for the key.

Chapter 2. Caching 55

http://www.devwebsphere.com/devwebsphere/2009/03/classifying-xtp-systems.html

Guidelines

When choosing a key, consider the following requirements:

* Keys can never change. If a portion of the key needs to change, then the cache
entry should be removed and reinserted.

* Keys should be small. Since keys are used in every data access operation, it's a
good idea to keep the key small so that it can be serialized efficiently and use
less memory.

* Implement a good hash and equals algorithm. The hashCode and equals(Object
o) methods must always be overridden for each key object.

* Cache the key's hashCode. If possible, cache the hash code in the key object
instance to speed up hashCode() calculations. Since the key is immutable, the
hashCode should be cacheable.

e Avoid duplicating the key in the value. When using the ObjectMap AP, it is
convenient to store the key inside the value object. When this is done, the key
data is duplicated in memory.

Serialization performance

WebSphere eXtreme Scale uses multiple Java processes to hold data. These
processes serialize the data: That is, they convert the data (which is in the form of
Java object instances) to bytes and back to objects again as needed to move the
data between client and server processes. Marshalling the data is the most
expensive operation and must be addressed by the application developer when
designing the schema, configuring the data grid and interacting with the
data-access APIs.

The default Java serialization and copy routines are relatively slow and can
consume 60 to 70 percent of the processor in a typical setup. The following
sections are choices for improving the performance of the serialization.

Write an ObjectTransformer for each BackingMap

An ObjectTransformer can be associated with a BackingMap. Your application can
have a class that implements the ObjectTransformer interface and provides
implementations for the following operations:

* Copying values
* Serializing and inflating keys to and from streams

e Serializing and inflating values to and from streams

The application does not need to copy keys because keys are considered
immutable.

For more information, see [Plug-ins for serializing and copying cached objects|and
ObjectTransformer interface best practices|

Note: The ObjectTransformer is only invoked when the ObjectGrid knows about
the data that is being transformed. For example, when DataGrid API agents are
used, the agents themselves as well as the agent instance data or data returned
from the agent must be optimized using custom serialization techniques. The
ObjectTransformer is not invoked for DataGrid API agents.

56 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Using entities

When using the EntityManager API with entities, the ObjectGrid does not store the
entity objects directly into the BackingMaps. The EntityManager API converts the
entity object to Tuple objects. See For more information, see the topic on using a
loader with entity maps and tuples in the Programming Guide. Entity maps are
automatically associated with a highly optimized ObjectTransformer. Whenever the
ObjectMap API or EntityManager API is used to interact with entity maps, the
entity ObjectTransformer is invoked.

Custom serialization

There are some cases when objects must be modified to use custom serialization,
such as implementing the java.io.Externalizable interface or by implementing the
writeObject and readObject methods for classes implementing the
java.io.Serializable interface. Custom serialization techniques should be employed
when the objects are serialized using mechanisms other than the ObjectGrid API or
EntityManager API methods.

For example, when objects or entities are stored as instance data in a DataGrid API
agent or the agent returns objects or entities, those objects are not transformed
using an ObjectTransformer. The agent, will however, automatically use the
ObjectTransformer when using EntityMixininterface. See DataGrid agents and
entity based Maps for further details.

Byte arrays

When using the ObjectMap or DataGrid APlIs, the key and value objects are
serialized whenever the client interacts with the data grid and when the objects are
replicated. To avoid the overhead of serialization, use byte arrays instead of Java
objects. Byte arrays are much cheaper to store in memory since the JDK has less
objects to search for during garbage collection and they are can be inflated only
when needed. Byte arrays should only be used if you do not need to access the
objects using queries or indexes. Since the data is stored as bytes, the data can only
be accessed through its key.

WebSphere eXtreme Scale can automatically store data as byte arrays using the
CopyMode.COPY_TO_BYTES map configuration option, or it can be handled
manually by the client. This option will store the data efficiently in memory and
can also automatically inflate the objects within the byte array for use by query
and indexes on demand.

See the CopyMode method best practices in the Programming Guide for more
information.

Inserting data for different time zones

When inserting data with calendar, java.util. Date, and timestamp attributes into an
ObjectGrid, you must ensure these date time attributes are created based on same
time zone, especially when deployed into multiple servers in various time zones.
Using the same time zone based date time objects can ensure the application is
time-zone safe and data can be queried by calendar, java.util. Date and timestamp
predicates.

Chapter 2. Caching 57

58

Without explicitly specifying a time zone when creating date time objects, Java will
use the local time zone and may cause inconsistent date time values in clients and
servers.

Consider an example in a distributed deployment in which clientl is in time zone
[GMT-0] and client? is in [GMT-6] and both want to create a java.util.Date object
with value '1999-12-31 06:00:00'. Then clientl will create java.util. Date object with
value '1999-12-31 06:00:00 [GMT-0]' and client2 will create java.util.Date object with
value '1999-12-31 06:00:00 [GMT-6]'. Both java.util.Date objects are not equal
because the time zone is different. A similar problem occurs when preloading data
into partitions residing in servers in different time zones if local time zone is used
to create date time objects.

To avoid the described problem, the application can choose a time zone such as
[GMT-0] as the base time zone for creating calendar, java.util. Date, and timestamp
objects.

For more information, see the topic on querying data in multiple time zones in the
Programming Guide.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 3. Cache integration overview

The crucial element that gives WebSphere eXtreme Scale the capability to perform
with such versatility and reliability is its application of caching concepts to
optimize the persistence and recollection of data in virtually any deployment
environment.

JPA Loaders

The Java Persistence API (JPA) is a specification that allows mapping Java objects
to relational databases. JPA contains a full object-relational mapping (ORM)
specification using Java language metadata annotations, XML descriptors, or both
to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

You can use a Java Persistence API (JPA) loader plug-in implementation with
eXtreme Scale to interact with any database supported by your chosen loader. To
use JPA, you must have a supported JPA provider, such as OpenJPA or Hibernate,
JAR files, and a META-INF/persistence.xml file in your class path.

The JPALoader com.ibm.websphere.objectgrid.jpa.JPALoader and the
JPAEntityLoader com.ibm.websphere.objectgrid.jpa.JPAEntityLoader plug-ins are
two built-in JPA loader plug-ins that are used to synchronize the ObjectGrid maps
with a database. You must have a JPA implementation, such as Hibernate or
OpenJPA, to use this feature. The database can be any back end that is supported
by the chosen JPA provider.

You can use the JPALoader plug-in when you are storing data using the ObjectMap
APL Use the JPAEntityLoader plug-in when you are storing data using the
EntityManager API.

JPA loader architecture

The JPA Loader is used for eXtreme Scale maps that store plain old Java objects
(POJO).

© Copyright IBM Corp. 2009, 2011 59

Database

A

JVM

il i
‘\ ; /

Primary Shard
JPA Loader
3 A
o ©
g c%;' Server C_ore Cache
8 (BackingMap)
AA

Y

n Y

Transactional Cache
(ObjectMap)

~ ——— S

Figure 29. JPA Loader architecture

60

When an ObjectMap.get(Object key) method is called, the eXtreme Scale run time
first checks whether the entry is contained in the ObjectMap layer. If not, the run
time delegates the request to the JPA Loader. Upon request of loading the key, the
JPALoader calls the JPA EntityManager.find(Object key) method to find the data
from the JPA layer. If the data is contained in the JPA entity manager, it is returned;
otherwise, the JPA provider interacts with the database to get the value.

When an update to ObjectMap occurs, for example, using the
ObjectMap.update(Object key, Object value) method, the eXtreme Scale run time
creates a LogElement for this update and sends it to the JPALoader. The JPALoader

calls the JPA EntityManager.merge(Object value) method to update the value to the
database.

For the JPAEntityLoader, the same four layers are involved. However, because the
JPAEntityLoader plug-in is used for maps that store eXtreme Scale entities,
relations among entities could complicate the usage scenario. An eXtreme Scale
entity is distinguished from JPA entity. For more information, see the information
about the JPAEntityLoader plug-in in the Programming Guide.

Methods

Loaders provide three main methods:

1. get: Returns a list of values that correspond to the list of keys that are passed in
by retrieving the data using JPA. The method uses JPA to find the entities in
the database. For the JPALoader plug-in, the returned list contains a list of JPA
entities directly from the find operation. For the JPAEntityLoader plug-in, the

returned list contains eXtreme Scale entity value tuples that are converted from
the JPA entities.

2. batchUpdate: Writes the data from ObjectGrid maps to the database.
Depending on different operation types (insert, update, or delete), the loader

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

uses the JPA persist, merge, and remove operations to update the data to the
database. For the JPALoader, the objects in the map are directly used as JPA
entities. For the JPAEntityLoader, the entity tuples in the map are converted
into objects which are used as JPA entities.

3. preloadMap: Preloads the map using the ClientLoader.load client loader
method. For partitioned maps, the preloadMap method is only called in one
partition. The partition is specified the preloadPartition property of the
JPALoader or JPAEntityLoader class. If the preloadPartition value is set to less
than zero, or greater than (total_number_of_partitions - 1), preload is disabled.

Both JPALoader and JPAEntityLoader plug-ins work with the JPATxCallback class
to coordinate the eXtreme Scale transactions and JPA transactions. JPATxCallback
must be configured in the ObjectGrid instance to use these two loaders.

Configuration and programming
For more information about configuring JPA loaders, see the information about JPA

loaders in the Administration Guide. For more information about programming JPA
loaders, see theProgramming Guide.

JPA cache plug-in

WebSphere eXtreme Scale includes level 2 (L2) cache plug-ins for both OpenJPA
and Hibernate Java Persistence API (JPA) providers.

Using eXtreme Scale as an L2 cache provider increases performance when you are
reading and querying data and reduces load to the database. WebSphere eXtreme
Scale has advantages over built-in cache implementations because the cache is
automatically replicated between all processes. When one client caches a value, all
other clients are able to use the cached value that is locally in-memory.

With the OpenJPA and Hibernate ObjectGrid cache plug-ins, you can create three
topology types: embedded, embedded-partitioned, and remote.

Embedded topology

An embedded topology creates an eXtreme Scale server within the process space of
each application. OpenJPA and Hibernate read the in-memory copy of the cache
directly and write to all of the other copies. You can improve the write
performance by using asynchronous replication. This default topology performs
best when the amount of cached data is small enough to fit in a single process.

Chapter 3. Cache integration overview 61

;| Database L

_J

/ ObjectGrid Server / - / ObjectGrid Server /

Primary (ReadNVrite)A\ '/ Replica (Read Only)

P Tt

123 [}
g 2
6_9 ObjectGrid Client 09_ ObjectGrid Client
c c
2 A & A
[©
o
1 4 2 4 .
2 <
4} OpenJPA or Hibernate OpenJPA or Hibernate |«
A A
Y Y
Application Application

Figure 30. JPA embedded topology

Advantages:
* All cache reads are very fast, local accesses.
* Simple to configure.

Limitations:
* Amount of data is limited to the size of the process.

* All cache updates are sent to one process.
Embedded, partitioned topology

When the cached data is too large to fit in a single process, the embedded,
partitioned topology uses ObjectGrid partitions to divide the data over multiple
processes. Performance is not as high as the embedded topology because most
cache reads are remote. However, you can still use this option when database
latency is high.

62 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

;| Database |4

—_J

ObjectGrid Server / ;/ ObjectGrid Server
Primary 0 (Read/Write) Primary 1 (Read/Write)
Q ObjectGrid Client 2 ObjectGrid Client
9 [
o Y DQ_ A
5 C
2 4 S y
8 g)
OpenJPA or Hibernate § OpenJPA or Hibernate |«
< <
A A
Y \ 4
Application Application

Figure 31. JPA embedded, partitioned topology

Advantages:
e Stores large amounts of data.
* Simple to configure

¢ Cache updates are spread over multiple processes.

Limitation:

* Most cache reads and updates are remote.

For example, to cache 10 GB of data with a maximum of 1 GB per JVM, ten Java
virtual machines are required. The number of partitions must therefore be set to 10
or more. Ideally, the number of partitions should be set to a prime number where
each shard stores a reasonable amount of memory. Usually, the numberOfPartitions
setting is equal to the number of Java virtual machines. With this setting, each JVM
stores one partition. If you enable replication, you must increase the number of
Java virtual machines in the system. Otherwise, each JVM also stores one replica
partition, which consumes as much memory as a primary partition.

Read about sizing memory and partition count calculation in the Administration
Guide to maximize the performance of your chosen configuration.

For example, in a system with 4 Java virtual machines, and the numberOfPartitions
setting value of 4, each JVM hosts a primary partition. A read operation has a 25
percent chance of fetching data from a locally available partition, which is much
faster compared to getting data from a remote JVM. If a read operation, such as
running a query, needs to fetch a collection of data that involves 4 partitions
evenly, 75 percent of the calls are remote and 25 percent of the calls are local. If the
ReplicaMode setting is set to either SYNC or ASYNC and the ReplicaReadEnabled
setting is set to true, then four replica partitions are created and spread across four
Java virtual machines. Each JVM hosts one primary partition and one replica
partition. The chance that the read operation runs locally increases to 50 percent.
The read operation that fetches a collection of data that involves four partitions

Chapter 3. Cache integration overview 63

evenly has 50 percent remote calls and 50 percent local calls. Local calls are much
faster than remote calls. Whenever remote calls occur, the performance drops.

Remote topology

A remote topology stores all of the cached data in one or more separate processes,
reducing memory use of the application processes. You can take advantage of
distributing your data over separate processes by deploying a partitioned,
replicated eXtreme Scale data grid. As opposed to the embedded and embedded
partitioned configurations described in the previous sections, if you want to
manage the remote data grid, you must do so independent of the application and
JPA provider. Read about monitoring your deployment environment for more
information on managing an eXtreme Scale data grid deployment.

;| Database |4

/ ObjectGrid \

o
0 @
i

ey
)
ey
)

A A
Y \ 4

% ObjectGrid Client g ObjectGrid Client

é Y = ¥

é y X g v

_— § OpenJPA or Hibernate § OpenJPA or Hibernate ||
X <5 7y
\ 4 \ 4
Application Application
Figure 32. JPA remote topology
Advantages:

* Stores large amounts of data.

* Application process is free of cached data.

* Cache updates are spread over multiple processes.
* Very flexible configuration options.

Limitation:

* All cache reads and updates are remote.

64 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Configuration

For more information about configuring the JPA cache plug-ins, see the plug-ins
section in the Programming Guide.

HTTP session management

The session replication manager that is shipped with WebSphere eXtreme Scale can
work with the default session manager in the application server to replicate session
data from one process to another process to support user session data high
availability.

Features

The session manager has been designed so that it can run in any Java Platform,
Enterprise Edition Version 1.4 container. Because the session manager does not
have any dependencies on WebSphere APlIs, it can support various versions of
WebSphere Application Server, as well as vendor application server environments.

The HTTP session manager provides session replication capabilities for an
associated application. The session replication manager works with the web
container's session manager to create HTTP sessions and manage the life cycles of
HTTP sessions that are associated with the application. These life cycle
management activities include: the invalidation of sessions based on a timeout or
an explicit servlet or JavaServer Pages (JSP) call and the invocation of session
listeners that are associated with the session or the web application. The session
manager persists its sessions in an ObjectGrid instance. This instance can be a
local, in-memory instance or a fully replicated, clustered and partitioned instance.
The use of the latter topology enables the session manager to provide HTTP
session failover support when application servers are shut down or end
unexpectedly. The session manager can also work in environments that do not
support affinity, when affinity is not enforced by a load balancer tier that sprays
requests to the application server tier.

Usage scenarios

The session manager can be used in the following scenarios:

* In environments that use application servers at different versions of WebSphere
Application Server, such as in a classic migration scenario.

* In deployments that use application servers from different vendors. For example,
an application that is being developed on open source application servers and
that is hosted on WebSphere Application Server. Another example is an
application that is being promoted from staging to production. Seamless
migration of these application server versions is possible while all HTTP
sessions are live and being serviced.

* In environments that require the user to persist sessions with higher quality of
service (QoS) levels and better guarantees of session availability during server
failover than default WebSphere Application Server QoS levels.

* In an environment where session affinity cannot be guaranteed, or environments
in which affinity is maintained by a vendor load balancer and the affinity
mechanism must be customized to that load balancer.

* In an environment to offload the overhead of session management and storage
to an external Java process.

* In multiple cells to enable session failover between cells.

Chapter 3. Cache integration overview 65

* In multiple data centers or multiple zones.
How the session manager works

The session replication manager uses standard session listener to listen on the
changes of session data, and persists the session data into an ObjectGrid instance
either locally or remotely. The session data is reloaded in the request path through
the standard servlet from the ObjectGrid instance either locally or remotely. You
can add the session listener and servlet filter to every web module in your
application with tooling that ships with WebSphere eXtreme Scale. You can also
manually add these listeners and filters to the web deployment descriptor of your
application.

This session replication manager works with each vendor's web container session

manager to replicate session data across Java virtual machines. When the original
server dies, users can retrieve session data from other servers.

Client ’

Browser HTTP

Requests
Sprayer
—_—

ObjectGrid \
==][==]{==

'/ ! [_/
==)[==

'/
o /

ObjecGrid tier with persistent
HTTP Session data

Application Server tier servicing
HTTP requests and persisting
HTTP Sessions to ObjectGrid

Figure 33. HTTP session management topology with a remote container configuration

66 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Deployment topologies

The session manager can be configured using two different dynamic deployment
scenarios:

e Embedded, network attached eXtreme Scale containers

In this scenario, the eXtreme Scale servers are collocated in the same processes
as the servlets. The session manager can communicate directly to the local
ObjectGrid instance, avoiding costly network delays. This scenario is preferable
when running with affinity and performance is critical

* Remote, network attached eXtreme Scale containers

In this scenario, the eXtreme Scale servers run in external processes the process
in which the servlets run. The session manager communicates with a remote
eXtreme Scale server grid. This scenario is preferable when the web container
tier does not have the memory to store the session data. The session data will be
offloaded to a separate tier, which will result in lower memory usage on the web
container tier, but higher latency due to the remote location of the data.

Generic embedded container startup

eXtreme Scale automatically starts an embedded ObjectGrid container inside any
application-server process when the web container initializes the session listener or
servlet filter, if the objectGridType property is set to EMBEDDED. See
fcontext initialization parameters| for details.

You are not required to package an ObjectGrid.xml file and
objectGridDeployment.xml file into your web application WAR or EAR file with
eXtreme Scale Version 7.1. The default ObjectGrid.xml and
objectGridDeployment.xml files are packaged in the product JAR. Dynamic maps
are created for various web application contexts by default. Static eXtreme Scale
maps continue to be supported.

This approach for starting embedded ObjectGrid containers applies to any type of
application server. The approaches involving aWebSphere Application Server
component or WebSphere Application Server Community Edition GBean are
deprecated.

Listener-based session replication manager

The eXtreme Scale session replication manager that is shipped with WebSphere
eXtreme Scale can work with the default session manager in the application server
to replicate session data from one process to another process to support user
session data high availability.

The session manager has been designed so that it can run in any Java" Platform,
Enterprise Edition Version 1.4 container. The session manager does not have any
dependencies on WebSphere APlIs, so it is capable of supporting various versions
of WebSphere Application Server as well as vendor application server
environments.

The HTTP session manager provides session replication capabilities for an
associated application. The session replication manager works with web container's
session manager to create HTTP sessions and manage the life cycles of HTTP
sessions that are associated with the application. These life cycle management
activities include: the invalidation of sessions based on a timeout or an explicit
servlet or JavaServer Pages (JSP) call and the invocation of session listeners that are

Chapter 3. Cache integration overview 67

68

associated with the session or the web application. The session manager persists its
sessions in an ObjectGrid instance. This instance can be a local, in-memory instance
or a fully replicated, clustered and partitioned instance. The use of the latter
topology allows the session manager to provide HTTP session failover support
when application servers are shut down or end unexpectedly. The session manager
can also work in environments that do not support affinity, when affinity is not
enforced by a load balancer tier that sprays requests to the application server tier.

Usage scenarios

The session manager can be used in the following scenarios:

* In environments that use application servers at different versions of WebSphere
Application Server, such as in a classic migration scenario.

* In deployments that use application servers from different vendors. For example,
an application that is being developed on open source application servers and
that are hosted on WebSphere Application Server. Another example is an
application that is being promoted from staging to production. Seamless
migration of these application server versions is possible while all HTTP
sessions are live and being serviced.

* In environments that require the user to persist sessions with higher quality of
service (QoS) levels and better guarantees of session availability during server
failover than default WebSphere Application Server QoS levels.

* In an environment where session affinity cannot be guaranteed, or environments
in which affinity is maintained by a vendor load balancer and the affinity
mechanism needs to be customized to that load balancer.

* In an environment to offload the overhead of session management and storage
to an external Java process.

* In multiple cells to enable session failover between cells.

* In multiple data centers or multiple zones.
Session manager details

The session replication manager uses standard session listener to listen on the
changes of session data, and persists the session data into an ObjectGrid instance
either locally or remotely. The session data is reloaded in the request path through
the standard servlet from the ObjectGrid instance either locally or remotely. You
can add the session listener and servlet filter to every Web module in your
application with tooling that ships with WebSphere eXtreme Scale. You can also
manually add these listeners and filters to the Web deployment descriptor of your
application.

The session replication manager works with each vendor's base session manager to
replicate application session data. Note the following considerations.

* Choose embedded ObjectGrid containers or remote ObjectGrid containers,
depending on performance requirements and your data sizes. The embedded
scenario gives the easiest configuration and better performance.

¢ Choose the number of remote ObjectGrid containers per web container
according to user data sizes.

* Choose to store the whole session data together or store each attribute
separately, depending on the number and size of attributes user data and change
frequencies.

* Choose the replication interval. Less aggressive replication interval gives better
performance.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

* Choose the session table size to balance local memory size and performance. The
product offloads session user data when local session cache maximum size is
reached.

* The product supports HTTP sessions within the application context, according to
the Servlet specification, to avoid security and use attribute naming conflict
issues. You can share sessions across application context by their singleton class.

* The session replication manager replicates session data for high availability, by
listening to the session data changes and reloading the stored session data on
demand. This is accomplished by reusing the web container base session
manager of each vendor. The session is linked together through various native
session IDs. Session data is failed over from one web container into another web
container by reloading session data from ObjectGrid instance. Session ID and
creation time could differ before and after failover.

Dynamic cache provider

The Dynamic Cache API is available to Java EE applications that are deployed in
WebSphere Application Server. The dynamic cache provider can be leveraged to
cache business data, generated HTML, or to synchronize the cached data in the cell
by using the data replication service (DRS).

Overview

Previously, the only service provider for the Dynamic Cache API was the default
dynamic cache engine built into WebSphere Application Server. Customers can use
the dynamic cache service provider interface in WebSphere Application Server to
plug eXtreme Scale into dynamic cache. By setting up this capability, you can
enable applications written with the Dynamic Cache API or applications using
container-level caching (such as servlets) to leverage the features and performance
capabilities of WebSphere eXtreme Scale.

Chapter 3. Cache integration overview 69

70

[WebSphere Products

New Customers]

Existing Customers]

Dynamic Cache APIs and Frameworks

,

Command Caching
Command Framework
API

Servlet Caching
Cache Policy XML
XML rules engine

\

Web Services Caching
JAX-RPC Client Caching

POJO Caching
DistributedMap
DistributedNIOMap

Y

-

Cache Provider SPI

~

-

External Cache Adapter Supp
Edge Side Include Caching

~

ort

Y

Cache Configuration

\

(Admin console & wsadmin)

A

V,

>

Cache Monitoring & Administra

application)

.

(Mbean, APIs and Cache Monitor

<

tion

J

-

/

l

l

/WebSphere Application Server Default\ /
Dynamic Cache Provider

WebSphere eXtreme Scale

\

Dynamic Cache Provider

~ ~ ~

Replicate everywhere (best effort) @

\
>

~

Replicate everywhere
uaranteed or asynchronous)

Private cache

Highly available and scalable, partitioned,

<
<

in-memory cache

\
>

Y
A

Disk cache

Highly available and scalable, partitioned,

<
<

remote cache

S NG

~/

You can install and configure the dynamic cache provider as described in

[Configuring the dynamic cache provider for WebSphere eXtreme Scald.

Deciding how to leverage WebSphere eXtreme Scale

The available features in WebSphere eXtreme Scale significantly increase the

distributed capabilities of the Dynamic Cache API beyond what is offered by the

default dynamic cache engine and data replication service. With eXtreme Scale, you

can create caches that are truly distributed between multiple servers, rather than
just replicated and synchronized between the servers. Also, eXtreme Scale caches
are transactional and highly available, ensuring that each server sees the same

contents for the dynamic cache service. WebSphere eXtreme Scale offers a higher
quality of service for cache replication than DRS.

However, these advantages do not mean that the eXtreme Scale dynamic cache
provider is the right choice for every application. Use the decision trees and
feature comparison matrix below to determine what technology fits your
application best.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Decision tree for migrating existing dynamic cache applications

NO

NO

NO

Existing dynamic
cache application

Y
Does the
NO application use
dynamic cache
replication?
YES
Y
Does the
YES |application require
the
NOT_SHARED
replication mode?
NO
\ 4 Y
Does the
Does the NO |application use the
application use |« SHARED_PUSH
disk caching? replication mode?
YES YES
Y
Will the disk cache
fit in a partitioned
grid as determined
by the procedure
described in the
capacity planning
guide?
YES
Y
Will at least 50
percent of the YES
cache be on disk?
Y Y

*[

Use the default
dynamic cache
provider

Use the eXtreme
Scale dynamic
cache provider

Chapter 3. Cache integration overview

71

Decision tree for choosing a cache provider for new applications

I New Application |

Y

Does the
application need to
replicate cache
data between
processes?

NO YES

A 4

A 4

Is the cache data
large enough to fit

YES in the memory of a

\Will the application|

be deployedina | __
Application Server NO

single process? cluster?
NO YES
Y Y

Will the cache data
fit in a partitioned

NO = grid as described

in the capacity

Is BEST EFFORT
a high enough
quality of service |—dNO

for cache data

YES cache data fit in

a single process?

planning guide? replication?
YES YES
Y Y
Can at least 50 Will cache data

percent of the "£

need to be
replicated across
core groups?

NO

YES
Y

Is the purpose of
this cache servlet,
JSP, or Web
Services caching?

NO YES

Y \ 4

A 4

Use the default
dynamic cache
provider

Use eXtreme
Scale APIs

Use the eXtreme
Scale dynamic
cache provider

Feature comparison

Table 6. Feature comparison

eXtreme Scale

Cache features Default provider provider eXtreme Scale API
Local, in-memory X X X
caching
Distributed caching Embedded Embedded, Multiple

embedded-

partitioned and
remote-partitioned
Linearly scalable X X
Reliable replication ORB ORB
(synchronous)
Disk overflow X
Eviction LRU/TTL/heap- LRU/TTL (per Multiple
based partition)
Invalidation X X X
Relationships Dependency IDs, Dependency IDs, X
templates templates

Non-key lookups Query and index
Back-end integration Loaders
Transactional Implicit X

72 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Table 6. Feature comparison (continued)

eXtreme Scale

Cache features Default provider provider eXtreme Scale API
Key-based storage X X X
Events and listeners X X X

WebSphere Single cell only Multiple cell Cell independent
Application Server

integration

Java Standard Edition X X
support

Monitoring and X X X
statistics

Security X X X

Table 7. Seamless technology integration

eXtreme Scale

Application Server
Web Services
(JAX-RPC) result
caching

Cache features Default provider provider eXtreme Scale API
WebSphere V5.1+ V6.1.0.25+
Application Server
servlet/JSP results
caching
WebSphere V5.1+ V6.1.0.25+

HTTP session
caching

Cache provider for
OpenJPA and
Hibernate

Database
synchronization
using OpenJPA and
Hibernate

Table 8. Programming interfaces

eXtreme Scale

Cache features Default provider provider eXtreme Scale API
Command-based API | Command Command DataGrid API
framework API framework API
Map-based API DistributedMap API | DistributedMap API | ObjectMap API
EntityManager API X

For a more detailed description on how eXtreme Scale distributed caches work, see
the deployment configuration information in the Administration Guide.

Note: An eXtreme Scale distributed cache can only store entries where the key and
the value both implement the java.io.Serializable interface.

Chapter 3. Cache integration overview

73

74

Topology types

A dynamic cache service created with the eXtreme Scale provider can be deployed
in any of three available topologies, allowing you to tailor the cache specifically to
performance, resource, and administrative needs. These topologies are embedded,
embedded partitioned, and remote.

Embedded topology

The embedded topology is similar to the default dynamic cache and DRS provider.
Distributed cache instances created with the embedded topology keep a full copy
of the cache within each eXtreme Scale process that accesses the dynamic cache
service, allowing all read operations to occur locally. All write operations go
through a single-server process, in which the transactional locks are managed,
before being replicated to the rest of the servers. Consequently, this topology is
better for workloads where cache-read operations greatly outnumber cache-write
operations.

With the embedded topology, new or updated cache entries are not immediately
visible on every single server process. A cache entry will not be visible, even to the
server that generated it, until it propagates through the asynchronous replication
services of WebSphere eXtreme Scale. These services operate as fast as the
hardware will allow, but there is still a small delay. The embedded topology is
shown in the following image:

ObjectGrid Server ObjectGrid Server
Primary (Read/Write) Replica (Read Only)
\
% 1]
ne_ XS Dynacache Provider 6_9 XS Dynacache Provider
c c
2 S 3
[[
o o
£ A 3 4
<] <
DynaCache DynaCache
x) X
Y Y
Application Application

Embedded partitioned topology

For workloads where cache-writes occur as often as or more frequently than reads,
the embedded partitioned or remote topologies are recommended. The embedded
partitioned topology keeps all of the cache data within the WebSphere Application
Server processes that access the cache. However, each process only stores a portion
of the cache data. All reads and writes for the data located on this “partition” go
through the process, meaning that most requests to the cache will be fulfilled with
a remote procedure call. This results in a higher latency for read operations than
the embedded topology, but the capacity of the distributed cache to handle read
and write operations will scale linearly with the number of WebSphere Application
Server processes accessing the cache. Also, with this topology, the maximum size of
the cache is not bound by the size of a single WebSphere process. Because each
process only holds a portion of the cache, the maximum cache size becomes the

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

aggregate size of all the processes, minus the overhead of the process. The
embedded partitioned topology is shown in the following image:

ObjectGrid Server ObjectGrid Server
Primary 0 (Read/Write) Primary 1 (Read/Write)
Replica 1 (no read) Replica 0 (no read)
8 ‘ 8
09_ XS Dynacache Provider &9 XS Dynacache Provider
c C
2 S y
[0 [}
o (]
= 3)
<] <
DynaCache DynaCache
x) X
\ 4 Y
Application Application

For example, assume you have a grid of server processes with 256 megabytes of
free heap each to host a dynamic cache service. The default dynamic cache
provider and the eXtreme Scale provider using the embedded topology would
both be limited to an in-memory cache size of 256 megabytes minus overhead. See
the Capacity Planning and High Availability section later in this document. The
eXtreme Scale provider using the embedded partitioned topology would be limited
to a cache size of one gigabyte minus overhead. In this manner, the WebSphere
eXtreme Scale provider makes it possible to have an in-memory dynamic cache
services that are larger than the size of a single server process. The default
dynamic cache provider relies on the use of a disk cache to allow cache instances
to grow beyond the size of a single process. In many situations, the WebSphere
eXtreme Scale provider can eliminate the need for a disk cache and the expensive
disk storage systems needed to make them perform.

Remote topology

The remote topology can also be used to eliminate the need for a disk cache. The
only difference between the remote and embedded partitioned topologies is that all
of the cache data is stored outside of WebSphere Application Server processes
when you are using the remote topology. WebSphere eXtreme Scale supports
standalone container processes for cache data. These container processes have a
lower overhead than a WebSphere Application Server process and are also not
limited to using a particular Java Virtual Machine (JVM). For example, the data for
a dynamic cache service being accessed by a 32-bit WebSphere Application Server
process could be located in an eXtreme Scale container process running on a 64-bit
JVM. This allows users to leverage the increased memory capacity of 64-bit
processes for caching, without incurring the additional overhead of 64-bit for
application server processes. The remote topology is shown in the following image:

Chapter 3. Cache integration overview 75

76

0
8
e
o)
Q

JA 0
JE 0

s
s

xﬁg/

N
/]

» / » \
£ [Xs Dynacache Provider 2 [Xs Dynacache Provider
c c
& k]
g E
s y =
< <
DynaCache DynaCache
A A
\ 4 \ 4
Application Application

Data compression

Another performance feature offered by the WebSphere eXtreme Scale dynamic
cache provider that can help users manage cache overhead is compression. The
default dynamic cache provider does not allow for compression of cached data in
memory. With the eXtreme Scale provider, this becomes possible. Cache
compression using the deflate algorithm can be enabled on any of the three
distributed topologies. Enabling compression will increase the overhead for read
and write operations, but will drastically increase cache density for applications
like servlet and JSP caching.

Local in-memory cache

The WebSphere eXtreme Scale dynamic cache provider can also be used to back
dynamic cache instances that have replication disabled. Like the default dynamic
cache provider, these caches can store non-serializable data. They can also offer
better performance than the default dynamic cache provider on large
multi-processor enterprise servers because the eXtreme Scale code path is designed
to maximize in-memory cache concurrency.

Dynamic cache engine and eXtreme Scale functional differences

In the case of local in-memory caches where replication is disabled, there should be
no appreciable functional difference between caches backed by the default dynamic
cache provider and WebSphere eXtreme Scale. Users should not notice a functional
difference between the two caches except that the WebSphere eXtreme Scale backed
caches do not support disk offload or statistics and operations related to the size of
the cache in memory.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

In the case of caches where replication is enabled there will be no appreciable
difference in the results returned by most Dynamic Cache API calls, regardless of
whether the customer is using the default dynamic cache provider or the eXtreme
Scale dynamic cache provider. For some operations you cannot emulate the
behavior of the dynamic cache engine using eXtreme Scale.

Dynamic cache statistics

Dynamic cache statistics are reported via the CacheMonitor application or the
dynamic cache MBean. When using the eXtreme Scale dynamic cache provider,
statistics will still be reported through these interfaces, but the context of the
statistical values will be different.

If a dynamic cache instance is shared between three servers named A, B, and C,
then the dynamic cache statistics object only returns statistics for the copy of the
cache on the server where the call was made. If the statistics are retrieved on
server A, they only reflect the activity on server A.

With eXtreme Scale, there is only a single distributed cache shared among all the
servers, so it is not possible to track most statistics on a server-by-server basis like
the default dynamic cache provider does. A list of the statistics reported by the
Cache Statistics API and what they represent when you are using the WebSphere
eXtreme Scale dynamic cache provider follows. Like the default provider, these
statistics are not synchronized and therefore can vary up to 10% for concurrent
workloads.

* Cache Hits : Cache hits are tracked per server. If traffic on Server A generates 10
cache hits and traffic on Server B generates 20 cache hits, the cache statistics will
report 10 cache hits on Server A and 20 cache hits on Server B.

* Cache Misses: Cache misses are tracked per server just like cache hits.

* Memory Cache Entries: This statistic reports the number of cache entries in the
distributed cache. Every server that accesses the cache will report the same value
for this statistic, and that value will be the total number of cache entries in
memory over all the servers.

* Memory Cache Size in MB: This metric is supported only for caches using the
remote, embedded, or embedded_partitioned topologies. It reports the number
of megabytes of Java heap space consumed by the cache, across the entire grid.
This statistic reports heap usage only for the primary partitions; you must take
replicas into account. Because the default setting for the remote and
embedded_partitioned topologies is one asynchronous replica, double this
number to get the true memory consumption of the cache.

¢ Cache Removes: This statistic reports the total number of entries removed from
the cache by any method, and is an aggregate value for the whole distributed
cache. If traffic on Server A generates 10 invalidations and traffic on Server B
generates 20 invalidations, then the value on both servers will be 30.

¢ Cache Least Recently Used (LRU) Removes: This statistic is aggregate, like
cache removes. It tracks the number of entries that were removed to keep the
cache under its maximum size.

* Timeout Invalidations: This is also an aggregate statistic, and it tracks the
number of entries that were removed because they timed out.

* Explicit Invalidations : Also an aggregate statistic, this tracks the number of
entries that were removed with direct invalidation by key, dependency ID or
template.

* Extended Stats : The eXtreme Scale dynamic cache provider exports the
following extended stat key strings.

Chapter 3. Cache integration overview 77

78

— com.ibm.websphere.xs.dynacache.remote_hits: The total number of cache hits
tracked at the eXtreme Scale container. This is an aggregate statistic, and its
value in the extended stats map is a Tong.

— com.ibm.websphere.xs.dynacache.remote_misses: The total number of cache
misses tracked at the eXtreme Scale container. An aggregate statistic, its value
in the extended stats map is a long.

Reporting reset statistics

The dynamic cache provider allows you to reset cache statistics. With the default
provider the reset operation only clears the statistics on the affected server. The
eXtreme Scale dynamic cache provider tracks most of its statistical data on the
remote cache containers. This data is not cleared or changed when the statistics are
reset. Instead the default dynamic cache behavior is simulated on the client by
reporting the difference between the current value of a given statistic and the value
of that statistic the last time reset was called on that server.

For example, if traffic on Server A generates 10 cache removes, the statistics on
Server A and on Server B will report 10 removes. Now, if the statistics on Server B
are reset and traffic on Server A generates an additional 10 removes, the statistics
on Server A will report 20 removes and the stats on Server B will report 10
removes.

Dynamic cache events

The Dynamic Cache API allows users to register event listeners. When you are
using eXtreme Scale as the dynamic cache provider, the event listeners work as
expected for local in-memory caches.

For distributed caches, event behavior will depend on the topology being used. For
caches using the embedded topology, events will be generated on the server that
handles the write operations, also known as the primary shard. This means that
only one server will receive event notifications, but it will have all the event
notifications normally expected from the dynamic cache provider. Because
WebSphere eXtreme Scale chooses the primary shard at runtime, it is not possible
to ensure that a particular server process always receives these events.

Embedded partitioned caches will generate events on any server that hosts a
partition of the cache. So if a cache has 11 partitions and each server in an 11
server WebSphere Application Server Network Deployment grid hosts one of the
partitions, then each server will receive the dynamic cache events for the cache
entries that it hosts. No single server process would see all of the events unless all
11 partitions were hosted in that server process. As with the embedded topology;, it
is not possible to ensure that a particular server process will receive a particular set
of events or any events at all.

Caches that use the remote topology do not support dynamic cache events.
MBean calls

The WebSphere eXtreme Scale dynamic cache provider does not support disk
caching. Any MBean calls relating to disk caching will not work.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Dynamic cache replication policy mapping

The WebSphere Application Server built-in dynamic cache provider supports

multiple cache replication policies. These policies can be configured globally or on
each cache entry. See the dynamic cache documentation for a[description of these]
Ireplication policies}

The eXtreme Scale dynamic cache provider does not honor these policies directly.
The replication characteristics of a cache are determined by the configured eXtreme
Scale distributed topology type and apply to all values placed in that cache,
regardless of the replication policy set on the entry by the dynamic cache service.
The following is a list of all the replication policies supported by the dynamic
cache service and illustrates which eXtreme Scale topology provides similar
replication characteristics.

Note that the eXtreme Scale dynamic cache provider ignores DRS replication policy
settings on a cache or cache entry. Users must choose the topology that appropriate
to their replication needs.

* NOT_SHARED - currently none of the topologies provided by the eXtreme Scale
dynamic cache provider can approximate this policy. This means that all data
stored into the cache must have keys and values that implement
java.io.Serializable.

* SHARED_PUSH - The embedded topology approximates this replication policy.
When a cache entry is created it is replicated to all the servers. Servers only look
for cache entries locally. If an entry is not found locally, it is assumed to be
non-existent and the other servers are not queried for it.

* SHARED_PULL and SHARED_PUSH_PULL - The embedded partitioned and
remote topologies approximate this replication policy. The distributed state of
the cache is completely consistent between all the servers.

This information is provided mainly so you can make sure that the topology meets
your distributed consistency needs. For example, if the embedded topology is a
better choice for a your deployment and performance needs, but you require the
level of cache consistency provided by SHARED_PUSH_PULL, then consider using
embedded partitioned, even though the performance may be slightly lower.

Security

You can secure dynamic cache instances that are running in embedded or
embedded partitioned topologies with the security functionality built into
WebSphere Application Server. See the documentation on [Securing application|
in the WebSphere Application Server Information Center.

When a cache is running in remote topology;, it is possible for a standalone
eXtreme Scale client to connect to the cache and affect the contents of the dynamic
cache instance. The eXtreme Scale dynamic cache provider has a low overhead
encryption feature that can prevent cache data from being read or changed by
non-WebSphere Application Server clients. To enable this feature, set the optional
parameter com.ibm.websphere.xs.dynacache.encryption_password to the same
value on every WebSphere Application Server instance that accesses the dynamic
cache provider. This will encrypt the value and user metadata for the CacheEntry
using 128-bit AES encryption. It is very important that the same value be set on all
servers. Servers will not be able to read data put into the cache by servers with a
different value for this parameter.

Chapter 3. Cache integration overview 79

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tdyn_cachereplication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tdyn_cachereplication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6topsecuring.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6topsecuring.html

If the eXtreme Scale provider detects that different values are set for this variable
in the same cache, it generate a warning in the log of the eXtreme Scale container
process.

See the eXtreme Scale documentation on [WebSphere eXtreme Scale security|if SSL
or client authentication is required.

Additional information
+ |Dynamic cache Redbook|

* Dynamic cache documentation

— |WebSphere Application Server 7.0

— [WebSphere Application Server 6.1

* DRS documentation
— [WebSphere Application Server 7.0
— [WebSphere Application Server 6.1

80 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.redbooks.ibm.com/abstracts/SG247393.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html

Chapter 4. Scalability overview

WebSphere eXtreme Scale is scalable through the use of partitioned data, and can
scale to thousands of containers if required because each container is independent
from other containers.

WebSphere eXtreme Scale divides data sets into distinct partitions that can be
moved between processes or even between physical servers at run time. You can,
for example, start with a deployment of four servers and then expand to a
deployment with 10 servers as the demands on the cache grow. Just as you can
add more physical servers and processing units for vertical scalability, you can
extend the elastic scaling capability horizontally with partitioning. Horizontal
scaling is a major advantage to using WebSphere eXtreme Scale over an in-memory
database. In-memory databases can only scale vertically.

With WebSphere eXtreme Scale, you can also use a set of APIs to gain transactional
access this partitioned and distributed data. The choices you make for interacting
with the cache are as significant as the functions to manage the cache for
availability from a performance perspective.

Note: Scalability is not available when containers communicate with one another.
The availability management, or core grouping, protocol is an O(N?) heartbeat and
view maintenance algorithm, but is mitigated by keeping the number of core
group members under 20. Only peer to peer replication between shards exists.

Distributed clients

The WebSphere eXtreme Scale client protocol supports very large numbers of
clients. The partitioning strategy offers assistance by assuming that all clients are
not always interested in all partitions because connections can be spread across
multiple containers. Clients are connected directly to the partitions so latency is
limited to one transferred connection.

Data grids, partitions, and shards

A data grid is divided into partitions. A partition holds an exclusive subset of the
data. A partition contains one or more shards: a primary shard and replica shards.
Replica shards are not necessary in a partition, but you can use replica shards to
provide high availability. Whether your deployment is an independent in-memory
data grid or an in-memory database processing space, data access in eXtreme Scale
relies heavily on shards.

The data for a partition is stored in a set of shards at run time. This set of shards
includes a primary shared and possibly one or more replica shards. A shard is the
smallest unit that eXtreme Scale can add or remove from a Java virtual machine.

Two placement strategies exist: fixed partition placement (default) and per

container placement. The following discussion focuses on the usage of the fixed
partition placement strategy.\

© Copyright IBM Corp. 2009, 2011 81

82

Total number of shards

If your environment includes 10 partitions that hold one million objects with no
replicas, then 10 shards would exist that each store 100,000 objects. If you add a
replica to this scenario, then an extra shard exists in each partition. In this case, 20
shards exist: 10 primary shards and 10 replica shards. Each one of these shards
store 100,000 objects. Each partition consists of a primary shard and one or more
(N) replica shards. Determining the optimal shard count is critical. If you configure
few shards, data is not distributed evenly among the shards, resulting in out of
memory errors and processor overloading issues. You must have at least 10 shards
for each JVM as you scale. When you are initially deploying the data grid, you
would potentially use many partitions.

Number of shards per JVM scenarios
Scenario: small number of shards for each JVM

Data is added and removed from a JVM using shard units. Shards are never split
into pieces. If 10 GB of data existed, and 20 shards exist to hold this data, then
each shard holds 500 MB of data on average. If nine Java virtual machines host the
data grid, then on average each JVM has two shards. Because 20 is not evenly
divisible by 9, a few Java virtual machines have three shards, in the following
distribution:

* Seven Java virtual machines with two shards
* Two Java virtual machines with three shards

Because each shard holds 500 MB of data, the distribution of data is unequal. The
seven Java virtual machines with two shards each host 1 GB of data. The two Java
virtual machines with three shards have 50% more data, or 1.5 GB, which is a
much larger memory burden. Because the two Java virtual machines are hosting
three shards, they also receive 50% more requests for their data. As a result, having
few shards for each JVM causes imbalance. To increase the performance, you
increase the number of shards for each JVM.

Scenario: increased number of shards per JVM

In this scenario, consider a much larger number of shards. In this scenario, there
are 101 shards with nine Java virtual machines hosting 10 GB of data. In this case,
each shard holds 99 MB of data. The Java virtual machines have the following
distribution of shards:

* Seven Java virtual machines with 11 shards
* Two Java virtual machines with 12 shards

The two Java virtual machines with 12 shards now have just 99 MB more data
than the other shards, which is a 9% difference. This scenario is much more evenly
distributed than the 50% difference in the scenario with few shards. From a
processor use perspective, only 9% more work exists for the two Java virtual
machines with the 12 shards compared to the seven Java virtual machines that
have 11 shards. By increasing the number of shards in each JVM, the data and
processor use is distributed in a fair and even way.

When you are creating your system, use 10 shards for each JVM in its maximally
sized scenario, or when the system is running its maximum number of Java virtual
machines in your planning horizon.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Additional placement factors

The number of partitions, the placement strategy, and number and type of replicas
are set in the deployment policy. The number of shards that are placed depend on
the deployment policy that you define. The numlInitialContainers,
minSyncReplicas, developmentMode, maxSyncReplicas, and maxAsyncReplicas
attributes affect where and when partitions and replicas can be placed. If the
maximum number of replicas are not placed during the initial startup, additional
replicas might be placed if you start additional servers later. When you are
planning the number of shards per JVM, the maximum number of primary and
replica shards is dependent on having enough JVMs started to support the
configured maximum number of replicas. A replica is never placed in the same
process as its primary. If a process is lost, both the primary and the replica are lost.
When the developmentMode attribute is set to false, the primary and replicas are
not placed on the same phyiscal server.

Partitioning

Use partitioning to scale out an application. You can define the number of
partitions in your deployment policy.

About partitioning

Partitioning is not like Redundant Array of Independent Disks (RAID) striping,
which slices each instance across all stripes. Each partition hosts the complete data
for individual entries. Partitioning is a very effective means for scaling, but is not
applicable to all applications. Applications that require transactional guarantees
across large sets of data do not scale and cannot be partitioned effectively.
WebSphere eXtreme Scale does not currently support two-phase commit across
partitions.

Important: Select the number of partitions carefully. The number of partitions that
are defined in the deployment policy directly affects the number of container
servers to which an application can scale. Each partition is made up of a primary
shard and the configured number of replica shards. The (Number_Partitionsx(1 +
Number Replicas)) formula is the number of containers that can be used to scale
out a single application.

Using partitions

A data grid can have up to thousands of partitions. A data grid can scale up to the
product of the number of partitions times the number of shards per partition. For
example, if you have 16 partitions and each partition has one primary and one
replica, or two shards, then you can potentially scale to 32 Java virtual machines.
In this case, one shard is defined for each JVM. You must choose a reasonable
number of partitions based on the expected number of Java virtual machines that
you are likely to use. Each shard increases processor and memory usage for the
system. The system is designed to scale out to handle this overhead in line with
how many server Java virtual machines are available.

Applications should not use thousands of partitions if the application runs on a
data grid of four container server Java virtual machines. The application should be
configured to have a reasonable number of shards for each container server JVM.
For example, an unreasonable configuration is 2000 partitions with two shards that

Chapter 4. Scalability overview 83

are running on four container Java virtual machines. This configuration results in
4000 shards that are placed on four container Java virtual machines or 1000 shards
per container JVM.

A better configuration would be under 10 shards for each expected container JVM.
This configuration still gives the possibility of allowing for elastic scaling that is
ten times the initial configuration while keeping a reasonable number of shards per
container JVM.

Consider this scaling example: you currently have six physical servers with two
container Java virtual machines per physical server. You expect to grow to 20
physical servers over the next three years. With 20 physical servers, you have 40
container server Java virtual machines, and choose 60 to be pessimistic. You want
four shards per container JVM. You have 60 potential containers, or a total of 240
shards. If you have a primary and replica per partition, then you want 120
partitions. This example gives you 240 divided by 12 container Java virtual
machines, or 20 shards per container JVM for the initial deployment with the
potential to scale out to 20 computers later.

ObjectMap and partitioning

With the default FIXED_PARTITION placement strategy, maps are split across
partitions and keys hash to different partitions. The client does not need to know
to which partition the keys belong. If a mapSet has multiple maps, the maps
should be committed in separate transactions.

Entities and partitioning

Entity manager entities have an optimization that helps clients that are working
with entities on a server. The entity schema on the server for the map set can
specify a single root entity. The client must access all entities through the root
entity. The entity manager can then find related entities from that root in the same
partition without requiring the related maps to have a common key. The root
entity establishes affinity with a single partition. This partition is used for all entity
fetches within the transaction after affinity is established. This affinity can save
memory because the related maps do not require a common key. The root entity
must be specified with a modified entity annotation as shown in the following
example:

@Entity(schemaRoot=true)

Use the entity to find the root of the object graph. The object graph defines the
relationships between one or more entities. Each linked entity must resolve to the
same partition. All child entities are assumed to be in the same partition as the
root. The child entities in the object graph are only accessible from a client from
the root entity. Root entities are always required in partitioned environments when
using an eXtreme Scale client to communicate to the server. Only one root entity
type can be defined per client. Root entities are not required when using Extreme
Transaction Processing (XTP) style ObjectGrids, because all communication to the
partition is accomplished through direct, local access and not through the client
and server mechanism.

Placement and partitions

You have two placement strategies available for WebSphere eXtreme Scale: fixed
partition and per-container. The choice of placement strategy affects how your
deployment configuration places partitions over the remote data grid.

84 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Fixed partition placement

You can set the placement strategy in the deployment policy XML file. The default
placement strategy is fixed-partition placement, enabled with the FIXED_PARTITION
setting. The number of primary shards that are placed across the available
containers is equal to the number of partitions that you have configured with the
numberOfPartitions attribute. If you have configured replicas, the minimum total
number of shards placed is defined by the following formula: ((1 primary shard +
minimum synchronous shards) * partitions defined). The maximum total number
of shards placed is defined by the following formula: ((1 primary shard +
maximum synchronous shards + maximum asynchronous shards) =* partitions).
Your WebSphere eXtreme Scale deployment spreads these shards over the available
containers. The keys of each map are hashed into assigned partitions based on the
total partitions you have defined. They keys hash to the same partition even if the
partition moves because of failover or server changes.

For example, if the numberPartitions value is 6 and the minSync value is 1 for
MapSetl, the total shards for that map set is 12 because each of the 6 partitions
requires a synchronous replica. If three containers are started, WebSphere eXtreme
Scale places four shards per container for MapSet1.

Per-container placement

The alternate placement strategy is per-container placement, which is enabled with
the PER_CONTAINER setting for the placementStrategy attribute in the map set
element in the deployment XML file. With this strategy, the number of primary
shards placed on each new container is equal to the number of partitions, P, that
you have configured. The WebSphere eXtreme Scale deployment environment
places P replicas of each partition for each remaining container. The
numlnitialContainers setting is ignored when you are using per-container
placement. The partitions get larger as the containers grow. The keys for maps are
not fixed to a certain partition in this strategy. The client routes to a partition and
uses a random primary. If a client wants to reconnect to the same session that it
used to find a key again, it must use a session handle.

For more information, see the topic on using a SessionHandle for routing in the
Programming Guide.

For failover or stopped servers, the WebSphere eXtreme Scale environment moves
the primary shards in the per-container placement strategy if they still contain
data. If the shards are empty, they are discarded. In the per-container strategy, old
primary shards are not kept because new primary shards are placed for every
container.

WebSphere eXtreme Scale allows per-container placement as an alternative to what
could be termed the "typical" placement strategy, a fixed-partition approach with
the key of a Map hashed to one of those partitions. In a per-container case (which
you set with PER_CONTAINER), your deployment places the partitions on the set
of online container servers and automatically scales them out or in as containers
are added or removed from the server data grid. A data grid with the
fixed-partition approach works well for key-based grids, where the application
uses a key object to locate data in the grid. The following discusses the alternative.

Chapter 4. Scalability overview 85

86

Example of a per-container data grid

PER_CONTAINER data grids are different. You specify that the data grid uses the
PER_CONTAINER placement strategy with the placementStrategy attribute in your
deployment XML file. Instead of configuring how many partitions total you want
in the data grid, you specify how many partitions you want per container that you
start.

For example, if you set five partitions per container, five new anonymous partition
primaries are created when you start that container server, and the necessary
replicas are created on the other deployed container servers.

The following is a potential sequence in a per-container environment as the data
grid grows.

1. Start container CO hosting 5 primaries (PO - P4).
* CO hosts: PO, P1, P2, P3, P4.

2. Start container C1 hosting 5 more primaries (P5 - P9). Replicas are balanced on
the containers.

* CO0 hosts: PO, P1, P2, P3, P4, R5, R6, R7, R8, R9.
e Cl1 hosts: P5, P6, P7, P8, P9, RO, R1, R2, R3, R4.

3. Start container C2 hosting 5 more primaries (P10 - P14). Replicas are balanced
further.

* CO0 hosts: PO, P1, P2, P3, P4, R7, RS, R9, R10, R11, R12.
* C1 hosts: P5, P6, P7, P§, P9, R2, R3, R4, R13, R14.
* C2 hosts: P10, P11, P12, P13, P14, R5, R6, RO, R1.

The pattern continues as more containers are started, creating five new primary
partitions each time and rebalancing replicas on the available containers in the data
grid.

Note: WebSphere eXtreme Scale does not move primary shards when using the
PER_CONTAINER strategy, only replicas.

Remember that the partition numbers are arbitrary and have nothing to do with
keys, so you cannot use key-based routing. If a container stops then the partition
IDs created for that container are no longer used, so there is a gap in the partition
IDs. In the example, there would no longer be partitions P5 - P9 if the container C2
failed, leaving only PO - P4 and P10 - P14, so key-based hashing is impossible.

Using numbers like five or even more likely 10 for how many partitions per
container works best if you consider the consequences of a container failure. To
spread the load of hosting shards evenly across the data grid, you need more than
just one partition for each container. If you had a single partition per container,
then when a container fails, only one container (the one hosting the corresponding
replica shard) must bear the full load of the lost primary. In this case, the load is
immediately doubled for the container. However, if you have five partitions per
container, then five containers pick up the load of the lost container, lowering
impact on each by 80 percent. Using multiple partitions per container generally
lowers the potential impact on each container substantially. More directly, consider
a case in which a container spikes unexpectedly—the replication load of that
container is spread over 5 containers rather than only one.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Using the per-container policy

Several scenarios make the per-container strategy an ideal configuration, such as
with HTTP session replication or application session state. In such a case, an HTTP
router assigns a session to a servlet container. The servlet container needs to create
an HTTP session and chooses one of the 5 local partition primaries for the session.
The "ID" of the partition chosen is then stored in a cookie. The servlet container
now has local access to the session state which means zero latency access to the
data for this request as long as you maintain session affinity. And eXtreme Scale
replicates any changes to the partition.

In practice, remember the repercussions of a case in which you have multiple
partitions per container (say 5 again). Of course, with each new container started,
you have 5 more partition primaries and 5 more replicas. Over time, more
partitions should be created and they should not move or be destroyed. But this is
not how the containers would actually behave. When a container starts, it hosts 5
primary shards, which can be called "home" primaries, existing on the respective
containers that created them. If the container fails, the replicas become primaries
and eXtreme Scale creates 5 more replicas to maintain high availability (unless you
disabled auto repair). The new primaries are in a different container than the one
that created them, which can be called "foreign" primaries. The application should
never place new state or sessions in a foreign primary. Eventually, the foreign
primary has no entries and eXtreme Scale automatically deletes it and its
associated replicas. The foreign primaries' purpose is to allow existing sessions to
still be available (but not new sessions).

A client can still interact with a data grid that does not rely on keys. The client just
begins a transaction and stores data in the data grid independent of any keys. It
asks the Session for a SessionHandle object, a serializable handle allowing the
client to interact with the same partition when necessary. For more information see
the topic on using a SessionHandle for routing in the Programming Guide.
WebSphere eXtreme Scale chooses a partition for the client from the list of home
partition primaries. It does not return a foreign primary partition. The
SessionHandle can be serialized in an HTTP cookie, for example, and later convert
the cookie back into a SessionHandle. Then the WebSphere eXtreme Scale APIs can
obtain a Session bound to the same partition again, using the SessionHandle.

Note: You cannot use agents to interact with a PER_CONTAINER data grid.
Advantages

The previous description is different from a normal FIXED_PARTITION or hash
data grid because the per-container client stores data in a place in the grid, gets a
handle to it and uses the handle to access it again. There is no application-supplied
key as there is in the fixed-partition case.

Your deployment does not make a new partition for each Session. So in a
per-container deployment, the keys used to store data in the partition must be
unique within that partition. For example, you may have your client generate a
unique SessionID and then use it as the key to find information in Maps in that
partition. Multiple client sessions then interact with the same partition so the
application needs to use unique keys to store session data in each given partition.

The previous examples used 5 partitions, but the numberOfPartitions parameter in
the objectgrid XML file can be used to specify the partitions as required. Instead of

Chapter 4. Scalability overview 87

per data grid, the setting is per container. (The number of replicas is specified in
the same way as with the fixed-partition policy.)

The per-container policy can also be used with multiple zones. If possible, eXtreme
Scale returns a SessionHandle to a partition whose primary is located in the same
zone as that client. The client can specify the zone as a parameter to the container
or by using an API. The client zone ID can be set using serverproperties or
clientproperties.

The PER_CONTAINER strategy for a data grid suits applications storing
conversational type state rather than database-oriented data. The key to access the
data would be a conversation ID and is not related to a specific database record. It
provides higher performance (because the partition primaries can be collocated
with the servlets for example) and easier configuration (without having to calculate
partitions and containers).

Single-partition and cross-data-grid transactions

88

The major distinction between WebSphere eXtreme Scale and traditional data
storage solutions like relational databases or in-memory databases is the use of
partitioning, which allows the cache to scale linearly. The important types of
transactions to consider are single-partition and every-partition (cross-data-grid)
transactions.

In general, interactions with the cache can be categorized as single-partition
transactions or cross-data-grid transactions, as discussed in the following section.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches
that are hosted by WebSphere eXtreme Scale. When a transaction is limited to a
single partition, then by default it is limited to a single Java virtual machine, and
therefore a single server computer. A server can complete M number of these
transactions per second, and if you have N computers, you can complete M*N
transactions per second. If your business increases and you need to perform twice
as many of these transactions per second, you can double N by buying more
computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions
also maximize the availability of the cache. Each transaction only depends on one
computer. Any of the other (N-1) computers can fail without affecting the success
or response time of the transaction. So if you are running 100 computers and one
of them fails, only 1 percent of the transactions in flight at the moment that server
failed are rolled back. After the server fails, WebSphere eXtreme Scale relocates the
partitions that are hosted by the failed server to the other 99 computers. During
this brief period, before the operation completes, the other 99 computers can still
complete transactions. Only the transactions that would involve the partitions that
are being relocated are blocked. After the failover process is complete, the cache
can continue running, fully operational, at 99 percent of its original throughput
capacity. After the failed server is replaced and returned to the data grid, the cache
returns to 100 percent throughput capacity.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions
are the opposite of single-partition transactions. Cross-data-grid transactions access
every partition and therefore every computer in the configuration. Each computer
in the data grid is asked to look up some data and then return the result. The
transaction cannot complete until every computer has responded, and therefore the
throughput of the entire data grid is limited by the slowest computer. Adding
computers does not make the slowest computer faster and therefore does not
improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the
previous example, if you are running 100 servers and one server fails, then 100
percent of the transactions that are in progress at the moment that server failed are
rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate the
partitions that are hosted by that server to the other 99 computers. During this
time, before the failover process completes, the data grid cannot process any of
these transactions. After the failover process is complete, the cache can continue
running, but at reduced capacity. If each computer in the data grid serviced 10
partitions, then 10 of the remaining 99 computers receive at least one extra
partition as part of the failover process. Adding an extra partition increases the
workload of that computer by at least 10 percent. Because the throughput of the
data grid is limited to the throughput of the slowest computer in a cross-data-grid
transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for
scaling out with a distributed, highly available, object cache like WebSphere
eXtreme Scale. Maximizing the performance of these kinds of systems requires the
use of techniques that are different from traditional relational methodologies, but
you can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere
eXtreme Scale include two categories: foundational principles and implementation
tips. Foundational principles are core ideas that need to be captured in the design
of the data itself. An application that does not observe these principles is unlikely
to scale well, even for its mainline transactions. Implementation tips are applied
for problematic transactions in an otherwise well-designed application that
observes the general principles for scalable data models.

Foundational principles

Some of the important means of optimizing scalability are basic concepts or
principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale
is that they are designed to spread data across a large number of
computers. If the goal is to make most or all transactions complete on a
single partition, then the data model design needs to ensure that all the
data the transaction might need is located in the partition. Most of the
time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two very
important transactions for a message board are showing all the posts from

Chapter 4. Scalability overview 89

90

a given user and all the posts on a given topic. First consider how these
transactions would work with a normalized data model that contains a
user record, a topic record, and a post record that contains the actual text.
If posts are partitioned with user records, then displaying the topic
becomes a cross-grid transaction, and vice versa. Topics and users cannot
be partitioned together because they have a many-to-many relationship.

The best way to make this message board scale is to duplicate the posts,
storing one copy with the topic record and one copy with the user record.
Then, displaying the posts from a user is a single-partition transaction,
displaying the posts on a topic is a single-partition transaction, and
updating or deleting a post is a two-partition transaction. All three of these
transactions will scale linearly as the number of computers in the data grid
increases.

Scalability rather than resources

The biggest obstacle to overcome when considering denormalized data
models is the impact that these models have on resources. Keeping two,
three, or more copies of some data can seem to use too many resources to
be practical. When you are confronted with this scenario, remember the
following facts: Hardware resources get cheaper every year. Second, and
more importantly, WebSphere eXtreme Scale eliminates most hidden costs
associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as
megabytes and processors. Data stores that work with normalized
relational data generally need to be located on the same computer. This
required collocation means that a single larger enterprise computer needs
to be purchased rather than several smaller computers. With enterprise
hardware, it is not uncommon for one computer to be capable of
completing one million transactions per second to cost much more than the
combined cost of 10 computers capable of doing 100,000 transactions per
second each.

A business cost in adding resources also exists. A growing business
eventually runs out of capacity. When you run out of capacity, you either
need to shut down while moving to a bigger, faster computer, or create a
second production environment to which you can switch. Either way,
additional costs will come in the form of lost business or maintaining
almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut
down to add capacity. If your business projects that you need 10 percent
more capacity for the coming year, then increase the number of computers
in the data grid by 10 percent. You can increase this percentage without
application downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a
format that is directly consumable by the business logic. Breaking the data
down into a more primitive form is costly. The transformation needs to be
done when the data is written and when the data is read. With relational
databases this transformation is done out of necessity, because the data is
ultimately persisted to disk quite frequently, but with WebSphere eXtreme
Scale, you do not need to perform these transformations. For the most part
data is stored in memory and can therefore be stored in the exact form that
the application needs.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Observing this simple rule helps denormalize your data in accordance with
the first principle. The most common type of transformation for business
data is the JOIN operations that are necessary to turn normalized data into
a result set that fits the needs of the application. Storing the data in the
correct format implicitly avoids performing these JOIN operations and
produces a denormalized data model.

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not
scale well. For example, do not have a transaction that asks for a list of all
items sorted by value. This transaction might work at first when the total
number of items is 1000, but when the total number of items reaches 10
million, the transaction returns all 10 million items. If you run this
transaction, the two most likely outcomes are the transaction timing out, or
the client encountering an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20
items can be returned. This logic alteration keeps the size of the transaction
manageable no matter how many items are in the cache.

Define schema

The main advantage of normalizing data is that the database system can
take care of data consistency behind the scenes. When data is
denormalized for scalability, this automatic data consistency management
no longer exists. You must implement a data model that can work in the
application layer or as a plug-in to the distributed data grid to guarantee
data consistency:.

Consider the message board example. If a transaction removes a post from
a topic, then the duplicate post on the user record needs to be removed.
Without a data model, it is possible a developer would write the
application code to remove the post from the topic and forget to remove
the post from the user record. However, if the developer were using a data
model instead of interacting with the cache directly, the removePost
method on the data model could pull the user ID from the post, look up
the user record, and remove the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition
that detects the change to the topic and automatically adjusts the user
record. A listener might be beneficial because the adjustment to the user
record could happen locally if the partition happens to have the user
record, or even if the user record is on a different partition, the transaction
takes place between servers instead of between the client and server. The
network connection between servers is likely to be faster than the network
connection between the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid will not
scale if a single record is being used a disproportionate number of times
compared to the rest of the records. The performance of the data grid will
be limited by the performance of the computer that holds the given record.

In these situations, try to break the record up so it is managed per
partition. For example consider a transaction that returns the total number
of entries in the distributed cache. Instead of having every insert and
remove operation access a single record that increments, have a listener on
each partition track the insert and remove operations. With this listener
tracking, insert and remove can become single-partition operations.

Chapter 4. Scalability overview 91

92

Reading the counter will become a cross-data-grid operation, but for the
most part, it was already as inefficient as a cross-data-grid operation
because its performance was tied to the performance of the computer
hosting the record.

Implementation tips

You can also consider the following tips to achieve the best scalability.

Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are
partitioned based on the customer ID number. This partitioning method is
the logical choice because nearly every business operation performed with
the customer record uses the customer ID number. However, an important
transaction that does not use the customer ID number is the login
transaction. It is more common to have user names or e-mail addresses for
login instead of customer ID numbers.

The simple approach to the login scenario is to use a cross-data-grid
transaction to find the customer record. As explained previously, this
approach does not scale.

The next option might be to partition on user name or e-mail. This option
is not practical because all the customer ID based operations become
cross-data-grid transactions. Also, the customers on your site might want
to change their user name or e-mail address. Products like WebSphere
eXtreme Scale need the value that is used to partition the data to remain
constant.

The correct solution is to use a reverse lookup index. With WebSphere
eXtreme Scale, a cache can be created in the same distributed grid as the
cache that holds all the user records. This cache is highly available,
partitioned and scalable. This cache can be used to map a user name or
e-mail address to a customer ID. This cache turns login into a two partition
operation instead of a cross-grid operation. This scenario is not as good as
a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to
produce because these operations usually require reading a large number
of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then
store the result in the cache. This practice makes read operations both
faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number.
A user could have all, none or any combination of these numbers defined.
If the data were normalized then a user table and a telephone number
table would exist. The telephone numbers for a given user could be found
using a JOIN operation between the two tables.

De-normalizing this record does not require data duplication, because most
users do not share telephone numbers. Instead, empty slots in the user
record must be allowed. Instead of having a telephone number table, add
three attributes to each user record, one for each telephone number type.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

This addition of attributes eliminates the JOIN operation and makes a
telephone number lookup for a user a single-partition operation.

Placement of many-to-many relationships

Consider an application that tracks products and the stores in which the
products are sold. A single product is sold in many stores, and a single
store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores, with each store
selling thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of
keeping a list of products inside each store entity (arrangement B). Looking
at some of the transactions this application would have to perform
illustrates why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the
inventory of a store locks the product entity. If the data grid holds 10000
products, only 1/10000 of the grid needs to be locked to perform the
update. With arrangement B, the data grid only contains 50 stores, so 1/50
of the grid must be locked to complete the update. So even though both of
these could be considered single-partition operations, arrangement A scales
out more efficiently.

Now, considering reads with arrangement A, looking up the stores at
which a product is sold is a single-partition transaction that scales and is
fast because the transaction only transmits a small amount of data. With
arrangement B, this transaction becomes an cross-data-grid transaction
because each store entity must be accessed to see if the product is sold at
that store, which reveals an enormous performance advantage for
arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data
processing. If a data grid has 5 computers and a cross-data-grid transaction
is dispatched that sorts through about 100,000 records on each computer,
then that transaction sorts through 500,000 records. If the slowest computer
in the data grid can perform 10 of these transactions per second, then the
data grid is capable of sorting through 5,000,000 records per second. If the
data in the grid doubles, then each computer must sort through 200,000
records, and each transaction sorts through 1,000,000 records. This data
increase decreases the throughput of the slowest computer to 5 transactions
per second, thereby reducing the throughput of the data grid to 5
transactions per second. Still, the data grid sorts through 5,000,000 records
per second.

In this scenario, doubling the number of computer allows each computer
to return to its previous load of sorting through 100,000 records, allowing
the slowest computer to process 10 of these transactions per second. The

throughput of the data grid stays the same at 10 requests per second, but
now each transaction processes 1,000,000 records, so the grid has doubled
its capacity in terms of processing records to 10,000,000 per second.

Applications such as a search engine that need to scale both in terms of
data processing to accommodate the increasing size of the Internet and
throughput to accommodate growth in the number of users, you must
create multiple data grids, with a round robin of the requests between the
grids. If you need to scale up the throughput, add computers and add

Chapter 4. Scalability overview 93

another data grid to service requests. If data processing needs to be scaled
up, add more computers and keep the number of data grids constant.

Scaling in units or pods

94

Although you can deploy a data grid over thousands of Java virtual machines, you
might consider splitting the data grid into units or pods to increase the reliability
and ease of testing of your configuration. A pod is a group of servers that is
running the same set of applications.

Deploying a large single data grid

Testing has verified that eXtreme Scale can scale out to over 1000 JVMs. Such
testing encourages building applications to deploy single data grids on large
numbers of boxes. Although it is possible to do this, it is not recommended, for
several reasons:

1. Budget concerns: Your environment cannot realistically test a 1000-server data
grid. However, it can test a much smaller data grid considering budget reasons,
so you do not need to buy twice the hardware, especially for such a large
number of servers.

2. Different application versions: Requiring a large number of boxes for each
testing thread is not practical. The risk is that you are not testing the same
factors as you would in a production environment.

3. Data loss: Running a database on a single hard drive is unreliable. Any
problem with the hard drive causes you to lose data. Running a growing
application on a single data grid is similar. You will likely have bugs in your
environment and in your applications. So placing all of the data on a single
large system will often lead to a loss of large amounts of data.

Splitting the data grid

Splitting the application data grid into pods (units) is a more reliable option. A pod
is a group of servers that are running a homogenous application stack. Pods can be
of any size, but ideally they should consist of about 20 physical servers. Instead of
having 500 physical servers in a single data grid, you can have 25 pods of 20
physical servers. A single version of an application stack should run on a given
pod, but different pods can have their own versions of an application stack.

Generally, an application stack considers levels of the following components.
* Operating system

¢ Hardware

* JVM

* WebSphere eXtreme Scale version

* Application

* Other necessary components

A pod is a conveniently sized deployment unit for testing. Instead of having
hundreds of servers for testing, it is more practical to have 20 servers. In this case,
you are still testing the same configuration as you would have in production.
Production uses grids with a maximum size of 20 servers, constituting a pod. You
can stress-test a single pod and determine its capacity, number of users, amount of
data, and transaction throughput. This makes planning easier and follows the
standard of having predictable scaling at predictable cost.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Setting up a pod-based environment

In different cases, the pod does not necessarily have to have 20 servers. The
purpose of the pod size is for practical testing. The size of a pod should be small
enough that if a pod encounters problems in production, the fraction of
transactions affected is tolerable.

Ideally, any bug impacts a single pod. A bug would only have an impact on four
percent of the application transactions rather than 100 percent. In addition,
upgrades are easier because they can be rolled out one pod at a time. As a result, if
an upgrade to a pod creates problems, the user can switch that pod back to the
prior level. Upgrades include any changes to the application, the application stack,
or system updates. As much as possible, upgrades should only change a single
element of the stack at a time to make problem diagnosis more precise.

To implement an environment with pods, you need a routing layer above the pods
that is forwards and backwards compatible if pods get software upgrades. Also,
you should create a directory that includes information about which pod has what
data. You can use another eXtreme Scale data grid for this with a database behind
it, preferably using the write-behind scenario.) This yields a two-tier solution. Tier
1 is the directory and is used to locate which pod handles a specific transaction.
Tier 2 is composed of the pods themselves. When tier 1 identifies a pod, the setup
routes each transaction to the correct server in the pod, which is usually the server
holding the partition for the data used by the transaction. Optionally, you can also
use a near cache on tier 1 to lower the impact associated with looking up the
correct pod.

Using pods is slightly more complex than having a single data grid, but the

operational, testing, and reliability improvements make it a crucial part of
scalability testing.

Chapter 4. Scalability overview 95

96 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 5. Availability overview

High availability

With high availability, WebSphere eXtreme Scale provides reliable data redundancy
and detection of failures.

WebSphere eXtreme Scale self-organizes data grids of Java virtual machines into a
loosely federated tree. The catalog service at the root and core groups holding
containers are at the leaves of the tree. See|“Caching architecture: Maps, containers |
lients, and catalogs” on page 11| for more information.

Each core group is automatically created by the catalog service into groups of
about 20 servers. The core group members provide health monitoring for other
members of the group. Also, each core group elects a member to be the leader for
communicating group information to the catalog service. Limiting the core group
size allows for good health monitoring and a highly scalable environment.

Note: In a WebSphere Application Server environment, in which core group size
can be altered, eXtreme Scale does not support more than 50 members per core

group.

Heart beating

1. Sockets are kept open between Java virtual machines, and if a socket closes
unexpectedly, this unexpected closure is detected as a failure of the peer Java
virtual machine. This detection catches failure cases such as the Java virtual
machine exiting very quickly. Such detection also allows recovery from these
types of failures typically in less than a second.

2. Other types of failures include: an operating system panic, physical server
failure, or network failure. These failures are discovered through heart beating.

Heartbeats are sent periodically between pairs of processes: When a fixed number
of heartbeats are missed, a failure is assumed. This approach detects failures in
N*M seconds. N is the number of missed heart beats and M is the heartbeat
interval. Directly specifying M and N is not supported. A slider mechanism is used
to allow a range of tested M and N combinations to be used.

Failures

There are several ways that a process can fail. The process could fail because some
resource limit was reached, such as maximum heap size, or some process control
logic terminated a process. The operating system could fail, causing all of the
processes running on the system to be lost. Hardware can fail, though less
frequently, like the network interface card (NIC), causing the operating system to
be disconnected from the network. Many more points of failure can occur, causing
the process to be unavailable. In this context, all of these failures can be
categorized into one of two types: process failure and loss of connectivity.

Process failure

WebSphere eXtreme Scale reacts to process failures quickly. When a process fails,
the operating system is responsible for cleaning up any left over resources that the
process was using. This cleanup includes port allocation and connectivity. When a

© Copyright IBM Corp. 2009, 2011 97

98

process fails, a signal is sent over the connections that were being used by that
process to close each connection. With these signals, a process failure can be
instantly detected by any other process that is connected to the failed process.

Loss of connectivity

Loss of connectivity occurs when the operating system becomes disconnected. As a
result, the operating system cannot send signals to other processes. There are
several reasons that loss of connectivity can occur, but they can be split into two
categories: host failure and islanding.

Host failure
If the machine is unplugged from the power outlet, then it is gone instantly.
Islanding

This scenario presents the most complicated failure condition for software to
handle correctly because the process is presumed to be unavailable, though it is
not. Essentially, a server or other process appears to the system to have failed
while it is actually running properly.

Container failures

Container failures are generally discovered by peer containers through the core
group mechanism. When a container or set of containers fails, the catalog service
migrates the shards that were hosted on that container or containers. The catalog
service looks for a synchronous replica first before migrating to an asynchronous
replica. After the primary shards are migrated to new host containers, the catalog
service looks for new host containers for the replicas that are now missing.

Note: Container islanding - The catalog service migrates shards off containers
when the container is discovered to be unavailable. If those containers then become
available, the catalog service considers the containers eligible for placement just
like in the normal startup flow.

Container failure detection latency

Failures can be categorized into soft and hard failures. Soft failures are typically
caused when a process fails. Such failures are detected by the operating system,
which can recover used resources, such as network sockets, quickly. Typical failure
detection for soft failures is less than one second. Hard failures might take up to
200 seconds to detect with the default heart beat tuning. Such failures include:
physical machine crashes, network cable disconnects, or operating system failures.
The run time relies on heart beating to detect hard failures which can be
configured.

Catalog service failure

Because the catalog service grid is an eXtreme Scale grid, it also uses the core
grouping mechanism in the same way as the container failure process. The primary
difference is that the catalog service domain uses a peer election process for
defining the primary shard instead of the catalog service algorithm that is used for
the containers.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

The placement service and the core grouping service are One of N services. A One
of N service runs in one member of the high availability group. The location
service and administration run in all of the members of the high availability group.
The placement service and core grouping service are singletons because they are
responsible for laying out the system. The location service and administration are
read-only services and exist everywhere to provide scalability.

The catalog service uses replication to make itself fault tolerant. If a catalog service
process fails, then the service restarts to restore the system to the wanted level of
availability. If all of the processes that are hosting the catalog service fail, the data
grid has a loss of critical data. This failure results in a required restart of all the
container servers. Because the catalog service can run on many processes, this
failure is an unlikely event. However, if you are running all of the processes on a
single box, within a single blade chassis, or from a single network switch, a failure
is more likely to occur. Try to remove common failure modes from boxes that are
hosting the catalog service to reduce the possibility of failure.

Multiple container failures

A replica is never placed in the same process as its primary because if the process
is lost, it would result in a loss of both the primary and the replica. In a
development environment on a single machine, you might want to have two
containers and replicate between them. You can define the development mode
attribute in the deployment policy to configure a replica to be placed on the same
machine as a primary. However, in production, using a single machine is not
sufficient because loss of that host results in the loss of both container servers. To
change between development mode on a single machine and a production mode
with multiple machines, disable development mode in the deployment policy
configuration file.

Table 9. Failure discovery and recovery summary

Loss type Discovery (detection) mechanism | Recovery method

Process loss 1/0 Restart

Server loss Heartbeat Restart

Network outage |Heartbeat Reestablish network and
connection

Server-side hang | Heartbeat Stop and restart server

Server busy Heartbeat Wait until server is available

Replication for availability

Replication provides fault tolerance and increases performance for a distributed
eXtreme Scale topology.

Replication is enabled by associating BackingMaps with a MapSet.

A MapSet is a collection of maps that are categorized by partition-key. This
partition-key is derived from the individual map's key by taking its hash modulo
the number of partitions. Thus, if one group of maps within the MapSet has
partition-key X, those maps will be stored in a corresponding partition X in the
grid; if another group has partition-key Y, all of the maps will be stored in
partition Y, and so on. Also, the data within the maps is replicated based on the
policy defined on the MapSet, which is only used for distributed eXtreme Scale
topologies (unnecessary for local instances).

Chapter 5. Availability overview 99

See [“Partitioning” on page 83| for more details.

MapSets are assigned what number of partitions they will have and a replication
policy. The MapSet replication configuration simply identifies the number of
synchronous and asynchronous replica shards a MapSet should have in addition to
the primary shard. For example, if there is to be 1 synchronous and 1
asynchronous replica, all of the BackingMaps assigned to the MapSet will each
have a replica shard distributed automatically within the set of available containers
for the eXtreme Scale. The replication configuration can also enable clients to read
data from synchronously replicated servers. This can spread the load for read
requests over additional servers in the eXtreme Scale. Replication only has a
programming model impact when preloading the BackingMaps.

For details on the various configuration options, see below:
Map preloading

Maps can be associated with Loaders. A loader is used to fetch objects when they
cannot be found in the map (a cache miss) and also to write changes to a back-end
when a transaction commits. Loaders can also be used for preloading data into a
map. The preloadMap method of the Loader interface is called on each map when
its corresponding partition in the MapSet becomes a primary. The preloadMap
method is not called on replicas. It attempts to load all the intended referenced
data from the back-end into the map using the provided session. The relevant map
is identified by the BackingMap argument that is passed to the preloadMap
method.

void preloadMap(Session session, BackingMap backingMap) throws LoaderException;
Preloading in partitioned MapSet

Maps can be partitioned into N partitions. Maps can therefore be striped across
multiple servers, with each entry identified by a key that is stored only on one of
those servers. Very large maps can be held in an eXtreme Scale because the
application is no longer limited by the heap size of a single JVM to hold all the
entries of a Map. Applications that want to preload with the preloadMap method
of the Loader interface must identify the subset of the data that it preloads. A fixed
number of partitions always exists. You can determine this number by using the
following code example:

int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();
int myPartition = backingMap.getPartitionId();

This code example shows how an application can identify the subset of the data to
preload from the database. Applications must always use these methods even
when the map is not initially partitioned. These methods allow flexibility: If the
map is later partitioned by the administrators, then the loader continues to work
correctly.

The application must issue queries to retrieve the myPartition subset from the
backend. If a database is used, then it might be easier to have a column with the
partition identifier for a given record unless there is some natural query that
allows the data in the table to partition easily.

See details on writing a loader with a replica preload controller in the Programming

Guide for an example on how to implement a Loader for a replicated eXtreme
Scale.

100 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Performance

The preload implementation copies data from the back-end into the map by storing
multiple objects in the map in a single transaction. The optimal number of records
to store per transaction depends on several factors, including complexity and size.
For example, after the transaction includes blocks of more than 100 entries, the
performance benefit decreases as you increase the number of entries. To determine
the optimal number, begin with 100 entries and then increase the number until the
performance benefit decreases to none. Larger transactions result in better
replication performance. Remember, only the primary runs the preload code. The
preloaded data is replicated from the primary to any replicas that are online.

Preloading MapSets

If the application uses a MapSet with multiple maps then each map has its own
loader. Each loader has a preload method. Each map is loaded serially by the
eXtreme Scale. It might be more efficient to preload all the maps by designating a
single map as the preloading map. This process is an application convention. For
example, two maps, department and employee, might use the department Loader
to preload both the department and the employee maps. This procedure ensures
that, transactionally, if an application wants a department then the employees for
that department are in the cache. When the department Loader preloads a
department from the back-end, it also fetches the employees for that department.
The department object and its associated employee objects are then added to the
map using a single transaction.

Recoverable preloading

Some customers have very large data sets that need caching. Preloading this data
can be very time consuming. Sometimes, the preloading must complete before the
application can go online. You can benefit from making preloading recoverable.
Suppose there are a million records to preload. The primary is preloading them
and fails at the 800,000th record. Normally, the replica chosen to be the new
primary clears any replicated state and starts from the beginning. eXtreme Scale
can use a ReplicaPreloadController interface. The loader for the application would
also need to implement the ReplicaPreloadController interface. This example adds
a single method to the Loader: Status checkPreloadStatus(Session session,
BackingMap bmap) ;. This method is called by the eXtreme Scale run time before the
preload method of the Loader interface is normally called. The eXtreme Scale tests
the result of this method (Status) to determine its behavior whenever a replica is
promoted to a primary.

Table 10. Status value and response

Returned status value

eXtreme Scale response

Status. PRELOADED_ALREADY eXtreme Scale does not call the preload method at all because this status
value indicates that the map is fully preloaded.

Status.FULL_PRELOAD_NEEDED eXtreme Scale clears the map and calls the preload method normally.

Status. PARTIAL_PRELOAD_NEEDED eXtreme Scale leaves the map as-is and calls preload. This strategy allows the

application loader to continue preloading from that point onwards.

Clearly, while a primary is preloading the map, it must leave some state in a map
in the MapSet that is being replicated so that the replica determines what status to
return. You can use an extra map named, for example, RecoveryMap. This

Chapter 5. Availability overview 101

102

RecoveryMap must be part of the same MapSet that is being preloaded to ensure
that the map is replicated consistently with the data being preloaded. A suggested
implementation follows.

As the preload commits each block of records, the process also updates a counter
or value in the RecoveryMap as part of that transaction. The preloaded data and
the RecoveryMap data are replicated atomically to the replicas. When the replica is
promoted to primary, it can now check the RecoveryMap to see what has
happened.

The RecoveryMap can hold a single entry with the state key. If no object exists for
this key then you need a full preload (checkPreloadStatus returns
FULL_PRELOAD_NEEDED). If an object exists for this state key and the value is
COMPLETE, the preload completes, and the checkPreloadStatus method returns
PRELOADED_ALREADY. Otherwise, the value object indicates where the preload
restarts and the checkPreloadStatus method returns
PARTIAL_PRELOAD_NEEDED. The loader can store the recovery point in an
instance variable for the loader so that when preload is called, the loader knows
the starting point. The RecoveryMap can also hold an entry per map if each map is
preloaded independently.

Handling recovery in synchronous replication mode with a Loader

The eXtreme Scale run time is designed not to lose committed data when the
primary fails. The following section shows the algorithms used. These algorithms
apply only when a replication group uses synchronous replication. A loader is
optional.

The eXtreme Scale run time can be configured to replicate all changes from a
primary to the replicas synchronously. When a synchronous replica is placed, it
receives a copy of the existing data on the primary shard. During this time, the
primary continues to receives transactions and copies them to the replica
asynchronously. The replica is not considered to be online at this time.

After the replica catches up the primary, the replica enters peer mode and
synchronous replication begins. Every transaction committed on the primary is
sent to the synchronous replicas and the primary waits for a response from each
replica. A synchronous commit sequence with a Loader on the primary looks like
the following set of steps:

Table 11. Commit sequence on the primary

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes to replicas and wait for same

acknowledgement

Commit to the loader through the plug-in commit called, but does
TransactionCallback plug-in nothing

Release locks for entries same

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Notice that the changes are sent to the replica before they are committed to the
loader. To determine when the changes are committed on the replica, revise this
sequence: At initialize time, initialize the tx lists on the primary as below.
CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing, use the following sequence:

Table 12. Synchronous commit processing

Step with loader Step without loader
Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes with a committed transaction, roll back same

transaction to replica, and wait for acknowledgement

Clear list of committed transactions and rolled back same

transactions

Commit the loader through the TransactionCallBack plug-in | TransactionCallBack plug-in
commit is still called, but
typically does not do

anything
If commit succeeds, add the transaction to the committed no-op
transactions, otherwise add to the rolled back transactions
Release locks for entries same

For replica processing, use the following sequence:

Receive changes

Commit all received transactions in the committed transaction list
Roll back all received transactions in the rolled back transaction list
Start a transaction or session

Apply changes to the transaction or session

Save the transaction or session to the pending list

No oo bkowbd=

Send back reply

Notice that on the replica, no loader interactions occur while the replica is in
replica mode. The primary must push all changes through the Loader. The replica
does not make any changes. A side effect of this algorithm is that the replica
always has the transactions, but they are not committed until the next primary
transaction sends the commit status of those transactions. The transactions are then
committed or rolled back on the replica. Until then, the transactions are not
committed. You can add a timer on the primary that sends the transaction outcome
after a small period of time (a few seconds). This timer limits, but does not
eliminate, any staleness to that time window. This staleness is only a problem
when using replica read mode. Otherwise, the staleness does not have an impact
on the application.

When the primary fails, it is likely that a few transactions were committed or
rolled back on the primary, but the message never made it to the replica with these
outcomes. When a replica is promoted to the new primary, one of the first actions
is to handle this condition. Each pending transaction is reprocessed against the
new primary's set of maps. If there is a Loader, then each transaction is given to
the Loader. These transactions are applied in strict first in first out (FIFO) order. If

Chapter 5. Availability overview 103

a transactions fails, it is ignored. If three transactions are pending, A, B, and C,
then A might commit, B might rollback and C might also commit. No one
transaction has any impact on the others. Assume that they are independent.

A loader might want to use slightly different logic when it is in failover recovery
mode versus normal mode. The loader can easily know when it is in failover
recovery mode by implementing the ReplicaPreloadController interface. The
checkPreloadStatus method is only called when failover recovery completes.
Therefore, if the apply method of the Loader interface is called before the
checkPreloadStatus method, then it is a recovery transaction. After the
checkPreloadStatus method is called, the failover recovery is complete.

Load balancing across replicas

The eXtreme Scale, unless configured otherwise, sends all read and write requests
to the primary server for a given replication group. The primary must service all
requests from clients. You might want to allow read requests to be sent to replicas
of the primary. Sending read requests to the replicas allows the load of the read
requests to be shared by multiple Java Virtual Machines (JVM). However, using
replicas for read requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches,
the primary should see a relatively high get request rate from clients as a result.
Likewise, in pessimistic locking mode, no local cache exists, so all requests are sent
to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read
requests to the replica does not have a big impact on performance. The frequency
of get requests from clients with caches that are full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty
cache are forwarded to the primary. The client cache gets data over time, causing
the request load to drop. If a large number of clients start concurrently, then the
load might be significant and replica read might be an appropriate performance
choice.

Client-side replication

With eXtreme Scale, you can replicate a server map to one or more clients by using
asynchronous replication. A client can request a local read-only copy of a server
side map by using the ClientReplicableMap.enableClientReplication method.

void enableClientReplication(Mode mode, int[] partitions,
ReplicationMapListener listener) throws ObjectGridException;

The first parameter is the replication mode. This mode can be a continuous
replication or a snapshot replication. The second parameter is an array of partition
IDs that represent the partitions from which to replicate the data. If the value is
null or an empty array, the data is replicated from all the partitions. The last
parameter is a listener to receive client replication events. See ClientReplicableMap
and ReplicationMapListener in the API documentation for details.

104 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

After the replication is enabled, then the server starts to replicate the map to the
client. The client is eventually only a few transactions behind the server at any
point in time.

High-availability catalog service

A catalog service domain is the data grid of catalog servers you are using, which
retain topology information for all of the containers in your eXtreme Scale
environment. The catalog service controls balancing and routing for all clients. To
deploy eXtreme Scale as an in-memory database processing space, you must
cluster the catalog service into a catalog service domain for high availability.

Components of the catalog service domain

When multiple catalog servers start, one of the servers is elected as the master
catalog server that accepts Internet Inter-ORB Protocol (IIOP) heartbeats and
handles system data changes in response to any catalog service or container
changes.

When clients contact any one of the catalog servers, the routing table for the
catalog service domain is propagated to the clients through the Common Object
Request Broker Architecture (CORBA) service context.

Configure at least three catalog servers. Catalog servers must be installed on
separate nodes or separate installation images from your container servers to
ensure that you can seamlessly upgrade your servers at a later date. If your
configuration has zones, you can configure one catalog server per zone.

When an eXtreme Scale server and container contacts one of the catalog servers,
the routing table for the catalog service domain is also propagated to the eXtreme
Scale server and container through the CORBA service context. Furthermore, if the
contacted catalog server is not currently the master catalog server, the request is
automatically rerouted to the current master catalog server and the routing table
for the catalog server is updated.

Note: A catalog service domain and the container server data grid are very
different. The catalog service domain is for high availability of your system data.
The container server data grid is for your data high availability, scalability, and
workload management. Therefore, two different routing tables exist: the routing
table for the catalog service domain and the routing table for the container server
data grid shards.

The catalog service domain responsibilities are divided into a series of services:
Core group manager

The catalog service uses the high availability manager (HA manager) to
group processes together for availability monitoring. Each grouping of the
processes is a core group. With eXtreme Scale, the core group manager
dynamically groups the processes together. These processes are kept small
to allow for scalability. Each core group elects a leader that has the added
responsibility of sending status to the core group manager when individual
members fail. The same status mechanism is used to discover when all the
members of a group fail, which causes the communication with the leader
to fail.

The core group manager is a fully automatic service responsible for
organizing containers into small groups of servers that are then

Chapter 5. Availability overview 105

automatically loosely federated to make an ObjectGrid. When a container
first contacts the catalog service, it waits to be assigned to either a new or
existing group. An eXtreme Scale deployment consists of many such
groups, and this grouping is a key scalability enabler. Each group is a
group of Java virtual machines that uses heart beating to monitor the
availability of the other groups. One of these group members is elected the
leader and has an added responsibility to relay availability information to
the catalog service to allow for failure reaction by reallocation and route
forwarding.

Placement service
The catalog service manages the placement of shards across the set of
available container servers. The placement service is responsible for
maintaining balance across physical resources. The placement service is
responsible for allocating individual shards to their host container. The
placement service runs as a One of N elected service in the data grid, so
exactly one instance of the service is running. If that instance fails, another
process is then elected and it takes over. For redundancy, the state of the
catalog service is replicated across all the servers that are hosting the
catalog service.

Administration
The catalog service is also the logical entry point for system administration.
The catalog service hosts an Managed Bean (MBean) and provides Java
Management Extensions (JMX) URLs for any of the servers that the catalog
service is managing.

Location service
The location service acts as the touchpoint for both clients that are
searching for the containers that host the application they seek, as well as
for the container servers that are registering hosted applications with the
placement service. The location service runs on all of the data grid
members to scale out this function.

Catalog service domain deployment

The catalog service hosts logic that is typically idle during steady states. As a
result, the catalog service minimally influences scalability. The service is built to
service hundreds of containers that become available simultaneously. For
availability, configure the catalog service into a data grid.

Planning

After a catalog service domain is started, the members of the data grid bind
together. Carefully plan your catalog service domain topology, because you cannot
modify your catalog service domain configuration at run time. Spread out the data
grid as diversely as possible to prevent errors.

Starting a catalog service domain

For more information about creating a catalog service domain, see the details about
starting a catalog service domain in the Administration Guide.

Connecting eXtreme Scale containers embedded in WebSphere Application
Server to a stand-alone catalog service domain

106 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

You can configure eXtreme Scale containers that are embedded in a WebSphere
Application Server environment to connect to a stand-alone catalog service
domain.

« 7% You can create catalog service domains in the WebSphere Application
Server administrative console. See the details about creating catalog service
domains in the Administration Guide for more information.

. TEI (deprecated) In previous releases, you connected the catalog services into a
catalog service domain by creating a custom property. This property can still be
used, but is deprecated. For more information about this custom property, see
the information about starting the catalog service process in a WebSphere
Application Server in the Administration Guide..

Note: Server name collision: Because this property is used to start the eXtreme
Scale catalog server as well as to connect to it, catalog servers must not have the
same name as any WebSphere Application Server server.

See [“Catalog server quorums”|for more information.

Catalog server quorums

When the quorum mechanism is enabled, all the catalog servers in the quorum
must be available for placement operations to occur in the data grid.

* [“Important terms”]

* [“Heartbeats and failure detection”]

* |[“Quorum behavior” on page 108|

— [“Container behavior during quorum loss” on page 111|

* [“Client behavior during quorum loss” on page 111|

Important terms
* Heartbeat: A signal that is sent between servers to convey that they are running.

* Quorum: A group of catalog servers that communicate and conduct placement
operations in the data grid. This group consists of all of the catalog servers in
the data grid, unless you manually override the quorum mechanism with
administrative actions.

* Brownout: A temporary loss of connectivity between one or more servers.
* Blackout: A permanent loss of connectivity between one or more servers.

* Data center: A geographically located group of servers that are generally
connected with a local area network (LAN).

* Zone: A zone is a configuration option that is used to group servers together
that share some physical characteristic. Examples of zones for a group of servers
include: a data center, an area network, a building, or a floor of a building.

* Heartbeat: Heartbeats are used to determine if a given Java virtual machine
(JVM) is running.

Heartbeats and failure detection
Container servers and core groups

The catalog service places container servers into core groups of a limited size. A
core group tries to detect the failure of its members. A single member of a core
group is elected to be the core group leader. The core group leader periodically
tells the catalog service that the core group is alive and reports any membership

Chapter 5. Availability overview 107

changes to the catalog service. A membership change can be a JVM failing or a
newly added JVM that joins the core group.

If a JVM socket is closed, that JVM is regarded as being no longer available. Each
core group member also heart beats over these sockets at a rate determined by
configuration. If a JVM does not respond to these heartbeats within a configured
maximum time period, then the JVM is considered to be no longer available, which
triggers a failure detection.

If the catalog service marks a container JVM as failed and the container server is
later reported as being available, the container JVM is told to shut down the
WebSphere eXtreme Scale container servers. A JVM in this state is not visible in
xsadmin command queries. Messages in the logs of the container JVM indicate that
the container JVM has failed. You must manually restart these JVMs.

If the core group leader cannot contact any member, it continues to retry contacting
the member.

The complete failure of all members of a core group is also a possibility. If the
entire core group has failed, it is the responsibility of the catalog service to detect
this loss.

Catalog service domain heart-beating

The catalog service domain looks like a private core group with a static
membership and a quorum mechanism. It detects failures the same way as a
normal core group. However, the behavior is modified to include quorum logic.
The catalog service also uses a less aggressive heart-beating configuration.

Failure detection

WebSphere eXtreme Scale detects when processes terminate through abnormal
socket closure events. The catalog service is notified immediately when a process
terminates.

For more information about configuring heart-beating, see the information about
configuring failover detection in the Administration Guide.

Quorum behavior

Normally, the members of the catalog service have full connectivity. The catalog
service domain is a static set of JVMs. WebSphere eXtreme Scale expects all
members of the catalog service to be online. When all the members are online, the
catalog service has quorum. The catalog service responds to container events only
while the catalog service has quorum.

Reasons for quorum loss

WebSphere eXtreme Scale expects to lose quorum for the following scenarios:
* A catalog service JVM member fails
* Network brown out occurs

e Data center loss occurs

WebSphere eXtreme Scale does not lose quorum in the following scenario:

108 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

* Stopping a catalog server instance with the stop0OgServer command or any other
administrative actions. The system knows that the server instance has stopped,
which is different from a JVM failure or brownout.

If the catalog service loses a quorum, it waits for quorum to be reestablished.
While the catalog service does not have a quorum, it ignores events from container
servers. Container servers continue to try any requests that are rejected by the
catalog server during this time. Heart-beating is suspended until a quorum is
reestablished.

Quorum loss from JVM failure

A catalog server that fails causes quorum to be lost. If a JVM fails, you must
override quorum as fast as possible. The failed catalog service cannot rejoin the
data grid until quorum has been overridden.

Quorum loss from network brownout

WebSphere eXtreme Scale is designed to expect the possibility of brownouts. A
brownout is when a temporary loss of connectivity occurs between data centers.
Brown outs are usually transient and clear within seconds or minutes. While
WebSphere eXtreme Scale tries to maintain normal operation during the brownout
period, a brownout is regarded as a single failure event. The failure is expected to
be fixed and then normal operation resumes with no actions necessary.

A long duration brown out can be classified as a blackout only through user
intervention. Overriding quorum on one side of the brownout is required in order
for the event to be classified as a blackout.

Catalog service JVM cycling

If a catalog server is stopped by using the stopOgServer command, then the
quorum drops to one less server. The remaining servers still have quorum.
Restarting the catalog server sets quorum back to the previous number.

Consequences of lost quorum

If a container JVM was to fail while quorum is lost, recovery does not occur until
the brownout recovers. In a blackout scenario, the recovery does not occur until
you run the override quorum command. Quorum loss and a container failure as
are considered a double failure, which is a rare event. Because of the double
failure, applications might lose write access to data that was stored on the failed
JVM. When quorum is restored, the normal recovery occurs.

Similarly, if you attempt to start a container during a quorum loss event, the
container does not start.

Full client connectivity is allowed during quorum loss. If no container failures or
connectivity issues happen during the quorum loss event then clients can still fully

interact with the container servers.

If a brownout occurs, then some clients might not have access to primary or replica
copies of the data until the brownout clears.

Chapter 5. Availability overview 109

New clients can be started because a catalog service JVM must exist in each data
center. Therefore, at least one catalog server can be reached by a client even during
a brownout event.

Quorum recovery

If quorum is lost for any reason, when quorum is reestablished, a recovery
protocol is run. When the quorum loss event occurs, all liveness checking for core
groups is suspended and failure reports are also ignored. After quorum is back,
then the catalog service checks all the core groups to immediately determine their
membership. Any shards previously hosted on container JVMs reported as failed
are recovered. If primary shards were lost, then surviving replicas are promoted to
being primary shards. If replica shards were lost then additional replicas shards are
created on the survivors.

Overriding quorum

Override quorum only when a data center failure has occurred. Quorum loss due
to a catalog service JVM failure or a network brownout recovers automatically after
the catalog service JVM is restarted or the network brownout ends.

Administrators are the only ones with knowledge of a data center failure.
WebSphere eXtreme Scale treats a brownout and a blackout similarly. You must
inform the WebSphere eXtreme Scale environment of such failures with the
xsadmin command to override quorum. This command tells the catalog service to
assume that quorum is achieved with the current membership, and full recovery
takes place. When issuing an override quorum command, you are guaranteeing
that the JVMs in the failed data center have truly failed and do not have a chance
of recovering.

The following list considers some scenarios for overriding quorum. In this
scenario, you have three catalog servers: A, B, and C.

* Brown out: The C catalog server is isolated temporarily. The catalog service
loses quorum and waits for the brownout to complete. After the brownout is
over, the C catalog server rejoins the catalog service domain and quorum is
reestablished. Your application sees no problems during this time.

* Temporary failure: During a temporary failure, the C catalog server fails and the
catalog service loses quorum. You must override quorum. After quorum is
reestablished, you can restart the C catalog server. The C catalog server joins the
catalog service domain again when it restarts. Your application sees no problems
during this time.

* Data center failure: You verify that the data center has failed and that it has
been isolated on the network. Then you issue the xsadmin override quorum
command. The surviving two data centers run a full recovery by replacing
shards that were hosted in the failed data center. The catalog service is now
running with a full quorum of the A and B catalog servers. The application
might see delays or exceptions during the interval between the start of the
blackout and when quorum is overridden. After quorum is overridden, the data
grid recovers and normal operation is resumed.

* Data center recovery: The surviving data centers are already running with
quorum overridden. When the data center that contains the C catalog server is
restarted, all JVMs in the data center must be restarted. Then the C catalog
server joins the existing catalog service domain again and the quorum setting
reverts to the normal situation with no user intervention.

110 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

* Data center failure and brownout: The data center that contains the C catalog
server fails. Quorum is overridden and recovered on the remaining data centers.
If a brownout between the A and B catalog servers occurs, the normal brownout
recovery rules apply. After the brownout clears, quorum is reestablished and
necessary recovery from the quorum loss occurs.

Container behavior during quorum loss

Containers host one or more shards. Shards are either primaries or replicas for a
specific partition. The catalog service assigns shards to a container and the
container server uses that assignment until new instructions arrive from the catalog
service. For example, a primary shard continues to try communication with its
replica shards during network brownouts, until the catalog service provides further
instructions to the primary shard.

Synchronous replica behavior

The primary shard can accept new transactions while the connection is broken if
the number of replicas online are at least at the minsync property value for the
map set. If any new transactions are processed on the primary shard while the link
to the synchronous replica is broken, the replica is and resynchronized with the
current state of the primary when the link is reestablished.

Do not configure synchronous replication between data centers or over a
WAN-style link.

Asynchronous replica behavior

While the connection is broken, the primary shard can accept new transactions.
The primary shard buffers the changes up to a limit. If the connection with the
replica is reestablished before that limit is reached then the replica is updated with
the buffered changes. If the limit is reached, then the primary destroys the buffered
list and when the replica reattaches then it is cleared and resynchronized.

Client behavior during quorum loss

Clients are always able to connect to the catalog server to bootstrap to the data
grid whether the catalog service domain has quorum or not. The client tries to
connect to any catalog server instance to obtain a route table and then interact with
the data grid. Network connectivity might prevent the client from interacting with
some partitions due to network setup. The client might connect to local replicas for
remote data if it has been configured to do so. Clients cannot update data if the
primary partition for that data is not available.

Replicas and shards

With eXtreme Scale, an in-memory database or shard can be replicated from one
Java virtual machine (JVM) to another. A shard represents a partition that is placed
on a container. Multiple shards that represent different partitions can exist on a
single container. Each partition has an instance that is a primary shard and a
configurable number of replica shards. The replica shards are either synchronous
or asynchronous. The types and placement of replica shards are determined by
eXtreme Scale using a deployment policy, which specifies the minimum and
maximum number of synchronous and asynchronous shards.

Chapter 5. Availability overview 111

Shard types

Replication uses three types of shards:
* Primary

* Synchronous replica

¢ Asynchronous replica

The primary shard receives all insert, update and remove operations. The primary
shard adds and removes replicas, replicates data to the replicas, and manages
commits and rollbacks of transactions.

Synchronous replicas maintain the same state as the primary. When a primary
replicates data to a synchronous replica, the transaction is not committed until it
commits on the synchronous replica.

Asynchronous replicas might or might not be at the same state as the primary.
When a primary replicates data to an asynchronous replica, the primary does not
wait for the asynchronous replica to commit.

Machine A

JVM

ObjectGrid Container 1

»-(Primary
Shard

Transaction

Partition 0

A

/
/

Machine y

ObjectGrid Contaiher 2

Synchronous
Replica Shard
Partition 0

\
\

Machine C\

JVM

< ObjsctGrid Container 3

‘Asynchronous
Replica Shard
Partition 0

Figure 34. Communication path between a primary shard and replica shards

Minimum synchronous replica shards
When a primary prepares to commit data, it checks how many synchronous replica

shards voted to commit the transaction. If the transaction processes normally on
the replica, it votes to commit. If something went wrong on the synchronous

112 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

replica, it votes not to commit. Before a primary commits, the number of
synchronous replica shards that are voting to commit must meet the
minSyncReplica setting from the deployment policy. When the number of
synchronous replica shards that are voting to commit is too low, the primary does
not commit the transaction and an error results. This action ensures that the
required number of synchronous replicas are available with the correct data.
Synchronous replicas that encountered errors reregister to fix their state. For more
information about reregistering, see [Replica shard recovery]

The primary throws a ReplicationVotedToRollbackTransactionException error if too
few synchronous replicas voted to commit.

Replication and Loaders

Normally, a primary shard writes changes synchronously through the Loader to a
database. The Loader and database are always in sync. When the primary fails
over to a replica shard, the database and Loader might not be in synch. For
example:

* The primary can send the transaction to the replica and then fail before
committing to the database.

* The primary can commit to the database and then fail before sending to the
replica.

Either approach leads to either the replica being one transaction in front of or
behind the database. This situation is not acceptable. eXtreme Scale uses a special
protocol and a contract with the Loader implementation to solve this issue without
two phase commit. The protocol follows:

Primary side
* Send the transaction along with the previous transaction outcomes.
* Write to the database and try to commit the transaction.

e If the database commits, then commit on eXtreme Scale. If the database does not
commit, then roll back the transaction.

e Record the outcome.

Replica side
e Receive a transaction and buffer it.

* For all outcomes, send with the transaction, commit any buffered transactions
and discard any rolled back transactions.

Replica side on failover

* For all buffered transactions, provide the transactions to the Loader and the
Loader attempts to commit the transactions.

¢ The Loader needs to be written to make each transaction is idempotent.

* If the transaction is already in the database, then the Loader performs no
operation.

e If the transaction is not in the database, then the Loader applies the transaction.

 After all transactions are processed, then the new primary can begin to serve
requests.

This protocol ensures that the database is at the same level as the new primary
state.

Chapter 5. Availability overview 113

114

Shard placement

The catalog service is responsible for placing shards. Each ObjectGrid has a
number of partitions, each of which has a primary shard and an optional set of
replica shards. The catalog service does not place replica and primary shards for
the same partition on the same container. It also does not place replica and
primary shards on containers that have the same IP address (unless the
configuration is in development mode). The catalog service allocates the shards by
balancing them so that they are evenly distributed over the available containers.

If a new container starts, then eXtreme Scale retrieves shards from relatively
overloaded containers to the new empty container. With this behavior, eXtreme
Scale establishes and maintains its essential elasticity. The elasticity is manifest in
its powerful ability for scaling horizontally, both to scale out and scale in.

Scaling out

Scaling out means that when extra Java virtual machines, or containers, are added
to an eXtreme Scale data grid, then eXtreme Scale tries to move existing shards,
primaries or replicas, from the old set of JVMs to the new set. This movement
allows the data grid to expand to take advantage of the processor, network and
memory of the newly added JVMs. The movement also balances the data grid and
tries to ensure that each JVM in the grid hosts the same amount of data. As the
data grid expands, each server hosts a smaller subset of the total grid. eXtreme
Scale assumes that data is distributed evenly among the partitions. This expansion
enables scaling out.

Scaling in

Scaling in means that if a JVM fails, then eXtreme Scale tries to repair the damage.
If the failed JVM had a replica, then eXtreme Scale replaces the lost replica by
creating a new replica on a surviving JVM. If the failed JVM had a primary, then
eXtreme Scale finds the best replica on the survivors and promotes the replica to
be the new primary. eXtreme Scale then replaces the promoted replica with a new
replica that is created on the remaining servers. To maintain scalability, eXtreme
Scale preserves the replica count for partitions as servers fail.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Machine A
JVM
ObjectGrid Container 1
Primary Synchronous Asynchronous
Shard Replica Shard Replica Shard
Partition 0 Partition 1 Partition 2
Machine B
JVM
ObjectGrid Container 2
Primary Synchronous Asynchronous
Shard Replica Shard Replica Shard
Partition 1 Partition 2 Partition 0
Machine C
JVM
ObjectGrid Container 3
Primary Synchronous Asynchronous
Shard Replica Shard Replica Shard
Partition 2 Partition 0 Partition 1

Figure 35. Placement of an ObjectGrid mapset with a deployment policy of 3 partitions with a minSyncReplicas value
of 1, a maxSyncReplicas value of 1, and a maxAsyncReplicas value of 1

Reading from replicas

You can configure map sets such that a client is permitted to read from a replica
rather than being restricted to primary shards only.

It can often be advantageous to allow replicas to serve as more than simply
potential primaries in the case of failures. For example, map sets can be configured
to allow read operations to be routed to replicas by setting the replicaReadEnabled
option on the MapSet to true. The default setting is false.

For more information on the MapSet element, see the topic on the deployment
policy descriptor XML file in the Administration Guide.

Enabling reading of replicas can improve performance by spreading read requests
to more Java' virtual machines. If the option is not enabled, all read requests such
as the ObjectMap.get or the Query.getResultlterator methods are routed to the
primary. When replicaReadEnabled is set to true, some get requests might return
stale data, so an application using this option must be able to tolerate this
possibility. However, a cache miss will not occur. If the data is not on the replica,
the get request is redirected to the primary and tried again.

The replicaReadEnabled option can be used with both synchronous and
asynchronous replication.

Chapter 5. Availability overview 115

116

Load balancing across replicas

Shard

Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

The eXtreme Scale, unless configured otherwise, sends all read and write requests
to the primary server for a given replication group. The primary must service all
requests from clients. You might want to allow read requests to be sent to replicas
of the primary. Sending read requests to the replicas allows the load of the read
requests to be shared by multiple Java Virtual Machines (JVM). However, using
replicas for read requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches,
the primary should see a relatively high get request rate from clients as a result.
Likewise, in pessimistic locking mode, no local cache exists, so all requests are sent
to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read
requests to the replica does not have a big impact on performance. The frequency
of get requests from clients with caches that are full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty
cache are forwarded to the primary. The client cache gets data over time, causing
the request load to drop. If a large number of clients start concurrently, then the
load might be significant and replica read might be an appropriate performance
choice.

life cycles

Shards go through different states and events to support replication. The life cycle
of a shard includes coming online, run time, shut down, fail over and error
handling. Shards can be promoted from a replica shard to a primary shard to
handle server state changes.

Life cycle events

When primary and replica shards are placed and started, they go through a series
of events to bring themselves online and into listening mode.

Primary shard

The catalog service places a primary shard for a partition. The catalog service also
does the work of balancing primary shard locations and initiating failover for
primary shards.

When a shard becomes a primary shard, it receives a list of replicas from the
catalog service. The new primary shard creates a replica group and registers all the
replicas.

When the primary is ready, an open for business message displays in the
SystemOut.1log file for the container on which it is running. The open message, or
the CWOB]J15111 message, lists the map name, map set name, and partition
number of the primary shard that started.

CWOBJ15111: mapName:mapSetName:partitionNumber (primary) is open for business.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

See [“Shard placement” on page 114]for more information on how the catalog
service places shards.

Replica shard

Replica shards are mainly controlled by the primary shard unless the replica shard
detects a problem. During a normal life cycle, the primary shard places, registers,
and de-registers a replica shard.

When the primary shard initializes a replica shard, a message displays the log that
describes where the replica runs to indicate that the replica shard is available. The
open message, or the CWOBJ15111 message, lists the map name, map set name,
and partition number of the replica shard. This message follows:

CWOBJ15111: mapName:mapSetName:partitionNumber (synchronous replica) is open for business.

or

CWOBJ15111: mapName:mapSetName:partitionNumber (asynchronous replica) is open for business.

Asynchronous replica shard: An asynchronous replica shard polls the primary for
data. The replica automatically will adjust the poll timing if it does not receive
data from the primary, which indicates that it is caught up with the primary. It also
will adjust if it receives an error that might indicate that the primary has failed, or
if there is a network problem.

When the asynchronous replica starts replicating, it prints the following message to
the SystemOut.log file for the replica. This message might print more than one
time per CWOBJ1511 message. It will print again if the replica connects to a
different primary or if template maps are added.

CWOBJ1543I: The asynchronous replica objectGridName:mapsetName:partitionNumber started or
continued replicating from the primary. Replicating for maps: [mapName]

Synchronous replica shard: When the synchronous replica shard first starts, it is
not yet in peer mode. When a replica shard is in peer mode, it receives data from
the primary as data comes into the primary. Before entering peer mode, the replica
shard needs a copy of all of the existing data on the primary shard.

The synchronous replica copies data from the primary shard similar to an
asynchronous replica by polling for data. When it copies the existing data from the
primary, it switches to peer mode and begins to receive data as the primary
receives the data.

When a replica shard reaches peer mode, it prints a message to the SystemOut.log
file for the replica. The time refers to the amount of time that it took the replica
shard to get all of its initial data from the primary shard. The time might display
as zero or very low if the primary shard does not have any existing data to
replicate. This message may print more than one time per CWOBJ1511 message. It
will print again if the replica connects to a different primary or if template maps
are added.

CWOBJ1526I: Replica objectGridName:mapsetName:partitionNumber:mapName entering peer
mode after X seconds.

When the synchronous replica shard is in peer mode, the primary shard must
replicate transactions to all peer mode synchronous replicas. The synchronous
replica shard data remains at the same level as the primary shard data. If a
minimum number of synchronous replicas or minSync is set in the deployment
policy, that number of synchronous replicas must vote to commit before the
transaction can successfully commit on the primary.

Chapter 5. Availability overview 117

Recovery events

Replication is designed to recover from failure and error events. If a primary shard
fails, another replica takes over. If errors are on the replica shards, the replica shard
attempts to recover. The catalog service controls the placement and transactions of
new primary shards or new replica shards.

Replica shard becomes a primary shard

A replica shard becomes a primary shard for two reasons. Either the primary shard
stopped or failed, or a balance decision was made to move the previous primary
shard to a new location.

The catalog service selects a new primary shard from the existing synchronous
replica shards. If a primary move needs to take place and there are no replicas, a
temporary replica will be placed to complete the transition. The new primary
shard registers all of the existing replicas and accepts transactions as the new
primary shard. If the existing replica shards have the correct level of data, the
current data is preserved as the replica shards register with the new primary
shard. Asynchronous replicas will poll against the new primary.

Machine A Machine B

M
ObjectGrid Container 1

JVM

ObjectGrid Container 2

JVi

Primary » . [Synchronous
Shard N ”| Replica Shard
Partition 0 Partition 0

A

\\
Machine C \\ Machine D
NQvm
Container 3 ObjectGrid Container 4

Asynchronous
Replica Shard
Partition 0

Synchronous

Replica Shard
Partition 0

Figure 36. Example placement of an ObjectGrid map set for the partition0 partition. The deployment policy has a
minSyncReplicas value of 1, a maxSyncReplicas value of 2, and a maxAsyncReplicas value of 1.

118 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Machine A

Machine B

JVM
ObjectGrid Container 2

. /|Synchronous

”| Replica Shard
Partition 0

N Machine D

Machine C \
JVM Nuwm
ObjectGrid {ontainer 3 ObjectGrid Container 4
Synchronous Asynchronous
Replica Shard Replica Shard
Partition O Partition 0
Figure 37. The container for the primary shard fails
Machine A Machine B
JVM
ObjectGrid Container 2
/Synchronous Primary
Repllca Shard | [Shard
Partltlon 0 Partition 0
Machine C \\ Machine D
JVM N VM
ObjectGrid|Container 3 ObjectGrid Container 4
Synchronous Asynchronous
Replica Shard Replica Shard
Partition 0 Partition 0

Figure 38. The synchronous replica shard on ObjectGrid container 2 becomes the primary shard

Chapter 5. Availability overview

119

Machine A Machine B

JVM
ObjectGrid Container 2
Primary Shard
Partition 0
yd
Machine C / Machine D
JVM JVM
ObjectGrid Cont ObjectGrid Gontainer 4

Synchronous Asynchronous
Replica Shard

Partition O

Replica Shard
Partition O

Figure 39. Machine B contains the primary shard. Depending on how automatic repair mode is set and the availability
of the containers, a new synchronous replica shard might or might not be placed on a machine.

Replica shard recovery

A synchronous replica shard is controlled by the primary shard. However, if a
replica shard detects a problem, it can trigger a reregister event to correct the state
of the data. The replica clears the current data and gets a fresh copy from the
primary.

When a replica shard initiates a reregister event, the replica prints a log message.

CWOBJ15241: Replica listener
objectGridName:mapSetName:partition must re-register with the primary.
Reason: Exception Tisted

If a transaction causes an error on a replica shard during processing, then the
replica shard is in an unknown state. The transaction successfully processed on the
primary shard, but something went wrong on the replica. To correct this situation,
the replica initiates a reregister event. With a new copy of data from the primary,
the replica shard can continue. If the same problem reoccurs, the replica shard does
not continuously reregister. See [‘Failure events”| for more details.

Failure events

A replica can stop replicating data if it encounters error situations for which the
replica cannot recover.

Too many register attempts

If a replica triggers a reregister multiple times without successfully committing
data, the replica stops. Stopping prevents a replica from entering an endless
reregister loop. By default, a replica shard tries to reregister three times in a row
before stopping.

If a replica shard reregisters too many times, it prints the following message to the
log.

CWOBJ1537E: objectGridName:mapSetName:partition exceeded the maximum number
of times to reregister (timesAllowed) without successful transactions..

120 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

If the replica is unable to recover by reregistering, a pervasive problem might exist
with the transactions that are relative to the replica shard. A possible problem
could be missing resources on the classpath if an error occurs while inflating the
keys or values from the transaction.

Failure while entering peer mode

If a replica attempts to enter peer mode and experiences an error processing the
bulk existing data from the primary (the checkpoint data), the replica shuts down.
Shutting down prevents a replica from starting with incorrect initial data. Because
it receives the same data from the primary if it reregisters, the replica does not
retry.

If a replica shard fails to enter peer mode, it prints the following message to the
log:

CWOBJ1527W Replica objectGridName:mapSetName:partition:mapName failed to enter peer mode after numSeconds seconds.

An additional message displays in the log that explains why the replica failed to
enter peer mode.

Recovery after re-register or peer mode failure

If a replica fails to re-register or enter peer mode, the replica is in an inactive state
until a new placement event occurs. A new placement event might be a new server
starting or stopping. You can also start a placement event by using the
triggerPlacement method on the PlacementServiceMBean Mbean.

Configuring zones for replica placement

Zone support allows sophisticated configurations for replica placement across data
centers. With this capability, grids of thousands of partitions can be easily managed
using a handful of optional placement rules. A data center can be different floors of
a building, different buildings, or even different cities or other distinctions as
configured with zone rules.

Flexibility of zones

You can place shards into zones. This function allows you to have more control
over how eXtreme Scale places shards on a grid. Java virtual machines that host an
eXtreme Scale server can be tagged with a zone identifier. The deployment file can
now include one or more zone rules and these zone rules are associated with a
shard type. The following section gives an overview of zone usage. For more
information, consult the Configuring zones for replica placement topic in the
Administration Guide.

Placement zones control of how the eXtreme Scale assigns out primaries and
replicas to configure advanced topologies.

A Java virtual machine can have multiple containers but only 1 server. A container
can host multiple shards from a single ObjectGrid.

This capability is useful to make sure that replicas and primaries are placed in
different locations or zones for better high availability. Normally, eXtreme Scale
does not place a primary and replica shard on Java virtual machines with the same
IP address. This simple rule normally prevents two eXtreme Scale servers from
being placed on the same physical computer. However, you might require a more

Chapter 5. Availability overview 121

flexible mechanism. For example, you might be using two blade chassis and want
the primaries to be striped across both chassis and the replica for each primary be
placed on the other chassis from the primary.

Striped primaries means that primaries are placed into each zone and the replica
for each primary is located in the opposite zone. For example primary 0 would be
in zoneA, and sync replica 0 would be in zoneB. Primary 1 would be in zoneB,
and sync replica 1 would be in zoneA.

The chassis name would be the zone name in this case. Alternatively, you might
name zones after floors in a building and use zones to make sure that primaries
and replicas for the same data are on different floors. Buildings and data centers
are also possible. Testing has been done across data centers using zones as a
mechanism to ensure the data is adequately replicated between the data centers. If
you are using the HTTP Session Manager for eXtreme Scale, you can also use
zones. With this feature, you can deploy a single Web application across three data
centers and ensure that HTTP sessions for users are replicated across data centers
so that the sessions can be recovered even if an entire data center fails.

WebSphere eXtreme Scale is aware of the need to manage a large grid over
multiple data centers. It can make sure that backups and primaries for the same
partition are located in different data centers if that is required. It can put all
primaries in data center 1 and all replicas in data center 2 or it can round robin
primaries and replicas between both data centers. The rules are flexible so that
many scenarios are possible. eXtreme Scale can also manage thousands of servers,
which together with completely automatic placement with data center awareness
makes such large grids affordable from an administrative point of view.
Administrators can specify what they want to do simply and efficiently.

As an administrator, use placement zones to control where primary and replica
shards are placed, which allows for the set up of advanced high performance and
highly available topologies. You can define a zone to any logical grouping of
eXtreme Scale processes, as noted above: These zones can correspond to physical
workstation locations such as a data center, a floor of a data center, or a blade
chassis. You can stripe data across zones, which provides increased availability, or
you can split the primaries and replicas into separate zones when a hot standby is
required.

Associating an eXtreme Scale server with a zone that is not
using WebSphere Extended Deployment

If eXtreme Scale is used with Java Standard Edition or an application server that is
not based on WebSphere Extended Deployment Version 6.1, then a JVM that is a
shard container can be associated with a zone if using the following techniques.
Applications using the startOgServer script

The startOgServer script is used to start an eXtreme Scale application when it is
not being embedded in an existing server. The -zone parameter is used to specify
the zone to use for all containers within the server.

Specifying the zone when starting a container using APIs

The zone name for a container can be specified as described in the Embedded

server APl documentation in the Programming Guide.

122 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Associating WebSphere Extended Deployment nodes with zones

If you are using eXtreme Scale with WebSphere Extended Deployment Java EE
applications, you can leverage WebSphere Extended Deployment node groups to
place servers in specific zones.

In eXtreme Scale, a JVM is only allowed to be a member of a single zone.
However, WebSphere allows a node to be a part of multiple node groups. You can
use this functionality of eXtreme Scale zones if you ensure that each of your nodes
is in only one zone node group.

Use the following syntax to name your node group in order to declare it a zone:
ReplicationZone<UniqueSuffix>. Servers running on a node that is part of such a
node group are included in the zone specified by the node group name. The
following is a description of an example topology.

First, you configure 4 nodes: nodel, node2, node3, and node4, each node having 2
servers. Then you create a node group named ReplicationZoneA and a node group
named ReplicationZoneB. Next, you add nodel and node2 to ReplicationZoneA
and add node3 and node4 to ReplicationZoneB.

When the servers on nodel and node2 are started, they will become part of
ReplicationZoneA, and likewise the servers on node3 and node4 will become part
of ReplicationZoneB.

A grid-member JVM checks for zone membership at startup only. Adding a new
node group or changing the membership only has an impact on newly started or
restarted JVMs.

Zone rules

An eXtreme Scale partition has one primary shard and zero or more replica shards.
For this example, consider the following naming convention for these shards. P is
the primary shard, S is a synchronous replica and A is an asynchronous replica. A
zone rule has three components:

¢ A rule name
e A list of zones

* An inclusive or exclusive flag

The zone name for a container can be specified as described in the documentation
for Embedded server AP} A zone rule specifies the possible set of zones in which
a shard can be placed. The inclusive flag indicates that after a shard is placed in a
zone from the list, then all other shards are also placed in that zone. An exclusive
setting indicates that each shard for a partition is placed in a different zone in the
zone list. For example, using an exclusive setting means that if there are three
shards (primary, and two synchronous replicas), then the zone list must have three
zones.

Each shard can be associated with one zone rule. A zone rule can be shared
between two shards. When a rule is shared then the inclusive or exclusive flag
extends across shards of all types sharing a single rule.

Examples

A set of examples showing various scenarios and the deployment configuration to
implement the scenarios follows.

Chapter 5. Availability overview 123

Striping primaries and replicas across zones

You have three blade chassis, and want primaries distributed across all three, with
a single synchronous replica placed in a different chassis than the primary. Define
each chassis as a zone with chassis names ALPHA, BETA, and GAMMA. An example
deployment XML follows:

<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmins:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalLocation=
"http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmins="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="1ibrary">
<mapSet name="ms1" numberOfPartitions="37" minSyncReplicas="1"
maxSyncReplicas="1" maxAsyncReplicas="0">
<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="stripeZone"/>
<shardMapping shard="S" zoneRuleRef="stripeZone"/>
<zoneRule name ="stripeZone" exclusivePlacement="true" >
<zone name="ALPHA" />
<zone name="BETA" />
<zone name="GAMMA" />
</zoneRule>
</zoneMetadata>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

This deployment XML contains a grid called library with a single Map called book.
It uses four partitions with a single synchronous replica. The zone metadata clause
shows the definition of a single zone rule and the association of zone rules with
shards. The primary and synchronous shards are both associated with the zone
rule "stripeZone". The zone rule has all three zones in it and it uses exclusive
placement. This rule means that if the primary for partition 0 is placed in ALPHA
then the replica for partition 0 will be placed in either BETA or GAMMA. Similarly,
primaries for other partitions are placed in other zones and the replicas will be
placed.

Asynchronous replica in a different zone than primary and synchronous replica

In this example, two buildings exist with a high latency connection between them.
You want no data loss high availability for all scenarios. However, the performance
impact of synchronous replication between buildings leads you to a trade off. You
want a primary with synchronous replica in one building and an asynchronous
replica in the other building. Normally, the failures are JVM crashes or computer
failures rather than large scale issues. With this topology, you can survive normal
failures with no data loss. The loss of a building is rare enough that some data loss
is acceptable in that case. You can make two zones, one for each building. The
deployment XML file follows:

<?xml version="1.0" encoding="UTF-8"7>

<deploymentPolicy xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmins="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="1ibrary">
<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="1"
maxSyncReplicas="1" maxAsyncReplicas="1">
<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="primarySync"/>
<shardMapping shard="S" zoneRuleRef="primarySync"/>
<shardMapping shard="A" zoneRuleRef="aysnc"/>
<zoneRule name ="primarySync" exclusivePlacement="false" >
<zone name="B1dA" />
<zone name="B1dB" />
</zoneRule>
<zoneRule name="aysnc" exclusivePlacement="true">
<zone name="B1dA" />
<zone name="B1dB" />
</zoneRule>

124 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

</zoneMetadata>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

The primary and synchronous replica share a primaySync zone rule with an
exclusive flag setting of false. So, after the primary or sync gets placed in a zone,
then the other is also placed in the same zone. The asynchronous replica uses a
second zone rule with the same zones as the primarySync zone rule but it uses the
exclusivePlacement attribute set to true. This attribute indicates that means a
shard cannot be placed in a zone with another shard from the same partition. As a
result, the asynchronous replica does not get placed in the same zone as the
primary or synchronous replicas.

Placing all primaries in one zone and all replicas in another zone

Here, all primaries are in one specific zone and all replicas in a different zone. We
will have a primary and a single asynchronous replica. All replicas will be in zone
A and primaries in B.

<?xml version="1.0" encoding="UTF-8"?>

<deploymentPolicy xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmins="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Tlibrary">
<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="1">
<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="primaryRule"/>
<shardMapping shard="A" zoneRuleRef="replicaRule"/>
<zoneRule name ="primaryRule">
<zone name="A" />
</zoneRule>
<zoneRule name="replicaRule">
<zone name="B" />
</zoneRule>
</zoneMetadata>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

Here, you can see two rules, one for the primaries (P) and another for the replica
(A).

Zones over wide area networks (WAN)

You might want to deploy a single eXtreme Scale over multiple buildings or data
centers with slower network interconnections. Slower network connections lead to
lower bandwidth and higher latency connections. The possibility of network
partitions also increases in this mode due to network congestion and other factors.
eXtreme Scale approaches this harsh environment in the following ways.

Limited heart beating between zones

Java virtual machines grouped together into core groups do heart beat each other.
When the catalog service organizes Java virtual machines in to groups, those
groups do not span zones. A leader within that group pushes membership
information to the catalog service. The catalog service verifies any reported failures
before taking action. It does this by attempting to connect to the suspect Java
virtual machines. If the catalog service sees a false failure detection then it takes no
action as the core group partition will heal in a short period of time.

Chapter 5. Availability overview 125

The catalog service will also heart beat core group leaders periodically at a slow
rate to handle the case of core group isolation.

Multi-master data grid replication topologies

Using the multi-master asynchronous replication feature, two or more data grids
can become exact mirrors of one other. This mirroring is accomplished using
asynchronous replication among links connecting the data grids together. Each data
grid is hosted in an independent catalog service domain, with its own catalog
service, container servers, and a unique name. With the multi-master asynchronous
replication feature, you can use links to interconnect a collection of these catalog
service domains. Then, you can synchronize the catalog service domains with
replication over the links. You can construct almost any topology because you
choose how to define links among catalog service domains.

7.1% Multi-master data grid replication is a significant new feature in Version
7.1. The feature is also called AP (availability and partitioning) replication in the
context of the CAP theorem. The CAP theorem states that a distributed computer
system cannot support more than two of the following three properties:
consistency, availability, and partition tolerance.

See [“Initial considerations for multi-master topologies” on page 23| for map sets
that are not replicated.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. You can use a link between two
catalog service domains to track data changes. For more information about how to
set up communication between catalog service domains for multi-master
replication, see [“Available topologies for multi-master replication” on page 25)

Also, depending on the requirements of your environment, you can optimize the
topology design for multi-master replication by taking several factors into
consideration: arbitration, linking, and performance. Read more at
fconsiderations for multi-master replication” on page 28|

Available topologies for multi-master replication

You have several different options when choosing the topology for your
deployment that incorporates multi-master replication.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. With a link, two catalog service
domains can communicate data changes. For example, the simplest topology is a
pair of catalog service domains with a single link between them. The catalog
service domains are named alphabetically: A, B, C, and so on, from the left. A link
can cross a wide area network (WAN), spanning large distances. Even if the link is
interrupted, you can still change data in either catalog service domain. The
topology reconciles changes when the link reconnects the catalog service domains.
Links automatically try to reconnect if the network connection is interrupted.

126 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

&

After you set up the links, then eXtreme Scale first tries to make every catalog
service domain identical. Then, eXtreme Scale tries to maintain the identical
conditions as changes occur in any catalog service domain. The goal is for each
catalog service domain to be an exact mirror of every other catalog service domain
connected by the links. The replication links between the catalog service domains
help ensure that any changes made in one domain are copied to the other
domains.

Line topologies

Although it is such a simple deployment, a line topology demonstrates some
qualities of the links. First, it is not necessary for a catalog service domain to be
connected directly to every other catalog service domain to receive changes.
Domain B pulls changes from Domain A. Domain C receives changes from Domain
A through Domain B, which connects Domains A and C. Similarly, Domain D
receives changes from the other domains through Domain C. This ability spreads
the load of distributing changes away from the source of the changes.

o~~~

Notice that if Domain C fails, the following would occur:

1. Domain D would be orphaned until Domain C was restarted

2. Domain C would synchronize itself with Domain B, which is a copy of Domain
A

3. Domain D would use Domain C to synchronize itself with changes on Domains
A and B. These changes initially occurred while Domain D was orphaned
(while Domain C was down).

Ultimately, Domains A, B, C, and D would all become identical to one other again.
Ring topologies

Another option you have with multi-master replication is a ring topology, which is
more resilient than the topologies described in the previous sections. A catalog
service domain or a single link can fail. Still, the surviving catalog service domains
can obtain changes by traveling around the ring, away from the failure. Each
catalog service domain has two links to the other catalog service domains. And
each catalog service domain has at most two links, no matter how large the ring
topology. Changes from a particular domain might travel through several domains
before all of them mirror each other. Going through several domains causes
potentially high latency, similar to the processes for a line topology.

Chapter 5. Availability overview 127

-
z %

% z
-

You can also deploy a more sophisticated ring topology, with a root catalog service
domain at the center of the ring. The root catalog service domain functions as the
central point of reconciliation. The other catalog service domains act as remote
points of reconciliation for changes occurring in the root catalog service domain.
The root catalog service domain can arbitrate changes among the catalog service
domains. If a ring topology contains more than one ring around a root catalog
service domain, the domain can only arbitrate changes among the innermost ring.
However, the results of the arbitration spread throughout the catalog service
domains in the other rings.

Hub-and-spoke topologies

With a hub-and-spoke topology, changes travel through a hub catalog service
domain. Because the hub is the only intermediate catalog service domain that is
specified, hub-and-spoke topologies have lower latency. The hub domain is
connected to every spoke domain through a link. The hub distributes changes
among the catalog service domains. The hub acts as a point of reconciliation for
collisions. In an environment with a high update rate, the hub might require run
on more hardware than the spokes to remain synchronized. WebSphere eXtreme
Scale is designed to scale linearly, meaning you can make the hub larger, as
needed, without difficulty. However, if the hub fails, then changes are not
distributed until the hub restarts. Any changes on the spoke catalog service
domains will be distributed after the hub is reconnected.

128 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

g

You can also use a strategy with fully replicated clients, a topology variation which
uses a pair of eXtreme Scale servers running as a hub. Every client creates a
self-contained single container data grid with a catalog in the client JVM. A client
uses its data grid to connect to the hub catalog. This connection causes the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration domain, distributing
changes to all connected clients. The fully replicated clients topology provides a
reliable L2 cache for an object relational mapper, such as OpenJPA. Changes are
distributed quickly among client JVMs through the hub. If the cache size can be
contained within the available heap space, the topology is a reliable architecture
for this style of L2.

Use multiple partitions to scale the hub domain on multiple JVMs, if necessary.
Because all of the data still must fit in a single client JVM, multiple partitions
increase the capacity of the hub to distribute and arbitrate changes. However,
having multiple partitions does not change the capacity of a single domain.

Tree topologies

You can also use an acyclic directed tree. An acyclic tree has no cycles or loops,
and a directed setup limits links to existing only between parents and children.
You can use the tree topology when you have many catalog service domains such
that the ring topology would overwork the hub. You can also use a tree if you
require being able to add child catalog service domains without updating the root
catalog service domain.

Chapter 5. Availability overview 129

130

Z %

A tree topology can still have a central point of reconciliation in the root catalog
service domain. The second level can still function as a remote point of
reconciliation for changes occurring in the catalog service domain beneath them.
The root catalog service domain can arbitrate changes between the catalog service

domains on the second level only. You can also use N-ary trees, each of which
have N children at each level. Each catalog service domain connects out to n links.

Topology considerations for multi-master replication

When implementing multi-master replication, you must consider aspects in your
design such as: arbitration, linking, and performance.

Linking considerations in topology design

Ideally, a topology includes the minimum number of links while optimizing
trade-offs among change latency, fault tolerance, and performance characteristics.

* Change latency
Change latency is determined by the number of intermediate catalog service
domains a change must go through before arriving at a specific catalog service
domain.
A topology has the best change latency when it eliminates intermediate catalog
service domains by linking every catalog service domain to every other catalog
service domain. However, a catalog service domain must perform replication
work in proportion to its number of links. For large topologies, the sheer
number of links to be defined can cause an administrative burden.
The speed at which a change is copied to other catalog service domains depends
on additional factors, such as:

— Processor and network bandwidth on the source catalog service domain

— The number of intermediate catalog service domains and links between the
source and target catalog service domain

— The processor and network resources available to the source, target, and
intermediate catalog service domains

e Fault tolerance

Fault tolerance is determined by how many paths exist between two catalog
service domains for change replication.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

If you have only one link between a given pair of catalog service domains, a link
failure disallows propagation of changes. Similarly, changes are not propagated
between catalog service domains if any of the intermediate domains experiences
link failure. Your topology could have a single link from one catalog service
domain to another such that the link passes through intermediate domains. If so,
then changes are not propagated if any of the intermediate catalog service
domains is down.

Consider the line topology with four catalog service domains A, B, C, and D:

o~~~

If any of these conditions hold, Domain D does not see any changes from A:

— Domain A is up and B is down

— Domains A and B are up and C is down
— The link between A and B is down

— The link between B and C is down

— The link between C and D is down

In contrast, with a ring topology, each catalog service domain can receive
changes from either direction.

-
z %

For example, if a given catalog service in your ring topology is down, then the

two adjacent domains can still pull changes directly from each other.

All changes are propagated through the hub. Thus, as opposed to the line and
ring topologies, the hub-and-spoke design is susceptible to breakdown if the hub
fails.

Chapter 5. Availability overview 131

g

A single catalog service domain is resilient to a certain amount of service loss.
However, larger failures such as wide network outages or loss of links between
physical data centers can disrupt any of your catalog service domains.

Linking and performance

The number of links defined on a catalog service domain affects performance.
More links use more resources and replication performance can drop as a result.
The ability to retrieve changes for a domain A through other domains effectively
off-loads domain A from replicating its transactions everywhere. The change
distribution load on a domain is limited by the number of links it uses, not how
many domains are in the topology. This load property provides scalability, so the
domains in the topology can share the burden of change distribution.

A catalog service domain can retrieve changes indirectly through other catalog
service domains. Consider a line topology with five catalog service domains.

A <=>B <=>(C<=>D<=>FE

— A pulls changes from B, C, D, and E through B

— B pulls changes from A and C directly, and changes from D and E through C

— C pulls changes from B and D directly, and changes from A through B and E
through D

— D pulls changes from C and E directly, and changes from A and B through C
— E pulls changes from D directly, and changes from A, B, and C through D

The distribution load on catalog service domains A and E is lowest, because they
each have a link only to a single catalog service domain. Domains B, C, and D
each have a link to two domains. Thus, the distribution load on domains B, C,
and D is double the load on domains A and E. The workload depends on the
number of links in each domain, not on the overall number of domains in the
topology. Thus, the described distribution of loads would remain constant, even
if the line contained 1000 domains.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Arbitration considerations in topology design

Change collisions might occur if the same records can be changed simultaneously
in two places. Set up each catalog service domain to have about the same amount
of processor, memory, network resources. You might observe that catalog service
domains performing change collision handling (arbitration) use more resources
than other catalog service domains. Collisions are detected automatically. They are
handled with one of two mechanisms:

* Default collision arbiter The default protocol is to use the changes from the
lexically lowest named catalog service domain. For example, if catalog service
domain A and B generate a conflict for a record, then the change from catalog
service domain B is ignored. Catalog service domain A keeps its version and the
record in catalog service domain B is changed to match the record from catalog
service domain A. This behavior applies as well for applications where users or
sessions are normally bound or have affinity with one of the data grids.

* Custom collision arbiter Applications can provide a custom arbiter. When a
catalog service domain detects a collision, it starts the arbiter. For information
about developing a useful custom arbiter, see [Developing custom arbiters for]
[multi-master replication}

For topologies in which collisions are possible, consider implementing a
hub-and-spoke topology or a tree topology. These two topologies are conducive to
avoiding constant collisions, which can happen in the following scenarios:

1. Multiple catalog service domains experience a collision
2. Each catalog service domain handles the collision locally, producing revisions
3. The revisions collide, resulting in revisions of revisions

To avoid collisions, choose a specific catalog service domain, called an arbitration
catalog service domain as the collision arbiter for a subset of catalog service domains.
For example, a hub-and-spoke topology might use the hub as the collision handler.
The spoke collision handler ignores any collisions that are detected by the spoke
catalog service domains. The hub catalog service domain creates revisions,
preventing unexpected collision revisions. The catalog service domain that is
assigned to handle collisions must link to all of the domains for which it is
responsible for handling collisions. In a tree topology, any internal parent domains
handle collisions for their immediate children. In contrast, if you use a ring
topology, you cannot designate one catalog service domain in the ring as the
arbiter.

The following table summarizes the arbitration approaches that are most
compatible with various topologies.

Table 13. Arbitration approaches. This table states whether application arbitration is
compatible with various technologies.

Application
Topology ration? Notes
A line of two catalog Yes Choose one catalog service domain as the
service domains arbiter.
A line of three catalog Yes The middle catalog service domain must be
service domains the arbiter. Think of the middle catalog
service domain as the hub in a simple
hub-and-spoke topology.
A line of more than three | No Application arbitration is not supported.
catalog service domains

Chapter 5. Availability overview 133

Table 13. Arbitration approaches (continued). This table states whether application
arbitration is compatible with various technologies.

Application
Topology ration? Notes
A hub with N spokes Yes Hub with links to all spokes must be the

arbitration catalog service domain.

A ring of N catalog No Application arbitration is not supported.
service domains
An acyclic, directed tree | Yes All root nodes must rate their direct
(N-ary tree) descendants only.

Multi-master replication performance considerations

Take the following limitations into account when using multi-master replication

topologies:

* Change distribution tuning (Discussed in previous section, "Linking and

performance.")

* Replication link performance WebSphere eXtreme Scale creates a single TCP/IP
socket between any pair of JVMs. All traffic between the JVMs occurs through
the single socket, including traffic from multi-master replication. Catalog service
domains are hosted on at least n container JVMSs, providing at least n TCP links
to peer catalog service domains. Thus, the catalog service domains with larger
numbers of containers have higher replication performance levels. More
containers require more processor and network resources.

* TCP sliding window tuning and RFC 1323 [RFC 1323[support on both ends of a
link yields more data for a round trip. This support results in higher throughput,
expanding the capacity of the window by a factor of about 16,000.

Recall that TCP sockets use a sliding window mechanism to control the flow of
bulk data. This mechanism typically limits the socket to 64 KB for a round-trip
interval. If the round-trip interval is 100 ms, then the bandwidth is limited to
640 KB/second without additional tuning. Fully using the bandwidth available
on a link might require tuning that is specific to an operating system. Most
operating systems include tuning parameters, including RFC 1323 options, to
enhance throughput over high-latency links.

Several factors can affect replication performance:

— The speed at which eXtreme Scale retrieves changes.

— The speed at which eXtreme Scale can service retrieve replication requests.

— The sliding window capacity.

— With network buffer tuning on both sides of a link, eXtreme Scale retrieves
changes over the socket efficiently.

* Object Serialization All data must be serializable. If a catalog service domain is
not using COPY_TO_BYTES, then the catalog service domain must use Java
serialization or ObjectTransformers to optimize serialization performance.

* Compression WebSphere eXtreme Scale compresses all data sent between
catalog service domains by default. Disabling compression is not currently
available.

* Memory tuning The memory usage for a multi-master replication topology is
largely independent of the number of catalog service domains in the topology.

Multi-master replication adds a fixed overhead per Map entry to handle
versioning. Each container also tracks a fixed amount of data for each catalog
service domain in the topology. A topology with two catalog service domains

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.ietf.org/rfc/rfc1323.txt

uses approximately the same memory as a topology with 50 catalog service
domains. WebSphere eXtreme Scale does not use replay logs or similar queues in
its implementation. Thus, there is no recovery structure ready in the case that a
replication link is unavailable for a substantial period and later restarts.

Distributing transactions

Use Java Message Service (JMS) for distributed transaction changes between
different tiers or in environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in
environments on mixed platforms. For example, some applications that use
eXtreme Scale might be deployed on IBM WebSphere Application Server
Community Edition, Apache Geronimo, or Apache Tomcat, whereas other
applications might run on WebSphere Application Server Version 6.x. JMS is ideal
for distributed changes between eXtreme Scale peers in these different
environments. The high availability manager message transport is very fast, but
can only distribute changes to Java virtual machines that are in a single core
group. JMS is slower, but allows larger and more diverse sets of application clients
to share an ObjectGrid. JMS is ideal when sharing data in an ObjectGrid between a
fat Swing client and an application deployed on WebSphere Extended Deployment.

The built-in Client Invalidation Mechanism and Peer-to-Peer Replication are
examples of J]MS-based transactional changes distribution. See the information
about configuring peer-to-peer replication with JMS in the Administration Guide for
more information.

Implementing JMS

JMS is implemented for distributing transaction changes by using a Java object that
behaves as an ObjectGridEventListener. This object can propagate the state in the
following four ways:

1. Invalidate: Any entry that is evicted, updated or deleted is removed on all peer
Java virtual machines when they receive the message.

2. Invalidate conditional: The entry is evicted only if the local version is the same
or older than the version on the publisher.

3. Push: Any entry that was evicted, updated, deleted or inserted is added or
overwritten on all peer Java virtual machines when they receive the J]MS
message.

4. Push conditional: The entry is only updated or added on the receive side if the
local entry is less recent than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the
transactionEnd event. When eXtreme Scale invokes this method, the plug-in
attempts to convert the LogSequence list for each map that is touched by the
transaction to a JMS message and then publish it. The plug-in can be configured to
publish changes for all maps or a subset of maps. LogSequence objects are
processed for the maps that have publishing enabled. The
LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for
each map to a stream. After all LogSequences are serialized to the stream, then a
JMS ObjectMessage is created and published to a well-known topic.

Chapter 5. Availability overview 135

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages
that are published to the well known topic. When a message arrives, it passes the
message contents to the LogSequenceTransformer class where it is converted to a
set of LogSequence objects. Then, a no-write-through transaction is started. Each
LogSequence object is provided to the Session.processLogSequence method, which
updates the local Maps with the changes. The processLogSequence method
understands the distribution mode. The transaction is committed and the local
cache now reflects the changes. For more information about using JMS to distribute
transaction changes, see the information about distributing changes between peer
Java Virtual Machines in the Administration Guide.

Map sets for replication
Replication is enabled by associating BackingMaps with a MapSet.

A MapSet is a collection of maps that are categorized by partition-key. This
partition-key is derived from the individual map's key by taking its hash modulo
the number of partitions. Thus, if one group of maps within the MapSet has
partition-key X, those maps will be stored in a corresponding partition X in the
data grid. If another group has partition-key Y, all of the maps will be stored in
partition Y, and so on. Also, the data within the maps is replicated based on the
policy defined on the MapSet, which is only used for distributed eXtreme Scale
topologies (unnecessary for local instances).

See [“Partitioning” on page 83| for more details.

MapSets are assigned what number of partitions they will have and a replication
policy. The MapSet replication configuration simply identifies the number of
synchronous and asynchronous replica shards a MapSet should have in addition to
the primary shard. For example, if there is to be 1 synchronous and 1
asynchronous replica, all of the BackingMaps assigned to the MapSet will each
have a replica shard distributed automatically within the set of available containers
for the eXtreme Scale. The replication configuration can also enable clients to read
data from synchronously replicated servers. This can spread the load for read
requests over additional servers in the eXtreme Scale. Replication only has a
programming model impact when preloading the BackingMaps.

For details on the various configuration options, see below:

136 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 6. Transaction processing overview

WebSphere eXtreme Scale uses transactions as its mechanism for interaction with
data.

To interact with data, the thread in your application needs its own session. When
the application wants to use the ObjectGrid on a thread, call one of the
ObjectGrid.getSession methods to obtain a thread. With the session, the application
can work with data that is stored in the ObjectGrid maps.

When an application uses a Session object, the session must be in the context of a
transaction. A transaction begins and commits or begins and rolls back using the
begin, commit, and rollback methods on the Session object. Applications can also
work in auto-commit mode, in which the Session automatically begins and
commits a transaction whenever an operation is performed on the map.
Auto-commit mode cannot group multiple operations into a single transaction, so
it is the slower option if you are creating a batch of multiple operations into a
single transaction. However, for transactions that contain only one operation,
auto-commit is the faster option.

Transactions

Transactions have many advantages for data storage and manipulation. You can
use transactions to protect the data grid from concurrent changes, to apply
multiple changes as a concurrent unit, to replicate data and to implement a life
cycle for locks on changes.

When a transaction starts, WebSphere eXtreme Scale allocates a special difference
map to hold the current changes or copies of key and value pairs that the
transaction uses. Typically, when a key and value pair is accessed, the value is
copied before the application receives the value. The difference map tracks all
changes for operations such as insert, update, get, remove, and so on. Keys are not
copied because they are assumed to be immutable. If an ObjectTransformer object
is specified, then this object is used for copying the value. If the transaction is
using optimistic locking, then before images of the values are also tracked for
comparison when the transaction commits.

If a transaction is rolled back, then the difference map information is discarded,
and locks on entries are released. When a transaction commits, the changes are
applied to the maps and locks are released. If optimistic locking is being used, then
eXtreme Scale compares the before image versions of the values with the values
that are in the map. These values must match for the transaction to commit. This
comparison enables a multiple version locking scheme, but at a cost of two copies
being made when the transaction accesses the entry. All values are copied again
and the new copy is stored in the map. WebSphere eXtreme Scale performs this
copy to protect itself against the application changing the application reference to
the value after a commit.

You can avoid using several copies of the information. The application can save a
copy by using pessimistic locking instead of optimistic locking as the cost of
limiting concurrency. The copy of the value at commit time can also be avoided if
the application agrees not to change a value after a commit.

© Copyright IBM Corp. 2009, 2011 137

Advantages of transactions
Use transactions for the following reasons:

By using transactions, you can:

* Roll back changes if an exception occurs or business logic needs to undo state
changes.

¢ To apply multiple changes as an atomic unit at commit time.

* Hold and release locks on data to apply multiple changes as an atomic unit at
commit time.

¢ Protect a thread from concurrent changes.
* Implement a life cycle for locks on changes.
* Produce an atomic unit of replication.

Transaction size

Larger transactions are more efficient, especially for replication. However, larger
transactions can adversely impact concurrency because the locks on entries are
held for a longer period of time. If you use larger transactions, you can increase
replication performance. This performance increase is important when you are
pre-loading a Map. Experiment with different batch sizes to determine what works
best for your scenario.

Larger transactions also help with loaders. If a loader is being used that can
perform SQL batching, then significant performance gains are possible depending
on the transaction and significant load reductions on the database side. This
performance gain depends on the Loader implementation.

Automatic commit mode

If no transaction is actively started, then when an application interacts with an
ObjectMap object, an automatic begin and commit operation is done on behalf of
the application. This automatic begin and commit operation works, but prevents
rollback and locking from working effectively. Synchronous replication speed is
impacted because of the very small transaction size. If you are using an entity
manager application, then do not use automatic commit mode because objects that
are looked up with the EntityManager.find method immediately become
unmanaged on the method return and become unusable.

External transaction coordinators

Typically, transactions begin with the session.begin method and end with the
session.commit method. However, when eXtreme Scale is embedded, the
transactions might be started and ended by an external transaction coordinator. If
you are using an external transaction coordinator, you do not need to call the
session.begin method and end with the session.commit method. If you are using
WebSphere Application Server, you can use the WebSphereTranscationCallback
plug-in.

CopyMode attribute

You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects.

138 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects. The copy mode has the following values:

* COPY_ON_READ_AND_COMMIT
* COPY_ON_READ

« NO_COPY

* COPY_ON_WRITE

* COPY_TO_BYTES

The COPY_ON_READ_AND_COMMIT value is the default. The COPY_ON_READ
value copies on the initial data retrieved, but does not copy at commit time. This
mode is safe if the application does not modify a value after committing a
transaction. The NO_COPY value does not copy data, which is only safe for
read-only data. If the data never changes then you do not need to copy it for
isolation reasons.

Be careful when you use the NO_COPY attribute value with maps that can be
updated. WebSphere eXtreme Scale uses the copy on first touch to allow the
transaction rollback. The application only changed the copy, and as a result,
eXtreme Scale discards the copy. If the NO_COPY attribute value is used, and the
application modifies the committed value, completing a rollback is not possible.
Modifying the committed value leads to problems with indexes, replication, and so
on because the indexes and replicas update when the transaction commits. If you
modify committed data and then roll back the transaction, which does not actually
roll back at all, then the indexes are not updated and replication does not take
place. Other threads can see the uncommitted changes immediately, even if they
have locks. Use the NO_COPY attribute value for read-only maps or for
applications that complete the appropriate copy before modifying the value. If you
use the NO_COPY attribute value and call IBM support with a data integrity
problem, you are asked to reproduce the problem with the copy mode set to
COPY_ON_READ_AND_COMMIT.

The COPY_TO_BYTES value stores values in the map in a serialized form. At read
time, eXtreme Scale inflates the value from a serialized form and at commit time it
stores the value to a serialized form. With this method, a copy occurs at both read
and commit time.

The default copy mode for a map can be configured on the BackingMap object.
You can also change the copy mode on maps before you start a transaction by
using the ObjectMap.setCopyMode method.

An example of a backing map snippet from an objectgrid.xml file that shows how
to set the copy mode for a given backing map follows. This example assumes that
you are using cc as the objectgrid/config namespace.

<cc:backingMap name="RuntimelLifespan" copyMode="NO_COPY"/>

See the information about copyMode best practices in the Programming Guide for
more information.

Map entry locking

An ObjectGrid BackingMap supports several locking strategies for maps to
maintain cache entry consistency.

Chapter 6. Transaction processing overview 139

Lock manager configuration

When either a PESSIMISTIC or an OPTIMISTIC lock strategy is used, a lock
manager is created for the BackingMap. The lock manager uses a hash map to
track entries that are locked by one or more transactions. If many map entries exist
in the hash map, more lock buckets can result in better performance. The risk of
Java synchronization collisions is lower as the number of buckets grows. More lock
buckets also lead to more concurrency. The previous examples show how an
application can set the number of lock buckets to use for a given BackingMap
instance.

To avoid a java.lang.lllegalStateException exception, the setNumberOfLockBuckets
method must be called before calling the initialize or getSession methods on the
ObjectGrid instance. The setNumberOfLockBuckets method parameter is a Java
primitive integer that specifies the number of lock buckets to use. Using a prime
number can allow for a uniform distribution of map entries over the lock buckets.
A good starting point for best performance is to set the number of lock buckets to
about 10 percent of the expected number of BackingMap entries.

Locking strategies

Locking strategies include pessimistic, optimistic and none. To choose a locking
strategy, you must consider issues such as the percentage of each type of
operations you have, whether or not you use a loader and so on.

Locks are bound by transactions. You can specify the following locking settings:

* No locking: Running without the locking setting is the fastest. If you are using
read-only data, then you might not need locking.

* Pessimistic locking: Acquires locks on entries, then and holds the locks until
commit time. This locking strategy provides good consistency at the expense of
throughput.

* Optimistic locking: Takes a before image of every record that the transaction
touches and compares the image to the current entry values when the
transaction commits. If the entry values change, then the transaction rolls back.
No locks are held until commit time. This locking strategy provides better
concurrency than the pessimistic strategy, at the risk of the transaction rolling
back and the memory cost of making the extra copy of the entry.

Set the locking strategy on the BackingMap. You cannot change the locking
strategy for each transaction. An example XML snippet that shows how to set the
locking mode on a map using the XML file follows, assuming cc is the namespace
for the objectgrid/config namespace:

<cc:backingMap name="RuntimeLifespan" lockStrategy="PESSIMISTIC" />
Pessimistic locking

Use the pessimistic locking strategy for read and write maps when other locking
strategies are not possible. When an ObjectGrid map is configured to use the
pessimistic locking strategy, a pessimistic transaction lock for a map entry is
obtained when a transaction first gets the entry from the BackingMap. The
pessimistic lock is held until the application completes the transaction. Typically,
the pessimistic locking strategy is used in the following situations:

* When the BackingMap is configured with or without a loader and versioning
information is not available.

140 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

* When the BackingMap is used directly by an application that needs help from
the eXtreme Scale for concurrency control.

* When versioning information is available, but update transactions frequently
collide on the backing entries, resulting in optimistic update failures.

Because the pessimistic locking strategy has the greatest impact on performance
and scalability, this strategy should only be used for read and write maps when
other locking strategies are not viable. For example, these situations might include
when optimistic update failures occur frequently, or when recovery from optimistic
failure is difficult for an application to handle.

Optimistic locking

The optimistic locking strategy assumes that no two transactions might attempt to
update the same map entry while running concurrently. Because of this belief, the
lock mode does not need to be held for the life cycle of the transaction because it
is unlikely that more than one transaction might update the map entry
concurrently. The optimistic locking strategy is typically used in the following
situations:

* When a BackingMap is configured with or without a loader and versioning
information is available.

* When a BackingMap has mostly transactions that perform read operations.
Insert, update, or remove operations on map entries do not occur often on the
BackingMap.

* When a BackingMap is inserted, updated, or removed more frequently than it is
read, but transactions rarely collide on the same map entry.

Like the pessimistic locking strategy, the methods on the ObjectMap interface
determine how eXtreme Scale automatically attempts to acquire a lock mode for
the map entry that is being accessed. However, the following differences between
the pessimistic and optimistic strategies exist:

* Like the pessimistic locking strategy, an S lock mode is acquired by the get and
getAll methods when the method is invoked. However, with optimistic locking,
the S lock mode is not held until the transaction is completed. Instead, the S lock
mode is released before the method returns to the application. The purpose of
acquiring the lock mode is so that eXtreme Scale can ensure that only committed
data from other transactions is visible to the current transaction. After eXtreme
Scale has verified that the data is committed, the S lock mode is released. At
commit time, an optimistic versioning check is performed to ensure that no
other transaction has changed the map entry after the current transaction
released its S lock mode. If an entry is not fetched from the map before it is
updated, invalidated, or deleted, the eXtreme Scale run time implicitly fetches
the entry from the map. This implicit get operation is performed to get the
current value at the time the entry was requested to be modified.

* Unlike pessimistic locking strategy, the getForUpdate and getAllForUpdate
methods are handled exactly like the get and getAll methods when the
optimistic locking strategy is used. That is, an S lock mode is acquired at the
start of the method and the S lock mode is released before returning to the
application.

All other ObjectMap methods are handled exactly like they are handled for the
pessimistic locking strategy. That is, when the commit method is invoked, an X
lock mode is obtained for any map entry that is inserted, updated, removed,
touched, or invalidated and the X lock mode is held until the transaction
completes commit processing.

Chapter 6. Transaction processing overview 141

The optimistic locking strategy assumes that no concurrently running transactions
attempt to update the same map entry. Because of this assumption, the lock mode
does not need to be held for the life of the transaction because it is unlikely that
more than one transaction might update the map entry concurrently. However,
because a lock mode was not held, another concurrent transaction might
potentially update the map entry after the current transaction has released its S
lock mode.

To handle this possibility, eXtreme Scale gets an X lock at commit time and
performs an optimistic versioning check to verify that no other transaction has
changed the map entry after the current transaction read the map entry from the
BackingMap. If another transaction changes the map entry, the version check fails
and an OptimisticCollisionException exception occurs. This exception forces the
current transaction to be rolled back and the application must try the entire
transaction again. The optimistic locking strategy is very useful when a map is
mostly read and it is unlikely that updates for the same map entry might occur.

No locking

When a BackingMap is configured to use no locking strategy, no transaction locks
for a map entry are obtained.

Using no locking strategy is useful when an application is a persistence manager
such as an Enterprise JavaBeans (EJB) container or when an application uses
Hibernate to obtain persistent data. In this scenario, the BackingMap is configured
without a loader and the persistence manager uses the BackingMap as a data
cache. In this scenario, the persistence manager provides concurrency control
between transactions that are accessing the same Map entries.

WebSphere eXtreme Scale does not need to obtain any transaction locks for the
purpose of concurrency control. This situation assumes that the persistence
manager does not release its transaction locks before updating the ObjectGrid map
with committed changes. If the persistence manager releases its locks, then a
pessimistic or optimistic lock strategy must be used. For example, suppose that the
persistence manager of an EJB container is updating an ObjectGrid map with data
that was committed in the EJB container-managed transaction. If the update of the
ObjectGrid map occurs before the persistence manager transaction locks are
released, then you can use the no lock strategy. If the ObjectGrid map update
occurs after the persistence manager transaction locks are released, then you must
use either the optimistic or pessimistic lock strategy.

Another scenario where no locking strategy can be used is when the application
uses a BackingMap directly and a Loader is configured for the map. In this
scenario, the loader uses the concurrency control support that is provided by a
relational database management system (RDBMS) by using either Java database
connectivity (JDBC) or Hibernate to access data in a relational database. The loader
implementation can use either an optimistic or pessimistic approach. A loader that
uses an optimistic locking or versioning approach helps to achieve the greatest
amount of concurrency and performance. For more information about
implementing an optimistic locking approach, see the OptimisticCallback section in
the information about loader considerations in the Administration Guide. If you are
using a loader that uses pessimistic locking support of an underlying backend, you
might want to use the forUpdate parameter that is passed on the get method of
the Loader interface. Set this parameter to true if the getForUpdate method of the
ObjectMap interface was used by the application to get the data. The loader can
use this parameter to determine whether to request an upgradeable lock on the

142 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

row that is being read. For example, DB2 obtains an upgradeable lock when an
SQL select statement contains a FOR UPDATE clause. This approach offers the same
deadlock prevention that is described in [“Pessimistic locking” on page 140

For more information, see the topic on handling locks in the Programming Guide or
map entry locking in the Administration Guide.

Distributing transactions

Use Java Message Service (JMS) for distributed transaction changes between
different tiers or in environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in
environments on mixed platforms. For example, some applications that use
eXtreme Scale might be deployed on IBM WebSphere Application Server
Community Edition, Apache Geronimo, or Apache Tomcat, whereas other
applications might run on WebSphere Application Server Version 6.x. JMS is ideal
for distributed changes between eXtreme Scale peers in these different
environments. The high availability manager message transport is very fast, but
can only distribute changes to Java virtual machines that are in a single core
group. JMS is slower, but allows larger and more diverse sets of application clients
to share an ObjectGrid. JMS is ideal when sharing data in an ObjectGrid between a
fat Swing client and an application deployed on WebSphere Extended Deployment.

The built-in Client Invalidation Mechanism and Peer-to-Peer Replication are
examples of JMS-based transactional changes distribution. See the information
about configuring peer-to-peer replication with JMS in the Administration Guide for
more information.

Implementing JMS

JMS is implemented for distributing transaction changes by using a Java object that
behaves as an ObjectGridEventListener. This object can propagate the state in the
following four ways:

1. Invalidate: Any entry that is evicted, updated or deleted is removed on all peer
Java virtual machines when they receive the message.

2. Invalidate conditional: The entry is evicted only if the local version is the same
or older than the version on the publisher.

3. Push: Any entry that was evicted, updated, deleted or inserted is added or
overwritten on all peer Java virtual machines when they receive the J]MS
message.

4. Push conditional: The entry is only updated or added on the receive side if the
local entry is less recent than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the
transactionEnd event. When eXtreme Scale invokes this method, the plug-in
attempts to convert the LogSequence list for each map that is touched by the
transaction to a JMS message and then publish it. The plug-in can be configured to
publish changes for all maps or a subset of maps. LogSequence objects are
processed for the maps that have publishing enabled. The
LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for
each map to a stream. After all LogSequences are serialized to the stream, then a
JMS ObjectMessage is created and published to a well-known topic.

Chapter 6. Transaction processing overview 143

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages
that are published to the well known topic. When a message arrives, it passes the
message contents to the LogSequenceTransformer class where it is converted to a
set of LogSequence objects. Then, a no-write-through transaction is started. Each
LogSequence object is provided to the Session.processLogSequence method, which
updates the local Maps with the changes. The processLogSequence method
understands the distribution mode. The transaction is committed and the local
cache now reflects the changes. For more information about using JMS to distribute
transaction changes, see the information about distributing changes between peer
Java Virtual Machines in the Administration Guide.

Single-partition and cross-data-grid transactions

The major distinction between WebSphere eXtreme Scale and traditional data
storage solutions like relational databases or in-memory databases is the use of
partitioning, which allows the cache to scale linearly. The important types of
transactions to consider are single-partition and every-partition (cross-data-grid)
transactions.

In general, interactions with the cache can be categorized as single-partition
transactions or cross-data-grid transactions, as discussed in the following section.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches
that are hosted by WebSphere eXtreme Scale. When a transaction is limited to a
single partition, then by default it is limited to a single Java virtual machine, and
therefore a single server computer. A server can complete M number of these
transactions per second, and if you have N computers, you can complete M*N
transactions per second. If your business increases and you need to perform twice
as many of these transactions per second, you can double N by buying more
computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions
also maximize the availability of the cache. Each transaction only depends on one
computer. Any of the other (N-1) computers can fail without affecting the success
or response time of the transaction. So if you are running 100 computers and one
of them fails, only 1 percent of the transactions in flight at the moment that server
failed are rolled back. After the server fails, WebSphere eXtreme Scale relocates the
partitions that are hosted by the failed server to the other 99 computers. During
this brief period, before the operation completes, the other 99 computers can still
complete transactions. Only the transactions that would involve the partitions that
are being relocated are blocked. After the failover process is complete, the cache
can continue running, fully operational, at 99 percent of its original throughput
capacity. After the failed server is replaced and returned to the data grid, the cache
returns to 100 percent throughput capacity.

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions
are the opposite of single-partition transactions. Cross-data-grid transactions access
every partition and therefore every computer in the configuration. Each computer
in the data grid is asked to look up some data and then return the result. The

144 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

transaction cannot complete until every computer has responded, and therefore the
throughput of the entire data grid is limited by the slowest computer. Adding
computers does not make the slowest computer faster and therefore does not
improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the
previous example, if you are running 100 servers and one server fails, then 100
percent of the transactions that are in progress at the moment that server failed are
rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate the
partitions that are hosted by that server to the other 99 computers. During this
time, before the failover process completes, the data grid cannot process any of
these transactions. After the failover process is complete, the cache can continue
running, but at reduced capacity. If each computer in the data grid serviced 10
partitions, then 10 of the remaining 99 computers receive at least one extra
partition as part of the failover process. Adding an extra partition increases the
workload of that computer by at least 10 percent. Because the throughput of the
data grid is limited to the throughput of the slowest computer in a cross-data-grid
transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for
scaling out with a distributed, highly available, object cache like WebSphere
eXtreme Scale. Maximizing the performance of these kinds of systems requires the
use of techniques that are different from traditional relational methodologies, but
you can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere
eXtreme Scale include two categories: foundational principles and implementation
tips. Foundational principles are core ideas that need to be captured in the design
of the data itself. An application that does not observe these principles is unlikely
to scale well, even for its mainline transactions. Implementation tips are applied
for problematic transactions in an otherwise well-designed application that
observes the general principles for scalable data models.

Foundational principles

Some of the important means of optimizing scalability are basic concepts or
principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale
is that they are designed to spread data across a large number of
computers. If the goal is to make most or all transactions complete on a
single partition, then the data model design needs to ensure that all the
data the transaction might need is located in the partition. Most of the
time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two very
important transactions for a message board are showing all the posts from
a given user and all the posts on a given topic. First consider how these
transactions would work with a normalized data model that contains a
user record, a topic record, and a post record that contains the actual text.
If posts are partitioned with user records, then displaying the topic
becomes a cross-grid transaction, and vice versa. Topics and users cannot
be partitioned together because they have a many-to-many relationship.

Chapter 6. Transaction processing overview 145

The best way to make this message board scale is to duplicate the posts,
storing one copy with the topic record and one copy with the user record.
Then, displaying the posts from a user is a single-partition transaction,
displaying the posts on a topic is a single-partition transaction, and
updating or deleting a post is a two-partition transaction. All three of these
transactions will scale linearly as the number of computers in the data grid
increases.

Scalability rather than resources

The biggest obstacle to overcome when considering denormalized data
models is the impact that these models have on resources. Keeping two,
three, or more copies of some data can seem to use too many resources to
be practical. When you are confronted with this scenario, remember the
following facts: Hardware resources get cheaper every year. Second, and
more importantly, WebSphere eXtreme Scale eliminates most hidden costs
associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as
megabytes and processors. Data stores that work with normalized
relational data generally need to be located on the same computer. This
required collocation means that a single larger enterprise computer needs
to be purchased rather than several smaller computers. With enterprise
hardware, it is not uncommon for one computer to be capable of
completing one million transactions per second to cost much more than the
combined cost of 10 computers capable of doing 100,000 transactions per
second each.

A business cost in adding resources also exists. A growing business
eventually runs out of capacity. When you run out of capacity, you either
need to shut down while moving to a bigger, faster computer, or create a
second production environment to which you can switch. Either way,
additional costs will come in the form of lost business or maintaining
almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut
down to add capacity. If your business projects that you need 10 percent
more capacity for the coming year, then increase the number of computers
in the data grid by 10 percent. You can increase this percentage without
application downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a
format that is directly consumable by the business logic. Breaking the data
down into a more primitive form is costly. The transformation needs to be
done when the data is written and when the data is read. With relational
databases this transformation is done out of necessity, because the data is
ultimately persisted to disk quite frequently, but with WebSphere eXtreme
Scale, you do not need to perform these transformations. For the most part
data is stored in memory and can therefore be stored in the exact form that
the application needs.

Observing this simple rule helps denormalize your data in accordance with
the first principle. The most common type of transformation for business
data is the JOIN operations that are necessary to turn normalized data into
a result set that fits the needs of the application. Storing the data in the
correct format implicitly avoids performing these JOIN operations and
produces a denormalized data model.

146 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not
scale well. For example, do not have a transaction that asks for a list of all
items sorted by value. This transaction might work at first when the total
number of items is 1000, but when the total number of items reaches 10
million, the transaction returns all 10 million items. If you run this
transaction, the two most likely outcomes are the transaction timing out, or
the client encountering an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20
items can be returned. This logic alteration keeps the size of the transaction
manageable no matter how many items are in the cache.

Define schema

The main advantage of normalizing data is that the database system can
take care of data consistency behind the scenes. When data is
denormalized for scalability, this automatic data consistency management
no longer exists. You must implement a data model that can work in the
application layer or as a plug-in to the distributed data grid to guarantee
data consistency.

Consider the message board example. If a transaction removes a post from
a topic, then the duplicate post on the user record needs to be removed.
Without a data model, it is possible a developer would write the
application code to remove the post from the topic and forget to remove
the post from the user record. However, if the developer were using a data
model instead of interacting with the cache directly, the removePost
method on the data model could pull the user ID from the post, look up
the user record, and remove the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition
that detects the change to the topic and automatically adjusts the user
record. A listener might be beneficial because the adjustment to the user
record could happen locally if the partition happens to have the user
record, or even if the user record is on a different partition, the transaction
takes place between servers instead of between the client and server. The
network connection between servers is likely to be faster than the network
connection between the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid will not
scale if a single record is being used a disproportionate number of times
compared to the rest of the records. The performance of the data grid will
be limited by the performance of the computer that holds the given record.

In these situations, try to break the record up so it is managed per
partition. For example consider a transaction that returns the total number
of entries in the distributed cache. Instead of having every insert and
remove operation access a single record that increments, have a listener on
each partition track the insert and remove operations. With this listener
tracking, insert and remove can become single-partition operations.

Reading the counter will become a cross-data-grid operation, but for the
most part, it was already as inefficient as a cross-data-grid operation
because its performance was tied to the performance of the computer
hosting the record.

Chapter 6. Transaction processing overview 147

Implementation tips

You can also consider the following tips to achieve the best scalability.
Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are
partitioned based on the customer ID number. This partitioning method is
the logical choice because nearly every business operation performed with
the customer record uses the customer ID number. However, an important
transaction that does not use the customer ID number is the login
transaction. It is more common to have user names or e-mail addresses for
login instead of customer ID numbers.

The simple approach to the login scenario is to use a cross-data-grid
transaction to find the customer record. As explained previously, this
approach does not scale.

The next option might be to partition on user name or e-mail. This option
is not practical because all the customer ID based operations become
cross-data-grid transactions. Also, the customers on your site might want
to change their user name or e-mail address. Products like WebSphere
eXtreme Scale need the value that is used to partition the data to remain
constant.

The correct solution is to use a reverse lookup index. With WebSphere
eXtreme Scale, a cache can be created in the same distributed grid as the
cache that holds all the user records. This cache is highly available,
partitioned and scalable. This cache can be used to map a user name or
e-mail address to a customer ID. This cache turns login into a two partition
operation instead of a cross-grid operation. This scenario is not as good as
a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to
produce because these operations usually require reading a large number
of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then
store the result in the cache. This practice makes read operations both
faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number.
A user could have all, none or any combination of these numbers defined.
If the data were normalized then a user table and a telephone number
table would exist. The telephone numbers for a given user could be found
using a JOIN operation between the two tables.

De-normalizing this record does not require data duplication, because most
users do not share telephone numbers. Instead, empty slots in the user
record must be allowed. Instead of having a telephone number table, add
three attributes to each user record, one for each telephone number type.
This addition of attributes eliminates the JOIN operation and makes a
telephone number lookup for a user a single-partition operation.

Placement of many-to-many relationships
Consider an application that tracks products and the stores in which the

products are sold. A single product is sold in many stores, and a single

148 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores, with each store
selling thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of
keeping a list of products inside each store entity (arrangement B). Looking
at some of the transactions this application would have to perform
illustrates why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the
inventory of a store locks the product entity. If the data grid holds 10000
products, only 1/10000 of the grid needs to be locked to perform the
update. With arrangement B, the data grid only contains 50 stores, so 1/50
of the grid must be locked to complete the update. So even though both of
these could be considered single-partition operations, arrangement A scales
out more efficiently.

Now, considering reads with arrangement A, looking up the stores at
which a product is sold is a single-partition transaction that scales and is
fast because the transaction only transmits a small amount of data. With
arrangement B, this transaction becomes an cross-data-grid transaction
because each store entity must be accessed to see if the product is sold at
that store, which reveals an enormous performance advantage for
arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data
processing. If a data grid has 5 computers and a cross-data-grid transaction
is dispatched that sorts through about 100,000 records on each computer,
then that transaction sorts through 500,000 records. If the slowest computer
in the data grid can perform 10 of these transactions per second, then the
data grid is capable of sorting through 5,000,000 records per second. If the
data in the grid doubles, then each computer must sort through 200,000
records, and each transaction sorts through 1,000,000 records. This data
increase decreases the throughput of the slowest computer to 5 transactions
per second, thereby reducing the throughput of the data grid to 5
transactions per second. Still, the data grid sorts through 5,000,000 records
per second.

In this scenario, doubling the number of computer allows each computer
to return to its previous load of sorting through 100,000 records, allowing
the slowest computer to process 10 of these transactions per second. The

throughput of the data grid stays the same at 10 requests per second, but
now each transaction processes 1,000,000 records, so the grid has doubled
its capacity in terms of processing records to 10,000,000 per second.

Applications such as a search engine that need to scale both in terms of
data processing to accommodate the increasing size of the Internet and
throughput to accommodate growth in the number of users, you must
create multiple data grids, with a round robin of the requests between the
grids. If you need to scale up the throughput, add computers and add
another data grid to service requests. If data processing needs to be scaled
up, add more computers and keep the number of data grids constant.

Chapter 6. Transaction processing overview 149

150 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 7. Security overview

WebSphere eXtreme Scale can secure data access, including allowing for integration
with external security providers.

Note: In an existing non-cached data store such as a database, you likely have
built-in security features that you might not need to actively configure or enable.
However, after you have cached your data with eXtreme Scale, you must consider
the important resulting situation that your backend security features are no longer
in effect. You can configureeXtreme Scale security on necessary levels so that your
new cached architecture for your data is also secured.

A brief summary of eXtreme Scale security features follows. For more detailed
information about configuring security see the Administration Guide and the
Programming Guide.

Distributed security basics

Distributed eXtreme Scale security is based on three key concepts:

Trustable authentication
The ability to determine the identity of the requester. WebSphere eXtreme
Scale supports both client-to-server and server-to-server authentication.

Authorization
The ability to give permissions to grant access rights to the requester.
WebSphere eXtreme Scale supports different authorizations for various
operations.

Secure transport
The safe transmission of data over a network. WebSphere eXtreme Scale
supports the Transport Layer Security /Secure Sockets Layer (TLS/SSL)
protocols.

Authentication

WebSphere eXtreme Scale supports a distributed client server framework. A client
server security infrastructure is in place to secure access to eXtreme Scale servers.
For example, when authentication is required by the eXtreme Scale server, an
eXtreme Scale client must provide credentials to authenticate to the server. These
credentials can be a user name and password pair, a client certificate, a Kerberos
ticket, or data that is presented in a format that is agreed upon by client and
server.

Authorization

WebSphere eXtreme Scale authorizations are based on subjects and permissions.
You can use the Java Authentication and Authorization Services (JAAS) to
authorize the access, or you can plug in a custom approach, such as Tivoli® Access
Manager (TAM), to handle the authorizations. The following authorizations can be
given to a client or group:

Map authorization
Perform insert, read, update, evict, or delete operations on Maps.

© Copyright IBM Corp. 2009, 2011 151

ObjectGrid authorization
Perform object or entity queries and stream queries on ObjectGrid objects.

DataGrid agent authorization
Allow DataGrid agents to be deployed to an ObjectGrid.

Server side map authorization
Replicate a server map to client side or create a dynamic index to the
server map.

Administration authorization
Perform administration tasks.

Transport security

To secure the client server communication, WebSphere eXtreme Scale supports
TLS/SSL. These protocols provide transport layer security with authenticity,
integrity, and confidentiality for a secure connection between an eXtreme Scale
client and server.

Grid security

In a secure environment, a server must be able to check the authenticity of another
server. WebSphere eXtreme Scale uses a shared secret key string mechanism for
this purpose. This secret key mechanism is similar to a shared password. All the
eXtreme Scale servers agree on a shared secret string. When a server joins the data
grid, the server is challenged to present the secret string. If the secret string of the
joining server matches the one in the master server, then the joining server can join
the grid. Otherwise, the join request is rejected.

Sending a clear text secret is not secure. The eXtreme Scale security infrastructure
provides a SecureTokenManager plug-in to allow the server to secure this secret
before sending it. You can choose how you implement the secure operation.
WebSphere eXtreme Scale provides an implementation, in which the secure
operation is implemented to encrypt and sign the secret.

Java Management Extensions (JMX) security in a dynamic
deployment topology

JMX MBean security is supported in all versions of eXtreme Scale. Clients of
catalog server MBeans and container server MBeans can be authenticated, and
access to MBean operations can be enforced.

Local eXtreme Scale security

Local eXtreme Scale security is different from the distributed eXtreme Scale model
because the application directly instantiates and uses an ObjectGrid instance. Your
application and eXtreme Scale instances are in the same Java virtual machine
(JVM). Because no client-server concept exists in this model, authentication is not
supported. Your applications must manage their own authentication, and then pass
the authenticated Subject object to the eXtreme Scale. However, the authorization
mechanism that is used for the local eXtreme Scale programming model is the
same as what is used for the client-server model.

152 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Configuration and programming

For more information about configuring and programming for security, see the
Administration Guide and Programming Guide.

Chapter 7. Security overview 153

154 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 8. REST data services overview

The WebSphere eXtreme Scale REST data service is a Java HTTP service that is
compatible with Microsoft WCF Data Services (formally ADO.NET Data Services)
and implements the Open Data Protocol (OData). Microsoft WCF Data Services is
compatible with this specification when using Visual Studio 2008 SP1 and the .NET
Framework 3.5 SP1.

Compatibility requirements

The REST data service allows any HTTP client to access a data grid. The REST
data service is compatible with the WCF Data Services support supplied with the
Microsoft .NET Framework 3.5 SP1. RESTful applications can be developed with
the rich tooling provided by Microsoft Visual Studio 2008 SP1. The figure provides
an overview of how WCF Data Services interacts with clients and databases.

HTTP Clients ' WCF DS |
|
|
| NET/WCF I ' [REST Service ! A
]
| I
I < |
| AJAX | TS .
| ° : Database
| — I
| PHP | INESE |
: ° e
I More] : | : —
AN)|
\ 7/

Figure 40. Microsoft WCF Data Services

WebSphere eXtreme Scale includes a function-rich API set for Java clients. As
shown in the following figure, the REST data service is a gateway between HTTP
clients and the WebSphere eXtreme Scale data grid, communicating with the grid
through an WebSphere eXtreme Scale client. The REST data service is a Java
servlet, which allows flexible deployments for common Java Platform, Enterprise
Edition (JEE) platforms, such as WebSphere Application Server. The REST data
service communicates with the WebSphere eXtreme Scale data grid using the
WebSphere eXtreme Scale Java APIs. It allows WCF Data Services clients or any
other client that can communicate with HTTP and XML.

© Copyright IBM Corp. 2009, 2011 155

HTTP Clients : WebSphere eXtreme Scale |
[
l NET/WCF I : (REST Service i Grid A : Q
: !
| AAX | S =) L)
< OData> ° < > <|_|| > Database
' = I
| PHP | y = .
| |- | @ i
w) | Ba) | | ——
ore... : \) \) :
\

Figure 41. WebSphere eXtreme Scale REST data service

Refer to the ['REST data services sample and tutorial” on page 199)or use the

following links to learn more about WCF Data Services.

« [Microsoft WCF Data Services Developer Center

+ |ADO.NET Data Services overview on MSDN]|

+ [Whitepaper: Using ADO.NET Data Services|

+ |Atom Publish Protocol: Data Services URI and Payload Extensions|
+ [Conceptual Schema Definition File Format|

* |[Entity Data Model for Data Services Packaging Format|

+ |Open Data Protocol|
+ |Open Data Protocol FAQ)

Features

This version of the eXtreme Scale REST data service supports the following
features:

* Automatic modeling of eXtreme Scale EntityManager API entities as WCF Data
Services entities, which includes the following support:

— Java data type to Entity Data Model type conversion
— Entity association support

— Schema root and key association support, which is required for partitioned
data grids

See for more information.

* [Atom Publish Protocol (AtomPub or APP) XML and JavaScript Object Notation
(JSON) data payload format.

* Create, Read, Update and Delete (CRUD) operations using the respective HTTP
request methods: POST, GET, PUT and DELETE. In addition, the Microsoft
extension: MERGE is supported.

* Simple queries, using filters

* Batch retrieval and change set requests

* Partitioned data grid support for high availability

* Interoperability with eXtreme Scale EntityManager API clients
e Support for standard JEE Web servers

* Optimistic concurrency

e User authorization and authentication between the REST data service and the
eXtreme Scale data grid

156 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://www.odata.org/
http://msdn.microsoft.com/en-us/library/dd541474(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx

Known problems and limitations
* Tunneled requests are not supported.

Chapter 8. REST data services overview 157

158 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 9. Spring framework

Spring is a framework for developing Java applications. WebSphere eXtreme Scale
provides support to allow Spring to manage transactions and configure the clients
and servers comprising your deployed in-memory data grid.

Spring managed native transactions

Spring provides container-managed transactions that are similar to a Java Platform,
Enterprise Edition application server. However, the Spring mechanism can use
different implementations. WebSphere eXtreme Scale provides transaction manager
integration which allows Spring to manage the ObjectGrid transaction life cycles.
See the information about native transactions in the Programming Guide for details.

Spring managed extension beans and namespace support

Also, eXtreme Scale integrates with Spring to allow Spring-style beans defined for
extension points or plug-ins. This feature provides more sophisticated
configurations and more flexibility for configuring the extension points.

In addition to Spring managed extension beans, eXtreme Scale provides a Spring
namespace called "objectgrid". Beans and built-in implementations are pre-defined
in this namespace, which makes it easier for users to configure eXtreme Scale.

Shard scope support

With the traditional style Spring configuration, an ObjectGrid bean can either be a
singleton type or prototype type. ObjectGrid also supports a new scope called the
"shard" scope. If a bean is defined as shard scope, then only one bean is created
per shard. All requests for beans with an ID or IDs matching that bean definition
in the same shard results in that one specific bean instance being returned by the
Spring container.

The following example shows that a
com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactorylmpl bean is defined with scope
set to shard. Therefore, only one instance of the JPAPropFactorylmpl class is
created per shard.

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard" />
Spring Web Flow

Spring Web Flow stores its session state in an HTTP session by default. If a web
application uses eXtreme Scale for session management, then Spring automatically
stores state with eXtreme Scale. Also, fault tolerance is enabled in the same manner
as the session.

See the ObjectMap API information in the Product Overview for further details.
Packaging

The eXtreme Scale Spring extensions are in the ogspring.jar file. This Java archive
(JAR) file must be on the class path for Spring support to work. If a Java EE

application that is running in a WebSphere Extended Deployment augmented

© Copyright IBM Corp. 2009, 2011 159

WebSphere Application Server Network Deployment, put the spring.jar file and
its associated files in the enterprise archive (EAR) modules. You must also place
the ogspring.jar file in the same location.

160 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Chapter 10. Tutorials, examples, and samples

Several WebSphere eXtreme Scale tutorials, examples, and samples are available.
Tutorials

The following tutorials are currently available.

* [“Entity manager tutorial: Overview” on page 167]

Examples

The following topics illustrate key WebSphere eXtreme Scale features.
* See the Data Grid API example in the Programming Guide
* See the details on configuring local deployments in the Administration Guide

Community samples

The following samples illustrate how to use WebSphere eXtreme Scale in various
environments to exhibit different features of the product.

* xsadmin utility - With the xsadmin sample utility, you can format and display
textual information about your WebSphere® eXtreme Scale topology. The sample
utility provides a method for parsing and discovering current deployment data,
and can be used as a foundation for writing custom utilities.

For more information, see the information about monitoring with the xsAdmin
sample utility in the Administration Guide. (Shipped with product.)

* Asynchronous Service Framework - The Asynchronous Service framework
provides a scalable and fault-tolerant processing fabric for asynchronous
processing of messages. For more information, including how to download the
sample, see the[Samples Gallery: Asynchronous Service Framework sample].

* Client authentication security - This sample describes how to configure
authentication requiring the client to provide valid credentials before the server
gives any grid access. For more information, including how to download the
sample, see the [Samples Gallery: Client authentication security|

* Creating dynamic maps - This sample demonstrates how to create maps after
your grid has already been initialized. For eXtreme Scale 7.0 and higher, you can
use templates to retrieve maps. For more information, including how to
download the sample, see the [Samples Gallery: Creating dynamic maps after]
[grid initialization| .

* Multi-master replication - The Multi-Master Replication Getting Started sample
is provided for a quick introduction to multi-master (AP) replication. For more
information, including how to download the sample, see the [Samples Gallery
[Multi-master Replication sample|

* Queries with Entity Manager API - This sample demonstrates how to use
queries in a distributed partitioned map with the EntityManager API. For more
information, including how to download the sample, see the [Samples Gallery|
[Running Queries in a partitioned grid using Entity Manager AP .

* Parallel queries with a ReduceGridAgent implementation - Demonstrates how
to use the Data Grid API to run a query over every partition in the grid. For

© Copyright IBM Corp. 2009, 2011 161

http://www.ibm.com/developerworks/wikis/display/extremescale/Asynchronous+Service+Framework+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Client+authentication+security
http://www.ibm.com/developerworks/wikis/display/extremescale/Creating+dynamic+maps+after+grid+initialization
http://www.ibm.com/developerworks/wikis/display/extremescale/Creating+dynamic+maps+after+grid+initialization
http://www.ibm.com/developerworks/wikis/display/extremescale/Multi-master+Replication+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Multi-master+Replication+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+a+partitioned+grid+using+Entity+Manager+API
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+a+partitioned+grid+using+Entity+Manager+API

more information, including how to download the sample, see the [Samples]
[Gallery: Running Queries in Parallel using a ReduceGrid Agent] .

Articles with tutorials and examples

Table 14. Available articles by feature

Article Features

[Building grid-ready applications| ObjectMap API, EntityManager API, Query,
Agents, Java SE and EE, Statistics,
Partitioning, Administration/Operations,

Eclipse
[Scalable grid-style computing and data| EntityManager API, Agents
L‘Qrocessing]
[Building a scalable, resilient,| ObjectMap API, Replication, Partitioning,
] p P g
[lhigh-performance database alternativel Administration/Operations, Eclipse

[Enhancing xsadmin for WebSphere eXtreme| | Administration
|Sca1§|

[Redbook: User's Guide] All topics

Running the getting started sample application

After you install WebSphere eXtreme Scale in a stand-alone environment, use the
following steps as a simple introduction to its capability as an in-memory data
grid.

The stand-alone installation of WebSphere eXtreme Scale includes a sample that
you can use to verify your installation and to see how a simple data grid and
client can be used. The getting started sample is in the ObjectGr‘i d/
gettingstarted directory.

The getting started sample provides a quick introduction to eXtreme Scale
functionality and basic operation. The sample consists of shell and batch scripts
designed to start a simple data grid with very little customization needed. In

addition, a client program, including source, is provided to run simple create, read,
update, and delete (CRUD) functions to this basic data grid.

Scripts and their functions
This sample provides the following four scripts:

The env.sh|bat script is called by the other scripts to set needed environment
variables. Normally you do not need to change this script.

. ./env.sh
« INIEEEN env.bat

The runcat.sh|bat starts the eXtreme Scale catalog service process on the local
system.

. UNIX ./runcat.sh
o WEIEM runcat.bat

162 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+Parallel+using+a+ReduceGridAgent
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+Parallel+using+a+ReduceGridAgent
http://www.ibm.com/developerworks/edu/wes-dw-wes-objectgrid.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_marshall/0712_marshall.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_marshall/0712_marshall.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_chambers/0711_chambers.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_chambers/0711_chambers.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.redbooks.ibm.com/abstracts/sg247683.html

The runcontainer.sh|bat script starts a container server process. You can run this
script multiple times with unique server names specified to start any number of
containers. These instances can work together to host partitioned and redundant
information in the grid.

N UNX ./runcontainer.sh unique_server_name

« WM runcontainer.bat unique_server_name

The runclient.sh|bat script runs the simple CRUD client and starts the given
operation.

. ./runclient.sh command valuel value2
o WM runclient.sh command valuel value?

For command, use one of the following options:

* Specify as i to insert value2? into data grid with key valuel
* Specify as u to update object keyed by valuel to value2

* Specify as d to delete object keyed by valuel

* Specify as g to retrieve and display object keyed by valuel

Note: The installRoot/0ObjectGrid/ gettingstarted/src/Client.java file is the
client program that demonstrates how to connect to a catalog server, obtain an
ObjectGrid instance, and use the ObjectMap APIL.

Basic steps

Use the following steps to start your first data grid and run a client to interact
with the data grid.

1. Open a terminal session or command line window.
2. Use the following command to navigate to the gettingstarted directory:
cd wxs_install_root/ObjectGrid/gettingstarted

Substitute wxs_install_root with the path to the eXtreme Scale installation root
directory or the root file path of the extracted eXtreme Scale trial
wxs_install_root.

3. Run the following script to start a catalog service process on localhost:

B UNX ./runcat.sh
o I runcat.bat

The catalog service process runs in the current terminal window.

4. Open another terminal session or command line window, and run the
following command to start a container server instance:

N UNIX ./runcontainer.sh server0
o WM runcontainer.bat server0

The container server runs in the current terminal window. You can repeat this
step with a different server name if you want to start more container server
instances to support replication.

5. Open another terminal session or command line window to run client
commands.

* Add data to the data grid:
o U\ ./runclient.sh i keyl helloWorld
— IS runclient.bat i keyl helloWorld

Chapter 10. Tutorials, examples, and samples 163

 Search and display the value:

- ./runclient.sh g keyl

— WM runclient.bat g keyl
* Update the value:

- ./runclient.sh u keyl goodbyeWorld

— WIS runclient.bat u keyl goodbyeWorld
e Delete the value:

- ./runclient.sh d keyl

— WIS runclient.bat d keyl

6. Use <ctrl+c> to stop the catalog service process and container servers in the
respective windows.

Defining an ObjectGrid

The sample uses the objectgrid.xml and deployment.xml files that are in the
xs_install_root)/ ObjectGrid/gettingstarted/xml directory to start a container
server. The objectgrid.xml file is the ObjectGrid descriptor XML file. The

deployment.xml file is the ObjectGrid deployment policy descriptor XML file. These
files together define a distributed ObjectGrid topology.

ObjectGrid descriptor XML file

An ObjectGrid descriptor XML file is used to define the structure of the ObjectGrid
that is used by the application. It includes a list of BackingMap configurations.
These BackingMaps are the actual data storage for cached data. The following
example is a sample objectgrid.xml file. The first few lines of the file include the
required header for each ObjectGrid XML file. This example file defines the Grid
ObjectGrid with Mapl and Map2 BackingMaps.

<objectGridConfig xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmins="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">
<backingMap name="Mapl" />
<backingMap name="Map2" />
</objectGrid>
</objectGrids>

</objectGridConfig>
Deployment policy descriptor XML file

A deployment policy descriptor XML file is passed to an ObjectGrid container
server during startup. A deployment policy must be used with an ObjectGrid XML
file and must be compatible with the ObjectGrid XML that is used with it. For each
objectgridDeployment element in the deployment policy, you must have a
corresponding ObjectGrid element in your ObjectGrid XML. The backingMap
elements that are defined within the objectgridDeployment element must be
consistent with the backingMaps found in the ObjectGrid XML. Every backingMap
must be referenced within one and only one mapSet.

The deployment policy descriptor XML file is intended to be paired with the
corresponding ObjectGrid XML, the objectgrid.xml file. In the following example,

164 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

the first few lines of the deployment.xml file include the required header for each
deployment policy XML file. The file defines the objectgridDeployment element for
the Grid ObjectGrid that is defined in the objectgrid.xml file. Both the Map1 and
Map?2 BackingMaps that are defined within the Grid ObjectGrid are included in the
mapSet mapSet that has the numberOfPartitions, minSyncReplicas, and
maxSyncReplicas attributes configured.
<deploymentPolicy xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy

../deploymentPolicy.xsd"
xmins="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="13" minSyncReplicas="0"
maxSyncReplicas="1" >
<map ref="Mapl"/>
<map ref="Map2"/>
</mapSet>
</objectgridDeployment>

</deploymentPolicy>

The numberOfPartitions attribute of the mapSet element specifies the number of
partitions for the mapSet. It is an optional attribute and the default is 1. The
number should be appropriate for the anticipated capacity of the data grid.

The minSyncReplicas attribute of mapSet is to specify the minimum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. Primary and replica are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container than the value of
minSyncReplicas. If the number of synchronous replicas falls below the value of
minSyncReplicas, write transactions are no longer allowed for that partition.

The maxSyncReplicas attribute of mapSet is to specify the maximum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. No other synchronous replicas are placed for a partition after
a domain reaches this number of synchronous replicas for that specific partition.
Adding containers that can support this ObjectGrid can result in an increased
number of synchronous replicas if your maxSyncReplicas value has not already
been met. The sample set the maxSyncReplicas to 1 means the domain will at most
place one synchronous replica. If you start more than one container server instance,
there will be only one synchronous replica placed in one of the container server
instances.

Using ObjectGrid
The Client.java file in the ObjectGr‘id/gettingstar‘ted/d jent/

src/ directory is the client program that demonstrates how to connect to catalog
server, obtain ObjectGrid instance, and use ObjectMap APIL

From the perspective of a client application, using WebSphere eXtreme Scale can be
divided into the following steps.

1. Connecting to the catalog service by obtaining a ClientClusterContext instance.

2. Obtaining a client ObjectGrid instance.
3. Getting a Session instance.

4. Getting an ObjectMap instance.

5. Using the ObjectMap methods.

Chapter 10. Tutorials, examples, and samples 165

1. Connect to the catalog service by obtaining a ClientClusterContext instance.

To connect to the catalog server, use the connect method of ObjectGridManager
APL The connect method that is used requires only the catalog server endpoint
in the format of hostname:port. You can indicate multiple catalog server
endpoints by separating the list of hostname:port values with commas. The
following code snippet demonstrates how to connect to a catalog server and
obtain a ClientClusterContext instance:

ClientClusterContext ccc = ObjectGridManagerFactory.getObjectGridManager().connect("localhost:2809", null, null);

If the connections to the catalog servers succeed, the connect method returns a
ClientClusterContext instance. The ClientClusterContext instance is required to
obtain the ObjectGrid from ObjectGridManager APIL

2. Obtain an ObjectGrid instance.

To obtain ObjectGrid instance, use the getObjectGrid method of the
ObjectGridManager APIL. The getObjectGrid method requires both the
ClientClusterContext instance and the name of the data grid instance. The
ClientClusterContext instance is obtained during the connection to catalog
server. The name of ObjectGrid instance is Grid that is specified in the
objectgrid.xml file. The following code snippet demonstrates how to obtain
the data grid by calling the getObjectGrid method of the ObjectGridManager
APL

ObjectGrid grid = ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc, "Grid");
3. Get a Session instance.

You can get a Session from the obtained ObjectGrid instance. A Session instance
is required to get the ObjectMap instance, and perform transaction demarcation.
The following code snippet demonstrates how to get a Session instance by
calling the getSession method of the ObjectGrid APL

Session sess = grid.getSession();
4. Get an ObjectMap instance.

After getting a Session, you can get an ObjectMap instance from a Session
instance by calling getMap method of the Session API. You must pass the name
of map as parameter to getMap method to get the ObjectMap instance. The
following code snippet demonstrates how to obtain ObjectMap by calling the
getMap method of the Session API.

ObjectMap mapl = sess.getMap("Mapl");

ObjectMap mapl = sess.getMap("my_simple_data grid");
5. Use the ObjectMap methods.

After an ObjectMap instance is obtained, you can use the ObjectMap APL
Remember that the ObjectMap interface is a transactional map and requires
transaction demarcation by using the begin and commit methods of the Session
APL If there is no explicit transaction demarcation in the application, the
ObjectMap operations run with auto-commit transactions.

The following code snippet demonstrates how to use the ObjectMap API with
an auto-commit transaction.

mapl.insert(keyl, valuel);

The following code snippet demonstrates how to use the ObjectMap API with
explicit transaction demarcation.

sess.begin();
mapl.insert(keyl, valuel);
sess.commit();

166 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Additional information

This sample demonstrates how to start catalog server and container server and
using ObjectMap API in stand-alone environment. You can also use the
EntityManager APL

In a WebSphere Application Server environment with WebSphere eXtreme Scale
installed or enabled, the most common scenario is a network-attached topology. In
a network-attached topology, the catalog server is hosted in the deployment
manager process and each WebSphere Application Server instance hosts a
container server automatically. Java Platform, Enterprise Edition applications only
need to include both the ObjectGrid descriptor XML file and the ObjectGrid
deployment policy descriptor XML file in the META-INF directory of any module
and the ObjectGrid becomes available automatically. An application can then
connect to a locally available catalog server and obtain an ObjectGrid instance to
use.

Entity manager tutorial: Overview

The tutorial for the entity manager shows you how to use WebSphere eXtreme
Scale to store order information on a Web site. You can create a simple Java
Platform, Standard Edition 5 application that uses an in-memory, local eXtreme
Scale. The entities use Java SE 5 annotations and generics.

Before you begin

Ensure that you have met the following requirements before you begin the tutorial:
* You must have Java SE 5.

* You must have the objectgrid.jar file in your classpath.

Entity manager tutorial: Creating an entity class

The first step of the entity manager tutorial shows you how to create a local
ObjectGrid with one entity by creating an Entity class, registering the entity type
with eXtreme Scale, and storing an entity instance into the cache.

About this task

Procedure

1. Create the Order object. To identify the object as an ObjectGrid entity, add the
@Entity annotation. When you add this annotation, all serializable attributes in
the object are automatically persisted in eXtreme Scale, unless you use
annotations on the attributes to override the attributes. The orderNumber
attribute is annotated with @Id to indicate that this attribute is the primary key.
An example of an Order object follows:

Order.java

@Entity

pubTic class Order

{
@Id String orderNumber;
Date date;
String customerName;
String itemName;
int quantity;
double price;

Chapter 10. Tutorials, examples, and samples 167

168

Run the eXtreme Scale Hello World application to demonstrate the entity
operations. The following example program can be issued in stand-alone mode
to demonstrate the entity operations. Use this program in an Eclipse Java
project that has the objectgrid.jar file added to the class path. An example of
a simple Hello world application that uses eXtreme Scale follows:

Application.java

package emtutorial.basic.stepl;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.em.EntityManager;

public class Application

}

static public void main(String [] args)
throws Exception
{
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.registerEntities(new Class[] {Order.class});

Session s = og.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction().begin();

Order o = new Order();
o.customerName = "John Smith";

o.date = new java.util.Date(System.currentTimeMillis());
o.itemName = "Widget";

o.orderNumber = "1";

o.price = 99.99;

o.quantity = 1;

em.persist(o);

em.getTransaction().commit();

em.getTransaction().begin();

o = (Order)em.find(Order.class, "1");

System.out.printIn("Found order for customer: " + o.customerName);
em.getTransaction().commit();

}

This example application performs the following operations:

a.
b.

g.

h.

Initializes a local eXtreme Scale with an automatically generated name.

Registers the entity classes with the application by using the registerEntities
API, although using the registerEntities API is not always necessary.

Retrieves a Session and a reference to the entity manager for the Session.

Associates each eXtreme Scale Session with a single EntityManager and
EntityTransaction. The EntityManager is now used.

The registerEntities method creates a BackingMap object that is called
Order, and associates the metadata for the Order object with the
BackingMap object. This metadata includes the key and non-key attributes,
along with the attribute types and names.

A transaction starts and creates an Order instance. The transaction is
populated with some values, and is persisted by using the
EntityManager.persist method, which identifies the entity as waiting to be
included in the associated ObjectGrid Map.

The transaction is then committed, and the entity is included in the
ObjectMap.

Another transaction is made, and the Order object is retrieved by using the
key 1. The type cast on the EntityManager.find method is necessary, because
Java SE 5 generics capability are not used to ensure that the objectgrid.jar
file works on a Java SE 1.4 and later Java virtual machine.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Entity manager tutorial: Forming entity relationships

Create a simple relationship between entities by creating two entity classes with a
relationship, registering the entities with the ObjectGrid, and storing the entity
instances into the cache.

Procedure

1. Create the customer entity, which is used to store customer details
independently from the Order object. An example of the customer entity
follows:

Customer. java
@Entity
public class Customer

{
@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

This class includes information about the customer such as name, address, and
phone number.

2. Create the Order object, which is similar to the Order object in the |“Entity]
[manager tutorial: Creating an entity class” on page 167 topic. An example of
the order object follows:

Order.java

@Entity
pubTic class Order
{
@Id String orderNumber;
Date date;
@ManyToOne (cascade=CascadeType.PERSIST) Customer customer;
String itemName;
int quantity;
double price;

}

In this example, a reference to a Customer object replaces the customerName
attribute. The reference has an annotation that indicates a many-to-one
relationship. A many-to-one relationship indicates that each order has one
customer, but multiple orders might reference the same customer. The cascade
annotation modifier indicates that if the entity manager persists the Order
object, it must also persist the Customer object. If you choose to not set the
cascade persist option, which is the default option, you must manually persist
the Customer object with the Order object.

3. Using the entities, define the maps for the ObjectGrid instance. Each map is
defined for a specific entity, and one entity is named Order and the other is
named Customer. The following example application illustrates how to store
and retrieve a customer order:

Application.java
public class Application
static public void main(String [] args)
throws Exception
{
ObjectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.registerEntities(new Class[] {Order.class});

Chapter 10. Tutorials, examples, and samples 169

Session s = og.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction() .begin();

Customer cust = new Customer();
cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";

cust.id = "COOL";
cust.phoneNumber = "5555551212";

Order o = new Order();
customer = cust;

.date = new java.util.Date();
.itemName = "Widget";
.orderNumber = "1";

.price = 99.99;

.quantity = 1;

O O 0O o oo

em.persist(0);
em.getTransaction().commit();

em.getTransaction() .begin();

o = (Order)em.find(Order.class, "1");

System.out.printin("Found order for customer:
+ o.customer.firstName + " " + o.customer.surname);

em.getTransaction().commit();

}

This application is similar to the example application that is in the previous
step. In the preceding example, only a single class Order is registered.
WebSphere eXtreme Scale detects and automatically includes the reference to
the Customer entity, and a Customer instance for John Smith is created and
referenced from the new Order object. As a result, the new customer is
automatically persisted, because the relationship between two orders includes
the cascade modifier, which requires that each object be persisted. When the
Order object is found, the entity manager automatically finds the associated
Customer object and inserts a reference to the object.

Entity manager tutorial: Order Entity Schema

Create four entity classes by using both single and bidirectional relationships,
ordered lists, and foreign key relationships. The EntityManager APIs are used to
persist and find the entities. Building on the Order and Customer entities that are
in the previous parts of the tutorial, this tutorial step adds two more entities: the
Item and OrderLine entities.

About this task

Figure 42. Order Entity Schema. An Order entity has a reference to one customer and zero or more OrderLines. Each
OrderLine entity has a reference to a single item and includes the quantity ordered.

Procedure
1. Create the customer entity, which is similar to the previous examples.

Customer. java

@Entity

public class Customer

{
@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

170 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

2. Create the Item entity, which holds information about a product that is
included in the store's inventory, such as the product description, quantity, and
price.

Item.java
@Entity
public class Item

{ @Id String id;
String description;
long quantityOnHand;
double price;

}

3. Create the OrderLine entity. Each Order has zero or more OrderLines, which
identify the quantity of each item in the order. The key for the OrderLine is a
compound key that consists of the Order that owns the OrderLine and an
integer that assigns the order line a number. Add the cascade persist modifier
to every relationship on your entities.

OrderLine. java

@Entity

public class OrderLine

{
@Id @eManyToOne(cascade=CascadeType.PERSIST) Order order;
@Id int TineNumber;
@0neToOne (cascade=CascadeType.PERSIST) Item item;
int quantity;
double price;
1
4. Create the final Order Object, which has a reference to the Customer for the
order and a collection of OrderLine objects.
Order. java
@Entity
pubTic class Order

{
@Id String orderNumber;
java.util.Date date;
@ManyToOne (cascade=CascadeType.PERSIST) Customer customer;
@OneToMany (cascade=CascadeType.ALL, mappedBy="order")
@0rderBy ("TineNumber") List<OrderLine> lines;

The cascade ALL is used as the modifier for lines. This modifier signals the
EntityManager to cascade both the PERSIST operation and the REMOVE
operation. For example, if the Order entity is persisted or removed, then all
OrderLine entities are also persisted or removed.

If an OrderLine entity is removed from the lines list in the Order object, the
reference is then broken. However, the OrderLine entity is not removed from
the cache. You must use the EntityManager remove API to remove entities from
the cache. The REMOVE operation is not used on the customer entity or the
item entity from OrderLine. As a result, the customer entity remains even
though the order or item is removed when the OrderLine is removed.

The mappedBy modifier indicates an inverse relationship with the target entity.
The modifier identifies which attribute in the target entity references the source
entity, and the owning side of a one-to-one or many-to-many relationship.
Typically, you can omit the modifier. However, an error is displayed to indicate
that it must be specified if WebSphere eXtreme Scale cannot discover it
automatically. An OrderLine entity that contains two of type Order attributes in
a many-to-one relationship typically causes the error.

The @OrderBy annotation specifies the order in which each OrderLine entity
should be in the lines list. If the annotation is not specified, then the lines

Chapter 10. Tutorials, examples, and samples 171

display in an arbitrary order. Although the lines are added to the Order entity
by issuing ArrayList, which preserves the order, the EntityManager does not
necessarily recognize the order. When you issue the find method to retrieve the
Order object from the cache, the list object is not an ArrayList object.

5. Create the application. The following example illustrates the final Order object,
which has a reference to the Customer for the order and a collection of
OrderLine objects.

a. Find the Items to order, which then become Managed entities.

Create the OrderLine and attach it to each Item.

Create the Order and associate it with each OrderLine and the customer.
Persist the order, which automatically persists each OrderLine.

®aoo

Commit the transaction, which detaches each entity and synchronizes the
state of the entities with the cache.

f. Print the order information. The OrderLine entities are automatically sorted
by the OrderLine ID.

Application.java

static public void main(String [] args)
throws Exception
{

// Add some items to our inventory.
em.getTransaction().begin();
createltems(em);
em.getTransaction().commit();

// Create a new customer with the items in his cart.
em.getTransaction().begin();

Customer cust = createCustomer();

em.persist(cust);

// Create a new order and add an order line for each item.
// Each line item is automatically persisted since the
// Cascade=ALL option is set.
Order order = createOrderFromItems(em, cust, "ORDER 1",
new String[]{"1", "2"}, new int[]{1,3});
em.persist(order);
em.getTransaction().commit();

// Print the order summary
em.getTransaction().begin();

order = (Order)em.find(Order.class, "ORDER_1");
System.out.printIn(printOrderSummary (order));
em.getTransaction().commit();

}

public static Customer createCustomer() {
Customer cust = new Customer();
cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";
cust.id = "C001";
cust.phoneNumber = "5555551212";
return cust;

}

public static void createltems(EntityManager em) {
Item iteml = new Item();
iteml.id = "1";
iteml.price = 9.99;
iteml.description = "Widget 1";

172 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

iteml.quantityOnHand = 4000;
em.persist(iteml);

Item item2 = new Item();
item2.id = "2";

item2.price = 15.99;
item2.description = "Widget 2";
item2.quantityOnHand = 225;
em.persist(item2);

}

public static Order createOrderFromItems(EntityManager em,
Customer cust, String orderId, String[] itemlds, int[] qty) {

Item[] items = getItems(em, itemlds);

Order order = new Order();

order.customer = cust;

order.date = new java.util.Date();

order.orderNumber = orderld;

order.lines = new ArraylList<OrderLine>(items.length);

for(int i=0;i<items.length;i++){
OrderLine line = new OrderLine();

line.lineNumber = i+1;
line.item = items[i];
line.price = line.item.price;
line.quantity = qty[i];
line.order = order;
order.Tines.add(line);

}

return order;

}

public static Item[] getItems(EntityManager em, String[] itemIds) {
Item[] items = new Item[itemIds.length];
for(int i=0;i<items.length;i++){

items[i] = (Item) em.find(Item.class, itemIds[i]);
}

return items;

}

The next step is to delete an entity. The EntityManager interface has a remove
method that marks an object as deleted. The application should remove the
entity from any relationship collections before calling the remove method. Edit
the references and issue the remove method, or em.remove(object), as a final
step.

Entity manager tutorial: Updating entries

If you want to change an entity, you can find the instance, update the instance and
any referenced entities, and commit the transaction.

Procedure

Update entries. The following example demonstrates how to find the Order
instance, change it and any referenced entities, and commit the transaction.

public static void updateCustomerOrder(EntityManager em) {
em.getTransaction().begin();
Order order = (Order) em.find(Order.class, "ORDER_1");
processDiscount(order, 10);
Customer cust = order.customer;
cust.phoneNumber = "5075551234";
em.getTransaction().commit();

Chapter 10. Tutorials, examples, and samples 173

174

public static void processDiscount(Order order, double discountPct) {
for(OrderLine Tine : order.lines) {
Tine.price = Tine.price * ((100-discountPct)/100);
1

}

Flushing the transaction synchronizes all managed entities with the cache. When a
transaction is committed, a flush automatically occurs. In this case, the Order
becomes a managed entity. Any entities that are referenced from the Order,
Customer, and OrderLine also become managed entities. When the transaction is
flushed, each of the entities are checked to determine if they have been modified.
Those that are modified are updated in the cache. After the transaction completes,
by either being committed or rolled back, the entities become detached and any
changes that are made in the entities are not reflected in the cache.

Entity manager tutorial: Updating and removing entries with
an index

You can use an index to find, update, and remove entities.
Procedure

Update and remove entities by using an index. Use an index to find, update, and
remove entities. In the following examples, the Order entity class is updated to use
the @Index annotation. The @Index annotation signalsWebSphere eXtreme Scale to
create a range index for an attribute. The name of the index is the same name as
the name of the attribute and is always a MapRangelndex index type.

Order. java

@Entity

public class Order

{
@Id String orderNumber;
@Index java.util.Date date;
@0neToOne (cascade=CascadeType.PERSIST) Customer customer;
@0neToMany (cascade=CascadeType.ALL, mappedBy="order")
@0rderBy ("TineNumber") List<OrderLine> lines; }

The following example demonstrates how to cancel all orders that are submitted
within the last minute. Find the order by using an index, add the items in the
order back into the inventory, and remove the order and the associated line items
from the system.

public static void cancelOrdersUsingIndex(Session s)
throws ObjectGridException {
// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime = new
java.util.Date(System.currentTimeMillis() - 60000);
EntityManager em = s.getEntityManager();
em.getTransaction().begin();
MapRangeIndex dateIndex = (MapRangelIndex)
s.getMap("Order").getIndex("date");
Iterator<Tuple> orderKeys = datelndex.findGreaterEqual(cancelTime);
while(orderKeys.hasNext()) {
Tuple orderkKey = orderKeys.next();
// Find the Order so we can remove it.
Order curOrder = (Order) em.find(Order.class, orderKey);
// Verify that the order was not updated by someone else.
if(curOrder != null && curOrder.date.getTime() >= cancelTime.getTime()) {
for(OrderLine Tine : curOrder.lines) {
// Add the item back to the inventory.
line.item.quantityOnHand += Tine.quantity;
line.quantity = 0;
}

em.remove (curOrder) ;

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

}
}

em.getTransaction().commit();

}

Entity manager tutorial: Updating and removing entries by
using a query

You can update and remove entities by using a query.
Procedure

Update and remove entities by using a query.

Order. java
@Entity
public class Order
{
@Id String orderNumber;

@Index java.util.Date date;

@0neToOne (cascade=CascadeType.PERSIST) Customer customer;

@0neToMany (cascade=CascadeType.ALL, mappedBy="order")

@0rderBy ("TineNumber") List<OrderLine> lines;

}

The order entity class is the same as it is in the previous example. The class still
provides the @Index annotation, because the query string uses the date to find the
entity. The query engine uses indices when they can be used.

public static void cancelOrdersUsingQuery(Session s) {
// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime =
new java.util.Date(System.currentTimeMillis() - 60000);
EntityManager em = s.getEntityManager();
em.getTransaction().begin();

// Create a query that will find the order based on date. Since
// we have an index defined on the order date, the query
// will automatically use it.
Query query = em.createQuery("SELECT order FROM Order order
WHERE order.date >= ?1");
query.setParameter(1l, cancelTime);
Iterator<Order> orderIterator = query.getResultIterator();
while(orderIterator.hasNext()) {
Order order = orderlterator.next();
// Verify that the order wasn't updated by someone else.
// Since the query used an index, there was no lock on the row.
if(order != null && order.date.getTime() >= cancelTime.getTime()) {
for(OrderLine Tine : order.lines) {
// Add the item back to the inventory.
line.item.quantityOnHand += Tine.quantity;
line.quantity = 0;
1
em.remove (order) ;
1
}
em.getTransaction().commit();

}

Like the previous example, the cancelOrdersUsingQuery method intends to cancel
all orders that were submitted in the past minute. To cancel the order, you find the
order using a query, add the items in the order back into the inventory, and
remove the order and associated line items from the system.

ObjectQuery tutorial

With the following steps, you can develop a local in-memory ObjectGrid that can
store order information for a Web site, and demonstrate how to use ObjectQuery to
query the data in the grid.

Chapter 10. Tutorials, examples, and samples 175

176

Before you begin

Be sure to have objectgrid.jar file in the classpath.
About this task

Each step in the tutorial builds on the previous step. Follow each of the steps to
build a simple Java Platform, Standard Edition Version 1.4 (or later) application
that uses an in-memory, local ObjectGrid.

Procedure
1. [“ObjectQuery tutorial - step 1]
* How to create a local ObjectGrid

* How to define a schema for a single object using field-access
* How to store the object
* How to query the object with ObjectQuery

2. [“ObjectQuery tutorial - step 2” on page 177

* How to create an index that the query can use

3. [“ObjectQuery tutorial - step 3” on page 178|

* How to create a schema with two related entities
* How to store objects with a foreign-key reference between them
* How to query the objects using a single query with a JOIN

4. [“ObjectQuery tutorial - step 4” on page 180)

* How to create a schema with multiple related entities

* How to use method or property access instead of field access

ObjectQuery tutorial - step 1

With the following steps, you can continue to develop a local, in-memory
ObjectGrid that stores order information for an online retail store using the
ObjectMap APIs. You define a schema for the map and run a query against the
map.

Procedure
1. Create an ObjectGrid with a map schema.

Create an ObjectGrid with one map schema for the map, then insert an object
into the cache and later retrieve it using a simple query.

OrderBean. java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerName;
String itemName;
int quantity;
double price;

}
2. Define the primary key.
The previous code shows an OrderBean object. This object implements the

java.io.Serializable interface because all objects in the cache must (by default) be
Serializable.

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

The orderNumber attribute is the primary key of the object. The following
example program can be run in stand-alone mode. You should follow this
tutorial in an Eclipse Java project that has the objectgrid.jar file added to the
class path.

Application.java

package querytutorial.basic.stepl;
import java.util.Iterator;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectMap;

import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.config.QueryConfig;
import com.ibm.websphere.objectgrid.config.QueryMapping;
import com.ibm.websphere.objectgrid.query.ObjectQuery;

public class Application

{
static public void main(String [] args) throws Exception

ObjectGrid og = ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");

// Define the schema

QueryConfig queryCfg = new QueryConfig();

queryCfg.addQueryMapping (new QueryMapping("Order", OrderBean.class.getName(),
"orderNumber", QueryMapping.FIELD_ACCESS));

og.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");

s.begin();

OrderBean o = new OrderBean();

customerName = "John Smith";

date = new java.util.Date(System.currentTimeMillis());
itemName = "Widget";

orderNumber = "1";

price = 99.99;

quantity = 1;

orderMap.put (o.orderNumber, o);

s.commit();

o

o ooo

o

s.begin();
ObjectQuery query = s.createObjectQuery("SELECT o FROM Order o WHERE o.itemName='Widget'");
Iterator result = query.getResultlIterator();
o = (OrderBean) result.next();
System.out.printin("Found order for customer: " + o.customerName);
s.commit();
}
}

This eXtreme Scale application first initializes a local ObjectGrid with an
automatically generated name. Next, the application creates a BackingMap and
a QueryConfig that defines what Java type is associated with the map, the
name of the field that is the primary key for the map, and how to access the
data in the object. You then obtain a Session to get the ObjectMap instance and
insert an OrderBean object into the map in a transaction.

After the data is committed into the cache, you can use ObjectQuery to find the
OrderBean using any of the persistent fields in the class. Persistent fields are
those that do not have the transient modifier. Because you did not define any
indexes on the BackingMap, ObjectQuery must scan each object in the map
using Java reflection.

What to do next

[“ObjectQuery tutorial - step 2”| demonstrates how an index can be used to
optimize the query.

ObjectQuery tutorial - step 2

With the following steps, you can continue to create an ObjectGrid with one map
and an index, along with a schema for the map. Then you can insert an object into
the cache and later retrieve it using a simple query.

Chapter 10. Tutorials, examples, and samples 177

Before you begin

Be sure that you have completed [“ObjectQuery tutorial - step 1” on page 176]
before proceeding with this step of the tutorial.

Procedure

Schema and index

Application. java

// Create an index
HashIndex idx= new HashIndex();
idx.setName("theltemName")
idx.setAttributeName("1itemName");
idx.setRangeIndex(true);
idx.setFieldAccessAttribute(true);
orderBMap.addMapIndexPTugin(idx);

1

The index must be a com.ibm.websphere.objectgrid.plugins.index.HashIndex
instance with the following settings:

¢ The Name is arbitrary, but must be unique for a given BackingMap.

* The AttributeName is the name of the field or bean property which the indexing
engine uses to introspect the class. In this case, it is the name of the field for
which you will create an index.

* Rangelndex must always be true.

* FieldAccessAttribute should match the value set in the QueryMapping object

when the query schema was created. In this case, the Java object is accessed
using the fields directly.

When a query runs that filters on the itemName field, the query engine
automatically uses the defined index. Using the index allows the query to run
much faster and a map scan is not needed. The next step demonstrates how an
index can be used to optimize the query.

ObjectQuery tutorial - step 3

With the following step, you can create an ObjectGrid with two maps and a
schema for the maps with a relationship, then insert objects into the cache and
later retrieve them using a simple query.

Before you begin

Be sure you have completed [“ObjectQuery tutorial - step 2” on page 177 prior to
proceeding with this step.

About this task

In this example, there are two maps, each with a single Java type mapped to it.
The Order map has OrderBean objects and the Customer map has CustomerBean
objects in it.

Procedure

Define maps with a relationship.

178 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

OrderBean. java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerld;
String itemName;
int quantity;
double price;

The OrderBean no longer has the customerName in it. Instead, it has the
customerld, which is the primary key for the CustomerBean object and the

Customer map.
CustomerBean. java

public class CustomerBean implements Serializable{
private static final long serialVersionUID = 1L;
String id;
String firstName;
String surname;
String address;
String phoneNumber;

The relationship between the two types or Maps follows:

Application.java

public class Application

static public void main(String [] args)
throws Exception
{

ObjectGrid og =
og.defineMap("Order");
og.defineMap("Customer");
// Define the schema

QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping(

"Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD ACCESS));

queryCfg.addQueryMapping(new QueryMapping(

"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));

queryCfg.addQueryRelationship(new QueryRelationship(

OrderBean.class.getName(), CustomerBean.class.getName(), "customerId", null));

og.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");

s.begin();

CustomerBean cust = new CustomerBean();
cust.address = "Main Street";
cust.firstName = "John";

cust.surname = "Smith";

cust.id = "C001";

cust.phoneNumber = "5555551212";
custMap.insert(cust.id, cust);

OrderBean o = new OrderBean();
.customerld = cust.id;

date = new java.util.Date();
itemName = "Widget";

orderNumber = "1";

.price = 99.99;

o.quantity = 1;
orderMap.insert(o.orderNumber, o);
s.commit();

o o o oo

s.begin();
ObjectQuery query = s.createObjectQuery(

"SELECT ¢ FROM Order o JOIN o.customerId as c WHERE o.itemName='Widget'");

Iterator result = query.getResultIterator();
cust = (CustomerBean) result.next();

Chapter 10. Tutorials, examples, and samples

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();

179

System.out.printin("Found order for customer: " + cust.firstName + " " + cust.surname);
s.commit();
}
}

The equivalent XML in the ObjectGrid deployment descriptor follows:

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmins="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>
<mapSchema
mapName="0rder"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>
<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>
</mapSchemas>
<relationships>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

What to do next

|”ObjectQuery tutorial - step 4,”| expands the current step by including field and
property access objects and additional relationships.

ObjectQuery tutorial - step 4

The following step shows how to create an ObjectGrid with four maps and a
schema for the maps with multiple uni-directional and bi-directional relationships.
Then you can insert objects into the cache and later retrieve them using several
queries.

Before you begin

Be sure to have completed [“ObjectQuery tutorial - step 3” on page 178 prior to
continuing with the current step.

Procedure

Multiple map relationships
OrderBean. java

public class OrderBean implements Serializable {
String orderNumber;

180 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

java.util.Date date;
String customerld;
String itemName;
int quantity;
double price;

As in the previous step, OrderBean no longer has the customerName in it. Instead,
it has the customerld, which is the primary key for the CustomerBean object and

the Customer map.
CustomerBean. java

public class CustomerBean implements Serializable{
private static final long serialVersionUID = 1L;
String id;
String firstName;
String surname;
String address;
String phoneNumber;

Having created the classes specified above, you may run the application below.

Application.java

public class Application

{

static public void main(String [] args)
throws Exception
{

ObjectGrid og =
og.defineMap("Order");
og.defineMap("Customer");

// Define the schema

QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping (new QueryMapping(

"Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD_ACCESS));

queryCfg.addQueryMapping(new QueryMapping(

"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));

queryCfg.addQueryRelationship(new QueryRelationship(

OrderBean.class.getName(), CustomerBean.class.getName(), "customerId", null));

og.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");

s.begin();

CustomerBean cust = new CustomerBean();
cust.address = "Main Street";
cust.firstName = "John";

cust.surname = "Smith";

cust.id = "CoO1";

cust.phoneNumber = "5555551212";
custMap.insert(cust.id, cust);

OrderBean o = new OrderBean();
.customerId = cust.id;

.date = new java.util.Date();
itemName = "Widget";

orderNumber = "1";

.price = 99.99;

.quantity = 13
orderMap.insert(o.orderNumber, o);
s.commit();

o oo oo

o

s.begin();
ObjectQuery query = s.createObjectQuery(

"SELECT ¢ FROM Order o JOIN o.customerId as c WHERE o.itemName='Widget'");

Iterator result = query.getResultIterator();
cust = (CustomerBean) result.next();

System.out.printin("Found order for customer: " + cust.firstName + " " + cust.surname);

s.commit();

Chapter 10. Tutorials, examples, and samples

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();

181

Using the XML configuration below (in the ObjectGrid deployment descriptor) is
equivalent to the programmatic approach above.

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmIns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="ogl">
<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>
<mapSchema
mapName="0rder"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>
<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>
</mapSchemas>
<relationships>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

Java SE security tutorial: overview

With the following tutorial, you can create a distributed eXtreme Scale
environment in a Java Platform, Standard Edition environment.

Before you begin

Ensure that you are familiar with the basics of a distributed eXtreme Scale
configuration.

About this task

In this tutorial, the catalog server, container server, and client all run in a Java SE
environment. Each step in the tutorial builds on the previous one. Follow each of
the steps to secure a distributed eXtreme Scale and develop a simple Java SE
application to access the secured eXtreme Scale.

Procedure
1. [Java SE security tutorial - Step 1” on page 183

* Start an unsecured catalog server

* Start an unsecured container server
» Start a client to access the data

* Use xsadmin to show map size

182 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

 Stop server

2. [“Java SE security tutorial - Step 2” on page 186

* Use of CredentialGenerator

* Use of Authenticator

* Start a secure catalog server

* Start a secure container server

e Start client to access secured ObjectGrid
* Use xsadmin to show map size

* Stop secure server

3. [“Java SE security tutorial - Step 3” on page 192

* Use of JAAS authorization policy

4. [“Java SE security tutorial - Step 4” on page 194

¢ Create a key store and trust store

* Configure SSL properties for the server
* Configure SSL properties for the client
* Use xsadmin to show map size

* Stop secure server

Java SE security tutorial - Step 1

This topic describes a simple unsecured sample. Additional security features are
added incrementally in the steps of the tutorial to increase the amount of
integrated security that is available.

Before you begin

Note: All of the files required for this step of the tutorial are provided in the
following section.

Procedure

Running the sample

Start the catalog service by using the following scripts. For more information about
starting the catalog service, see the information about starting the catalog service in
the Administration Guide.

1. Navigate to the bin directory: cd objectgridRoot/bin
2. Start a catalog server named catalogServer:

O UNX startOgServer.sh catalogServer

o WA startOgServer.bat catalogServer
3. Navigate to the bin directory cd objectgridRoot/bin
4. Then launch a container server named c0 with the following script:

U Lin

startOgServer.sh c0 -objectGridFile ../xml/SimpleApp.xml -deploymentPolicyFile ../xm1/SimpleDP.xml
-catalogServiceEndPoints Tocalhost:2809

startOgServer.bat cO -objectGridFile ../xml1/SimpleApp.xml - deploymentPolicyFile ../xm1/SimpleDP.xml
-catalogServiceEndPoints localhost:2809

Chapter 10. Tutorials, examples, and samples 183

Example

For more information about starting container servers, see the information about
starting the container processes in the Administration Guide.

After the catalog server and container server have been started, launch the client as
follows.

1. Navigate to the bin directory one more time.

2. java -classpath ../lib/objectgrid.jar;../applib/secsample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SimpleApp

The secsample.jar file contains the SimpleApp class.
The output of this program is:
The customer name for ID 0001 is fName 1Name

You may also use xsadmin to show the mapsizes of the "accounting" grid.

* Navigate to the directory objectgridRoot/bin.

* Use the xsadmin command with option -mapSizes as follows.
- xsadmin.sh -g accounting -m mapSetl -mapSizes
— NI xsadmin.bat -g accounting -m mapSetl -mapSizes
You will see the following output.

This administrative utility is provided as a sample only and is not to be
considered a fully supported component of the WebSphere eXtreme Scale
product.

Connecting to Catalog service at localhost:1099

*x*xxkxkx*x*k* Displaying Results for Grid - accounting, MapSet - mapSetl
*kkkkkkkkhkk

**%% [isting Maps for cO x*x

Map Name: customer Partition #: O Map Size: 1 Shard Type: Primary
Server Total: 1

Total Domain Count: 1

Stopping servers
Container server

Use the following command to stop the container server c0.

stopOgServer.sh c0 -catalogServiceEndPoints
locaThost:2809

PTTTE stopOgServer.bat cO -catalogServiceEndPoints Tocalhost:2809
You will see the following message.

CWOBJ2512I: ObjectGrid server cO stopped.

Catalog server

You can stop a catalog server using the following command.

184 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

stopOgServer.sh catalogServer -catalogServiceEndPoints

localhost:2809

P stopOgServer.bat catalogServer -catalogServiceEndPoints
localhost:2809

If you shut down the catalog server, you will see the following message.
CWOBJ2512I: ObjectGrid server catalogServer stopped.
Required files

The file below is the Java class for SimpleApp.

SimpleApp.java

// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer

// (a) for its own instruction and study,

// (b) in order to develop applications designed to run with an IBM WebSphere product,

// either for customer's own internal use or for redistribution by customer, as part of such an

// application, in customer's own products.

// Licensed Materials - Property of IBM

// 5724-334 (C) COPYRIGHT International Business Machines Corp. 2007-2009
package com.ibm.websphere.objectgrid.security.sample.guide;

import com.ibm.websphere.objectgrid.ClientClusterContext;
import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectMap;

import com.ibm.websphere.objectgrid.Session;

public class SimpleApp {
public static void main(String[] args) throws Exception {

SimpleApp app = new SimpleApp();
app.run(args);

}
[x%

* read and write the map

* @throws Exception

*/

protected void run(String[] args) throws Exception {
ObjectGrid og = getObjectGrid(args);

Session session = og.getSession();
ObjectMap customerMap = session.getMap("customer");
String customer = (String) customerMap.get("0001");

if (customer == null) {
customerMap.insert("0001", "fName I1Name");
} else {
customerMap.update("0001", "fName 1Name");
}

customer = (String) customerMap.get("0001");

System.out.printin("The customer name for ID 0001 is " + customer);

}

[x%

* Get the ObjectGrid

* @return an ObjectGrid instance

* @throws Exception

*/

protected ObjectGrid getObjectGrid(String[] args) throws Exception {
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

// Create an ObjectGrid
ClientClusterContext ccContext = ogManager.connect("localhost:2809", null, null);
ObjectGrid og = ogManager.getObjectGrid(ccContext, "accounting");

Chapter 10. Tutorials, examples, and samples

185

return og;

The getObjectGrid method in this class obtains an ObjectGrid, and the run method
reads a record from the customer map and updates the value.

To run this sample in a distributed environment, an ObjectGrid descriptor XML file
SimpleApp.xml, and a deployment XML file, Simp1eDP.xm1, are created. The files are
featured in the following example:

SimpleApp.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmins="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting">
<backingMap name="customer" readOnly="false" copyKey="true"/>
</objectGrid>
</objectGrids>
</objectGridConfig>

The following XML file configures the deployment environment.
SimpleDP.xml

<?xml version="1.0" encoding="UTF-8"?>

<deploymentPolicy xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmins="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="accounting">
<mapSet name="mapSetl" numberOfPartitions="1" minSyncReplicas="0" maxSyncReplicas="2"
maxAsyncReplicas="1">
<map ref="customer"/>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

This is a simple ObjectGrid configuration with one ObjectGrid instance named
"accounting" and one map named "customer" (within the mapSet "mapSet1"). The
SimpTeDP.xml file features one map set that is configured with 1 partition and 0
minimum required replicas.

[Next step of tutoriall

Java SE security tutorial - Step 2

Building on the previous step, the following topic shows how to implement client
authentication in a distributed eXtreme Scale environment.

Before you begin

Be sure that you have completed [“Java SE security tutorial - Step 1” on page 183

About this task

With client authentication enabled, a client is authenticated before connecting to
the eXtreme Scale server. This section demonstrates how client authentication can
be done in an eXtreme Scale server environment, including sample code and
scripts to demonstrate.

186 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

As any other authentication mechanism, the minimum authentication consists of
the following steps:

1.

2.
3.

The administrator changes configurations to make authentication a
requirement.

The client provides a credential to the server.
The server authenticates the credential to the registry.

Procedure

1.

Client credential

A client credential is represented by a
com.ibm.websphere.objectgrid.security.plugins.Credential interface. A client
credential can be a user name and password pair, a Kerberos ticket, a client
certificate, or data in any format that the client and server agree upon. Refer to
the Credential API documentation for more details.

This interface explicitly defines the equals(Object) and hashCode() methods.
These two methods are important because the authenticated Subject objects are
cached by using the Credential object as the key on the server side.

eXtreme Scale also provides a plug-in to generate a credential. This plug-in is
represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface,
and is used to generate a client credential. This is useful when the credential is
expirable. In this case, the getCredential() method is called to renew a
credential. Refer to CredentialGenerator API Documentation for more details.

You can implement these two interfaces for eXtreme Scale client runtime to
obtain client credentials.

This sample uses the following two sample plug-in implementations provided
by eXtreme Scale.
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator

For more information about these plug-ins, see the topic on client
authentication programming in the Programming Guide.

Server authenticator After the eXtreme Scale client retrieves the Credential
object using the CredentialGenerator object, this client Credential object is sent
along with the client request to the eXtreme Scale server. The eXtreme Scale
server authenticates the Credential object before processing the request. If the
Credential object is authenticated successfully, a Subject object is returned to
represent this client.

This Subject object is then cached, and it expires after its lifetime reaches the
session timeout value. The login session timeout value can be set by using the
loginSessionExpirationTime property in the cluster XML file. For example,
setting ToginSessionExpirationTime="300" makes the Subject object expire in
300 seconds.This Subject object is then used for authorizing the request, which
is shown later.

An eXtreme Scale server uses the Authenticator plug-in to authenticate the
Credential object. Refer to Authenticator API Documentation for more details.

This example uses an eXtreme Scale built-in implementation:
KeyStoreLoginAuthenticator, which is for testing and sample purposes (a key
store is a simple user registry and should not be used for production). client
authentication programming in the Programming Guide.

This KeyStoreLoginAuthenticator uses a KeyStoreLoginModule to authenticate
the user with the key store by using the JAAS login module "KeyStoreLogin".
The key store can be configured as an option to the KeyStoreLoginModule

Chapter 10. Tutorials, examples, and samples 187

class. The following example illustrates the keyStoreLogin alias configured in
the JAAS configuration file og_jaas.config:

KeyStoreLogin{

com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule required
keyStoreFile="../security/samplekS.jks" debug = true;

1s

The following commands create a key store sampleKS.jks in the
%OBJECTGRID_HOME?% /security directory with the password as sampleKS1.
Also, three user certificates representing the administrator user, the manager
user, and the cashier user are created with their own passwords.

a. Navigate to the eXtreme Scale root directory.
cd objectgridRoot

b. Create a directory called "security".
mkdir security

c. Navigate to the newly created security directory.
cd security

d. Use keytool (in the javaHOME/bin directory) to create a user "administator”
with password "administrator]” in the key store sampleKS.jks.

keytool -genkey -v -keystore ./sampleKS.jks -storepass sampleKS1
-alias administrator -keypass administratorl
-dname CN=administrator,0=acme,0U=0GSample -validity 10000

e. Use keytool (in the javaHOME/bin directory) to create a user "manager" with
password "managerl" in the key store sampleKS jks.

keytool -genkey -v -keystore ./sampleKS.jks -storepass sampleKS1
-alias manager -keypass managerl
-dname CN=manager,0=acme,0U=0GSample -validity 10000

f. Use keytool (in the javaHOME/bin directory) to create a user "cashier" with
password "cashierl" in the key store sampleKSjks.

keytool -genkey -v -keystore ./sampleKS.jks -storepass sampleKS1
-alias cashier -keypass cashierl -dname CN=cashier,0=acme,0U=0GSample
-validity 10000

The client security configuration is configured in the client properties file. Use
the following command to create a copy in the $0BJECTGRID_HOME%/security
directory:

a. Change to the security directory.
cd objectgridRoot/security

b. Copy the sampleClient.properties file to the client.properties file.
cp ../properties/sampleClient.properties client.properties

The following properties are highlighted in the client.properties file in the
security directory.

a. securityEnabled: Setting securityEnabled to true (default value) enables the
client security, which includes authentication.

b. credentialAuthentication: Set credential Authentication to Supported
(default value), which means the client supports credential authentication.

c. transportType: Set transportType to TCP/IP, which means no SSL will be
used.

d. singleSignOnEnabled: Set it to false (default value). Single sign-on is not
available.

3. Server security configuration

The server security configuration is specified in the security descriptor XML file
and the server security property file.The security descriptor XML file describes
the security properties common to all servers (including catalog servers and

188 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

container servers). One property example is the authenticator configuration
which represents the user registry and authentication mechanism.
Here is the security.xml file to be used in this sample:

<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://ibm.com/ws/objectgrid/config/security ../objectGridSecurity.xsd"
xmins="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true" loginSessionExpirationTime="300" >

<authenticator className ="com.ibm.websphere.objectgrid.security.plugins.builtins.
KeyStoreLoginAuthenticator">

</authenticator>
</security>

</securityConfig>

a. securityEnabled: Set to true, which enables the server security including
authentication.

b. loginSessionExpirationTime: Set the value to 300 (default value).

c. authenticator: Add the authenticator class KeyStoreLoginAuthenticator to
the cluster XML file as follows:

<authenticator className ="com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator">
</authenticator>

d. credentialAuthentication: Set credential Authentication attribute to Required
so the server requires authentication

For more detailed explanation on the security.xml file, see the information
about the security descriptor XML file in the Administration Guide.

Copy the server properties file into the security directory. At this time, you do
not need to modify anything in this file.
a. Navigate to the security directory.

cd objectgridRoot/security

b. Copy the sample objectGrid sampleServer.properties file from the
properties directory to the new server.properties file.

cp ../properties/containerServer.properties server.properties
Make the following changes in the server.properties file:
a. securityEnabled: Set the securityEnabled attribute to true.

b. transportType: Set transportType attribute to TCP/IP, which means no SSL
is used.

c. secureTokenManagerType: Set secureTokenManagerType attribute to none to
not configure the secure token manager.

4. Secure client Connect the client application to the server securely as
demonstrated in the following example:

package com.ibm.websphere.objectgrid.security.sample.guide;

import com.ibm.websphere.objectgrid.ClientClusterContext;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration;

import com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory;

import com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator;

import com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator;

public class SecureSimpleApp extends SimpleApp {
public static void main(String[] args) throws Exception f{
SecureSimpleApp app = new SecureSimpleApp();
app.run(args);
}
[x*
* Get the ObjectGrid

Chapter 10. Tutorials, examples, and samples 189

190

* @return an ObjectGrid instance

* @throws Exception

*/

protected ObjectGrid getObjectGrid(String[] args) throws Exception {
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ogManager.setTraceFileName("logs/client.Tog");
ogManager.setTraceSpecification("ObjectGrid+=all=enabled:0RBRas=all=enabled");

// Creates a ClientSecurityConfiguration object using the specified file
ClientSecurityConfiguration clientSC = ClientSecurityConfigurationFactory
.getClientSecurityConfiguration(args[0]);

// Creates a CredentialGenerator using the passed-in user and password.
CredentialGenerator credGen = new UserPasswordCredentialGenerator(args[1], args[2]);
clientSC.setCredentialGenerator(credGen);

// Create an ObjectGrid by connecting to the catalog server
ClientClusterContext ccContext = ogManager.connect("localhost:2809", clientSC, null);
ObjectGrid og = ogManager.getObjectGrid(ccContext, "accounting");

return og;

}

There are three things different from the non-secured application:

a. Created a ClientSecurityConfiguration object by passing the configured
client.properties file.

b. Created a UserPasswordCredentialGenerator by using the passed-in user ID
and password.

c. Connected to the catalog server to obtain an ObjectGrid from the
ClientClusterContext by passing a ClientSecurityConfiguration object.

5. Issue the application

To run the application, start the catalog server. Issue the -clusterFile and

-serverProps command line options to pass in the security properties:

a. Navigate to the bin directory:
cd objectgridRoot/bin

b. Launch the catalog server:

o unx i Linux

startOgServer.sh catalogServer -clusterSecurityFile ../security/security.xml
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"

startOgServer.bat catalogServer -clusterSecurityFile ../security/security.xml
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"

Then, launch a secure container server by using the following script:
a. Navigate to the bin directory again:

cd objectgridRoot/bin
b. Launch a secure container server:

o Lnox) UNX

startOgServer.sh cO -objectgridFile ../xml1/SimpleApp.xml
-deploymentPolicyFile ../xml/SimpleDP.xml

-catalogServiceEndPoints Tocalhost:2809

-serverProps ../security/server.properties

-jvmArgs -Djava.security.auth.login.config="../security/og_jaas.config"

Windows
startOgServer.bat cO -objectgridFile ../xm1/SimpleApp.xml
-deploymentPolicyFile ../xm1/SimpleDP.xml
-catalogServiceEndPoints localhost:2809
-serverProps ../security/server.properties
-jvmArgs -Djava.security.auth.login.config="../security/og_jaas.config"

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

The server property file is passed by issuing -serverProps.

After the server is started, start the client by using the following command:
a. cd objectgridRoot/bin
b.

java -classpath ../lib/objectgrid.jar;../applib/secsample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties manager managerl

Use a colon (:) for the classpath separator instead of a semicolon
(;) as in the previous example.
The secsample.jar file contains the SimpleApp class.

The SecureSimpleApp uses three parameters that are provided in the following
list:

a. The ../security/client.properties file is the client security property file.
b. manager is the user ID.

c. managerl is the password.

After you issue the class, the following output results:

The customer name for ID 0001 is fName TName.

You may also use xsadmin to show the mapsizes of the "accounting" grid.

* Navigate to the directory objectgridRoot/bin.

* Use the xsadmin command with option -mapSizes as follows.

B UNX xsadmin.sh -g accounting -m mapSetl -username
manager -password managerl -mapSizes

— WM xsadmin.bat -g accounting -m mapSetl -username manager
-password managerl -mapSizes
You see the following output.

This administrative utility is provided as a sample only and is not to
be considered a fully supported component of the WebSphere eXtreme
Scale product.

Connecting to Catalog service at localhost:1099

**kkkkxkkkk* Displaying Results for Grid - accounting, MapSet - mapSetl
khkkkkkkkkikk

% Listing Maps for cO #

Map Name: customer Partition #: O Map Size: 1 Shard Type: Primary
Server Total: 1

Total Domain Count: 1

Now you can use stopOgServer command to stop the container server or
catalog service process. However you need to provide a security configuration
file. The sample client property file defines the following two properties to
generate a userID/password credential (manager/managerl).
credentialGeneratorClass=com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator

credentialGeneratorProps=manager managerl

Stop the container c0 with the following command.

O UNX stopOgServer.sh c0 -catalogServiceEndPoints
Tocalhost:2809 -clientSecurityFile ..\security\client.properties

o I stopOgServer.bat c@ -catalogServiceEndPoints localhost:2809
-clientSecurityFile ..\security\client.properties

If you do not provide the -clientSecurityFile option, you will see an exception
with the following message.

>> SERVER (id=39132c79, host=9.10.86.47) TRACE START:

Chapter 10. Tutorials, examples, and samples 191

192

>> org.omg.CORBA.NO PERMISSION: Server requires credential
authentication but there is no security context from the client. This
usually happens when the client does not pass a credential the server.

vmcid: 0x0
minor code: 0
completed: No

You can also shut down the catalog server using the following command.
However, if you want to continue trying the next step tutorial, you can let the
catalog server stay running.

S UNX stopOgServer.sh catalogServer
-catalogServiceEndPoints Tocalhost:2809 -clientSecurityFile
..\security\client.properties

o INIIEM stopOgServer.bat catalogServer -catalogServiceEndPoints

Tocalhost:2809 -clientSecurityFile ..\security\client.properties
If you do shutdown the catalog server, you will see the following output.
CWOBJ2512I: ObjectGrid server catalogServer stopped

Now, you have successfully made your system partially secure by enabling
authentication. You configured the server to plug in the user registry,
configured the client to provide client credentials, and changed the client
property file and cluster XML file to enable authentication.

If you provide an invalidate password, you see an exception stating that the
user name or password is not correct.

For more details about client authentication, see the information about
application client authentication in the Administration Guide.

[Next step of tutoriall

Java SE security tutorial - Step 3

After authenticating a client, as in the previous step, you can give security
privileges through eXtreme Scale authorization mechanisms.

Before you begin

Be sure to have completed [“Java SE security tutorial - Step 2” on page 18 prior to
proceeding with this task.

About this task

The previous step of this tutorial demonstrated how to enable authentication in an
eXtreme Scale grid. As a result, no unauthenticated client can connect to your
server and submit requests to your system. However, every authenticated client
has the same permission or privileges to the server, such as reading, writing, or
deleting data that is stored in the ObjectGrid maps. Clients can also issue any type
of query. This section demonstrates how to use eXtreme Scale authorization to give
various authenticated users varying privileges.

Similar to many other systems, eXtreme Scale adopts a permission-based
authorization mechanism. WebSphere eXtreme Scale has different permission
categories that are represented by different permission classes. This topic features
MapPermission. For complete category of permissions, see the client authorization
reference in the Programming Guide..

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

In WebSphere eXtreme Scale, the

com.ibm.websphere.objectgrid.security. MapPermission class represents permissions
to the eXtreme Scale resources, specifically the methods of ObjectMap or JavaMap
interfaces. WebSphere eXtreme Scale defines the following permission strings to
access the methods of ObjectMap and JavaMap:

* read: Grants permission to read the data from the map.

* write: Grants permission to update the data in the map.

* insert: Grants permission to insert the data into the map.

* remove: Grants permission to remove the data from the map.

* invalidate: Grants permission to invalidate the data from the map.

¢ all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when a client calls a method of ObjectMap or JavaMap.
The eXtreme Scale runtime checks different map permissions for different methods.
If the required permissions are not granted to the client, an
AccessControlException results.

This tutorial demonstrates how to use Java Authentication and Authorization
Service (JAAS) authorization to grant authorization map accesses for different
users.

Procedure

1. Enable eXtreme Scale authorization. To enable authorization on the
ObjectGrid, you need to set the securityEnabled attribute to true for that
particular ObjectGrid in the XML file. Enabling security on the ObjectGrid
means that you are enabling authorization. Use the following commands to
create a new ObjectGrid XML file with security enabled.

a. Navigate to the xm1 directory.
cd objectgridRoot/xml

b. Copy the SimpleApp.xml file to the SecureSimpleApp.xml file.
cp SimpleApp.xml SecureSimpleApp.xml

c. Open the SecureSimpTeApp.xml file and add securityEnabled="true" on the
ObjectGrid level as the following XML shows:

<?xml version="1.0" encoding="UTF-8"?7>
<objectGridConfig xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmins="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting" securityEnabled="true">
<backingMap name="customer" readOnly="false" copyKey="true"/>
</objectGrid>
</objectGrids>
</objectGridConfig>

2. Define the authorization policy. In the pre-client authentication section, you
created three users in the key store: cashier, manager, and administrator. In this
example, the user "cashier" only has read permissions to all the maps, and the
user "manager” has all permissions. JAAS authorization is used in this example.
JAAS authorization uses authorization policy file to grant permissions to
principals. The following file is defined in the security directory:

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"
principal javax.security.auth.x500.X500Principal "CN=cashier,0=acme,0U=0GSample" {
permission com.ibm.websphere.objectgrid.security.MapPermission "accounting.*", "read ";

s

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"
principal javax.security.auth.x500.X500Principal "CN=manager,O=acme,0U=0GSample" {
permission com.ibm.websphere.objectgrid.security.MapPermission "accounting.*", "all";

1s

Chapter 10. Tutorials, examples, and samples 193

Note:

* The codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/
PrivilegedAction" is a specially-reserved URL for ObjectGrid. All ObjectGrid
permissions granted to principals should use this special code base.

* The first grant statement grants "read" map permission to principal
"CN=cashier,0=acme,0U=0GSample", so the cashier has only map read
permission to all the maps in the ObjectGrid accounting.

* The second grant statement grants "all" map permission to principal
"CN=manager,0=acme,0U=0GSample", so the manager has all permissions to
maps in the ObjectGrid accounting.

Now you can launch a server with an authorization policy. The JAAS
authorization policy file can be set using the standard -D property:
-Djava.security.auth.policy=../security / ogAuth.policy

3. Run the application.
After you create the above files, you can run the application.

Use the following commands to start the catalog server. For more information
about starting the catalog service, see the information about starting a catalog
service in the Administration Guide.

a. Navigate to the bin directory: cd objectgridRoot/bin
b. Start the catalog server.

O UNiX startOgServer.sh catalogServer
-clusterSecurityFile ../security/security.xml -serverProps
../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"

o INIIEM startOgServer.bat catalogServer -clusterSecurityFile
../security/security.xml -serverProps ../security/server.properties
-jvmArgs -Djava.security.auth.login.config="../security/
og_jaas.config"

The security.xml and server.properties files were created in the previous
step of this tutorial.

T

€. You can then start a secure container server using the following script. Run
the following script from the bin directory:

O UNX # startOgServer.sh cO -objectGridFile
../xm1/SecureSimpleApp.xml -deploymentPolicyFile
../xm1/SimpleDP.xml -catalogServiceEndPoints localhost:2809
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

o MM startOgServer.bat cO -objectGridFile ../xml/
SecureSimpleApp.xml -deploymentPolicyFile ../xm1/SimpleDP.xml
-catalogServiceEndPoints Tocalhost:2809 -serverProps
../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

Notice the following differences from the previous container server start
command:

* Use the SecureSimpTeApp.xml file instead of the SimpleApp.xml file.

e Add another -Djava.security.auth.policy argument to set the JAAS
authorization policy file to the container server process.

194 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Use the same command as in the previous step of the tutorial:
a. Navigate to the bin directory.
b. java -classpath ../lib/objectgrid.jar;../applib/secsample.jar

com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp

../security/client.properties manager managerl

Because user "manager” has all permissions to maps in the accounting
ObjectGrid, the application runs properly.

Now, instead of using user "manager"”, use user "cashier” to launch the client

application.
c. Navigate to the bin directory.

d. java -classpath ../lib/objectgrid.jar;../applib/secsample.jar
com.ibm.ws.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties cashier cashierl

The following exception results:

Exception in thread "P=387313:0=0:CT" com.ibm.websphere.objectgrid.TransactionException:
rolling back transaction, see caused by exception
at com.ibm.ws.objectgrid.SessionImpl.rollbackPMapChanges (SessionImpl.java:1422)
at com.ibm.ws.objectgrid.SessionImpl.commit(SessionImpl.java:1149)
at com.ibm.ws.objectgrid.SessionImpl.mapPostInvoke(SessionImpl.java:2260)
at com.ibm.ws.objectgrid.ObjectMapImpl.update(ObjectMapImpl.java:1062)
at com.ibm.ws.objectgrid.security.sample.guide.SimpTleApp.run(SimpleApp.java:42)
at com.ibm.ws.objectgrid.security.sample.guide.SecureSimpleApp.main(SecureSimpleApp.java:27)
Caused by: com.ibm.websphere.objectgrid.ClientServerTransactionCallbackException:
Client Services - received exception from remote server:
com.ibm.websphere.objectgrid.TransactionException: transaction rolled back,
see caused by Throwable
com.ibm.ws.objectgrid.client.RemoteTransactionCallbackImpl.processReadWriteResponse(
RemoteTransactionCallbackImpl.java:1399)
com.ibm.ws.objectgrid.client.RemoteTransactionCallbackImpl.processReadWriteRequestAndResponse(
RemoteTransactionCallbackImpl.java:2333)

at
at

at
at

Caused by:
at
at

com.
com.

com.
com.
com.

ibm
ibm

. 4 more

ibm
ibm
ibm

.ws.objectgrid.client.RemoteTransactionCallbackImpl.commit(RemoteTransactionCallbackImpl.java:557)
.ws.objectgrid.SessionImpl.commit(SessionImpl.java:1079)

.websphere.objectgrid.TransactionException: transaction rolled back, see caused by Throwable
.ws.objectgrid.ServerCoreEventProcessor.processLogSequence(ServerCoreEventProcessor. java:1133)
.ws.objectgrid.ServerCoreEventProcessor.processReadWriteTransactionRequest

(ServerCoreEventProcessor.java:910)

at

at
at
at
at
at
at
at
at
at
at
at
at
Caused by:

com. ibm.

at
at
at
at
at
at
at
at
at
at
at
at

com.ibm.ws.objectgrid.ServerCoreEventProcessor.processClientServerRequest (ServerCoreEventProcessor. java:1285)

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

ibm.ws.objectgrid.ShardImpl.processMessage(ShardImpl.java:515)
ibm.ws.objectgrid.partition.IDLShardPOA. invoke(IDLShardPOA. java:154)
ibm.CORBA.poa.POAServerDelegate.dispatchToServant (POAServerDelegate.java:396)
ibm.CORBA.poa.POAServerDelegate.internalDispatch(POAServerDelegate.java:331)
ibm.CORBA.poa.POAServerDelegate.dispatch(POAServerDelegate.java:253)
ibm.rmi.iiop.0ORB.process(ORB.java:503)
ibm.CORBA.iiop.0RB.process(ORB.java:1553)
ibm.rmi.iiop.Connection.respondTo(Connection.java:2680)

ibm

ibm.
ibm.

.rmi.iiop.Connection.doWork(Connection.java:2554)
rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:62)
rmi.iiop.WorkerThread.run(ThreadPoolImpl.java:202)

java.lang.Thread.run(Thread.java:803)

java.security.AccessControlException: Access denied (
websphere.objectgrid.security.MapPermission accounting.customer write)
java.security.AccessControlContext.checkPermission(AccessControlContext.java:155)
com.ibm.ws.objectgrid.security.MapPermissionCheckAction.run(MapPermissionCheckAction.java:141)
java.security.AccessController.doPrivileged(AccessController.java:275)
javax.security.auth.Subject.doAsPrivileged(Subject.java:727)
com.ibm.ws.objectgrid.security.MapAuthorizer$l.run(MapAuthorizer.java:76)
java.security.AccessController.doPrivileged(AccessController.java:242)

com.
com.
com.
com.
com.
com.

. 14

ibm.
ibm.
ibm.
ibm.
ibm.
ibm.

ws.objectgrid.security.MapAuthorizer.check(MapAuthorizer.java:66)
ws.objectgrid.security.SecuredObjectMapImpl.checkMapAuthorization(SecuredObjectMapImpl.java:429)
ws.objectgrid.security.SecuredObjectMapImpl.update(SecuredObjectMapImpl.java:490)
ws.objectgrid.SessionImpl.processLogSequence(SessionImpl.java:1913)
ws.objectgrid.SessionImpl.processLogSequence(SessionImpl.java:1805)
ws.objectgrid.ServerCoreEventProcessor.processLogSequence(ServerCoreEventProcessor.java:1011)

more

This exception occurs because the user "cashier" does not have write
permission, so it cannot update the map customer.

Chapter 10. Tutorials, examples, and samples

195

Now your system supports authorization. You can define authorization policies
to grant different permissions to different users. For more information about
authorization, see the information about application client authorization in the
Programming Guide.

What to do next

Complete the next step of the tutorial. See [‘Java SE security tutorial - Step 4.”|

Java SE security tutorial - Step 4

The following step explains how you can enable a security layer for
communication between your environment's endpoints.

Before you begin

Be sure you have completed [‘Java SE security tutorial - Step 3” on page 192| prior
to proceeding with this task.

About this task

The eXtreme Scale topology supports both Transport Layer Security/Secure Sockets
Layer (TLS/SSL) for secure communication between ObjectGrid endpoints (client,
container servers, and catalog servers). This step of the tutorial builds upon the
previous steps to enable transport security.

Procedure
1. Create TLS/SSL keys and key stores

In order to enable transport security, you must create a key store and trust
store. This exercise only creates one key and trust-store pair. These stores are
used for ObjectGrid clients, container servers, and catalog servers, and are
created with the JDK keytool.

* Create a private key in the key store

keytool -genkey -alias ogsample -keystore key.jks -storetype JKS
-keyalg rsa -dname "CN=ogsample, OU=Your Organizational Unit, O0=Your
Organization, L=Your City, S=Your State, C=Your Country" -storepass
ogpass -keypass ogpass -validity 3650

Using this command, a key store key.jks is created with a key "ogsample"
stored in it. This key store key.jks will be used as the SSL key store.

* Export the public certificate

keytool -export -alias ogsample -keystore key.jks -file temp.key
-storepass ogpass

Using this command, the public certificate of key "ogsample" is extracted and
stored in the file temp.key.

* Import the client’s public certificate to the trust store

keytool -import -noprompt -alias ogsamplepublic -keystore trust.jks
-file temp.key -storepass ogpass

Using this command, the public certificate was added to key store trust.jks.
This trust.jks is used as the SSL trust store.

2. Configuring ObjectGrid property files

In this step, you must configure the ObjectGrid property files to enable
transport security.

196 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

First, copy the key.jks and trust.jks files into the objectgridRoot/security
directory.

We set the following properties in the client.properties and server.properties
file.

transportType=SSL-Required

alias=ogsample

contextProvider=IBMJSSE2

protocol=SSL

keyStoreType=JKS

keyStore=../security/key.jks

keyStorePassword=ogpass

trustStoreType=JKS

trustStore=../security/trust.jks

trustStorePassword=ogpass

transportType: The value of transportType is set to "SSL-Required", which
means the transport requires SSL. So all the ObjectGrid endpoints (clients,
catalog servers, and container servers) should have SSL configuration set and
all transport communication will be encrypted.

The other properties are used to set the SSL configurations. See the information
about transport layer security and the secure sockets layer in the Administration
Guide for a detailed explanation. Make sure you follow the instructions in this
topic to update your orb.properties file.

Make sure you follow this page to update your orb.properties file.

In the server.properties file, you must add an additional property
clientAuthentication and set it to false. On the server side, you do not need to
trust the client.

clientAuthentication=false
Run the application

The commands are the same as the commands in the|“Java SE security tutorial|
[- Step 3” on page 192| topic.

Use the following commands to start a catalog server.
a. Navigate to the bin directory: cd objectgridRoot/bin

b. Start the catalog server:

Lo UNIX

startOgServer.sh catalogServer -clusterSecurityFile ../security/security.xml
-serverProps ../security/server.properties -JMXServicePort 11001
-jvmArgs -Djava.security.auth.login.config="../security/og_jaas.config"

startOgServer.bat catalogServer -clusterSecurityFile ../security/security.xml
-serverProps ../security/server.properties -JMXServicePort 11001 -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"

The security.xml and server.properties files were created in the
[security tutorial - Step 2” on page 186 page.

Use the -JMXServicePort option to explicitly specify the JMX port for the
server. This option is required to use the xsadmin command.

Run a secure ObjectGrid container server:
¢. Navigate to the bin directory again: cd objectgridRoot/bin
d.
. L UNX
startOgServer.sh c0 -objectGridFile ../xml/SecureSimpleApp.xml

-deploymentPolicyFile ../xm1/SimpleDP.xml -catalogServiceEndPoints
Tocalhost:2809 -serverProps ../security/server.properties

Chapter 10. Tutorials, examples, and samples 197

198

-JMXServicePort 11002 -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

startOgServer.bat c@ -objectGridFile ../xml/SecureSimpleApp.xml
-deploymentPolicyFile ../xm1/SimpleDP.xml -catalogServiceEndPoints Tocalhost:2809
-serverProps ../security/server.properties -JMXServicePort 11002

-jvmArgs -Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

Notice the following differences from the previous container server start
command:

* Use SecureSimpleApp.xml instead of SimpleApp.xml

* Add another -Djava.security.auth.policy to set the JAAS authorization policy
file to the container server process.

Run the following command for client authentication:

a. cd objectgridRoot/bin
b.

javaHome/java -classpath ../1ib/objectgrid.jar;../applib/secsample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties manager managerl

Because user "manager” has permission to all the maps in the accounting
ObjectGrid, the application runs successfully.

You may also use xsadmin to show the mapsizes of the "accounting" grid.
* Navigate to the directory objectgridRoot/bin.
* Use the xsadmin command with option -mapSizes as follows.

= UV Linux

xsadmin.sh -g accounting -m mapSetl -mapsizes -p 11001 -ss]
-trustpath ..\security\trust.jks -trustpass ogpass -trusttype jks
-username manager -password managerl

xsadmin.bat -g accounting -m mapSetl -mapsizes -p 11001 -ss]
-trustpath ..\security\trust.jks -trustpass ogpass -trusttype jks
-username manager -password managerl

Notice we specify the JMX port of the catalog service using -p 11001 here.

You see the following output.

This administrative utility is provided as a sample only and is not to

be considered a fully supported component of the WebSphere eXtreme Scale product.
Connecting to Catalog service at localhost:1099

*xxxxxxxxx% Displaying Results for Grid - accounting, MapSet - mapSetl #xxxxxxxxxx
*#x% Listing Maps for cO #*x

Map Name: customer Partition #: © Map Size: 1 Shard Type: Primary

Server Total: 1

Total Domain Count: 1

Running the application with an incorrect key store

If your trust store does not contain the public certificate of the private key in
the key store, you will get an exception complaining that the key cannot be
trusted.

In order to show this, create another key store key2.jks.

keytool -genkey -alias ogsample -keystore key2.jks -storetype JKS
-keyalg rsa -dname "CN=ogsample, OU=Your Organizational Unit, O0=Your
Organization, L=Your City, S=Your State, C=Your Country" -storepass
ogpass -keypass ogpass -validity 3650

Then modify the server.properties to make the keyStore point to this new key
store key2.jks:

keyStore=../security/key2.jks
Run the following command to start the catalog server:
a. Navigate to bin: cd objectgridRoot/bin

IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

b. Start the catalog server:

| Linux Qi UNX_

startOgServer.sh cO -objectGridFile ../xml1/SecureSimpleApp.xml
-deploymentPolicyFile ../xm1/SimpleDP.xml -catalogServiceEndPoints Tocalhost:2809
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

startOgServer.bat c0 -objectGridFile ../xml/SecureSimpleApp.xml
-deploymentPolicyFile ../xml/SimpleDP.xml -catalogServiceEndPoints localhost:2809
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og_jaas.config"
-Djava.security.auth.policy="../security/og_auth.policy"

You see the following exception:

Caused by: com.ibm.websphere.objectgrid.ObjectGridRPCException:
com. ibm.websphere.objectgrid.ObjectGridRuntimeException:
SSL connection fails and plain socket cannot be used.

Finally, change the server.properties file back to use the key. jks file.

REST data services sample and tutorial

This topic describes how to quickly get started with the WebSphere eXtreme Scale
REST data service. Instructions are provided forWebSphere Application Server
version 7.0,WebSphere Application Server Community Edition and Apache Tomcat.

About this task

The included sample has source code and compiled binaries to run a partitioned
eXtreme Scale data grid. This sample demonstrates how to create a simple data
grid, model the data using eXtreme Scale entities and provides two command-line
client applications that allow adding and querying entities using Java or C# (see
Figure 1).

The sample Java client uses the eXtreme Scale Java EntityManager API to persist
and query data in the grid. This client can be run in Eclipse or using a
command-line script. Note that the sample Java client does not demonstrate the
REST data service, but allows updating data in the grid, so a web browser or other
clients can read the data. The sample Java client and web browser, as shown in
Figure 1, illustrate HTTP clients using the REST data service and eXtreme Scale
Java clients using the same eXtreme Scale grid and data contained therein.

The sample Microsoft WCF Data Services C# client communicates with the

eXtreme Scale data grid through the REST data service using the .NET framework.
The WCF Data Services client can be used to both update and query the data grid.

Chapter 10. Tutorials, examples, and samples 199

REST Service NorthwindGrid
{ {
== | |
~
o 3 §_—
° 2 { {
. Z/\ J G A~
N
HTTP Client Java Client
l Browser | l Eclipse |
l WCF DS I l runclient.sh|bat I

Figure 43. Getting started sample topology

Procedure

1. Configure and start the eXtreme Scale data grid. See [“Enabling the REST data|
[service” on page 202)

2. Configure and start the REST data service in a web server. See f’Configuringl
[application servers for the REST data service” on page 209,

3. Run a client to interact with the REST data service. Two options are available:
a. Run the sample Java client to populate the grid with data using the
EntityManager API and query the data in the grid using a web browser and
the eXtreme Scale REST data service. See [“Using a Java client with REST]
[data services” on page 218
b. Run the sample WCF Data Services C# client. See [“Visual Studio 2008 WCH
[client with REST data service” on page 220,

Directory conventions

The following directory conventions are used throughout the documentation to
must reference special directories such as wxs_install_root and wxs_home. You
access these directories during several different scenarios, including during
installation and use of command-line tools.

wxs_install_root
The wxs_install_root directory is the root directory where WebSphere
eXtreme Scale product files are installed. The wxs_install_root directory can
be the directory in which the trial zip file is extracted or the directory in which
the WebSphere eXtreme Scale product is installed.

* Example when extracting the trial:
Example: /opt/IBM/WebSphere/eXtremeScale

* Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:

Example: /opt/IBM/eXtremeScale

* Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:

Example: /opt/IBM/WebSphere/AppServer

200 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

wxs_home
The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples and components. This is the same as the
wxs_install_root directory when the trial is extracted. For stand-alone
installations, the wxs_home directory is the ObjectGrid sub-directory within the
wxs_install_root directory. For installations that are integrated with
WebSphere Application Server, this directory is the optionalLibraries/
ObjectGrid directory within the wxs_install_root directory.
* Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

* Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:

Example: /opt/IBM/eXtremeScale/ObjectGrid

* Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:

Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid
was_root

The was_root directory is the root directory of a WebSphere Application Server
installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home
The restservice_home directory is the directory in which the WebSphere
eXtreme Scale REST data service libraries and samples are located. This
directory is named restservice and is a sub-directory under the wxs_home
directory.

* Example for stand-alone deployments:
Example: /opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice

* Example for WebSphere Application Server integrated deployments:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/
restservice

tomcat_root
The tomcat_root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

Example:/opt/IBM/WebSphere/AppServerCE

java_home
The java_home is the root directory of a Java Runtime Environment (JRE)
installation.

Example:/opt/IBM/WebSphere/eXtremeScale/java

samples_home
The samples_home is the directory in which you extract the sample files that are
used for tutorials.

Example:/wxs-samples/

Chapter 10. Tutorials, examples, and samples 201

Enabling the REST data service

The REST data service can represent WebSphere eXtreme Scale entity metadata to
represent each entity as an EntitySet.

Starting a sample eXtreme Scale data grid

In general , before starting the REST data service, start the eXtreme Scale data grid.
The following steps will start a single eXtreme Scale catalog service process and
two container server processes.

WebSphere eXtreme Scale can be installed using three different methods:
* Trial install

* Stand-alone deployment

* WebSphere Application Server integrated deployment

Scalable data model in eXtreme Scale
The Microsoft Northwind sample uses the Order Detail table to establish a
many-to-many association between Orders and Products.

Object to relational mapping specifications (ORMs) such as the ADO.NET Entity
Framework and Java Persistence API (JPA) can map the tables and relationships
using entities. However, this architecture does not scale. Everything must be
located on the same machine, or an expensive cluster of machines to perform well.

Customers Orders % Order Details
| CustomerlD Alm==0d | OrderiD A 4] OrderiD
| CompanyName | CustomeriD _!3] ProductID
J ContactName J EmployeelD | J UnitPrice
| ContactTitle — | OrderDate | Quantity
J Address J RequiredDate J Discount
| city J ShippedDate
| Region gl J ShipVia g
¥
Categories 04 Products
rﬂ| CategorylD _‘?] ProductID -
J CategoryName J ProductName
J Description J SupplierlD
_| Picture _| categoryiD
J QuantityPerUnit A

Figure 44. Microsoft SQL Server Northwind sample schema diagram

To create a scalable version of the sample, the entities must be modeled so each
entity or group of related entities can be partitioned based off a single key. By
creating partitions on a single key, requests can be spread out among multiple,
independent servers. To achieve this configuration, the entities have been divided
into two trees: the Customer and Order tree and the Product and Category tree. In
this model, each tree can be partitioned independently and therefore can grow at
different rates, increasing scalability.

202 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

<<Root Entity>

Customer orders

String customerld (key)
String companyName
String contactName

String city
String country
int version

customer (key)

*

Order

int orderld (key)
Date orderDate
String shipCity I

String shipCountry orderDetails
int version 1
String customer_customerld (key)
order (key)
OrderDetail
(\
int productld (key)
String categoryld
float discount

short quantity

double unitPrice

int version

String order_customer_customerlD (key)
String order_orderld (key)

Figure 45. Customer and Order entity schema diagram

For example, both Order and Product have unique, separate integers as keys. In
fact, the Order and Product tables are really independent of each other. For
example, consider the effect of the size of a catalog, the number of products you
sell, with the total number of orders. Intuitively, it might seem that having many
products implies also having many orders, but this is not necessarily the case. If
this were true, you could easily increase sales by just adding more products to
your catalog. Orders and products have their own independent tables. You can
further extend this concept so that orders and products each have their own
separate, data grids. With independent data grids, you can control the number of
partitions and servers, in addition to the size of each data grid separately so that
your application can scale. If you double the size of your catalog, you must double

Chapter 10. Tutorials, examples, and samples 203

the products data grid, but the order grid might be unchanged. The converse is
true for an order surge, or expected order surge.

In the schema, a Customer has zero or more Orders, and an Order has line items
(OrderDetail), each with one specific product. A Product is identified by ID (the
Product key) in each OrderDetail. A single data grid stores Customers, Orders, and
OrderDetails with Customer as the root entity of the data grid. You can retrieve
Customers by ID, but you must get Orders starting with the Customer ID. So
customer ID is added to Order as part of its key. Likewise, the customer ID and
order ID are part of the OrderDetail ID.

<<Root Entity>
Category

String
String
String
int

categoryld (key)
categoryName
description
version

products
Y 1
/ category (key)
Product
int productld (key)

String productName

double unitPrice

boolean discontinued

short unitsInStock

int version

String category categoryld (key)

Figure 46. Category and Product entity schema diagram

In the Category and Product schema, the Category is the schema root. With this
schema, customers can query products by category. See|“Retrieving and updating]
[data with REST”| for additional details on key associations and their importance.

Retrieving and updating data with REST

The OData protocol requires that all entities can be addressed by their canonical
form. This means that each entity must include the key of the partitioned, root
entity, the schema root.

The following is an example of how to use the association from a root entity to
address a child in :

/Customer('ACME') /order(100)

In WCF Data Services, the child entity must be directly addressable, meaning that
the key in the schema root must be a part of the key of the child:
/Order(customer_customerId="'ACME', orderId=100). This is achieved by creating

204 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

an association to the root entity where the one-to-one or many-to-one association to
the root entity is also identified as a key. When entities are included as part of the
key, the attributes of the parent entity are exposed as key properties.

<<Root Entity>

Customer orders
1
String customerld (key)
String companyName
String contactName
String city
String country
int version
customer (key)
Order
int orderld (key)
Date orderDate
String shipCity
String shipCountry orderDetails
int version 1
String customer_customerld (key)
order (key)
OrderDetail
(\
int productld (key)
String categoryld
float discount

short quantity

double unitPrice

int version

String order_customer_customerlD (key)
String order_orderld (key)

Figure 47. Customer and Order entity schema diagram

The Customer/Order entity schema diagram illustrates how each entity is
partitioned using the Customer. The Order entity includes the Customer as part of
its key and is therefore directly accessible. The REST data service exposes all key
associations as individual properties: Order has customer_customerld and
OrderDetail has order_customer_customerld and order_orderld.

Chapter 10. Tutorials, examples, and samples 205

Using the EntityManager API, you can find the Order using the Customer and
order id:
transaction.begin();
// Look-up the Order using the Customer. We only include the Id
// in the Customer class when building the OrderId key instance.
Order order = (Order) em.find(Order.class,
new OrderId(100, new Customer('ACME')));

transaction.commit();

When using the REST data service, the Order can be retrieved with either of the
URLs:

* /Order(orderId=100, customer customerId='ACME')

* /Customer('ACME')/orders?$filter=orderId eq 100

The customer key is addressed using the attribute name of the Customer entity, an
underscore character and the attribute name of the customer id:
customer_customerld.

An entity can also include a non-root entity as part of its key if all of the ancestors
to the non-root entity have key associations to the root. In this example,
OrderDetail has a key-association to Order and Order has a key-association to the
root Customer entity. Using the EntityManager API:
transaction.begin();
// Construct an OrderDetailld key instance. It includes
// The Order and Customer with only the keys set.
Customer customerACME = new Customer("ACME");
Order orderl00 = new Order(100, customerACME);
OrderDetailld orderDetailKey =
new OrderDetailld(orderl00, "COMP");
OrderDetail orderDetail = (OrderDetail)
em.find(OrderDetail.class, orderDetailKey);

The REST data service allows addressing the OrderDetail directly:
/OrderDetail (productId=500, order_customer_customerId='ACME', order_orderId =100)

The association from the OrderDetail entity to the Product entity has been broken
to allow partitioning the Orders and Product inventory independently. The
OrderDetail entity stores the category and product id instead of a hard
relationship. By decoupling the two entity schemas, only one partition is accessed
at a time.

The Category and Product schema illustrated in the diagram shows that the root
entity is Category and each Product has an association to a Category entity. The
Category entity is included in the Product identity. The REST data service exposes
a key property: category_categoryld which allows directly addressing the Product.

Because Category is the root entity, in a partitioned environment, the Category
must be known in order to find the Product. Using the EntityManager API, the
transaction must be pinned to the Category entity prior to finding the Product.

Using the EntityManager API:

transaction.begin();

// Create the Category root entity with only the key. This
// allows us to construct a ProductId without needing to find
// The Category first. The transaction is now pinned to the
// partition where Category "COMP" is stored.

206 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Category cat = new Category("COMP");
Product product = (Product) em.find(Product.class,
new ProductId(500, cat));

The REST data service allows addressing the Product directly:
/Product (productId=500, category_categoryld='COMP"')

Starting a stand-alone data grid for REST data services
Follow these steps to start the WebSphere eXtreme Scale REST service sample data
grid for a stand-alone eXtreme Scale deployment.

Before you begin

Install the WebSphere eXtreme Scale Trial or full product:

. m the stand-alone version of the WebSphere eXtreme Scale 7.1 product and
apply any subsequent fixes.

. and extract the WebSphere eXtreme Scale Version 7.1 trial, which
includes the WebSphere eXtreme Scale REST data service.

About this task
Start the WebSphere eXtreme Scale sample data grid.

Procedure

1. Start the catalog service process. Open a command-line or terminal window
and set the JAVA_HOME environment variable:

. BTSN export JAVA_HOME=java_home

« WM set JAVA_HOME=java_home
2. cd restservice home/gettingstarted

3. Start the catalog service process. To start the service without eXtreme Scale
security, use the following commands.

. BTSN . /runcat.sh

LM runcat.bat

To start the service witheXtreme Scale security, use the following commands.
. BTSN . /runcat_secure.sh

o NI runcat_secure.bat

4. Start two container server processes. Open another command-line or terminal
window and set the JAVA_HOME environment variable:

. BTN export JAVA _HOME=java_home

o NI set JAVA HOME=java_home
5. cd restservice_home/gettingstarted
6. Start a container server process:

To start the server without eXtreme Scale security, use the following commands:

. PIT® . /runcontainer.sh container0
o PIITEM runcontainer.bat container0

To start the server witheXtreme Scale security, use the following commands.

. BTSN . /runcontainer_secure.sh container0

Chapter 10. Tutorials, examples, and samples 207

« WM runcontainer_secure.bat container0

7. Open another command-line or terminal window and set the JAVA_HOME
environment variable:

. NI export JAVA_HOME=java_home

o WM set JAVA_HOME=java_home
8. cd restservice_home/gettingstarted
9. Start a second container server process.

To start the server without eXtreme Scale security, use the following commands.
. BIT@N . /runcontainer.sh containerl

« MIIEEM runcontainer.bat containerl

To start the server with eXtreme Scale security, use the following commands.

. ./runcontainer_secure.sh containerl

o WM runcontainer_secure.bat containerl
Results

Wait until the eXtreme Scale containers are ready before proceeding with the next
steps. The container servers are ready when the following message is displayed in
the terminal window:

CWOBJ1001I: ObjectGrid Server container_name is ready to process requests.

Where container_name is the name of the container that was started.

Starting a data grid for REST data services in WebSphere
Application Server

Follow these steps to start a stand-alone WebSphere eXtreme Scale REST service
sample data grid for a WebSphere eXtreme Scale deployment that is integrated
with WebSphere Application Server. Although WebSphere eXtreme Scale is
integrated with WebSphere Application Server, these steps start a stand-alone
WebSphere eXtreme Scale catalog service process and container.

Before you begin

Install the WebSphere eXtreme Scale Version 7.1 product into a WebSphere
Application Server Version 7.0.0.5 or later installation directory with security
disabled. Augment at least one Application Server profile.

About this task
Start the WebSphere eXtreme Scale sample data grid.

Procedure

1. Start the catalog service process. Open a command-line or terminal window
and set the JAVA_HOME environment variable:

. BTSN export JAVA_HOME=java_home
o NI set JAVA HOME=java_home

cd restservice home/gettingstarted
2. Start the catalog service process.

208 I1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

To start the server without eXtreme Scale security, use the following commands.

. BIT@N . /runcat.sh

LI runcat.bat

To start the server witheXtreme Scale security, use the following commands.
. BTSN . /runcat_secure.sh

« WM runcat_secure.bat

3. Start two container server processes. Open another command-line or terminal
window and set the JAVA_HOME environment variable:

. BTSN export JAVA_HOME=java_home

o NI set JAVA HOME=java_home
4. Start a container server process.
To start the server without eXtreme Scale security, use the following commands.
a. Open a command-line window.
b. cd restservice home/gettingstarted

c. To start the server without eXtreme Scale security, use the following
commands.

. PIT®N . /runcontainer.sh container0
o MM runcontainer.bat containerd

d. To start the server with eXtreme Scale security, use the following
commands.

. BTT®N . /runcontainer_secure.sh container0

« WM runcontainer_secure.bat container0
5. Start a second container server process.
a. Open a command-line window.
b. cd restservice home/gettingstarted

c. To start the server without eXtreme Scale security, use the following
commands.

. PN . /runcontainer.sh containerl
o MM runcontainer.bat containerl

d. To start the server with eXtreme Scale security, use the following commands.
. BTT@N . /runcontainer_secure.sh containerl

« WM runcontainer_secure.bat containerl
Results

Wait until the container servers are ready before proceeding with the next steps.
The container servers are ready when the following message is displayed:

CWOBJ1001I: ObjectGrid Server container_name is ready to process requests.

Where container_name is the name of the container that was started in the previous
step.

Configuring application servers for the REST data service
startOgServer

Chapter 10. Tutorials, examples, and samples 209

Starting REST data services in WebSphere Application Server
Version 7.0

This topic describes how to configure and start the eXtreme Scale REST data
service usingWebSphere Application Server Version 7.0.

Before you begin

Verify that the sample eXtreme Scale data grid is started. See [“Enabling the REST]
[data service” on page 202 for details on how to start the data grid.

Procedure
1. Download and install WebSphere Application Server Version 7.0 for
Developers.

Restriction: Do not enable security.

2. and install WebSphere Application Server Version 7.0 Fix Pack 5 or
later.

3. Add the WebSphere eXtreme Scale client runtime JAR, the wsogclient. jar file,
and the REST data service configuration JAR or directory to the application
server classpath:

a. Open the WebSphere Application Server administrative console.
b. Navigate Environment > Shared libraries
c. Click New
d. Add the following entries into the fields:
1) Name: extremescale_client_v71
2) Classpath: wxs_home/1ib/wsogclient.jar
e. Click OK
Click New
g. Add the following entries into the appropriate fields:

—h

1) Name: extremescale_gettingstarted_config

2) Classpath:
* restservice home/gettingstarted/restclient/bin
* restservice_home/gettingstarted/common/bin

Remember: Add each path on a separate line.
h. Click OK
i. Save the changes to the master configuration

4. Install the REST data service EAR file, wxsrestservice.ear, to theWebSphere
Application Server using the administrative console:

a. Open the WebSphere Application Server administrative console
b. Navigate to Applications > New Application

c. Browse to the restservice_home/Tib/wxsrestservice.ear, select the file and
click Next

. Choose the detailed installation options, and click Next

. On the application security warnings screen, click Continue

d

e

f. Choose the default installation options, and click Next

g. Choose a server to map the application to, and click Next
h

. On the JSP reloading page, use the defaults, and click Next

210 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.ibm.com/support/docview.wss?rs=0&uid=swg24023707

i. On the shared libraries page, map the wxsrestservice.war module to the
following defined shared libraries:

* extremescale_client_v71
* extremescale_ gettingstarted _config
j. On the map shared library relationship page, use the defaults, and click Next
k. On the map virtual hosts page, use the defaults, and click Next
[. On the map context roots page, set the context root to: wxsrestservice.
m. On the Summary screen, click Finish to complete the installation
n. Save the changes to the master configuration

5. Start the application server and the wxsrestservice eXtreme Scale REST data
service application. After the application is started review the SystemOut.log
file for the application server and verify that the following message displays:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

6. Verify that the REST data service is working
a. Open a browser and navigate to: http://Tocalhost:9080/wxsrestservice/
restservice/NorthwindGrid. The service document for the NorthwindGrid
is displayed.
b. Navigate to: http://Tocalhost:9080/wxsrestservice/restservice/

NorthwindGrid/$metadata. The Entity Model Data Extensions (EDMX)
document is displayed.

7. To stop the data grid processes, use CTRL+C in the respective command window.

Starting REST data services with WebSphere eXtreme Scale
integrated in WebSphere Application Server 7.0

This topic describes how to configure and start the eXtreme Scale REST data
service using WebSphere Application Server version 7.0 that has been integrated
and augmented with WebSphere eXtreme Scale.

Before you begin
Verify that the sample stand-alone eXtreme Scale data grid is started. See

[‘Enabling the REST data service” on page 202| for details on how to start the data
grid.

About this task

To get started with the WebSphere eXtreme Scale REST data service using
WebSphere Application Server, follow these steps:

Procedure

1. Add the WebSphere eXtreme Scale REST data service sample configuration JAR
to the classpath:

a. Open the WebSphere Administration Console
b. Navigate to Environment -> Shared libraries
c. Click New
d. Add the following entries into the appropriate fields:
1) Name: extremescale_gettingstarted_config
2) Classpath
* restservice home/gettingstarted/restclient/bin
* restservice_home/gettingstarted/common/bin

Chapter 10. Tutorials, examples, and samples 211

Remember: Each path must appear on a different line.
e. Click OK
f. Save the changes to the master configuration

2. Install the REST data service EAR file, wxsrestservice.ear, to the WebSphere
Application Server using the WebSphere administration console:

a. Open the WebSphere administration console
b. Navigate to Applications -> New Application

c. Browse to restservice_home/Tib/wxsrestservice.ear file on the file system.
Select the file and click Next.

Choose the detailed installation options, and click Next.

On the application security warnings screen, click Continue.

Choose the default installation options, and click Next.

. Choose a server to map the wxsrestservice.war module to, and click Next.

SQa ™~ o0 o

. On the JSP reloading page, use the defaults, and click Next.

On the shared libraries page, map the "wxsrestservice.war" module to the
following shared libraries that were defined during step 1: extremescale_
gettingstarted config

j. On the map shared library relationship page, use the defaults, and click
Next.

k. On the map virtual hosts page, use the defaults, and click Next.

[. On the map context roots page, set the context root to: wxsrestservice.
m. On the Summary screen, click Finish to complete the installation.

n. Save the changes to the master configuration.

3. If the eXtreme Scale data grid was started with eXtreme Scale security enabled,
set the following property in the restservice_home/gettingstarted/
restclient/bin/wxsRestService.properties file.

ogClientPropertyFile=restservice_home/gettingstarted/security/security.ogclient.properties

4. Start the application server and the "wxsrestservice " eXtreme Scale REST data
service application.

After the application is started review the SystemOut.log for the application
server and verify that the following message appears: CWOBJ4000I: The
WebSphere eXtreme Scale REST data service has been started.

5. Verify that the REST data service is working:
a. Open a browser and navigate to:
http:/ /localhost:9080/wxsrestservice/restservice /Northwind Grid
The service document for the NorthwindGrid is displayed.
b. Navigate to:

http:/ /localhost:9080/wxsrestservice/ restservice /NorthwindGrid /
$metadata

The Entity Model Data Extensions (EDMX) document is displayed

6. To stop the data grid processes, use CTRL+C in the respective command
window to stop the process.

Starting the REST data service in WebSphere Application Server
Community Edition

This topic describes how to configure and start the eXtreme Scale REST data
service using WebSphere Application Server Community Edition.

212 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Before you begin

Verify that the sample data grid is started. See ['Enabling the REST data service”

n page 202|for details on how to start the grid.

Procedure
1. and install WebSphere Application Server Community Edition

2.

Version 2.1.1.3 or later to wasce_root, such as: /opt/IBM/wasce

Start the WebSphere Application Server Community Edition server by running
the following command:

. BTSN wasce_root/bin/startup.sh
o W wasce root/bin/startup.bat

If the eXtreme Scale grid was started with eXtreme Scale security enabled, set
the following properties in the restservice_home/gettingstarted/restclient/
bin/wxsRestService.properties file.

ogClientPropertyFile=restservice_home/gettingstarted/security/security.ogclient.properties

loginType=none

4.

Install the eXtreme Scale REST data service and the provided sample into the
WebSphere Application Server Community Edition server:

a. Add the ObjectGrid client runtime JAR to the WebSphere Application Server
Community Edition repository:

1) Open the WebSphere Application Server Community Edition
administration console and log in.

Tip: The default URL is: http://Tocalhost:8080/console. The default
user ID is system and password is manager.

2) Click the Repository, in the Services folder.

3) In the Add Archive to Repository section, fill in the following into the
input text boxes:

Table 15. Archive to repository

Text box Value

File wxs_home/lib/ogclient jar
Group com.ibm.websphere.xs
Artifact ogclient

Version 7.0

Type jar

4) Click the Install button.

Tip: See the following tech note for details on different methods of
configuration class and library dependencies: [Specifying external|
dependencies to applications running on WebSphere Application Server|
Community Edition}

b. Deploy the REST data service module, which is the wxsrestservice.war file,
to the WebSphere Application Server Community Edition server.

1) Edit the sample restservice_home/gettingstarted/wasce/geronimo-
web.xml deployment XML file to include path dependencies to the
getting started sample classpath directories:

Change the classesDirs paths for the two getting started client GBeans:

Chapter 10. Tutorials, examples, and samples 213

http://www.ibm.com/software/webservers/appserv/community/
http://www.ibm.com/support/docview.wss?uid=swg21266061
http://www.ibm.com/support/docview.wss?uid=swg21266061
http://www.ibm.com/support/docview.wss?uid=swg21266061

2)

3)
4)

¢ The "classesDirs" path for the GettingStarted_Client_SharedLib GBean
should be set to: restservice _home/gettingstarted/restclient/bin

¢ The "classesDirs" path for the GettingStarted_Common_SharedLib
GBean should be set to: restservice_home/gettingstarted/common/
bin

Open the WebSphere Application Server Community Edition

administrative console and log in.

Tip: The default URL is: http://Tocalhost:8080/console. The default
user ID is system and password is manager.

Click Deploy New.

On the Install New Applications page, enter the following values into
the text boxes:

Table 16. Installation values

Text box

Value

Archive

restservice_home/1ib/wxsrestservice.war

Plan

restservice_home/gettingstarted/wasce/geronimo-web.xm1

5)

6)

Click on the Install button.

The console page should indicate that the application was successfully
installed and started.

Examine the WebSphere Application Server Community Edition system
output log or console to verify that the REST data service has started
successfully by verify that the following message is present:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has
been started.

5. Verify that the REST data service is working:

a. Open the following link in a browser window: http://Tocalhost:8080/
wxsrestservice/restservice/NorthwindGrid. The service document for the
NorthwindGrid grid is displayed.

b. Open the following link in a browser window: http://Tocalhost:8080/
wxsrestservice/restservice/NorthwindGrid/$metadata. The Entity Model
Data Extensions (EDMX) document is displayed.

6. To stop the grid processes, use CTRL+C in the respective command window to
stop the process.

7. To stop WebSphere Application Server Community Edition, use the following
command:

. wasce_root/bin/shutdown.sh
o TN wasce root\bin\shutdown.bat

Tip: The default user ID is system and password is manager. If you are using a
custom port, use the -port option.

Starting REST data services in Apache Tomcat
This topic describes how to configure and start the eXtreme Scale REST data
service using Apache Tomcat, version 5.5 or later.

214 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Before you begin

Verify that the sample eXtreme Scale data grid is started. See [‘Enabling the REST|
(data service” on page 202 for details on how to start the data grid.

Procedure

1. and install Apache Tomcat Version 5.5 or later to tomcat_root. For
example: /opt/tomcat

2. Install the eXtreme Scale REST data service and the provided sample into the
Tomcat server as follows:

a. If you are using a Sun JRE or JDK, you must install the IBM ORB into
Tomcat:

* For Tomcat version 5.5
Copy all of the JAR files from:
wxs_home/1ib/endorsed
to
tomcat_root/common/endorsed
* For Tomcat version 6.0

1) Create an "endorsed" directory

S UNX mkdir tomcat_root/endorsed

— WM md tomcat_root/endorsed
2) Copy all of the JAR files from:

wxs_home/1ib/endorsed

to

tomcat_root/endorsed

b. Deploy the REST data service module: wxsrestservice.war to the Tomcat
server.

Copy the wxsrestservice.war file from:
restservice home/1ib

to:

tomcat_root/webapps

c. Add the ObjectGrid client runtime JAR and the application JAR to the
shared classpath in Tomcat:

1) Edit the tomcat_root/conf/catalina.properties file

2) Append the following path names to the end of the shared.loader
property in the form of a comma-delimited list:

* wxs_home/lib/ogclient jar
* restservice_home/gettingstarted /restclient/bin
* restservice_home/gettingstarted /common/bin

Important: The path separator must be a forward slash.

3. If the eXtreme Scale data grid was started with eXtreme Scale security enabled,
set the following properties in the restservice_home/gettingstarted/
restclient/bin/wxsRestService.properties file.

ogClientPropertyFile=restservice_home/gettingstarted/security/security.ogclient.properties
loginType=none

4. Start the Tomcat server with the REST data service:
¢ If using Tomcat 5.5 on UNIX or Windows, or Tomcat 6.0 on UNIX:

Chapter 10. Tutorials, examples, and samples 215

http://tomcat.apache.org/

a. cd tomcat_root/bin
b. Start the server:

. UNX ./catalina.sh run

— I catalina.bat run

c. The console then displays the Apache Tomcat logs. When the REST data
service has started successfully, the following message is displayed in the
administration console:

CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

* If using Tomcat 6.0 on Windows:
a. cd tomcat_root/bin

b. Start the Apache Tomcat 6 configuration tool with the following
command: tomcatbw.exe

c. Click on the Start button on the Apache Tomcat 6 properties window to
start the Tomcat server.

d. Review the following logs to verify that the Tomcat server has started
successfully:

— tomcat_root/bin/catalina.log

Displays the status of the Tomcat server engine
— tomcat_root/bin/stdout.log

Displays the system output log.

e. When the REST data service has started successfully, the following
message is displayed in the system output log: CWOBJ4000I: The
WebSphere eXtreme Scale REST data service has been started.

5. Verify that the REST data service is working:
a. Open a browser and navigate to:
http:/ /localhost:8080/wxsrestservice/restservice /Northwind Grid
The service document for the NorthwindGrid is displayed.
b. Navigate to:

http:/ /localhost:8080/wxsrestservice/ restservice /NorthwindGrid /
$metadata

The Entity Model Data Extensions (EDMX) document is displayed.

6. To stop the data grid processes, use CTRL+C in the respective command
window.

7. To stop Tomcat, use CTRL +C in the window in which you started it.

Using a browser with REST data services

The eXtreme Scale REST data service creates ATOM feeds by default when using a
web browser. The ATOM feed format may not be compatible with older browsers

or may be interpreted such that the data cannot be viewed as XML. The following
topics provide details on how to configure Internet Explorer Version 8 and Firefox
Version 3 to display the ATOM feeds and XML within the browser.

About this task

The eXtreme Scale REST data service creates ATOM feeds by default when using a
web browser. The ATOM feed format may not be compatible with older browsers
or may be interpreted such that the data cannot be viewed as XML. For older
browsers, you will be prompted to save the files to disk. Once the files are

216 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

downloaded, use your favorite XML reader to look at the files. The generated XML
is not formatted to be displayed, so everything will be printed on one line. Most
XML reading programs, such as Eclipse, support reformatting the XML into a
readable format.

For modern browsers, such as Microsoft Internet Explorer Version 8 and Firefox
Version 3, the ATOM XML files can be displayed natively in the browser. The
following topics provide details on how to configure Internet Explorer Version 8
and Firefox Version 3 to display the ATOM feeds and XML within the browser.

Procedure

Configuring Internet Explorer Version 8§

* To enable Internet Explorer to read the ATOM feeds that the REST data service
generates use the following steps.:

Click Tools > Internet Options

Select the Content tab

Click the Settings button in the Feeds and Web Slices section
Uncheck the box: "Turn on feed reading view"

Click OK to return to the browser.

6. Restart Internet Explorer.

o M obd

Configuring Firefox Version 3

* Firefox does not automatically display pages with content type:
application/atom+xml. The first time a page is displayed, Firefox prompts you
to save the file. To display the page, open the file itself with Firefox as follows:

1. From the application chooser dialog box, select the "Open with" radio button
and click the Browse button.

2. Navigate to your Firefox installation directory. For example: C:\Program
Files\Mozilla Firefox

Select firefox.exe and hit the OK button.

Check the “Do this automatically for files like this...” check box.

Click the OK button.

6. Next, Firefox displays the ATOM XML page in a new browser window or tab

S

* Firefox automatically renders ATOM feeds in readable format. However, the
feeds that the REST data service creates include XML. Firefox cannot display the
XML unless you disable the feed renderer. Unlike Internet Explorer, in Firefox,
the ATOM feed rendering plug-in must be explicitly edited. To configure Firefox
to read ATOM feeds as XML files, follow these steps:

1. Open the following file in a text editor: <firefoxInstallRoot>\components\
FeedConverter.js. In the path, <firefoxInstallRoot> is the root directory
where Firefox is installed.

For Windows operating systems, the default directory is: C:\Program
Files\Mozilla Firefox.
2. Search for the snippet that looks as follows:

// show the feed page if it wasn't sniffed and we have a document,
// or we have a document, title, and link or id
if (result.doc && (!this. sniffed ||

(result.doc.title && (result.doc.link || result.doc.id)))) {

3. Comment out the two lines that begin with if and result by placing // (two
forward slashes) in front of them.

4. Append the following statement to the snippet: if(0) {.

Chapter 10. Tutorials, examples, and samples 217

5. The resulting text should look as follows:

// show the feed page if it wasn't sniffed and we have a document,
// or we have a document, title, and link or id

//if (result.doc && (!this. sniffed ||

// (result.doc.title && (result.doc.link || result.doc.id)))) {
if(0) {

6. Save the file.

7. Restart Firefox

8. Now Firefox can automatically display all feeds in the browser.
* Test your setup by trying some URLs.

Example

This section describes some example URLs that can be used to view the data that
was added by the getting started sample provided with the eXtreme Scale REST
data service. Before using the following URLs, add the default data set to the
eXtreme Scale sample grid using either the sample Java client or the sample Visual
Studio WCF Data Services client.

The following examples assume the port is 8080 which can vary. See section for
details on how to configure the REST data service on different application servers.

* View a single customer with the id of "ACME":
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')

* View all of the orders for customer "ACME":
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')/orders

* View the customer "ACME" and the orders:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')?$expand=orders
* View order 1000 for customer "ACME":

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId="'ACME")

e View order 1000 for customer "ACME" and its associated Customer:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Order(orderId=1000,customer_customerId="'ACME')?$expand=customer

¢ View order 1000 for customer "ACME" and its associated Customer and
OrderDetails:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Order(orderId=1000,customer_customerId="'ACME')?$expand=customer,orderDetails

* View all orders for customer "ACME" for the month of October, 2009 (GMT):

http://Tocalhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer(customerId="ACME')/orders?$filter=orderDate

ge datetime'2009-10-01T00:00:00'

and orderDate 1t datetime'2009-11-01T00:00:00"

e View all the first 3 orders and orderDetails for customer "ACME" for the month
of October, 2009 (GMT):

http://lTocalhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer(customerId='ACME')/orders?$filter=orderDate

ge datetime'2009-10-01T00:00:00'

and orderDate 1t datetime'2009-11-01T00:00:00"
&$orderby=orderDate&$top=3&$expand=orderDetails

Using a Java client with REST data services

The Java client application uses the eXtreme Scale EntityManager API to insert
data into the grid.

218 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

About this task

The previous sections described how to create an eXtreme Scale data grid and
configure and start the eXtreme Scale REST data service. The Java client
application uses the eXtreme Scale EntityManager API to insert data into the grid.
It does not demonstrate how to use the REST interfaces. The purpose of this client
is to demonstrate how the EntityManager API is used to interact with the eXtreme
Scale data grid, and allow modifying data in the grid. To view data in the grid
using the REST data service, [use a web browser|or [use the Visual Studio 2008|
client application}

Procedure

To quickly add content to the eXtreme Scale data grid, run the following
command:

1. Open a command-line or terminal window and set the JAVA_HOME
environment variable:

. IS export JAVA_HOME=java_home

« WM set JAVA_HOME=java_home
2. cd restservice home/gettingstarted

3. Insert some data into the grid. The data that is inserted will be retrieved later
using a Web browser and the REST data service.

If the data grid was started withouteXtreme Scale security, use the following
commands.

O UNX ./runclient.sh Toad default
o WM runclient.bat load default

If the data grid was started witheXtreme Scale security, use the following
commands.

. ./runclient_secure.sh Toad default

o I runclient secure.bat Toad default

For a Java client, use the following command syntax:

N UNIX runclient.sh command
o WM runclient.bat command

The following commands are available:
* load default

Loads a predefined set of Customer, Category and Product entities into the
data grid and creates a random set of Orders for each customer.

* load category categoryld categoryName firstProductId num products

Creates a product Category and a fixed number of Product entities in the
data grid. The firstProductld parameter identifies the id number of the the
first product and each subsequent product is assigned the next id until the
specified number of products is created.

* Tload customer companyCode contactNamecompanyName numOrders
firstOrderIdshipCity maxItems discountPct

Loads a new Customer into the data grid and creates a fixed set of Order
entities for any random product currently loaded in the grid. The number of
Orders is determined by setting the <numOrders> parameter. Each Order
will have a random number of OrderDetail entities up to <maxItems>

Chapter 10. Tutorials, examples, and samples 219

* display customer companyCode

Display a Customer entity and the associated Order and OrderDetail entities.
* display category categoryld

Display a product Category entity and the associated Product entities.

Results
e runclient.bat load default

* runclient.bat load customer IBM "John Doe" "IBM Corporation" 5 5000
Rochester 5 0.05

* runclient.bat load category 5 "Household Items" 100 5
* runclient.bat display customer IBM
* runclient.bat display category 5

Running and building the sample data grid and Java client with
Eclipse

The REST data service getting started sample can be updated and enhanced using
Eclipse. For details on how to setup your Eclipse environment see the text
document: restservice _home/gettingstarted/ECLIPSE_README.txt.

After the WXSRestGettingStarted project is imported into Eclipse and is building
successfully, the sample will automatically re-compile and the script files used to
start the container server and client will automatically pick up the class files and
XML files. The REST data service will also automatically detect any changes since
the Web server is configured to read the Eclipse build directories automatically.

Important: When changing source or configuration files, both the eXtreme Scale
container server and the REST data service application must be restarted. The
eXtreme Scale container server must be started before the REST data service Web
application.

Visual Studio 2008 WCF client with REST data service

The eXtreme Scale REST data service getting started sample includes a WCF Data
Services client that can interact with the eXtreme Scale REST data service. The
sample is written as a command-line application in C#.

Software requirements

The WCF Data Services C# sample client requires the following:
* Operating system

— Microsoft Windows XP

— Microsoft Windows Server 2003

— Microsoft Windows Server 2008

— Microsoft Windows Vista
» [Microsoft Visual Studio 2008 with Service Pack 1|

Tip: See the previous link for additional hardware and software requirements.
* [Microsoft NET Framework 3.5 Service Pack 1]
« [Microsoft Support: An update for the .NET Framework 3.5 Service Pack 1 ig

available|

220 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-6D9F6D58056E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=AB99342F-5D1A-413D-8319-81DA479AB0D7
http://support.microsoft.com/kb/959209
http://support.microsoft.com/kb/959209

Building and running the getting started client

The WCF Data Services sample client includes a Visual Studio 2008 project and
solution and the source code for running the sample. The sample must be loaded
into Visual Studio 2008 and compiled into a Windows runnable program before it
can be run. To build and run the sample, see the text document:
restservice_home/gettingstarted/VS2008 README.txt.

WCF Data Services C# client command syntax

T WXSRESTGettingStarted.exe <service URL> <command>

The <service URL> is the URL of the eXtreme Scale REST data service configured
in section .

The following commands are available:
* load default

Loads a predefined set of Customer, Category and Product entities into the data
grid and creates a random set of Orders for each customer.

* Toad category <categorylId> <categoryName> <firstProductId> <numProducts>

Creates a product Category and a fixed number of Product entities in the data
grid. The firstProductld parameter identifies the id number of the the first
product and each subsequent product is assigned the next id until the specified
number of products is created.

* Toad customer <companyCode> <contactName> <companyName> <numOrders>
<firstOrderId> <shipCity> <maxItems> <discountPct>

Loads a new Customer into the data grid and creates a fixed set of Order
entities for any random product currently loaded in the data grid. The number
of Orders is determined by setting the <numOrders> parameter. Each Order will
have a random number of OrderDetail entities up to <maxItems>

e display customer <companyCode>

Display a Customer entity and the associated Order and OrderDetail entities.
» display category <categoryld>

Display a product Category entity and the associated Product entities.
* unload

Remove all entities that were loaded using the "default load" command.

The following examples illustrate various commands.

* WXSRestGettingStarted.exe http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid load default

* WXSRestGettingStarted.exe http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid load customer

e IBM "John Doe" "IBM Corporation" 5 5000 Rochester 5 0.05

* WXSRestGettingStarted.exe http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid load category 5 "Household Items" 100 5

* WXSRestGettingStarted.exe http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid display customer IBM

* WXSRestGettingStarted.exe http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid display category 5

Chapter 10. Tutorials, examples, and samples 221

222 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, New York 10594 USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400
USA

Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2009, 2011 223

224 1BM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Trademarks

The following terms are trademarks of IBM Corporation in the United States, other

countries, or both:
. AIX®

+ CICS®

* Cloudscape
* DB2

+ Domino®

* IBM

*+ Lotus®

« RACF®

+ Redbooks®
» Tivoli

* WebSphere
+ z/0S®

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

LINUX is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

© Copyright IBM Corp. 2009, 2011

225

226 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Index
A

architecture 11, 12, 14, 16
availability
connectivity 97
failure
catalog service 97
container 97
replication
client side 45, 99, 116, 136

B

backing map
lock strategy 140
benefits 38

C

cache 1, 6,10, 11
local 17
caching 34, 35
caching scenarios
read-through 35
write-through 35
caching support 38
caching supportloaderloader
transaction 38
catalog service
overview 15
catalog service domain 105
coherent cache 33
complete 34
container server 12
containers 105
per-container placement 85

D

database 33, 35
database synchronization
techniques 49
synchronization 49
deprecated features 3
distributing changes
using Java message service 135, 143

E

entities
relationships 54
entity manager 167, 169
creating an entity class 167
entity relationship 169
querying 175
tutorial 167, 169
updating entries 173, 175
using an index to update and remove
entries 174

© Copyright IBM Corp. 2009, 2011

entity managerEntityManager

creating an order entity schema 170
event-based validation 50
eXtreme Scale overview 1,7, 8, 10
Extreme Transaction Processing 1, 6, 10

G

grid 81

H

HTTP session manager 65

in-line cache 35
index
data quality 52
performance 52
integrating with other servers 8
integration 33

J

Java Persistence API (JPA)
cache plug-in
introduction 61
cache topology
embedded 61
embedded partitioned 61
remote 61

L

load balancing 45, 99, 116, 136
loader

Java Persistence API (JPA)

overview 59

locking

optimistic 140

pessimistic 140

strategies for 140

M

map preloading 45, 99, 116, 136
multi-master data grid replication 23,
126

N

new features 3

o)

object query
index 178
map schema 176
primary key 176
tutorial 176, 178

object querymap relationships
tutorial 178

object querymultiple relationships
tutorial 180

overviewprogrammatically
using a loader 42

P

partition 12, 81
partitioning

introduction 83

with entities 83
partitions

fixed placement 85

transactions 88, 144
performance 45, 99, 116, 136
placement

strategies for 85
placement strategy 81
planning

application deployment 7, 10

R

release notes 5
replicas
reading from 115
replication
loaders and 112
memory cost 112
shard types 112

S

scalability
overview 81
with units or pods 94
security
authentication 151
authorization 151
secure transport 151
security tutorial
authorization 192
client authentication 186

endpoints secure communication 196

unsecured sample 183
security tutorialSSL/TLS

client authenticator 182

client authorization 182

unsecured example 182
serialization

locking 56

serialization (continued)
performance 56
session manager 8
sessions 65
shard 12, 81
failure 116
life cycle 116
recovery 116
shards
allocation 114
primary 114
replica 114
side cache 35
sparse 34
Spring
extension beans 159
framework 159
namespace support 159
native transactions 159
packaging 159
shard scope 159
webflow 159
stand-alone 209
starting servers 209
support 5, 38

-

time zones

inserting data 58
topology 11, 12, 14, 16
transactions

cross-grid 88, 144

overview 137, 139

single-partition 88, 144
troubleshooting

release notes 5
tutorial 167, 169

W

working with 6
write-behind 38

V4

zones
data center 121
over WANs 121
striping across 121
zone examples 121

228 IBM WebSphere eXtreme Scale Version 7.1: Product Overview June 15, 2011

Printed in USA

	Contents
	Figures
	Tables
	About the Product Overview
	Chapter 1. WebSphere eXtreme Scale overview
	What is new in this release
	Release notes
	WebSphere eXtreme Scale technical overview
	Planning overview
	Integrate with WebSphere products
	Product name changes
	Directory conventions
	Free trial
	Programming and Administration Guides

	Chapter 2. Caching overview
	Caching architecture: Maps, containers, clients, and catalogs
	Maps
	Container servers, partitions, and shards
	Clients
	Catalog service
	Caching topology: In-memory and distributed caching
	Local in-memory cache
	Peer-replicated local cache
	Distributed cache
	Embedded cache
	Multi-master data grid replication topologies

	Database integration: Write-behind, in-line, and side caching
	Sparse and complete cache
	Side cache
	In-line cache
	Write-behind caching
	Loaders
	Data pre-loading and warm-up
	Map pre-loading
	Database synchronization techniques
	Invalidating stale cache data
	Indexing

	Java object caching concepts
	Class loader and classpath considerations
	Relationship management
	Cache key considerations
	Serialization performance
	Inserting data for different time zones

	Chapter 3. Cache integration overview
	JPA Loaders
	JPA cache plug-in
	HTTP session management
	Listener-based session replication manager
	Dynamic cache provider

	Chapter 4. Scalability overview
	Data grids, partitions, and shards
	Partitioning
	Placement and partitions
	Single-partition and cross-data-grid transactions
	Scaling in units or pods

	Chapter 5. Availability overview
	High availability
	Replication for availability
	High-availability catalog service
	Catalog server quorums

	Replicas and shards
	Shard placement
	Reading from replicas
	Load balancing across replicas
	Shard life cycles

	Configuring zones for replica placement
	Multi-master data grid replication topologies
	Available topologies for multi-master replication
	Topology considerations for multi-master replication

	Distributing transactions
	Map sets for replication

	Chapter 6. Transaction processing overview
	Transactions
	CopyMode attribute
	Map entry locking
	Locking strategies
	Distributing transactions
	Single-partition and cross-data-grid transactions

	Chapter 7. Security overview
	Chapter 8. REST data services overview
	Chapter 9. Spring framework
	Chapter 10. Tutorials, examples, and samples
	Running the getting started sample application
	Entity manager tutorial: Overview
	Entity manager tutorial: Creating an entity class
	Entity manager tutorial: Forming entity relationships
	Entity manager tutorial: Order Entity Schema
	Entity manager tutorial: Updating entries
	Entity manager tutorial: Updating and removing entries with an index
	Entity manager tutorial: Updating and removing entries by using a query

	ObjectQuery tutorial
	ObjectQuery tutorial - step 1
	ObjectQuery tutorial - step 2
	ObjectQuery tutorial - step 3
	ObjectQuery tutorial - step 4

	Java SE security tutorial: overview
	Java SE security tutorial - Step 1
	Java SE security tutorial - Step 2
	Java SE security tutorial - Step 3
	Java SE security tutorial - Step 4

	REST data services sample and tutorial
	Directory conventions
	Enabling the REST data service
	Scalable data model in eXtreme Scale
	Retrieving and updating data with REST
	Starting a stand-alone data grid for REST data services
	Starting a data grid for REST data services in WebSphere Application Server

	Configuring application servers for the REST data service
	Starting REST data services in WebSphere Application Server Version 7.0
	Starting REST data services with WebSphere eXtreme Scale integrated in WebSphere Application Server 7.0
	Starting the REST data service in WebSphere Application Server Community Edition
	Starting REST data services in Apache Tomcat

	Using a browser with REST data services
	Using a Java client with REST data services
	Visual Studio 2008 WCF client with REST data service

	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Z

