
IBM WebSphere eXtreme Scale Version 7.1

Administration Guide
June 15, 2011

���

This edition applies to version 7, release 1, of WebSphere eXtreme Scale and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About the Administration Guide. vii

Chapter 1. Running the getting started
sample application 1
Directory conventions 6

Chapter 2. Capacity planning 9
Sizing memory and partition count calculation . . . 9
Sizing CPU per partition for transactions 11
Sizing CPUs for parallel transactions 11
Dynamic cache capacity planning 12

Chapter 3. Installing and deploying
WebSphere eXtreme Scale 17
Installing stand-alone WebSphere eXtreme Scale or
WebSphere eXtreme Scale Client 18

Runtime files for WebSphere eXtreme Scale
stand-alone installation 19
Running the getting started sample application 21

Installing WebSphere eXtreme Scale or WebSphere
eXtreme Scale Client with WebSphere Application
Server 26

Runtime files for WebSphere eXtreme Scale
integrated with WebSphere Application Server . 28
Using the Installation Factory plug-in to create
and install customized packages 30
Creating and augmenting profiles for WebSphere
eXtreme Scale 45

Installing WebSphere eXtreme Scale or WebSphere
eXtreme Scale Client silently. 55

Installation parameters 56
Customizing WebSphere eXtreme Scale for z/OS . . 57

Installing the WebSphere Customization Tools . . 58
Generating customization definitions 59
Uploading and running customized jobs. . . . 60

Uninstalling WebSphere eXtreme Scale 61

Chapter 4. Customizing WebSphere
eXtreme Scale for z/OS. 63
Installing the WebSphere Customization Tools . . . 63
Generating customization definitions 64
Uploading and running customized jobs. 65

Chapter 5. Upgrading and migrating
WebSphere eXtreme Scale Version 7.1 . 67
Updating eXtreme Scale servers 67
Migrating to WebSphere eXtreme Scale Version 7.1 69
Using the Update Installer to install maintenance
packages 70
Deprecated properties and APIs 71

Chapter 6. Planning the WebSphere
eXtreme Scale environment. 73

Planning overview 73
Hardware and software requirements. 74
Java SE considerations 75
Java EE considerations. 76
Directory conventions 77
Caching topology: In-memory and distributed
caching 78

Local in-memory cache 79
Peer-replicated local cache 80
Distributed cache 82
Embedded cache 84
Multi-master data grid replication topologies . . 85

Catalog service 95
High-availability catalog service 96
Catalog server quorums 98

Container servers, partitions, and shards 103
Capacity planning 105

Sizing memory and partition count calculation 105
Sizing CPU per partition for transactions . . . 107
Sizing CPUs for parallel transactions 108
Dynamic cache capacity planning 108

Operational checklist 112

Chapter 7. Configuring the
deployment environment 115
Configuration methods 115

XML files for configuration 115
Configuring data grids 115

Configuring local deployments 115
Configuring evictors 116
Plug-ins for indexing data 121
Configuring a locking strategy 125
Configuring loaders 128
Configuring write-behind loader support . . . 133
Configuring peer-to-peer replication with JMS 146
ObjectGrid descriptor XML file 153
objectGrid.xsd file 169

Configuring deployment policies 174
Configuring distributed deployments 174
Controlling shard placement with zones . . . 177
Configuring the heartbeat interval setting for
failover detection 190
Deployment policy descriptor XML file. . . . 192
deploymentPolicy.xsd file 197

Configuring catalog and container servers 198
Server properties file 199
Configuring WebSphere eXtreme Scale with
WebSphere Application Server. 205
Configuring the quorum mechanism 224
Best practice: Clustering the catalog service . . 226
Configuring multi-master replication topologies 227

Configuring ports 231
Planning for network ports 232
Configuring ports in stand-alone mode 233

© Copyright IBM Corp. 2009, 2011 iii

Configuring ports in a WebSphere Application
Server environment 235
Servers with multiple network cards 236

Configuring Object Request Brokers. 236
ORB properties 237
Using the Object Request Broker with
stand-alone WebSphere eXtreme Scale processes . 241
Configuring a custom Object Request Broker 241

Configuring clients 244
Client properties file 245
Configuring clients with WebSphere eXtreme
Scale 247
Enabling the client invalidation mechanism . . 252
Configuring request retry timeout values . . . 254

Configuring entities 256
Relationship management 256
Entity metadata descriptor XML file 258
emd.xsd file 263

Configuring cache integration 266
Configuring JPA loaders 266
Configuring a JPA time-based data updater . . 268
JPA cache configuration properties 269
Configuring HTTP session managers 288
Configuring the dynamic cache provider for
WebSphere eXtreme Scale 311

Configuring Spring integration 315
Spring descriptor XML file 315
Spring objectgrid.xsd file 321
Spring extension beans and namespace support 323
Starting a container server with Spring 325

Configuring the REST data service 327
REST data service properties file 327
Administering the REST data service 339
Installing the REST data service 339

Chapter 8. Administering the
deployment environment 351
Starting and stopping stand-alone servers 351

Starting stand-alone servers 351
Stopping stand-alone servers 360

Starting and stopping servers in a WebSphere
Application Server environment 363
Using the embedded server API to start and stop
servers 364

Embedded server API 367
Managing ObjectGrid availability. 369
Managing data center failures 371
Forcing placement to occur 373
Administering programmatically with Managed
Beans (MBeans) 374

Accessing Managed Beans (MBeans) using the
wsadmin tool 375
Accessing Managed Beans (MBeans)
programmatically 375

Chapter 9. Securing the deployment
environment 381
Tutorial: Integrate WebSphere eXtreme Scale
security with WebSphere Application Server . . . 381

Introduction: Integrate WebSphere eXtreme
Scale security with WebSphere Application
Server using the WebSphere Application Server
Authentication plug-ins 381
Module 1: Prepare WebSphere Application
Server 382
Module 2: Configure WebSphere eXtreme Scale
to use WebSphere Application Server
Authentication plug-ins 387
Module 3: Configure transport security 393
Module 4: Use Java Authentication and
Authorization Service (JAAS) authorization in
WebSphere Application Server. 396
Module 5: Use the xsadmin tool to monitor data
grids and maps. 402

Tutorial: Integrate WebSphere eXtreme Scale
security in a mixed environment with an external
authenticator 403

Introduction: Security in a mixed environment 403
Module 1: Prepare the mixed WebSphere
Application Server and stand-alone environment 405
Module 2: Configure WebSphere eXtreme Scale
authentication in a mixed environment 410
Module 3: Configure transport security 418
Module 4: Use Java Authentication and
Authorization Service (JAAS) authorization in
WebSphere Application Server. 422
Module 5: Use the xsadmin tool to monitor data
grids and maps. 425

Security integration with WebSphere Application
Server 427
Enabling local security 430
Starting and stopping secure servers. 430

Starting secure servers in a stand-alone
environment. 430
Stopping secure servers 431
Starting secure servers in WebSphere
Application Server 432

Data grid authentication. 433
Data grid security 433
Application client authentication 435
Application client authorization 437
Transport layer security and secure sockets layer 440

Configuring secure transport types 441
Configuring Secure Sockets Layer (SSL)
parameters for clients or servers 442

Java Management Extensions (JMX) security . . . 443
Security integration with external providers . . . 445
Securing the REST data service 446
Security descriptor XML file 450
objectGridSecurity.xsd file 453

Chapter 10. Monitoring the
deployment environment 455
Statistics overview. 455
Monitoring with the web console. 457

Starting and logging on to the web console . . 457
Connecting the web console to catalog servers 458
Viewing statistics with the web console. . . . 460
Monitoring with custom reports 466

Monitoring with the statistics API 467

iv IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Statistics modules 469
Monitoring with the xsadmin utility 470

Creating a configuration profile for the xsadmin
utility 473
xsadmin utility reference 474
Verbose option for the xsadmin utility 479

Monitoring with WebSphere Application Server
PMI 481

Enabling PMI 481
Retrieving PMI statistics 483
PMI modules 485
Accessing Managed Beans (MBeans) using the
wsadmin tool 492

Monitoring with managed beans (MBeans) . . . 493
Monitoring with vendor tools 494

Monitoring with the IBM Tivoli Enterprise
Monitoring Agent for WebSphere eXtreme Scale . 494
Monitoring eXtreme Scale applications with CA
Wily Introscope. 500
Monitoring eXtreme Scale with Hyperic HQ . . 503

Monitoring eXtreme Scale information in DB2 . . 505

Chapter 11. Tuning and performance 507
Operational checklist 507
Operating systems and network tuning. 509
Planning for network ports 509
ORB properties 511
JVM tuning for WebSphere eXtreme Scale 515
Configuring the heartbeat interval setting for
failover detection 517

Using WebSphere Real Time 519
WebSphere Real Time in a stand-alone
environment. 519
WebSphere Real Time in WebSphere Application
Server 521

Tuning the dynamic cache provider 523
Tuning the cache sizing agent for accurate memory
consumption estimates 524

Cache memory consumption sizing 525

Chapter 12. Troubleshooting 529
Enabling logging 529
Collecting trace. 530

Trace options 531
Troubleshooting installation 533
Troubleshooting client connectivity 533
Troubleshooting loaders 534
Troubleshooting XML configuration 535
Troubleshooting security. 538
IBM Support Assistant for WebSphere eXtreme
Scale 538
Messages 540
Release notes 540

Notices 543

Trademarks 545

Index 547

Contents v

vi IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About the Administration Guide

The WebSphere® eXtreme Scale documentation set includes three volumes that
provide the information necessary to use, program for, and administer the
WebSphere eXtreme Scale product.

WebSphere eXtreme Scale library

The WebSphere eXtreme Scale library contains the following books:
v The Product Overview contains a high-level view of WebSphere eXtreme Scale

concepts, including use case scenarios, and tutorials.
v The Installation Guide describes how to install common topologies of WebSphere

eXtreme Scale.
v The Administration Guide contains the information necessary for system

administrators, including how to plan application deployments, plan for
capacity, install and configure the product, start and stop servers, monitor the
environment, and secure the environment.

v The Programming Guide contains information for application developers on how
to develop applications for WebSphere eXtreme Scale using the included API
information.

To download the books, go to the WebSphere eXtreme Scale library page.

You can also access the same information in this library in the WebSphere eXtreme
Scale information center.

Who should use this book

This book is intended primarily for system administrators, security administrators,
and system operators.

Getting updates to this book

You can get updates to this book by downloading the most recent version from the
WebSphere eXtreme Scale library page.

How to send your comments

Contact the documentation team. Did you find what you needed? Was it accurate
and complete? Send your comments about this documentation by e-mail to
wasdoc@us.ibm.com.

© Copyright IBM Corp. 2009, 2011 vii

http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
mailto:wasdoc@us.ibm.com?subject=WebSphere eXtreme Scale

viii IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 1. Running the getting started sample application

After you install WebSphere eXtreme Scale in a stand-alone environment, use the
following steps as a simple introduction to its capability as an in-memory data
grid.

The stand-alone installation of WebSphere eXtreme Scale includes a sample that
you can use to verify your installation and to see how a simple data grid and
client can be used. The getting started sample is in the wxs_install_root/ObjectGrid/
gettingstarted directory.

The getting started sample provides a quick introduction to eXtreme Scale
functionality and basic operation. The sample consists of shell and batch scripts
designed to start a simple data grid with very little customization needed. In
addition, a client program, including source, is provided to run simple create, read,
update, and delete (CRUD) functions to this basic data grid.

Scripts and their functions

This sample provides the following four scripts:

The env.sh|bat script is called by the other scripts to set needed environment
variables. Normally you do not need to change this script.

v UNIX Linux ./env.sh

v Windows env.bat

The runcat.sh|bat starts the eXtreme Scale catalog service process on the local
system.

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The runcontainer.sh|bat script starts a container server process. You can run this
script multiple times with unique server names specified to start any number of
containers. These instances can work together to host partitioned and redundant
information in the grid.

v UNIX Linux ./runcontainer.sh unique_server_name

v Windows runcontainer.bat unique_server_name

The runclient.sh|bat script runs the simple CRUD client and starts the given
operation.

v UNIX Linux ./runclient.sh command value1 value2

v Windows runclient.sh command value1 value2

For command, use one of the following options:
v Specify as i to insert value2 into data grid with key value1

v Specify as u to update object keyed by value1 to value2

v Specify as d to delete object keyed by value1

v Specify as g to retrieve and display object keyed by value1

© Copyright IBM Corp. 2009, 2011 1

Note: The installRoot/ObjectGrid/ gettingstarted/src/Client.java file is the
client program that demonstrates how to connect to a catalog server, obtain an
ObjectGrid instance, and use the ObjectMap API.

Basic steps

Use the following steps to start your first data grid and run a client to interact
with the data grid.
1. Open a terminal session or command line window.
2. Use the following command to navigate to the gettingstarted directory:

cd wxs_install_root/ObjectGrid/gettingstarted

Substitute wxs_install_root with the path to the eXtreme Scale installation root
directory or the root file path of the extracted eXtreme Scale trial
wxs_install_root.

3. Run the following script to start a catalog service process on localhost:

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The catalog service process runs in the current terminal window.
4. Open another terminal session or command line window, and run the

following command to start a container server instance:

v UNIX Linux ./runcontainer.sh server0

v Windows runcontainer.bat server0

The container server runs in the current terminal window. You can repeat this
step with a different server name if you want to start more container server
instances to support replication.

5. Open another terminal session or command line window to run client
commands.
v Add data to the data grid:

– UNIX Linux ./runclient.sh i key1 helloWorld

– Windows runclient.bat i key1 helloWorld

v Search and display the value:

– UNIX Linux ./runclient.sh g key1

– Windows runclient.bat g key1

v Update the value:

– UNIX Linux ./runclient.sh u key1 goodbyeWorld

– Windows runclient.bat u key1 goodbyeWorld

v Delete the value:

– UNIX Linux ./runclient.sh d key1

– Windows runclient.bat d key1

6. Use <ctrl+c> to stop the catalog service process and container servers in the
respective windows.

Defining an ObjectGrid

The sample uses the objectgrid.xml and deployment.xml files that are in the
wxs_install_root/ObjectGrid/gettingstarted/xml directory to start a container

2 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

server. The objectgrid.xml file is the ObjectGrid descriptor XML file. The
deployment.xml file is the ObjectGrid deployment policy descriptor XML file. These
files together define a distributed ObjectGrid topology.

ObjectGrid descriptor XML file

An ObjectGrid descriptor XML file is used to define the structure of the ObjectGrid
that is used by the application. It includes a list of BackingMap configurations.
These BackingMaps are the actual data storage for cached data. The following
example is a sample objectgrid.xml file. The first few lines of the file include the
required header for each ObjectGrid XML file. This example file defines the Grid
ObjectGrid with Map1 and Map2 BackingMaps.
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<backingMap name="Map1" />
<backingMap name="Map2" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Deployment policy descriptor XML file

A deployment policy descriptor XML file is passed to an ObjectGrid container
server during startup. A deployment policy must be used with an ObjectGrid XML
file and must be compatible with the ObjectGrid XML that is used with it. For each
objectgridDeployment element in the deployment policy, you must have a
corresponding ObjectGrid element in your ObjectGrid XML. The backingMap
elements that are defined within the objectgridDeployment element must be
consistent with the backingMaps found in the ObjectGrid XML. Every backingMap
must be referenced within one and only one mapSet.

The deployment policy descriptor XML file is intended to be paired with the
corresponding ObjectGrid XML, the objectgrid.xml file. In the following example,
the first few lines of the deployment.xml file include the required header for each
deployment policy XML file. The file defines the objectgridDeployment element for
the Grid ObjectGrid that is defined in the objectgrid.xml file. Both the Map1 and
Map2 BackingMaps that are defined within the Grid ObjectGrid are included in the
mapSet mapSet that has the numberOfPartitions, minSyncReplicas, and
maxSyncReplicas attributes configured.
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="13" minSyncReplicas="0"

maxSyncReplicas="1" >
<map ref="Map1"/>
<map ref="Map2"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Chapter 1. Getting started sample 3

The numberOfPartitions attribute of the mapSet element specifies the number of
partitions for the mapSet. It is an optional attribute and the default is 1. The
number should be appropriate for the anticipated capacity of the data grid.

The minSyncReplicas attribute of mapSet is to specify the minimum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. Primary and replica are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container than the value of
minSyncReplicas. If the number of synchronous replicas falls below the value of
minSyncReplicas, write transactions are no longer allowed for that partition.

The maxSyncReplicas attribute of mapSet is to specify the maximum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. No other synchronous replicas are placed for a partition after
a domain reaches this number of synchronous replicas for that specific partition.
Adding containers that can support this ObjectGrid can result in an increased
number of synchronous replicas if your maxSyncReplicas value has not already
been met. The sample set the maxSyncReplicas to 1 means the domain will at most
place one synchronous replica. If you start more than one container server instance,
there will be only one synchronous replica placed in one of the container server
instances.

Using ObjectGrid

The Client.java file in the wxs_install_root/ObjectGrid/gettingstarted/client/
src/ directory is the client program that demonstrates how to connect to catalog
server, obtain ObjectGrid instance, and use ObjectMap API.

From the perspective of a client application, using WebSphere eXtreme Scale can be
divided into the following steps.
1. Connecting to the catalog service by obtaining a ClientClusterContext instance.
2. Obtaining a client ObjectGrid instance.
3. Getting a Session instance.
4. Getting an ObjectMap instance.
5. Using the ObjectMap methods.
1. Connect to the catalog service by obtaining a ClientClusterContext instance.

To connect to the catalog server, use the connect method of ObjectGridManager
API. The connect method that is used requires only the catalog server endpoint
in the format of hostname:port. You can indicate multiple catalog server
endpoints by separating the list of hostname:port values with commas. The
following code snippet demonstrates how to connect to a catalog server and
obtain a ClientClusterContext instance:
ClientClusterContext ccc = ObjectGridManagerFactory.getObjectGridManager().connect("localhost:2809", null, null);

If the connections to the catalog servers succeed, the connect method returns a
ClientClusterContext instance. The ClientClusterContext instance is required to
obtain the ObjectGrid from ObjectGridManager API.

2. Obtain an ObjectGrid instance.

To obtain ObjectGrid instance, use the getObjectGrid method of the
ObjectGridManager API. The getObjectGrid method requires both the
ClientClusterContext instance and the name of the data grid instance. The
ClientClusterContext instance is obtained during the connection to catalog
server. The name of ObjectGrid instance is Grid that is specified in the

4 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

objectgrid.xml file. The following code snippet demonstrates how to obtain
the data grid by calling the getObjectGrid method of the ObjectGridManager
API.
ObjectGrid grid = ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc, “Grid”);

3. Get a Session instance.

You can get a Session from the obtained ObjectGrid instance. A Session instance
is required to get the ObjectMap instance, and perform transaction demarcation.
The following code snippet demonstrates how to get a Session instance by
calling the getSession method of the ObjectGrid API.
Session sess = grid.getSession();

4. Get an ObjectMap instance.

After getting a Session, you can get an ObjectMap instance from a Session
instance by calling getMap method of the Session API. You must pass the name
of map as parameter to getMap method to get the ObjectMap instance. The
following code snippet demonstrates how to obtain ObjectMap by calling the
getMap method of the Session API.
ObjectMap map1 = sess.getMap("Map1");

ObjectMap map1 = sess.getMap("my_simple_data_grid");

5. Use the ObjectMap methods.

After an ObjectMap instance is obtained, you can use the ObjectMap API.
Remember that the ObjectMap interface is a transactional map and requires
transaction demarcation by using the begin and commit methods of the Session
API. If there is no explicit transaction demarcation in the application, the
ObjectMap operations run with auto-commit transactions.
The following code snippet demonstrates how to use the ObjectMap API with
an auto-commit transaction.
map1.insert(key1, value1);

The following code snippet demonstrates how to use the ObjectMap API with
explicit transaction demarcation.
sess.begin();
map1.insert(key1, value1);
sess.commit();

Additional information

This sample demonstrates how to start catalog server and container server and
using ObjectMap API in stand-alone environment. You can also use the
EntityManager API.

In a WebSphere Application Server environment with WebSphere eXtreme Scale
installed or enabled, the most common scenario is a network-attached topology. In
a network-attached topology, the catalog server is hosted in the deployment
manager process and each WebSphere Application Server instance hosts a
container server automatically. Java Platform, Enterprise Edition applications only
need to include both the ObjectGrid descriptor XML file and the ObjectGrid
deployment policy descriptor XML file in the META-INF directory of any module
and the ObjectGrid becomes available automatically. An application can then
connect to a locally available catalog server and obtain an ObjectGrid instance to
use.

Chapter 1. Getting started sample 5

Directory conventions
The following directory conventions are used throughout the documentation to
must reference special directories such as wxs_install_root and wxs_home. You
access these directories during several different scenarios, including during
installation and use of command-line tools.

wxs_install_root
The wxs_install_root directory is the root directory where WebSphere
eXtreme Scale product files are installed. The wxs_install_root directory can
be the directory in which the trial zip file is extracted or the directory in which
the WebSphere eXtreme Scale product is installed.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer

wxs_home
The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples and components. This is the same as the
wxs_install_root directory when the trial is extracted. For stand-alone
installations, the wxs_home directory is the ObjectGrid sub-directory within the
wxs_install_root directory. For installations that are integrated with
WebSphere Application Server, this directory is the optionalLibraries/
ObjectGrid directory within the wxs_install_root directory.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale/ObjectGrid

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid

was_root
The was_root directory is the root directory of a WebSphere Application Server
installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home
The restservice_home directory is the directory in which the WebSphere
eXtreme Scale REST data service libraries and samples are located. This
directory is named restservice and is a sub-directory under the wxs_home
directory.
v Example for stand-alone deployments:

Example: /opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice

v Example for WebSphere Application Server integrated deployments:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/
restservice

6 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

tomcat_root
The tomcat_root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

Example:/opt/IBM/WebSphere/AppServerCE

java_home
The java_home is the root directory of a Java Runtime Environment (JRE)
installation.

Example:/opt/IBM/WebSphere/eXtremeScale/java

samples_home
The samples_home is the directory in which you extract the sample files that are
used for tutorials.

Example:/wxs-samples/

Chapter 1. Getting started sample 7

8 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 2. Capacity planning

If you have an initial data set size and a projected data set size, you can plan the
capacity that you need to run WebSphere eXtreme Scale. Although such planning
helps you deploy eXtreme Scale efficiently for future changes, it allows you to
maximize the elasticity of eXtreme Scale which you would not have with a
different scenario such as an in-memory database or other type of database.

Sizing memory and partition count calculation
You can calculate the amount of memory and partitions needed for your specific
configuration.

WebSphere eXtreme Scale stores data within the address space of Java virtual
machines (JVM). Each JVM provides processor space for servicing create, retrieve,
update, and delete calls for the data that is stored in the JVM. In addition, each
JVM provides memory space for data entries and replicas. Java objects vary in size,
therefore you must make a measurement to make an estimate of how much
memory you need.

To size the memory that you need, load your application data into a single JVM.
When the heap usage reaches 60%, note the number of objects that are used. This
number is the maximum recommended object count for each of your Java virtual
machines. To get the most accurate sizing, use realistic data and include any
defined indexes in your sizing because indexes also consume memory. The best
way to size memory use is to run garbage collection verbosegc output because this
output gives you the numbers after garbage collection. You can query the heap
usage at any given point through MBeans or programmatically, but those queries
give you only a current snapshot of the heap. This snapshot might include
uncollected garbage, so using that method is not an accurate indication of the
consumed memory.

Scaling up the configuration

Number of shards per partition (numShardsPerPartition value)

To calculate the number of shards per partition, or the numShardsPerPartition
value, add 1 for the primary shard plus the total number of replica shards you
want.
numShardsPerPartition = 1 + total_number_of_replicas

Number of Java virtual machines (minNumJVMs value)

To scale up your configuration, first decide on the maximum number of objects
that need to be stored in total. To determine the number of Java virtual machines
you need, use the following formula:
minNumJVMS=(numShardsPerPartition * numObjs) / numObjsPerJVM

Round this value up to the nearest integer value.

Number of shards (numShards value)

© Copyright IBM Corp. 2009, 2011 9

At the final growth size, use 10 shards for each JVM. As described before, each
JVM has one primary shard and (N-1) shards for the replicas, or in this case, nine
replicas. Because you already have a number of Java virtual machines to store the
data, you can multiply the number of Java virtual machines by 10 to determine the
number of shards:
numShards = minNumJVMs * 10 shards/JVM

Number of partitions

If a partition has one primary shard and one replica shard, then the partition has
two shards (primary and replica). The number of partitions is the shard count
divided by 2, rounded up to the nearest prime number. If the partition has a
primary and two replicas, then the number of partitions is the shard count divided
by 3, rounded up to the nearest prime number.
numPartitions = numShards / numShardsPerPartition

Example of scaling

In this example, the number of entries begins at 250 million. Each year, the number
of entries grows about 14%. After seven years, the total number of entries is 500
million, so you must plan your capacity accordingly. For high availability, a single
replica is needed. With a replica, the number of entries doubles, or 1,000,000,000
entries. As a test, 2 million entries can be stored in each JVM. Using the
calculations in this scenario the following configuration is needed:
v 500 Java virtual machines to store the final number of entries.
v 5000 shards, calculated by multiplying 500 Java virtual machines by 10.
v 2500 partitions, or 2503 as the next highest prime number, calculated by taking

the 5000 shards, divided by two for primary and replica shards.

Starting configuration

Based on the previous calculations, start with 250 Java virtual machines and grow
toward 500 Java virtual machines over five years. With this configuration, you can
manage incremental growth until you arrive at the final number of entries.

In this configuration, about 200,000 entries are stored per partition (500 million
entries divided by 2503 partitions). Set the numberOfBuckets parameter on the map
that holds the entries to the closest higher prime number, in this example 70887,
which keeps the ratio around three.

When the maximum number of Java virtual machines is reached

When you reach your maximum number of 500 Java virtual machines, you can still
grow your data grid. As the number of Java virtual machines grows beyond 500,
the shard count begins to drop below 10 for each JVM, which is below the
recommended number. The shards start to become larger, which can cause
problems. Repeat the sizing process considering future growth again, and reset the
partition count. This practice requires a full data grid restart, or an outage of your
data grid.

Number of servers

Attention: Do not use paging on a server under any circumstances.

10 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

A single JVM uses more memory than the heap size. For example, 1 GB of heap for
a JVM actually uses 1.4 GB of real memory. Determine the available free RAM on
the server. Divide the amount of RAM by the memory per JVM to get the
maximum number of Java virtual machines on the server.

Sizing CPU per partition for transactions
Although a major functionality of eXtreme Scale is its ability for elastic scaling, it is
also important to consider sizing and to adjust the ideal number of CPUs to scale
up.

Processor costs include:
v Cost of servicing create, retrieve, update, and delete operations from clients.
v Cost of replication from other Java virtual machines.
v Cost of invalidation.
v Cost of eviction policy.
v Cost of garbage collection.
v Cost of application logic.

Java virtual machines per server

Use two servers and start the maximum JVM count per server. Use the calculated
partition counts from the previous section. Then, preload the Java virtual machines
with enough data to fit on these two computers only. Use a separate server as a
client. Run a realistic transaction simulation against this data grid of two servers.

To calculate the baseline, try to saturate the processor usage. If you cannot saturate
the processor, then it is likely that the network is saturated. If the network is
saturated, add more network cards and round robin the Java virtual machines over
the multiple network cards.

Run the computers at 60% processor usage, and measure the create, retrieve,
update, and delete transaction rate. This measurement provides the throughput on
two servers. This number doubles with four servers, doubles again at 8 servers,
and so on. This scaling assumes that the network capacity and client capacity is
also able to scale.

As a result, eXtreme Scale response time should be stable as the number of servers
is scaled up. The transaction throughput should scale linearly as computers are
added to the data grid.

Sizing CPUs for parallel transactions
Single-partition transactions have throughput scaling linearly as the data grid
grows. Parallel transactions are different from single-partition transactions because
they touch a set of the servers (this can be all of the servers).

If a transaction touches all of the servers, then the throughput is limited to the
throughput of the client that initiates the transaction or the slowest server touched.
Larger data grids spread the data out more and provide more processor space,
memory, network, and so on. However, the client must wait for the slowest server
to respond, and the client must consume the results of the transaction.

Chapter 2. Capacity planning 11

When a transaction touches a subset of the servers, M out of N servers get a
request. The throughput is then N divided by M times faster than the throughput
of the slowest server. For example, if you have 20 servers and a transaction that
touches 5 servers, then the throughput is 4 times the throughput of the slowest
server in the data grid.

When a parallel transaction completes, the results are sent to the client thread that
started the transaction. This client must then aggregate the results single threaded.
This aggregation time increases as the number of servers touched for the
transaction grows. However, this time depends on the application because it is
possible that each server returns a smaller result as the data grid grows.

Typically, parallel transactions touch all of the servers in the data grid because
partitions are uniformly distributed over the grid. In this case, throughput is
limited to the first case.

Summary

With this sizing, you have three metrics, as follows.
v Number of partitions.
v Number of servers that are needed for the memory that is required.
v Number of servers that are needed for the required throughput.

If you need 10 servers for memory requirements, but you are getting only 50% of
the needed throughput because of the processor saturation, then you need twice as
many servers.

For the highest stability, you should run your servers at 60% processor loading and
JVM heaps at 60% heap loading. Spikes can then drive the processor usage to
80–90%, but do not regularly run your servers higher than these levels.

Dynamic cache capacity planning
The Dynamic Cache API is available to Java EE applications that are deployed in
WebSphere Application Server. The dynamic cache can be leveraged to cache
business data, generated HTML, or to synchronize the cached data in the cell by
using the data replication service (DRS).

Overview

All dynamic cache instances created with the WebSphere eXtreme Scale dynamic
cache provider are highly available by default. The level and memory cost of high
availability depends on the topology used.

When using the embedded topology, the cache size is limited to the amount of free
memory in a single server process, and each server process stores a full copy of the
cache. As long as a single server process continues to run, the cache survives. The
cache data will only be lost if all servers that access the cache are shut down.

For caching using the embedded partitioned topology, the cache size is limited to
an aggregate of the free space available in all server processes. By default, the
eXtreme Scale dynamic cache provider uses 1 replica for every primary shard, so
each piece of cached data is stored twice.

12 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Use the following formula A to determine the capacity of an embedded partitioned
cache.

Formula A

F * C / (1 + R) = M

Where:
v F = Free memory per container process
v C = number of containers
v R = number of replicas
v M = Total size of the cache

For a WebSphere Application Server Network Deployment data grid that has 256
MB of available space in each process, with 4 server processes total, a cache
instance across all of those servers could store up to 512 megabytes of data. In this
mode, the cache can survive one server crashing without losing data. Also, up to
two servers could be shut down sequentially without losing any data. So, for the
previous example, the formula is as follows:

256mb * 4 containers/ (1 primary + 1 replica) = 512mb.

Caches using the remote topology have similar sizing characteristics as caches
using embedded partitioned, but they are limited by the amount of available space
in all eXtreme Scale container processes.

In remote topologies, it is possible to increase the number of replicas to provide a
higher level of availability at the cost of additional memory overhead. In most
dynamic cache applications this should be unnecessary, but you can edit the
dynacache-remote-deployment.xml file to increase the number of replicas.

Use the following formulas, B and C, to determine the effect of adding more
replicas on the high availability of the cache.

Formula B

N = Minimum(T -1, R)

Where:
v N = the number of processes that can crash simultaneously
v T = the total number of containers
v R = the total number of replicas

Formula C

Ceiling(T/ (1+N)) = m

Where:
v T = Total number containers
v N = Total number of replicas
v m = minimum number of containers needed to support the cache data.

Chapter 2. Capacity planning 13

For performance tuning with the dynamic cache provider, see Tuning the dynamic
cache provider.

Cache sizing

Before an application using the WebSphere eXtreme Scale dynamic cache provider
can be deployed, the general principals described in the previous section should be
combined with the environmental data for the production systems. The first figure
to establish is the total number of container processes and the amount of available
memory in each process to hold cache data. When using the embedded topology,
the cache containers will be co-located inside of the WebSphere Application server
processes, so there is one container for each server that is sharing the cache.
Determining the memory overhead of the application without caching enabled and
the WebSphere Application Server is the best way to figure out how much space is
available in the process. This can be done by analyzing verbose garbage collection
data. When using the remote topology, this information can be found by looking at
the verbose garbage collection output of a newly started standalone container that
has not yet been populated with cache data. The last thing to keep in mind when
figuring out how much space per process is available for cache data, is to reserve
some heap space for garbage collection. The overhead of the container, WebSphere
Application Server or stand-alone, plus the size reserved for the cache should not
be more than 70% of the total heap.

After this information is collected, the values can be plugged into formula A,
described previously, to determine the maximum size for the partitioned cache.
Once the maximum size is known, the next step is to determine the total number
of cache entries that can be supported, which requires determining the average size
per cache entry. The simple way of doing this is to add 10% to the size of the
customer object. See theTuning guide for dynamic cache and data replication
service for more in depth information on sizing cache entries when using dynamic
cache.

When compression is enabled it affects the size of the customer object, not the
overhead of the caching system. Use the following formula to determine the size of
a cached object when using compression:

S = O * C + O * 0.10

Where:
v S = Average size of cached object
v O = Average size of un-compressed customer object
v C = Compression ratio expressed as a fraction.

So, a 2 to 1 compression ratio is 1/2 = 0.50. Smaller is better for this value. If the
object being stored is a normal POJO mostly full of primitive types, then assume a
compression ratio of 0.60 to 0.70. If the object cached is a Servlet, JSP, or
WebServices object, the optimal method for determining the compression ratio is to
compress a representative sample with a ZIP compression utility. If this is not
possible, then a compression ratio of 0.2 to 0.35 is common for this type of data.

Next, use this information to determine the total number of cache entries that can
be supported. Use the following D formula:

Formula D

T = S / A

14 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic%20cache%20tuning%20guide&uid=swg27006431
http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic%20cache%20tuning%20guide&uid=swg27006431

Where:
v T= Total number of cache entries
v S = Total size available for cache data as computed using formula A
v A = Average size of each cache entry

Finally, you must set the cache size on the dynamic cache instance to enforce this
limit. The WebSphere eXtreme Scale dynamic cache provider differs from the
default dynamic cache provider in this regard. Use the following formula to
determine the value to set for the cache size on the dynamic cache instance. Use
the following E formula:

Formula E

Cs = Ts / Np

Where:
v Ts = Total target size for the cache
v Cs = Cache Size setting to set on the dynamic cache instance
v Np = number of partitions. The default is 47.

Set the size of the dynamic cache instance to a value calculated by formula E on
each server that shares the cache instance.

Chapter 2. Capacity planning 15

16 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 3. Installing and deploying WebSphere eXtreme Scale

WebSphere eXtreme Scale is an in-memory data grid that you can use to
dynamically partition, replicate, and manage application data and business logic
across multiple servers. After determining the purposes and requirements of your
deployment, install eXtreme Scale on your system.

Before you begin
v Establish how WebSphere eXtreme Scale fits into your current topology.
v Verify that your environment meets the prerequisites to install eXtreme Scale.

See “Hardware and software requirements” on page 74 for more information.
v For more information on environments and other requirements, see Chapter 6,

“Planning the WebSphere eXtreme Scale environment,” on page 73 or
“Operational checklist” on page 112.

About this task

Environment options

v WebSphere Application Server environment:

By installing WebSphere eXtreme Scale on the nodes in your WebSphere
Application Server environment, you can automatically start catalog servers and
container servers in the same cell as your deployment manager and other
application servers.

v Stand-alone environment:

In a stand-alone installation, you install WebSphere eXtreme Scale in an
environment that does not have WebSphere Application Server. With a
stand-alone environment, you manually configure and start the catalog server
and container server processes.

7.1+ Installation types

The full installer and the separate client installer that you can download from the
support site give you a variety of installation options. You can use a client-only
installation on nodes that are running only the client applications that access the
data grid. Use the server installation or server and client installation on nodes that
run catalog servers or container servers.
v Full installation:

– When you are installing on WebSphere Application Server, you can choose to
install the client only or both the server and the client.

– When you are installing in a stand-alone environment, you can install both
the client and server. If you want to install the client only, use the WebSphere
eXtreme Scale Client installation.

v Client installation::
You can use the client-only installation on nodes that are running the client
applications. To install the client only, you can download the client only installer
for the appropriate platform from the downloads section on the Support site

© Copyright IBM Corp. 2009, 2011 17

http://www-947.ibm.com/support/entry/portal/Downloads/Software/WebSphere/WebSphere_eXtreme_Scale

Installing stand-alone WebSphere eXtreme Scale or WebSphere
eXtreme Scale Client

You can install stand-alone WebSphere eXtreme Scale or WebSphere eXtreme Scale
Client in an environment that does not contain WebSphere Application Server or
WebSphere Application Server Network Deployment.

Before you begin
v Verify that the target installation directory is empty or does not exist.

Important: If a previous version of WebSphere eXtreme Scale or the ObjectGrid
component exists in the directory that you specify to install Version 7.1, the
product is not installed. For example, you might have a previously existing
wxs_install_root/ObjectGrid folder. You can either select a different installation
directory or cancel the installation. Next, uninstall the previous installation and
run the wizard again.

v 7.1+ An IBM® Runtime Environment is installed as a part of the stand-alone
installation in the wxs_install_root/java folder.

v If you are installing the client only: Download the WebSphere eXtreme Scale
Client for the appropriate platform from the Support site.

About this task

When you install the product as stand-alone, you install the WebSphere eXtreme
Scale client and server together. With the WebSphere eXtreme Scale Client
installation in stand-alone mode, you are installing a client to access the data in
your data grids. Server and client processes, therefore, access all required resources
locally. You can also embed WebSphere eXtreme Scale into existing Java Platform,
Standard Edition (J2SE) applications by using scripts and Java archive (JAR) files.

Attention: You can also use a non-root (non-administrator) profile for WebSphere
eXtreme Scale in a stand-alone environment. To use a non-root profile, you must
change the owner of the ObjectGrid directory to the non-root profile. Then you can
log in with that non-root profile and operate eXtreme Scale as you normally would
for a root (administrator) profile.

Procedure
1. Use the wizard to install both the server and the client from the DVD.

v Run the following script to start the wizard for the WebSphere eXtreme Scale
full installation:

– Linux UNIX dvd_root/install

– Windows dvd_root\install.bat

v Run the following script to start the wizard for the WebSphere eXtreme Scale
Client installation. The installation files are in the zip file that you download
from the Support site:

– Linux UNIX root/WXS_Client/install

– Windows root\WXS_Client\install.bat

18 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-947.ibm.com/support/entry/portal/Downloads/Software/WebSphere/WebSphere_eXtreme_Scale
http://www-947.ibm.com/support/entry/portal/Downloads/Software/WebSphere/WebSphere_eXtreme_Scale

Attention: If you use uniform naming conventions (UNC) to identify file
paths in your installation command, the items you anticipate installing may not
all be installed after the command runs. To avoid trouble, map the file path to a
network drive. Run the install command against the mapped drive. Using a
mapped network drive ensures that all the items are installed.

2. Follow the prompts in the wizard, and click Finish.

Restriction: The optional features panel lists the features from which you can
select to install. However, features cannot be added incrementally to the
product environment after the product is installed. If you choose not to install a
feature with the initial product installation, you must uninstall and reinstall the
product to add the feature.

Results

Windows If you are installing the WebSphere eXtreme Scale Client on Windows,
you might see the following text in the results of the installation:
Success: The installation of the following product was successful:
WebSphere eXtreme Scale Client. Some configuration steps have errors.
For more information, refer to the following log file:
<WebSphere Application Server install root>\logs\wxs_client\install\log.txt"
Review the installation log (log.txt) and review the deployment manager
augmentation log.

If you see a failure with the iscdeploy.sh file, you can ignore the error. This error
does not cause any problems.

What to do next

You can verify your installation by running the getting started sample application.
See Chapter 1, “Running the getting started sample application,” on page 1 for
more information.

See Chapter 7, “Configuring the deployment environment,” on page 115 to set up
your client application processes and server processes.

Runtime files for WebSphere eXtreme Scale stand-alone
installation

Java archive (JAR) files are included in the installation. You can see the JAR files
that are included and the location to which they are installed.

Table 1. Runtime files for WebSphere eXtreme Scale full installation. WebSphere eXtreme Scale relies on ObjectGrid
processes and related APIs. The following table lists the JAR files that are included in the installation. The installation
location is relative to the wxs_home directory that you choose during the installation.

File name Environment
Installation
location Description

wxsdynacache.jar Client and server dynacache/lib The wxsdynacache.jar file contains the necessary classes to use
with the dynamic cache provider. The file is automatically
included in the server runtime environment when you use the
supplied scripts.

wxshyperic.jar Utility hyperic/lib The WebSphere eXtreme Scale server detection plug-in for the
SpringSource Hyperic monitoring agent.

objectgrid.jar Local, client, and
server

lib The objectgrid.jar file is used by the server runtime
environment of J2SE Version 1.4.2 and later. The file is
automatically included in the server runtime environment when
you use the supplied scripts.

Chapter 3. Installing and deploying 19

Table 1. Runtime files for WebSphere eXtreme Scale full installation (continued). WebSphere eXtreme Scale relies
on ObjectGrid processes and related APIs. The following table lists the JAR files that are included in the installation.
The installation location is relative to the wxs_home directory that you choose during the installation.

File name Environment
Installation
location Description

ogagent.jar Local, client, and
server

lib The ogagent.jar file contains the runtime classes that are required
to run the Java instrumentation agent that is used with the
EntityManager API.

ogclient.jar Local and client lib The ogclient.jar file contains only the local and client runtime
environments. You can use this file with J2SE Version 1.4.2 and
later.

ogspring.jar Local, client, and
server

lib The ogspring.jar file contains support classes for the
SpringSource Spring framework integration.

wsogclient.jar Local and client lib The wsogclient.jar file installed when you use an environment
that contains WebSphere Application Server Version 6.0.2 and later.
This file contains only the local and client runtime environments.

wxssizeagent.jar Local, client, and
server

lib The wxssizeagent.jar file is used to provide more accurate cache
entry sizing information when using Java runtime environment
(JRE) Version 1.5 or later.

ibmcfw.jar

ibmext.jar

ibmorb.jar

ibmorbapi.jar

Client and server lib/endorsed This set of files includes the Object Request Broker (ORB) runtime
that is used for running applications in Java SE processes.

restservice.ear Client restservice/lib The restservice.ear file contains the eXtreme Scale REST data
service application enterprise archive for WebSphere Application
Server environments.

restservice.war Client restservice/lib The restservice.war file contains the eXtreme Scale REST data
service Web archive for application servers acquired from another
vendor.

xsadmin.jar Utility samples The xsadmin.jar file contains the eXtreme Scale administration
sample utility.

sessionobjectgrid.jar Client and server session/lib The sessionobjectgrid.jar file contains the eXtreme Scale HTTP
session management runtime.

splicerlistener.jar Utility session/lib The splicerlistener.jar file contains the splicer utility for the
eXtreme Scale Version 7.1 HTTP session listener.

xsgbean.jar Server wasce/lib The xsgbean.jar file contains the GBean for embedding eXtreme
Scale servers in WebSphere Application Server Community Edition
application servers.

splicer.jar Utility legacy/session/
lib

The splicer utility for the WebSphere eXtreme Scale Version 7.0
HTTP session manager filter.

Table 2. Runtime files for WebSphere eXtreme Scale Client. WebSphere eXtreme Scale Client relies on ObjectGrid
processes and related APIs. The following table lists the JAR files that are included in the installation. The installation
location is relative to the wxs_home directory that you choose during the installation.

File name Environment
Installation
location Description

wxsdynacache.jar Client and server dynacache/lib The wxsdynacache.jar file contains the necessary classes to use
with the dynamic cache provider. The file is automatically
included in the server runtime environment when you use the
supplied scripts.

wxshyperic.jar Utility hyperic/lib The WebSphere eXtreme Scale server detection plug-in for the
SpringSource Hyperic monitoring agent.

ogagent.jar Local, client, and
server

lib The ogagent.jar file contains the runtime classes that are required
to run the Java instrumentation agent that is used with the
EntityManager API.

ogclient.jar Local and client lib The ogclient.jar file contains only the local and client runtime
environments. You can use this file with J2SE Version 1.4.2 and
later.

ogspring.jar Local, client, and
server

lib The ogspring.jar file contains support classes for the
SpringSource Spring framework integration.

20 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 2. Runtime files for WebSphere eXtreme Scale Client (continued). WebSphere eXtreme Scale Client relies on
ObjectGrid processes and related APIs. The following table lists the JAR files that are included in the installation. The
installation location is relative to the wxs_home directory that you choose during the installation.

File name Environment
Installation
location Description

wsogclient.jar Local and client lib The wsogclient.jar file installed when you use an environment
that contains WebSphere Application Server Version 6.0.2 and later.
This file contains only the local and client runtime environments.

wxssizeagent.jar Local, client, and
server

lib The wxssizeagent.jar file is used to provide more accurate cache
entry sizing information when using Java runtime environment
(JRE) Version 1.5 or later.

ibmcfw.jar

ibmext.jar

ibmorb.jar

ibmorbapi.jar

Client and server lib/endorsed This set of files includes the Object Request Broker (ORB) runtime
that is used for running applications in Java SE processes.

restservice.ear Client restservice/lib The restservice.ear file contains the eXtreme Scale REST data
service application enterprise archive for WebSphere Application
Server environments.

restservice.war Client restservice/lib The restservice.war file contains the eXtreme Scale REST data
service Web archive for application servers acquired from another
vendor.

xsadmin.jar Utility samples The xsadmin.jar file contains the eXtreme Scale administration
sample utility.

sessionobjectgrid.jar Client and server session/lib The sessionobjectgrid.jar file contains the eXtreme Scale HTTP
session management runtime.

splicerlistener.jar Utility session/lib The splicerlistener.jar file contains the splicer utility for the
eXtreme Scale Version 7.1 HTTP session listener.

splicer.jar Utility legacy/session/
lib

The splicer utility for the WebSphere eXtreme Scale Version 7.0
HTTP session manager filter.

Running the getting started sample application
After you install WebSphere eXtreme Scale in a stand-alone environment, use the
following steps as a simple introduction to its capability as an in-memory data
grid.

The stand-alone installation of WebSphere eXtreme Scale includes a sample that
you can use to verify your installation and to see how a simple data grid and
client can be used. The getting started sample is in the wxs_install_root/ObjectGrid/
gettingstarted directory.

The getting started sample provides a quick introduction to eXtreme Scale
functionality and basic operation. The sample consists of shell and batch scripts
designed to start a simple data grid with very little customization needed. In
addition, a client program, including source, is provided to run simple create, read,
update, and delete (CRUD) functions to this basic data grid.

Scripts and their functions

This sample provides the following four scripts:

The env.sh|bat script is called by the other scripts to set needed environment
variables. Normally you do not need to change this script.

v UNIX Linux ./env.sh

v Windows env.bat

Chapter 3. Installing and deploying 21

The runcat.sh|bat starts the eXtreme Scale catalog service process on the local
system.

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The runcontainer.sh|bat script starts a container server process. You can run this
script multiple times with unique server names specified to start any number of
containers. These instances can work together to host partitioned and redundant
information in the grid.

v UNIX Linux ./runcontainer.sh unique_server_name

v Windows runcontainer.bat unique_server_name

The runclient.sh|bat script runs the simple CRUD client and starts the given
operation.

v UNIX Linux ./runclient.sh command value1 value2

v Windows runclient.sh command value1 value2

For command, use one of the following options:
v Specify as i to insert value2 into data grid with key value1

v Specify as u to update object keyed by value1 to value2

v Specify as d to delete object keyed by value1

v Specify as g to retrieve and display object keyed by value1

Note: The installRoot/ObjectGrid/ gettingstarted/src/Client.java file is the
client program that demonstrates how to connect to a catalog server, obtain an
ObjectGrid instance, and use the ObjectMap API.

Basic steps

Use the following steps to start your first data grid and run a client to interact
with the data grid.
1. Open a terminal session or command line window.
2. Use the following command to navigate to the gettingstarted directory:

cd wxs_install_root/ObjectGrid/gettingstarted

Substitute wxs_install_root with the path to the eXtreme Scale installation root
directory or the root file path of the extracted eXtreme Scale trial
wxs_install_root.

3. Run the following script to start a catalog service process on localhost:

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The catalog service process runs in the current terminal window.
4. Open another terminal session or command line window, and run the

following command to start a container server instance:

v UNIX Linux ./runcontainer.sh server0

v Windows runcontainer.bat server0

The container server runs in the current terminal window. You can repeat this
step with a different server name if you want to start more container server
instances to support replication.

22 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

5. Open another terminal session or command line window to run client
commands.
v Add data to the data grid:

– UNIX Linux ./runclient.sh i key1 helloWorld

– Windows runclient.bat i key1 helloWorld

v Search and display the value:

– UNIX Linux ./runclient.sh g key1

– Windows runclient.bat g key1

v Update the value:

– UNIX Linux ./runclient.sh u key1 goodbyeWorld

– Windows runclient.bat u key1 goodbyeWorld

v Delete the value:

– UNIX Linux ./runclient.sh d key1

– Windows runclient.bat d key1

6. Use <ctrl+c> to stop the catalog service process and container servers in the
respective windows.

Defining an ObjectGrid

The sample uses the objectgrid.xml and deployment.xml files that are in the
wxs_install_root/ObjectGrid/gettingstarted/xml directory to start a container
server. The objectgrid.xml file is the ObjectGrid descriptor XML file. The
deployment.xml file is the ObjectGrid deployment policy descriptor XML file. These
files together define a distributed ObjectGrid topology.

ObjectGrid descriptor XML file

An ObjectGrid descriptor XML file is used to define the structure of the ObjectGrid
that is used by the application. It includes a list of BackingMap configurations.
These BackingMaps are the actual data storage for cached data. The following
example is a sample objectgrid.xml file. The first few lines of the file include the
required header for each ObjectGrid XML file. This example file defines the Grid
ObjectGrid with Map1 and Map2 BackingMaps.
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<backingMap name="Map1" />
<backingMap name="Map2" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Deployment policy descriptor XML file

A deployment policy descriptor XML file is passed to an ObjectGrid container
server during startup. A deployment policy must be used with an ObjectGrid XML
file and must be compatible with the ObjectGrid XML that is used with it. For each
objectgridDeployment element in the deployment policy, you must have a

Chapter 3. Installing and deploying 23

corresponding ObjectGrid element in your ObjectGrid XML. The backingMap
elements that are defined within the objectgridDeployment element must be
consistent with the backingMaps found in the ObjectGrid XML. Every backingMap
must be referenced within one and only one mapSet.

The deployment policy descriptor XML file is intended to be paired with the
corresponding ObjectGrid XML, the objectgrid.xml file. In the following example,
the first few lines of the deployment.xml file include the required header for each
deployment policy XML file. The file defines the objectgridDeployment element for
the Grid ObjectGrid that is defined in the objectgrid.xml file. Both the Map1 and
Map2 BackingMaps that are defined within the Grid ObjectGrid are included in the
mapSet mapSet that has the numberOfPartitions, minSyncReplicas, and
maxSyncReplicas attributes configured.
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="13" minSyncReplicas="0"

maxSyncReplicas="1" >
<map ref="Map1"/>
<map ref="Map2"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

The numberOfPartitions attribute of the mapSet element specifies the number of
partitions for the mapSet. It is an optional attribute and the default is 1. The
number should be appropriate for the anticipated capacity of the data grid.

The minSyncReplicas attribute of mapSet is to specify the minimum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. Primary and replica are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container than the value of
minSyncReplicas. If the number of synchronous replicas falls below the value of
minSyncReplicas, write transactions are no longer allowed for that partition.

The maxSyncReplicas attribute of mapSet is to specify the maximum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. No other synchronous replicas are placed for a partition after
a domain reaches this number of synchronous replicas for that specific partition.
Adding containers that can support this ObjectGrid can result in an increased
number of synchronous replicas if your maxSyncReplicas value has not already
been met. The sample set the maxSyncReplicas to 1 means the domain will at most
place one synchronous replica. If you start more than one container server instance,
there will be only one synchronous replica placed in one of the container server
instances.

Using ObjectGrid

The Client.java file in the wxs_install_root/ObjectGrid/gettingstarted/client/
src/ directory is the client program that demonstrates how to connect to catalog
server, obtain ObjectGrid instance, and use ObjectMap API.

24 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

From the perspective of a client application, using WebSphere eXtreme Scale can be
divided into the following steps.
1. Connecting to the catalog service by obtaining a ClientClusterContext instance.
2. Obtaining a client ObjectGrid instance.
3. Getting a Session instance.
4. Getting an ObjectMap instance.
5. Using the ObjectMap methods.
1. Connect to the catalog service by obtaining a ClientClusterContext instance.

To connect to the catalog server, use the connect method of ObjectGridManager
API. The connect method that is used requires only the catalog server endpoint
in the format of hostname:port. You can indicate multiple catalog server
endpoints by separating the list of hostname:port values with commas. The
following code snippet demonstrates how to connect to a catalog server and
obtain a ClientClusterContext instance:
ClientClusterContext ccc = ObjectGridManagerFactory.getObjectGridManager().connect("localhost:2809", null, null);

If the connections to the catalog servers succeed, the connect method returns a
ClientClusterContext instance. The ClientClusterContext instance is required to
obtain the ObjectGrid from ObjectGridManager API.

2. Obtain an ObjectGrid instance.

To obtain ObjectGrid instance, use the getObjectGrid method of the
ObjectGridManager API. The getObjectGrid method requires both the
ClientClusterContext instance and the name of the data grid instance. The
ClientClusterContext instance is obtained during the connection to catalog
server. The name of ObjectGrid instance is Grid that is specified in the
objectgrid.xml file. The following code snippet demonstrates how to obtain
the data grid by calling the getObjectGrid method of the ObjectGridManager
API.
ObjectGrid grid = ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc, “Grid”);

3. Get a Session instance.

You can get a Session from the obtained ObjectGrid instance. A Session instance
is required to get the ObjectMap instance, and perform transaction demarcation.
The following code snippet demonstrates how to get a Session instance by
calling the getSession method of the ObjectGrid API.
Session sess = grid.getSession();

4. Get an ObjectMap instance.

After getting a Session, you can get an ObjectMap instance from a Session
instance by calling getMap method of the Session API. You must pass the name
of map as parameter to getMap method to get the ObjectMap instance. The
following code snippet demonstrates how to obtain ObjectMap by calling the
getMap method of the Session API.
ObjectMap map1 = sess.getMap("Map1");

ObjectMap map1 = sess.getMap("my_simple_data_grid");

5. Use the ObjectMap methods.

After an ObjectMap instance is obtained, you can use the ObjectMap API.
Remember that the ObjectMap interface is a transactional map and requires
transaction demarcation by using the begin and commit methods of the Session
API. If there is no explicit transaction demarcation in the application, the
ObjectMap operations run with auto-commit transactions.
The following code snippet demonstrates how to use the ObjectMap API with
an auto-commit transaction.

Chapter 3. Installing and deploying 25

map1.insert(key1, value1);

The following code snippet demonstrates how to use the ObjectMap API with
explicit transaction demarcation.
sess.begin();
map1.insert(key1, value1);
sess.commit();

Additional information

This sample demonstrates how to start catalog server and container server and
using ObjectMap API in stand-alone environment. You can also use the
EntityManager API.

In a WebSphere Application Server environment with WebSphere eXtreme Scale
installed or enabled, the most common scenario is a network-attached topology. In
a network-attached topology, the catalog server is hosted in the deployment
manager process and each WebSphere Application Server instance hosts a
container server automatically. Java Platform, Enterprise Edition applications only
need to include both the ObjectGrid descriptor XML file and the ObjectGrid
deployment policy descriptor XML file in the META-INF directory of any module
and the ObjectGrid becomes available automatically. An application can then
connect to a locally available catalog server and obtain an ObjectGrid instance to
use.

Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale
Client with WebSphere Application Server

You can install WebSphere eXtreme Scale or WebSphere eXtreme Scale Client in an
environment in which WebSphere Application Server or WebSphere Application
Server Network Deployment is installed. You can use the existing features of
WebSphere Application Server or WebSphere Application Server Network
Deployment to enhance your eXtreme Scale applications.

Before you begin
v Install WebSphere Application Server or WebSphere Application Server Network

Deployment. See Installing your application serving environment for more
information.

v Based on what version you install, Version 6.0.x, Version 6.1, or Version 7.0,
apply the latest fix pack for WebSphere Application Server or WebSphere
Application Server Network Deployment to update your product level. See the
Latest fix packs for WebSphere Application Server for more information.

v Verify that the target installation directory does not contain an existing
installation of WebSphere eXtreme Scale or WebSphere eXtreme Scale Client.

v Stop all processes that are running in your WebSphere Application Server or
WebSphere Application Server Network Deployment environment. See
Command-line utilities for more information about the stopManager, stopNode,
and stopServer commands.
CAUTION:
Ensure that any running processes are stopped. If the running processes are
not stopped, the installation proceeds, creating unpredictable results and
leaving the installation in an undetermined state on some platforms.

v If you are installing the client only, you can either use the DVD to install the
client or download the WebSphere eXtreme Scale Client for the specific platform
from the downloads section on the Support site.

26 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=welc6topinstalling
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27009661
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=welc_ref_adm_cmd
http://www-947.ibm.com/support/entry/portal/Downloads/Software/WebSphere/WebSphere_eXtreme_Scale

Important: When you install WebSphere eXtreme Scale or WebSphere eXtreme
Scale Client, it should be in the same directory in which you installed WebSphere
Application Server. For example, if you installed WebSphere Application Server in
C:\was_root, then you should also choose C:was_root as the target directory for
your WebSphere eXtreme Scale or WebSphere eXtreme Scale Client installation.

About this task

Integrate eXtreme Scale with WebSphere Application Server or WebSphere
Application Server Network Deployment to apply the features of eXtreme Scale to
your Java Platform, Enterprise Edition applications. Java EE applications host data
grids and access the data grids using a client connection.

Procedure
1. Use the wizard to complete the installation.

v Run the following script to start the wizard for the WebSphere eXtreme Scale
full installation. You can choose to install the client only or both the server
and client:

– Linux UNIX dvd_root/install

– Windows dvd_root\install.bat

v Run the following script to start the wizard for theWebSphere eXtreme Scale
Client installation. The installation files are in the zip file that you download
from the downloads section on the Support site:

– Linux UNIX root/WXS_Client/install

– Windows root\WXS_Client\install.bat

Attention: If you use uniform naming conventions (UNC) to identify file
paths in your installation command, the items you anticipate installing may not
all be installed after the command runs. To avoid trouble, map the file path to a
network drive. Run the install command against the mapped drive. Using a
mapped network drive ensures that all the items are installed.

2. Follow the prompts in the wizard.
The optional features panel lists the features from which you can choose to
install. However, features cannot be added incrementally to the product
environment after the product is installed. If you choose not to install a feature
with the initial product installation, you must uninstall and reinstall the
product to add the feature.
The Profile augmentation panel lists existing profiles that you can select to
augment with the features of eXtreme Scale. If you select existing profiles that
are already in use, however, a warning panel is displayed. To continue with the
installation, either stop the servers that are configured in the profiles, or click
Back to remove the profiles from your selection.

Results

Windows If you are installing the WebSphere eXtreme Scale Client on Windows,
you might see the following text in the results of the installation:
Success: The installation of the following product was successful:
WebSphere eXtreme Scale Client. Some configuration steps have errors.
For more information, refer to the following log file:
<WebSphere Application Server install root>\logs\wxs_client\install\log.txt"
Review the installation log (log.txt) and review the deployment manager
augmentation log.

Chapter 3. Installing and deploying 27

http://www-947.ibm.com/support/entry/portal/Downloads/Software/WebSphere/WebSphere_eXtreme_Scale

If you see a failure with the iscdeploy.sh file, you can ignore the error. This error
does not cause any problems.

What to do next

If you are running WebSphere Application Server Version 6.1 or Version 7.0, you
can use the Profile Management Tool plug-in or the manageprofiles command. If
you are running WebSphere Application Server Version 6.0.2, you must use the
wasprofile command to create and augment profiles.

Deploy your application, start a catalog service, and start the containers in your
WebSphere Application Server environment. See “Configuring WebSphere eXtreme
Scale with WebSphere Application Server” on page 205 for more information.

Runtime files for WebSphere eXtreme Scale integrated with
WebSphere Application Server

Java archive (JAR) files are included in the installation. You can see the JAR files
that are included and the location to which they are installed.

Table 3. Runtime files for WebSphere eXtreme Scale. The following table lists the Java archive (JAR) files that are
included in the installation. The installation location is relative to the wxs_home directory that you choose during the
installation.
File name Environment Installation location Description

wxsdynacache.jar Client and server lib The wxsdynacache.jar file contains the necessary
classes to use with the dynamic cache provider.

wsobjectgrid.jar Local and client lib The wsobjectgrid.jar contains the eXtreme Scale
local, client, and server run times.

ogagent.jar Local, client, and
server

lib The ogagent.jar file contains the runtime classes that
are required to run the Java instrumentation agent
that is used with the EntityManager API.

ogsip.jar Server lib The ogsip.jar file contains the eXtreme Scale Session
Initiation Protocol (SIP) session management runtime
that is compatible with WebSphere Application Server
Version 6.1.x.

sessionobjectgrid.jar Client and server lib The sessionobjectgrid.jar file contains the eXtreme
Scale HTTP session management runtime.

sessionobjectgridsip.jar Server lib The sessionobjectgridsip.jar file contains the
eXtreme Scale SIP session management runtime that is
compatible with WebSphere Application Server
Version 7.x.

wsogclient.jar Local and client lib The wsogclient.jar file installed when you use an
environment that contains WebSphere Application
Server Version 6.0.2 and later. This file contains only
the local and client runtime environments.

wxssizeagent.jar Local, client, and
server

lib The wxssizeagent.jar file is used to provide more
accurate cache entry sizing information when using
Java runtime environment (JRE) Version 1.5 or later.

oghibernate-cache.jar Client and server optionalLibraries/ObjectGrid The oghibernate-cache.jar file contains the eXtreme
Scale level 2 cache plug-in for JBoss Hibernate.

ogspring.jar Local, client, and
server

optionalLibraries/ObjectGrid The ogspring.jar file contains support classes for the
SpringSource Spring framework integration.

xsadmin.jar Utility optionalLibraries/ObjectGrid The xsadmin.jar file contains the eXtreme Scale
administration sample utility.

ibmcfw.jar

ibmext.jar

ibmorb.jar

ibmorbapi.jar

Client and server optionalLibraries/ObjectGrid/
endorsed

This set of files includes the Object Request Broker
(ORB) runtime that is used for running applications in
Java SE processes.

wxshyperic.jar Utility optionalLibraries/ObjectGrid/
hyperic/lib

The WebSphere eXtreme Scale server detection plug-in
for the SpringSource Hyperic monitoring agent.

28 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 3. Runtime files for WebSphere eXtreme Scale (continued). The following table lists the Java archive (JAR)
files that are included in the installation. The installation location is relative to the wxs_home directory that you
choose during the installation.
File name Environment Installation location Description

restservice.ear Client optionalLibraries/ObjectGrid/
restservice/lib

The restservice.ear file contains the eXtreme Scale
REST data service application enterprise archive for
WebSphere Application Server environments.

restservice.war Client optionalLibraries/ObjectGrid/
restservice/lib

The restservice.war file contains the eXtreme Scale
REST data service Web archive for application servers
acquired from another vendor.

splicerlistener.jar Utility optionalLibraries/ObjectGrid/
session/lib

The splicerlistener.jar file contains the splicer
utility for the eXtreme Scale HTTP session manager
filter.

splicer.jar Utility optionalLibraries/ObjectGrid/
legacy/session/lib

The splicer.jar contains the Version 7.0 splicer
utility for the eXtreme Scale HTTP session manager
filter.

Table 4. Runtime files for WebSphere eXtreme Scale Client. The following table lists the Java archive (JAR) files that
are included in the installation. The installation location is relative to the wxs_home directory that you choose during
the installation.
File name Environment Installation location Description

wxsdynacache.jar Client and server lib The wxsdynacache.jar file contains the necessary
classes to use with the dynamic cache provider.

ogagent.jar Local, client, and
server

lib The ogagent.jar file contains the runtime classes
that are required to run the Java instrumentation
agent that is used with the EntityManager API.

ogsip.jar Server lib The ogsip.jar file contains the eXtreme Scale
Session Initiation Protocol (SIP) session management
runtime that is compatible with WebSphere
Application Server Version 6.1.x.

sessionobjectgrid.jar Client and server lib The sessionobjectgrid.jar file contains the
eXtreme Scale HTTP session management runtime.

sessionobjectgridsip.jar Server lib The sessionobjectgridsip.jar file contains the
eXtreme Scale SIP session management runtime that
is compatible with WebSphere Application Server
Version 7.x.

wsogclient.jar Local and client lib The wsogclient.jar file installed when you use an
environment that contains WebSphere Application
Server Version 6.0.2 and later. This file contains only
the local and client runtime environments.

wxssizeagent.jar Local, client, and
server

lib The wxssizeagent.jar file is used to provide more
accurate cache entry sizing information when using
Java runtime environment (JRE) Version 1.5 or later.

oghibernate-cache.jar Client and server optionalLibraries/ObjectGrid The oghibernate-cache.jar file contains the
eXtreme Scale level 2 cache plug-in for JBoss
Hibernate.

ogspring.jar Local, client, and
server

optionalLibraries/ObjectGrid The ogspring.jar file contains support classes for
the SpringSource Spring framework integration.

xsadmin.jar Utility optionalLibraries/ObjectGrid The xsadmin.jar file contains the eXtreme Scale
administration sample utility.

ibmcfw.jar

ibmext.jar

ibmorb.jar

ibmorbapi.jar

Client and server optionalLibraries/ObjectGrid/
endorsed

This set of files includes the Object Request Broker
(ORB) runtime that is used for running applications
in Java SE processes.

wxshyperic.jar Utility optionalLibraries/ObjectGrid/
hyperic/lib

The WebSphere eXtreme Scale server detection
plug-in for the SpringSource Hyperic monitoring
agent.

restservice.ear Client optionalLibraries/ObjectGrid/
restservice/lib

The restservice.ear file contains the eXtreme Scale
REST data service application enterprise archive for
WebSphere Application Server environments.

Chapter 3. Installing and deploying 29

Table 4. Runtime files for WebSphere eXtreme Scale Client (continued). The following table lists the Java archive
(JAR) files that are included in the installation. The installation location is relative to the wxs_home directory that you
choose during the installation.
File name Environment Installation location Description

restservice.war Client optionalLibraries/ObjectGrid/
restservice/lib

The restservice.war file contains the eXtreme Scale
REST data service Web archive for application
servers acquired from another vendor.

splicerlistener.jar Utility optionalLibraries/ObjectGrid/
session/lib

The splicerlistener.jar file contains the splicer
utility for the eXtreme Scale HTTP session manager
filter.

splicer.jar Utility optionalLibraries/ObjectGrid/
legacy/session/lib

The splicer.jar contains the Version 7.0 splicer
utility for the eXtreme Scale HTTP session manager
filter.

Using the Installation Factory plug-in to create and install
customized packages

Use the IBM Installation Factory plug-in for WebSphere eXtreme Scale to create a
customized installation package (CIP) or an integrated installation package (IIP). A
CIP contains a single product installation package and various optional assets. An
IIP combines one or more installation packages into a single installation workflow
that you design.

Before you begin

Before you create and install customized packages for eXtreme Scale, you must
first download the following products:
v IBM Installation Factory for WebSphere Application Server
v IBM Installation Factory plug-in for WebSphere eXtreme Scale

About this task

Using the Installation Factory, you can create a CIP by combining a single product
component with maintenance packages, customization scripts, and other files.
When you create an IIP, you aggregate individual components, or installation
packages, into a single installation package.

Build definition file
A build definition file is an XML document that specifies how to build and install
a customized installation package (CIP) or an integrated installation package (IIP).
The IBM Installation Factory for WebSphere eXtreme Scale reads the package
details of the build definition file to generate a CIP or an IIP.

Before you can create a CIP or an IIP, you must create a build definition file for
each customized package. The build definition file describes which product
components, or installation packages, to install, the location of the CIP or IIP, the
maintenance packages to include, the installation scripts, and other files that you
choose to include. You can also specify in the build definition file for the IIP the
order in which the Installation Factory installs each installation package.

The Build definition wizard steps you through the process of creating a build
definition file. You can also use the wizard to modify an existing build definition
file. Each panel in the Build definition wizard prompts you for information about a
customized package, such as the package identification, the installation location for
the build definition, and the installation location for the customized package. All of
this information is saved in the new build definition file, or modified and saved in

30 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020213
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg24023856

an existing build definition file. For more information, see the CIP Build definition
wizard panels and the IIP Build definition wizard panels.

To create only the build definition file, you can use the command-line interface tool
to generate the customized package outside of the GUI. See “Silently installing a
CIP or an IIP” on page 37 for more information.

Creating a build definition file and generating a CIP
The IBM Installation Factory plug-in for WebSphere eXtreme Scale generates a
customized installation package (CIP) according to the details that you specify in
the build definition file. The build definition specifies the product package to
install, the location of the CIP, the maintenance packages to include in the
installation, the install script files, and any additional files to include in the CIP.

About this task

You can use the Build definition wizard to create a build definition file and
generate a CIP.

Procedure
1. Run the following script from the IF_HOME/bin directory to start the Installation

Factory:

v UNIX Linux ifgui.sh

v Windows ifgui.bat

Click the New Build Definition icon.
2. Select the product to include in the build definition file, and click Finish to

start the Build definition wizard.
3. Follow the prompts in the wizard.

On the Install and Uninstall Scripts panel, click Add Scripts... to populate the
table with any customized installation scripts. Type the location of the script
files, and clear the check box to continue if an error message is displayed. The
operation is stopped by default. Click OK to return to the panel.

Results

You created and customized the build definition file, and you generated the CIP if
you chose to work in the connected mode.

If the Build definition wizard does not provide you with the option to generate the
CIP from the build definition file, you can still generate it by running the
ifcli.sh|bat script from the IF_HOME/bin directory.

What to do next

Install the CIP. See “Installing a CIP” for more information.

Installing a CIP:

Simplify the product installation process by installing a customized installation
package (CIP). A CIP is a single product installation image that can include one or
more maintenance packages, configuration scripts, and other files.

Chapter 3. Installing and deploying 31

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/uins_ifactory3.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/uins_ifactory3.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/uins_iip_panels.html

Before you begin

Before you can install a CIP, you must create a build definition file to specify what
options to include in the CIP. See “Creating a build definition file and generating a
CIP” on page 31 for more information.

About this task

A CIP combines and installs a single product component with maintenance
packages, customization scripts, and other files.

Procedure

1. Stop all processes that are running on the workstation you are preparing for
installation. To stop the deployment manager, run the following script:

v Linux UNIX profile_root/bin/stopManager.sh

v Windows profile_root\bin\stopManager.bat

To stop the nodes, run the following script:

v Linux UNIX profile_root/bin/stopNode.sh

v Windows profile_root\bin\stopNode.bat

2. Run the following script to start the installation:

v Linux UNIX CIP_home/bin/install

v Windows CIP_home\bin\install.bat

3. Follow the prompts in the wizard to complete the installation.
The optional features panel lists the features from which you can choose to
install. However, features cannot be added incrementally to the product
environment after the product is installed. If you choose not to install a feature
with the initial product installation, you must uninstall and reinstall the
product to add the feature.
The Profile augmentation panel lists existing profiles that you can select to
augment with the features of eXtreme Scale. If you select existing profiles that
are already in use, however, a warning panel is displayed. To continue with the
installation, either stop the servers that are configured in the profiles, or click
Back to remove the profiles from your selection.

Results

You successfully installed the CIP.

What to do next

If you are running WebSphere Application Server Version 6.1 or Version 7.0, you
can use the Profile Management Tool plug-in or the manageprofiles command to
create and augment profiles. If you are running WebSphere Application Server
Version 6.0.2, you must use the wasprofile command to create and augment
profiles. See “Creating and augmenting profiles for WebSphere eXtreme Scale” on
page 45 for more information.

If you augmented profiles for eXtreme Scale during the installation process, you
can deploy applications, start a catalog service, and start the containers in your
WebSphere Application Server environment. See “Configuring WebSphere eXtreme
Scale with WebSphere Application Server” on page 205 for more information.

32 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Installing a CIP to apply maintenance to an existing product installation:

You can apply maintenance packages to an existing product installation by
installing a customized installation package (CIP). The process of applying
maintenance to an existing installation with a CIP is commonly referred to as a slip
installation.

Before you begin

Create a build definition file to specify what options to include in the CIP. See
“Creating a build definition file and generating a CIP” on page 31 for more
information.

About this task

When applying maintenance with a CIP that contains a refresh pack, a fix pack, or
both, all previously installed authorized program analysis reports (APAR) are
uninstalled by the wizard. If the CIP is at the same level as the product, previously
installed APARs remain only if they are packaged in the CIP. To successfully apply
maintenance to an existing installation, you must include the installed features in
the CIP.

Procedure

1. Stop all processes that are running on the workstation you are preparing for
installation. To stop the deployment manager, run the following script:

v Linux UNIX profile_root/bin/stopManager.sh

v Windows profile_root\bin\stopManager.bat

To stop the nodes, run the following script:

v Linux UNIX profile_root\bin\stopNode.sh

v Windows profile_root\bin\stopNode.bat

2. Run the following script to start the installation:

v Linux UNIX CIP_home/bin/install

v Windows CIP_home\bin\install.bat

3. Follow the prompts in the wizard to complete the installation.
The installation preview summary lists the resulting product version and any
applicable features and interim fixes. Next, the wizard successfully applies the
maintenance, and updates the features of the product.

Results

The product binary files are copied to the was_root/properties/version/nif/backup
directory. You can use the IBM Update Installer to uninstall the update and restore
your workstation. See “Uninstalling CIP updates from an existing product
installation” for more information.

Uninstalling CIP updates from an existing product installation:

You can remove CIP updates from an existing product installation without
removing the entire product. Use the IBM Update Installer Version 7.0.0.4 to
uninstall any CIP updates. This task is also referred to as a slip uninstallation.

Chapter 3. Installing and deploying 33

Before you begin

You must have at least one existing copy of the product installed on the system.

Procedure

1. Download Version 7.0.0.4 of the Update Installer from the following FTP site:
ftp://ftp.software.ibm.com/software/websphere/cw/process_server/FEP/
UPDI/7004

2. Install the Update Installer. See Installing the Update Installer for WebSphere
Software in the WebSphere Application Server Information Center for more
information.

3. Uninstall any fix pack, refresh pack, or interim fix that you added to your
environment after you installed the CIP.

4. Uninstall any interim fixes that you included in the slip installation. This
process is the same as uninstalling a single fix pack or refresh pack. However,
the maintenance that was included in the CIP is now included in a single
operation.

5. Uninstall the CIP by using the Update Installer. The maintenance levels return
to the pre-update state, and the CIP is denoted by the CIP identifier that is
added as a prefix to its file name. The following example shows how a CIP is
displayed differently than other regular maintenance packages on the
maintenance package selection panel:
CIP
com.ibm.ws.cip.7000.wxs.primary.ext.pak

Results

You successfully removed the CIP updates from an existing product installation.

Creating a build definition file and generating an IIP
The IBM Installation Factory plug-in for WebSphere eXtreme Scale generates an IIP
based on the properties that the build definition file provides. The build definition
file contains information such as which installation packages to include in the IIP,
the order in which the Installation Factory installs each package, and the location
of the IIP.

About this task

You can use the Build definition wizard to create a build definition file and
generate an IIP.

Procedure
1. Run the following script from the IF_HOME/bin directory to start the Installation

Factory:

v UNIX Linux ifgui.sh

v Windows ifgui.bat

2. Click the Create New Integrated Installation Package icon to start the Build
definition wizard.

3. Follow the prompts in the wizard.
a. On the Construct the IIP panel, select a supported installation package from

the list, and click Add Installer to add the installation package to the IIP. A
panel that displays the package name, the package identifier, and the

34 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tins_updi_install.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tins_updi_install.html

package properties is displayed. To view specific information about the
selected package, click View Installation Package Information. Click
Modify to enter the directory path to the installation package for each
operating system. If you are currently adding an installation package for
WebSphere Extended Deployment, select the checkbox, which provides you
with the option to use the same package for all supported operating
systems. Click OK and return to the Construct the IIP panel. An invocation
is created by default.
v To modify the directory path to an installation package, select the

package from the Installation packages used in the IIP list, and click
Modify.

v To modify an invocation, select the invocation, and click Modify. Specify
the default installation location for the invocation on each operating
system. Specify the location to the response file if you select a silent
installation as the default installation mode.

v Click Add Invocation to add an invocation contribution to the installation
package. A panel from which you can specify properties for the
invocation is displayed.

v Click Remove to remove installation packages or invocations.
4. Review the summary of your selections, select the Save build definition file

and generate integrated installation package option, and click Finish.
Alternatively, you can save the build definition file without generating the IIP.
With this option, you actually generate the IIP outside of the wizard by
running the ifcli.bat | ifcli.sh script from the IF_home/bin/ directory.

Results

You created and customized the build definition file for an IIP.

What to do next

Install the IIP.

Installing an IIP:

Use the IBM Installation Factory plug-in for WebSphere eXtreme Scale to install an
integrated installation package (IIP). An IIP combines one or more installation
packages into a single workflow that you design.

Before you begin

Before you can install a CIP, you must create a build definition file to specify what
options to include in the CIP. See “Creating a build definition file and generating
an IIP” on page 34 for more information.

About this task

An IIP can include one or more generally available installation packages, one or
more CIPs, and other optional files and directories. By installing an IIP, you
aggregate multiple installation packages, or contributions, into a single package, and
you then install the contributions in a specific order to complete an end-to-end
installation.

Chapter 3. Installing and deploying 35

Procedure

1. Run the following script to start the wizard:

v Linux UNIX IIP_home/bin/install

v Windows IIP_home\bin\install.bat

2. Click About on the Welcome panel to view the details of the IIP, such as the
package identifier, the supported operating systems, and the included
installation packages.

Optional: To modify the installation options for each package, click Modify.

Optional: Two View Log buttons are displayed on the wizard panel. To view
the log of each package, click the View Log button that is displayed next to the
table that lists the installation packages. To view the overall log details of the
IIP, click the View Log button that is displayed next to the status information.

3. Select the installation packages to run, and click Install. A list of all the
contributions in the order of invocation that the IIP contains is displayed. To
designate which contribution invocations should not be run during the
installation, clear the checkbox located next to the Installation name field.

Results

You successfully installed an IIP.

Modifying an existing build definition file for an IIP:

You can edit or add to the properties of an IIP to further customize the installation.

About this task

To change the properties of an IIP, modify the existing build definition file.

Procedure

1. Run the following script from the IF_HOME/bin directory to start the Installation
Factory:

v UNIX Linux ifgui.sh

v Windows ifgui.bat

2. Click the Open Build Definition icon, and select the build definition file that
you want to modify.

3. Select the specific properties of the IIP that you want to modify. The following
list contains the possible modifications that you can make:
v Change your current mode selection. In connected mode, you create the

build definition for use, and optionally generate the IIP, from your current
workstation. In disconnected mode, you create the build definition file for
use on another workstation.

v Add or remove the existing operating systems that the IIP supports.
v Edit the existing identifier and version for the IIP.
v Edit the target location for the build definition file.
v Edit the target location for the IIP.
v Change whether to display an installation wizard for the IIP. The wizard

provides information about the IIP and the installation options when the IIP
runs.

36 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Add, remove, and edit the installation packages that are contained in the IIP.

Important: If you added a supported operating system and you have not
updated the properties of the installation package in the IIP, you receive a
warning message stating that the selected contributions do not contain
installation packages that are identified for all of the operating systems that
the IIP supports. Click Yes to continue, or click No to edit the installation
package.

4. Review the summary of your selections, select Save build definition file and
generate integrated installation package, and click Finish.

Silently installing a CIP or an IIP
You can silently install a customized installation package (CIP) or an integrated
installation package (IIP) for the product by using either a fully-qualified response
file, which you configure specifically to your needs, or parameters that you pass to
the command line.

Before you begin

Create the build definition file for the CIP or IIP. See “Creating a build definition
file and generating a CIP” on page 31 for more information.

About this task

A silent installation uses the same installation program that the graphical user
interface (GUI) version uses. However, instead of displaying a wizard interface, the
silent installation reads all of your responses from a file that you customize, or
from parameters that you pass to the command line. If you are silently installing
an IIP, you can invoke a contribution with a combination of options that you
specify directly on the command line, as well as options that you specify in a
response file. However, any contribution options that you pass to the command
line causes the IIP installer to ignore all of the options that are specified in a
specific contribution's response file. See the detailed IIP installation options for
more information.

Note: You must specify the fully-qualified response file name. Specifying the
relative path causes the installation to fail with no indication that an error
occurred.

Procedure
1. Optional: If you choose to install the CIP or IIP using a response file, first

customize the file.
a. Copy the response file, wxssetup.response.txt, from the product DVD to

your disk drive.
b. Open and edit the response file in the text editor of your choice. The file

includes comments to assist the configuration process and must include
these parameters:
v The license agreement
v The location of the product installation

Tip: The installer uses the location that you select for your installation to
determine where your WebSphere Application Server instance is installed. If
you install on a node with multiple WebSphere Application Server
instances, clearly define your location.

Chapter 3. Installing and deploying 37

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tins_if_iip_installSilent.html

c. Run the following script to start your customized response file.

v Linux UNIX install -options /absolute_path/
response_file.txt -silent

v Windows install.bat -options C:\drive_path\response_file.txt
-silent

2. Optional: If you choose to install the CIP or IIP by passing certain parameters
to the command line, run the following script to start the installation:

v Linux UNIX install -silent -OPT
silentInstallLicenseAcceptance=true -OPT
installLocation=install_location

v Windows install.bat -silent -OPT silentInstallLicenseAcceptance=true
-OPT installLocation=install_location

where install_location is the location of your existing WebSphere Application
Server installation.

3. Review the resulting logs for errors or an installation failure.

Results

You silently installed the CIP or IIP.

What to do next

If you are running WebSphere Application Server Version 6.1 or Version 7.0, you
can use the Profile Management Tool plug-in or the manageprofiles command to
create and augment profiles. If you are running WebSphere Application Server
Version 6.0.2, you must use the wasprofile command to create and augment
profiles.

If you augmented profiles for eXtreme Scale during the installation process, you
can deploy applications, start a catalog service, and start the containers in your
WebSphere Application Server environment. See “Configuring WebSphere eXtreme
Scale with WebSphere Application Server” on page 205 for more information.

wxssetup.response.txt file:

You can use a fully qualified response file to install WebSphere eXtreme Scale or
WebSphere eXtreme Scale Client silently.

CAUTION:
Do not add trailing slashes, such as / or \, to the end of the installation location
paths. These paths are specified with the installLocation attribute. Adding a
slash to the end of the installation location can cause the installation to fail. For
example, the following path would cause the installation to fail:
-OPT installLocation="/usr/IBM/WebSphere/eXtremeScale/"

The path should be specified as:
-OPT installLocation="/usr/IBM/WebSphere/eXtremeScale"

Response file for WebSphere eXtreme Scale full installation
##
#
IBM WebSphere eXtreme Scale V7.1.0 InstallShield Options File
#

38 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Wizard name: Install
Wizard source: setup.jar
#
This file can be used to configure Install with the options specified below
when the wizard is run with the "-options" command line option. Read each
setting’s documentation for information on how to change its value.
Please enclose all values within a single pair of double quotes.
#
A common use of an options file is to run the wizard in silent mode. This lets
the options file author specify wizard settings without having to run the
wizard in graphical or console mode. To use this options file for silent mode
execution, use the following command line arguments when running the wizard:
#
-options "D:\installImage\WXS\wxssetup.response" -silent
#
Note that the fully qualified response file name must be used.
#
##

##
#
License Acceptance
#
Valid Values:
true - Accepts the license. Will install the product.
false - Declines the license. Install will not occur.
#
If no install occurs, this will be logged to a temporary log file in the
user’s temporary directory.
#
By changing the silentInstallLicenseAcceptance property in this response file
to "true", you agree that you have reviewed and agree to the terms of the
IBM International Program License Agreement accompanying this program, which
is located at CD_ROOT\XD\wxs.primary.pak\repository\legal.xs\license.xs. If
you do not agree to these terms, do not change the value or otherwise
download, install, copy, access, or use the program and promptly return the
program and proof of entitlement to the party from whom you acquired it to
obtain a refund of the amount you paid.
#
-OPT silentInstallLicenseAcceptance="false"

##
Non-blocking Prerequisite Checking
#
If you want to disable non-blocking prerequisite checking, uncomment
the following line. This will notify the installer to continue with
the installation and log the warnings even though the prerequisite checking
has failed.
#
#-OPT disableNonBlockingPrereqChecking="true"

##
#
Install Location
#
The install location of the product. Specify a valid directory into which the
product should be installed. If the directory contains spaces, enclose it in
double-quotes as shown in the Windows example below. Note that spaces in the
install location is only supported on Windows operating systems. Maximum path
length is 60 characters for Windows.
#
Below is the list of default install locations for each supported operating
system when you’re installing as a root user. By default, in this response
file, the Windows install location is used. If you want to use the default
install location for another operating system, uncomment the appropriate

Chapter 3. Installing and deploying 39

default install location entry (by removing ’#’) and then comment out
(by adding ’#’) the Windows operating system entry below.
#
The install location is used to determine if WebSphere eXtreme Scale should
be installed as a stand-alone deployment or if it should be integrated with
an existing WebSphere Application Server installation.
#
If the location specified is an existing WebSphere Application Server or
WebSphere Network Deployment installation, then eXtreme Scale is integrated
with the exising WebSphere Application Server. If the location specified is
a new or empty directory, then WebSphere eXtreme Scale is installed as a
stand-alone deployment.
#
Note: If the install location specified contains a previous installation of
WebSphere eXtreme Scale, WebSphere eXtended Deployment DataGrid or
ObjectGrid, the installation will fail.
#
AIX Default Install Location:
#
-OPT installLocation="/usr/IBM/WebSphere/eXtremeScale"
#
HP-UX, Solaris or Linux Default Install Location:
#
-OPT installLocation="/opt/IBM/WebSphere/eXtremeScale"
#
#
Windows Default Install Location:
#
-OPT installLocation="C:\Program Files\IBM\WebSphere\eXtremeScale"

#
If you are installing as a non-root user on Unix or a non-administrator on
Windows, the following default install locations are suggested. Be sure you
have write permission for the install location chosen.
#
AIX Default Install Location:
#
-OPT installLocation="<user’s home>/IBM/WebSphere/eXtremeScale"
#
HP-UX, Solaris or Linux Default Install Location:
#
-OPT installLocation="<user’s home>/IBM/WebSphere/eXtremeScale"
#
Windows Default Install Location:
#
-OPT installLocation="C:\IBM\WebSphere\eXtremeScale"

##
Optional Features Installation
#
Specify which of the optional features you wish to install by setting each
desired feature to "true". Set any optional features you do not want to
install to "false".
#
The options selectServer, selectClient, selectPF, and selectXSStreamQuery are
only valid when the installLocation option above contains an installation of
WebSphere Application Server. The options are ignored on an WebSphere eXtreme
Scale standalone installation.
#
On the WebSphere eXtreme Scale standalone installation, the eXtreme Scale
server and client are automatically installed. The feature options for the
eXtreme Scale standalone installation are selectXSConsoleOther and
selectXSStreamQueryOther.

#
This option, when selected, installs the components that are required to run

40 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

WebSphere eXtreme Scale servers and the eXtreme Scale dynamic cache service
provider. If this option is selected, then the WebSphere eXtreme Scale Client
must also be selected by being uncommented and set to a value of "true".
Otherwise, silent install will FAIL.
#
-OPT selectServer="true"

#
This option, when selected, installs the components that are required to run
WebSphere eXtreme Scale client applications. If the Server option is selected
above, then this option must also be selected by being uncommented and set to
a value of "true" or silent install will FAIL.
#
-OPT selectClient="true"

#
This option, when selected, installs the components that are required to run
the WebSphere eXtreme Scale Console. If this option is selected, the install
location specified above must be a new or empty directory because the console
option is only valid for WebSphere eXtreme Scale stand-alone deployment. To
install this option, the following option line must be uncommented and and set
to a value of "true".
#-OPT selectXSConsoleOther="false"

#
The following options, if selected will install DEPRECATED functionality.
#
This option selects WebSphere Partition Facility for installation.
This functionality is DEPRECATED. To install this option, the following
option line must be uncommented and set to a value of "true".
#
#-OPT selectPF="false"

#
This option selects WebSphere eXtreme Scale StreamQuery for WAS for
installation. This functionality is DEPRECATED. To install this option,
the following option line must be uncommented and set to a value of "true".
If this option is selected, then the WebSphere eXtreme Scale Client
must also be selected by being uncommented and set to a value of "true".
Otherwise, silent install will FAIL.
#
#-OPT selectXSStreamQuery="false"

#
This option selects WebSphere eXtreme Scale StreamQuery for J2SE for
installation. This functionality is DEPRECATED. To install this option,
the following option line must be uncommented and set to a value of "true".
If this option is selected, then the WebSphere eXtreme Scale Client
must also be selected by being uncommented and set to a value of "true".
Otherwise, silent install will FAIL.
#
#-OPT selectXSStreamQueryOther="false"

##
Profile list for augmentation
#
Specify which of the existing profiles you wish to augment or comment the
line to augment every existing profiles detected by the intallation.
#
To specify multiple profiles, use comma to separate different profile names.
For example, "AppSrv01,Dmgr01,Custom01". The list must not contain any spaces.
#
-OPT profileAugmentList=""

##

Chapter 3. Installing and deploying 41

Tracing Control
#
The trace output format can be controlled via the option
-OPT traceFormat=ALL
#
The choices for the format are ’text’ and ’XML’. By default, both formats will
be produced, in two different trace files.
#
If only one format is required, use the traceFormat option to specify which
one, as follows:
#
Valid Values:
#
text - Lines in the trace file will be in a plain text format for easy
readability.
XML - Lines in the trace file will be in the standard Java logging XML
format which can be viewed using any text or XML editor or using the
Chainsaw tool from Apache at the following URL:
(http://logging.apache.org/log4j/docs/chainsaw.html).
#
The amount of trace info captured can be controlled using the option:
-OPT traceLevel=INFO
#
Valid Values:
#
Trace Numerical
Level Level Description
------- --------- ---
OFF 0 No trace file is produced
SEVERE 1 Only severe errors are output to trace file
WARNING 2 Messages regarding non-fatal exceptions and warnings are
added to trace file
INFO 3 Informational messages are added to the trace file
(this is the default trace level)
CONFIG 4 Configuration related messages are added to the trace file
FINE 5 Tracing method calls for public methods
FINER 6 Tracing method calls for non public methods except
getters and setters
FINEST 7 Trace all method calls, trace entry/exit will include
parameters and return value

Response file for WebSphere eXtreme Scale Client installation
##
#
IBM WebSphere eXtreme Scale Client V7.1.0 InstallShield Options File
#
Wizard name: Install
Wizard source: setup.jar
#
This file can be used to configure Install with the options specified below
when the wizard is run with the "-options" command line option. Read each
setting’s documentation for information on how to change its value.
Please enclose all values within a single pair of double quotes.
#
A common use of an options file is to run the wizard in silent mode. This lets
the options file author specify wizard settings without having to run the
wizard in graphical or console mode. To use this options file for silent mode
execution, use the following command line arguments when running the wizard:
#
-options "D:\installImage\WXS_Client\wxssetup.response" -silent
#
Note that the fully qualified response file name must be used.
#
##

##

42 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

#
License Acceptance
#
Valid Values:
true - Accepts the license. Will install the product.
false - Declines the license. Install will not occur.
#
If no install occurs, this will be logged to a temporary log file in the
user’s temporary directory.
#
By changing the silentInstallLicenseAcceptance property in this response file
to "true", you agree that you have reviewed and agree to the terms of the
IBM International Program License Agreement accompanying this program, which
is located at
CD_ROOT\WXS_Cleint\wxs.client.primary.pak\repository\legal.xs.client\license.xs.
If you do not agree to these terms, do not change the value or otherwise
download, install, copy, access, or use the program and promptly return the
program and proof of entitlement to the party from whom you acquired it to
obtain a refund of the amount you paid.
#
-OPT silentInstallLicenseAcceptance="false"

##
Non-blocking Prerequisite Checking
#
If you want to disable non-blocking prerequisite checking, uncomment
the following line. This will notify the installer to continue with
the installation and log the warnings even though the prerequisite checking
has failed.
#
#-OPT disableNonBlockingPrereqChecking="true"

##
#
Install Location
#
The install location of the product. Specify a valid directory into which the
product should be installed. If the directory contains spaces, enclose it in
double-quotes as shown in the Windows example below. Note that spaces in the
install location is only supported on Windows operating systems. Maximum path
length is 60 characters for Windows.
#
Below is the list of default install locations for each supported operating
system when you’re installing as a root user. By default, in this response
file, the Windows install location is used. If you want to use the default
install location for another operating system, uncomment the appropriate
default install location entry (by removing ’#’) and then comment out
(by adding ’#’) the Windows operating system entry below.
#
The install location is used to determine if WebSphere eXtreme Scale should
be installed as a stand-alone deployment or if it should be integrated with
an existing WebSphere Application Server installation.
#
If the location specified is an existing WebSphere Application Server or
WebSphere Network Deployment installation, then eXtreme Scale is integrated
with the exising WebSphere Application Server. If the location specified is
a new or empty directory, then WebSphere eXtreme Scale is installed as a
stand-alone deployment.
#
Note: If the install location specified contains a previous installation of
WebSphere eXtreme Scale, WebSphere eXtended Deployment DataGrid or
ObjectGrid, the installation will fail.
#
AIX Default Install Location:
#

Chapter 3. Installing and deploying 43

-OPT installLocation="/usr/IBM/WebSphere/eXtremeScale"
#
HP-UX, Solaris or Linux Default Install Location:
#
-OPT installLocation="/opt/IBM/WebSphere/eXtremeScale"
#
#
Windows Default Install Location:
#
-OPT installLocation="C:\Program Files\IBM\WebSphere\eXtremeScale"

#
If you are installing as a non-root user on Unix or a non-administrator on
Windows, the following default install locations are suggested. Be sure you
have write permission for the install location chosen.
#
AIX Default Install Location:
#
-OPT installLocation="<user’s home>/IBM/WebSphere/eXtremeScale"
#
HP-UX, Solaris or Linux Default Install Location:
#
-OPT installLocation="<user’s home>/IBM/WebSphere/eXtremeScale"
#
Windows Default Install Location:
#
-OPT installLocation="C:\IBM\WebSphere\eXtremeScale"

##
Profile list for augmentation
#
Specify which of the existing profiles you wish to augment or comment the
line to augment every existing profiles detected by the intallation.
#
To specify multiple profiles, use comma to separate different profile names.
For example, "AppSrv01,Dmgr01,Custom01". The list must not contain any spaces.
#
-OPT profileAugmentList=""

##
Tracing Control
#
The trace output format can be controlled via the option
-OPT traceFormat=ALL
#
The choices for the format are ’text’ and ’XML’. By default, both formats will
be produced, in two different trace files.
#
If only one format is required, use the traceFormat option to specify which
one, as follows:
#
Valid Values:
#
text - Lines in the trace file will be in a plain text format for easy
readability.
XML - Lines in the trace file will be in the standard Java logging XML
format which can be viewed using any text or XML editor or using the
Chainsaw tool from Apache at the following URL:
(http://logging.apache.org/log4j/docs/chainsaw.html).
#
The amount of trace info captured can be controlled using the option:
-OPT traceLevel=INFO
#
Valid Values:
#

44 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Trace Numerical
Level Level Description
------- --------- ---
OFF 0 No trace file is produced
SEVERE 1 Only severe errors are output to trace file
WARNING 2 Messages regarding non-fatal exceptions and warnings are
added to trace file
INFO 3 Informational messages are added to the trace file
(this is the default trace level)
CONFIG 4 Configuration related messages are added to the trace file
FINE 5 Tracing method calls for public methods
FINER 6 Tracing method calls for non public methods except
getters and setters
FINEST 7 Trace all method calls, trace entry/exit will include
parameters and return value

Creating and augmenting profiles for WebSphere eXtreme
Scale

After you install the product, create unique types of profiles and augment existing
profiles for WebSphere eXtreme Scale.

Before you begin

Install WebSphere eXtreme Scale. See “Installing WebSphere eXtreme Scale or
WebSphere eXtreme Scale Client with WebSphere Application Server” on page 26
for more information.

Augmenting profiles for use with WebSphere eXtreme Scale is optional, but is
required in the following usage scenarios:
v To automatically start a catalog service or container in a WebSphere Application

Server process. Without augmenting the server profiles, servers can only be
started programmatically using the ServerFactory API or as separate processes
using the startOgServer scripts.

v To use Performance Monitoring Infrastructure (PMI) to monitor WebSphere
eXtreme Scale metrics.

v To display the version of WebSphere eXtreme Scale in the WebSphere
Application Server administrative console.

About this task

Running within WebSphere Application Server Version 6.0.2

If your environment contains WebSphere Application Server Version 6.0.2, use the
wasprofile command to create or augment profiles for WebSphere eXtreme Scale
as shown in the following example:
was_root/bin/wasprofile.sh|bat -augment -profileName dmgr_01
-templatePath "C:/ProgramFiles/IBM/WebSphere/AppServer/profileTemplates/xs_augment/dmgr"

See the wasprofile command in the WebSphere Application Server Information
Center for more information.

Running within WebSphere Application Server Version 6.1 or Version 7.0

If your environment contains WebSphere Application Server Version 6.1 or Version
7.0, you can use the Profile Management Tool plug-in or the manageprofiles
command to create and augment profiles.

Chapter 3. Installing and deploying 45

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rxml_wasprofile.html

What to do next

Depending on which task you choose to complete, launch the First steps console
for assistance with configuring and testing your product environment. The First
steps console is in the wxs_install_root\firststeps\wxs\firststeps.bat directory.
You can also create or augment additional profiles by repeating any of the
preceding tasks.

Using the graphical user interface to create profiles
Use the graphical user interface (GUI), which is provided by the Profile
Management Tool plug-in, to create profiles for WebSphere eXtreme Scale. A profile
is a set of files that define the runtime environment.

Before you begin

You cannot use the GUI to augment profiles in the following scenarios:
v 64-bit installations of WebSphere Application Server:

The profile management tool does not exist for 64-bit installations of WebSphere
Application Server. Use the manageprofiles script from the command line for
these installations.

v WebSphere Application Server Version 6.0.2:
If you are running WebSphere Application Server Version 6.0.2 or WebSphere
Application Server Network Deployment Version 6.0.2, you must use the
wasprofile command to create or augment a profile for WebSphere eXtreme
Scale as shown in the following example:
was_root/bin/wasprofile.sh|bat -create -profileName dmgr_01
-templatePath "C:/ProgramFiles/IBM/WebSphere/AppServer/profileTemplates/xs_augment/dmgr"

See the wasprofile command in the WebSphere Application Server Version 6.0
Information Center for more information.

About this task

To use the product features, the Profile Management Tool plug-in enables the GUI
to assist you in setting up profiles, such as a WebSphere Application Server profile,
a deployment manager profile, a cell profile, and a custom profile. You can
augment profiles during or after the installation of WebSphere eXtreme Scale.

Procedure

Use the Profile Management Tool GUI to create profiles. Choose one of the
following options to start the wizard:
v Select Profile Management Tool from the First steps console.
v Access the Profile Management Tool from the Start menu.
v Run the ./pmt.sh|bat script from the install_root/bin/ProfileManagement

directory.

What to do next

You can create additional profiles or augment existing profiles. To restart the
Profile Management tool, run the ./pmt.sh|bat command from the
was_root/bin/ProfileManagement directory, or select Profile Management Tool in
the First steps console.

46 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rxml_wasprofile.html

Start a catalog service, start containers, and configure TCP ports in your
WebSphere Application Server environment. See “Configuring WebSphere eXtreme
Scale with WebSphere Application Server” on page 205 for more information.

Using the graphical user interface to augment profiles
After you install the product, you can augment an existing profile to make it
compatible with WebSphere eXtreme Scale.

Before you begin

Note: If you are running WebSphere Application Server Version 6.0.2 or
WebSphere Application Server Network Deployment Version 6.0.2, you must use
the wasprofile command to create or augment a profile for WebSphere eXtreme
Scale as shown in the following example:
was_root/bin/wasprofile.sh|bat -augment -profileName dmgr_01
-templatePath "C:/ProgramFiles/IBM/WebSphere/AppServer/profileTemplates/xs_augment/dmgr"

See the wasprofile command in the WebSphere Application Server Information
Center for more information.

About this task

When you augment an existing profile, you change the profile by applying a
product-specific augmentation template. For example, WebSphere eXtreme Scale
servers do not start automatically unless the server profile is augmented with the
xs_augment template.
v Augment the profile with the xs_augment template if you installed the eXtreme

Scale client or the client and server.
v Augment the profile with the pf_augment template only if you installed the

partitioning facility.
v Apply both of the templates if your environment contains the eXtreme Scale

client and the partitioning facility.

Procedure

Use the Profile Management Tool GUI to augment profiles for eXtreme Scale.
Choose one of the following options to start the wizard:
v Select Profile Management Tool from the First steps console.
v Access the Profile Management Tool from the Start menu.
v Run the ./pmt.sh|bat script from the was_root/bin/ProfileManagement directory.

What to do next

You can augment additional profiles. To restart the Profile Management tool, run
the ./pmt.sh|bat command from the was_root/bin/ProfileManagement directory, or
select Profile Management Tool in the First steps console.

Start a catalog service, start containers, and configure TCP ports in your
WebSphere Application Server environment. See “Configuring WebSphere eXtreme
Scale with WebSphere Application Server” on page 205 for more information.

manageprofiles command
You can use the manageprofiles utility to create profiles with the WebSphere
eXtreme Scale template, and augment and unaugment existing application server

Chapter 3. Installing and deploying 47

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rxml_wasprofile.html

profiles with the eXtreme Scale augment templates. To use the features of the
product, your environment must contain at least one profile augmented for the
product.
v Before you can create and augment profiles, you must install eXtreme Scale . See

“Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client with
WebSphere Application Server” on page 26 for more information.

v If your environment contains WebSphere Application Server Version 6.0.2, you
must use the wasprofile command to create and augment profiles for eXtreme
Scale as shown in the following example:
install_root/bin/wasprofile.sh|bat -augment -profileName dmgr_01
-templatePath "C:/ProgramFiles/IBM/WebSphere/AppServer/profileTemplates/xs_augment/dmgr"

See the wasprofile command in the WebSphere Application Server Information
Center for more information.

Purpose

The manageprofiles command creates the runtime environment for a product
process in a set of files called a profile. The profile defines the runtime
environment. You can perform the following actions with the manageprofiles
command:
v Create and augment a deployment manager profile
v Create and augment a custom profile
v Create and augment stand-alone application server profile
v Create and augment a cell profile
v Unaugment any type of profile

When you augment an existing profile, you change the profile by applying a
product-specific augmentation template.
v Augment the profile with the xs_augment template if you installed the eXtreme

Scale client or both the client and server.
v Augment the profile with the pf_augment template if you installed only the

partitioning facility.
v Apply both templates if your environment contains the eXtreme Scale client and

the partitioning facility.

Location

The command file is in the install_root/bin directory.

Usage

For detailed help, use the -help parameter:
./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/dmgr -help

In the following sections, each task that you can perform using the manageprofiles
command, along with a list of required parameters, is described. For details on the
optional parameters to specify for each task, see the manageprofiles command in
the WebSphere Application Server Information Center.

Create a deployment manager profile

You can use the manageprofiles command to create a deployment manager profile.
The deployment manager administers the application servers that are federated
into the cell.

48 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rxml_wasprofile.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rxml_manageprofiles.html

Parameters

-create
Creates a profile. (Required)

-templatePath template_path
Specifies the file path to the template. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/dmgr

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/dmgr

v Using the pf_augment template:
./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/pf_augment/dmgr

Create a custom profile

You can use the manageprofiles command to create a custom profile. A custom
profile is an empty node that you customize through the deployment manager to
include application servers, clusters, or other Java processes.

Parameters

-create
Creates a profile. (Required)

-templatePath template_path
Specifies the file path to the template. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/managed

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/managed

v Using the pf_augment template:
./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/pf_augment/managed

Create a stand-alone application server profile

You can use the manageprofiles command to create a stand-alone application
server profile.

Parameters

-create
Creates a profile. (Required)

-templatePath template_path
Specifies the file path to the template. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/default

Chapter 3. Installing and deploying 49

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/default

v Using the pf_augment template:
./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/pf_augment/default

Create a cell profile

You can use the manageprofiles command to create a cell profile, which consists of
a deployment manager and an application server.

Parameters

Specify the following parameters in the deployment manager template:

-create
Creates a profile. (Required)

-templatePath template_path
Specifies the file path to the template. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/cell/dmgr

where template_type is xs_augment or pf_augment.

Specify the following parameters with the application server template:

-create
Creates a profile. (Required)

-templatePath template_path
Specifies the file path to the template. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/cell/default

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/cell/dmgr
-nodeProfilePath install_root/profiles/AppSrv01 -cellName cell01dmgr -nodeName node01dmgr
-appServerNodeName node01

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/xs_augment/cell/default
-dmgrProfilePath install_root/profiles/Dmgr01 -portsFile
install_root/profiles/Dmgr01/properties/portdef.props -nodePortsFile
install_root/profiles/Dmgr01/properties/nodeportdef.props -cellName cell01dmgr
-nodeName node01dmgr -appServerNodeName node01

v Using the pf_augment template:
./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/pf_augment/cell/dmgr
-nodeProfilePath install_root/profiles/AppSrv01 -cellName cell01dmgr -nodeName node01dmgr
-appServerNodeName node01

./manageprofiles.sh|bat -create -templatePath install_root/profileTemplates/pf_augment/cell/default
-dmgrProfilePath install_root/profiles/Dmgr01 -portsFile
install_root/profiles/Dmgr01/properties/portdef.props -nodePortsFile
install_root/profiles/Dmgr01/properties/nodeportdef.props -cellName cell01dmgr
-nodeName node01dmgr -appServerNodeName node01

50 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Augment a deployment manager profile

You can use the manageprofiles command to augment a deployment manager
profile.

Parameters

-augment
Augments the existing profile. (Required)

-profileName
Specifies the name of the profile. (Required)

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/dmgr

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -augment -profileName profile01
-templatePath install_root/profileTemplates/xs_augment/dmgr

v Using the pf_augment template:
./manageprofiles.sh|bat -augment -profileName profile01
-templatePath install_root/profileTemplates/pf_augment/dmgr

Augment a custom profile

You can use the manageprofiles command to augment a custom profile.

Parameters

-augment
Augments the existing profile. (Required)

-profileName
Specifies the name of the profile. (Required)

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/managed

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root
/profileTemplates/xs_augment/managed

v Using the pf_augment template:
./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root

/profileTemplates/pf_augment/managed

Chapter 3. Installing and deploying 51

Augment a stand-alone application server profile

You can use the manageprofiles command to augment a stand-alone application
server profile.

Parameters

-augment
Augments the existing profile. (Required)

-profileName
Specifies the name of the profile. (Required)

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/default

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root
/profileTemplates/xs_augment/default

v Using the pf_augment template:
./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root

/profileTemplates/pf_augment/default

Augment a cell profile

You can use the manageprofiles command to augment a cell profile.

Parameters

Specify the following parameters for the deployment manager profile:

-augment
Augments the existing profile. (Required)

-profileName
Specifies the name of the profile. (Required)

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/cell/dmgr

where template_type is xs_augment or pf_augment.

Specify the following parameters for the application server profile:

-augment
Augments the existing profile. (Required)

-profileName
Specifies the name of the profile. (Required)

52 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Required)

Use the following format:
-templatePath install_root/profileTemplates/template_type/cell/default

where template_type is xs_augment or pf_augment.

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root
/profileTemplates/xs_augment/cell/dmgr

./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root
/profileTemplates/xs_augment/cell/default

v Using the pf_augment template:
./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root

/profileTemplates/pf_augment/cell/dmgr

./manageprofiles.sh|bat -augment -profileName profile01 -templatePath install_root
/profileTemplates/pf_augment/cell/default

Unaugment a profile

To unaugment a profile, specify the -ignoreStack parameter with the
-templatePath parameter in addition to specifying the required -unaugment and
-profileName parameters.

Parameters

-unaugment
Unaugments a previously augmented profile. (Required)

-profileName
Specifies the name of the profile. The parameter is issued by default if no
values are specified. (Required)

-templatePath template_path
Specifies the path to the template files that are located in the installation root
directory. (Optional)

Use the following format:
-templatePath install_root/profileTemplates/template_type/profile_type

where template_type is xs_augment or pf_augment and profile_type is one of four
profile types:
v dmgr: deployment manager profile
v managed: custom profile
v default: stand-alone application server profile
v cell: cell profile

-ignoreStack
Used with the -templatePath parameter to unaugment a particular profile that
has been augmented. (Optional)

Example
v Using the xs_augment template:

./manageprofiles.sh|bat -unaugment -profileName profile01 -ignoreStack
-templatePath install_root/profileTemplates/xs_augment/profile_type

Chapter 3. Installing and deploying 53

v Using the pf_augment template:
./manageprofiles.sh|bat -unaugment -profileName profile01 -ignoreStack
-templatePath install_root/profileTemplates/pf_augment/profile_type

Non-root profiles
Give a non-root user permissions for files and directories so that the non-root user
can create a profile for the product. The non-root user can also augment a profile
that was created by a root user, a different non-root user, or the same non-root
user.

In a WebSphere Application Server environment, non-root (non-administrator)
users are limited in being able to create and use profiles in their environment.
Within the Profile Management tool plug-in, unique names and port values are
disabled for non-root users. The non-root user must change the default field values
in the Profile Management tool for the profile name, node name, cell name, and
port assignments. Consider assigning non-root users a range of values for each of
the fields. You can assign responsibility to the non-root users for adhering to their
proper value ranges and for maintaining the integrity of their own definitions.

The term installer refers to either a root or non-root user. As an installer, you can
grant non-root users permissions to create profiles and establish their own product
environments. For example, a non-root user might create a product environment to
test application deployment with a profile that the user owns. Specific tasks that
you can complete to allow non-root profile creation include the following items:
v Creating a profile and assigning ownership of the profile directory to a non-root

user so that the non-root user can start WebSphere Application Server for a
specific profile.

v Granting write permission of the appropriate files and directories to a non-root
user, which allows the non-root user to then create the profile. With this task,
you can create a group for users who are authorized to create profiles, or give
individual users the ability to create profiles.

v Installing maintenance packages for the product, which includes required
services for existing profiles that are owned by a non- user. As the installer, you
are the owner of any new files that the maintenance package creates.

For more information about creating profiles for non-root users, see Creating
profiles for non-root users .

As an installer, you can also grant permissions for a non-root user to augment
profiles. For example, a non-root user can augment a profile that is created by an
installer, or augment a profile that they create. Follow the WebSphere Application
Server Network Deployment non-root user augmentation process.

However, when a non-root user augments a profile that is created by the installer,
the non-root user does not need to create the following files before augmentation.
The following files were established during the profile creation process:
v was_root/logs/manageprofiles.xml

v was_root/properties/fsdb.xml

v was_root/properties/profileRegistry.xml

When a non-root user augments a profile that the user creates, the non-root user
must modify the permissions for the documents that are located within the
eXtreme Scale profile templates.

54 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tpro_manage_nonroot.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tpro_manage_nonroot.html

Attention: You can also use a non-root (non-administrator) profile for WebSphere
eXtreme Scale in a stand-alone environment, one outside of WebSphere Application
Server. You must change the owner of the ObjectGrid directory to the non-root
profile. Then you can log in with that non-root profile and operate eXtreme Scale
as you normally would for a root (administrator) profile.

Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale
Client silently

Use a fully qualified response file, which you configure specifically to your needs,
or pass parameters to the command line to silently install WebSphere eXtreme
Scale or WebSphere eXtreme Scale Client.

Before you begin
v Stop all processes that are running in your WebSphere Application Server or

WebSphere Application Server Network Deployment environment. See
Command-line utilities for more information about the stopManager, stopNode,
and stopServer commands.
CAUTION:
Ensure that any running processes are stopped. If the running processes are
not stopped, the installation proceeds, creating unpredictable results and
leaving the installation in an undetermined state on some platforms.

v Verify that the target installation directory is empty or does not exist.

Important: If a previous version of WebSphere eXtreme Scale or the ObjectGrid
component exists in the directory that you specify to install Version 7.1, the
product is not installed. For example, you might have a previously existing
wxs_install_root/ObjectGrid folder. You can either select a different installation
directory or cancel the installation. Next, uninstall the previous installation and
run the wizard again.

About this task

A silent installation uses the same installation program that the graphical user
interface (GUI) version uses. However, instead of displaying a wizard interface, the
silent installation reads all of your responses from a file that you customize, or
from parameters that you pass to the command line. See an example of a
“wxssetup.response.txt file” on page 38, which includes a description of each
option.

Procedure
1. Optional: If you choose to install WebSphere eXtreme Scale or WebSphere

eXtreme Scale Client using a response file, first customize the
wxssetup.response.txt file.

Remember: You must specify the fully-qualified response file name. Specifying
the relative path causes the installation to fail with no indication that an error
occurred.
a. Make a copy of the response file to customize.

For the WebSphere eXtreme Scale full installation, copy the response file
from the product DVD to your disk drive.
For the WebSphere eXtreme Scale Client, unzip the WebSphere eXtreme
Scale Client zip file onto your hard drive and find the response file.

Chapter 3. Installing and deploying 55

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=welc_ref_adm_cmd

b. Open and edit the response file in the text editor of your choice. The
previous example response file provides details on how to specify each of
the parameters. You must specify the following parameters:
v The license agreement
v The installation directory

Tip: When you install WebSphere eXtreme Scale or WebSphere eXtreme
Scale Client in a WebSphere Application Server environment, the installer
uses the installation directory to determine where the existing WebSphere
Application Server instance is installed. If you install on a node that
contains multiple WebSphere Application Server instances, clearly define
your location.

c. Run the following script to start the installation.
For the WebSphere eXtreme Scale full installation:
./install.sh|bat -options C:/drive_path/response_file.txt -silent

For the WebSphere eXtreme Scale Client installation:
./WXS_Client/install.sh|bat -options C:/drive_path/response_file.txt -silent

You can also use the response file when you run a GUI installation. You can
use the response file with a GUI installation to debug problems that are
hidden with the silent installation. When you specify the wxssetup.response
file for GUI or silent installations, you must use the fully qualified path.
Run the following script to run the GUI installation with your response file:

v Linux UNIX <install_home>/install.sh -options
<full_install_path_required>/wxssetup.response

v Windows <install_home>\install.exe -options c:\
<full_install_path_required>\wxssetup.response

2. Optional: If you choose to install eXtreme Scale by passing certain parameters
to the command line, run the following script to start the installation:
For the WebSphere eXtreme Scale full installation:
./install.sh|bat -silent -OPT silentInstallLicenseAcceptance=true -OPT installLocation=install_location

For the WebSphere eXtreme Scale Client installation:
./WXS_Client/install.sh|bat -silent -OPT silentInstallLicenseAcceptance=true -OPT installLocation=install_location

Installation parameters
Specify parameters at the command line to customize and configure your product
installation.

Note: You must specify the fully-qualified response file name. Specifying the
relative path causes the installation to fail with no indication that an error
occurred.

Parameters

You can pass the following parameters during a command-line or options file
installation of the product:

-silent
Suppresses the graphical user interface (GUI). Specify the -options parameter
to indicate that the installer completes the installation according to a
customized options file. If you do not specify the -options parameter, the
default values are used instead.

Example usage

56 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

./install.sh|bat -silent -options options_file.txt

-options path_name/file_name
Specifies an options file that the installer uses to complete a silent installation.
Properties on the command line take precedence.

Example usage
./install.sh|bat -options c:/path_name/options_file.txt

-log # !file_name @event_type
Generates an installation log file that logs the following event types:
v err

v wrn

v msg1

v msg2

v dbg

v ALL

Example usage
./install.sh|bat -log # !c:/temp/logfiles.txt @ALL

-is:log path_name/file_name
Creates a log file that contains the Java Virtual Machine (JVM) searches of the
installer while attempting to start the GUI. The log file is not created unless
specified.

Example usage
./install.sh|bat -is:log c:/logs/javalog.txt

-is:javaconsole
Displays a console window during the installation process.

Example usage
./install.sh|bat -is:javaconsole

-is:silent
Suppresses the Java initialization window that is displayed as the installer
starts.

Example usage
./install.sh|bat -is:silent

-is:tempdir path_name
Specifies the temporary directory that the installer uses during the installation.

Example usage
./install.sh|bat -is:tempdir c:/temp

Customizing WebSphere eXtreme Scale for z/OS
Using the WebSphere Customization Tools, you can generate and run customized
jobs to customize WebSphere eXtreme Scale for z/OS®.

Before you begin
v Verify that your system contains the latest level of WebSphere Application Server

Network Deployment:
– If you are running Version 6.1, your system must contain fix pack 31 at a

minimum. See Installing your Version 6.1 application serving environment for
more information.

Chapter 3. Installing and deploying 57

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/welc6topinstalling.html

– If you are running Version 7.0, your system must contain fix pack 9 at a
minimum. See Installing your Version 7.0 application serving environment for
more information.

v Install WebSphere eXtreme Scale for z/OS. See the WebSphere eXtreme Scale
WebSphere eXtreme Scale Program Directory on the Library Page for more
information.

About this task

Using the WebSphere Customization Tools, generate customization definitions and
upload and run customized jobs to customize WebSphere eXtreme Scale for z/OS.
See the following topics for more information:

Procedure
v “Installing the WebSphere Customization Tools”
v “Generating customization definitions” on page 59
v “Uploading and running customized jobs” on page 60

Installing the WebSphere Customization Tools
Install the WebSphere Customization Tools Version 7.0.0.6 or later to customize
your WebSphere eXtreme Scale for z/OS environment.

Before you begin

Install WebSphere eXtreme Scale for z/OS. See the WebSphere eXtreme Scale Program
Directory on the Library Page for more information.

About this task

The WebSphere Customization Tools is a workstation-based graphical tool you use
to create customized jobs that build WebSphere eXtreme Scale for z/OS runtime
environments.

Procedure
1. Use FTP to copy the xs.wct and xspf.wct extension files from your z/OS

system to the workstation on which you are installing the WebSphere
Customization Tools. The extension files are in the /usr/lpp/zWebSphereXS/
util/V7R1/WCT directory on your z/OS system.

2. Download and install the WebSphere Customization Tools Version 7.0.0.6 or
later from the appropriate Web site:

v Windows WebSphere Customization Tools for Windows

v Linux WebSphere Customization Tools for Linux
3. Upload the xs.wct file to the WebSphere Customization Tools application.

a. Start the WebSphere Customization Tools application on your workstation.
b. Click Help > Software Updates > Install Extension.
c. From the WebSphere Customization Tools Extension Locations panel, click

Install new extension location.
d. From the Source Archive File panel, click Browse, navigate to the directory

in which you copied the xs.wct file in step 1, and click Open.
e. Click Next on the Summary panel.

58 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc6topinstalling.html
http://www.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020369

Note: The Install Successful panel is displayed. Before you can click Finish,
you must copy and save the data from the location field:
C:\Documents and Settings\Administrator\WCT\workspace\configuration\
com.ibm.ws.pmt.update\com.ibm.ws390.pmt.xs_7.1.0.0\eclipse

f. From the Product Configuration panel, click Add an extension location.
Paste the data you copied in the previous step in the Location field, and
click OK.

g. Click Yes to restart the WebSphere Customization Tools.
4. Upload the xspf.wct file to the WebSphere Customization Tools application.

a. Click Help > Software Updates > Install Extension.
b. From the WebSphere Customization Tools Extension Locations panel, click

Install new extension location.
c. From the Source Archive File panel, click Browse, navigate to the directory

in which you copied the xspf.wct file in step 1, and click Open.
d. Click Next on the Summary panel.

Note: The Install Successful panel is displayed. Before you can click Finish,
you must copy and save the data from the location field:
C:\Documents and Settings\Administrator\WCT\workspace\configuration\
com.ibm.ws.pmt.update\com.ibm.ws390.pmt.xs_7.1.0.0\eclipse

e. From the Product Configuration panel, click Add an extension location.
Paste the data you copied in the previous step in the Location field, and
click OK.

f. Click Yes to restart the WebSphere Customization Tools.

What to do next

After you upload both extension files and restart the WebSphere Customization
Tools, you can use the Profile Management Tool to generate customization
definitions for eXtreme Scale for z/OS. See “Generating customization definitions”
for more information.

Generating customization definitions
Use the Profile Management Tool function within the WebSphere Customization
Tools to generate customization definitions and create customized jobs for
WebSphere eXtreme Scale for z/OS.

Before you begin

Install the WebSphere Customization Tools and upload the xs.wct and xspf.wct
extension files. See “Installing the WebSphere Customization Tools” on page 58 for
more information.

About this task

You can generate customization definitions using the Profile Management Tool,
which is provided in the WebSphere Customization Tools. A customization definition
is a set of files used to create customized jobs for configuring WebSphere eXtreme
Scale for z/OS.

Procedure
1. Start the Profile Management Tool.

Chapter 3. Installing and deploying 59

v Windows Click Start > Programs > IBM WebSphere > WebSphere
Customization Tools. After the application starts, click the Profile
Management Tool tab.

v Linux Click operating_system_menus > IBM WebSphere > WebSphere
Customization Tools. After the application starts, click the Profile
Management Tool tab.

2. Add an existing location or create a location of the customization definition
that you want to create. On the Customization Locations tab, click Add. If you
create a location, the Version box refers to the existing WebSphere Application
Server product version installed on your z/OS system.

Note: Do not use the same location you are using for other eXtreme Scale
customization definitions.

3. Generate the customization definition. On the Customization Definitions tab,
click Augment.

4. Select the type of definition environment to create:
v Stand-alone application server node
v Deployment manager
v Application server
v Managed (custom) node

5. Complete the fields on the panels. Specify the values for the parameters that
are used to create your z/OS system.

6. Click Augment to generate the customization definition.

What to do next

Upload the customized job to your target z/OS system. See “Uploading and
running customized jobs” for more information.

Uploading and running customized jobs
After you generate the customization definitions, you can upload and run the
customized jobs associated with the definitions to your WebSphere eXtreme Scale
for z/OS system.

Before you begin

Generate the customization definitions for the jobs that you want to upload to
your z/OS system. See “Generating customization definitions” on page 59 for more
information.

About this task

Upload and run the customized jobs you created using the WebSphere
Customization Tools to administer and monitor your WebSphere eXtreme Scale for
z/OS environment.

Procedure
1. Upload the customized jobs. On the Customization Definitions tab, select the

jobs that you want to upload and click Process.
2. Upload the jobs to the FTP server on your z/OS system. Specify the required

information on the Upload Customization Definition panel.
3. Click Finish.

60 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

4. Run the customized jobs. Click the Customization Instructions tab, and follow
the customization instructions for each job.

Uninstalling WebSphere eXtreme Scale
To remove WebSphere eXtreme Scale from your environment, you can use the
wizard or you can silently uninstall the product.

Before you begin

Attention: The uninstaller removes all binary files and all maintenance, such as
fix packs and interim fixes, at the same time.

Procedure
1. Stop all processes that are running eXtreme Scale.

CAUTION:
Ensure that any running processes are stopped. If the running processes are
not stopped, the uninstallation proceeds, creating unpredictable results and
leaving the uninstallation in an undetermined state on some platforms.

v If you installed stand-alone eXtreme Scale, read about stopping stand-alone
servers to stop processes.

v If you installed eXtreme Scale with an existing installation of WebSphere
Application Server, read about command-line utilities for more information
about stopping WebSphere Application Server processes.

2. Uninstall the product. You can run the uninstallation in a GUI or silently.

Note: When specifying the responsefile wxssetup.response file for silent or
GUI uninstall or installations, the fully qualified path must always be specified.
The responsefile is optional for the GUI uninstallation.
v To run the uninstallation using the GUI:

– Linux UNIX <install_home>/uninstall_wxs/uninstall

– Windows <install_home>\uninstall_wxs\uninstall.exe

If you want to run the uninstallation using the GUI and the
wxssetup.response file, use one of the following commands:

– Linux UNIX

<install_home>/uninstall_wxs/uninstall -options
<full_install_path_required>/wxssetup.response

– Windows

<install_home>\uninstall_wxs\uninstall.exe -options
<full_install_path_required>\wxssetup.response

v To run the uninstallation silently using the responsefile wxssetup.response
script:

– Linux UNIX

<install_home>/uninstall_wxs/uninstall -options
<full_install_path_required>/wxssetup.response -silent

– Windows

<install_home>\uninstall_wxs\uninstall.exe -options
<full_install_path_required>\wxssetup.response -silent

Chapter 3. Installing and deploying 61

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/txml_command.html

Results

You removed eXtreme Scale from your environment.

62 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 4. Customizing WebSphere eXtreme Scale for z/OS

Using the WebSphere Customization Tools, you can generate and run customized
jobs to customize WebSphere eXtreme Scale for z/OS.

Before you begin
v Verify that your system contains the latest level of WebSphere Application Server

Network Deployment:
– If you are running Version 6.1, your system must contain fix pack 31 at a

minimum. See Installing your Version 6.1 application serving environment for
more information.

– If you are running Version 7.0, your system must contain fix pack 9 at a
minimum. See Installing your Version 7.0 application serving environment for
more information.

v Install WebSphere eXtreme Scale for z/OS. See the WebSphere eXtreme Scale
WebSphere eXtreme Scale Program Directory on the Library Page for more
information.

About this task

Using the WebSphere Customization Tools, generate customization definitions and
upload and run customized jobs to customize WebSphere eXtreme Scale for z/OS.
See the following topics for more information:

Procedure
v “Installing the WebSphere Customization Tools” on page 58
v “Generating customization definitions” on page 59
v “Uploading and running customized jobs” on page 60

Installing the WebSphere Customization Tools
Install the WebSphere Customization Tools Version 7.0.0.6 or later to customize
your WebSphere eXtreme Scale for z/OS environment.

Before you begin

Install WebSphere eXtreme Scale for z/OS. See the WebSphere eXtreme Scale Program
Directory on the Library Page for more information.

About this task

The WebSphere Customization Tools is a workstation-based graphical tool you use
to create customized jobs that build WebSphere eXtreme Scale for z/OS runtime
environments.

Procedure
1. Use FTP to copy the xs.wct and xspf.wct extension files from your z/OS

system to the workstation on which you are installing the WebSphere
Customization Tools. The extension files are in the /usr/lpp/zWebSphereXS/
util/V7R1/WCT directory on your z/OS system.

© Copyright IBM Corp. 2009, 2011 63

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/welc6topinstalling.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.zseries.doc/info/zseries/ae/welc6topinstalling.html
http://www.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www.ibm.com/software/webservers/appserv/extremescale/library/index.html

2. Download and install the WebSphere Customization Tools Version 7.0.0.6 or
later from the appropriate Web site:

v Windows WebSphere Customization Tools for Windows

v Linux WebSphere Customization Tools for Linux
3. Upload the xs.wct file to the WebSphere Customization Tools application.

a. Start the WebSphere Customization Tools application on your workstation.
b. Click Help > Software Updates > Install Extension.
c. From the WebSphere Customization Tools Extension Locations panel, click

Install new extension location.
d. From the Source Archive File panel, click Browse, navigate to the directory

in which you copied the xs.wct file in step 1, and click Open.
e. Click Next on the Summary panel.

Note: The Install Successful panel is displayed. Before you can click Finish,
you must copy and save the data from the location field:
C:\Documents and Settings\Administrator\WCT\workspace\configuration\
com.ibm.ws.pmt.update\com.ibm.ws390.pmt.xs_7.1.0.0\eclipse

f. From the Product Configuration panel, click Add an extension location.
Paste the data you copied in the previous step in the Location field, and
click OK.

g. Click Yes to restart the WebSphere Customization Tools.
4. Upload the xspf.wct file to the WebSphere Customization Tools application.

a. Click Help > Software Updates > Install Extension.
b. From the WebSphere Customization Tools Extension Locations panel, click

Install new extension location.
c. From the Source Archive File panel, click Browse, navigate to the directory

in which you copied the xspf.wct file in step 1, and click Open.
d. Click Next on the Summary panel.

Note: The Install Successful panel is displayed. Before you can click Finish,
you must copy and save the data from the location field:
C:\Documents and Settings\Administrator\WCT\workspace\configuration\
com.ibm.ws.pmt.update\com.ibm.ws390.pmt.xs_7.1.0.0\eclipse

e. From the Product Configuration panel, click Add an extension location.
Paste the data you copied in the previous step in the Location field, and
click OK.

f. Click Yes to restart the WebSphere Customization Tools.

What to do next

After you upload both extension files and restart the WebSphere Customization
Tools, you can use the Profile Management Tool to generate customization
definitions for eXtreme Scale for z/OS. See “Generating customization definitions”
on page 59 for more information.

Generating customization definitions
Use the Profile Management Tool function within the WebSphere Customization
Tools to generate customization definitions and create customized jobs for
WebSphere eXtreme Scale for z/OS.

64 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020368
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020369

Before you begin

Install the WebSphere Customization Tools and upload the xs.wct and xspf.wct
extension files. See “Installing the WebSphere Customization Tools” on page 58 for
more information.

About this task

You can generate customization definitions using the Profile Management Tool,
which is provided in the WebSphere Customization Tools. A customization definition
is a set of files used to create customized jobs for configuring WebSphere eXtreme
Scale for z/OS.

Procedure
1. Start the Profile Management Tool.

v Windows Click Start > Programs > IBM WebSphere > WebSphere
Customization Tools. After the application starts, click the Profile
Management Tool tab.

v Linux Click operating_system_menus > IBM WebSphere > WebSphere
Customization Tools. After the application starts, click the Profile
Management Tool tab.

2. Add an existing location or create a location of the customization definition
that you want to create. On the Customization Locations tab, click Add. If you
create a location, the Version box refers to the existing WebSphere Application
Server product version installed on your z/OS system.

Note: Do not use the same location you are using for other eXtreme Scale
customization definitions.

3. Generate the customization definition. On the Customization Definitions tab,
click Augment.

4. Select the type of definition environment to create:
v Stand-alone application server node
v Deployment manager
v Application server
v Managed (custom) node

5. Complete the fields on the panels. Specify the values for the parameters that
are used to create your z/OS system.

6. Click Augment to generate the customization definition.

What to do next

Upload the customized job to your target z/OS system. See “Uploading and
running customized jobs” on page 60 for more information.

Uploading and running customized jobs
After you generate the customization definitions, you can upload and run the
customized jobs associated with the definitions to your WebSphere eXtreme Scale
for z/OS system.

Chapter 4. Customizing WebSphere eXtreme Scale for z/OS 65

Before you begin

Generate the customization definitions for the jobs that you want to upload to
your z/OS system. See “Generating customization definitions” on page 59 for more
information.

About this task

Upload and run the customized jobs you created using the WebSphere
Customization Tools to administer and monitor your WebSphere eXtreme Scale for
z/OS environment.

Procedure
1. Upload the customized jobs. On the Customization Definitions tab, select the

jobs that you want to upload and click Process.
2. Upload the jobs to the FTP server on your z/OS system. Specify the required

information on the Upload Customization Definition panel.
3. Click Finish.
4. Run the customized jobs. Click the Customization Instructions tab, and follow

the customization instructions for each job.

66 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 5. Upgrading and migrating WebSphere eXtreme
Scale Version 7.1

You can migrate to WebSphere eXtreme Scale Version 7.1 from previous versions,
and you can apply maintenance packages to WebSphere eXtreme Scale Version 7.1.
To avoid outages, you must consider the order in which you apply the updates to
the servers in your configuration.

Updating eXtreme Scale servers
You can upgrade WebSphere eXtreme Scale to a new version, either by applying
maintenance or installing a new version, without interrupting service.

Before you begin

You must have the binary for the major version release or maintenance that you
want to apply. You can get the latest information about the available releases and
maintenance packages from the IBM support portal for WebSphere eXtreme Scale.

About this task

To upgrade without service interruption, upgrade your catalog servers first. Then,
upgrade the container servers and the clients.

Procedure
1. Upgrade the catalog service tier, repeating the following steps for each catalog

server in the data grid. Upgrade the catalog service tier before upgrading any
container servers or clients. Individual catalog servers can interoperate with
version compatibility, so you can apply upgrades to one catalog server at a
time without interrupting service.
a. Check for a healthy quorum status. Run the following command:

xsadmin -quorumstatus
Connecting to Catalog service at localhost:1099
Quorum is enabled and catalog server is in normal condition

This result indicates that all the catalog servers are connected. The results of
the xsadmin -quorumstatus command also might display the following
message:
Quorum is enabled but quorum is overridden.

With this message, quorum is healthy, but not all catalog servers are
running.

b. If you are using multi-master replication between two catalog service
domains, dismiss the link between the two catalog service domains while
you are upgrading the catalog servers.
xsadmin –ch host –p 1099 –dismissLink dname

You only need to run this command from one of the catalog service
domains to remove the link between two catalog service domains.

c. Shut down one of the catalog servers. You can use the stopOgserver
command, the xsadmin -teardown command, or shut down the application
server that is running the catalog service in WebSphere Application Server.

© Copyright IBM Corp. 2009, 2011 67

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_eXtreme_Scale

There are no requirements for the order in which you stop the catalog
servers, but shutting down the primary catalog server last reduces turnover.
To determine which catalog server is the primary, look for the CWOBJ8106
message in the log files. Under normal conditions, quorum is maintained
when a catalog server is shut down, but it is a best practice to query
quorum status after each shutdown with the xsadmin -quorumstatus
command.
If you use the xsadmin -teardown command, you can filter the server
names. The stopOgServer command requires an exact server name or list of
server names to stop in parallel to be entered. You should group the
shutdown process instead of calling the stop or teardown process for many
servers in parallel. By grouping the servers to be shut down, the data grid
can react to the servers that are being shut down by moving shards around
the data grid. You can use one of the following commands to shut down
your servers:
You can provide a specific list of servers to stop to the stopOgServer or
xsadmin -teardown commands:
stopOgServer <server_name>[,<server_name>]

xsadmin –teardown <server_name>[,<server_name>]

With the previous examples, the stopOgServer or xsadmin -teardown
commands are completing the same shutdown tasks. However, you can
filter the servers to stop with the xsadmin -teardown command. See
“Stopping servers gracefully with the xsadmin tool” on page 363 for more
information about filtering the servers by zone or host name. The teardown
command filters out the matching servers and asks if the selected servers
are correct.

d. Install the updates on the catalog server. You can either migrate the catalog
server to a new major release of the product or apply a maintenance
package. See the following topics for more information:
v “Migrating to WebSphere eXtreme Scale Version 7.1” on page 69
v “Using the Update Installer to install maintenance packages” on page 70

e. Restart the catalog server.
If you are using a stand-alone environment, see “Starting a stand-alone
catalog service” on page 351 for more information. If you are using a
WebSphere Application Server environment, see “Starting and stopping
servers in a WebSphere Application Server environment” on page 363 for
more information.
The catalog server runs in compatibility mode until all the catalog servers
are moved to the same level. Compatibility mode mostly applies to major
release migrations because new functions are not available on the servers
that are not migrated. No restrictions exist on how long catalog servers can
run in compatibility mode, but the best practice is to migrate all catalog
servers to the same level as soon as possible.

f. Apply updates to the remaining catalog servers in your configuration.
2. Upgrade the container servers, repeating the following steps for each container

server in the data grid. You can upgrade container servers in any order.
However, consider updating the servers first, then the clients, if you are using
new functions in the upgrade.
a. Stop the container servers that you want to upgrade. You can stop the

container server tier in groups with the stopOgserver command or the

68 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

xsadmin -teardown command. Batching teardown and starting servers up in
parallel benefit placement activities because shards can be moved in larger
groups.
$ bin/xsadmin.sh -teardown -fz DefaultZone

Connecting to Catalog service at localhost:1099

Processing filter options for Server teardown

The following servers will be torn down:

container00
container01
container02
container03
container04

Do you want to tear down the listed servers? (Y/N)

b. Install the updates on the container servers. You can either migrate the
container servers to a new major release of the product or apply a
maintenance package. See the following topics for more information:
v “Migrating to WebSphere eXtreme Scale Version 7.1”
v “Using the Update Installer to install maintenance packages” on page 70

c. Restart your container servers.
d. Upgrade any remaining container servers in your configuration.

3. If you are using multi-master replication, reconnect your catalog service
domains. Use the xsadmin -establishLink command to reconnect the catalog
service domains.
xsadmin –ch host –p 1099 –establishLink dname fdHostA:2809,fdHostB:2809

What to do next

You can also use these steps to revert to an older version or to uninstall
maintenance packages. However, if you revert to Version 7.1.0 when you are using
multi-master replication, the two-way replication might not function correctly
when you re-establish the links. In this situation, restart both catalog service
domains and re-link the catalog service domains with the xsadmin -establishLink
command.

Migrating to WebSphere eXtreme Scale Version 7.1
With the WebSphere eXtreme Scale installer, you cannot upgrade or modify a
previous installation. You must uninstall the previous version before you install the
new version. You do not need to migrate your configuration files because they are
backward compatible. However, if you changed any of the script files that are
shipped with the product, you must reapply these changes to the updated script
files.

Before you begin

Verify that your systems meet the minimum requirements for the product versions
you plan to migrate and install. See “Hardware and software requirements” on
page 74 for more information.

Chapter 5. Upgrading and migrating WebSphere eXtreme Scale Version 7.1 69

About this task

Merge any modified product script files with new product script files in the /bin
directory to maintain your changes.

Tip: If you did not modify the script files that are installed with the product, you
are not required to complete the following migration steps. Instead, you can
upgrade to Version 7.1 by uninstalling the previous version and installing the new
version in the same directory.

Procedure
1. Stop all processes that are using eXtreme Scale.

v Read about stopping stand-alone servers to stop all processes that are
running in your stand-alone eXtreme Scale environment.

v Read about command-line utilities to stop all processes that are running in
your WebSphere Application Server or WebSphere Application Server
Network Deployment environment.

2. Save any modified scripts from your current installation directory to a
temporary directory.

3. Uninstall the product.
4. Install eXtreme Scale Version 7.1. See Chapter 3, “Installing and deploying

WebSphere eXtreme Scale,” on page 17 for more information.
5. Merge your changes from the files in the temporary directory to the new

product script files in the /bin directory.
6. Start all of your eXtreme Scale processes to begin using the product. See

Chapter 8, “Administering the deployment environment,” on page 351 for more
information.

Using the Update Installer to install maintenance packages
Use the IBM Update Installer to update your WebSphere eXtreme Scale
environment with various types of maintenance, such as interim fixes, fix packs,
and refresh packs.

About this task

Use the IBM Update Installer to install and apply various types of maintenance
packages for WebSphere eXtreme Scale. Because the Update Installer undergoes
regular maintenance, you must use the most current version of the tool.

Procedure
1. Stop all processes that are running in your environment.

v To stop all processes that are running in your stand-alone eXtreme Scale
environment, see “Stopping stand-alone servers” on page 360 for more
information.

v To stop all processes that are running in your WebSphere Application Server
environment, see Command-line utilities.

2. Download the latest version of the Update Installer. See Recommended fixes for
more information.

3. Install the Update Installer. See Installing the Update Installer for WebSphere
Software in the WebSphere Application Server Information Center for more
information.

70 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/txml_command.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/txml_command.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24020212
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tins_updi_install.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tins_updi_install.html

4. Download into the updi_root/maintenance directory the maintenance packages
that you intend to install. See the Support site for more information.

5. Use the Update Installer to install the interim fix, fix pack, or refresh pack. You
can install the maintenance package by running the graphical user interface
(GUI), or by running the Update Installer in silent mode.
Run the following command from the updi_root directory to start the GUI:

v Linux UNIX update.sh

v Windows update.bat

Run the following command from the updi_root directory to run the Update
Installer in silent mode:

v Linux UNIX ./update.sh -silent -options responsefile/file_name

v Windows update.bat -silent -options responsefile\file_name

If the installation process fails, see the temporary log file, which is in the
updi_root/logs/update/tmp directory. The Update Installer creates the
install_root/logs/update/maintenance_package.install directory in which
the installation log files are located.

Deprecated properties and APIs
The following list of properties and APIs were deprecated in the Version 7.1
release. Use the recommended migration action to determine how to update your
configuration.

Deprecated items in Version 7.1

Table 5. Deprecated properties and APIs

Deprecation Recommended migration action

catalog.services.cluster cell and server property: This
custom property was used to define a group of catalog
servers in the WebSphere Application Server
configuration.

7.1+ This custom property is deprecated starting in
the Version 7.1 release.

Create a catalog service domain in the WebSphere
Application Server administrative console, which creates
the same configuration as using the custom property. See
for more information.

CoreGroupServicesMBean MBean and interface
7.1+ This MBean is deprecated starting in the Version

7.1 release.

Use the CatalogServiceManagementMBean instead.

ServerMBean.updateTraceSpec() MBean operation
7.1+ This operation is deprecated starting in the

Version 7.1 release.

Use the TraceSpec attribute on the DynamicServerMBean
instead.

CoreGroupServicesMBean MBean
7.1+ This MBean is deprecated starting in the Version

7.1 release.

Use the CatalogServiceManagementMbean MBean
instead.

Chapter 5. Upgrading and migrating WebSphere eXtreme Scale Version 7.1 71

http://www-306.ibm.com/software/webservers/appserv/extend/support/

Table 5. Deprecated properties and APIs (continued)

Deprecation Recommended migration action

ServiceUnavailableException exception
7.1+ This exception is deprecated starting in the

Version 7.1 release.

Use the TargetNotAvailableException exception instead.

Partitioning facility (WPF): The partitioning facility is a
set of programming APIs that allow Java EE applications
to support asymmetric clustering.

The capabilities of WPF can be alternatively realized in
WebSphere eXtreme Scale.

StreamQuery: A continuous query over in-flight data
stored in ObjectGrid maps.

None

Static grid configuration: A static, cluster-based topology
using the cluster deployment XML file.

Replaced with the improved, dynamic deployment
topology for managing large data grids.

Deprecated system properties: System properties to
specify the server and client properties files are
deprecated.

You can still use these arguments, but change your
system properties to the new values.

-Dcom.ibm.websphere.objectgrid.CatalogServerProperties
The property was deprecated in WebSphere
eXtreme Scale Version 7.0. Use the
-Dobjectgrid.server.props property.

-Dcom.ibm.websphere.objectgrid.ClientProperties
The property was deprecated in WebSphere
eXtreme Scale Version 7.0. Use the
-Dobjectgrid.client.props property.

-Dobjectgrid.security.server.prop
The property was deprecated in WebSphere
eXtreme Scale Version 6.1.0.3. Use the
-Dobjectgrid.server.prop property.

-serverSecurityFile
This argument was deprecated in WebSphere
eXtreme Scale Version 6.1.0.3. This option is
passed into the startOgServer script. Use the
-serverProps argument.

72 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 6. Planning the WebSphere eXtreme Scale
environment

Before you install WebSphere eXtreme Scale and deploy your data grid
applications, you must decide on your caching topology, complete capacity
planning, review the hardware and software requirements, networking and tuning
settings, and so on. You can also use the operational checklist to ensure that your
environment is ready to have an application deployed.

For a discussion of the best practices that you can use when you are designing
your WebSphere eXtreme Scale applications, read the following article on
developerWorks®: Principles and best practices for building high performing and
highly resilient WebSphere eXtreme Scale applications.

Planning overview
Before using WebSphere eXtreme Scale in a production environment, consider the
following issues to optimize your deployment.

Installation considerations

You can install WebSphere eXtreme Scale in a stand-alone environment, or you can
integrate the installation with WebSphere Application Server. To ensure that you
are able to seamlessly upgrade your servers in the future, you must plan your
environment accordingly. For the best performance, catalog servers should run on
different machines than the container servers. If you must run your catalog servers
and container servers on the same machine, then use separate installations of
WebSphere eXtreme Scale for the catalog and container servers. By using two
installations, you can upgrade the installation that is running the catalog server
first. See “Updating eXtreme Scale servers” on page 67

Caching topology considerations

Your architecture can use local in-memory data caching or distributed client-server
data caching. Each type of cache topology has advantages and disadvantages. The
caching topology you implement depends on the requirements of your
environment and application. For more information about the different caching
topologies, see “Caching topology: In-memory and distributed caching” on page
78.

Data capacity considerations

The following list includes items to consider:
v Number of systems and processors: How many physical machines and

processors are needed in the environment?
v Number of servers: How many eXtreme Scale servers to host eXtreme Scale

maps?
v Number of partitions: The amount of data stored in the maps is one factor in

determining the number of partitions needed.
v Number of replicas: How many replicas are required for each primary in the

domain?

© Copyright IBM Corp. 2009, 2011 73

http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html

v Synchronous or asynchronous replication: Is the data vital so that synchronous
replication is required? Or is performance a higher priority, making
asynchronous replication the correct choice?

v Heap sizes: How much data will be stored on each server?

For a detailed discussion of each of these considerations, see Chapter 2, “Capacity
planning,” on page 9.

Hardware and software requirements
Browse an overview of hardware and operating system requirements. Although
you are not required to use a specific level of hardware or operating system for
WebSphere eXtreme Scale, a detailed list of formally supported hardware and
software options by operating system is available on the Systems Requirements
page of the product support site. If there is a conflict between the information
provided in the information center and the information on the System
Requirements page, the information at the Web site takes precedence. Prerequisite
information in the information center is provided as a convenience only.

See the System Requirements page for the official set of hardware and software
requirements.

You are not required to install and deploy eXtreme Scale on a specific level of
operating system. Each Java Platform, Standard Edition (J2SE) and Java Platform,
Enterprise Edition (JEE) installation requires different operating system levels or
fixes.

You can install and deploy the product in Java EE and J2SE environments. You can
also bundle the client component with Java EE applications directly without
integrating with WebSphere Application Server. WebSphere eXtreme Scale supports
Java Runtime Environment (JRE) Version 1.4.2 and later and WebSphere
Application Server Version 6.0.2 and later.

Hardware requirements

WebSphere eXtreme Scale does not require a specific level of hardware. The
hardware requirements are dependent on the supported hardware for the Java
Platform, Standard Edition installation that you use to run WebSphere eXtreme
Scale. If you are using eXtreme Scale with WebSphere Application Server or
another Java Platform, Enterprise Edition implementation, the hardware
requirements of these platforms are sufficient for WebSphere eXtreme Scale.

Operating system requirements
v Without the web console

eXtreme Scale does not require a specific operating system level. Each Java SE
and Java EE implementation requires different operating system levels or fixes
for problems that are discovered during the testing of the Java implementation.
The levels required by these implementations are sufficient for eXtreme Scale.

v With the web console

The following requirements apply for each operating system if using the console:
– Linux: 32-bit or 64-bit JVM
– Windows: 32-bit JVM only
– AIX®: 32-bit JVM only

74 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/software/webservers/appserv/extremescale/sysreqs

You have to configure your choices in some cases. For example, by default, the
product installer will use the 64-bit JVM in Linux unless you specify otherwise.

Web browser requirements

The web console supports the following Web browsers:
v Mozilla Firefox, version 3.5.x and later
v Mozilla Firefox, version 3.6.x and later
v Microsoft Internet Explorer, version 7 or 8

WebSphere Application Server requirements

eXtreme Scale clients and servers running in a distributed environment and local
in-memory ObjectGrids are supported on WebSphere Application Server Version
6.0.2 and later.

Note: To use the dynamic cache provider, your system must meet one of the
following minimum requirements:
v WebSphere Application Server Version 6.1.0.25 or higher and Interim Fix

PK85622
v WebSphere Application Server Version 7.0.0.3 or higher and Interim Fix PK85622

See the Recommended fixes for WebSphere Application Server for more
information.

Other application server requirements

Other Java EE implementations can use the eXtreme Scale run time as a local
instance or as a client to eXtreme Scale servers. To implement Java SE, you must
use Version 1.4.2 or later.

Java SE considerations
WebSphere eXtreme Scale requires Java SE Version 1.4.2 or later. In general, newer
versions of Java SE have better functionality and performance.

Supported versions

You can use WebSphere eXtreme Scale with Java SE Version 1.4.2 or later. The
version that you use must be currently supported by the Java Runtime
Environment (JRE) vendor.

A fully supported JRE is installed as a part of the stand-alone WebSphere eXtreme
Scale and WebSphere eXtreme Scale Client installations in the wxs_install_root/java
directory and is available to be used by both clients and servers. If you are
installing WebSphere eXtreme Scale within WebSphere Application Server, you can
use the JRE that is included in the WebSphere Application Server installation.

WebSphere eXtreme Scale takes advantage of Java Development Kit (JDK) 5 or
later functionality as it becomes available. Generally, newer versions of the Java
Development Kit (JDK) and Java SE have better performance and functionality.

See Supported software for more information.

Chapter 6. Planning the WebSphere eXtreme Scale environment 75

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004980
http://www-01.ibm.com/support/docview.wss?rs=3023&uid=swg27018828

Java-dependent WebSphere eXtreme Scale features

Table 6. Features that require Java SE 5 or Java SE 6.

WebSphere eXtreme Scale uses functionality that is introduced in Java SE 5 or Java SE 6
to provide the following product features.

Feature
Supported in Java SE 5 and
later

Supported in Java SE 6 and
later

EntityManager API
annotations (Optional: You
can also use XML files)

X X

Java Persistence API (JPA):
JPA loader, JPA client loader,
and JPA time-based updater

X X

Memory-based eviction (uses
MemoryPoolMXBean)

X X

Instrumentation agents:

v wxssizeagent.jar:
Increases the accuracy of
the used bytes map
metrics.

v ogagent.jar: Increases the
performance of field-access
entities.

X X

Web console for monitoring X

Java EE considerations
As you prepare to integrate WebSphere eXtreme Scale in a Java Platform,
Enterprise Edition environment, consider certain items, such as versions,
configuration options, requirements and limitations, and application deployment
and management.

Running eXtreme Scale applications in a Java EE environment

A Java EE application can connect to a remote eXtreme Scale application.
Additionally, theWebSphere Application Server environment supports starting an
eXtreme Scale server as an application starts in the application server.

If you use an XML file to create an ObjectGrid instance, and the XML file is in the
module of the enterprise archive (EAR) file, access the file by using the
getClass().getClassLoader().getResource("META-INF/objGrid.xml") method to
obtain a URL object to use to create an ObjectGrid instance. Substitute the name of
the XML file that you are using in the method call.

You can use startup beans for an application to bootstrap an ObjectGrid instance
when the application starts, and to destroy the instance when the application stops.
A startup bean is a stateless session bean with a
com.ibm.websphere.startupservice.AppStartUpHome remote location and a
com.ibm.websphere.startupservice.AppStartUp remote interface. The remote
interface has two methods: the start method and the stop method. Use the start
method to bootstrap the instance, and use the stop method to destroy the instance.
The application uses the ObjectGridManager.getObjectGrid method to maintain a
reference to the instance. See the information about accessing an ObjectGrid with

76 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

the ObjectGridManager in the Programming Guide for more information.

Using class loaders

When application modules that use different class loaders share a single
ObjectGrid instance in a Java EE application, verify the objects that are stored in
eXtreme Scale and the plug-ins for the product are in a common loader in the
application.

Managing the life cycle of ObjectGrid instances in a servlet

To manage the life cycle of an ObjectGrid instance in a servlet, you can use the init
method to create the instance and the destroy method to remove the instance. If
the instance is cached, it is retrieved and manipulated in the servlet code. See the
information about accessing an ObjectGrid with the ObjectGridManager interface
in the Programming Guide for more information.

Directory conventions
The following directory conventions are used throughout the documentation to
must reference special directories such as wxs_install_root and wxs_home. You
access these directories during several different scenarios, including during
installation and use of command-line tools.

wxs_install_root
The wxs_install_root directory is the root directory where WebSphere
eXtreme Scale product files are installed. The wxs_install_root directory can
be the directory in which the trial zip file is extracted or the directory in which
the WebSphere eXtreme Scale product is installed.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer

wxs_home
The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples and components. This is the same as the
wxs_install_root directory when the trial is extracted. For stand-alone
installations, the wxs_home directory is the ObjectGrid sub-directory within the
wxs_install_root directory. For installations that are integrated with
WebSphere Application Server, this directory is the optionalLibraries/
ObjectGrid directory within the wxs_install_root directory.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale/ObjectGrid

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid

Chapter 6. Planning the WebSphere eXtreme Scale environment 77

was_root
The was_root directory is the root directory of a WebSphere Application Server
installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home
The restservice_home directory is the directory in which the WebSphere
eXtreme Scale REST data service libraries and samples are located. This
directory is named restservice and is a sub-directory under the wxs_home
directory.
v Example for stand-alone deployments:

Example: /opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice

v Example for WebSphere Application Server integrated deployments:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/
restservice

tomcat_root
The tomcat_root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

Example:/opt/IBM/WebSphere/AppServerCE

java_home
The java_home is the root directory of a Java Runtime Environment (JRE)
installation.

Example:/opt/IBM/WebSphere/eXtremeScale/java

samples_home
The samples_home is the directory in which you extract the sample files that are
used for tutorials.

Example:/wxs-samples/

Caching topology: In-memory and distributed caching
With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the eXtreme
Scale server, and clients remotely connect to the server.

In-memory environments

When you deploy in a local, in-memory environment, WebSphere eXtreme Scale
runs within a single Java virtual machine and is not replicated. To configure a local
environment you can use an ObjectGrid XML file or the ObjectGrid APIs.

Distributed environments

When you deploy in a distributed environment, WebSphere eXtreme Scale runs
across a set of Java virtual machines, increasing the performance, availability and

78 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

scalability. With this configuration, you can use data replication and partitioning.
You can also add additional servers without restarting your existing eXtreme Scale
servers. As with a local environment, an ObjectGrid XML file, or an equivalent
programmatic configuration, is needed in a distributed environment. You must also
provide a deployment policy XML file with configuration details

You can create either simple deployments or large, terabyte-sized deployments in
which thousands of servers are needed.

Local in-memory cache
In the simplest case, WebSphere eXtreme Scale can be used as a local
(non-distributed) in-memory data grid cache. The local case can especially benefit
high-concurrency applications where multiple threads need to access and modify
transient data. The data kept in a local data grid can be indexed and retrieved
using queries. Queries help you to work with large in memory data sets. The
support provided with the Java virtual machine (JVM), although it is ready to use,
has a limited data structure.

The local in-memory cache topology for WebSphere eXtreme Scale is used to
provide consistent, transactional access to temporary data within a single Java
virtual machine.

Advantages
v Simple setup: An ObjectGrid can be created programmatically or declaratively

with the ObjectGrid deployment descriptor XML file or with other frameworks
such as Spring.

v Fast: Each BackingMap can be independently tuned for optimal memory
utilization and concurrency.

v Ideal for single-Java virtual machine topologies with small dataset or for caching
frequently accessed data.

v Transactional. BackingMap updates can be grouped into a single unit of work
and can be integrated as a last participant in 2-phase transactions such as Java
Transaction Architecture (JTA) transactions.

Disadvantages
v Not fault tolerant.
v The data is not replicated. In-memory caches are best for read-only reference

data.
v Not scalable. The amount of memory required by the database might overwhelm

the Java virtual machine.
v Problems occur when adding Java virtual machines:

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 1. Local in-memory cache scenario

Chapter 6. Planning the WebSphere eXtreme Scale environment 79

– Data cannot easily be partitioned
– Must manually replicate state between Java virtual machines or each cache

instance could have different versions of the same data.
– Invalidation is expensive.
– Each cache must be warmed up independently. The warm-up is the period of

loading a set of data so that the cache gets populated with valid data.

When to use

The local, in-memory cache deployment topology should only be used when the
amount of data to be cached is small (can fit into a single Java virtual machine)
and is relatively stable. Stale data must be tolerated with this approach. Using
evictors to keep most frequently or recently used data in the cache can help keep
the cache size low and increase relevance of the data.

Peer-replicated local cache
You must ensure the cache is synchronized if multiple processes with independent
cache instances exist. To ensure that the cache instances are synchronized, enable a
peer-replicated cache with Java Message Service (JMS).

WebSphere eXtreme Scale includes two plug-ins that automatically propagate
transaction changes between peer ObjectGrid instances. The
JMSObjectGridEventListener plug-in automatically propagates eXtreme Scale
changes using JMS.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability (HA) manager to propagate the changes to each peer cache
instance.

JMS

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 2. Peer-replicated cache with changes that are propagated with JMS

80 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Advantages
v The data is more valid because the data is updated more often.
v With the TranPropListener plug-in, like the local environment, the eXtreme Scale

can be created programmatically or declaratively with the eXtreme Scale
deployment descriptor XML file or with other frameworks such as Spring.
Integration with the high availability manager is done automatically.

v Each BackingMap can be independently tuned for optimal memory utilization
and concurrency.

v BackingMap updates can be grouped into a single unit of work and can be
integrated as a last participant in 2-phase transactions such as Java Transaction
Architecture (JTA) transactions.

v Ideal for few-JVM topologies with a reasonably small dataset or for caching
frequently accessed data.

v Changes to the eXtreme Scale are replicated to all peer eXtreme Scale instances.
The changes are consistent as long as a durable subscription is used.

Disadvantages
v Configuration and maintenance for the JMSObjectGridEventListener can be

complex. eXtreme Scale can be created programmatically or declaratively with
the eXtreme Scale deployment descriptor XML file or with other frameworks
such as Spring.

v Not scalable: The amount of memory required by the database may overwhelm
the JVM.

v Functions improperly when adding Java virtual machines:
– Data cannot easily be partitioned
– Invalidation is expensive.
– Each cache must be warmed-up independently

When to use

Use deployment topology only when the amount of data to be cached is small, can
fit into a single JVM, and is relatively stable.

HA Manager

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 3. Peer-replicated cache with changes that are propagated with the high availability manager

Chapter 6. Planning the WebSphere eXtreme Scale environment 81

Distributed cache
WebSphere eXtreme Scale is most often used as a shared cache, to provide
transactional access to data to multiple components where a traditional database
would otherwise be used. The shared cache eliminates the need configure a
database.

Coherency of the cache

The cache is coherent because all of the clients see the same data in the cache. Each
piece of data is stored on exactly one server in the cache, preventing wasteful
copies of records that could potentially contain different versions of the data. A
coherent cache can also hold more data as more servers are added to the data grid,
and scales linearly as the grid grows in size. Because clients access data from this
data grid with remote procedural calls, it can also be known as a remote cache, or
far cache. Through data partitioning, each process holds a unique subset of the
total data set. Larger data grids can both hold more data and service more requests
for that data. Coherency also eliminates the need to push invalidation data around
the data grid because no stale data exists. The coherent cache only holds the latest
copy of each piece of data.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability component (HA Manager) of WebSphere Application Server to
propagate the changes to each peer ObjectGrid cache instance.

Near cache

Clients can optionally have a local, in-line cache when eXtreme Scale is used in a
distributed topology. This optional cache is called a near cache, an independent

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 4. Distributed cache

82 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

ObjectGrid on each client, serving as a cache for the remote, server-side cache. The
near cache is enabled by default when locking is configured as optimistic or none
and cannot be used when configured as pessimistic.

A near cache is very fast because it provides in-memory access to a subset of the
entire cached data set that is stored remotely in the eXtreme Scale servers. The near
cache is not partitioned and contains data from any of the remote eXtreme Scale
partitions.WebSphere eXtreme Scale can have up to three cache tiers as follows.
1. The transaction tier cache contains all changes for a single transaction. The

transaction cache contains a working copy of the data until the transaction is
committed. When a client transaction requests data from an ObjectMap, the
transaction is checked first

2. The near cache in the client tier contains a subset of the data from the server
tier. When the transaction tier does not have the data, the data is fetched from
the client tier, if available and inserted into the transaction cache

3. The data grid in the server tier contains the majority of the data and is shared
among all clients. The server tier can be partitioned, which allows a large
amount of data to be cached. When the client near cache does not have the
data, it is fetched from the server tier and inserted into the client cache. The
server tier can also have a Loader plug-in. When the grid does not have the
requested data, the Loader is invoked and the resulting data is inserted from
the backend data store into the grid.

To disable the near cache, set the numberOfBuckets attribute to 0 in the client
override eXtreme Scale descriptor configuration. See the topic on map entry
locking for details on eXtreme Scale lock strategies. The near cache can also be
configured to have a separate eviction policy and different plug-ins using a client
override eXtreme Scale descriptor configuration.

Advantage

v Fast response time because all access to the data is local. Looking for the data in
the near cache first saves a trip to the grid of servers, thus making even the
remote data locally accessible.

Disadvantages

v Increases duration of stale data because the near cache at each tier may be out of
synch with the current data in the grid.

v Relies upon an evictor to invalidate data to avoid running out of memory.

When to use

Use when response time is important and stale data can be tolerated.

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

ObjectGrid

Thread

Application

Figure 5. Near cache

Chapter 6. Planning the WebSphere eXtreme Scale environment 83

Embedded cache
WebSphere eXtreme Scale grids can run within existing processes as embedded
eXtreme Scale servers or you can manage them as external processes.

Embedded grids are useful when you are running in an application server, such as
WebSphere Application Server. You can start eXtreme Scale servers that are not
embedded by using command line scripts and run in a Java process.

Advantages

v Simplified administration since there are less processes to manage.
v Simplified application deployment since the grid is using the client application

classloader.
v Supports partitioning and high availability.

Disadvantages

v Increased the memory footprint in client process since all of the data is
collocated in the process.

v Increase CPU utilization for servicing client requests.
v More difficult to handle application upgrades since clients are using the same

application Java archive files as the servers.
v Less flexible. Scaling of clients and grid servers cannot increase at the same rate.

When servers are externally defined, you can have more flexibility in managing
the number of processes.

When to use

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 6. Embedded cache

84 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Use embedded grids when there is plenty of memory free in the client process for
grid data and potential failover data.

For more information, see the topic on enabling the client invalidation mechanism
in the Administration Guide.

Multi-master data grid replication topologies
Using the multi-master asynchronous replication feature, two or more data grids
can become exact mirrors of one other. This mirroring is accomplished using
asynchronous replication among links connecting the data grids together. Each data
grid is hosted in an independent catalog service domain, with its own catalog
service, container servers, and a unique name. With the multi-master asynchronous
replication feature, you can use links to interconnect a collection of these catalog
service domains. Then, you can synchronize the catalog service domains with
replication over the links. You can construct almost any topology because you
choose how to define links among catalog service domains.

7.1+ Multi-master data grid replication is a significant new feature in Version
7.1. The feature is also called AP (availability and partitioning) replication in the
context of the CAP theorem. The CAP theorem states that a distributed computer
system cannot support more than two of the following three properties:
consistency, availability, and partition tolerance.

See “Initial considerations for multi-master topologies” for map sets that are not
replicated.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. You can use a link between two
catalog service domains to track data changes. For more information about how to
set up communication between catalog service domains for multi-master
replication, see “Available topologies for multi-master replication” on page 87.

Also, depending on the requirements of your environment, you can optimize the
topology design for multi-master replication by taking several factors into
consideration: arbitration, linking, and performance. Read more at “Topology
considerations for multi-master replication” on page 90.

Initial considerations for multi-master topologies
Consider the following issues when you are deciding whether and how to use
multi-master replication topologies.
v Configuring class loaders with multiple catalog service domains

Domains must have access to all classes that are used as keys and values. Any
dependencies must be reflected in all class paths for data grid container JVMs
for all domains. If a CollisionArbiter plug-in retrieves the value for a cache
entry, then the classes for the values must be present for the domain that is
starting the arbiter.

v Avoid loaders

Loaders can be used to interface changes between a data grid and a database. It
is unlikely that all data grids or domains in a topology are collocated
geographically with the same database. WAN latency and other factors might
render this use case undesirable.
Grid preloading also requires careful design. Usually, when a data grid is
restarted, it is preloaded again. Preloading is not necessary or required when
using multi-master replication. As soon as a catalog service domain is online, it

Chapter 6. Planning the WebSphere eXtreme Scale environment 85

automatically reloads itself with the contents of the domains to which it is
linked. As a result, you are not required to initiate a manual preload for a data
grid that is a domain in a multi-master replication topology.
Loaders usually obey insert and update rules. With multi-master replication,
inserts must be treated as merges. When the data is being pulled remotely after
a domain restart, existing data will be merged into the local domain. Because the
data might already have been in the local database, a typical insert fails with a
duplicate key exception in the database. Use merge semantics instead.
WebSphere eXtreme Scale can be configured to do a shard-based preload with
the preload methods on Loader plug-ins. But you should avoid this technique in
a multi-master replication topology. Instead, use a client-based preload when the
topology is first started. The multi-master topology refreshes any restarted
domains with a current copy of what is stored in other domains in the topology.
After domains have been started, the multi-master topology keeps domains
synchronized.

v EntityManager is not supported

A map set containing an entity map is not replicated across catalog service
domains.

v Byte array maps are not supported in releases before Version 7.1.0.2

A map set containing a map that is configured with COPY_TO_BYTES copy
mode is not replicated across catalog service domains.

7.1.0.2+ In Version 7.1.0.2 or later, maps that are configured with
COPY_TO_BYTES copy mode can replicate across catalog service domains. To
enable this function, you must upgrade your entire configuration to Version
7.1.0.2 or later. All catalog servers, clients, and container servers, including
container servers that are running only replica shards, in all domains must be
upgraded. You cannot have COPY_TO_BYTES copy mode enabled on a catalog
service domain that contains any servers that are running a version before
Version 7.1.0.2. To upgrade your catalog service domains to support
COPY_TO_BYTES copy mode, use the following steps:
1. Use the xsadmin -dismissLink command to remove the multi-master link

between your catalog service domains. See “Configuring multi-master
replication topologies” on page 227 for more information about running this
command.

2. Shut down the data grid. You can use the xsadmin -teardown command to
stop a group of catalog and container servers. See “Stopping servers
gracefully with the xsadmin tool” on page 363 or “Starting and stopping
servers in a WebSphere Application Server environment” on page 363 for
more information. the information about stopping servers in the
Administration Guide for more information.

3. Upgrade servers and clients in each domain to Version 7.1.0.2 or later. See
“Updating eXtreme Scale servers” on page 67 for more information.

4. Update your configuration to use the COPY_TO_BYTES copy mode. See the
information about byte array maps in the Programming Guide for more
information about editing the byte array configuration.

5. Restart the data grid. See “Starting stand-alone servers” on page 351 or
“Starting and stopping servers in a WebSphere Application Server
environment” on page 363 for more information.

6. Use the xsadmin -establishLink command to reconnect the catalog service
domains. See “Configuring multi-master replication topologies” on page 227
for more information about running this command. for more information.

86 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

After all of your catalog service domains are upgraded, you cannot start servers
in any domains that are at a level that is lower than Version 7.1.0.2.

v Write-behind is not supported

A map set containing a map that is configured with write-behind support is not
replicated across catalog service domains.

Available topologies for multi-master replication
You have several different options when choosing the topology for your
deployment that incorporates multi-master replication.

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. With a link, two catalog service
domains can communicate data changes. For example, the simplest topology is a
pair of catalog service domains with a single link between them. The catalog
service domains are named alphabetically: A, B, C, and so on, from the left. A link
can cross a wide area network (WAN), spanning large distances. Even if the link is
interrupted, you can still change data in either catalog service domain. The
topology reconciles changes when the link reconnects the catalog service domains.
Links automatically try to reconnect if the network connection is interrupted.

A B

After you set up the links, then eXtreme Scale first tries to make every catalog
service domain identical. Then, eXtreme Scale tries to maintain the identical
conditions as changes occur in any catalog service domain. The goal is for each
catalog service domain to be an exact mirror of every other catalog service domain
connected by the links. The replication links between the catalog service domains
help ensure that any changes made in one domain are copied to the other
domains.

Line topologies

Although it is such a simple deployment, a line topology demonstrates some
qualities of the links. First, it is not necessary for a catalog service domain to be
connected directly to every other catalog service domain to receive changes.
Domain B pulls changes from Domain A. Domain C receives changes from Domain
A through Domain B, which connects Domains A and C. Similarly, Domain D
receives changes from the other domains through Domain C. This ability spreads
the load of distributing changes away from the source of the changes.

A B C D

Notice that if Domain C fails, the following would occur:
1. Domain D would be orphaned until Domain C was restarted

Chapter 6. Planning the WebSphere eXtreme Scale environment 87

2. Domain C would synchronize itself with Domain B, which is a copy of Domain
A

3. Domain D would use Domain C to synchronize itself with changes on Domains
A and B. These changes initially occurred while Domain D was orphaned
(while Domain C was down).

Ultimately, Domains A, B, C, and D would all become identical to one other again.

Ring topologies

Another option you have with multi-master replication is a ring topology, which is
more resilient than the topologies described in the previous sections. A catalog
service domain or a single link can fail. Still, the surviving catalog service domains
can obtain changes by traveling around the ring, away from the failure. Each
catalog service domain has two links to the other catalog service domains. And
each catalog service domain has at most two links, no matter how large the ring
topology. Changes from a particular domain might travel through several domains
before all of them mirror each other. Going through several domains causes
potentially high latency, similar to the processes for a line topology.

You can also deploy a more sophisticated ring topology, with a root catalog service
domain at the center of the ring. The root catalog service domain functions as the
central point of reconciliation. The other catalog service domains act as remote
points of reconciliation for changes occurring in the root catalog service domain.
The root catalog service domain can arbitrate changes among the catalog service
domains. If a ring topology contains more than one ring around a root catalog
service domain, the domain can only arbitrate changes among the innermost ring.
However, the results of the arbitration spread throughout the catalog service
domains in the other rings.

88 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Hub-and-spoke topologies

With a hub-and-spoke topology, changes travel through a hub catalog service
domain. Because the hub is the only intermediate catalog service domain that is
specified, hub-and-spoke topologies have lower latency. The hub domain is
connected to every spoke domain through a link. The hub distributes changes
among the catalog service domains. The hub acts as a point of reconciliation for
collisions. In an environment with a high update rate, the hub might require run
on more hardware than the spokes to remain synchronized. WebSphere eXtreme
Scale is designed to scale linearly, meaning you can make the hub larger, as
needed, without difficulty. However, if the hub fails, then changes are not
distributed until the hub restarts. Any changes on the spoke catalog service
domains will be distributed after the hub is reconnected.

A

B

C

HubD

You can also use a strategy with fully replicated clients, a topology variation which
uses a pair of eXtreme Scale servers running as a hub. Every client creates a
self-contained single container data grid with a catalog in the client JVM. A client
uses its data grid to connect to the hub catalog. This connection causes the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration domain, distributing
changes to all connected clients. The fully replicated clients topology provides a
reliable L2 cache for an object relational mapper, such as OpenJPA. Changes are
distributed quickly among client JVMs through the hub. If the cache size can be
contained within the available heap space, the topology is a reliable architecture
for this style of L2.

Use multiple partitions to scale the hub domain on multiple JVMs, if necessary.
Because all of the data still must fit in a single client JVM, multiple partitions

Chapter 6. Planning the WebSphere eXtreme Scale environment 89

increase the capacity of the hub to distribute and arbitrate changes. However,
having multiple partitions does not change the capacity of a single domain.

Tree topologies

You can also use an acyclic directed tree. An acyclic tree has no cycles or loops,
and a directed setup limits links to existing only between parents and children.
You can use the tree topology when you have many catalog service domains such
that the ring topology would overwork the hub. You can also use a tree if you
require being able to add child catalog service domains without updating the root
catalog service domain.

A tree topology can still have a central point of reconciliation in the root catalog
service domain. The second level can still function as a remote point of
reconciliation for changes occurring in the catalog service domain beneath them.
The root catalog service domain can arbitrate changes between the catalog service
domains on the second level only. You can also use N-ary trees, each of which
have N children at each level. Each catalog service domain connects out to n links.

Topology considerations for multi-master replication
When implementing multi-master replication, you must consider aspects in your
design such as: arbitration, linking, and performance.

Linking considerations in topology design

Ideally, a topology includes the minimum number of links while optimizing
trade-offs among change latency, fault tolerance, and performance characteristics.
v Change latency

Change latency is determined by the number of intermediate catalog service
domains a change must go through before arriving at a specific catalog service
domain.
A topology has the best change latency when it eliminates intermediate catalog
service domains by linking every catalog service domain to every other catalog
service domain. However, a catalog service domain must perform replication
work in proportion to its number of links. For large topologies, the sheer
number of links to be defined can cause an administrative burden.

90 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The speed at which a change is copied to other catalog service domains depends
on additional factors, such as:
– Processor and network bandwidth on the source catalog service domain
– The number of intermediate catalog service domains and links between the

source and target catalog service domain
– The processor and network resources available to the source, target, and

intermediate catalog service domains
v Fault tolerance

Fault tolerance is determined by how many paths exist between two catalog
service domains for change replication.
If you have only one link between a given pair of catalog service domains, a link
failure disallows propagation of changes. Similarly, changes are not propagated
between catalog service domains if any of the intermediate domains experiences
link failure. Your topology could have a single link from one catalog service
domain to another such that the link passes through intermediate domains. If so,
then changes are not propagated if any of the intermediate catalog service
domains is down.
Consider the line topology with four catalog service domains A, B, C, and D:

A B C D

If any of these conditions hold, Domain D does not see any changes from A:
– Domain A is up and B is down
– Domains A and B are up and C is down
– The link between A and B is down
– The link between B and C is down
– The link between C and D is down

In contrast, with a ring topology, each catalog service domain can receive
changes from either direction.

Chapter 6. Planning the WebSphere eXtreme Scale environment 91

For example, if a given catalog service in your ring topology is down, then the
two adjacent domains can still pull changes directly from each other.
All changes are propagated through the hub. Thus, as opposed to the line and
ring topologies, the hub-and-spoke design is susceptible to breakdown if the hub
fails.

A

B

C

HubD

92 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

A single catalog service domain is resilient to a certain amount of service loss.
However, larger failures such as wide network outages or loss of links between
physical data centers can disrupt any of your catalog service domains.

v Linking and performance

The number of links defined on a catalog service domain affects performance.
More links use more resources and replication performance can drop as a result.
The ability to retrieve changes for a domain A through other domains effectively
off-loads domain A from replicating its transactions everywhere. The change
distribution load on a domain is limited by the number of links it uses, not how
many domains are in the topology. This load property provides scalability, so the
domains in the topology can share the burden of change distribution.
A catalog service domain can retrieve changes indirectly through other catalog
service domains. Consider a line topology with five catalog service domains.
A <=> B <=> C <=> D <=> E

– A pulls changes from B, C, D, and E through B
– B pulls changes from A and C directly, and changes from D and E through C
– C pulls changes from B and D directly, and changes from A through B and E

through D
– D pulls changes from C and E directly, and changes from A and B through C
– E pulls changes from D directly, and changes from A, B, and C through D
The distribution load on catalog service domains A and E is lowest, because they
each have a link only to a single catalog service domain. Domains B, C, and D
each have a link to two domains. Thus, the distribution load on domains B, C,
and D is double the load on domains A and E. The workload depends on the
number of links in each domain, not on the overall number of domains in the
topology. Thus, the described distribution of loads would remain constant, even
if the line contained 1000 domains.

Arbitration considerations in topology design

Change collisions might occur if the same records can be changed simultaneously
in two places. Set up each catalog service domain to have about the same amount
of processor, memory, network resources. You might observe that catalog service
domains performing change collision handling (arbitration) use more resources
than other catalog service domains. Collisions are detected automatically. They are
handled with one of two mechanisms:
v Default collision arbiter The default protocol is to use the changes from the

lexically lowest named catalog service domain. For example, if catalog service
domain A and B generate a conflict for a record, then the change from catalog
service domain B is ignored. Catalog service domain A keeps its version and the
record in catalog service domain B is changed to match the record from catalog
service domain A. This behavior applies as well for applications where users or
sessions are normally bound or have affinity with one of the data grids.

v Custom collision arbiter Applications can provide a custom arbiter. When a
catalog service domain detects a collision, it starts the arbiter. For information
about developing a useful custom arbiter, see Developing custom arbiters for
multi-master replication.

For topologies in which collisions are possible, consider implementing a
hub-and-spoke topology or a tree topology. These two topologies are conducive to
avoiding constant collisions, which can happen in the following scenarios:
1. Multiple catalog service domains experience a collision
2. Each catalog service domain handles the collision locally, producing revisions

Chapter 6. Planning the WebSphere eXtreme Scale environment 93

3. The revisions collide, resulting in revisions of revisions

To avoid collisions, choose a specific catalog service domain, called an arbitration
catalog service domain as the collision arbiter for a subset of catalog service domains.
For example, a hub-and-spoke topology might use the hub as the collision handler.
The spoke collision handler ignores any collisions that are detected by the spoke
catalog service domains. The hub catalog service domain creates revisions,
preventing unexpected collision revisions. The catalog service domain that is
assigned to handle collisions must link to all of the domains for which it is
responsible for handling collisions. In a tree topology, any internal parent domains
handle collisions for their immediate children. In contrast, if you use a ring
topology, you cannot designate one catalog service domain in the ring as the
arbiter.

The following table summarizes the arbitration approaches that are most
compatible with various topologies.

Table 7. Arbitration approaches. This table states whether application arbitration is
compatible with various technologies.

Topology
Application
ration? Notes

A line of two catalog
service domains

Yes Choose one catalog service domain as the
arbiter.

A line of three catalog
service domains

Yes The middle catalog service domain must be
the arbiter. Think of the middle catalog
service domain as the hub in a simple
hub-and-spoke topology.

A line of more than three
catalog service domains

No Application arbitration is not supported.

A hub with N spokes Yes Hub with links to all spokes must be the
arbitration catalog service domain.

A ring of N catalog
service domains

No Application arbitration is not supported.

An acyclic, directed tree
(N-ary tree)

Yes All root nodes must rate their direct
descendants only.

Multi-master replication performance considerations

Take the following limitations into account when using multi-master replication
topologies:
v Change distribution tuning (Discussed in previous section, "Linking and

performance.")
v Replication link performance WebSphere eXtreme Scale creates a single TCP/IP

socket between any pair of JVMs. All traffic between the JVMs occurs through
the single socket, including traffic from multi-master replication. Catalog service
domains are hosted on at least n container JVMs, providing at least n TCP links
to peer catalog service domains. Thus, the catalog service domains with larger
numbers of containers have higher replication performance levels. More
containers require more processor and network resources.

v TCP sliding window tuning and RFC 1323 RFC 1323 support on both ends of a
link yields more data for a round trip. This support results in higher throughput,
expanding the capacity of the window by a factor of about 16,000.

94 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ietf.org/rfc/rfc1323.txt

Recall that TCP sockets use a sliding window mechanism to control the flow of
bulk data. This mechanism typically limits the socket to 64 KB for a round-trip
interval. If the round-trip interval is 100 ms, then the bandwidth is limited to
640 KB/second without additional tuning. Fully using the bandwidth available
on a link might require tuning that is specific to an operating system. Most
operating systems include tuning parameters, including RFC 1323 options, to
enhance throughput over high-latency links.
Several factors can affect replication performance:
– The speed at which eXtreme Scale retrieves changes.
– The speed at which eXtreme Scale can service retrieve replication requests.
– The sliding window capacity.
– With network buffer tuning on both sides of a link, eXtreme Scale retrieves

changes over the socket efficiently.
v Object Serialization All data must be serializable. If a catalog service domain is

not using COPY_TO_BYTES, then the catalog service domain must use Java
serialization or ObjectTransformers to optimize serialization performance.

v Compression WebSphere eXtreme Scale compresses all data sent between
catalog service domains by default. Disabling compression is not currently
available.

v Memory tuning The memory usage for a multi-master replication topology is
largely independent of the number of catalog service domains in the topology.
Multi-master replication adds a fixed overhead per Map entry to handle
versioning. Each container also tracks a fixed amount of data for each catalog
service domain in the topology. A topology with two catalog service domains
uses approximately the same memory as a topology with 50 catalog service
domains. WebSphere eXtreme Scale does not use replay logs or similar queues in
its implementation. Thus, there is no recovery structure ready in the case that a
replication link is unavailable for a substantial period and later restarts.

Catalog service
The catalog service hosts logic that should be idle during a steady state and has
little influence on scalability. The catalog service is built to service hundreds of
containers becoming available simultaneously and runs services to manage the
containers.

The catalog responsibilities consist of the following services:

Location service
The location service provides locality for clients that are looking for
containers hosting applications and for containers that are looking to
register hosted applications with the placement service. The location
service runs in all of the grid members to scale out this function.

Catalog Service

Location Service

Core Group Mgr

Placement Service

Administration

JVM

Figure 7. Catalog service

Chapter 6. Planning the WebSphere eXtreme Scale environment 95

Placement service
The placement service is the central nervous system for the grid and is
responsible for allocating individual shards to their host container. The
placement service runs as a One of N elected service in the cluster. Because
the One of N policy is used, there is always exactly one instance of the
placement service running. If that instance should stop, another process
takes over. All states of the catalog service are replicated across all servers
hosting the catalog service for redundancy.

Core group manager
The core group manager manages peer grouping for health monitoring,
organizes containers into small groups of servers, and automatically
federates the groups of servers. When a container first contacts the catalog
service, the container waits to be assigned to either a new or an existing
group of several Java virtual machines (JVM). Each group of Java virtual
machines monitors the availability of each of its members through
heartbeating. One of the group members relays availability information to
the catalog service to allow for reacting to failures by reallocation and
route forwarding.

Administration
The four stages of administering your WebSphere eXtreme Scale
environment are planning, deploying, managing, and monitoring.

For availability, configure a catalog service domain. A catalog service domain
consists of multiple Java virtual machines, including a master JVM and a number
of backup Java virtual machines.

High-availability catalog service
A catalog service domain is the data grid of catalog servers you are using, which
retain topology information for all of the containers in your eXtreme Scale
environment. The catalog service controls balancing and routing for all clients. To
deploy eXtreme Scale as an in-memory database processing space, you must
cluster the catalog service into a catalog service domain for high availability.

Components of the catalog service domain

When multiple catalog servers start, one of the servers is elected as the master
catalog server that accepts Internet Inter-ORB Protocol (IIOP) heartbeats and
handles system data changes in response to any catalog service or container
changes.

When clients contact any one of the catalog servers, the routing table for the
catalog service domain is propagated to the clients through the Common Object
Request Broker Architecture (CORBA) service context.

Figure 8. Catalog service domain

96 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Configure at least three catalog servers. Catalog servers must be installed on
separate nodes or separate installation images from your container servers to
ensure that you can seamlessly upgrade your servers at a later date. If your
configuration has zones, you can configure one catalog server per zone.

When an eXtreme Scale server and container contacts one of the catalog servers,
the routing table for the catalog service domain is also propagated to the eXtreme
Scale server and container through the CORBA service context. Furthermore, if the
contacted catalog server is not currently the master catalog server, the request is
automatically rerouted to the current master catalog server and the routing table
for the catalog server is updated.

Note: A catalog service domain and the container server data grid are very
different. The catalog service domain is for high availability of your system data.
The container server data grid is for your data high availability, scalability, and
workload management. Therefore, two different routing tables exist: the routing
table for the catalog service domain and the routing table for the container server
data grid shards.

The catalog service domain responsibilities are divided into a series of services:

Core group manager

The catalog service uses the high availability manager (HA manager) to
group processes together for availability monitoring. Each grouping of the
processes is a core group. With eXtreme Scale, the core group manager
dynamically groups the processes together. These processes are kept small
to allow for scalability. Each core group elects a leader that has the added
responsibility of sending status to the core group manager when individual
members fail. The same status mechanism is used to discover when all the
members of a group fail, which causes the communication with the leader
to fail.

The core group manager is a fully automatic service responsible for
organizing containers into small groups of servers that are then
automatically loosely federated to make an ObjectGrid. When a container
first contacts the catalog service, it waits to be assigned to either a new or
existing group. An eXtreme Scale deployment consists of many such
groups, and this grouping is a key scalability enabler. Each group is a
group of Java virtual machines that uses heart beating to monitor the
availability of the other groups. One of these group members is elected the
leader and has an added responsibility to relay availability information to
the catalog service to allow for failure reaction by reallocation and route
forwarding.

Placement service
The catalog service manages the placement of shards across the set of
available container servers. The placement service is responsible for
maintaining balance across physical resources. The placement service is
responsible for allocating individual shards to their host container. The
placement service runs as a One of N elected service in the data grid, so
exactly one instance of the service is running. If that instance fails, another
process is then elected and it takes over. For redundancy, the state of the
catalog service is replicated across all the servers that are hosting the
catalog service.

Administration
The catalog service is also the logical entry point for system administration.

Chapter 6. Planning the WebSphere eXtreme Scale environment 97

The catalog service hosts an Managed Bean (MBean) and provides Java
Management Extensions (JMX) URLs for any of the servers that the catalog
service is managing.

Location service
The location service acts as the touchpoint for both clients that are
searching for the containers that host the application they seek, as well as
for the container servers that are registering hosted applications with the
placement service. The location service runs on all of the data grid
members to scale out this function.

Catalog service domain deployment

The catalog service hosts logic that is typically idle during steady states. As a
result, the catalog service minimally influences scalability. The service is built to
service hundreds of containers that become available simultaneously. For
availability, configure the catalog service into a data grid.

Planning

After a catalog service domain is started, the members of the data grid bind
together. Carefully plan your catalog service domain topology, because you cannot
modify your catalog service domain configuration at run time. Spread out the data
grid as diversely as possible to prevent errors.

Starting a catalog service domain

For more information about creating a catalog service domain, see .

Connecting eXtreme Scale containers embedded in WebSphere Application
Server to a stand-alone catalog service domain

You can configure eXtreme Scale containers that are embedded in a WebSphere
Application Server environment to connect to a stand-alone catalog service
domain.

v 7.1+ You can create catalog service domains in the WebSphere Application
Server administrative console. See .

v (deprecated) In previous releases, you connected the catalog services into a
catalog service domain by creating a custom property. This property can still be
used, but is deprecated. For more information about this custom property, see
the information about starting the catalog service process in a WebSphere
Application Server in the Administration Guide..

Note: Server name collision: Because this property is used to start the eXtreme
Scale catalog server as well as to connect to it, catalog servers must not have the
same name as any WebSphere Application Server server.

See the information about catalog server quorums in the Product Overview for more
information.

Catalog server quorums
When the quorum mechanism is enabled, all the catalog servers in the quorum
must be available for placement operations to occur in the data grid.
v “Important terms” on page 99

98 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v “Heartbeats and failure detection”
v “Quorum behavior” on page 100

– “Container behavior during quorum loss” on page 102
v “Client behavior during quorum loss” on page 103

Important terms
v Heartbeat: A signal that is sent between servers to convey that they are running.
v Quorum: A group of catalog servers that communicate and conduct placement

operations in the data grid. This group consists of all of the catalog servers in
the data grid, unless you manually override the quorum mechanism with
administrative actions.

v Brownout: A temporary loss of connectivity between one or more servers.
v Blackout: A permanent loss of connectivity between one or more servers.
v Data center: A geographically located group of servers that are generally

connected with a local area network (LAN).
v Zone: A zone is a configuration option that is used to group servers together

that share some physical characteristic. Examples of zones for a group of servers
include: a data center, an area network, a building, or a floor of a building.

v Heartbeat: Heartbeats are used to determine if a given Java virtual machine
(JVM) is running.

Heartbeats and failure detection

Container servers and core groups

The catalog service places container servers into core groups of a limited size. A
core group tries to detect the failure of its members. A single member of a core
group is elected to be the core group leader. The core group leader periodically
tells the catalog service that the core group is alive and reports any membership
changes to the catalog service. A membership change can be a JVM failing or a
newly added JVM that joins the core group.

If a JVM socket is closed, that JVM is regarded as being no longer available. Each
core group member also heart beats over these sockets at a rate determined by
configuration. If a JVM does not respond to these heartbeats within a configured
maximum time period, then the JVM is considered to be no longer available, which
triggers a failure detection.

If the catalog service marks a container JVM as failed and the container server is
later reported as being available, the container JVM is told to shut down the
WebSphere eXtreme Scale container servers. A JVM in this state is not visible in
xsadmin command queries. Messages in the logs of the container JVM indicate that
the container JVM has failed. You must manually restart these JVMs.

If the core group leader cannot contact any member, it continues to retry contacting
the member.

The complete failure of all members of a core group is also a possibility. If the
entire core group has failed, it is the responsibility of the catalog service to detect
this loss.

Catalog service domain heart-beating

Chapter 6. Planning the WebSphere eXtreme Scale environment 99

The catalog service domain looks like a private core group with a static
membership and a quorum mechanism. It detects failures the same way as a
normal core group. However, the behavior is modified to include quorum logic.
The catalog service also uses a less aggressive heart-beating configuration.

Failure detection

WebSphere eXtreme Scale detects when processes terminate through abnormal
socket closure events. The catalog service is notified immediately when a process
terminates.

For more information about configuring heart-beating, see the information about
configuring failover detection in the Administration Guide.

Quorum behavior

Normally, the members of the catalog service have full connectivity. The catalog
service domain is a static set of JVMs. WebSphere eXtreme Scale expects all
members of the catalog service to be online. When all the members are online, the
catalog service has quorum. The catalog service responds to container events only
while the catalog service has quorum.

Reasons for quorum loss

WebSphere eXtreme Scale expects to lose quorum for the following scenarios:
v A catalog service JVM member fails
v Network brown out occurs
v Data center loss occurs

WebSphere eXtreme Scale does not lose quorum in the following scenario:
v Stopping a catalog server instance with the stopOgServer command or any other

administrative actions. The system knows that the server instance has stopped,
which is different from a JVM failure or brownout.

If the catalog service loses a quorum, it waits for quorum to be reestablished.
While the catalog service does not have a quorum, it ignores events from container
servers. Container servers continue to try any requests that are rejected by the
catalog server during this time. Heart-beating is suspended until a quorum is
reestablished.

Quorum loss from JVM failure

A catalog server that fails causes quorum to be lost. If a JVM fails, you must
override quorum as fast as possible. The failed catalog service cannot rejoin the
data grid until quorum has been overridden.

Quorum loss from network brownout

WebSphere eXtreme Scale is designed to expect the possibility of brownouts. A
brownout is when a temporary loss of connectivity occurs between data centers.
Brown outs are usually transient and clear within seconds or minutes. While
WebSphere eXtreme Scale tries to maintain normal operation during the brownout
period, a brownout is regarded as a single failure event. The failure is expected to
be fixed and then normal operation resumes with no actions necessary.

100 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

A long duration brown out can be classified as a blackout only through user
intervention. Overriding quorum on one side of the brownout is required in order
for the event to be classified as a blackout.

Catalog service JVM cycling

If a catalog server is stopped by using the stopOgServer command, then the
quorum drops to one less server. The remaining servers still have quorum.
Restarting the catalog server sets quorum back to the previous number.

Consequences of lost quorum

If a container JVM was to fail while quorum is lost, recovery does not occur until
the brownout recovers. In a blackout scenario, the recovery does not occur until
you run the override quorum command. Quorum loss and a container failure as
are considered a double failure, which is a rare event. Because of the double
failure, applications might lose write access to data that was stored on the failed
JVM. When quorum is restored, the normal recovery occurs.

Similarly, if you attempt to start a container during a quorum loss event, the
container does not start.

Full client connectivity is allowed during quorum loss. If no container failures or
connectivity issues happen during the quorum loss event then clients can still fully
interact with the container servers.

If a brownout occurs, then some clients might not have access to primary or replica
copies of the data until the brownout clears.

New clients can be started because a catalog service JVM must exist in each data
center. Therefore, at least one catalog server can be reached by a client even during
a brownout event.

Quorum recovery

If quorum is lost for any reason, when quorum is reestablished, a recovery
protocol is run. When the quorum loss event occurs, all liveness checking for core
groups is suspended and failure reports are also ignored. After quorum is back,
then the catalog service checks all the core groups to immediately determine their
membership. Any shards previously hosted on container JVMs reported as failed
are recovered. If primary shards were lost, then surviving replicas are promoted to
being primary shards. If replica shards were lost then additional replicas shards are
created on the survivors.

Overriding quorum

Override quorum only when a data center failure has occurred. Quorum loss due
to a catalog service JVM failure or a network brownout recovers automatically after
the catalog service JVM is restarted or the network brownout ends.

Administrators are the only ones with knowledge of a data center failure.
WebSphere eXtreme Scale treats a brownout and a blackout similarly. You must
inform the WebSphere eXtreme Scale environment of such failures with the
xsadmin command to override quorum. This command tells the catalog service to
assume that quorum is achieved with the current membership, and full recovery

Chapter 6. Planning the WebSphere eXtreme Scale environment 101

takes place. When issuing an override quorum command, you are guaranteeing
that the JVMs in the failed data center have truly failed and do not have a chance
of recovering.

The following list considers some scenarios for overriding quorum. In this
scenario, you have three catalog servers: A, B, and C.
v Brown out: The C catalog server is isolated temporarily. The catalog service

loses quorum and waits for the brownout to complete. After the brownout is
over, the C catalog server rejoins the catalog service domain and quorum is
reestablished. Your application sees no problems during this time.

v Temporary failure: During a temporary failure, the C catalog server fails and the
catalog service loses quorum. You must override quorum. After quorum is
reestablished, you can restart the C catalog server. The C catalog server joins the
catalog service domain again when it restarts. Your application sees no problems
during this time.

v Data center failure: You verify that the data center has failed and that it has
been isolated on the network. Then you issue the xsadmin override quorum
command. The surviving two data centers run a full recovery by replacing
shards that were hosted in the failed data center. The catalog service is now
running with a full quorum of the A and B catalog servers. The application
might see delays or exceptions during the interval between the start of the
blackout and when quorum is overridden. After quorum is overridden, the data
grid recovers and normal operation is resumed.

v Data center recovery: The surviving data centers are already running with
quorum overridden. When the data center that contains the C catalog server is
restarted, all JVMs in the data center must be restarted. Then the C catalog
server joins the existing catalog service domain again and the quorum setting
reverts to the normal situation with no user intervention.

v Data center failure and brownout: The data center that contains the C catalog
server fails. Quorum is overridden and recovered on the remaining data centers.
If a brownout between the A and B catalog servers occurs, the normal brownout
recovery rules apply. After the brownout clears, quorum is reestablished and
necessary recovery from the quorum loss occurs.

Container behavior during quorum loss

Containers host one or more shards. Shards are either primaries or replicas for a
specific partition. The catalog service assigns shards to a container and the
container server uses that assignment until new instructions arrive from the catalog
service. For example, a primary shard continues to try communication with its
replica shards during network brownouts, until the catalog service provides further
instructions to the primary shard.

Synchronous replica behavior

The primary shard can accept new transactions while the connection is broken if
the number of replicas online are at least at the minsync property value for the
map set. If any new transactions are processed on the primary shard while the link
to the synchronous replica is broken, the replica is and resynchronized with the
current state of the primary when the link is reestablished.

Do not configure synchronous replication between data centers or over a
WAN-style link.

Asynchronous replica behavior

102 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

While the connection is broken, the primary shard can accept new transactions.
The primary shard buffers the changes up to a limit. If the connection with the
replica is reestablished before that limit is reached then the replica is updated with
the buffered changes. If the limit is reached, then the primary destroys the buffered
list and when the replica reattaches then it is cleared and resynchronized.

Client behavior during quorum loss

Clients are always able to connect to the catalog server to bootstrap to the data
grid whether the catalog service domain has quorum or not. The client tries to
connect to any catalog server instance to obtain a route table and then interact with
the data grid. Network connectivity might prevent the client from interacting with
some partitions due to network setup. The client might connect to local replicas for
remote data if it has been configured to do so. Clients cannot update data if the
primary partition for that data is not available.

Container servers, partitions, and shards
The container server stores application data for the data grid. This data is generally
broken into parts, which are called partitions, which are hosted across multiple
container servers. Each container server in turn hosts a subset of the complete data.
A JVM might host one or more container servers and each container server can
host multiple shards.

Remember: Plan out the heap size for the container servers, which host all of your
data. Configure the heap settings accordingly.

Partitions host a subset of the data in the grid. WebSphere eXtreme Scale
automatically places multiple partitions in a single container server and spreads
the partitions out as more container servers become available.

Important: Choose the number of partitions carefully before final deployment
because the number of partitions cannot be changed dynamically. A hash
mechanism is used to locate partitions in the network and eXtreme Scale cannot
rehash the entire data set after it has been deployed. As a general rule, you can
overestimate the number of partitions

ObjectGrid Container

JVM

Shard Shard

Shard Shard

Figure 9. Container server

Chapter 6. Planning the WebSphere eXtreme Scale environment 103

Shards are instances of partitions and have one of two roles: primary or replica.
The primary shard and its replicas make up the physical manifestation of the
partition. Every partition has several shards that each host all of the data contained
in that partition. One shard is the primary, and the others are replicas, which are
redundant copies of the data in the primary shard. A primary shard is the only
partition instance that allows transactions to write to the cache. A replica shard is a
"mirrored" instance of the partition. It receives updates synchronously or
asynchronously from the primary shard. The replica shard only allows transactions
to read from the cache. Replicas are never hosted in the same container server as
the primary and are not normally hosted on the same machine as the primary.

To increase the availability of the data, or increase persistence guarantees, replicate
the data. However, replication adds cost to the transaction and trades performance
in return for availability. With eXtreme Scale, you can control the cost as both
synchronous and asynchronous replication is supported, as well as hybrid
replication models using both synchronous and asynchronous replication modes. A
synchronous replica shard receives updates as part of the transaction of the
primary shard to guarantee data consistency. A synchronous replica can double the
response time because the transaction has to commit on both the primary and the
synchronous replica before the transaction is complete. An asynchronous replica
shard receives updates after the transaction commits to limit impact on
performance, but introduces the possibility of data loss as the asynchronous replica
can be several transactions behind the primary.

JVM

Partition 1

Partition 2

Server Container Server Container

JVM

Primary Shard

Primary Shard

Replica Shard

Replica Shard

Figure 10. Partition

Map Map

Figure 11. Shard

104 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Capacity planning
If you have an initial data set size and a projected data set size, you can plan the
capacity that you need to run WebSphere eXtreme Scale. Although such planning
helps you deploy eXtreme Scale efficiently for future changes, it allows you to
maximize the elasticity of eXtreme Scale which you would not have with a
different scenario such as an in-memory database or other type of database.

Sizing memory and partition count calculation
You can calculate the amount of memory and partitions needed for your specific
configuration.

WebSphere eXtreme Scale stores data within the address space of Java virtual
machines (JVM). Each JVM provides processor space for servicing create, retrieve,
update, and delete calls for the data that is stored in the JVM. In addition, each
JVM provides memory space for data entries and replicas. Java objects vary in size,
therefore you must make a measurement to make an estimate of how much
memory you need.

To size the memory that you need, load your application data into a single JVM.
When the heap usage reaches 60%, note the number of objects that are used. This
number is the maximum recommended object count for each of your Java virtual
machines. To get the most accurate sizing, use realistic data and include any
defined indexes in your sizing because indexes also consume memory. The best
way to size memory use is to run garbage collection verbosegc output because this
output gives you the numbers after garbage collection. You can query the heap
usage at any given point through MBeans or programmatically, but those queries
give you only a current snapshot of the heap. This snapshot might include
uncollected garbage, so using that method is not an accurate indication of the
consumed memory.

Scaling up the configuration

Number of shards per partition (numShardsPerPartition value)

To calculate the number of shards per partition, or the numShardsPerPartition
value, add 1 for the primary shard plus the total number of replica shards you
want.
numShardsPerPartition = 1 + total_number_of_replicas

ObjectGrid

Figure 12. ObjectGrid

Chapter 6. Planning the WebSphere eXtreme Scale environment 105

Number of Java virtual machines (minNumJVMs value)

To scale up your configuration, first decide on the maximum number of objects
that need to be stored in total. To determine the number of Java virtual machines
you need, use the following formula:
minNumJVMS=(numShardsPerPartition * numObjs) / numObjsPerJVM

Round this value up to the nearest integer value.

Number of shards (numShards value)

At the final growth size, use 10 shards for each JVM. As described before, each
JVM has one primary shard and (N-1) shards for the replicas, or in this case, nine
replicas. Because you already have a number of Java virtual machines to store the
data, you can multiply the number of Java virtual machines by 10 to determine the
number of shards:
numShards = minNumJVMs * 10 shards/JVM

Number of partitions

If a partition has one primary shard and one replica shard, then the partition has
two shards (primary and replica). The number of partitions is the shard count
divided by 2, rounded up to the nearest prime number. If the partition has a
primary and two replicas, then the number of partitions is the shard count divided
by 3, rounded up to the nearest prime number.
numPartitions = numShards / numShardsPerPartition

Example of scaling

In this example, the number of entries begins at 250 million. Each year, the number
of entries grows about 14%. After seven years, the total number of entries is 500
million, so you must plan your capacity accordingly. For high availability, a single
replica is needed. With a replica, the number of entries doubles, or 1,000,000,000
entries. As a test, 2 million entries can be stored in each JVM. Using the
calculations in this scenario the following configuration is needed:
v 500 Java virtual machines to store the final number of entries.
v 5000 shards, calculated by multiplying 500 Java virtual machines by 10.
v 2500 partitions, or 2503 as the next highest prime number, calculated by taking

the 5000 shards, divided by two for primary and replica shards.

Starting configuration

Based on the previous calculations, start with 250 Java virtual machines and grow
toward 500 Java virtual machines over five years. With this configuration, you can
manage incremental growth until you arrive at the final number of entries.

In this configuration, about 200,000 entries are stored per partition (500 million
entries divided by 2503 partitions). Set the numberOfBuckets parameter on the map
that holds the entries to the closest higher prime number, in this example 70887,
which keeps the ratio around three.

When the maximum number of Java virtual machines is reached

When you reach your maximum number of 500 Java virtual machines, you can still
grow your data grid. As the number of Java virtual machines grows beyond 500,

106 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

the shard count begins to drop below 10 for each JVM, which is below the
recommended number. The shards start to become larger, which can cause
problems. Repeat the sizing process considering future growth again, and reset the
partition count. This practice requires a full data grid restart, or an outage of your
data grid.

Number of servers

Attention: Do not use paging on a server under any circumstances.

A single JVM uses more memory than the heap size. For example, 1 GB of heap for
a JVM actually uses 1.4 GB of real memory. Determine the available free RAM on
the server. Divide the amount of RAM by the memory per JVM to get the
maximum number of Java virtual machines on the server.

Sizing CPU per partition for transactions
Although a major functionality of eXtreme Scale is its ability for elastic scaling, it is
also important to consider sizing and to adjust the ideal number of CPUs to scale
up.

Processor costs include:
v Cost of servicing create, retrieve, update, and delete operations from clients.
v Cost of replication from other Java virtual machines.
v Cost of invalidation.
v Cost of eviction policy.
v Cost of garbage collection.
v Cost of application logic.

Java virtual machines per server

Use two servers and start the maximum JVM count per server. Use the calculated
partition counts from the previous section. Then, preload the Java virtual machines
with enough data to fit on these two computers only. Use a separate server as a
client. Run a realistic transaction simulation against this data grid of two servers.

To calculate the baseline, try to saturate the processor usage. If you cannot saturate
the processor, then it is likely that the network is saturated. If the network is
saturated, add more network cards and round robin the Java virtual machines over
the multiple network cards.

Run the computers at 60% processor usage, and measure the create, retrieve,
update, and delete transaction rate. This measurement provides the throughput on
two servers. This number doubles with four servers, doubles again at 8 servers,
and so on. This scaling assumes that the network capacity and client capacity is
also able to scale.

As a result, eXtreme Scale response time should be stable as the number of servers
is scaled up. The transaction throughput should scale linearly as computers are
added to the data grid.

Chapter 6. Planning the WebSphere eXtreme Scale environment 107

Sizing CPUs for parallel transactions
Single-partition transactions have throughput scaling linearly as the data grid
grows. Parallel transactions are different from single-partition transactions because
they touch a set of the servers (this can be all of the servers).

If a transaction touches all of the servers, then the throughput is limited to the
throughput of the client that initiates the transaction or the slowest server touched.
Larger data grids spread the data out more and provide more processor space,
memory, network, and so on. However, the client must wait for the slowest server
to respond, and the client must consume the results of the transaction.

When a transaction touches a subset of the servers, M out of N servers get a
request. The throughput is then N divided by M times faster than the throughput
of the slowest server. For example, if you have 20 servers and a transaction that
touches 5 servers, then the throughput is 4 times the throughput of the slowest
server in the data grid.

When a parallel transaction completes, the results are sent to the client thread that
started the transaction. This client must then aggregate the results single threaded.
This aggregation time increases as the number of servers touched for the
transaction grows. However, this time depends on the application because it is
possible that each server returns a smaller result as the data grid grows.

Typically, parallel transactions touch all of the servers in the data grid because
partitions are uniformly distributed over the grid. In this case, throughput is
limited to the first case.

Summary

With this sizing, you have three metrics, as follows.
v Number of partitions.
v Number of servers that are needed for the memory that is required.
v Number of servers that are needed for the required throughput.

If you need 10 servers for memory requirements, but you are getting only 50% of
the needed throughput because of the processor saturation, then you need twice as
many servers.

For the highest stability, you should run your servers at 60% processor loading and
JVM heaps at 60% heap loading. Spikes can then drive the processor usage to
80–90%, but do not regularly run your servers higher than these levels.

Dynamic cache capacity planning
The Dynamic Cache API is available to Java EE applications that are deployed in
WebSphere Application Server. The dynamic cache can be leveraged to cache
business data, generated HTML, or to synchronize the cached data in the cell by
using the data replication service (DRS).

Overview

All dynamic cache instances created with the WebSphere eXtreme Scale dynamic
cache provider are highly available by default. The level and memory cost of high
availability depends on the topology used.

108 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

When using the embedded topology, the cache size is limited to the amount of free
memory in a single server process, and each server process stores a full copy of the
cache. As long as a single server process continues to run, the cache survives. The
cache data will only be lost if all servers that access the cache are shut down.

For caching using the embedded partitioned topology, the cache size is limited to
an aggregate of the free space available in all server processes. By default, the
eXtreme Scale dynamic cache provider uses 1 replica for every primary shard, so
each piece of cached data is stored twice.

Use the following formula A to determine the capacity of an embedded partitioned
cache.

Formula A

F * C / (1 + R) = M

Where:
v F = Free memory per container process
v C = number of containers
v R = number of replicas
v M = Total size of the cache

For a WebSphere Application Server Network Deployment data grid that has 256
MB of available space in each process, with 4 server processes total, a cache
instance across all of those servers could store up to 512 megabytes of data. In this
mode, the cache can survive one server crashing without losing data. Also, up to
two servers could be shut down sequentially without losing any data. So, for the
previous example, the formula is as follows:

256mb * 4 containers/ (1 primary + 1 replica) = 512mb.

Caches using the remote topology have similar sizing characteristics as caches
using embedded partitioned, but they are limited by the amount of available space
in all eXtreme Scale container processes.

In remote topologies, it is possible to increase the number of replicas to provide a
higher level of availability at the cost of additional memory overhead. In most
dynamic cache applications this should be unnecessary, but you can edit the
dynacache-remote-deployment.xml file to increase the number of replicas.

Use the following formulas, B and C, to determine the effect of adding more
replicas on the high availability of the cache.

Formula B

N = Minimum(T -1, R)

Where:
v N = the number of processes that can crash simultaneously
v T = the total number of containers
v R = the total number of replicas

Formula C

Chapter 6. Planning the WebSphere eXtreme Scale environment 109

Ceiling(T/ (1+N)) = m

Where:
v T = Total number containers
v N = Total number of replicas
v m = minimum number of containers needed to support the cache data.

For performance tuning with the dynamic cache provider, see Tuning the dynamic
cache provider.

Cache sizing

Before an application using the WebSphere eXtreme Scale dynamic cache provider
can be deployed, the general principals described in the previous section should be
combined with the environmental data for the production systems. The first figure
to establish is the total number of container processes and the amount of available
memory in each process to hold cache data. When using the embedded topology,
the cache containers will be co-located inside of the WebSphere Application server
processes, so there is one container for each server that is sharing the cache.
Determining the memory overhead of the application without caching enabled and
the WebSphere Application Server is the best way to figure out how much space is
available in the process. This can be done by analyzing verbose garbage collection
data. When using the remote topology, this information can be found by looking at
the verbose garbage collection output of a newly started standalone container that
has not yet been populated with cache data. The last thing to keep in mind when
figuring out how much space per process is available for cache data, is to reserve
some heap space for garbage collection. The overhead of the container, WebSphere
Application Server or stand-alone, plus the size reserved for the cache should not
be more than 70% of the total heap.

After this information is collected, the values can be plugged into formula A,
described previously, to determine the maximum size for the partitioned cache.
Once the maximum size is known, the next step is to determine the total number
of cache entries that can be supported, which requires determining the average size
per cache entry. The simple way of doing this is to add 10% to the size of the
customer object. See theTuning guide for dynamic cache and data replication
service for more in depth information on sizing cache entries when using dynamic
cache.

When compression is enabled it affects the size of the customer object, not the
overhead of the caching system. Use the following formula to determine the size of
a cached object when using compression:

S = O * C + O * 0.10

Where:
v S = Average size of cached object
v O = Average size of un-compressed customer object
v C = Compression ratio expressed as a fraction.

So, a 2 to 1 compression ratio is 1/2 = 0.50. Smaller is better for this value. If the
object being stored is a normal POJO mostly full of primitive types, then assume a
compression ratio of 0.60 to 0.70. If the object cached is a Servlet, JSP, or
WebServices object, the optimal method for determining the compression ratio is to

110 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic%20cache%20tuning%20guide&uid=swg27006431
http://www-01.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic%20cache%20tuning%20guide&uid=swg27006431

compress a representative sample with a ZIP compression utility. If this is not
possible, then a compression ratio of 0.2 to 0.35 is common for this type of data.

Next, use this information to determine the total number of cache entries that can
be supported. Use the following D formula:

Formula D

T = S / A

Where:
v T= Total number of cache entries
v S = Total size available for cache data as computed using formula A
v A = Average size of each cache entry

Finally, you must set the cache size on the dynamic cache instance to enforce this
limit. The WebSphere eXtreme Scale dynamic cache provider differs from the
default dynamic cache provider in this regard. Use the following formula to
determine the value to set for the cache size on the dynamic cache instance. Use
the following E formula:

Formula E

Cs = Ts / Np

Where:
v Ts = Total target size for the cache
v Cs = Cache Size setting to set on the dynamic cache instance
v Np = number of partitions. The default is 47.

Set the size of the dynamic cache instance to a value calculated by formula E on
each server that shares the cache instance.

Chapter 6. Planning the WebSphere eXtreme Scale environment 111

Operational checklist
Use the operational checklist to prepare your environment for deploying
WebSphere eXtreme Scale.

Table 8. Operational checklist
Checklist item For more information

If you are using AIX, tune the following operating system settings:

TCP_KEEPINTVL
The TCP_KEEPINTVL setting is part of a socket keep-alive
protocol that enables detection of network outage. The
property specifies the interval between packets that are sent to
validate the connection. When you are using WebSphere
eXtreme Scale, set the value to 10. To check the current
setting, run the following command:

no –o tcp_keepintvl

To change the current setting, run the following command:

no –o tcp_keepintvl=10

The TCP_KEEPINTVL setting is in half seconds.

TCP_KEEPINIT
The TCP_KEEPINIT setting is part of a socket keep-alive
protocol that enables detection of network outage. The
property specifies the initial timeout value for TCP
connection. When you are using WebSphere eXtreme Scale, set
the value to 40. To check the current setting, run the following
commands:

no –o tcp_keepinit

To change the current setting, run the following command:

no –o tcp_keepinit=40

The TCP_KEEPINIT setting is in half seconds.

v For AIX tuning information, see Tuning AIX systems.

Update the orb.properties file to modify the transport behavior of the
grid. The orb.properties file is in the java/jre/lib directory.

“ORB properties” on page 237

112 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tprf_tuneaix.html

Table 8. Operational checklist (continued)
Checklist item For more information

Use parameters in the startOgServer script. In particular, use the
following parameters:

v Set heap settings with the -jvmArgs parameter.

v Set application class path and properties with the -jvmArgs parameter.

v Set -jvmArgs parameters for configuring agent monitoring.

Port settings
WebSphere eXtreme Scale has to open ports for
communications for some transports. These ports are all
dynamically defined. However, if a firewall is in use between
containers then you must specify the ports. Use the following
information about the ports:

Listener port
You can use the -listenerPort argument to specify the port
that is used for communication between processes.

Core group port
You can use the -haManagerPort argument to specify the port
that is used for failure detection. This argument is the same as
peerPort. Note that core groups do not need to communicate
across zones, so you might not need to set this port if the
firewall is open to all the members of a single zone.

JMX service port
You can use the -JMXServicePort argument to specify the port
that the JMX service should use.

SSL port Passing -Dcom.ibm.CSI.SSLPort=1234 as a -jvmArgs argument
sets the SSL port to 1234. The SSL port is the secure port peer
to the listener port.

Client port
Used in the catalog service only. You can specify this value
with the -catalogServiceEndPoints argument. The format of
the value of this parameter is in the format:
serverName:hostName:clientPort:peerPort

“startOgServer script” on page 356

Verify that security settings are configured correctly:

v Transport (SSL)

v Application (Authentication and Authorization)

To verify your security settings, you can try to use a malicious client to
connect to your configuration. For example, when the SSL-Required
setting is configured, a client that has a TCP_IP setting with or a client
with the wrong trust store should not be able to connect to the server.
When authentication is required, a client with no credential, such as a
user ID and password, should not be able to connect to the sever. When
authorization is enforced, a client with no access authorization should not
be granted the access to the server resources.

“Security integration with external providers” on page 445

Choose how you are going to monitor your environment.

v xsAdmin tool:

– The JMX ports of the catalog servers need to be visible to the
xsAdmin tool. The container server ports also need to be accessible
for some commands that gather information from the containers.

v
7.1+ Monitoring console:

With the monitoring console, you can chart current and historical
statistics.

v Vendor monitoring tools:

– Tivoli® Enterprise Monitoring Agent

– CA Wily Introscope

– Hyperic HQ

v “Monitoring with the xsadmin utility” on page 470

v “Java Management Extensions (JMX) security” on page 443

v
7.1+ “Monitoring with the web console” on page 457

v “Monitoring with the IBM Tivoli Enterprise Monitoring Agent for
WebSphere eXtreme Scale” on page 494

v “Monitoring eXtreme Scale with Hyperic HQ” on page 503

v “Monitoring eXtreme Scale applications with CA Wily Introscope” on
page 500

Chapter 6. Planning the WebSphere eXtreme Scale environment 113

114 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 7. Configuring the deployment environment

You can configure WebSphere eXtreme Scale to run in a stand-alone environment,
or you can configure eXtreme Scale to run in an environment with WebSphere
Application Server or WebSphere Application Server Network Deployment. For an
eXtreme Scale deployment to pick up configuration changes on the server side of
the data grid, you must restart processes to make these changes take effect rather
than being applied dynamically. However, on the client side, although you may
not alter the configuration settings for an existing client instance, you can create a
new client with the settings you require by using an XML file or doing so
programmatically. When creating a client, you can override the default settings that
come from the current server configuration.

Configuration methods
XML files and property files are the most common non-programmatic methods of
configuring the product. See the Programming Guide for information about
alternative methods, including application and system programming interfaces,
plug-ins, and managed beans.

XML files for configuration
WebSphere eXtreme Scale is configured by a collection of XML files.

The following XML files are used to configure WebSphere eXtreme Scale:

“Deployment policy descriptor XML file” on page 192
Used to configure a deployment policy.

“ObjectGrid descriptor XML file” on page 153
Used to configure details for individual ObjectGrid instances.

“Entity metadata descriptor XML file” on page 258
Used to configure a set of entities and the relationships between the
entities.

“Security descriptor XML file” on page 450
Used to enable security for a given deployment.

“Client properties file” on page 245
Used to specify client host names, ports, security, and other information.

“Spring descriptor XML file” on page 315
Used to enable the Spring Framework integration.

Configuring data grids
Use an ObjectGrid descriptor XML file to configure data grids, backing maps,
plug-ins, and so on. To configure WebSphere eXtreme Scale, use an ObjectGrid
descriptor XML file and the ObjectGrid API. For a distributed topology, you need
an ObjectGrid descriptor XML file and a deployment policy XML file.

Configuring local deployments
A local in-memory eXtreme Scale configuration can be created by using an
ObjectGrid descriptor XML file or eXtreme Scale APIs.

© Copyright IBM Corp. 2009, 2011 115

About this task

The following companyGrid.xml file is an example of an ObjectGrid descriptor
XML. The first few lines of the file include the required header for each ObjectGrid
XML file. The file defines an ObjectGrid instance named "CompanyGrid" and
several BackingMaps named "Customer," "Item," "OrderLine," and "Order."
companyGrid.xml file
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Customer" />
<backingMap name="Item" />
<backingMap name="OrderLine" />
<backingMap name="Order" />
</objectGrid>
</objectGrids>

</objectGridConfig>

Pass the XML file to one of the createObjectGrid methods in the
ObjectGridManager interface. The following code sample validates the
companyGrid.xml file against the XML schema, and creates the ObjectGrid instance
named "CompanyGrid." The newly created ObjectGrid instance is not cached.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid",
new URL("file:etc/test/companyGrid.xml"), true, false);

As an alternative, you can create ObjectGrid instances programmatically without
any XML. For example, you can use the following code snippet in place of the
previous XML and code.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid ("CompanyGrid", false);
BackingMap customerMap= companyGrid.defineMap("Customer");
BackingMap itemMap= companyGrid.defineMap("Item");
BackingMap orderLineMap= companyGrid.defineMap("OrderLine");
BackingMap orderMap = companyGrid.defineMap("Order");

For a complete description of the ObjectGrid XML file, see the eXtreme Scale
configuration reference.

Configuring evictors
Evictors can be configured using the ObjectGrid descriptor XML file or
programmatically.

About this task

For reference information on configuring evictors with XML, see “ObjectGrid
descriptor XML file” on page 153.

TimeToLive (TTL) evictor
WebSphere eXtreme Scale provides a default mechanism for evicting cache entries
and a plug-in for creating custom evictors. An evictor controls the membership of
entries in each BackingMap instance.

116 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Enable the TTL evictor programmatically

TTL evictors are associated with BackingMap instances. The default evictor uses a
time-to-live (TTL) eviction policy for each BackingMap instance. If you provide a
pluggable evictor mechanism, it typically uses an eviction policy that is based on
the number of entries instead of on time.

The following snippet of code uses the BackingMap interface to set the expiration
time for each entry to 10 minutes after the entry was created.
programmatic time-to-live evictor
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.TTLType;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.defineMap("myMap");
bm.setTtlEvictorType(TTLType.CREATION_TIME);
bm.setTimeToLive(600);

The setTimeToLive method argument is 600 because it indicates the time-to-live
value is in seconds. The preceding code must run before the initialize method is
invoked on the ObjectGrid instance. These BackingMap attributes cannot be
changed after the ObjectGrid instance is initialized. After the code runs, any entry
that is inserted into the myMap BackingMap has an expiration time. After the
expiration time is reached, the TTL evictor removes the entry.

To set the expiration time to the last access time plus 10 minutes, change the
argument that is passed to the setTtlEvictorType method from
TTLType.CREATION_TIME to TTLType.LAST_ACCESS_TIME. With this value, the
expiration time is computed as the last access time plus 10 minutes. When an entry
is first created, the last access time is the creation time. To base the expiration time
on the last update, instead of merely the last access (whether or not it involved an
update), substitute the TTLType.LAST_UPDATE_TIME setting for the
TTLType.LAST_ACCESS_TIME setting.

When using the TTLType.LAST_ACCESS_TIME or TTLType.LAST_UPDATE_TIME
setting, you can use the ObjectMap and JavaMap interfaces to override the
BackingMap time-to-live value. This mechanism allows an application to use a
different time-to-live value for each entry that is created. Assume that the
preceding snippet of code set the ttlType attribute to LAST_ACCESS_TIME and set
the time-to-live value to 10 minutes. An application can then override the
time-to-live value for each entry by running the following code prior to creating or
modifying an entry:
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.ObjectMap;
Session session = og.getSession();
ObjectMap om = session.getMap("myMap");
int oldTimeToLive1 = om.setTimeToLive(1800);
om.insert("key1", "value1");
int oldTimeToLive2 = om.setTimeToLive(1200);
om.insert("key2", "value2");

In the previous snippet of code, the entry with the key1 key has an expiration time
of the insert time plus 30 minutes as a result of the setTimeToLive(1800) method
invocation on the ObjectMap instance. The oldTimeToLive1 variable is set to 600

Chapter 7. Configuring the deployment environment 117

because the time-to-live value from the BackingMap is used as a default value if
the setTimeToLive method was not previously called on the ObjectMap instance.

The entry with the key2 key has an expiration time of insert time plus 20 minutes
as a result of the setTimeToLive(1200) method call on the ObjectMap instance.
The oldTimeToLive2 variable is set to 1800 because the time-to-live value from the
previous ObjectMap.setTimeToLive method invocation set the time-to-live value to
1800.

The previous example shows two map entries being inserted in the myMap map
for keys key1 and key2. At a later point in time, the application can still update
these map entries while retaining the time-to-live values that are used at insert
time for each map entry. The following example illustrates how to retain the
time-to-live values by using a constant defined in the ObjectMap interface:
Session session = og.getSession();
ObjectMap om = session.getMap("myMap");
om.setTimeToLive(ObjectMap.USE_DEFAULT);
session.begin();
om.update("key1", "updated value1");
om.update("key2", "updated value2");
om.insert("key3", "value3");
session.commit();

Since the ObjectMap.USE_DEFAULT special value is used on the setTimeToLive
method call, the key1 key retains its time-to-live value of 1800 seconds and the
key2 key retains its time-to-live value of 1200 seconds because those values were
used when these map entries were inserted by the prior transaction.

The previous example also shows a new map entry for the key3 key insert. In this
case, the USE_DEFAULT special value indicates to use the default setting of
time-to-live value for this map. The default value is defined by the time-to-live
BackingMap attribute. See BackingMap interface attributes for information about
how the time-to-live attribute is defined on the BackingMap instance.

See the API documentation for the setTimeToLive method on the ObjectMap and
JavaMap interfaces. The documentation explains that an IllegalStateException
exception results if the BackingMap.getTtlEvictorType method returns anything
other than the TTLType.LAST_ACCESS_TIME or TTLType.LAST_UPDATE_TIME
value. The ObjectMap and JavaMap interfaces can override the time-to-live value
only when you are using the LAST_ACCESS_TIME or
TTLType.LAST_UPDATE_TIME setting for the TTL evictor type. The setTimeToLive
method cannot be used to override the time-to-live value when you are using the
evictor type setting CREATION_TIME or NONE.

Enable the TTL evictor using XML configuration

Instead of using the BackingMap interface to programmatically set the BackingMap
attributes to be used by the TTL evictor, you can use an XML file to configure each
BackingMap instance. The following code demonstrates how to set these attributes
for three different BackingMap maps:
enabling time-to-live evictor using XML

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

118 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<objectGrid name="grid1">
<backingMap name="map1" ttlEvictorType="NONE" />
<backingMap name="map2" ttlEvictorType="LAST_ACCESS_TIME|LAST_UPDATE_TIME"

timeToLive="1800" />
<backingMap name="map3" ttlEvictorType="CREATION_TIME"

timeToLive="1200" />
</objectgrid>

</objectGrids>

The preceding example shows that the map1 BackingMap instance uses a NONE
TTL evictor type. The map2 BackingMap instance uses either a
LAST_ACCESS_TIME or LAST_UPDATE_TIME TTL evictor type – specify only
one or the other of these settings – and has a time-to-live value of 1800 seconds, or
30 minutes. The map3 BackingMap instance is defined to use a CREATION_TIME
TTL evictor type and has a time-to-live value of 1200 seconds, or 20 minutes.

Plug in a pluggable evictor
Since evictors are associated with BackingMaps, use the BackingMap interface to
specify the pluggable evictor.

Optional pluggable evictors

The default TTL evictor uses an eviction policy that is based on time, and the
number of entries in the BackingMap has no affect on the expiration time of an
entry. You can use an optional pluggable evictor to evict entries based on the
number of entries that exist instead of based on time.

The following optional pluggable evictors provide some commonly used
algorithms for deciding which entries to evict when a BackingMap grows beyond
some size limit.
v The LRUEvictor evictor uses a least recently used (LRU) algorithm to decide

which entries to evict when the BackingMap exceeds a maximum number of
entries.

v The LFUEvictor evictor uses a least frequently used (LFU) algorithm to decide
which entries to evict when the BackingMap exceeds a maximum number of
entries.

The BackingMap informs an evictor as entries are created, modified, or removed in
a transaction. The BackingMap keeps track of these entries and chooses when to
evict one or more entries from the BackingMap instance.

A BackingMap instance has no configuration information for a maximum size.
Instead, evictor properties are set to control the evictor behavior. Both the
LRUEvictor and the LFUEvictor have a maximum size property that is used to
cause the evictor to begin to evict entries after the maximum size is exceeded. Like
the TTL evictor, the LRU and LFU evictors might not immediately evict an entry
when the maximum number of entries is reached to minimize impact on
performance.

If the LRU or LFU eviction algorithm is not adequate for a particular application,
you can write your own evictors to create your eviction strategy.

Using optional pluggable evictors

To add optional pluggable evictors into the BackingMap configuration, you can use
programmatic configuration or XML configuration, as described in the following
section.

Chapter 7. Configuring the deployment environment 119

Programmatically plug in a pluggable evictor

Because evictors are associated with BackingMaps, use the BackingMap interface to
specify the pluggable evictor. The following code snippet is an example of
specifying a LRUEvictor evictor for the map1 BackingMap and a LFUEvictor
evictor for the map2 BackingMap instance:
plugging in an evictor programmatically
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor;
import com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.defineMap("map1");
LRUEvictor evictor = new LRUEvictor();
evictor.setMaxSize(1000);
evictor.setSleepTime(15);
evictor.setNumberOfLRUQueues(53);
bm.setEvictor(evictor);
bm = og.defineMap("map2");
LFUEvictor evictor2 = new LFUEvictor();
evictor2.setMaxSize(2000);
evictor2.setSleepTime(15);
evictor2.setNumberOfHeaps(211);
bm.setEvictor(evictor2);

The preceding snippet shows an LRUEvictor evictor being used for map1
BackingMap with an approximate maximum number of entries of 53,000 (53 *
1000). The LFUEvictor evictor is used for the map2 BackingMap with an
approximate maximum number of entries of 422,000 (211 * 2000). Both the LRU
and LFU evictors have a sleep time property that indicates how long the evictor
sleeps before waking up and checking to see if any entries need to be evicted. The
sleep time is specified in seconds. A value of 15 seconds is a good compromise
between performance impact and preventing BackingMap from growing too large.
The goal is to use the largest sleep time possible without causing the BackingMap
to grow to an excessive size.

The setNumberOfLRUQueues method sets the LRUEvictor property that indicates
how many LRU queues the evictor uses to manage LRU information. A collection
of queues is used so that every entry does not keep LRU information in the same
queue. This approach can improve performance by minimizing the number of map
entries that need to synchronize on the same queue object. Increasing the number
of queues is a good way to minimize the impact that the LRU evictor can cause on
performance. A good starting point is to use ten percent of the maximum number
of entries as the number of queues. Using a prime number is typically better than
using a number that is not prime. The setMaxSize method indicates how many
entries are allowed in each queue. When a queue reaches its maximum number of
entries, the least recently used entry or entries in that queue are evicted the next
time that the evictor checks to see if any entries need to be evicted.

The setNumberOfHeaps method sets the LFUEvictor property to set how many
binary heap objects the LFUEvictor uses to manage LFU information. Again, a
collection is used to improve performance. Using ten percent of the maximum
number of entries is a good starting point and a prime number is typically better
than using a number that is not prime. The setMaxSize method indicates how
many entries are allowed in each heap. When a heap reaches its maximum number
of entries, the least frequently used entry or entries in that heap are evicted the

120 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

next time that the evictor checks to see if any entries need to be evicted.

XML configuration approach to plug in a pluggable evictor

Instead of using various APIs to programmatically plug in an evictor and set its
properties, an XML file can be used to configure each BackingMap as illustrated in
the following sample:
plugging in an evictor using XML
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid">
<backingMap name="map1" ttlEvictorType="NONE" pluginCollectionRef="LRU" />
<backingMap name="map2" ttlEvictorType="NONE" pluginCollectionRef="LFU" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPlugincollection id="LRU">
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">

<property name="maxSize" type="int" value="1000" description="set max size
for each LRU queue" />

<property name="sleepTime" type="int" value="15" description="evictor
thread sleep time" />

<property name="numberOfLRUQueues" type="int" value="53" description="set number
of LRU queues" />
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="LFU">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor">
<property name="maxSize" type="int" value="2000" description="set max size for each LFU heap" />
<property name="sleepTime" type="int" value="15" description="evictor thread sleep time" />
<property name="numberOfHeaps" type="int" value="211" description="set number of LFU heaps" />

</bean>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Memory-based eviction

All built-in evictors support memory-based eviction that can be enabled on
BackingMap interface by setting the evictionTriggers attribute of BackingMap to
"MEMORY_USAGE_THRESHOLD". For more information about how to set the
evictionTriggers attribute on BackingMap, see BackingMap interface and eXtreme
Scale configuration reference.

Memory-based eviction is based on heap usage threshold. When memory-based
eviction is enabled on BackingMap and the BackingMap has any built-in evictor,
the usage threshold is set to a default percentage of total memory if the threshold
has not been previously set.

To change the default usage threshold percentage, set the
memoryThresholdPercentage property on container and server property file for
eXtreme Scale server process. To set the target usage threshold on an eXtreme Scale
client process, you can use the MemoryPoolMXBean. See also:
containerServer.props file and Starting eXtreme Scale server processes.

During run time, if the memory usage exceeds the target usage threshold,
memory-based evictors start evicting entries and try to keep memory usage below
the target usage threshold. However, there is no guarantee that the eviction speed
is fast enough to avoid a potential out of memory error if the system run time
continues to quickly consume memory.

Plug-ins for indexing data
The built-in HashIndex, the
com.ibm.websphere.objectgrid.plugins.index.HashIndex class, is a MapIndexPlugin

Chapter 7. Configuring the deployment environment 121

plug-in that you can add into BackingMap to build static or dynamic indexes. This
class supports both the MapIndex and MapRangeIndex interfaces. Defining and
implementing indexes can significantly improve query performance.

Configuring the HashIndex plug-in
You can configure the built-in HashIndex, the
com.ibm.websphere.objectgrid.plugins.index.HashIndex class, with an XML file,
programmatically, or with an entity annotation on an entity map.

About this task

Configuring a composite index is the same as configuring a regular index with
XML, except for the attributeName property value. In a composite index, the value
of attributeName property is a comma-delimited list of attributes. For example, the
value class Address has three attributes: city, state, and zipcode. A composite index
can be defined with the attributeName property value as "city,state,zipcode"
indicating that city, state, and zipcode are included in the composite index.

Also, note that the composite HashIndexes do not support range lookups and
therefore cannot have the RangeIndex property set to true.

Procedure
v Configure a composite index in the ObjectGrid descriptor XML file.

Use the backingMapPluginCollections element to define the plug-in:
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Address.CityStateZip"/>
<property name="AttributeName" type="java.lang.String" value="city,state,zipcode"/>
</bean>

v Configure a composite index programmatically.
The following example code creates the same composite index:

HashIndex mapIndex = new HashIndex();
mapIndex.setName("Address.CityStateZip");
mapIndex.setAttributeName(("city,state,zipcode"));
mapIndex.setRangeIndex(true);

BackingMap bm = objectGrid.defineMap("mymap");
bm.addMapIndexPlugin(mapIndex);

v Configure a composite index with entity notations.
If you are using entity maps, you can use an annotation approach to define a
composite index. You can define a list of CompositeIndex within the
CompositeIndexes annotation on the entity class level. The CompositeIndex has
a name and attributeNames property. Each CompositeIndex is associated with a
HashIndex instance applied to the backing map that is associated with the entity.
The HashIndex is configured as a non-range index.
@Entity
@CompositeIndexes({

@CompositeIndex(name="CityStateZip", attributeNames="city,state,zipcode"),
@CompositeIndex(name="lastnameBirthday", attributeNames="lastname,birthday")

})
public class Address {

@Id int id;
String street;
String city;
String state;
String zipcode;
String lastname;
Date birthday;

}

The name property for each composite index must be unique within the entity
and backing map. If the name is not specified, a generated name is used. The
attributeName property is used to populate the HashIndex attributeName with
the comma-delimited list of attributes. The attribute names coincide with the
persistent field names when the entities are configured to use field-access, or the

122 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

property name as defined for the JavaBeans naming conventions for
property-access entities. For example: If the attribute name is street, the
property getter method is named getStreet.

Example: Adding HashIndex into BackingMap

In the following example, you configure the HashIndex plug-in by adding static
index plug-ins to the XML file:
<backingMapPluginCollection id="person">

<bean id="MapIndexPlugin"
className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="CODE"
description="index name" />

<property name="RangeIndex" type="boolean" value="true"
description="true for MapRangeIndex" />

<property name="AttributeName" type="java.lang.String" value="employeeCode"
description="attribute name" />

</bean>
</backingMapPluginCollection>

In this XML configuration example, the built-in HashIndex class is used as the
index plug-in. The HashIndex supports properties that users can configure, such as
Name, RangeIndex, and AttributeName.
v The Name property is configured as CODE, a string identifying this index plug-in.

The Name property value must be unique within the scope of the backing map.
The name can be used to retrieve the index object by name from the ObjectMap
instance for the BackingMap.

v The RangeIndex property is configured as true, which means the application can
cast the retrieved index object to the MapRangeIndex interface. If the
RangeIndex property is configured as false, the application can only cast the
retrieved index object to the MapIndex interface. A MapRangeIndex supports
functions to find data using range functions such as greater than, less than, or
both, while a MapIndex only supports equals functions. If the index is by query,
the RangeIndex property must be configured to true on single-attribute indexes.
For a relationship index and composite index, the RangeIndex property must be
configured to false.

v The AttributeName property is configured as employeeCode, which means the
employeeCode attribute of the cached object is used to build a single-attribute
index. If an application must search for cached objects with multiple attributes,
the AttributeName property can be set to a comma-delimited list of attributes,
yielding a composite index.

In summary, the previous example defines a single-attribute range HashIndex. It is
a single-attribute HashIndex because the AttributeName property value is
employeeCode that includes only one attribute name. It also is a range HashIndex.

HashIndex plug-in attributes
You can use the following attributes to configure the HashIndex plug-in. These
attributes define properties such as if you are using an attribute or composite
HashIndex, or if range indexing is enabled.

Attributes

Name Specifies the name of the index. The name must be unique for each map.
The name is used to retrieve the index object from the object map instance
for the backing map.

Chapter 7. Configuring the deployment environment 123

AttributeName
Specifies the comma-delimited names of the attributes to index. For
field-access indexes, the attribute names are equivalent to the field names.
For property-access indexes, the attribute names are the JavaBean
compatible property names. If only one attribute name exists, the
HashIndex is a single attribute index. If this attribute is a relationship, it is
also a relationship index. If multiple attribute names are included in the
attribute names, the HashIndex is a composite index.

FieldAccessAttribute
Used for non-entity maps. If true, the object is accessed using the fields
directly. If not specified or false, the getter method for the attribute is
used to access the data.

POJOKeyIndex
Used for non-entity maps. If true, the index introspects the object in the
key part of the map. This setting is useful when the key is a composite key
and the value does not have the key embedded within it. If not specified
or false, then the index introspects the object in the value part of the map.

RangeIndex
If true, range indexing is enabled and the application can cast the
retrieved index object to the MapRangeIndex interface. If the RangeIndex
property is configured as false, the application can cast the retrieved index
object to the MapIndex interface only.

Single-attribute HashIndex versus composite HashIndex

When the AttributeName property of HashIndex includes multiple attribute names,
the HashIndex is a composite index. Otherwise, if it includes only one attribute
name, it is a single-attribute index. For example, the AttributeName property value
of a composite HashIndex might be city,state,zipcode. It includes three
attributes delimited by commas. If the AttributeName property value is only
zipcode that only has one attribute, it is a single-attribute HashIndex.

Composite HashIndex provides an efficient way to look up cached objects when
search criteria involve many attributes. However, it does not support range index
and its RangeIndex property must set to false.

See the topic on a composite HashIndex in the Administration Guide.

Relationship HashIndex

If the indexed attribute of single-attribute HashIndex is a relationship, either
single- or multi-valued, the HashIndex is a relationship HashIndex. For
relationship HashIndex, the RangeIndex property of HashIndex must set to “false”.

Relationship HashIndex can speed up queries that use cyclical references or use the
IS NULL, IS EMPTY, SIZE, and MEMBER OF query filters. For more information,
see the information about query optimization with indexes in the Programming
Guide.

Key HashIndex

For non-entity maps, when the POJOKeyIndex property of HashIndex is set to true,
the HashIndex is a key HashIndex and the key part of entry are used for indexing.

124 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

When the AttributeName property of HashIndex is not specified, the whole key is
indexed; otherwise, the key HashIndex can only be a single-attribute HashIndex.

For example, adding the following property into the preceding sample causes the
HashIndex to become key HashIndex because the POJOKeyIndex property value is
true.
<property name="POJOKeyIndex" type="boolean" value="true"
description="indicates if POJO key HashIndex" />

In the preceding key index example, because the AttributeName property value is
specified as employeeCode, the indexed attribute is the employeeCode field of the
key part of map entry. If you want to build key index on the whole key part of
map entry, remove the AttributeName property.

Range HashIndex

When the RangeIndex property of HashIndex is set to true, the HashIndex is a
range index and can support the MapRangeIndex interface. A MapRangeIndex
implementation supports functions to find data using range functions, such as
greater than, less than, or both, while a MapIndex supports equals functions only.
For a single-attribute index, the RangeIndex property can be set to true only if the
indexed attribute is of type Comparable. If the single-attribute index will be used
by query, the RangeIndex property must set to true and the indexed attribute must
be of type Comparable. For relationship HashIndex and composite HashIndex, the
RangeIndex property must set to false.

The preceding sample is a range HashIndex because the RangeIndex property
value is true.

The following table provides a summary for using range index.

Table 9. Support for range index. States whether HashIndex types support range index.

HashIndex type Supports range index

Single-attribute HashIndex: indexed key or attribute is of type
Comparable

Yes

Single-attribute HashIndex: indexed key or attribute is not of type
Comparable

No

Composite HashIndex No

Relationship HashIndex No

Query optimization with HashIndex plug-ins

Defining indexes can significantly improve query performance.WebSphere eXtreme
Scale queries can use built-in HashIndex plug-ins to improve performance of
queries. Although using indexes can significantly improve query performance, it
might have a performance impact on transactional map operations.

Configuring a locking strategy
You can define an optimistic, a pessimistic, or no locking strategy on each
BackingMap in the WebSphere eXtreme Scale configuration.

Chapter 7. Configuring the deployment environment 125

About this task

Each BackingMap instance can be configured to use one of the following locking
strategies:
1. Optimistic locking mode
2. Pessimistic locking mode
3. None

The default lock strategy is OPTIMISTIC. Use optimistic locking when data is
changed infrequently. Locks are only held for a short duration while data is being
read from the cache and copied to the transaction. When the transaction cache is
synchronized with the main cache, any cache objects that have been updated are
checked against the original version. If the check fails, then the transaction is rolled
back and an OptimisticCollisionException exception results.

The PESSIMISTIC lock strategy acquires locks for cache entries and should be used
when data is changed frequently. Any time a cache entry is read, a lock is acquired
and conditionally held until the transaction completes. The duration of some locks
can be tuned using transaction isolation levels for the session.

If locking is not required because the data is never updated or is only updated
during quiet periods, you can disable locking by using the NONE lock strategy.
This strategy is very fast because a lock manager is not required. The NONE lock
strategy is ideal for look-up tables or read-only maps.

For more information about locking strategies, see the information about locking
strategies in the Product Overview.

You can specify a locking strategy programmatically or with XML. For more
information about locking, see the information about locking strategies in the
Product Overview.

Procedure
v Configure an optimistic locking strategy

– Programmatically using the setLockStrategy method:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("optimisticMap");
bm.setLockStrategy(LockStrategy.OPTIMISTIC);

– Using the lockStrategy attribute in the “ObjectGrid descriptor XML file” on
page 153:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="test">
<backingMap name="optimisticMap"

lockStrategy="OPTIMISTIC"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

126 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Configure a pessimistic locking strategy

– Programmatically using the setLockStrategy method:
specify pessimistic strategy programmatically
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("pessimisticMap");
bm.setLockStrategy(LockStrategy.PESSIMISTIC);

– Using the lockStrategy attribute in the “ObjectGrid descriptor XML file” on
page 153:
specify pessimistic strategy using XML
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="test">

<backingMap name="pessimisticMap"
lockStrategy="PESSIMISTIC"/>

</objectGrid>
</objectGrids>

</objectGridConfig>

v Configure a no locking strategy

– Programmatically using the setLockStrategy method:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("noLockingMap");
bm.setLockStrategy(LockStrategy.NONE);

– Using the lockStrategy attribute in the “ObjectGrid descriptor XML file” on
page 153:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="test">

<backingMap name="noLockingMap"
lockStrategy="NONE"/>

</objectGrid>
</objectGrids>

</objectGridConfig>

What to do next

To avoid a java.lang.IllegalStateException exception, you must call the
setLockStrategy method before calling the initialize or getSession methods on the
ObjectGrid instance.

Chapter 7. Configuring the deployment environment 127

Configuring loaders
Implementing a loader requires configuration for several attributes.

Preload considerations

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). For an overview of how eXtreme Scale interacts with a loader, see the
information about in-line caching scenarios in the Product Overview.

Each backing map has a boolean preloadMode attribute that is set to indicate if
preload of a map executes asynchronously. By default, the preloadMode attribute is
set to false, which indicates that the backing map initialization does not complete
until the preload of the map is complete. For example, backing map initialization is
not complete until the preloadMap method returns. If the preloadMap method
reads a large amount of data from its back end and loads it into the map, it might
take a relatively long time to complete. In this case, you can configure a backing
map to use asynchronous preload of the map by setting the preloadMode attribute
to true. This setting causes the backing map initialization code to start a thread
that invokes the preloadMap method, allowing initialization of a backing map to
complete while the preload of the map is still in progress.

In a distributed eXtreme Scale scenario, one of the preload patterns is client
preload. In the client preload pattern, an eXtreme Scale client is responsible for
retrieving data from the backend and then inserting the data into the distributed
eXtreme Scale server using DataGrid agents. Furthermore, client preload could be
executed in the Loader.preloadMap method in one and only one specific partition.
In this case, asynchronously loading the data to the grid becomes very important.
If the client preload were executed in the same thread, the backing map would
never be initialized, so the partition it resides in would never become ONLINE.
Therefore, the eXtreme Scale client could not send the request to the partition, and
eventually it would cause an exception.

If an eXtreme Scale client is used in the preloadMap method, you should set the
preloadMode attribute to true. The alternative is to start a thread in the client
preload code.

The following snippet of code illustrates how the preloadMode attribute is set to
enable asynchronous preload:
BackingMap bm = og.defineMap("map1");
bm.setPreloadMode(true);

The preloadMode attribute can also be set by using a XML file as illustrated in the
following example:
<backingMap name="map1" preloadMode="true" pluginCollectionRef="map1"
lockStrategy="OPTIMISTIC" />

TxID and use of the TransactionCallback interface

Both the get method and batchUpdate methods on the Loader interface are passed
a TxID object that represents the Session transaction that requires the get or
batchUpdate operation to be performed. It is possible that the get and batchUpdate
methods are called more than once per transaction. Therefore, transaction-scoped
objects that are needed by the Loader are typically kept in a slot of the TxID object.

128 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

A Java database connectivity (JDBC) Loader is used to illustrate how a Loader uses
the TxID and TransactionCallback interfaces.

It is also possible that several ObjectGrid maps are stored in the same database.
Each map has its own Loader and each Loader might need to connect to the same
database. When connecting to the same database, each Loader wants to use the
same JDBC connection so that the changes to each table are committed as part of
the same database transaction. Typically, the same person who writes the Loader
implementation also writes the TransactionCallback implementation. The best
method is when the TransactionCallback interface is extended to add methods that
the Loader needs for getting a database connection and for caching prepared
statements. The reason for this methodology becomes apparent as you see how the
TransactionCallback and TxID interfaces are used by the loader.

As an example, the loader might need the TransactionCallback interface to be
extended as follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
public interface MyTransactionCallback extends TransactionCallback
{

Connection getAutoCommitConnection(TxID tx, String databaseName) throws SQLException;
Connection getConnection(TxID tx, String databaseName, int isolationLevel) throws SQLException;
PreparedStatement getPreparedStatement(TxID tx, Connection conn, String tableName, String sql)
throws SQLException;
Collection getPreparedStatementCollection(TxID tx, Connection conn, String tableName);

}

Using these new methods, the Loader get and batchUpdate methods can get a
connection as follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
private Connection getConnection(TxID tx, int isolationLevel)
{

Connection conn = ivTcb.getConnection(tx, databaseName, isolationLevel);
return conn;

}

In the previous example and in the examples that follow, ivTcb and ivOcb are
Loader instance variables that were initialized as described in the Preload
considerations section. The ivTcb variable is a reference to the
MyTransactionCallback instance and the ivOcb is a reference to the
MyOptimisticCallback instance. The databaseName variable is an instance variable
of the Loader that was set as a Loader property during the initialization of the
backing map. The isolationLevel argument is one of the JDBC Connection
constants that are defined for the various isolation levels that JDBC supports. If the
Loader is using an optimistic implementation, the get method typically uses a
JDBC auto−commit connection to fetch the data from the database. In that case, the
Loader might have a getAutoCommitConnection method that is implemented as
follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
private Connection getAutoCommitConnection(TxID tx)
{

Connection conn = ivTcb.getAutoCommitConnection(tx, databaseName);
return conn;

}

Chapter 7. Configuring the deployment environment 129

Recall that the batchUpdate method has the following switch statement:
switch (logElement.getType().getCode())
{

case LogElement.CODE_INSERT:
buildBatchSQLInsert(tx, key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(tx, key, value, conn);
break;

case LogElement.CODE_DELETE:
buildBatchSQLDelete(tx, key, conn);
break;

}

Each of the buildBatchSQL methods uses the MyTransactionCallback interface to
get a prepared statement. Following is a snippet of code that shows the
buildBatchSQLUpdate method building an SQL update statement for updating an
EmployeeRecord entry and adding it for the batch update:
private void buildBatchSQLUpdate(TxID tx, Object key, Object value,
Connection conn)
throws SQLException, LoaderException
{

String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?, DEPTNO = ?,
SEQNO = ?, MGRNO = ? where EMPNO = ?";
PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn,
"employee", sql);
EmployeeRecord emp = (EmployeeRecord) value;
sqlUpdate.setString(1, emp.getLastName());
sqlUpdate.setString(2, emp.getFirstName());
sqlUpdate.setString(3, emp.getDepartmentName());
sqlUpdate.setLong(4, emp.getSequenceNumber());
sqlUpdate.setInt(5, emp.getManagerNumber());
sqlUpdate.setInt(6, key);
sqlUpdate.addBatch();

}

After the batchUpdate loop has built all of the prepared statements, it calls the
getPreparedStatementCollection method. This method is implemented as follows:
private Collection getPreparedStatementCollection(TxID tx, Connection conn)
{

return (ivTcb.getPreparedStatementCollection(tx, conn, "employee"));
}

When the application invokes the commit method on the Session, the Session code
calls the commit method on the TransactionCallback method after it has pushed all
the changes made by the transaction out to the Loader for each map that was
changed by the transaction. Because all of the Loaders used the
MyTransactionCallback method to get any connection and prepared statements
they needed, the TransactionCallback method knows which connection to use to
request that the back end commits the changes. So, extending the
TransactionCallback interface with methods that are needed by each of the Loaders
has the following advantages:
v The TransactionCallback object encapsulates the use of TxID slots for

transaction-scoped data, and the Loader does not require information about the
TxID slots. The Loader only needs to know about the methods that are added to
TransactionCallback using the MyTransactionCallback interface for the
supporting functions needed by the Loader.

v The TransactionCallback object can ensure that connection sharing occurs
between each Loader that connects to the same backend so that a two phase
commit protocol can be avoided.

130 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v The TransactionCallback object can ensure that connecting to the backend is
driven to completion through a commit or rollback invoked on the connection
when appropriate.

v TransactionCallback ensures that the cleanup of database resources occurs when
a transaction completes.

v TransactionCallback hides if it is obtaining a managed connection from a
managed environment such as WebSphere Application Server or some other Java
2 Platform, Enterprise Edition (J2EE) compliant application server. This
advantage allows the same Loader code to be used in both a managed and
unmanaged environments. Only the TransactionCallback plug-in must be
changed.

v For detailed information about how the TransactionCallback implementation
uses the TxID slots for transaction-scoped data, see TransactionCallback plug-in.

OptimisticCallback

As mentioned earlier, the Loader might use an optimistic approach for concurrency
control. In this case, the buildBatchSQLUpdate method example must be modified
slightly for implementing an optimistic approach. Several possible ways exist for
using an optimistic approach. A typical way is to have either a timestamp column
or sequence number counter column for versioning each update of the row.
Assume that the employee table has a sequence number column that increments
each time the row is updated. You then modify the signature of the
buildBatchSQLUpdate method so that it is passed the LogElement object instead of
the key and value pair. It also needs to use the OptimisticCallback object that is
plugged into the backing map for getting both the initial version object and for
updating the version object. The following is an example of a modified
buildBatchSQLUpdate method that uses the ivOcb instance variable that was
initialized as described in the preloadMap section:
modified batch-update method code example
private void buildBatchSQLUpdate(TxID tx, LogElement le, Connection conn)
throws SQLException, LoaderException
{

// Get the initial version object when this map entry was last read
// or updated in the database.
Employee emp = (Employee) le.getCurrentValue();
long initialVersion = ((Long) le.getVersionedValue()).longValue();
// Get the version object from the updated Employee for the SQL update
//operation.
Long currentVersion = (Long)ivOcb.getVersionedObjectForValue(emp);
long nextVersion = currentVersion.longValue();
// Now build SQL update that includes the version object in where clause
// for optimistic checking.
String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?,
DEPTNO = ?,SEQNO = ?, MGRNO = ? where EMPNO = ? and SEQNO = ?";
PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn,
"employee", sql);
sqlUpdate.setString(1, emp.getLastName());
sqlUpdate.setString(2, emp.getFirstName());
sqlUpdate.setString(3, emp.getDepartmentName());
sqlUpdate.setLong(4, nextVersion);
sqlUpdate.setInt(5, emp.getManagerNumber());
sqlUpdate.setInt(6, key);
sqlUpdate.setLong(7, initialVersion);
sqlUpdate.addBatch();

}

The example shows that the LogElement is used to obtain the initial version value.
When the transaction first accesses the map entry, a LogElement is created with the

Chapter 7. Configuring the deployment environment 131

initial Employee object that is obtained from the map. The initial Employee object
is also passed to the getVersionedObjectForValue method on the
OptimisticCallback interface and the result is saved in the LogElement. This
processing occurs before an application is given a reference to the initial Employee
object and has a chance to call some method that changes the state of the initial
Employee object.

The example shows that the Loader uses the getVersiondObjectForValue method to
obtain the version object for the current updated Employee object. Before calling
the batchUpdate method on the Loader interface, eXtreme Scale calls the
updateVersionedObjectForValue method on the OptimisticCallback interface to
cause a new version object to be generated for the updated Employee object. After
the batchUpdate method returns to the ObjectGrid, the LogElement is updated
with the current version object and becomes the new initial version object. This
step is necessary because the application might have called the flush method on
the map instead of the commit method on the Session. It is possible for the Loader
to be called multiple times by a single transaction for the same key. For that
reason, eXtreme Scale ensures that the LogElement is updated with the new
version object each time the row is updated in the employee table.

Now that the Loader has both the initial version object and the next version object,
it can run an SQL update statement that sets the SEQNO column to the next
version object value and uses the initial version object value in the where clause.
This approach is sometimes referred to as an overqualified update statement. The
use of the overqualified update statement allows the relational database to verify
that the row was not changed by some other transaction between the time that this
transaction read the data from the database and the time that this transaction
updates the database. If another transaction modified the row, then the count array
that is returned by the batch update indicates that zero rows were updated for this
key. The Loader is responsible for verifying that the SQL update operation did
update the row. If it does not, the Loader displays a
com.ibm.websphere.objectgrid.plugins.OptimisticCollisionException exception to
inform the Session that the batchUpdate method failed due to more than one
concurrent transaction trying to update the same row in the database table. This
exception causes the Session to roll back and the application must retry the entire
transaction. The rationale is that the retry will be successful, which is why this
approach is called optimistic. The optimistic approach performs better if data is
infrequently changed or concurrent transactions rarely try to update the same row.

It is important for the Loader to use the key parameter of the
OptimisticCollisionException constructor to identify which key or set of keys
caused the optimistic batchUpdate method to fail. The key parameter can either be
the key object itself or an array of key objects if more than one key resulted in
optimistic update failure. And eXtreme Scale uses the getKey method of the
OptimisticCollisionException constructor to determine which map entries contain
stale data and caused the exception to result. Part of the rollback processing is to
evict each stale map entry from the map. Evicting stale entries is necessary so that
any subsequent transaction that accesses the same key or keys results in the get
method of the Loader interface being called to refresh the map entries with the
current data from the database.

Other ways for a Loader to implement an optimistic approach include:
v No timestamp or sequence number column exists. In this case, the

getVersionObjectForValue method on the OptimisticCallback interface simply
returns the value object itself as the version. With this approach, the Loader
needs to build a where clause that includes each of the fields of the initial

132 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

version object. This approach is not efficient, and not all column types are
eligible to be used in the where clause of an overqualified SQL update
statement. This approach is typically not used.

v No timestamp or sequence number column exists. However, unlike the prior
approach, the where clause only contains the value fields that were modified by
the transaction. One method to detect which fields are modified is to set the
copy mode on the backing map to be CopyMode.COPY_ON_WRITE mode. This
copy mode requires that a value interface be passed to the setCopyMode
method on the BackingMap interface. The BackingMap creates dynamic proxy
objects that implement the provided value interface. With this copy mode, the
Loader can cast each value to a
com.ibm.websphere.objectgrid.plugins.ValueProxyInfo object. The
ValueProxyInfo interface has a method that allows the Loader to obtain the List
of attribute names that were changed by the transaction. This method enables
the Loader to call the get methods on the value interface for the attribute names
to obtain the changed data and to build an SQL update statement that only sets
the changed attributes. The where clause can now be built to have the primary
key column plus each of the changed attribute columns. This approach is more
efficient than the prior approach, but it requires more code to be written in the
Loader and leads to the possibility that the prepared statement cache needs to be
larger to handle the different permutations. However, if transactions typically
only modify a few of the attributes, this limitation might not be a problem.

v Some relational databases might have an API to assist in automatically
maintaining column data that is useful for optimistic versioning. Consult your
database documentation to determine if this possibility exists.

Configuring write-behind loader support
You can enable write-behind support either using the ObjectGrid descriptor XML
file or programmatically using the BackingMap interface.

Use either the ObjectGrid descriptor XML file to enable write-behind support, or
programmatically by using the BackingMap interface.

ObjectGrid descriptor XML file

When configuring an ObjectGrid using an ObjectGrid descriptor XML file, the
write-behind loader is enabled by setting the writeBehind attribute on the
backingMap tag. An example follows:
<objectGrid name="library" >

<backingMap name="book" writeBehind="T300;C900" pluginCollectionRef="bookPlugins"/>

In the previous example, write-behind support of the book backing map is enabled
with parameter T300;C900. The write-behind attribute specifies the maximum
update time and/or a maximum key update count. The format of the write-behind
parameter is:
::= <defaults> | <update time> | <update key count> | <update time> ";"
<update key count>::= "T" <positive integer>::= "C" <positive integer>::= ""

v write-behind attribute
v update time
v update key count
v defaults

Updates to the loader occur when one of the following events occurs:
1. The maximum update time in seconds has elapsed since the last update.

Chapter 7. Configuring the deployment environment 133

2. The number of updated keys in the queue map has reached the update key
count.

These parameters are just hints. The real update count and update time will be
within close range of the parameters. However, we do not guarantee that the
actual update count or update time are the same as defined in the parameters.
Also, the first behind update could happen after up to twice as long as the update
time. This is because ObjectGrid randomizes the update starting time so all
partitions will not hit the database simultaneously.

In the previous example T300;C900, the loader writes the data to the back-end
when 300 seconds have passed since the last update or when 900 keys are pending
to be updated. The default update time is 300 seconds and the default update key
count is 1000.

Write-behind caching
You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 13. Write-behind caching

134 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Benefits

Enabling write-behind support has the following benefits:
v Back end failure isolation: Write-behind caching provides an isolation layer

from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Application design considerations

Enabling write-behind support is simple, but designing an application to work
with write-behind support needs careful consideration. Without write-behind
support, the ObjectGrid transaction encloses the back-end transaction. The
ObjectGrid transaction starts before the back-end transaction starts, and it ends
after the back-end transaction ends.

With write-behind support enabled, the ObjectGrid transaction finishes before the
back-end transaction starts. The ObjectGrid transaction and back-end transaction
are de-coupled.

Referential integrity constraints

Each backing map that is configured with write-behind support has its own
write-behind thread to push the data to the back-end. Therefore, the data that
updated to different maps in one ObjectGrid transaction are updated to the
back-end in different back-end transactions. For example, transaction T1 updates
key key1 in map Map1 and key key2 in map Map2. The key1 update to map Map1
is updated to the back-end in one back-end transaction, and the key2 updated to
map Map2 is updated to the back-end in another back-end transaction by different
write-behind threads. If data stored in Map1 and Map2 have relations, such as
foreign key constraints in the back-end, the updates might fail.

When designing the referential integrity constraints in your back-end database,
ensure that out-of-order updates are allowed.

Chapter 7. Configuring the deployment environment 135

Queue map locking behavior

Another major transaction behavior difference is the locking behavior. ObjectGrid
supports three different locking strategies: PESSIMISTIC, OPTIMISITIC, and
NONE. The write-behind queue maps uses pessimistic locking strategy no matter
which lock strategy is configured for its backing map. Two different types of
operations exist that acquire a lock on the queue map:
v When an ObjectGrid transaction commits, or a flush (map flush or session flush)

happens, the transaction reads the key in the queue map and places an S lock on
the key.

v When an ObjectGrid transaction commits, the transaction tries to upgrade the S
lock to X lock on the key.

Because of this extra queue map behavior, you can see some locking behavior
differences.
v If the user map is configured as PESSIMISTIC locking strategy, there isn't much

locking behavior difference. Every time a flush or commit is called, an S lock is
placed on the same key in the queue map. During the commit time, not only is
an X lock acquired for key in the user map, it is also acquired for the key in the
queue map.

v If the user map is configured as OPTIMISTIC or NONE locking strategy, the
user transaction will follow the PESSIMISTIC locking strategy pattern. Every
time a flush or commit is called, an S lock is acquired for the same key in the
queue map. During the commit time, an X lock is acquired for the key in the
queue map using the same transaction.

Loader transaction retries

ObjectGrid does not support 2-phase or XA transactions. The write-behind thread
removes records from the queue map and updates the records to the back-end. If
the server fails in the middle of the transaction, some back-end updates can be
lost.

The write-behind loader will automatically retry to write failed transactions and
will send an in-doubt LogSequence to the back-end to avoid data loss. This action
requires the loader to be idempotent, which means when the
Loader.batchUpdate(TxId, LogSequence) is called twice with the same value, it
gives the same result as if it were applied one time. Loader implementations must
implement the RetryableLoader interface to enable this feature. See the API
documentation for more details.

Loader failures

The loader plug-in can fail when it is unable to communicate to the database back
end. This can happen if the database server or the network connection is down.
The write-behind loader will queue the updates and try to push the data changes
to the loader periodically. The loader must notify the ObjectGrid run time that
there is a database connectivity problem by throwing a
LoaderNotAvailableException exception.

Therefore, the Loader implementation should be able to distinguish a data failure
or a physical loader failure. Data failure should be thrown or re-thrown as a
LoaderException or an OptimisticCollisionException, but a physical loader failure
should be thrown or re-thrown as a LoaderNotAvailableException. ObjectGrid
handles these two exceptions differently:

136 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v If a LoaderException is caught by the write-behind loader, the write-behind
loader will consider it fails due to some data failure, such as duplicate key
failure. The write-behind loader will unbatch the update, and try the update one
record at one time to isolate the data failure. If A {{LoaderException}}is caught
again during the one record update, a failed update record is created and logged
in the failed update map.

v If a LoaderNotAvailableException is caught by the write-behind loader, the
write-behind loader will consider it fails because it cannot connect to the
database end, for example, the database back-end is down, a database
connection is not available, or the network is down. The write-behind loader
will wait for 15 seconds and then re-try the batch update to the database.

The common mistake is to throw a LoaderException while a
LoaderNotAvailableException should be thrown. All the records queued in the
write-behind loader will become failed update records, which defeats the purpose
of back-end failure isolation.

Performance considerations

Write-behind caching support increases response time by removing the loader
update from the transaction. It also increases database throughput because
database updates are combined. It is important to understand the overhead
introduced by write-behind thread, which pulls the data out of the queue map and
pushed to the loader.

The maximum update count or the maximum update time need to be adjusted
based on the expected usage patterns and environment. If the value of the
maximum update count or the maximum update time is too small, the overhead of
the write-behind thread may exceed the benefits. Setting a large value for these
two parameters could also increase the memory usage for queuing the data and
increase the stale time of the database records.

For best performance, tune the write-behind parameters based on the following
factors:
v Ratio of read and write transactions
v Same record update frequency
v Database update latency.

Write-behind caching support
You can use write-behind caching to reduce the overhead that occurs when
updating a back-end database. Write-behind caching queues updates to the Loader
plug-in.

Introduction

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

When you configure the write-behind setting on a backing map, a write-behind
thread is created and wraps the configured loader. When an eXtreme Scale
transaction inserts, updates, or removes an entry from an eXtreme Scale map, a
LogElement object is created for each of these records. These elements are sent to

Chapter 7. Configuring the deployment environment 137

the write-behind loader and queued in a special ObjectMap called a queue map.
Each backing map with the write-behind setting enabled has its own queue maps.
A write-behind thread periodically removes the queued data from the queue maps
and pushes them to the real back-end loader.

The write-behind loader will only send insert, update, and delete types of
LogElement objects to the real loader. All other types of LogElement objects, for
example, EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the “Configuring
JPA loaders” on page 266 information about configuring a JPA loader.

Benefits

Enabling write-behind support has the following benefits:
v Backend failure isolation: Write-behind caching provides an isolation layer from

back-end failures. When the back-end database fails, updates are queued in the
queue map. The applications can continue driving transactions to eXtreme Scale.
When the back-end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back-end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end.

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

ObjectGrid descriptor XML

When configuring an eXtreme Scale using an eXtreme Scale descriptor XML file,
the write-behind loader is enabled by setting the writeBehind attribute on the
backingMap tag. An example follows:
<objectGrid name="library" >

<backingMap name="book" writeBehind="T300;C900" pluginCollectionRef="bookPlugins"/>

In the previous example, write-behind support of the "book" backing map is
enabled with parameter "T300;C900".

The write-behind attribute specifies the maximum update time and/or a maximum
key update count. The format of the write-behind parameter is:

write-behind attribute ::= <defaults> | <update time> | <update key count> | <update time> ";" <update key count>
update time ::= "T" <positive integer>
update key count ::= "C" <positive integer>
defaults ::= "" {table}

Updates to the loader occur when one of the following events occurs:
1. The maximum update time in seconds has elapsed since the last update.
2. The number of updated keys in the queue map has reached the update key

count.

These parameters are only hints. The real update count and update time will be
within close range of the parameters. However, you cannot guarantee that the
actual update count or update time are the same as defined in the parameters.
Also, the first behind update could happen after up to twice as long as the update

138 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

time. This is because eXtreme Scale randomizes the update starting time so all
partitions will not hit the database simultaneously.

In the previous example T300;C900, the loader writes the data to the back end
when 300 seconds have passed since the last update or when 900 keys are pending
to be updated.

The default update time is 300 seconds and the default update key count is 1000.

The table below lists some write-behind attribute examples.

Note: If you configure the write-behind loader as an empty string: writeBehind="",
the write-behind loader is enabled using the default values. Therefore, do not
specify the writeBehind attribute if you do not want write-behind support enabled.

Table 10. Some write-behind options
Attribute value Time

T100 The update time is 100 seconds, and the update key count is 1000 (the default value)

C2000 The update time is 300 seconds (the default value), and the update key count is 2000.

T300;C900 The update time is 300 seconds and the update key count is 900.

"" The update time is 300 second (the default value), and the update key count is 1000 (the default value).

Programmatically enabling write-behind support

When you are creating a backing map programmatically for a local, in-memory
eXtreme Scale, you can use the following method on the BackingMap interface to
enable and disable write-behind support.
public void setWriteBehind(String writeBehindParam);

For more details about how to use the setWriteBehind method, see the information
about the BackingMap interface in the Programming Guide.

Application design considerations

Enabling write-behind support is simple, but designing an application to work
with write-behind support needs careful consideration. Without write-behind
support, the eXtreme Scale transaction encloses the back-end transaction. The
eXtreme Scale transaction starts before the back-end transaction starts, and it ends
after the back-end transaction ends.

With write-behind support enabled, the eXtreme Scale transaction finishes before
the back-end transaction starts. The eXtreme Scale transaction and back-end
transaction are decoupled.

Referential integrity constraints

Each backing map that is configured with write-behind support has its own
write-behind thread to push the data to the back-end. Therefore, the data that
updated to different maps in one eXtreme Scale transaction are updated to the
back-end in different back-end transactions. For example, transaction T1 updates
key key1 in map Map1 and key key2 in map Map2. The key1 update to map Map1
is updated to the back-end in one back-end transaction, and the key2 updated to
map Map2 is updated to the back-end in another back-end transaction by different
write-behind threads. If data stored in Map1 and Map2 have relations, such as
foreign key constraints in the back-end, the updates might fail.

Chapter 7. Configuring the deployment environment 139

When designing the referential integrity constraints in your back-end database,
ensure that out-of-order updates are allowed.

Failed updates

Because the eXtreme Scale transaction finishes before the back-end transaction
starts, it is possible to have transaction false success. For example, if you try to
insert an entry in an eXtreme Scale transaction that does not exist in the backing
map but does exist in the back-end, causing a duplicate key, the eXtreme Scale
transaction does succeed. However, the transaction in which the write-behind
thread inserts that object into the back-end fails with a duplicate key exception.

Refer to “Handling failed write-behind updates” on page 142 for how to handle
such failures.

Queue map locking behavior

Another major transaction behavior difference is the locking behavior.eXtreme
Scale supports three different locking strategies: PESSIMISTIC, OPTIMISITIC, and
NONE. The write-behind queue maps uses pessimistic locking strategy no matter
which lock strategy is configured for its backing map. Two different types of
operations exist that acquire a lock on the queue map:
v When an eXtreme Scale transaction commits, or a flush (map flush or session

flush) happens, the transaction reads the key in the queue map and places an S
lock on the key.

v When an eXtreme Scale transaction commits, the transaction tries to upgrade the
S lock to X lock on the key.

Because of this extra queue map behavior, you can see some locking behavior
differences.
v If the user map is configured as PESSIMISTIC locking strategy, there isn't much

locking behavior difference. Every time a flush or commit is called, an S lock is
placed on the same key in the queue map. During the commit time, not only is
an X lock acquired for key in the user map, it is also acquired for the key in the
queue map.

v If the user map is configured as OPTIMISTIC or NONE locking strategy, the
user transaction will follow the PESSIMISTIC locking strategy pattern. Every
time a flush or commit is called, an S lock is acquired for the same key in the
queue map. During the commit time, an X lock is acquired for the key in the
queue map using the same transaction.

Loader transaction retries

WebSphere eXtreme Scale does not support 2-phase or XA transactions. The
write-behind thread removes records from the queue map and updates the records
to the back-end. If the server fails in the middle of the transaction, some back-end
updates can be lost.

The write-behind loader automatically retries to write failed transactions and sends
an in-doubt LogSequence to the back end to avoid data loss. This action requires
the loader to be idempotent, which means when the Loader.batchUpdate(TxId,
LogSequence) method is called twice with the same value, it gives the same result
as if it were applied one time. Loader implementations must implement the
RetryableLoader interface to enable this feature. See in API documentation for
more details.

140 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Loader failures

The loader plug-in can fail when it is unable to communicate to the database back
end. This can happen if the database server or the network connection is down.
The write-behind loader will queue the updates and try to push the data changes
to the loader periodically. The loader must notify the WebSphere eXtreme Scale run
time that a database connectivity problem exists by throwing a
LoaderNotAvailableException exception.

Therefore, the Loader implementation should be able to distinguish a data failure
or a physical loader failure. Data failure should be thrown or re-thrown as a
LoaderException or an OptimisticCollisionException exception, but a physical
loader failure should be thrown or re-thrown as a LoaderNotAvailableException
exception. WebSphere eXtreme Scale handles these two exceptions differently:
v If a LoaderException is caught by the write-behind loader, the write-behind

loader will consider it fails due to some data failure, such as duplicate key
failure. The write-behind loader will unbatch the update, and try the update one
record at one time to isolate the data failure. If A LoaderException exception is
caught again during the one record update, a failed update record is created and
logged in the failed update map.

v If a LoaderNotAvailableException is caught by the write-behind loader, the
write-behind loader will consider it fails because it cannot connect to the
database end, for example, the database back-end is down, a database
connection is not available, or the network is down. The write-behind loader
will wait for 15 seconds and then re-try the batch update to the database.

The common mistake is to throw a LoaderException while a
LoaderNotAvailableException should be thrown. All the records queued in the
write-behind loader will become failed update records, which defeats the purpose
of back-end failure isolation. This mistake will likely happen if you write a generic
loader to talk to databases.

The eXtreme Scale provided JPALoader is one example. The JPALoader uses JPA
API to interact with database backends. When the network fails, the JPALoader
gets a javax.persistence.PersitenceException but it does not know the essence of the
failure unless the SQL state and SQL error code of the chained SQLException are
checked. The fact that the JPALoader is designed to work with all types of
database further complicates the problem as the SQL states and error codes are
different for the network down problem. To solve this, WebSphere eXtreme Scale
provides an ExceptionMapper API to allow users plug in an implementation to
map an Exception to a more consumable exception. For example, users can map a
generic javax.persistence.PersitenceException to a LoaderNotAvailableException if
the SQL state or error code indicates the network is down.

Performance considerations

Write-behind caching support increases response time by removing the loader
update from the transaction. It also increases database throughput since database
updates are combined. It is important to understand the overhead introduced by
write-behind thread, which pulls the data out of the queue map and pushes to the
loader.

The maximum update count or the maximum update time need to be adjusted
based on the expected usage patterns and environment. If the value of the
maximum update count or the maximum update time is too small, the overhead of

Chapter 7. Configuring the deployment environment 141

the write-behind thread may exceed the benefits. Setting a large value for these
two parameters could also increase the memory usage for queuing the data and
increase the stale time of the database records.

For best performance, tune the write-behind parameters based on the following
factors:
v Ratio of read and write transactions
v Same record update frequency
v Database update latency.

Handling failed write-behind updates
Since the WebSphere eXtreme Scale transaction finishes before the back-end
transaction starts, it is possible to have transaction false success.

For example, if you try to insert an entry in an eXtreme Scale transaction which
does not exist in the backing map but does exist in the back-end, causing a
duplicate key, the eXtreme Scale transaction does succeed. However, the
transaction in which the write-behind thread inserts that object into the back-end
fails with a duplicate key exception.

Handling failed write-behind updates: client side

Such an update, or any other failed back-end update, is a failed write-behind
update. Failed write-behind updates are stored in a failed write-behind update
map. This map serves as an event queue for failed updates. The key of the update
is a unique Integer object, and the value is an instance of FailedUpdateElement.
The failed write-behind update map is configured with an evictor, which evicts the
records 1 hour after it has been inserted. So the failed-update records will be lost if
they are not retrieved within 1 hour.

The ObjectMap API can be used to retrieve the failed write-behind update map
entries. The failed write-behind update map name is:
IBM_WB_FAILED_UPDATES_<map name>. See the WriteBehindLoaderConstants
API documentation for the prefix names of each of the write-behind system maps.
The following is an example.
process failed - example code
ObjectMap failedMap = session.getMap(

WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + "Employee");
Object key = null;

session.begin();
while(key = failedMap.getNextKey(ObjectMap.QUEUE_TIMEOUT_NONE)) {

FailedUpdateElement element = (FailedUpdateElement) failedMap.get(key);
Throwable throwable = element.getThrowable();
Object failedKey = element.getKey();
Object failedValue = element.getAfterImage();
failedMap.remove(key);
// Do something interesting with the key, value, or exception.

}
session.commit();

A getNextKey call works with a specific partition for each eXtreme Scale
transaction. In a distributed environment, in order to get keys from all partitions,
you must start multiple transactions, as shown in the following example:
getting keys from all partitions - example code
ObjectMap failedMap = session.getMap(

WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + "Employee");

142 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

while (true) {
session.begin();
Object key = null;
while((key = failedMap.getNextKey(5000))!= null) {

FailedUpdateElement element = (FailedUpdateElement) failedMap.get(key);
Throwable throwable = element.getThrowable();

Object failedKey = element.getKey();
Object failedValue = element.getAfterImage();
failedMap.remove(key);
// Do something interesting with the key, value, or exception.

}
Session.commit();

}

Note: Failed update map provides a way to monitor the application health. If a
system produces a lot of records in the failed update map, it is a sign the
application or architecture should be re-evaluated or revised to use the
write-behind support. Starting from 6.1.0.5, you can use xsadmin script to see the
failed update map entry size.

Handling failed write-behind updates: shard listener

It is important to detect and log when a write-behind transaction fails. Every
application using write-behind needs to implement a watcher to handle failed
write-behind updates. This avoids potentially running out of memory as records in
the bad update Map are not evicted because the application is expected to handle
them.

The following code shows how to plug in such a watcher, or "dumper," which
should be added to the ObjectGrid descriptor XML as in the snippet.
<objectGrid name="Grid">
<bean id="ObjectGridEventListener" className="utils.WriteBehindDumper"/>

You can see the ObjectGridEventListener bean that has been added, which is the
write-behind watcher referred to above. The watcher interacts over the Maps for all
primary shards in a JVM looking for ones with write-behind enabled. If it finds
one then it tries to log up to 100 bad updates. It keeps watching a primary shard
until the shard is moved to a different JVM. All applications using write-behind
must use a watcher similar to this one. Otherwise, the Java virtual machines run
out of memory because this error map is never evicted

See Write-behind dumper class sample code for more information.

Example: Writing a write-behind dumper class
This sample source code shows how to write a watcher (dumper) to handle failed
write-behind updates.
//
//This sample program is provided AS IS and may be used, executed, copied and
//modified without royalty payment by customer (a) for its own instruction and
//study, (b) in order to develop applications designed to run with an IBM
//WebSphere product, either for customer’s own internal use or for redistribution
//by customer, as part of such an application, in customer’s own products. "
//
//5724-J34 (C) COPYRIGHT International Business Machines Corp. 2009
//All Rights Reserved * Licensed Materials - Property of IBM
//
package utils;

import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.Callable;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.ScheduledThreadPoolExecutor;

Chapter 7. Configuring the deployment environment 143

import java.util.concurrent.TimeUnit;
import java.util.logging.Logger;

import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.UndefinedMapException;
import com.ibm.websphere.objectgrid.plugins.ObjectGridEventGroup;
import com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener;
import com.ibm.websphere.objectgrid.writebehind.FailedUpdateElement;
import com.ibm.websphere.objectgrid.writebehind.WriteBehindLoaderConstants;

/**
* Write behind expects transactions to the Loader to succeed. If a transaction for a key fails then
* it inserts an entry in a Map called PREFIX + mapName. The application should be checking this
* map for entries to dump out write behind transaction failures. The application is responsible for
* analyzing and then removing these entries. These entries can be large as they include the key, before
* and after images of the value and the exception itself. Exceptions can easily be 20k on their own.
*
* The class is registered with the grid and an instance is created per primary shard in a JVM. It creates
* a single thread
* and that thread then checks each write behind error map for the shard, prints out the problem and
* then removes the entry.
*
* This means there will be one thread per shard. If the shard is moved to another JVM then the deactivate
* method stops the thread.
* @author bnewport
*
*/
public class WriteBehindDumper implements ObjectGridEventListener, ObjectGridEventGroup.ShardEvents,
Callable<Boolean>
{
static Logger logger = Logger.getLogger(WriteBehindDumper.class.getName());

ObjectGrid grid;

/**
* Thread pool to handle table checkers. If the application has it’s own pool
* then change this to reuse the existing pool
*/
static ScheduledExecutorService pool = new ScheduledThreadPoolExecutor(2); // two threads to dump records

// the future for this shard
ScheduledFuture<Boolean> future;

// true if this shard is active
volatile boolean isShardActive;

/**
* Normal time between checking Maps for write behind errors
*/
final long BLOCKTIME_SECS = 20L;

/**
* An allocated session for this shard. No point in allocating them again and again
*/
Session session;
/**
* When a primary shard is activated then schedule the checks to periodically check
* the write behind error maps and print out any problems
*/
public void shardActivated(ObjectGrid grid)
{
try
{
this.grid = grid;
session = grid.getSession();

isShardActive = true;
future = pool.schedule(this, BLOCKTIME_SECS, TimeUnit.SECONDS); // check every BLOCKTIME_SECS seconds initially
}
catch(ObjectGridException e)
{
throw new ObjectGridRuntimeException("Exception activating write dumper", e);
}
}

/**
* Mark shard as inactive and then cancel the checker
*/
public void shardDeactivate(ObjectGrid arg0)
{
isShardActive = false;
// if it’s cancelled then cancel returns true
if(future.cancel(false) == false)
{
// otherwise just block until the checker completes
while(future.isDone() == false) // wait for the task to finish one way or the other

144 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

{
try
{
Thread.sleep(1000L); // check every second
}
catch(InterruptedException e)
{
}
}
}
}

/**
* Simple test to see if the map has write behind enabled and if so then return
* the name of the error map for it.
* @param mapName The map to test
* @return The name of the write behind error map if it exists otherwise null
*/
static public String getWriteBehindNameIfPossible(ObjectGrid grid, String mapName)
{
BackingMap map = grid.getMap(mapName);
if(map != null && map.getWriteBehind() != null)
{
return WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + mapName;
}
else
return null;

}

/**
* This runs for each shard. It checks if each map has write behind enabled and if it does
* then it prints out any write behind
* transaction errors and then removes the record.
*/
public Boolean call()
{
logger.fine("Called for " + grid.toString());
try
{
// while the primary shard is present in this JVM
// only user defined maps are returned here, no system maps like write behind maps are in
// this list.
Iterator<String> iter = grid.getListOfMapNames().iterator();
boolean foundErrors = false;
// iterate over all the current Maps
while(iter.hasNext() && isShardActive)
{
String origName = iter.next();

// if it’s a write behind error map
String name = getWriteBehindNameIfPossible(grid, origName);
if(name != null)
{
// try to remove blocks of N errors at a time
ObjectMap errorMap = null;
try
{
errorMap = session.getMap(name);
}
catch(UndefinedMapException e)
{
// at startup, the error maps may not exist yet, patience...
continue;
}
// try to dump out up to N records at once
session.begin();
for(int counter = 0; counter < 100; ++counter)
{
Integer seqKey = (Integer)errorMap.getNextKey(1L);
if(seqKey != null)
{
foundErrors = true;
FailedUpdateElement elem = (FailedUpdateElement)errorMap.get(seqKey);
//
// Your application should log the problem here
logger.info("WriteBehindDumper (" + origName + ") for key (" + elem.getKey() + ") Exception: " +
elem.getThrowable().toString());
//
//
errorMap.remove(seqKey);
}
else
break;

}
session.commit();
}
} // do next map
// loop faster if there are errors
if(isShardActive)
{
// reschedule after one second if there were bad records

Chapter 7. Configuring the deployment environment 145

// otherwise, wait 20 seconds.
if(foundErrors)
future = pool.schedule(this, 1L, TimeUnit.SECONDS);
else
future = pool.schedule(this, BLOCKTIME_SECS, TimeUnit.SECONDS);

}
}
catch(ObjectGridException e)
{
logger.fine("Exception in WriteBehindDumper" + e.toString());
e.printStackTrace();

//don’t leave a transaction on the session.
if(session.isTransactionActive())
{
try { session.rollback(); } catch(Exception e2) {}
}
}
return true;
}

public void destroy() {
// TODO Auto-generated method stub

}

public void initialize(Session arg0) {
// TODO Auto-generated method stub

}

public void transactionBegin(String arg0, boolean arg1) {
// TODO Auto-generated method stub

}

public void transactionEnd(String arg0, boolean arg1, boolean arg2,
Collection arg3) {
// TODO Auto-generated method stub

}
}

Configuring peer-to-peer replication with JMS
The Java Message Service (JMS) based peer-to-peer replication mechanism is used
in both the distributed and local WebSphere eXtreme Scale environment. JMS is a
core-to-core replication process and allows data updates to flow among local
ObjectGrids and distributed ObjectGrids. For example, with this mechanism you
can move data updates from a distributed eXtreme Scale data grid to a local
eXtreme Scale grid, or from a grid to another grid in a different system domain.

Before you begin

The JMS-based peer-to-peer replication mechanism is based on the built-in
JMS-based ObjectGridEventListener,
com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener. For
detailed information regarding enabling peer-to-peer replication mechanism, see
“JMS event listener” on page 150.

See “Enabling the client invalidation mechanism” on page 252 for more
information.

The following is an XML configuration example to enable a peer-to-peer replication
mechanism on an eXtreme Scale configuration:
peer-to-peer replication configuration - XML example
<bean id="ObjectGridEventListener"
className="com.ibm.websphere.objectgrid.plugins.JMSObjectGridEventListener">
<property name="replicationRole" type="java.lang.String" value="DUAL_ROLES" description="" />
<property name="replicationStrategy" type="java.lang.String" value="PUSH" description="" />
<property name="jms_topicConnectionFactoryJndiName" type="java.lang.String"
value="defaultTCF" description="" />
<property name="jms_topicJndiName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_topicName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_userid" type="java.lang.String" value="" description="" />

146 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<property name="jms_password" type="java.lang.String" value="" description="" />
<property name="jndi_properties" type="java.lang.String"
value="java.naming.factory.initial=org.apache.activemq.jndi.ActiveMQInitialContextFactory;
java.naming.provider.url=tcp://localhost:61616;connectionFactoryNames=defaultTCF;
topic.defaultTopic=defaultTopic"
description="jndi properties" />

</bean>

Distributing changes between peer JVMs
The LogSequence and LogElement objects distribute changes between peer JVMs
and communicate the changes that have occurred in an eXtreme Scale transaction
with an ObjectGridEventListener plug-in.

For more information about how Java Message Service (JMS) can be used to
distribute transactional changes, see the information about using JMS to distribute
transaction changes in the Product Overview.

A prerequisite is that the ObjectGrid instance must be cached by the
ObjectGridManager. See createObjectGrid methods for more information. The
cacheInstance boolean value must be set to true.

It is not necessary for you to implement this mechanism. There is a built-in
peer-to-peer replication mechanism for you to use this function. See the
information about configuring peer-to-peer replication with JMS in the
Administration Guide.

The objects provide a means for an application to easily publish changes that have
occurred in an ObjectGrid using a message transport to peer ObjectGrids in remote
Java virtual machines and then apply those changes on that JVM. The
LogSequenceTransformer class is critical to enabling this support. This article
examines how to write a listener using a Java Message Service (JMS) messaging
system for propagating the messages. To that end, eXtreme Scale supports
transmitting LogSequences that result from an eXtreme Scale transaction commit
across WebSphere Application Server cluster members with an IBM-provided
plug-in. This function is not enabled by default, but can be configured to be
operational. However, when either the consumer or producer is not a WebSphere
Application Server, using an external JMS messaging system might be required.

Implementing the mechanism

The LogSequenceTransformer class, and the ObjectGridEventListener, LogSequence
and LogElement APIs allow any reliable publish-and-subscribe to be used to
distribute the changes and filter the maps you want to distribute. The snippets in
this topic show how to use these APIs with JMS to build a peer-to-peer ObjectGrid
shared by applications that are hosted on a diverse set of platforms sharing a
common message transport.

Initialize the plug-in

The ObjectGrid calls the initialize method of the plug-in, part of the
ObjectGridEventListener interface contract, when the ObjectGrid starts. The
initialize method must obtain its JMS resources, including connections, sessions,
and publishers, and start the thread that is the JMS listener.

The following examples show the initialize method:
initialize method example
public void initialize(Session session) {

mySession = session;

Chapter 7. Configuring the deployment environment 147

myGrid = session.getObjectGrid();
try {

if (mode == null) {
throw new ObjectGridRuntimeException("No mode specified");

}
if (userid != null) {

connection = topicConnectionFactory.createTopicConnection(userid,
password);

} else
connection = topicConnectionFactory.createTopicConnection();

// need to start the connection to receive messages.
connection.start();

// the jms session is not transactional (false).
jmsSession = connection.createTopicSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);
if (topic == null)

if (topicName == null) {
throw new ObjectGridRuntimeException("Topic not specified");

} else {
topic = jmsSession.createTopic(topicName);

}
publisher = jmsSession.createPublisher(topic);
// start the listener thread.
listenerRunning = true;
listenerThread = new Thread(this);
listenerThread.start();

} catch (Throwable e) {
throw new ObjectGridRuntimeException("Cannot initialize", e);

}
}

The code to start the thread uses a Java 2 Platform, Standard Edition (Java SE)
thread. If you are running a WebSphere Application Server Version 6.x or a
WebSphere Application Server Version 5.x Enterprise server, use the asynchronous
bean application programming interface (API) to start this daemon thread. You can
also use the common APIs. Following is an example replacement snippet showing
the same action using a work manager:
// start the listener thread.
listenerRunning = true;
workManager.startWork(this, true);

The plug-in must also implement the Work interface instead of the Runnable
interface. You also need to add a release method to set the listenerRunning variable
to false. The plug-in must be provided with a WorkManager instance in its
constructor or by injection if using an Inversion of Control (IoC) container.

Transmit the changes

The following is a sample transactionEnd method for publishing the local changes
that are made to an ObjectGrid. This sample uses JMS, although you can use any
message transport that is capable of reliable publish-and subscribe-messaging.
transactionEnd method example
// This method is synchronized to make sure the

// messages are published in the order the transaction
// were committed. If we started publishing the messages
// in parallel then the receivers could corrupt the Map
// as deletes may arrive before inserts etc.
public synchronized void transactionEnd(String txid, boolean isWriteThroughEnabled,
boolean committed,

Collection changes) {
try {

// must be write through and commited.
if (isWriteThroughEnabled && committed) {

148 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

// write the sequences to a byte []
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
if (publishMaps.isEmpty()) {

// serialize the whole collection
LogSequenceTransformer.serialize(changes, oos, this, mode);

} else {
// filter LogSequences based on publishMaps contents
Collection publishChanges = new ArrayList();
Iterator iter = changes.iterator();
while (iter.hasNext()) {

LogSequence ls = (LogSequence) iter.next();
if (publishMaps.contains(ls.getMapName())) {

publishChanges.add(ls);
}

}
LogSequenceTransformer.serialize(publishChanges, oos, this, mode);

}
// make an object message for the changes
oos.flush();
ObjectMessage om = jmsSession.createObjectMessage(bos.toByteArray());
// set properties
om.setStringProperty(PROP_TX, txid);
om.setStringProperty(PROP_GRIDNAME, myGrid.getName());
// transmit it.
publisher.publish(om);

}
} catch (Throwable e) {

throw new ObjectGridRuntimeException("Cannot push changes", e);
}

}

This method uses several instance variables:
v jmsSession variable: A JMS session that is used to publish messages. It is created

when the plug-in initializes.
v mode variable: The distribution mode.
v publishMaps variable: A set that contains the name of each map with changes to

publish. If the variable is empty, then all the maps are published.
v publisher variable: A TopicPublisher object that is created during the plug-in

initialize method

Receive and apply update messages

Following is the run method. This method runs in a loop until the application
stops the loop. Each loop iteration attempts to receive a JMS message and apply it
to the ObjectGrid.
JMS message run method example
private synchronized boolean isListenerRunning() {

return listenerRunning;
}

public void run() {
try {

System.out.println("Listener starting");
// get a jms session for receiving the messages.
// Non transactional.
TopicSession myTopicSession;
myTopicSession = connection.createTopicSession(false, javax.jms.

Session.AUTO_ACKNOWLEDGE);

// get a subscriber for the topic, true indicates don’t receive
// messages transmitted using publishers
// on this connection. Otherwise, we’d receive our own updates.
TopicSubscriber subscriber = myTopicSession.createSubscriber(topic,

null, true);
System.out.println("Listener started");
while (isListenerRunning()) {

Chapter 7. Configuring the deployment environment 149

ObjectMessage om = (ObjectMessage) subscriber.receive(2000);
if (om != null) {

// Use Session that was passed in on the initialize...
// very important to use no write through here
mySession.beginNoWriteThrough();
byte[] raw = (byte[]) om.getObject();
ByteArrayInputStream bis = new ByteArrayInputStream(raw);
ObjectInputStream ois = new ObjectInputStream(bis);
// inflate the LogSequences
Collection collection = LogSequenceTransformer.inflate(ois,

myGrid);
Iterator iter = collection.iterator();
while (iter.hasNext()) {

// process each Maps changes according to the mode when
// the LogSequence was serialized
LogSequence seq = (LogSequence) iter.next();
mySession.processLogSequence(seq);

}
mySession.commit();

} // if there was a message
} // while loop
// stop the connection
connection.close();

} catch (IOException e) {
System.out.println("IO Exception: " + e);

} catch (JMSException e) {
System.out.println("JMS Exception: " + e);

} catch (ObjectGridException e) {
System.out.println("ObjectGrid exception: " + e);
System.out.println("Caused by: " + e.getCause());

} catch (Throwable e) {
System.out.println("Exception : " + e);

}
System.out.println("Listener stopped");

}

JMS event listener
The JMSObjectGridEventListener is designed to support client-side near cache
invalidation and a peer-to-peer replication mechanism. It is a Java Message Service
(JMS) implementation of the ObjectGridEventListener interface.

The client invalidation mechanism can be used in a distributed eXtreme Scale
environment to ensure client near cache data to be synchronized with servers or
other clients. Without this function, the client near cache could hold stale data.
However, even with this JMS-based client invalidation mechanism, you have to
take into consideration the timing window for updating a client near cache because
of the delay for the run time in publishing updates.

The peer-to-peer replication mechanism can be used in both distributed and local
eXtreme Scale environments. It is an ObjectGrid core-to-core replication process
and allows data updates to flow among local ObjectGrids and distributed
ObjectGrids. For example, with this mechanism you can move data updates from a
distributed grid to a local ObjectGrid, or from any grid to another grid in a
different system domain.

The JMSObjectGridEventListener requires the user to configure JMS and Java
Naming and Directory Interface (JNDI) information in order to obtain required
JMS resources. Additionally, replication-related properties must be set correctly. In
a JEE environment, the JNDI should be available in both Web and Enterprise
JavaBean (EJB) containers. In this case, the JNDI property is optional unless you
want to obtained external JMS resources.

150 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

This event listener has properties you can configure with XML or programmatic
approaches, which can be used for only client invalidation, only peer-to-peer
replication, or both. Most properties are optional for customizing the behavior to
achieve your required functionality.

.

For more information see the JMSObjectGridEventListener API.

Extending the JMSObjectGridEventListener plug-in

The JMSObjectGridEventListener plug-in allows peer ObjectGrid instances to
receive updates when data in the grid has been changed or evicted. It also allows
clients to be notified when entries are updated or evicted from an eXtreme Scale
grid. This topic describes how to extend the JMSObjectGridEventListener plug-in
to allow applications to be notified when a JMS message is received. This is most
useful when using the CLIENT_SERVER_MODEL setting for client invalidation.

When running in the receiver role, the overridden
JMSObjectGridEventListener.onMessage method is automatically called by the
eXtreme Scale runtime when the JMSObjectGridEventListener instance receives
JMS message updates from the grid. These messages wrap a collection of
LogSequence. Objects. The LogSequence objects are passed to the onMessage
method and the application uses the LogSequence to identify which cache entries
have been inserted, deleted, updated or invalidated.

To use the onMessage extension point, applications perform the following steps.
1. Create a new class, extending the JMSObjectGridEventListener class, overriding

the onMessage method.
2. Configure the extended JMSObjectGridEventListener the same way as the

ObjectGridEventListener for ObjectGrid.

The extended JMSObjectGridEventListener class is a child class of the
JMSObjectGridEventListener class and can only override two methods: the
initialize (optional) and onMessage methods. If a child class of the
JMSObjectGridEventListener class needs to use any ObjectGrid artifacts such as
ObjectGrid or Session in the onMessage method, it can get these artifacts in the
initialize method and cache them as instance variables. Also, in the onMessage
method, cached ObjectGrid artifacts can be used to process a passed collection of
LogSequences.

Note: The overridden initialize method has to invoke super.initialize method in
order to initialize parent JMSObjectGridEventListener appropriately.

The following is a sample for an extended JMSObjectGridEventListener class.
package com.ibm.websphere.samples.objectgrid.jms.price;

import java.util.*;
import com.ibm.websphere.objectgrid.*;
import com.ibm.websphere.objectgrid.plugins.LogElement;
import com.ibm.websphere.objectgrid.plugins.LogSequence;
import com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener;

public class ExtendedJMSObjectGridEventListener extends JMSObjectGridEventListener{
protected static boolean debug = true;

/**
* This is the grid associated with this listener.
*/
ObjectGrid grid;

Chapter 7. Configuring the deployment environment 151

/**
* This is the session associated with this listener.
*/
Session session;

String objectGridType;

public List receivedLogSequenceList = new ArrayList();

/* (non-Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener
#initialize(com.ibm.websphere.objectgrid.Session)

*/
public void initialize(Session session) {
// Note: if need to use any ObjectGrid artifact, this class need to get ObjectGrid
// from the passed Session instance and get ObjectMap from session instance
// for any transactional ObjectGrid map operation.

super.initialize(session); // must invoke super’s initialize method.
this.session = session; // cache the session instance, in case need to
// use it to perform map operation.
this.grid = session.getObjectGrid(); // get ObjectGrid, in case need
// to get ObjectGrid information.

if (grid.getObjectGridType() == ObjectGrid.CLIENT)
objectGridType = "CLIENT";
else if (grid.getObjectGridType() == ObjectGrid.SERVER)
objectGridType = "Server";

if (debug)
System.out.println("ExtendedJMSObjectGridEventListener[" +
objectGridType + "].initialize() : grid = " + this.grid);

}

/* (non-Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener
#onMessage(java.util.Collection)

*/
protected void onMessage(Collection logSequences) {
System.out.println("ExtendedJMSObjectGridEventListener[" +
objectGridType + "].onMessage(): ");

Iterator iter = logSequences.iterator();

while (iter.hasNext()) {
LogSequence seq = (LogSequence) iter.next();

StringBuffer buffer = new StringBuffer();
String mapName = seq.getMapName();
int size = seq.size();
buffer.append("\nLogSequence[mapName=" + mapName + ", size=" + size + ",
objectGridType=" + objectGridType

+ "]: ");

Iterator logElementIter = seq.getAllChanges();
for (int i = seq.size() - 1; i >= 0; --i) {
LogElement le = (LogElement) logElementIter.next();
buffer.append(le.getType() + " -> key=" + le.getCacheEntry().getKey() + ", ");
}
buffer.append("\n");

receivedLogSequenceList.add(buffer.toString());

if (debug) {
System.out.println("ExtendedJMSObjectGridEventListener["
+ objectGridType + "].onMessage(): " + buffer.toString());
}

}
}

public String dumpReceivedLogSequenceList() {
String result = "";
int size = receivedLogSequenceList.size();
result = result + "\nExtendedJMSObjectGridEventListener[" + objectGridType
+ "]: receivedLogSequenceList size = " + size + "\n";

for (int i = 0; i < size; i++) {
result = result + receivedLogSequenceList.get(i) + "\n";
}

152 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

return result;
}

public String toString() {
return "ExtendedJMSObjectGridEventListener["
+ objectGridType + " - " + this.grid + "]";

}
}

Configuration

The extended JMSObjectGridEventListener class must be configured the same way
for both client invalidation and peer-to-peer replication mechanism. The following
is the XML configuration example.
<objectGrid name="PRICEGRID">

<bean id="ObjectGridEventListener"
className="com.ibm.websphere.samples.objectgrid.jms.

price.ExtendedJMSObjectGridEventListener">
<property name="invalidationModel" type="java.lang.String"
value="CLIENT_SERVER_MODEL" description="" />
<property name="invalidationStrategy" type="java.lang.String"
value="INVALIDATE" description="" />
<property name="jms_topicConnectionFactoryJndiName" type="java.lang.String"
value="jms/TCF" description="" />
<property name="jms_topicJndiName" type="java.lang.String"
value="GRID.PRICEGRID" description="" />
<property name="jms_topicName" type="java.lang.String"
value="GRID.PRICEGRID" description="" />
<property name="jms_userid" type="java.lang.String" value=""
description="" />
<property name="jms_password" type="java.lang.String" value=""
description="" />

</bean>
<backingMap name="PRICE" pluginCollectionRef="PRICE"></backingMap>

</objectGrid>

Note: The className of ObjectGridEventListener bean is configured with the
extended JMSObjectGridEventListener class with the same properties as the generic
JMSObjectGridEventListener.

ObjectGrid descriptor XML file
To configure WebSphere eXtreme Scale, use an ObjectGrid descriptor XML file and
the ObjectGrid API.

In the following sections, sample XML files are provided to illustrate various
configurations. Each element and attribute of the XML file is defined. Use the
ObjectGrid descriptor XML schema to create the descriptor XML file. See
“objectGrid.xsd file” on page 169 for an example of the ObjectGrid descriptor
XML schema.

A modified version of the original companyGrid.xml file is used. The following
companyGridSingleMap.xml file is like the companyGrid.xml file. The
companyGridSingleMap.xml file has one map, and the companyGrid.xml file has four
maps. The elements and attributes of the file are described in detail following the
example.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

Chapter 7. Configuring the deployment environment 153

<backingMap name="Customer"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

objectGridConfig element

The objectGridConfig element is the top-level element of the XML file. Write this
element in your eXtreme Scale XML document as shown in the preceding example.
This element sets up the namespace of the file and the schema location. The
schema is defined in the objectGrid.xsd file.
v Number of occurrences: One
v Child element: objectGrids element and backingMapPluginCollections element

objectGrids element

The objectGrids element is a container for all the objectGrid elements. In the
companyGridSingleMap.xml file, the objectGrids element contains one objectGrid,
the CompanyGrid objectGrid.
v Number of occurrences: One or more
v Child element: objectGrid element

objectGrid element

Use the objectGrid element to define an ObjectGrid. Each of the attributes on the
objectGrid element corresponds to a method on the ObjectGrid interface.
v Number of occurrences: One to many
v Child element: bean element, backingMap element, querySchema element, and

streamQuerySet element

Attributes

name
Specifies the name that is assigned to ObjectGrid. The XML validation fails if
this attribute is missing. (Required)

securityEnabled
Enables security at the ObjectGrid level, which enables the access
authorizations to the data in the map, when you set the attribute to true. The
default is true. (Optional)

authorizationMechanism
Sets the authorization mechanism for the element. You can set the attribute to
one of two values: AUTHORIZATION_MECHANISM_JAAS or
AUTHORIZATION_MECHANISM_CUSTOM. The default is
AUTHORIZATION_MECHANISM_JAAS. Set to AUTHORIZATION_MECHANISM_CUSTOM when
you are using a custom MapAuthorization plug-in. You must set the
securityEnabled attribute to true for the authorizationMechanism attribute to
take effect. (Optional)

permissionCheckPeriod
Specifies an integer value in seconds that indicates how often to check the
permission that is used to allow a client access. The default is 0. When you set
the attribute value 0, every get, put, update, remove, or evict method call asks
the authorization mechanism, either Java Authentication and Authorization
Service (JAAS) authorization or custom authorization, to check if the current
subject has permission. A value greater than 0 indicates the number of seconds
to cache a set of permissions before returning to the authorization mechanism

154 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

to refresh. You must set the securityEnabled attribute to true for the
permissionCheckPeriod attribute to take effect. (Optional)

txTimeout
Specifies the amount of time in seconds that a transaction is allowed for
completion. If a transaction does not complete in this amount of time, the
transaction is marked for rollback and a TransactionTimeoutException
exception results. If you set the value to 0, the default setting of 10 minutes is
used as the transaction timeout. (Optional)

entityMetadataXMLFile
Specifies the relative path to the entity descriptor XML file. The path is relative
to the location of the ObjectGrid descriptor file. Use this attribute to define an
entity schema using an XML file. Entities must be defined before starting
eXtreme Scale so that each entity can bind with a BackingMap. (Optional)

<objectGrid
(1) name="objectGridName"
(2) securityEnabled="true" | "false"
(3) authorizationMechanism="AUTHORIZATION_MECHANISM_JASS" | "AUTHORIZATION_MECHANISM_CUSTOM"
(4) permissionCheckPeriod="permission_check_period"
(5) txTimeout="seconds"
(6) entityMetadataXMLFile="URL"
/>

In the following example, the companyGridObjectGridAttr.xml file demonstrates
one way to configure the attributes of an objectGrid element. Security is enabled,
the authorization mechanism is set to JAAS, and the permission check period is set
to 45 seconds. The file also registers entities by specifying an
entityMetadataXMLFile attribute.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlnc:xsi="http:www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JASS"
permissionCheckPeriod="45"
entityMetadataXMLFile="companyGridEntities.xml">
<backingMap name="Customer"/>
</objectGrid>
</objectGrids>
</objectGridConfig>

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridObjectGridAttr.xml file in the preceding
example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);

companyGrid.setSecurityEnabled();
companyGrid.setAuthorizationMechanism(SecurityConstants.AUTHORIZATION_MECHANISM_JAAS);
companyGrid.setPermissionCheckPeriod(45);
companyGrid.registerEntities(new URL("file:companyGridEntities.xml"));

backingMap element

The backingMap element is used to define a BackingMap instance on an
ObjectGrid. Each of the attributes on the backingMap element corresponds to a
method on the BackingMap interface. For details, see the information about the
BackingMap interface in the Programming Guide.
v Number of occurrences: Zero to many
v Child element: timeBasedDBUpdate element

Chapter 7. Configuring the deployment environment 155

Attributes

name
Specifies the name that is assigned to the backingMap instance. If this attribute
is missing, the XML validation fails. (Required)

readOnly
Sets a BackingMap instance as read/write when you specify the attribute as
false. When you specify the attribute as true, the BackingMap instance is
read-only. (Optional)

template
Specifies if dynamic maps can be used. Set this value to true if the
BackingMap map is a template map. Template maps can be used to
dynamically create maps after the ObjectGrid is started. Calls to
Session.getMap(String) result in dynamic maps being created if the name
passed to the method matches the regular expression specified in the name
attribute of the backingMap. The default value is false. (Optional)

pluginCollectionRef
Specifies a reference to a backingMapPluginCollection plug-in. The value of
this attribute must match the ID attribute of a backingMapCollection plug-in.
Validation fails if no matching ID exists. Set the attribute to reuse BackingMap
plug-ins. (Optional)

numberOfBuckets
Specifies the number of buckets for the BackingMap instance to use. The
BackingMap instance uses a hash map for implementation. If multiple entries
exist in the BackingMap, more buckets lead to better performance because the
risk of collisions is lower as the number of buckets increases. More buckets
also lead to more concurrency. Specify a value of 0 to disable the near cache on
a client when remotely communicating with eXtreme Scale. When you set the
value to 0 for a client, set the value in the client override ObjectGrid XML
descriptor file only. (Optional)

preloadMode
Sets the preload mode if a loader plug-in is set for this BackingMap instance.
The default value is false. If the attribute is set to true, the
Loader.preloadMap(Session, BackingMap) method is invoked asynchronously.
Otherwise, running the method is blocked when loading data so that the cache
is unavailable until preload completes. Preloading occurs during initialization.
(Optional)

lockStrategy
Specifies if the internal lock manager is used whenever a map entry is accessed
by a transaction. Set this attribute to one of three values: OPTIMISTIC,
PESSIMISTIC, or NONE. The default value is OPTIMISTIC. (Optional)

The optimistic locking strategy is typically used when a map does not have a
loader plug-in, is mostly read and not frequently written to or updated, and
the locking is not provided by the persistence manager using eXtreme Scale as
a side cache or by the application. An exclusive lock is obtained on a map
entry that is inserted, updated, or removed at commit time. The lock ensures
that the version information cannot be changed by another transaction while
the transaction being committed is performing an optimistic version check.

The pessimistic locking strategy is typically used for a map that does not have
a loader plug-in, and locking is not provided by a persistence manager using
eXtreme Scale as a side cache, by a loader plug-in, or by the application. The

156 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

pessimistic locking strategy is used when the optimistic locking strategy fails
too often because update transactions frequently collide on the same map
entry.

The no locking strategy indicates that the internal LockManager is not needed.
Concurrency control is provided outside of eXtreme Scale, either by the
persistence manager using eXtreme Scale as a side cache or application, or by
the loader plug-in that uses database locks to control concurrency.

For more information see the information about map entry locking in the
Programming Guide.

numberOfLockBuckets
Sets the number of lock buckets that are used by the lock manager for the
BackingMap instance. Set the lockStrategy attribute to OPTIMISTIC or
PESSIMISTIC to create a lock manager for the BackingMap instance. The lock
manager uses a hash map to track entries that are locked by one or more
transactions. If many entries exist, more lock buckets lead to better
performance because the risk of collisions is lower as the number of buckets
grows. More lock buckets also lead to more concurrency. Set the lockStrategy
attribute to NONE to specify the BackingMap instance use no lock manager.
(Optional)

lockTimeout
Sets the lock timeout that is used by the lock manager for the BackingMap
instance. Set the lockStrategy attribute to OPTIMISTIC or PESSIMISTIC to create a
lock manager for the BackingMap instance. To prevent deadlocks from
occurring, the lock manager has a default timeout value of 15 seconds. If the
timeout limit is exceeded, a LockTimeoutException exception occurs. The
default value of 15 seconds is sufficient for most applications, but on a heavily
loaded system, a timeout might occur when no deadlock exists. Use the
lockTimeout attribute to increase the value from the default to prevent false
timeout exceptions from occurring. Set the lockStrategy attribute to NONE to
specify the BackingMap instance use no lock manager. (Optional)

CopyMode
Specifies if a get operation of an entry in the BackingMap instance returns the
actual value, a copy of the value, or a proxy for the value. Set the CopyMode
attribute to one of five values:

COPY_ON_READ_AND_COMMIT
The default value is COPY_ON_READ_AND_COMMIT. Set the value to
COPY_ON_READ_AND_COMMIT to ensure that an application never has a
reference to the value object that is in the BackingMap instance.
Instead, the application is always working with a copy of the value
that is in the BackingMap instance. (Optional)

COPY_ON_READ
Set the value to COPY_ON_READ to improve performance over the
COPY_ON_READ_AND_COMMIT value by eliminating the copy that occurs
when a transaction is committed. To preserve the integrity of the
BackingMap data, the application commits to delete every reference to
an entry after the transaction is committed. Setting this value results in
an ObjectMap.get method returning a copy of the value instead of a
reference to the value, which ensures changes that are made by the
application to the value does not affect the BackingMap element until
the transaction is committed.

COPY_ON_WRITE
Set the value to COPY_ON_WRITE to improve performance over the

Chapter 7. Configuring the deployment environment 157

COPY_ON_READ_AND_COMMIT value by eliminating the copy that occurs
when ObjectMap.get method is called for the first time by a transaction
for a given key. Instead, the ObjectMap.get method returns a proxy to
the value instead of a direct reference to the value object. The proxy
ensures that a copy of the value is not made unless the application
calls a set method on the value interface.

NO_COPY
Set the value to NO_COPY to allow an application to never modify a
value object that is obtained using an ObjectMap.get method in
exchange for performance improvements. Set the value to NO_COPY for
maps associated with EntityManager API entities.

COPY_TO_BYTES
Set the value to COPY_TO_BYTES to improve memory footprint for
complex Object types and to improve performance when the copying
of an Object relies on serialization to make the copy. If an Object is not
Cloneable or a custom ObjectTransformer with an efficient copyValue
method is not provided, the default copy mechanism is to serialize and
inflate the object to make a copy. With the COPY_TO_BYTES setting,
inflate is only performed during a read and serialize is only performed
during commit.

For more information about these settings, see the information about
CopyMode best practices in the Programming Guide..

valueInterfaceClassName
Specifies a class that is required when you set the CopyMode attribute to
COPY_ON_WRITE. This attribute is ignored for all other modes. The COPY_ON_WRITE
value uses a proxy when ObjectMap.get method calls are made. The proxy
ensures that a copy of the value is not made unless the application calls a set
method on the class that is specified as the valueInterfaceClassName attribute.
(Optional)

copyKey
Specifies if the a copy of the key is required when a map entry is created.
Copying the key object allows the application to use the same key object for
each ObjectMap operation. Set the value to true to copy the key object when a
map entry is created. The default value is false. (Optional)

nullValuesSupported
Set the value to true to support null values in the ObjectMap. When null
values are supported, a get operation that returns null might mean that the
value is null or that the map does not contain the key that is passed to the
method. The default value is true. (Optional)

ttlEvictorType
Specifies how the expiration time of a BackingMap entry is computed. Set this
attribute to one of these values: CREATION_TIME, LAST_ACCESS_TIME,
LAST_UPDATE_TIME, or NONE. The CREATION_TIME value indicates that an entry
expiration time is the sum of the creation time of the entry plus the timeToLive
attribute value. The LAST_ACCESS_TIME value indicates that an entry expiration
time is the sum of the last access time of the entry (whether the entry was
updated or merely read), plus the timeToLive attribute value. The
LAST_UPDATE_TIME value indicates that an entry expiration time is the sum of
the last update time of the entry plus the timeToLive attribute value. The NONE
value, which is the default, indicates that an entry has no expiration time and
is present in the BackingMap instance until the application explicitly removes
or invalidates the entry. (Optional)

158 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

timeToLive
Specifies in seconds how long each map entry is present. The default value of
0 means that the map entry is present forever, or until the application explicitly
removes or invalidates the entry. Otherwise, the TTL evictor evicts the map
entry based on this value. (Optional)

streamRef
Specifies that the backingMap is a stream source map. Any insert or update to
the backingMap is converted into a streaming event to the stream query
engine. This attribute must reference a valid stream name within a
streamQuerySet. (Optional)

viewRef
Specifies that the backingMap is a view map. The view output from the stream
query engine is converted into eXtreme Scale tuple format and put into the
map. (Optional)

writeBehind
Specifies that the write-behind support is enabled with write-behind
parameters (Optional). Write-behind parameters consist of a maximum update
time and a maximum key update count. The format of the write-behind
parameter is "[T(time)][;][C(count)]". The database is updated when one of
the following events occurs:
v The maximum update time, specified in seconds, has passed since the last

update.
v The number of available updates in the queue map has reached the

maximum update count.

For more information, see “Write-behind caching support” on page 137.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the
“Configuring JPA loaders” on page 266 information about configuring a JPA
loader.

evictionTriggers
Sets the types of additional eviction triggers to use. All evictors for the backing
map use this list of additional triggers. To avoid an IllegalStateException, this
attribute must be called before the ObjectGrid.initialize() method. Also, note
that the ObjectGrid.getSession() method implicitly calls the
ObjectGrid.initialize() method if the method has yet to be called by the
application. Entries in the list of triggers are separated by semicolons. Current®

eviction triggers include MEMORY_USAGE_THRESHOLD. (Optional)
<backingMap
(1) name="objectGridName"
(2) readOnly="true" | "false"
(3) template="true" | "false"
(4) pluginCollectionRef="reference to backingMapPluginCollection"
(5) numberOfBuckets="number of buckets"
(6) preloadMode="true" | "false"
(7) lockStrategy="OPTIMISTIC" | "PESSIMISTIC" | "NONE"
(8) numberOfLockBuckets="number of lock buckets"
(9) lockTimeout="lock timeout"
(10) copyMode="COPY_ON_READ_AND_COMMIT" | "COPY_ON_READ" | "COPY_ON_WRITE"

| "NO_COPY" | "COPY_TO_BYTES"
(11) valueInterfaceClassName="value interface class name"
(12) copyKey="true" | "false"
(13) nullValuesSupported="true" | "false"
(14) ttlEvictorType="CREATION_TIME" | "LAST_ACCESS_TIME" | "LAST_UPDATE_TIME" | NONE"
(15) timeToLive="time to live"
(16) streamRef="reference to a stream"
(17) viewRef="reference to a view"
(18) writeBehind="write-behind parameters"
(19) evictionTriggers="MEMORY_USAGE_THRESHOLD"
/>

Chapter 7. Configuring the deployment environment 159

In the following example, the companyGridBackingMapAttr.xml file is used to
demonstrate a sample backingMap configuration.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Customer" readOnly="true"
numberOfBuckets="641" preloadMode="false"
lockStrategy="OPTIMISTIC" numberOfLockBuckets="409"
lockTimeout="30" copyMode="COPY_ON_WRITE"
valueInterfaceClassName="com.ibm.websphere.samples.objectgrid.CounterValueInterface"
copyKey="true" nullValuesSupported="false"
ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3000"/>

</objectGrid>
</objectGrids>
</objectGridConfig>

The following sample code demonstrates the programmatic approach to achieve
the same configuration as the companyGridBackingMapAttr.xml file in the preceding
example:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);

BackingMap customerMap = companyGrid.defineMap("Customer");
customerMap.setReadOnly(true);
customerMap.setNumberOfBuckets(641);
customerMap.setPreloadMode(false);
customerMap.setLockStrategy(LockStrategy.OPTIMISTIC);
customerMap.setNumberOfLockBuckets(409);
customerMap.setLockTimeout(30);

// when setting copy mode to COPY_ON_WRITE, a valueInterface class is required
customerMap.setCopyMode(CopyMode.COPY_ON_WRITE,
com.ibm.websphere.samples.objectgrid.CounterValueInterface.class);
customerMap.setCopyKey(true);
customerMap.setNullValuesSupported(false);
customerMap.setTtlEvictorType(TTLType.LAST_ACCESS_TIME);
customerMap.setTimeToLive(3000); // set time to live to 50 minutes

bean element

Use the bean element to define plug-ins. You can attach plug-ins to objectGrid and
BackingMap elements.
v Number of occurrences within the objectGrid element: Zero to many
v Number of occurrences within the backingMapPluginCollection element: Zero to

many
v Child element: property element

Attributes

id Specifies the type of plug-in to create. (Required)

The valid plug-ins for a bean that is a child element of the objectGrid element
are included in the following list:
v TransactionCallback plug-in
v ObjectGridEventListener plug-in
v SubjectSource plug-in
v MapAuthorization plug-in
v SubjectValidation plug-in

The valid plug-ins for a bean that is a child element of the
backingMapPluginCollection element are included in the following list:

160 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Loader plug-in
v ObjectTransformer plug-in
v OptimisticCallback plug-in
v Evictor plug-in
v MapEventListener plug-in
v MapIndex plug-in

className
Specifies the name of the class or spring bean to instantiate to create the
plug-in. The class must implement the plug-in type interface. For example, if
you specify ObjectGridEventListener as the value for the id attribute, the
className attribute value must refer to a class that implements the
ObjectGridEventListener interface. (Required)

<bean
(1) id="TransactionCallback" | "ObjectGridEventListener" |"SubjectSource" |

"MapAuthorization" | "SubjectValidation" | "Loader" | "ObjectTransformer" |
"OptimisticCallback" | "Evictor" | "MapEventListener" | "MapIndexPlugin"

(2) className="class name" | "(spring)bean name"
/>

In the following example, the companyGridBean.xml file is used to demonstrate how
to configure plug-ins using the bean element. An ObjectGridEventListener plug-in
is added to the CompanyGrid ObjectGrid. The className attribute for this bean is
the com.ibm.websphere.objectgrid.plugins.builtins.TranPropListener class. This
class implements the
com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener interface as
required.

A BackingMap plug-in is also defined in the companyGridBean.xml file. An evictor
plug-in is added to the Customer BackingMap instance. Because the bean ID is
Evictor, the className attribute must specify a class that implements the
com.ibm.websphere.objectgrid.plugins.Evictor interface. The
com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor class implements this
interface. The backingMap references its plug-ins using the pluginCollectionRef
attribute.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
bean id="ObjectGridEventListener"
className="com.ibm.websphere.objectgrid.plugins.builtins.TranPropListener"/>
<backingMap name="Customer"
pluginCollectionRef="customerPlugins"/>

</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">
<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor/>

</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridBean.xml file in the preceding example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);
TranPropListener tranPropListener = new TranPropListener();
companyGrid.addEventListener(tranPropListener);

Chapter 7. Configuring the deployment environment 161

BackingMap customerMap = companyGrid.defineMap("Customer");
Evictor lruEvictor = new com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor();
customerMap.setEvictor(lruEvictor);

For more details about using plug-ins, consult the topic about an introduction to
plug-ins in the Programming Guide.

property element

Use the property element to add properties to plug-ins. The name of the property
must correspond to a set method on the class referenced by the containing bean.
v Number of occurrences: Zero to many
v Child element: None

Attributes

name
Specifies the name of the property. The value that is assigned to this attribute
must correspond to a set method on the class that is provided as the
className attribute on the containing bean. For example, if you set the
className attribute of the bean to com.ibm.MyPlugin, and the name of the
property that is provided is size, the com.ibm.MyPlugin class must have a
setSize method. (Required)

type
Specifies the type of the property. The type is passed to the set method that is
identified by the name attribute. The valid values are the Java primitives, the
java.lang counterparts, and java.lang.String. The name and type attributes must
correspond to a method signature on the className attribute of the bean. For
example, if you set the name as size and the type as int, a setSize(int) method
must exist on the class that is specified as the className attribute for the bean.
(Required)

value
Specifies the value of the property. This value is converted to the type that is
specified by the type attribute, and is then used as a parameter in the call to
the set method that is identified by the name and type attributes. The value of
this attribute is not validated in any way. (Required)

description
Describes the property. (Optional)

<bean
(1) name="name"
(2) type="java.lang.String" | "boolean" | "java.lang.Boolean" | "int" |

"java.lang.Integer" | "double" | "java.lang.Double" | "byte" |
"java.lang.Byte" | "short" | "java.lang.Short" | "long" |
"java.lang.Long" | "float" | "java.lang.Float" | "char" |
"java.lang.Character"

(3) value="value"
(4) description="description"
/>

In the following example, the companyGridProperty.xml file is used to demonstrate
how to add a property element to a bean. In this example, a property with the
name maxSize and type int is added to an evictor. The
com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor class has a method
signature that matches the setMaxSize(int) method. An integer value of 499 is
passed to the setMaxSize(int) method on the
com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor class.

162 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Customer"
pluginCollectionRef="customerPlugins"/>

</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">
<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor>
<property name="maxSize" type="int" value="449"
description="The maximum size of the LRU Evictor"/>

</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridProperty.xml file in the preceding
example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);

BackingMap customerMap = companyGrid.defineMap("Customer");

LRUEvictor lruEvictor = new com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor();
// if the XML file is used instead,
// the property that was added would cause the following call to occur
lruEvictor.setMaxSize(449);
customerMap.setEvictor(lruEvictor);

backingMapPluginsCollections element

The backingMapPluginsCollections element is a container for all the
backingMapPluginCollection elements. In the companyGridProperty.xml file in the
preceding section, the backingMapPluginCollections element contains one
backingMapPluginCollection element with the ID customerPlugins.
v Number of occurrences: Zero to one
v Child element: backingMapPluginCollection element

backingMapPluginCollection element

The backingMapPluginCollection element defines the BackingMap plug-ins, and is
identified by the id attribute. Specify the pluginCollectionRef attribute to reference
the plug-ins. When configuring several BackingMaps plug-ins similarly, each
BackingMap can reference the same backingMapPluginCollection element.
v Number of occurrences: Zero to many
v Child element: bean element

Attributes

id Identifies the backingMapPluginCollection, and is referenced by the
pluginCollectionRef attribute of the backingMap element. Each ID must be
unique. If the value of a pluginCollectionRef attribute does not match the ID of
one backingMapPluginCollection element, XML validation fails. Any number
of backingMap elements can reference a single backingMapPluginCollection
element. (Required)

<backingMapPluginCollection
(1) id="id"
/>

Chapter 7. Configuring the deployment environment 163

In the following example, the companyGridCollection.xml file is used to
demonstrate how to use the backingMapPluginCollection element. In this file, the
Customer BackingMap uses the customerPlugins backingMapPluginCollection to
configure the Customer BackingMap with an LRUEvictor. The Item and OrderLine
BackingMaps reference the collection2 backingMapPluginCollection. These
BackingMaps each have an LFUEvictor set.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Customer"
pluginCollectionRef="customerPlugins"/>
<backingMap name="Item" pluginCollectionRef="collection2"/>
<backingMap name="OrderLine"
pluginCollectionRef="collection2"/>
<backingMap name="Order"/>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">
<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor/>

</backingMapPluginCollection>
<backingMapPluginCollection id="collection2">
<bean id="Evictor"
className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor/>

<bean id="OptimisticCallback"
className="com.ibm.websphere.samples.objectgrid.EmployeeOptimisticCallBackImpl"/>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridCollection.xml file in the preceding
example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);
BackingMap customerMap = companyGrid .defineMap("Customer");
LRUEvictor customerEvictor = new LRUEvictor();
customerMap.setEvictor(customerEvictor);

BackingMap itemMap = companyGrid.defineMap("Item");
LFUEvictor itemEvictor = new LFUEvictor();
itemMap.setEvictor(itemEvictor);

BackingMap orderLineMap = companyGrid.defineMap("OrderLine");
LFUEvictor orderLineEvictor = new LFUEvictor();
orderLineMap.setEvictor(orderLineEvictor);

BackingMap orderMap = companyGrid.defineMap("Order");

querySchema element

The querySchema element defines relationships between BackingMaps and
identifies the type of object in each map. This information is used by ObjectQuery
to translate query language strings into map access calls.
v Number of occurrences: Zero to one
v Child element: mapSchemas element, relationships element

mapSchemas element

Each querySchema element has one mapSchemas element that contains one or
more mapSchema elements.
v Number of occurrences: One

164 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Child element: mapSchema element

mapSchema element

A mapSchema element defines the type of object that is stored in a BackingMap
and instructions on how to access the data.
v Number of occurrences: One or more
v Child element: None

Attributes

mapName
Specifies the name of the BackingMap to add to the schema. (Required)

valueClass
Specifies the type of object that is stored in the value portion of the
BackingMap. (Required)

primaryKeyField
Specifies the name of the primary key attribute in the valueClass attribute. The
primary key must also be stored in the key portion of the BackingMap.
(Optional)

accessType
Identifies how the query engine introspects and accesses the persistent data in
the valueClass object instances. If you set the value to FIELD, the class fields
are introspected and added to the schema. If the value is PROPERTY, the
attributes that are associated with get and is methods are used. The default
value is PROPERTY. (Optional)

<mapSchema
(1) mapName="backingMapName"
(2) valueClass="com.mycompany.OrderBean"
(3) primaryKeyField="orderId"
(4) accessType="PROPERTY" | "FIELD"
/>

In the following example, the companyGridQuerySchemaAttr.xml file is used to
demonstrate a sample mapSchema configuration.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>
<mapSchema mapName="Order"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>
<mapSchema mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>

</mapSchemas>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

Chapter 7. Configuring the deployment environment 165

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridQuerySchemaAttr.xml file in the
preceding example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);
companyGrid.defineMap("Order");
companyGrid.defineMap("Customer");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping(

"Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping(

"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));
companyGrid.setQueryConfig(queryCfg);

relationships element

Each querySchema element has zero or one relationships element that contains one
or more relationship elements.
v Number of occurrences: Zero or one
v Child element: relationship element

relationship element

A relationship element defines the relationship between two BackingMaps and the
attributes in the valueClass attribute that bind the relationship.
v Number of occurrences: One or more
v Child element: None

Attributes

source
Specifies the name of the valueClass of the source side of a relationship.
(Required)

target
Specifies the name of the valueClass of the target side of a relationship.
(Required)

relationField
Specifies the name of the attribute in the source valueClass that refers to the
target. (Required)

invRelationField
Specifies the name of the attribute in the target valueClass that refers to the
source. If this attribute is not specified, the relationship is one directional.
(Optional)

<mapSchema
(1) source="com.mycompany.OrderBean"
(2) target="com.mycompany.CustomerBean"
(3) relationField="customer"
(4) invRelationField="orders"
/>

In the following example, the companyGridQuerySchemaWithRelationshipAttr.xml
file is used to demonstrate a sample mapSchema configuration that includes a
bidirectional relationship.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

166 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>
<mapSchema mapName="Order"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>
<mapSchema mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>

</mapSchemas>
<relationships>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customer"/>
invRelationField="orders"/>

</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

The following code sample demonstrates the programmatic approach to achieving
the same configuration as the companyGridQuerySchemaWithRelationshipAttr.xml
file in the preceding example.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid companyGrid = objectGridManager.createObjectGrid("CompanyGrid", false);
companyGrid.defineMap("Order");
companyGrid.defineMap("Customer");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping(

"Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping(

"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryRelationship(new QueryRelationship(

OrderBean.class.getName(), CustomerBean.class.getName(), "customer", "orders"));
companyGrid.setQueryConfig(queryCfg);

streamQuerySet element

The streamQuerySet element is the top-level element for defining a stream query
set.
v Number of occurrences: Zero to many
v Child element: stream element, view element

stream element

The stream element represents a stream to the stream query engine. Each attribute
of the stream element corresponds to a method on the StreamMetadata interface.
v Number of occurrences: One to many
v Child element: basic element

Attributes

name
Specifies the name of the stream. Validation fails if this attribute is not
specified. (Required)

valueClass
Specifies the class type of the value that is stored in the stream ObjectMap. The

Chapter 7. Configuring the deployment environment 167

class type is used to convert the object to the stream events and to generate an
SQL statement if the statement is not provided. (Required)

sql
Specifies the SQL statement of the stream. If this property is not provided, a
stream SQL is generated by reflecting the attributes or accessor methods on the
valueClass attribute or by using the tuple attributes of the entity metadata.
(Optional)

access
Specifies the type to access the attributes of the value class. If you set the value
to FIELD, the attributes are directly retrieved from the fields using Java
reflection. Otherwise, accessor methods are used to read the attributes. The
default value is PROPERTY. (Optional)

<stream
(1) name="streamName"
(2) valueClass="streamMapClassType"
(3) sql="streamSQL create stream stockQuote

keyed by t (transactionvolume INTEGER, price DECIMAL (9,2), issue VARCHAR(100));"
(4) access="PROPERTY" | "FIELD"
/>

view element

The view element represents a stream query view. Each stream element
corresponds to a method on the ViewMetadata interface.
v Number of occurrences: One to many
v Child element: basic element, ID element

Attributes

name
Specifies the name of the view. Validation fails if this attribute is not specified.
(Required)

sql
Specifies the SQL of the stream, which defines the view transformation.
Validation fails if this attribute is not specified. (Required)

valueClass
Specifies the class type of the value that is stored in this view of the
ObjectMap. The class type is used to convert view events into the correct tuple
format that is compatible with this class type. If the class type is not provided,
a default format following the column definitions in the Stream Processing
Technology Structured Query Language (SPTSQL) is used. If an entity
metadata is defined for this view map, do not use the valueClass attribute.
(Optional)

access
Specifies the type to access the attributes of the value class. If you set the
access type to FIELD, the column values are directly set to the fields using Java
reflection. Otherwise, accessor methods are used to set the attributes. The
default value is PROPERTY. (Optional)

<view
(1) name="viewName"
(2) valueClass="viewMapValueClass"
(3) sql="viewSQL CREATE VIEW last5MinuteAvgPrice AS

SELECT issue, avg(price) as totalVolume
FROM (SELECT * FROM stockQuote FETCH LATEST 5 MINUTES) group by issue;"/>

(4) access="PROPERTY" | "FIELD"
/>

168 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

basic element

The basic element is used to define a mapping from the attribute name in the
value class or entity metadata to the column that is defined in the SPTSQL.
v Number of occurrences: Zero to many
v Child element: None
<basic
(1) name="attributeName"
(2) column="columnName"
/>

id element

The id element is used for a key attribute mapping.
v Number of occurrences: Zero to many
v Child element: None
<id
(1) name="idName"
(2) column="columnName"
/>

In the following example, the StreamQueryApp2.xml file is used to demonstrate how
to configure the attributes of a streamQuerySet. The stream query set
stockQuoteSQS has one stream and one view. Both the stream and view define
its name, valueClass, sql, and access type. The stream also defines a basic element,
which specifies that the volume attribute in the StockQuote class is mapped to the
SQL column transaction volume that is defined in the SQL statement.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="og1">
<backingMap name="stockQuote" readOnly="false" copyKey="true" streamRef="stockQuote"/>
<backingMap name="last5MinuteAvgPrice" readOnly="false" copyKey="false"
viewRef="last5MinuteAvgPrice"/>

<streamQuerySet name="stockQuoteSQS">
<stream
name="stockQuote"
valueClass="com.ibm.ws.objectgrid.streamquery.sample.guide.StockQuote"
sql="create stream stockQuote

keyed by t (transactionvolume INTEGER, price DECIMAL (9,2), issue VARCHAR(100));"
access="FIELD">
<basic name="volume" column="transactionvolume"/>
</stream>

<view
name="last5MinuteAvgPrice"
valueClass="com.ibm.ws.objectgrid.streamquery.sample.guide.AveragePrice"
sql="CREATE VIEW last5MinuteAvgPrice AS SELECT issue, avg(price) as avgPrice
FROM (SELECT * FROM stockQuote FETCH LATEST 5 MINUTES) group by issue;"

access="FIELD"
</view>
</streamQuerySet>
</objectGrid>
</objectGrids>
</objectGridConfig>

objectGrid.xsd file
Use the ObjectGrid descriptor XML schema to configure WebSphere eXtreme Scale.

Chapter 7. Configuring the deployment environment 169

See the “ObjectGrid descriptor XML file” on page 153 for descriptions of the
elements and attributes defined in the objectGrid.xsd file. For information about
the Spring objectgrid.xsd file, see “Spring descriptor XML file” on page 315.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:cc="http://ibm.com/ws/objectgrid/config"
xmlns:dgc="http://ibm.com/ws/objectgrid/config"
elementFormDefault="qualified"
targetNamespace="http://ibm.com/ws/objectgrid/config">

<xsd:element name="objectGridConfig">
<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="objectGrids"

type="dgc:objectGrids">
<xsd:unique name="objectGridNameUnique">
<xsd:selector xpath="dgc:objectGrid"/>
<xsd:field xpath="@name"/>
</xsd:unique>
</xsd:element>
<xsd:element maxOccurs="1" minOccurs="0" name="backingMapPluginCollections"

type="dgc:backingMapPluginCollections"/>
</xsd:sequence>
</xsd:complexType>

<xsd:key name="backingMapPluginCollectionId">
<xsd:selector xpath="dgc:backingMapPluginCollections/dgc:
backingMapPluginCollection"/>

<xsd:field xpath="@id"/>
</xsd:key>

<xsd:keyref name="pluginCollectionRef" refer="dgc:backingMapPluginCollectionId">
<xsd:selector xpath="dgc:objectGrids/dgc:objectGrid/dgc:backingMap"/>
<xsd:field xpath="@pluginCollectionRef"/>
</xsd:keyref>

<xsd:key name="streamName">
<xsd:selector xpath="dgc:objectGrids/dgc:objectGrid/dgc:
streamQuerySet/dgc:stream"/>

<xsd:field xpath="@name"/>
</xsd:key>

<xsd:keyref name="streamRef" refer="dgc:streamName">
<xsd:selector xpath="dgc:objectGrids/dgc:objectGrid/dgc:backingMap"/>
<xsd:field xpath="@streamRef"/>
</xsd:keyref>

<xsd:key name="viewName">
<xsd:selector xpath="dgc:objectGrids/dgc:objectGrid/dgc:streamQuerySet/dgc:view"/>
<xsd:field xpath="@name"/>
</xsd:key>

<xsd:keyref name="viewRef" refer="dgc:viewName">
<xsd:selector xpath="dgc:objectGrids/dgc:objectGrid/dgc:backingMap"/>
<xsd:field xpath="@viewRef"/>
</xsd:keyref>
</xsd:element>

<xsd:complexType name="objectGrids">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" name="objectGrid"

type="dgc:objectGrid">
<xsd:unique name="backingMapNameUnique">
<xsd:selector xpath="dgc:backingMap"/>
<xsd:field xpath="@name"/>
</xsd:unique>
<xsd:unique name="streamQuerySetNameUnique">
<xsd:selector xpath="dgc:streamQuerySet"/>
<xsd:field xpath="@name"/>
</xsd:unique>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="backingMapPluginCollections">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="backingMapPluginCollection"
type="dgc:backingMapPluginCollection"/>

170 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="objectGrid">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="bean" type="dgc:bean"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="backingMap"

type="dgc:backingMap"/>
<xsd:element maxOccurs="1" minOccurs="0" name="querySchema" type="dgc:querySchema"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="streamQuerySet"

type="dgc:streamQuerySet">
<xsd:unique name="stream">
<xsd:selector xpath="dgc:stream"/>
<xsd:field xpath="@name"/>
</xsd:unique>
<xsd:unique name="view">
<xsd:selector xpath="dgc:view"/>
<xsd:field xpath="@name"/>
</xsd:unique>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="authorizationMechanism" type="dgc:authorizationMechanism"
use="optional"/>

<xsd:attribute name="accessByCreatorOnlyMode" type="dgc:accessByCreatorOnlyMode"
use="optional"/>

<xsd:attribute name="securityEnabled" type="xsd:boolean" use="optional"/>
<xsd:attribute name="txTimeout" type="xsd:int" use="optional"/>
<xsd:attribute name="permissionCheckPeriod" type="xsd:int" use="optional"/>
<xsd:attribute name="entityMetadataXMLFile" type="xsd:string" use="optional"/>
<xsd:attribute name="initialState" type="dgc:initialState" use="optional"/>
</xsd:complexType>

<xsd:complexType name="backingMap">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="timeBasedDBUpdate" type="dgc:
timeBasedDBUpdate"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="readOnly" type="xsd:boolean" use="optional"/>
<xsd:attribute name="pluginCollectionRef" type="xsd:string" use="optional"/>
<xsd:attribute name="preloadMode" type="xsd:boolean" use="optional"/>
<xsd:attribute name="lockStrategy" type="dgc:lockStrategy" use="optional"/>
<xsd:attribute name="copyMode" type="dgc:copyMode" use="optional"/>
<xsd:attribute name="valueInterfaceClassName" type="xsd:string" use="optional"/>
<xsd:attribute name="numberOfBuckets" type="xsd:int" use="optional"/>
<xsd:attribute name="nullValuesSupported" type="xsd:boolean" use="optional"/>
<xsd:attribute name="lockTimeout" type="xsd:int" use="optional"/>
<xsd:attribute name="numberOfLockBuckets" type="xsd:int" use="optional"/>
<xsd:attribute name="copyKey" type="xsd:boolean" use="optional"/>
<xsd:attribute name="timeToLive" type="xsd:int" use="optional"/>
<xsd:attribute name="ttlEvictoryType" type="dgc:ttlEvictorType" use="optional"/>
<xsd:attribute name="streamRef" type="xsd:string" use="optional"/>
<xsd:attribute name="viewRef" type="xsd:string" use="optional"/>
<xsd:attribute name="writeBehind" type="xsd:string" use="optional"/>
<xsd:attribute name="evictionTriggers" type="xsd:string" use="optional"/>
<xsd:attribute name="template" type="xsd:boolean" use="optional"/>
</xsd:complexType>

<xsd:complexType name="bean">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="property" type="dgc:property"/>
</xsd:sequence>
<xsd:attribute name="className" type="xsd:string" use="required"/>
<xsd:attribute name="id" type="dgc:beanId" use="required"/>
</xsd:complexType>

<xsd:complexType name="backingMapPluginCollection">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="bean" type="dgc:bean"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="property">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="value" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="dgc:propertyType" use="required"/>
<xsd:attribute name="description" type="xsd:string" use="optional"/>

Chapter 7. Configuring the deployment environment 171

</xsd:complexType>

<xsd:simpleType name="propertyType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="java.lang.Boolean"/>
<xsd:enumeration value="boolean"/>
<xsd:enumeration value="java.lang.String"/>
<xsd:enumeration value="java.lang.Integer"/>
<xsd:enumeration value="int"/>
<xsd:enumeration value="java.lang.Double"/>
<xsd:enumeration value="double"/>
<xsd:enumeration value="java.lang.Byte"/>
<xsd:enumeration value="byte"/>
<xsd:enumeration value="java.lang.Short"/>
<xsd:enumeration value="short"/>
<xsd:enumeration value="java.lang.Long"/>
<xsd:enumeration value="long"/>
<xsd:enumeration value="java.lang.Float"/>
<xsd:enumeration value="float"/>
<xsd:enumeration value="java.lang.Character"/>
<xsd:enumeration value="char"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="beanId">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="TransactionCallBack"/>
<xsd:enumeration value="ObjectGridEventListener"/>
<xsd:enumeration value="SubjectSource"/>
<xsd:enumeration value="MapAuthorization"/>
<xsd:enumeration value="SubjectValidation"/>
<xsd:enumeration value="ObjectGridAuthorization"/>

<xsd:enumeration value="Loader"/>
<xsd:enumeration value="ObjectTransformer"/>
<xsd:enumeration value="OptimisticCallback"/>
<xsd:enumeration value="Evictor"/>
<xsd:enumeration value="MapEventListener"/>
<xsd:enumeration value="MapIndexPlugin"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="copyMode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="COPY_ON_READ_AND_COMMIT"/>
<xsd:enumeration value="COPY_ON_READ"/>
<xsd:enumeration value="COPY_ON_WRITE"/>
<xsd:enumeration value="NO_COPY"/>
<xsd:enumeration value="COPY_TO_BYTES"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="lockStrategy">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="OPTIMISTIC"/>
<xsd:enumeration value="PESSIMISTIC"/>
<xsd:enumeration value="NONE"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ttlEvictorType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="CREATION_TIME"/>
<xsd:enumeration value="LAST_ACCESS_TIME"/>

<xsd:enumeration value="LAST_UPDATE_TIME"/>
<xsd:enumeration value="NONE"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="authorizationMechanism">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTHORIZATION_MECHANISM_JAAS"/>
<xsd:enumeration value="AUTHORIZATION_MECHANISM_CUSTOM"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="accessByCreatorOnlyMode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="disabled"/>

172 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<xsd:enumeration value="complement"/>
<xsd:enumeration value="supersede"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="streamQuerySet">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="stream" type="dgc:stream">
<xsd:unique name="streamBasicColumnUnique">
<xsd:selector xpath="dgc:basic"/>
<xsd:field xpath="@column"/>
</xsd:unique>
</xsd:element>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="view" type="dgc:view">
<xsd:unique name="viewBasicColumnUnique">
<xsd:selector xpath="dgc:basic"/>
<xsd:field xpath="@column"/>
</xsd:unique>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="viewResultsToListenersOnly" type="xsd:boolean"

default="false" use="optional"/>
<xsd:attribute name="deployInPrimaryOnly" type="xsd:boolean" default="true"

use="optional"/>
</xsd:complexType>

<xsd:complexType name="stream">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="basic" type="dgc:basic"/>
</xsd:sequence>
<xsd:attribute name="valueClass" type="xsd:string" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="sql" type="xsd:string" use="optional"/>
<xsd:attribute name="access" type="cc:accessType" use="optional"/>
</xsd:complexType>

<xsd:complexType name="view">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="id" type="dgc:basic"/>
<xsd:element element maxOccurs="unbounded" minOccurs="0" name="basic"
type="dgc:basic"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="sql" type="xsd:string" use="optional"/>
<xsd:attribute name="valueClass" type="xsd:string" use="optional"/>
<xsd:attribute name="access" type="cc:accessType" use="optional"/>
</xsd:complexType>

<xsd:complexType name="basic">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="column" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="id">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="column" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="timeBasedDBUpdate">
<xsd:attribute name="persistenceUnitName" type="xsd:string" use="optional"/>
<xsd:attribute name="mode" type="cc:dbUpdateMode" use="optional"/>
<xsd:attribute name="timestampField" type="xsd:string" use="optional"/>
<xsd:attribute name="entityClass" type="xsd:string" use="required"/>
<xsd:attribute name="jpaPropertyFactory" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:simpleType name="dbUpdateMode">
<xsd:restriction base="xsd:string"/>
<xsd:enumeration value="INVALIDATE_ONLY"/>
<xsd:enumeration value="UPDATE_ONLY"/>
<xsd:enumeration value="INSERT_UPDATE"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="querySchema">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="mapSchemas" type="dgc:mapSchemas">
<xsd:unique name="mapNameUnique">
<xsd:selector xpath="dgc:mapSchema"/>

Chapter 7. Configuring the deployment environment 173

<xsd:field xpath="@mapName"/>
</xsd:unique>
</xsd:element>
<xsd:element maxOccurs="1" minOccurs="0" name="relationships"
type="dgc:relationships"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="mapSchemas">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" name="mapSchema"
type="dgc:mapSchema"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="relationships">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" name="relationship"
type="dgc:relationship"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="mapSchema">
<xsd:attribute name="mapName" type="xsd:string" use="required"/>
<xsd:attribute name="valueClass" type="xsd:string" use="required"/>
<xsd:attribute name="primaryKeyField" type="xsd:string" use="optional"/>
<xsd:attribute name="accessType" type="cc:accessType" use="optional"/>
</xsd:complexType>

<xsd:complexType name="relationship">
<xsd:attribute name="source" type="xsd:string" use="required"/>
<xsd:attribute name="target" type="xsd:string" use="required"/>
<xsd:attribute name="relationField" type="xsd:string" use="required"/>
<xsd:attribute name="invRelationField" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:simpleType name="accessType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="PROPERTY"/>
<xsd:enumeration value="FIELD"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="initialState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="OFFLINE"/>
<xsd:enumeration value="PRELOAD"/>
<xsd:enumeration value="ONLINE"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Configuring deployment policies
Use the deployment policy descriptor XML file and the objectgrid descriptor XML
file to manage a distributed topology. The deployment policy is encoded as an
XML file that is provided to the container server. The deployment policy provides
information about maps, map sets, partitions, replicas, and so on. It also controls
shard placement behaviors.

Configuring distributed deployments
Use the deployment policy descriptor XML file and the objectgrid descriptor XML
file to manage your topology.

The deployment policy is encoded as an XML file that is provided to the eXtreme
Scale container server. The XML file specifies the following information:
v The maps that belong to each map set
v The number of partitions
v The number of synchronous and asynchronous replicas

174 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

For information on starting container servers, see “Starting container processes” on
page 354 or “Configuring WebSphere Application Server applications to
automatically start container servers” on page 222.

The deployment policy also controls the following placement behaviors.
v The minimum number of active container servers before placement occurs
v Automatic replacement of lost shards
v Placement of each shard from a single partition onto a different machine

For more information on policy configuration, see “Deployment policy descriptor
XML file” on page 192.

Endpoint information is not pre-configured in the dynamic environment. There are
no server names or physical topology information found in the deployment policy.
All shards in a data grid are automatically placed into containers by the catalog
service. The catalog service uses the constraints that are defined by the deployment
policy to automatically manage shard placement. This automatic shard placement
leads to easy configuration for large data grids. You can also add servers to your
environment as needed.

Restriction: In a WebSphere Application Server environment, a core group size of
more than 50 members is not supported.

A deployment policy XML file is passed to a container server during startup. A
deployment policy must be used along with an ObjectGrid XML file. The
deployment policy is not required to start a container, but is recommended. The
deployment policy must be compatible with the ObjectGrid XML file that is used
with it. For each objectgridDeployment element in the deployment policy, you
must include a corresponding objectGrid element in your ObjectGrid XML file. The
maps in the objectgridDeployment must be consistent with the backingMap
elements found in the ObjectGrid XML. Every backingMap must be referenced
within one and only one mapSet element.

In the following example, the companyGridDpReplication.xml file is intended to be
paired with the corresponding companyGrid.xml file.
companyGridDpReplication.xml
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org./2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="CompanyGrid">
<mapSet name="mapSet1" numberOfPartitions="11"
minSyncReplicas="1" maxSyncReplicas="1"
maxAsyncReplicas="0" numInitialContainers="4">
<map ref="Customer" />
<map ref="Item" />
<map ref="OrderLine" />
<map ref="Order" />
</mapSet>
</objectgridDeployment>

</deploymentPolicy>

companyGrid.xml
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Customer" />
<backingMap name="Item" />
<backingMap name="OrderLine" />
<backingMap name="Order" />

Chapter 7. Configuring the deployment environment 175

</objectGrid>
</objectGrids>

</objectGridConfig>

The companyGridDpReplication.xml file has one mapSet element that is divided
into 11 partitions. Each partition must have exactly one synchronous replica. The
number of synchronous replicas is specified by the minSyncReplicas and
maxSyncReplicas attributes. Because the minSyncReplicas attribute is set to 1, each
partition in the mapSet element must have at least one synchronous replica
available to process write transactions. Because the maxSyncReplicas attribute is set
to 1, each partition cannot exceed one synchronous replica. The partitions in this
mapSet element have no asynchronous replicas.

The numInitialContainers attribute instructs the catalog service to defer placement
until four containers are available to support this ObjectGrid instance. The
numInitialContainers attribute is ignored after the specified number of containers
has been reached.

Although the companyGridDpReplication.xml file is a basic example, a deployment
policy can offer you full control over your environment.

Distributed topology

Distributed coherent caches offer increased performance, availability, and
scalability, which you can configure.

WebSphere eXtreme Scale automatically balances servers. You can include
additional servers without restarting WebSphere eXtreme Scale. Adding additional
servers without having to restart eXtreme Scale allows you to have simple
deployments and also large, terabyte-sized deployments in which thousands of
servers are needed.

This deployment topology is flexible. Using the catalog service, you can add and
remove servers to better use resources without removing the entire cache. You can
use the startOgServer and stopOgServer commands to start and stop container
servers. Both of these commands require you to specify the
-catalogServiceEndPoints option. All distributed topology clients communicate to
the catalog service through the Internet Interoperability Object Protocol (IIOP). All
clients use the ObjectGrid interface to communicate with servers.

The dynamic configuration capability of WebSphere eXtreme Scale makes it easy to
add resources to the system. Containers host the data and the catalog service
allows clients to communicate with the grid of containers. The catalog service
forwards requests, allocates space in host containers, and manages the health and
availability of the overall system. Clients connect to a catalog service, retrieve a
description of the container-server topology, and then communicate directly to each
server as needed. When the server topology changes due to the addition of new
servers, or due to the failure of others, the catalog service automatically routes
client requests to the appropriate server that hosts the data.

A catalog service typically exists in its own grid of Java virtual machines. A single
catalog server can manage multiple servers. You can start a container in a JVM by
itself or load the container into an arbitrary JVM with other containers for different
servers. A client can exist in any JVM and communicate with one or more servers.
A client can also exist in the same JVM as a container.

176 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can also create a deployment policy programmatically when you are
embedding a container in an existing Java process or application. For more
information, see the DeploymentPolicy API documentation.

Controlling shard placement with zones
Zones give you control over shard placement in WebSphere eXtreme Scale. Zones
are a logical, user-defined concept used to represent logical groupings of physical
servers.

Zones
Zones give you control over shard placement. Zones are user-defined logical
groupings of physical servers. The following are examples of different types of
zones: different blade servers, chassis of blade servers, floors of a building,
buildings, or different geographical locations in a multiple data center
environment. Another use case is in a virtualized environment where many server
instances, each with a unique IP address, run on the same physical server.

Zones defined between data centers

The classic example and use case for zones is when you have two or more
geographically dispersed data centers. Dispersed data centers spread your data
grid over different locations for recovery from data center failure. For example, you
might want to ensure that you have a full set of asynchronous replica shards for
your data grid in a remote data center. With this strategy, you can recover from the
failure of the local data center transparently, with no loss of data. Data centers
themselves have high speed, low latency networks. However, communication
between one data center and another has higher latency. Synchronous replicas are
used in each data center where the low latency minimizes the impact of replication
on response times. Using asynchronous replication reduces impact on response
time. The geographic distance provides availability in case of local data center
failure.

In the following example, primary shards for the Chicago zone have replicas in the
London zone. Primary shards for the London zone have replicas in the Chicago
zone.

Chapter 7. Configuring the deployment environment 177

Three configuration settings in eXtreme Scale control shard placement:
v Set the deployment file
v Group containers
v Specify rules

The following sections explain the different options, presented loosely from least to
most complicated.

Disable development mode

In your deployment XML file, set: developmentMode="false".

This simple step activates the first eXtreme Scale shard placement policy.

For more information about the XML file, see “Deployment policy descriptor XML
file” on page 192.

Policy 1: Shards for the same partition are placed in separate physical servers.

Consider a simple example of a data grid with one replica shard. With this policy,
the primary and replica shards for each partition are on different physical servers.
If a single physical server fails, no data is lost. The primary or replica shard for
each partition are on different physical servers that did not fail, or both are on
some other physical server that did not fail.

The high availability and simplicity of this policy make it the most efficient setting
for all production environments. In many cases, applying this policy is the only
step required for effectively controlling shard placement in your environment.

P0 AR4

P1 AR5

P2 AR9

P6 AR3

P7 AR10

P8 AR11

Chicago

P3 AR0

P4 AR2

P5 AR6

P9 AR1

P10 AR7

P11 AR8

London

Figure 14. Primaries and replicas in zones

178 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

In applying this policy, a physical server is defined by an IP address. Shards are
placed in container servers. Container servers have an IP address, for example, the
-listenerHost parameter on the startOgServer script. Multiple container servers
can have the same IP address.

Since a physical server has multiple IP addresses, consider the next step for more
control of your environment.

Define zones to group container servers

Container servers are assigned to zones with the -zone parameter on the
startOgServer script. In a WebSphere Application Server environment, zones are
defined through node groups with a specific name format: ReplicationZone<Zone>.
In this way, you choose the name and membership of your zones. For more
information, see Defining zones for containers.

Policy 2: Shards for the same partition are placed in separate zones.

Consider extending the example of a data grid with one replica shard by
deploying it across two data centers. Define each data center as an independent
zone. Use a zone name of DC1 for the container servers in the first data center, and
DC2 for the container servers in the second data center. With this policy, the
primary and replica shards for each partition would be in different data centers. If
a data center fails, no data is lost. For each partition, either its primary or replica
shard is in the other data center.

With this policy, you can control shard placement by defining zones. You choose
your physical or logical boundary or grouping of interest. Then, choose a unique
zone name for each group, and start the container servers in each of your zones
with the name of the appropriate zone. Thus eXtreme Scale places shards so that
shards for the same partition are placed in separate zones.

Specify zone rules

The finest level of control over shard placement is achieved using zone rules. Zone
rules are specified in the zoneMetadata element of the eXtreme Scale deployment
policy descriptor XML. A zone rule defines a set of zones in which shards are
placed. A shardMapping element assigns a shard to a zone rule. The shard
attribute of the shardMapping element specifies the shard type:
v P specifies the primary shard
v S specifies synchronous replica shards
v A specifies asynchronous replica shards.

If more than one synchronous or asynchronous replica exist, then you must
provide shardMapping elements of the appropriate shard type. The
exclusivePlacement attribute of the zoneRule element determines the placement of
shards in the same partition in zones. The exclusivePlacement attribute values are:
v true (a shard cannot be placed in the same zone as another shard from the same

partition).

Remember: For the "true" case, you must have at least as many zones in the
rule as you have shards using it. Doing so ensures that each shard can be in its
own zone.

v false (shards from the same partition can be placed in the same zone.

The default setting is true.

Chapter 7. Configuring the deployment environment 179

For more information, see Zone definition examples for deployment file.

Extended use cases

The following are various use cases for shard placement strategies:

Rolling upgrades

Consider a scenario in which you want to apply rolling upgrades to your physical
servers, including maintenance that requires restarting your deployment. In this
example, assume that you have a data grid spread across 20 physical servers,
defined with one synchronous replica. You want to shut down 10 of the physical
servers at a time for the maintenance.

When you shut down groups of 10 physical servers, no partition has both its
primary and replica shards on the servers you are shutting down. Otherwise, you
lose the data from that partition.

The easiest solution is to define a third zone. Instead of two zones of 10 physical
servers each, use three zones, two with seven physical servers, and one with six.
Spreading the data across more zones allows for better failover for availability.

Rather than defining another zone, the other approach is to add a replica.

Upgrading eXtreme Scale

When you are upgrading eXtreme Scale software in a rolling manner with data
grids that contain live data, consider the following issues. The catalog service
software version must be greater than or equal to the container server software
versions. Upgrade all the catalog servers first with a rolling strategy. Read more
about upgrading your deployment in the topic“Updating eXtreme Scale servers”
on page 67.

Changing data model

A related issue is how to change the data model or schema of objects that are
stored in the data grid without causing downtime. It would be disruptive to
change the data model by stopping the data grid and restarting with the updated
data model classes in the container server classpath, and reloading the data grid.
An alternative would be to start a new data grid with the new schema, copy the
data from the old data grid to the new data grid, then shut down the old data
grid.

Each of these processes are disruptive and result in downtime. To change the data
model without downtime, store the object in one of these formats:
v Use XML as the value
v Use a blob made with Google protobuf
v Use JavaScript Object Notation (JSON)

Write serializers to go from plain old Java object (POJO) to one of these formats
easily on the client side. Schema changes become easier.

Virtualization

Cloud computing and virtualization are popular emerging technologies. By default,
eXtreme Scale insures that two shards for the same partition are never placed on

180 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

the same IP address as described in Policy 1. When you are deploying on virtual
images, such as VMware, many server instances, each with a unique IP address,
can be run on the same physical server. To ensure that replicas can only be placed
on separate physical servers, you can use zones to solve the problem. Group your
physical servers into zones, and use zone placement rules to keep primary and
replica shards in separate zones.

Zones for wide-area networks

You might want to deploy a single eXtreme Scale data grid over multiple buildings
or data centers with slower network connections. Slower network connections lead
to lower bandwidth and higher latency connections. The possibility of network
partitions also increases in this mode due to network congestion and other factors.

To deal with these risks, the eXtreme Scale catalog service organizes container
servers into core groups that exchange heartbeats to detect container server failure.
These core groups do not span zones. A leader within each core group pushes
membership information to the catalog service. The catalog service verifies any
reported failures before responding to membership information by heartbeating the
container server in question. If the catalog service sees a false failure detection, the
catalog service takes no action. The core group partition heals quickly. The catalog
service also heartbeats core group leaders periodically at a slow rate to handle the
case of core group isolation.

Zone-preferred routing
With zone-preferred routing, you can define how WebSphere eXtreme Scale directs
transactions to zones.

You have control over where the shards of a data grid are placed. See Configuring
zones for replica placement to get more information about some basic scenarios
and how to configure your deployment policy accordingly.

Zone-preferred routing givesWebSphere eXtreme Scale clients the capability to
specify a preference for a particular zone or set of zones. As a result, client
transactions are routed to preferred zones before attempting to route to any other
zone.

Requirements for zone-preferred routing

Before attempting zone-preferred routing, ensure that the application is able to
satisfy the requirements of your scenario.

Per-container partition placement is necessary to use zone-preferred routing. This
placement strategy is a good fit for applications that are storing session data in the
ObjectGrid. The default partition placement strategy for WebSphere eXtreme Scale
is fixed-partition. Keys are hashed at transaction commit time to determine
which partition houses the key-value pair of the map when using fixed-partition
placement.

Per-container placement assigns your data to a random partition when the
transaction commits time through the SessionHandle object. You must be able to
reconstruct the SessionHandle object to retrieve your data from the data grid.

You can use zones to have more control over where primary shards and replica
shards are placed in your domain. Using multiple zones in your deployment is
advantageous when your data is in multiple physical locations. Geographically

Chapter 7. Configuring the deployment environment 181

separating primaries and replicas is a way to ensure that catastrophic loss of one
data center does not affect the availability of the data.

When data is spread across multiple zones, it is likely that clients are also spread
across the topology. Routing clients to their local zone or data center has the
obvious performance benefit of reduced network latency. Route clients to local
zones or data centers when possible.

Configuring your topology for zone-preferred routing

Consider the following scenario. You have two data centers: Chicago and London.
To minimize response time of clients, you want clients to read and write data to
their local data center.

Primary shards must be placed in each data center so that transactions can be
written locally from each location. Clients must be aware of zones to route to the
local zone.

Per-container placement locates new primary shards on each container that is
started. Replicas are placed according to zone and placement rules that are
specified by the deployment policy. By default, a replica is placed in a different
zone than its primary shard. Consider the following deployment policy for this
scenario.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="universe">
<mapSet name="mapSet1" placementStrategy="PER_CONTAINER"
numberOfPartitions="3" maxAsyncReplicas="1">
<map ref="planet" />
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

Each container that starts with the deployment policy receives three new primaries.
Each primary has one asynchronous replica. Start each container with the
appropriate zone name. Use the -zone parameter if you are starting your
containers with the startOgServer script.

For a Chicago container server:

v UNIX Linux

startOgServer.sh s1 -objectGridFile ../xml/universeGrid.xml
-deploymentPolicyFile ../xml/universeDp.xml
-catalogServiceEndPoints MyServer1.company.com:2809
-zone Chicago

v Windows

startOgServer.bat s1 -objectGridFile ../xml/universeGrid.xml
-deploymentPolicyFile ../xml/universeDp.xml
-catalogServiceEndPoints MyServer1.company.com:2809
-zone Chicago

If your containers are running in WebSphere Application Server, you must create a
node group and name it with the prefix ReplicationZone. Servers that are running
on the nodes in these node groups are placed in the appropriate zone. For
example, servers running on a Chicago node might be in a node group named
ReplicationZoneChicago.

See cxszones.dita for more information.

182 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Primary shards for the Chicago zone have replicas in the London zone. Primary
shards for the London zone have replicas in the Chicago zone.

Set the preferred zones for the clients. Provide a client properties file to your client
Java virtual machine (JVM). Create a file named objectGridClient.properties and
ensure that this file is in your classpath.

Include the preferZones property in the file. Set the property value to the
appropriate zone. Clients in Chicago must have the following value in the
objectGridClient.properties file:

preferZones=Chicago

The property file for London clients must contain the following value:

preferZones=London

This property instructs each client to route transactions to its local zone if possible.
The topology asynchronously replicates data that is inserted into a primary shard
in the local zone into the foreign zone.

Using the SessionHandle interface to route to the local zone

The per-container placement strategy does not use a hash-based algorithm to
determine the location of your key-value pairs in the data grid. You must use
SessionHandle objects to ensure that transactions are routed to the correct location
when you are using this placement strategy. When a transaction is committed, a
SessionHandle object is bound to the session if one has not already been set. The
SessionHandle object can also be bound to the Session by calling the

P0 AR4

P1 AR5

P2 AR9

P6 AR3

P7 AR10

P8 AR11

Chicago

P3 AR0

P4 AR2

P5 AR6

P9 AR1

P10 AR7

P11 AR8

London

Figure 15. Primaries and replicas in zones

Chapter 7. Configuring the deployment environment 183

Session.getSessionHandle method before committing the transaction. The following
code snippet shows a SessionHandle being bound before committing the
transaction.
Session ogSession = objectGrid.getSession();

// binding the SessionHandle
SessionHandle sessionHandle = ogSession.getSessionHandle();

ogSession.begin();
ObjectMap map = ogSession.getMap("planet");
map.insert("planet1", "mercury");

// tran is routed to partition specified by SessionHandle
ogSession.commit();

Assume that the prior code was running on a client in your Chicago data center.
The preferZones attribute is set to Chicago for this client. As a result, your
deployment would route transactions to one of the primary partitions in the
Chicago zone: partition 0, 1, 2, 6, 7, or 8.

The SessionHandle object provides a path back to the partition that is storing this
committed data. The SessionHandle object must be reused or reconstructed and set
on the Session to get back to the partition containing the committed data.
ogSession.setSessionHandle(sessionHandle);
ogSession.begin();

// value returned will be "mercury"
String value = map.get("planet1");
ogSession.commit();

The transaction in this code reuses the SessionHandle object that was created
during the insert transaction. The get transaction then routes to the partition that
holds the inserted data. Without the SessionHandle object, the transaction cannot
retrieve the inserted data.

How container and zone failures affect zone-based routing

Generally, a client with the preferZones property set routes all transactions to the
specified zone or zones. However, the loss of a container results in the promotion
of a replica shard to a primary shard. A client that was previously routing to
partitions in the local zone must retrieve previously inserted data from the remote
zone.

Consider the following scenario. A container in the Chicago zone is lost. It
previously contained primaries for partitions 0, 1, and 2. The new primary shards
for these partitions are then placed in the London zone because the London zone
hosted the replicas for these partitions.

Any Chicago client that is using a SessionHandle object that points to one of the
failed-over partitions now reroutes to London. Chicago clients that are using new
SessionHandle objects route to Chicago-based primaries.

Similarly, if the entire Chicago zone is lost, all replicas in the London zone are
promoted to primaries. In this scenario, all Chicago clients route their transactions
to London.

Defining zones for container servers
Zones are collections of container servers. A container server can belong only one
zone. A container server is assigned to a zone when it starts.

184 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About this task

You must plan your zones before you start your container servers because
container servers define their zone membership at startup. If you want to change
the zone membership of a container server, you must restart the server with the
new zone information.

Procedure
v Define zones for stand-alone container servers.

1. Use the -zone parameter of the startOgServer script to specify the zone for
all the containers in the started server. For more information about starting
servers, see “startOgServer script” on page 356.

2. You can also zone names when you are starting container servers
programmatically with the embedded server API. For more information, see
“Using the embedded server API to start and stop servers” on page 364.

v Define zones for container servers that are running within WebSphere
Application Server.

You can use node groups to place container servers in specific zones. Use the
following syntax to name your node group to assign it a zone:
ReplicationZone<identifier>. When you define zones in the deployment policy,
you must name the zones exactly as you named the node groups. The node
group name and the zone name in the deployment policy descriptor XML file
must be identical

Important: WebSphere Application Server does not prohibit nodes from being in
multiple node groups. Because container servers can be only one zone, ensure
that your nodes are in exactly one ReplicationZone node group.
For example, divide four nodes into two zones, A and B.
1. Configure four nodes: node1, node2, node3, and node4, each node having

two servers.
2. Create a node group named ReplicationZoneA and a node group named

ReplicationZoneB.
3. Add node1 and node2 to ReplicationZoneA and add node3 and node4 to

ReplicationZoneB.
4. Define ReplicationZoneA and ReplicationZoneB in your deployment policy

descriptor XML file. See “Example: Zones in a WebSphere Application Server
environment” on page 188 for an example.

5. When the servers on node1 and node2 are started, they join
ReplicationZoneA, or zone A in the WebSphere eXtreme Scale configuration.
The servers on node3 and node4 join ReplicationZoneB, as zone B in the
WebSphere eXtreme Scale configuration.

Example: Zone definitions in the deployment policy descriptor
XML file
You can specify zones and zone rules with the deployment policy descriptor XML
file.

Example: Primary and replica shards in different zones

This example places primary shards in one zone, and replica shards in a different
zone, with a single asynchronous replica. All primary shards start in the DC1 zone.
Replica shards start in zone DC2.

Chapter 7. Configuring the deployment environment 185

<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd" xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="library">
<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="1">
<map ref="book" />
<zoneMetadata>

<shardMapping shard="P" zoneRuleRef="primaryRule"/>
<shardMapping shard="A" zoneRuleRef="replicaRule"/>
<zoneRule name="primaryRule">
<zone name="DC1" />
</zoneRule>
<zoneRule name="replicaRule">
</zoneRule>

</zoneMetadata>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

One asynchronous replica is defined in the ms1 mapSet element. Therefore, two
shards exist for each partition: a primary and one asynchronous replica. In the
zoneMetadata element, a shardMapping element is defined for each shard: P for
the primary, and DC1 for the asynchronous replica. The primaryRule attribute
defines the zone set for the primary shards, which is just zone DC1, and this rule
is to be used for primary shard placement. Asynchronous replicas are placed in the
DC2 zone.

However, if the DC2 zone is lost, the replica shards become unavailable. The loss
or failure of a container server in the DC1 zone can result in data loss, even
though a replica has been specified.

To address this possibility, you can either add a zone or add a replica, as described
in the following sections.

Example: Add a zone, striping shards

The following code configures a new zone:
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd" xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="library">
<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="1">

<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="stripeRule"/>
<shardMapping shard="A" zoneRuleRef="stripeRule"/>
<zoneRule name="stripeRule" exclusivePlacement="true">
<zone name="A" />
<zone name="B" />
<zone name="C" />
</zoneRule>

</zoneMetadata>
</mapSet>

</objectgridDeployment>
</deploymentPolicy>

Three total zones have been defined in this code: A, B, and C. Instead of separate
primary and replica zone rules, a shared zone rule named stripeRule is defined.

186 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

This rule includes all of the zones, with the exclusivePlacement attribute set to
true. The eXtreme Scale placement policy ensures that primary and replica shards
are in separate zones. This striping of placement causes primary and replica shards
to spread across both zones to conform to this policy. Adding a third zone C
ensures that losing any one zone does not result in data loss, and still leaves
primary and replica shards for each partition. A zone failure results in the loss of
either the primary shard, the replica shard, or neither. Any lost shard is replaced
from the surviving shard in a surviving zone, placing it in the other surviving
zone.

Example: Add a replica and define multiple data centers

The classic two data-center scenario has high speed, low latency networks in each
data center, but high latency between the data centers. Synchronous replicas are
used in each data center where the low latency minimizes the impact of replication
on response times. Asynchronous replication is used between data centers, so the
high latency network has no impact on response time.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd" xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="library">

<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="1"
maxSyncReplicas="1" maxAsyncReplicas="1">
<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="primarySync"/>
<shardMapping shard="S" zoneRuleRef="primarySync"/>
<shardMapping shard="A" zoneRuleRef="async"/>
<zoneRule name="primarySync" exclusivePlacement="false">

<zone name="DC1" />
<zone name="DC2" />
</zoneRule>
<zoneRule name="async" exclusivePlacement="true">
<zone name="DC1" />
<zone name="DC2" />
</zoneRule>

</zoneMetadata>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

The primary and synchronous replica share the primarySync rule with an
exclusivePlacement attribute setting of false. The exclusivePlacement attribute set
to false creates a configuration with the primary and synchronous replica shards of
each partition placed in the same zone. The asynchronous replica shard uses a
second zone rule with mostly the same zones as the primarySync zone rule.
However the asynchronous replica uses the exclusivePlacement attribute set to
true. The exclusivePlacement attribute, when set to true, means that a shard
cannot be placed in a zone with another shard from the same partition. As a result,
the asynchronous replica shard does not get placed in the same zone as the
primary or synchronous replica shard. There are three shards per partition in this
mapSet: a primary, and both a synchronous and asynchronous replica, so there are
three shardMapping elements, one for each shard.

If a zone is lost, any asynchronous replicas are lost, and not regenerated, because
they have no separate zone. If the primary and replica shards are lost, then the
surviving asynchronous replica is promoted to primary, and a new synchronous
replica is created in the zone. The primaries and replicas are striped across each
zone.

Chapter 7. Configuring the deployment environment 187

With exclusive placement, each shard has its own zone: You must have enough
zones for all the shards you want to place in their own zones. If a rule has one
zone, only one shard can be placed in the zone. With two zones, you can have up
to two shards in the zone.

Example: Zones in a WebSphere Application Server environment

The following code configures a new zone:
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd" xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="library">
<mapSet name="ms1" numberOfPartitions="13" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="1">

<map ref="book" />
<zoneMetadata>
<shardMapping shard="P" zoneRuleRef="stripeRule"/>
<shardMapping shard="A" zoneRuleRef="stripeRule"/>
<zoneRule name="stripeRule" exclusivePlacement="true">
<zone name="ReplicationZoneA" />
<zone name="ReplicationZoneB" />
<zone name="ReplicationZoneC" />
</zoneRule>

</zoneMetadata>
</mapSet>

</objectgridDeployment>
</deploymentPolicy>

For this example, three node groups are defined in the WebSphere Application
Server environment: ReplicationZoneA, ReplicationZoneB, and ReplicationZoneC.
The node group name and the zone name in the deployment policy descriptor
XML file must be identical, and must contain the text
ReplicationZone<identifier>. This file defines a similar configuration to the
striping shards example, but shows the required naming for a WebSphere
Application Server configuration.

Viewing zone information with the xsadmin utility
You can use the xsadmin sample utility to view information about your current
zone deployment, including shard placement data.

Before you begin
v Deploy a distributed data grid with multiple data centers. See “Zone-preferred

routing” on page 181 for more information.

About this task

You can determine information about your configuration related to zone settings
by using the xsadmin utility that ships with the product.

Procedure

Use the xsadmin utility to determine information about the shards of data
1. Run the following command: xsadmin.bat -containers -empties

2. The utility displays output:
*** Show all online containers for grid - Grid & mapset - mapSet
Host: 9.76.25.172

Container: serverA0_C-3, Server:serverA0, Zone:zoneA
P:0 Primary

188 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

P:1 SynchronousReplica
P:2 SynchronousReplica

Container: serverA1_C-3, Server:serverA1, Zone:zoneA
P:1 Primary
P:2 Primary
P:0 SynchronousReplica

Container: serverB0_C-4, Server:serverB0, Zone:zoneB
P:1 AsynchronousReplica
P:2 AsynchronousReplica

Container: serverB1_C-1, Server:serverB1, Zone:zoneB
P:0 AsynchronousReplica

This output is from the multiple data centers scenario: Primary and
synchronous replicas are in the same zone, asynchronous replicas are in a
remote zone. Four container servers: serverA0, serverA1, serverB0, and
serverB1 exist in two zones: zoneA and zoneB. The Grid data grid is deployed,
and it has the mapSet map set. The map set has three partitions defined.
Production mode requires many more than three partitions, which are sufficient
for development mode purposes. Primary and synchronous replica shards exist
in the same zoneA zone, and asynchronous replicas exist in the zoneB zone.

Example

You can also run a simpler scenario by using the getting started sample:
wxs_install_root/ObjectGrid/gettingstarted. See Chapter 1, “Running the getting
started sample application,” on page 1 for more information.
1. Start a catalog server:

runcat.bat

2. Determine your required number of replicas, zone rules, containers, and other
settings such as with the following command: startOgServer.bat serverA0
-objectgridFile xml\objectgrid.xml -deploymentPolicyFile
xml\deployment.xml -zone zoneA

3. You can stop container processes to simulate failure in the data grid:
stopOgServer.bat serverA0,serverA1,serverB0 -catalogServiceEndPoints
localhost:2809.
If the server that contains the last shard of a partition is stopped, eXtreme Scale
allocates a new primary shard. You can check for data loss:
v The runclient script inserts and reads item in your data grid.
v The xsadmin -mapsizes command shows the number of items in the data

grid.
4. Show active containers with the -empties parameter for xsadmin. The utility

displays output:
*** Show all online containers for grid - Grid & mapset - mapSet
Host: 9.77.129.191

Container: serverA0_C-0, Server:serverA0, Zone:zoneA
P:0 Primary
P:1 Primary
P:2 Primary

Container: serverA1_C-0, Server:serverA1, Zone:zoneA

In this example, serverA1 currently has no shards. The example is based on a
deployment using the gettingstarted sample deployment policy XML file with
three partitions but no zone rules. Two container servers were started and
assigned to zoneA. Although the deployment policy XML file is configured for
one synchronous replica, none is allocated because of Rule 2. In this case, you
need another zone in which to allocate the replica.

5.

Chapter 7. Configuring the deployment environment 189

v To stop all container servers, use the following command: xsadmin.bat
-teardown. The utility displays a list of containers to be stopped and prompts
you to continue: Yes or No.

v To stop all container servers and the catalog server: xsadmin.bat -teardown
<catalog_server_name>

The name of the catalog server in the gettingstarted sample is cs0.

Configuring the heartbeat interval setting for failover detection
You can configure the amount of time between system checks for failed servers
with the heartbeat interval setting.

About this task

Configuring failover varies depending on the type of environment you are using. If
you are using a stand-alone environment, you can configure failover with the
command line. If you are using a WebSphere Application Server Network
Deployment environment, you must configure failover in the WebSphere
Application Server Network Deployment administrative console.

Procedure
v Configure failover for stand-alone environments.

You can configure heartbeat intervals on the command line by using the
-heartbeat parameter in the startOgServer script file. Set this parameter to one
of the following values:

Table 11. Heartbeat intervals

Value Action Description

0 Typical (default) Failovers are typically detected within 30 seconds.

-1 Aggressive Failovers are typically detected within 5 seconds.

1 Relaxed Failovers are typically detected within 180 seconds.

An aggressive heartbeat interval can be useful when the processes and network
are stable. If the network or processes are not optimally configured, heartbeats
might be missed, which can result in a false failure detection.

v Configure failover for WebSphere Application Server environments.
You can configure WebSphere Application Server Network Deployment Version
6.0.2 and later to allow WebSphere eXtreme Scale to fail over very quickly. The
default failover time for hard failures is approximately 200 seconds. A hard
failure is a physical computer or server crash, network cable disconnection or
operating system error. Failures because of process crashes or soft failures
typically fail over in less than one second. Failure detection for soft failures
occurs when the network sockets from the dead process are closed automatically
by the operating system for the server hosting the process.
Core group heartbeat configuration

WebSphere eXtreme Scale running in a WebSphere Application Server process
inherits the failover characteristics from the core group settings of the
application server. The following sections describe how to configure the core
group heartbeat settings for different versions of WebSphere Application Server
Network Deployment:
– Update the core group settings for WebSphere Application Server Network

Deployment Version 6.x and 7.x:

190 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Specify the heartbeat interval in seconds on WebSphere Application Server
versions from Version 6.0 through Version 6.1.0.12 or in milliseconds starting
with Version 6.1.0.13. You must also specify the number of missed heartbeats.
This value indicates how many heartbeats can be missed before a peer Java
virtual machine (JVM) is considered as failed. The hard failure detection time
is approximately the product of the heartbeat interval and the number of
missed heartbeats.
These properties are specified using custom properties on the core group
using the WebSphere administrative console. See Core group custom
properties for configuration details. These properties must be specified for all
core groups used by the application:
- The heartbeat interval is specified using either the

IBM_CS_FD_PERIOD_SEC custom property for seconds or the
IBM_CS_FD_PERIOD_MILLIS custom property for milliseconds (requires
Version 6.1.0.13 or later).

- The number of missed heartbeats is specified using the
IBM_CS_FD_CONSECUTIVE_MISSED custom property.

The default value for the IBM_CS_FD_PERIOD_SEC property is 20 and for
the IBM_CS_FD_CONSECUTIVE_MISSED property is 10. If the
IBM_CS_FD_PERIOD_MILLIS property is specified, then it overrides any of
the set IBM_CS_FD_PERIOD_SEC custom properties. The values of these
properties are positive integer values.
Use the following settings to achieve a 1500 ms failure detection time for
WebSphere Application Server Network Deployment Version 6.x servers:
- Set IBM_CS_FD_PERIOD_MILLIS = 750 (WebSphere Application Server

Network Deployment V6.1.0.13 and later)
- Set IBM_CS_FD_CONSECUTIVE_MISSED = 2

– Update the core group settings for WebSphere Application Server Network
Deployment Version 7.0

WebSphere Application Server Network Deployment Version 7.0 provides two
core group settings that can be adjusted to increase or decrease failover
detection:
- Heartbeat transmission period. The default is 30000 milliseconds.
- Heartbeat timeout period. The default is 180000 milliseconds.
For more details on how change these settings, see the WebSphere
Application Server Network Deployment Information center: Discovery and
failure detection settings.
Use the following settings to achieve a 1500 ms failure detection time for
WebSphere Application Server Network Deployment Version 7 servers:
- Set the heartbeat transmission period to 750 milliseconds.
- Set the heartbeat timeout period to 1500 milliseconds.

What to do next

When these settings are modified to provide short failover times, there are some
system-tuning issues to be aware of. First, Java is not a real-time environment. It is
possible for threads to be delayed if the JVM is experiencing long garbage
collection times. Threads might also be delayed if the machine hosting the JVM is
heavily loaded (due to the JVM itself or other processes running on the machine).
If threads are delayed, heartbeats might not be sent on time. In the worst case,
they might be delayed by the required failover time. If threads are delayed, false

Chapter 7. Configuring the deployment environment 191

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_cg_custprop.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_cg_custprop.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html

failure detections occur. The system must be tuned and sized to ensure that false
failure detections do not happen in production. Adequate load testing is the best
way to ensure this.

Note: The current version of eXtreme Scale supports WebSphere Real Time.

Deployment policy descriptor XML file
To configure a deployment policy, use a deployment policy descriptor XML file.

In the following sections, the elements and attributes of the deployment policy
descriptor XML file are defined. See the “deploymentPolicy.xsd file” on page 197
for the corresponding deployment policy XML schema.

Elements in the deploymentPolicy.xml file
(1) <deploymentPolicy>
(2) <objectgridDeployment objectGridName="blah">
(3) <mapSet
(4) name="mapSetName"
(5) numberOfPartitions="numberOfPartitions"
(6) minSyncReplicas="minimumNumber"
(7) maxSyncReplicas="maximumNumber"
(8) maxAsyncReplicas="maximumNumber"
(9) replicaReadEnable="true|false"
(10) numInitialContainers="numberOfInitialContainersBeforePlacement"
(11) autoReplaceLostShards="true|false"
(12) developmentMode="true|false"
(13) placementStrategy="FIXED_PARTITION|PER_CONTAINER">
(14) <map ref="backingMapReference" />
(15)
(16) <zoneMetadata>
(17) <shardMapping
(18) shard="shardType"
(19) zoneRuleRef="zoneRuleRefName" />
(20) <zoneRule
(21) name="zoneRuleName"
(22) exclusivePlacement="true|false" >
(23) <zone name="ALPHA" />
(24) <zone name="BETA" />
(25) <zone name="GAMMA" />
(26) </zoneRule>
(27) </zoneMetadata>
(28) </mapSet>
(29) </objectgridDeployment>
(30) </deploymentPolicy>

deploymentPolicy element (line 1)

The deploymentPolicy element is the top-level element of the deployment policy
XML file. This element sets up the namespace of the file and the schema location.
The schema is defined in the deploymentPolicy.xsd file.
v Number of occurrences: One
v Child element: objectgridDeployment

objectgridDeployment element (line 2)

The objectgridDeployment element is used to reference an ObjectGrid instance
from the ObjectGrid XML file. Within the objectgridDeployment element, you can
divide your maps into map sets.
v Number of occurrences: One or more
v Child element: mapSet

Attributes

192 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

objectgridName
Specifies the name of the ObjectGrid instance to deploy. This attribute
references an objectGrid element that is defined in the ObjectGrid XML file.
(Required)

For example, the objectgridName attribute is set as CompanyGrid in the
companyGridDpReplication.xml file. The objectgridName attribute references the
CompanyGrid that is defined in the companyGrid.xml file. Read about the
“ObjectGrid descriptor XML file” on page 153 which you should couple with the
deployment policy file for each ObjectGrid instance.

mapSet element (line 3)

The mapSet element is used to group maps together. The maps within a mapSet
element are partitioned and replicated similarly. Each map must belong to only one
mapSet element.
v Number of occurrences: One or more
v Child elements:

– map
– zoneMetadata

Attributes

name
Specifies the name of the mapSet. This attribute must be unique within the
objectgridDeployment element. (Required)

numberOfPartitions
Specifies the number of partitions for the mapSet element. The default value is
1. The number should be appropriate for the number of container servers that
host the partitions. (Optional)

minSyncReplicas
Specifies the minimum number of synchronous replicas for each partition in
the mapSet. The default value is 0. Shards are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container server than the
minSyncReplicas value. If the number of synchronous replicas falls below the
minSyncReplicas value, write transactions are no longer allowed for that
partition. (Optional)

maxSyncReplicas
Specifies the maximum number of synchronous replicas for each partition in
the mapSet. The default value is 0. No other synchronous replicas are placed
for a partition after a domain reaches this number of synchronous replicas for
that specific partition. Adding container servers that can support this
ObjectGrid can result in an increased number of synchronous replicas if your
maxSyncReplicas value has not already been met. (Optional)

maxAsyncReplicas
Specifies the maximum number of asynchronous replicas for each partition in
the mapSet. The default value is 0. After the primary and all synchronous
replicas have been placed for a partition, asynchronous replicas are placed
until the maxAsyncReplicas value is met. (Optional)

replicaReadEnabled
If this attribute is set to true, read requests are distributed amongst a partition

Chapter 7. Configuring the deployment environment 193

primary and its replicas. If the replicaReadEnabled attribute is false, read
requests are routed to the primary only. The default value is false. (Optional)

numInitialContainers
Specifies the number of container servers that are required before initial
placement occurs for the shards in this mapSet element. The default value is 1.
This attribute can help save process and network bandwidth when bringing a
data grid online from a cold startup. (Optional)

Starting a container server sends an event to the catalog service. The first time
that the number of active container servers is equal to the
numInitialContainers value for a mapSet element, the catalog service places
the shards from the mapSet, provided that the minSyncReplicas value can also
be satisfied. After the numInitialContainers value has been met, each
container server-started event can trigger a rebalance of unplaced and
previously placed shards. If you know approximately how many container
servers you are going to start for this mapSet element, you can set the
numInitialContainers value close to that number to avoid the rebalance after
every container server start. Placement occurs only when you reach the
numInitialContainers value specified in the mapSet element.
7.1.0.2+ If you ever need to override the numInitialContainers value, for
example, when you are performing maintenance on your servers and want
shard placement to continue running, you can use the xsadmin
-triggerPlacement command. This override is temporary and is applied when
you run the command. After you run the command, all subsequent placement
runs use the numInitialContainers value.

autoReplaceLostShards
Specifies if lost shards are placed on other container servers. The default value
is true. When a container server is stopped or fails, the shards running on the
container server are lost. A lost primary shard causes one of its replica shards
to be promoted to the primary shard for the corresponding partition. Because
of this promotion, one of the replicas is lost. If you want lost shards to remain
unplaced, set the autoReplaceLostShards attribute to false. This setting does
not affect the promotion chain, but only the replacement of the last shard in
the chain. (Optional)

developmentMode
With this attribute, you can influence where a shard is placed in relation to its
peer shards. The default value is true. When the developmentMode attribute is
set to false, no two shards from the same partition are placed on the same
computer. When the developmentMode attribute is set to true, shards from the
same partition can be placed on the same machine. In either case, no two
shards from the same partition are ever placed in the same container server.
(Optional)

placementStrategy
There are two placement strategies. The default strategy is FIXED_PARTITION,
where the number of primary shards that are placed across available container
servers is equal to the number of partitions defined, increased by the number
of replicas. The alternate strategy is PER_CONTAINER, where the number of
primary shards that are placed on each container server is equal to the number
of partitions that are defined, with an equal number of replicas placed on other
container servers. (Optional)

194 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

map element (line 14)

Each map in a mapSet element references one of the backingMap elements that is
defined in the corresponding ObjectGrid XML file. Every map in a distributed
eXtreme Scale environment can belong to only one mapSet element.
v Number of occurrences: One or more
v Child element: None

Attributes

ref
Provides a reference to a backingMap element in the ObjectGrid XML file. Each
map in a mapSet element must reference a backingMap element from the
ObjectGrid XML file. The value that is assigned to the ref attribute must match
the name attribute of one of the backingMap elements in the ObjectGrid XML
file, as in the following code snippet. (Required)

zoneMetadata element (line 16)

You can place shards into zones. This function allows more control over how
eXtreme Scale places shards on a grid. Java™ virtual machines that host an eXtreme
Scale server can be tagged with a zone identifier. The deployment file can include
one or more zone rules, and these zone rules are associated with a shard type. The
zoneMetadata element is a receptacle of zone configuration elements. Within the
zoneMetadata element, zones can be defined and shard placement behavior can be
influenced.

For additional background, see cxszones.dita.
v Number of occurrences: Zero or one
v Child elements:

– shardMapping
– zoneRule

Attributes: None

shardMapping element (line 17)

The shardMapping element is used to associate a shard type with a zone rule.
Placement of the shard is influenced by the mapping to the zone rule.
v Number of occurrences: Zero or one
v Child elements: None

Attributes

shard
Specify the name of a shard with which to associate the zoneRule. (Required)

zoneRuleRef
Specify the name of a zoneRule with which to associate the shard. (Optional)

zoneRule element (line 20)

A zone rule specifies the possible set of zones in which a shard can be placed. The
zoneRule element is used to specify a set of zones that a set of shard types can be

Chapter 7. Configuring the deployment environment 195

placed within. The zone rule can also be used to determine how shards are
grouped across the zones using the exclusivePlacement attribute.
v Number of occurrences: One or more
v Child elements: zone

Attributes

name
Specify the name of the zone rule that you defined previously, as the
zoneRuleRef in a shardMapping element. (Required)

exclusivePlacement
An exclusive setting indicates that each shard type mapped to this zone rule is
placed in a different zone in the zone list. An inclusive setting indicates that
after a shard is placed in a zone from the list, then the other shard types
mapped to this zone rule are also placed in that zone. Note that using an
exclusive setting with three shards mapped to the same zone rule (primary,
and two synchronous replicas) would require at least 3 zones in order for all
shards to be placed. (Optional)

zone element (lines 23 to 25)

The zone element is used to name a zone within a zone rule. Each zone named
should correspond to a zone name that is used to launch servers.

Example

In the following example, the mapSet element is used to configure a deployment
policy. The value is set to mapSet1, and is divided into 10 partitions. Each of these
partitions must have at least one synchronous replica available and no more than
two synchronous replicas. Each partition also has an asynchronous replica if the
environment can support it. All synchronous replicas are placed before any
asynchronous replicas are placed. Additionally, the catalog service does not attempt
to place the shards for the mapSet1 element until the domain can support the
minSyncReplicas value. Supporting the minSyncReplicas value requires two or
more container servers: one for the primary and two for the synchronous replica.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="CompanyGrid">
<mapSet name="mapSet1" numberOfPartitions="10"
minSyncReplicas="1" maxSyncReplicas="2" maxAsyncReplicas="1"
numInitialContainers="10" autoReplaceLostShards="true"
developmentMode="false" replicaReadEnabled="true">
<map ref="Customer"/>
<map ref="Item"/>
<map ref="OrderLine"/>
<map ref="Order"/>
</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Although only two container servers are required to satisfy the replication settings,
the numInitialContainers attribute requires 10 available container servers before the
catalog service attempts to place any of the shards in this mapSet element. After
the domain has 10 container servers that are able to support the CompanyGrid
ObjectGrid, all shards in the mapSet1 element are placed.

Because the autoReplaceLostShards attribute is set to true, any shard in this
mapSet element that is lost as the result of container server failure is automatically

196 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

replaced onto another container server, provided that a container server is available
to host the lost shard. Shards from the same partition cannot be placed on the
same machine for the mapSet1 element because the developmentMode attribute is
set to false. Read-only requests are distributed across the primary shardand its
replicas for each partition because the replicaReadEnabled value is true.

The companyGridDpMapSetAttr.xml file uses the ref attribute on the map to
reference each of the backingMap elements from the companyGrid.xml file.

deploymentPolicy.xsd file
Use the deployment policy XML schema to create a deployment descriptor XML
file.

See the “Deployment policy descriptor XML file” on page 192 for descriptions of
the elements and attributes defined in the deploymentPolicy.xsd file.
<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:dp="http://www.ibm.com/ws/objectgrid/deploymentPolicy"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNameSpace="http://ibm.com/ws/objectgrid/deploymentPolicy"
elementFormDefault="qualified">

<xsd:element name="deploymentPolicy">
<xsd:complexType>
<xsd:choice>
<xsd:element name="objectgridDeployment"
type="dp:objectgridDeployment" minOccurs="1"
maxOccurs="unbounded">
<xsd:unique name="mapSetNameUnique">
<xsd:selector xpath="dp:mapset" />
<xsd:field xpath="@name" />
</xsd:unique>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="objectgridDeployment">
<xsd:sequence>
<xsd:element name="mapSet" type="dp:mapSet"
maxOccurs="unbounded" minOccurs="1">
<xsd:unique name="mapNameUnique">
<xsd:selector xpath="dp:map" />
<xsd:field xpath="@ref" />
</xsd:unique>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="objectgridName" type="xsd:string"
use="required" />

</xsd:complexType>

<xsd:complexType name="mapSet">
<xsd:sequence>
<xsd:element name="map" type="dp:map" maxOccurs="unbounded"
minOccurs="1" />
<xsd:element name="zoneMetadata" type="dp:zoneMetadata"
maxOccurs="1" minOccurs="0">

<xsd:key name="zoneRuleName">
<xsd:selector xpath="dp:zoneRule" />
<xsd:field xpath="@name" />
</xsd:key>

<xsd:keyref name="zoneRuleRef"
refer="dp:zoneRuleName">
<xsd:selector xpath="dp:shardMapping" />
<xsd:field xpath="@zoneRuleRef" />
</xsd:keyref>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=="name" type="xsd:string" use="required" />
<xsd:attribute name="numberOfPartitions" type="xsd:int"
use="optional" />
<xsd:attribute name="minSyncReplicas" type="xsd:int"
use="optional" />
<xsd:attribute name="maxSyncReplicas" type="xsd:int"
use="optional" />
<xsd:attribute name="maxAsyncReplicas" type="xsd:int"
use="optional" />
<xsd:attribute name="replicaReadEnabled" type="xsd:boolean"

Chapter 7. Configuring the deployment environment 197

use="optional" />
<xsd:attribute name="numInitialContainers" type="xsd:int"
use="optional" />
<xsd:attribute name="autoReplaceLostShards" type="xsd:boolean"
use="optional" />
<xsd:attribute name="developmentMode" type="xsd:boolean"
use="optional" />
<xsd:attribute name="placementStrategy"
type="dp:placementStrategy" use="optional" />

</xsd:complexType>

<xsd:simpleType name="placementStrategy">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="FIXED_PARTITIONS" />
<xsd:enumeration value="PER_CONTAINER" />
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="map">
<xsd:attribute name="ref" use="required" />
</xsd:complexType>

<xsd:complexType name="zoneMetadata">
<xsd:sequence>
<xsd:element name="shardMapping" type="dp:shardMapping"
maxOccurs="unbounded" minOccurs="1" />
<xsd:element name="zoneRule" type="dp:zoneRule"
maxOccurs="unbounded" minOccurs="1">

</xsd:element>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="shardMapping">
<xsd:attribute name="shard" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="P"></xsd:enumeration>
<xsd:enumeration value="S"></xsd:enumeration>
<xsd:enumeration value="A"></xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="zoneRuleRef" type="xsd:string"
use="required" />

</xsd:complexType>

<xsd:complexType name="zoneRule">
<xsd:sequence>
<xsd:element name="zone" type="dp:zone"
maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="exclusivePlacement" type="xsd:boolean" />
use="optional" />

</xsd:complexType>

<xsd:complexType name="zone">
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:complextType>

</xsd:schema>

Configuring catalog and container servers
WebSphere eXtreme Scale has two types of servers: catalog servers and container
servers. Catalog servers control the placement of shards and discover and monitor
the container servers. Multiple catalog servers together comprise the catalog
service. A container server is a Java virtual machine (JVM) that stores the
application data for the data grid.

About this task

Catalog and container servers can start in WebSphere Application Server processes,
as stand-alone Java SE processes, or by embedding the servers in Java SE
applications. How you configure the catalog and container servers depends on
your topology.

198 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Catalog servers

v Stand-alone catalog servers:
Configure stand-alone catalog servers with a server properties file. Control the
life cycle of a catalog server with the startOgServer and stopOgServer scripts or
by using the embedded server API.

v Catalog servers that start in WebSphere Application Server:

Configure catalog servers that run in WebSphere Application Server with the
WebSphere Application Server administrative console, administrative tasks, and
the server properties file. The server life cycle is controlled by the process life
cycle within WebSphere Application Server. When processes start or stop in
WebSphere Application Server, the catalog servers that are running on these
processes also start or stop.

Container servers

v Stand-alone container servers:
Configure stand-alone container servers with a server properties file and a
deployment policy XML file. Control the life cycle of a container server with the
startOgServer and stopOgServer scripts or by using the embedded server API.

v Container servers that start in WebSphere Application Server:

Configure container servers in WebSphere Application Server with a server
properties file and deployment policy XML file that is embedded into a Java EE
application module. The life cycle of the container servers is controlled by the
application. Container servers start and stop with the application.

Use the following topics to configure your catalog and container servers:

Server properties file
The server properties file contains several properties that define different settings
for your server, such as trace settings, logging, and security configuration. The
server properties file is used by both catalog service and container servers in both
stand-alone servers and servers that are hosted in WebSphere Application Server.

Sample server properties file

You can use the sampleServer.properties file that is in the wxs_home/properties
directory to create your properties file.

Specifying a server properties file

Specifying a setting by using one of the items later in the list overrides the
previous setting. For example, if you specify a system property value for the server
properties file, the properties in that file override the values in the
objectGridServer.properties file that is in the classpath.
v For servers that run in WebSphere Application Server:

– Use a well-named file in the classpath, for example was_root/properties. If
you put this well-named file in the current directory, the file is not found
unless the current directory is in the classpath. The name that is used follows:
objectGridServer.properties

– Specify a system property that specifies a file in the system current directory.
Put the file in the was_root/properties directory. The file cannot be in the
classpath:
-Dobjectgrid.server.props=file_name

Chapter 7. Configuring the deployment environment 199

v For stand-alone servers:

– Use a well-named file in the classpath, for example wxs_home/properties. If
you put this well-named file in the current directory, the file is not found
unless the current directory is in the classpath. The name that is used follows:
objectGridServer.properties

– Specify the server properties file as a parameter when you run the
startOgServer command. You can override these properties manually to
specify a file in the system current directory:
-serverProps file_name

v For embedded, stand-alone servers:

Use the embedded server API. Use the ServerFactory.getServerProperties and
ServerFactory.getCatalogServerProperties methods. The data in the object is
populated with the data from the properties files.

Server properties

General properties

workingDirectory
Specifies the location to where the container server output is written. When
this value is not specified, the output is written to a log directory within
the current directory. This property applies to both the container server
and the catalog service.

Default: no value

minThreads
Specifies the minimum number of threads used by the internal thread pool
in the run time for built-in evictors and DataGrid operations.

Default: 10

maxThreads
Specifies the maximum number of threads used by the internal thread pool
in the run time for built-in evictors and DataGrid operations.

Default: 50

traceSpec
Enables trace and the trace specification string for the container server.
Trace is disabled by default. This property applies to both the container
server and the catalog service.

Default: *=all=disabled

traceFile
Specifies a file name to write trace information. This property applies to
both the container server and the catalog service.

systemStreamToFileEnabled
Enables the container to write the SystemOut, SystemErr, and trace output
to a file. If this property is set to false, output is not written to a file and
is instead written to the console.

Default: true

enableMBeans
Enables ObjectGrid container Managed Beans (MBean). This property
applies to both the container server and the catalog service.

Default: true

200 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

serverName
Sets the server name that is used to identify the server. This property
applies to both the container server and the catalog service.

zoneName
Set the name of the zone to which the server belongs. This property
applies to both the container server and the catalog service.

haManagerPort
Synonymous with peer port. Specifies the port number the high availability
manager uses. If this property is not set, the catalog service generates an
available port automatically. This property applies to both the container
server and the catalog service.

listenerHost
Specifies the host name to which the Object Request Broker (ORB) should
bind. This property applies to both the container server and the catalog
service.

If your configuration involves multiple network cards, set the listener host
and port to let the Object Request Broker in the JVM know the IP address
to which to bind. For catalog and container servers, specify the listener
host and port in the server properties file. Neglecting to specify which IP
address to use produces symptoms such as connection time outs, unusual
API failures, and clients that seem to hang.

listenerPort
Specifies the port number to which the Object Request Broker (ORB)
should bind. This property applies to both the container server and the
catalog service.

JMXServicePort
Specifies the port number on which the MBean server should listen. This
property applies to both the container server and the catalog service.

Container server properties

statsSpec
Specifies the stats specification for the container server.

Example:

all=disabled

memoryThresholdPercentage
Sets the memory threshold for memory-based eviction. The percentage
specifies the maximum heap that should be used in the Java virtual
machine (JVM) before eviction occurs. The default value is -1, which
indicates that the memory threshold is not set. If the
memoryThresholdPercentage property is set, the MemoryPoolMXBean
value is set with the provided value. See MemoryPoolMXBean interface in
the Java API specification for more information. However, eviction occurs
only if eviction is enabled on an evictor. To enable memory based eviction,
see the information about evictors in the Product Overview. This property
only applies to a container server.

catalogServiceEndPoints
Specifies the end points to connect to the catalog service domain. This
value should be in the form host:port<,host:port> where the host value
is the listenerHost value and the port value is the listenerPort value of the
catalog server. This property only applies to a container server.

Chapter 7. Configuring the deployment environment 201

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/MemoryPoolMXBean.html

Catalog service properties

domainName
Specifies the domain name that is used to uniquely identify this catalog
service domain to clients when routing to multiple domains. This property
only applies to the catalog service.

enableQuorum
Enables quorum for the catalog service. Quorum is used to ensure that a
majority of the catalog service domain is available before allowing
modification to the placement of partitions on available container servers.
To enable quorum, set the value to true or enabled. The default value is
disabled. This property only applies to the catalog service.

catalogClusterEndPoints
Specifies the catalog service domain end points for the catalog service. This
property specifies the catalog service end points to start the catalog service
domain. Use the following format:
serverName:hostName:clientPort:peerPort<serverName:hostName:clientPort:peerPort>

This property only applies to the catalog service.

heartBeatFrequencyLevel
Specifies how often heartbeats occur. The heartbeat frequency level is a
trade-off between use of resources and failure discovery time. The more
frequently heartbeats occur, more resources are used, but failures are
discovered more quickly. This property applies only to the catalog service.
Use one of the following values:
v 0: Specifies a heartbeat level at a typical rate. With this value, failover

detection occurs at a reasonable rate without overusing resources.
(Default)

v -1: Specifies an aggressive heartbeat level. With this value, failures are
detected more quickly, but also uses additional processor and network
resources. This level is more sensitive to missing heartbeats when the
server is busy.

v 1: Specifies a relaxed heartbeat level. With this value, a decreased
heartbeat frequency increases the time to detect failures, but also
decreases processor and network use.

Security server properties

The server properties file is also used to configure eXtreme Scale server security.
You use a single server property file to specify both basic the properties and
security properties.

General security properties

securityEnabled
Enables the container server security when set to true. The default value is
false. This property should match the securityEnabled property that is
specified in the objectGridSecurity.xml file that is provided to the catalog
server.

credentialAuthentication
Indicates whether this server supports credential authentication. Chose one
of the following values:
v Never: The server does not support credential authentication.

202 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Supported: The server supports the credential authentication if the client
also supports credential authentication.

v Required: The client requires credential authentication.

See “Application client authentication” on page 435 for details about
credential authentication.

Transport layer security settings

transportType
Specifies the server transport type. Use one of the following values:
v TCP/IP: Indicates that the server only supports TCP/IP connections.
v SSL-Supported: Indicates that the server supports both TCP/IP and

Secure Sockets Layer (SSL) connections. (Default)
v SSL-Required: Indicates that the server requires SSL connections.

SSL configuration properties

alias Specifies the alias name in the keystore. This property is used if the
keystore has multiple key pair certificates and you want to select
one of the certificates.

Default: no value

contextProvider
Specifies the name of the context provider for the trust service. If
you indicate a value that is not valid, a security exception results
that indicates that the context provider type is incorrect.

Valid values: IBMJSSE2, IBMJSSE, IBMJSSEFIPS, and so on.

protocol
Indicates the type of security protocol to use for the client. Set this
protocol value based on which Java Secure Socket Extension (JSSE)
provider you use. If you indicate a value that is not valid, a
security exception results that indicates that the protocol value is
incorrect.

Valid values: SSL, SSLv2, SSLv3, TLS, TLSv1, and so on.

keyStoreType
Indicates the type of keystore. If you indicate a value that is not
valid, a runtime security exception results.

Valid values: JKS, JCEK, PKCS12, and so on.

trustStoreType
Indicates the type of truststore. If you indicate a value that is not
valid, a runtime security exception results.

Valid values: JKS, JCEK, PKCS12, and so on.

keyStore
Specifies a fully qualified path to the keystore file.

Example:

etc/test/security/client.private

trustStore
Specifies a fully qualified path to the truststore file.

Example:

etc/test/security/server.public

Chapter 7. Configuring the deployment environment 203

keyStorePassword
Specifies the string password to the keystore. You can encode this
value or use the actual value.

trustStorePassword
Specifies a string password to the truststore. You can encode this
value or use the actual value.

clientAuthentication
If the property is set to true, the SSL client must be authenticated.
Authenticating the SSL client is different from the client certificate
authentication. Client certificate authentication means
authenticating a client to a user registry based on the certificate
chain. This property ensures that the server connects to the right
client.

SecureTokenManager
The SecureTokenManager setting is used for protecting the secret
string for server mutual authentications and for protecting the
single sign-on token.“Data grid security” on page 433

secureTokenManagerType
Specifies the type of SecureTokenManager setting. You can use one
of the following settings:
v none: Indicates that no secure token manager is used.
v default: Indicates that the token manager that is supplied with

the WebSphere eXtreme Scale product is used. You must provide
a SecureToken keystore configuration.

v custom: Indicates that you have your own token manager that
you specified with the SecureTokenManager implementation
class.

customTokenManagerClass
Specifies the name of your SecureTokenManager implementation
class, if you have specified the SecureTokenManagerType property
value as custom. The implementation class must have a default
constructor to be instantiated.

customSecureTokenManagerProps
Specifies the custom SecureTokenManager implementation class
properties. This property is used only if the
secureTokenManagerType value is custom. The value is set to the
SecureTokenManager Object with the setProperties(String) method.

Secure token keystore configuration

secureTokenKeyStore
Specifies the file path name for the keystore that stores the public-private
key pair and the secret key.

secureTokenKeyStoreType
Specifies the keystore type, for example, JCKES. You can set this value
based on the Java Secure Socket Extension (JSSE) provider that you use.
However, this keystore must support secret keys.

secureTokenKeyPairAlias
Specifies the alias of the public-private key pair that is used for signing
and verifying.

204 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

secureTokenKeyPairPassword
Specifies the password to protect the key pair alias that is used for signing
and verifying.

secureTokenSecretKeyAlias
Specifies the secret key alias that is used for ciphering.

secureTokenSecretKeyPassword
Specifies the password to protect the secret key.

secureTokenCipherAlgorithm
Specifies the algorithm that is used for providing a cipher. You can set this
value based on the Java Secure Socket Extension (JSSE) provider that you
use.

secureTokenSignAlgorithm
Specifies the algorithm that is used for signing the object. You can set this
value based on the JSSE provider that you use.

Authentication string

authenticationSecret
Specifies the secret string to challenge the server. When a server starts, it
must present this string to the president server or catalog server. If the
secret string matches what is in the president server, this server is allowed
to join in.

Configuring WebSphere eXtreme Scale with WebSphere
Application Server

You can run catalog service and container server processes in WebSphere
Application Server. The process to configure these servers is different than a
stand-alone configuration. The catalog service can automatically start in WebSphere
Application Server servers or deployment managers. Container process start when
an eXtreme Scale application is deployed and started in the WebSphere Application
Server environment.

About this task

Attention: Do not collocate your container servers with catalog servers in a
production environment. Include the catalog service in multiple node agent
processes or in an application server that is not hosting an eXtreme Scale
application.

Configuring the catalog service in WebSphere Application Server
Catalog service processes can run in WebSphere Application Server. The server life
cycle in WebSphere Application Server determines when the catalog service starts
and stops.

Procedure
1. Choose one or more WebSphere Application Server processes to augment with

the WebSphere eXtreme Scale profile. See “Creating and augmenting profiles
for WebSphere eXtreme Scale” on page 45 for more information. If you want
the catalog service to start automatically in WebSphere Application Server
Network Deployment on the deployment manager, install WebSphere eXtreme
Scale on the deployment manager node and augment the deployment manager
profile.

Chapter 7. Configuring the deployment environment 205

2. Configure server properties files for the WebSphere Application Server
processes and add to the class path for the node. See “Server properties file” on
page 199 for more information.

3. Configure a catalog service domain. The catalog service domain is a group of
catalog servers within your environment. See “Creating catalog service domains
in WebSphere Application Server” for more information.

4. Start the WebSphere Application Server processes that are hosting the catalog
servers. See “Starting and stopping servers in a WebSphere Application Server
environment” on page 363 for more information.

Creating catalog service domains in WebSphere Application Server:

Catalog service domains define a group of catalog servers that manage the
placement of shards and monitor the health of container servers in your data grid.

Before you begin

v Install WebSphere eXtreme Scale on WebSphere Application Server. See
“Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client with
WebSphere Application Server” on page 26 for more information.

About this task

By creating a catalog service domain, you are defining a highly available collection
of catalog servers.

These catalog servers can run in WebSphere Application Server within a single cell
and core group. The catalog service domain can also define a remote group of
servers that run in different Java SE processes or other WebSphere Application
Server cells.

For catalog servers that run on existing application servers within the cell: When
you define a catalog service domain that places catalog servers on the application
servers within the cell, the core group mechanisms of WebSphere Application
Server are used. The catalog service automatically starts on the application servers
in the cell. As a result, the members of a single catalog service domain cannot span
the boundaries of a core group, and a catalog service domain therefore cannot span
cells. However, WebSphere eXtreme Scale container servers and clients can span
cells by connecting to a catalog server across cell boundaries, such as a stand-alone
catalog service domain or a catalog service domain embedded in another cell.

For remote catalog servers: You can connect WebSphere eXtreme Scale containers
and clients to a catalog service domain that is running in another WebSphere
Application Server cell or that are running as stand-alone processes. Because
remotely configured catalog servers do not automatically start in the cell, you must
manually start any remotely configured catalog servers. When you configure a
remote catalog service domain, the domain name should match the domain name
that you specified when you start the remote catalog servers. The default catalog
service domain name for stand-alone catalog servers is DefaultDomain. Specify a
catalog service domain name with the startOgServer command -domain parameter,
a server properties file, or with the embedded server API. You must start each
remote catalog server process in the remote domain with the same domain name.
See “Starting a stand-alone catalog service” on page 351 for more information
about starting catalog servers.

206 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Attention: Do not collocate the catalog services with WebSphere eXtreme Scale
container servers in a production environment. Include the catalog service in
multiple node agent processes or in an application server that is not hosting a
WebSphere eXtreme Scale application.

Procedure

1. Create the catalog service domain.
a. In the WebSphere Application Server administrative console, click System

administration > WebSphere eXtreme Scale > Catalog service domains >
New.

b. Define a name, default value, and JMX authentication credentials for your
catalog service domain. If you are configuring remote endpoints for the
catalog service domain, the name of the catalog service domain should
match the name of the catalog service domain that you specify when you
start the catalog servers.

c. Add catalog server endpoints. You can either select existing application
servers or add remote servers that are running a catalog service.

2. Test the connection to the catalog servers within your catalog service domain.
For existing application servers, catalog servers start when the associated
application server is started. For remote application servers, you must start the
servers manually using the startOgServer command or embedded server API.
a. In the WebSphere Application Server administrative console, click System

administration > WebSphere eXtreme Scale > Catalog service domains.
b. Select the catalog service domain that you want to test and click Test

connection. When you click this button, all of the defined catalog service
domain end points are queried one by one, if any one end point is
available, returns a message that indicates that the connection to the catalog
service domain was successful.

Catalog service domain administrative tasks:

You can use the Jacl or Jython scripting languages to manage catalog service
domains in your WebSphere Application Server configuration.

Requirements

You must have the WebSphere eXtreme Scale Client installed in your WebSphere
Application Server environment.

List all administrative tasks

To get a list of all of the administrative tasks that are associated with catalog
service domains, run the following command with wsadmin:
wsadmin>$AdminTask help XSDomainManagement

Commands

The administrative tasks for catalog service domains include the following
commands:
v “createXSDomain” on page 208
v “deleteXSDomain” on page 211
v “getDefaultXSDomain” on page 211
v “listXSDomains” on page 211

Chapter 7. Configuring the deployment environment 207

v “modifyXSDomain” on page 212
v “testXSDomainConnection” on page 216
v “testXSServerConnection” on page 216

createXSDomain

The createXSDomain command registers a new catalog service domain.

Table 12. createXSDomain command arguments

Argument Description

-name (required) Specifies the name of the catalog service domain that you
want to create.

-default Specifies if the catalog service domain is the default for
the cell. The default value is true. (Boolean: set to true
or false)

-properties Specifies custom properties for the catalog service
domain.

Table 13. defineDomainServers step arguments

Argument Description

name_of_endpoint Specifies the name of the catalog service endpoint.

v For existing application servers: The name of the
endpoint must be in the following format:
cell_name\node_name\server_name

v For remote servers: Specifies the host name of the
remote server. You can have the same name for
multiple endpoints, but the client port values must be
unique for each endpoint.

custom_properties Specifies custom properties for the catalog service
domain endpoint. If you do not have any custom
properties, use a set of double quotes ("") for this
argument.

208 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 13. defineDomainServers step arguments (continued)

Argument Description

endpoint_ports Specifies the port numbers for the catalog service domain
endpoint. The ports must be specified in the following
order: <client_port>,<listener_port>

Client Port
Specifies the port that is used for
communication between the catalog servers in
the catalog service domain. This value is
required for catalog servers that are running in
WebSphere Application Server processes only
and can be set to any port that is not being used
elsewhere.

Listener Port
Specifies the port that is used for
communication with clients. This value is
required for remote endpoints and must match
the value used when the catalog service was
started. The listener port is used by clients and
containers to communicate with the catalog
service.

For WebSphere eXtreme Scale remote
endpoints: Defines the Object Request Broker
(ORB) listener port for containers and clients to
communicate with the catalog service through
the ORB. For WebSphere Application Server
endpoints, the listener port value is optional
because the value is inherited from the
BOOTSTRAP_ADDRESS port configuration.

7.1.0.2+

Table 14. configureClientSecurity step arguments

Argument Description

-securityEnabled Specifies that client security is enabled for the catalog
server. The server properties file that is associated with
the selected catalog server must have a matching
securityEnabled setting in the server properties file. If
these settings do not match, an exception results.
(Boolean: set to true or false)

-credentialAuthentication (optional) Indicates if credential authentication is enforced or
supported.

Never

No client certificate authentication is enforced.

Required
Credential authentication is always enforced. If
the server does not support credential
authentication, the client cannot to connect to
the server.

Supported
(Default) Credential authentication is enforced
only if both the client and server support
credential authentication.

Chapter 7. Configuring the deployment environment 209

Table 14. configureClientSecurity step arguments (continued)

Argument Description

-authenticationRetryCount (optional) Specifies the number of times that authentication gets
tried again if the credential is expired.

If you do not want to try authentication again, set the
value to 0. The default value is 0.

-credentialGeneratorClass Indicates the
com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator implementation class, so
the client retrieves the security tokens from the thread.

-credentialGeneratorProps Specifies the properties for the CredentialGenerator
implementation class. The properties are sent to the
object with the setProperties(String) method. The
credential generator properties value is used only when a
value is specified for the Credential generator class field.

Return value:

Batch mode example usage

Batch mode requires correct formatting of the command entry. Consider using
interactive mode to ensure the values that you enter are processed correctly. When
you use batch mode, you must define the -defineDomainServers step arguments
using a specific array of properties. This array of properties is in the format
name_of_endpoint custom_properties endpoint_ports. The endpoint_ports value is
a list of ports that must be specified in the following order:
<client_port>,<listener_port>.
v Create a catalog service domain of remote endpoints using Jacl:

$AdminTask createXSDomain {-name TestDomain -default true -defineDomainServers
{{xhost1.ibm.com "" ,2809}} -configureClientSecurity {-securityEnabled false
-credentialAuthentication Required -authenticationRetryCount 0 -credentialGeneratorClass
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator
-credentialGeneratorProps "manager manager1"}}}

v Create a catalog service domain of remote endpoints using Jython string:
AdminTask.createXSDomain(’[-name TestDomain -default true
-defineDomainServers [[xhost1.ibm.com "" ,2809]
[xhost2.ibm.com "" ,2809]] -configureClientSecurity [-securityEnabled false
-credentialAuthentication Required -authenticationRetryCount 0 -credentialGeneratorClass
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator
-credentialGeneratorProps "manager manager1"]]’)

v Create a catalog service domain of existing application server endpoints using
Jacl:
$AdminTask createXSDomain {-name TestDomain -default true -defineDomainServers
{{cellName/nodeName/serverName "" 1109}}}

Interactive mode example usage

v Using Jacl:
$AdminTask createXSDomain {-interactive}

v Using Jython string:
AdminTask.createXSDomain (’[-interactive]’)

210 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

deleteXSDomain

The deleteXSDomain command deletes a catalog service domain.

Required parameters:

-name
Specifies the name of the catalog service domain to delete.

Return value:

Batch mode example usage

v Using Jacl:
$AdminTask deleteXSDomain {-name TestDomain }

v Using Jython string:
AdminTask.deleteXSDomain(’[-name TestDomain]’)

Interactive mode example usage

v Using Jacl:
$AdminTask deleteXSDomain {-interactive}

v Using Jython string:
AdminTask.deleteXSDomain (’[-interactive]’)

getDefaultXSDomain

The getDefaultXSDomain command returns the default catalog service domain for
the cell.

Required parameters: None

Return value: The name of the default catalog service domain.

Batch mode example usage

v Using Jacl:
$AdminTask getDefaultXSDomain

v Using Jython string:
AdminTask.getDefaultXSDomain

Interactive mode example usage

v Using Jacl:
$AdminTask getDefaultXSDomain {-interactive}

v Using Jython string:
AdminTask.getDefaultXSDomain (’[-interactive]’)

listXSDomains

The listXSDomains command returns a list of the existing catalog service domains.

Required parameters: None

Return value: A list of all of the catalog service domains in the cell.

Batch mode example usage

Chapter 7. Configuring the deployment environment 211

v Using Jacl:
$AdminTask listXSDomains

v Using Jython string:
AdminTask.listXSDomains

Interactive mode example usage

v Using Jacl:
$AdminTask listXSDomains {-interactive}

v Using Jython string:
AdminTask.listXSDomains (’[-interactive]’)

modifyXSDomain

The modifyXSDomain command modifies an existing catalog service domain.

Batch mode requires correct formatting of the command entry. Consider using
interactive mode to ensure the values that you enter are processed correctly. When
you use batch mode, you must define the -modifyEndpoints, -addEndpoints and
-removeEndpoints step arguments using a specific array of properties. This array of
properties is in the format name_of_endpoint host_name custom_properties
endpoint_ports. The endpoint_ports value is a list of ports that must be specified in
the following order: <client_port>,<listener_port>.

Table 15. modifyXSDomain command arguments

Argument Description

-name (required) Specifies the name of the catalog service
domain that you want to edit.

-default If set to true, specifies that the selected
catalog service domain is the default for the
cell. (Boolean)

-properties Specifies custom properties for the catalog
service domain.

Table 16. modifyEndpoints step arguments

Argument Description

name_of_endpoint Specifies the name of the catalog service
endpoint.

v For existing application servers: The
name of the endpoint must be in the
following format: cell_name\node_name\
server_name

v For remote servers: Specifies the host
name of the remote server. You can have
the same name for multiple endpoints,
but the listener port values must be
unique for each endpoint.

212 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 16. modifyEndpoints step arguments (continued)

Argument Description

endpoint_ports Specifies the port numbers for the catalog
service domain endpoint. The endpoints
must be specified in the following order:
<client_port>,<listener_port>

Client Port
Specifies the port that is used for
communication between the catalog
servers in the catalog service
domain. This value is required for
catalog servers that are running in
WebSphere Application Server
processes only and can be set to
any port that is not being used
elsewhere.

Listener Port
Specifies the port that is used for
communication with clients. This
value is required for remote
endpoints and must match the
value used when the catalog service
was started. The listener port is
used by clients and containers to
communicate with the catalog
service.

For WebSphere eXtreme Scale
remote endpoints: Defines the
Object Request Broker (ORB)
listener port for containers and
clients to communicate with the
catalog service through the ORB.
For WebSphere Application Server
endpoints, specifying the listener
port value is optional because the
value is inherited from the
BOOTSTRAP_ADDRESS port
configuration.

Table 17. addEndpoints step arguments

Argument Description

name_of_endpoint Specifies the name of the catalog service
endpoint.

v For existing application servers: The
name of the endpoint must be in the
following format: cell_name\node_name\
server_name

v For remote servers: Specifies the host
name of the remote server. You can have
the same name for multiple endpoints,
but the listener port values must be
unique for each endpoint.

Chapter 7. Configuring the deployment environment 213

Table 17. addEndpoints step arguments (continued)

Argument Description

custom_properties Specifies custom properties for the catalog
service domain endpoint. If you do not have
any custom properties, use a set of double
quotes ("") for this argument.

endpoint_ports Specifies the port numbers for the catalog
service domain endpoint. The endpoints
must be specified in the following order:
<client_port>,<listener_port>

Client Port
Specifies the port that is used for
communication between the catalog
servers in the catalog service
domain. This value is required for
catalog servers that are running in
WebSphere Application Server
processes only and can be set to
any port that is not being used
elsewhere.

Listener Port
Specifies the port that is used for
communication with clients. This
value is required for remote
endpoints and must match the
value used when the catalog service
was started. The listener port is
used by clients and containers to
communicate with the catalog
service.

For WebSphere eXtreme Scale
remote endpoints: Defines the
Object Request Broker (ORB)
listener port for containers and
clients to communicate with the
catalog service through the ORB.
For WebSphere Application Server
endpoints, specifying the listener
port value is optional because the
value is inherited from the
BOOTSTRAP_ADDRESS port
configuration.

Table 18. removeEndpoints step arguments

Argument Description

name_of_endpoint Specifies the name of the catalog service
endpoint to delete.

7.1.0.2+

214 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 19. configureClientSecurity step arguments

Argument Description

-securityEnabled Specifies that client security is enabled for the catalog
server. The server properties file that is associated with
the selected catalog server must have a matching
securityEnabled setting in the server properties file. If
these settings do not match, an exception results.
(Boolean: set to true or false)

-credentialAuthentication (optional) Indicates if credential authentication is enforced or
supported.

Never

No client certificate authentication is enforced.

Required
Credential authentication is always enforced. If
the server does not support credential
authentication, the client cannot to connect to
the server.

Supported
(Default) Credential authentication is enforced
only if both the client and server support
credential authentication.

-authenticationRetryCount (optional) Specifies the number of times that authentication gets
tried again if the credential is expired.

If you do not want to try authentication again, set the
value to 0. The default value is 0.

-credentialGeneratorClass Indicates the
com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator implementation class, so
the client retrieves the security tokens from the thread.

-credentialGeneratorProps Specifies the properties for the CredentialGenerator
implementation class. The properties are sent to the
object with the setProperties(String) method. The
credential generator properties value is used only when a
value is specified for the Credential generator class field.

Return value:

Batch mode example usage

v Using Jacl:
$AdminTask modifyXSDomain {-name TestDomain -default true -modifyEndpoints
{{xhost1.ibm.com "" ,2809}} -addEndpoints {{xhost2.ibm.com "" ,2809}}}
-removeEndpoints {{xhost3.ibm.com}}}

v Using Jython string:
AdminTask.modifyXSDomain(’[-name TestDomain
-default false -modifyEndpoints [[xhost1.ibm.com "" ,2809]]
-addEndpoints [[xhost3.ibm.com "" ,2809]]
-removeEndpoints [[xhost2.ibm.com]]]’)

v 7.1.0.2+ Using the client security specification during the modify command:

Chapter 7. Configuring the deployment environment 215

$AdminTask modifyXSDomain {-name myDomain -default false
-configureClientSecurity {-securityEnabled true -
Supported -authenticationRetryCount 1 -credentialGeneratorClass
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator
-credentialGeneratorProps "manager manager1"}}

Interactive mode example usage

v Using Jacl:
$AdminTask modifyXSDomain {-interactive}

v Using Jython string:
AdminTask.modifyXSDomain (’[-interactive]’)

testXSDomainConnection

The testXSDomainConnection command tests the connection to a catalog service
domain.

Required parameters:

-name
Specifies the name of the catalog service domain to which to test the
connection.

Optional parameters

-timeout
Specifies the maximum amount of time to wait for the connection, in seconds.

Return value: If a connection can be made, returns true, otherwise, connection
error information is returned.

Batch mode example usage

v Using Jacl:
$Admintask testXSDomainConnection

v Using Jython string:
AdminTask.testXSDomainConnection

Interactive mode example usage

v Using Jacl:
$AdminTask testXSDomainConnection {-interactive}

v Using Jython string:
AdminTask.testXSDomainConnection (’[-interactive]’)

testXSServerConnection

The testXSServerConnection command tests the connection to a catalog server.
This command works for both stand-alone servers and servers that are a part of a
catalog service domain.

Required parameters:

host
Specifies the host on which the catalog server resides.

listenerPort
Specifies the listener port for the catalog server.

216 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Optional parameters

timeout
Specifies the maximum amount of time to wait for a connection to the catalog
server, in seconds.

7.1.0.2+ domain
Specifies the name of a catalog service domain. If you define a value for this
parameter, the client security properties for the specified catalog service
domain are used to test the connection. Otherwise, a search occurs to find the
catalog service domain for the specified host and listener port. If a catalog
service domain is found, the client security properties that are defined for the
catalog service domain are used to test the server. Otherwise, no client security
properties are used during the test.

Return value:

Batch mode example usage

v Using Jacl:
$Admintask testXSServerConnection {-host xhost1.ibm.com -listenerPort 2809}

v Using Jython string:
AdminTask.testXSServerConnection(’[-host xshost3.ibm.com -listenerPort 2809]’)

Interactive mode example usage

v Using Jacl:
$AdminTask testXSServerConnection {-interactive}

v Using Jython string:
AdminTask.testXSServerConnection (’[-interactive]’)

Catalog service domain collection:

Use this page to manage catalog service domains. Catalog service domains define a
group of catalog servers that manage the placement of shards and monitors the
health of container servers in your data grid.

To view this administrative console page, click System administration >
WebSphere eXtreme Scale > Catalog service domains. To create a new catalog
service domain, click New. To delete a catalog service domain, select the catalog
service domain you want to remove and click Delete.

Test Connection:

When you click the Test connection button, all of the defined catalog service
domain end points are queried one by one, if any one end point is available,
returns a message that indicates that the connection to the catalog service domain
was successful. You can use this button to test that you have configured the
connection and security information correctly.

Set Default:

Defines the catalog service domain that is used as the default. Select one catalog
service domain as the default and click Set default. Only one catalog service
domain can be selected as the default.

Name:

Chapter 7. Configuring the deployment environment 217

Specifies the name for the catalog service domain.

Default:

Specifies which catalog service domain in the list is the default. The default catalog

service domain is indicated with the following icon: .

Catalog service domain settings:

Use this page to manage the settings for a specific catalog service domain. Catalog
service domains define a group of catalog servers that manage the placement of
shards and monitors the health of container servers in your data grid. You can
define a catalog service domain that is in the same cell as your deployment
manager. You can also define remote catalog service domains if your WebSphere
eXtreme Scale configuration is in a different cell or your data grid is made up of
Java SE processes.

To view this administrative console page, click System administration >
WebSphere eXtreme Scale > Catalog service domains >
catalog_service_domain_name.

Test connection:

When you click the Test connection button, all of the defined catalog service
domain end points are queried one by one, if any one end point is available,
returns a message that indicates that the connection to the catalog service domain
was successful. You can use this button to test that you have configured the
connection and security information correctly.

Name:

Specifies the name of the catalog service domain.

Enable this catalog service domain as the default unless another catalog service domain is
explicitly specified:

If you select this check box, the selected catalog service domain becomes the
default catalog service domain for the cell. Each server profile in the cell that is
augmented with the WebSphere eXtreme Scale profile belongs to the selected
catalog service domain.

For WebSphere eXtreme Scale, all eXtreme Scale containers that are embedded in
Java EE application modules connect to the default domain. Clients can connect to
the default domain using the
ServerFactory.getServerProperties().getCatalogServiceBootstrap() API to retrieve the
catalog service endpoints to use when calling the ObjectGridManager.connect()
API.

If you change the default domain to point to a different set of catalog servers, then
all containers and clients refer to the new domain after they are restarted.

Catalog servers:

Specifies a list of catalog servers that belong to this catalog service domain.

218 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Click New to add a catalog server to the list. This catalog server must already exist
in the eXtreme Scale configuration. You can also edit or delete a server from the
list by selecting the endpoint and then clicking Edit or Delete. Define the
following properties for each catalog server endpoint:

Catalog server endpoint
Specifies the name of the existing application server or remote server on
which the catalog service is running. A catalog service domain cannot
contain a mix of existing application servers and remote server endpoints.
v Existing application server: Specifies the path of an application server,

node agent, or deployment manager in the cell. A catalog service starts
automatically in the selected server. Select from the list of the existing
application servers. All of the application servers that you define within
the catalog service domain must be in the same core group.

v Remote server: Specifies the host name of the remote catalog server.
For WebSphere eXtreme Scale remote endpoints: Specifies the host
name of the remote catalog server process. You must start the remote
servers with the startOgServer script or the embedded server API.

Client Port
Specifies the port that is used for communication between the catalog
servers in the catalog service domain. This value is required for catalog
servers that are running in WebSphere Application Server processes only
can be set to any port that is not being used elsewhere.

Listener Port
Specifies the port that is used for communication with clients. This value is
required for remote endpoints and must match the value used when the
catalog service was started. The listener port is used by clients and
containers to communicate with the catalog service.

For WebSphere eXtreme Scale remote endpoints: Defines the Object
Request Broker (ORB) listener port for containers and clients to
communicate with the catalog service through the ORB. For WebSphere
Application Server endpoints, the listener port value is inherited from the
BOOTSTRAP_ADDRESS port configuration.

Status

Table 20. Catalog server endpoint status

Icon Definition

Unknown

Started

Stopped

Client security properties:

Use this page to configure client security for a catalog service domain. These
settings apply to all the servers in your catalog service domain. These properties
can be overridden by specifying a splicer.properties file with the
com.ibm.websphere.xs.sessionFilterProps custom property or by splicing the
application EAR file.

Chapter 7. Configuring the deployment environment 219

To view this administrative console page, click System administration >
WebSphere eXtreme Scale > Catalog service domains >
catalog_service_domain_name > Client security properties.

Enable client security:

Specifies that client security is enabled for the catalog server. The server properties
file that is associated with the selected catalog server must have a matching
securityEnabled setting in the server properties file. If these settings do not match,
an exception results.

Credential authentication:

Indicates if credential authentication is enforced or supported.

Never

No client credential authentication is enforced.

Required
Credential authentication is always enforced. If the server does not support
credential authentication, the client cannot to connect to the server.

Supported
Credential authentication is enforced only if both the client and server
support credential authentication.

Authentication retry count:

Specifies the number of times that authentication gets tried again if the credential
is expired.

If you do not want to try authentication again, set the value to 0.

Credential generator class:

Indicates the com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
implementation class, so the client retrieves the credential from the
CredentialGenerator object.

You can choose from two predefined credential generator classes, or you can
specify a custom credential generator. If you choose a custom credential generator,
you must indicate the name of the credential generator class.
v com.ibm.websphere.objectgrid.security.plugins.UserPasswordCredentialGenerator
v

com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredentialGenerator
v Custom credential generator

Subject type:

Specifies if you are using the J2EE caller or the J2EE runAs subject type. You must
specify this value when you choose the WSTokenCredentialGenerator credential
generator.
v runAs: The subject contains the principal of the J2EE run as identity and the

J2EE run as credential.
v caller: The subject contains the principal of the J2EE caller and the J2EE caller

credential.

220 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

User ID:

Specify a user ID when you are using the UserPasswordCredentialGenerator
credential generator implementation.

Password:

Specify a password when you are using the UserPasswordCredentialGenerator
credential generator implementation.

Credential generator properties:

Specifies the properties for a custom CredentialGenerator implementation class.
The properties are sent to the object with the setProperties(String) method. The
credential generator properties value is used only when a value is specified for the
Credential generator class field.

Catalog service domain custom properties:

You can further edit the configuration of the catalog service domain by defining
custom properties.

To view this administrative console page, click System administration >
WebSphere eXtreme Scale > Catalog service domains > Custom properties. To
create a new custom property, click New.

Name:

Specifies the name of the custom property for the catalog service domain.

Value:

Specifies a value for the custom property for the catalog service domain.

Configuring container servers in WebSphere Application Server
Configure container servers in WebSphere Application Server by using a server
properties file and deployment policy XML file that is embedded into a Java EE
application module. Container servers stop and start when the application is
stopped and started.

Before you begin

Configure a catalog service domain. See “Creating catalog service domains in
WebSphere Application Server” on page 206 for more information.

About this task

To create container servers in WebSphere Application Server, you must embed the
WebSphere eXtreme Scale configuration XML files to create the container servers
within the application module.

Procedure
1. Identify the application servers on which you want to deploy the Java EE

application that contains the WebSphere eXtreme Scale container server
definitions. Verify that the target application server profiles have been
augmented with the WebSphere eXtreme Scale profile. In a production

Chapter 7. Configuring the deployment environment 221

environment, do not collocate the servers that you use for container servers
with the catalog servers. See “Creating and augmenting profiles for WebSphere
eXtreme Scale” on page 45 for more information.

2. Configure a server properties file and add the server properties file to the class
path for each target application server node. See “Server properties file” on
page 199 for more information.

3. Add the ObjectGrid descriptor XML file and deployment policy XML file to the
application module. See “Configuring WebSphere Application Server
applications to automatically start container servers” for more information.

Configuring WebSphere Application Server applications to automatically start
container servers:

Container servers in a WebSphere Application Server environment start
automatically when a module starts that has the eXtreme Scale XML files included.

Before you begin

WebSphere Application Server and WebSphere eXtreme Scale must be installed,
and you must be able to access the WebSphere Application Server administrative
console.

About this task

Java Platform, Enterprise Edition applications have complex class loader rules that
greatly complicate loading classes when using a shared data grid within a Java EE
server. A Java EE application is typically a single Enterprise Archive (EAR) file.
The EAR file contains one or more deployed Enterprise JavaBeans (EJB) or web
archive (WAR) modules.

WebSphere eXtreme Scale watches for each module start and looks for eXtreme
Scale XML files. If the catalog service detects that a module starts with the XML
files, the application server is registered as a container server Java virtual machine
(JVM). By registering the container servers with the catalog service, the same
application can be deployed in different data grids, but used as a single data grid
by the catalog service. The catalog service is not concerned with cells, grids, or
dynamic grids. A single data grid can span multiple cells if required.

Procedure

1. Package your EAR file to have modules that include the eXtreme Scale XML
files in the META-INF folder. WebSphere eXtreme Scale detects the presence of
the objectGrid.xml and objectGridDeployment.xml files in the META-INF folder
of EJB and WEB modules when they start. If only an objectGrid.xml file is
found, then the JVM is assumed to be client. Otherwise, it is assumed this JVM
acts as a container for the data grid that is defined in the
objectGridDeployment.xml file.
You must use the correct names for these XML files. The file names are
case-sensitive. If the files are not present, then the container does not start. You
can check the systemout.log file for messages that indicate that shards are
being placed. An EJB module or WAR module using eXtreme Scale must have
eXtreme Scale XML files in its META-INF directory.
The eXtreme Scale XML files include:
v An ObjectGrid descriptor XML file, named objectGrid.xml. See “ObjectGrid

descriptor XML file” on page 153 for more information.

222 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v A deployment descriptor XML file named objectGridDeployment.xml. See
“Deployment policy descriptor XML file” on page 192 for more information.

v (Optional) An entity metadata descriptor XML file, if entities are used. The
entity.xml file name must match the name that is specified in the
objectGrid.xml file. See “Entity metadata descriptor XML file” on page 258
for more information.

The run time detects these files, then contacts the catalog service to inform it
that another container is available to host shards for that eXtreme Scale.

Tip: If your application has entities and you are planning to use one container
server, set the minSyncReplicas value to 0 in the deployment descriptor XML
file. Otherwise, you might see one of the following messages in the
SystemOut.log file because placement cannot occur until another server starts to
meet the minSyncReplica policy:
CWPRJ1005E: Error resolving entity association. Entity=entity_name,
association=association_name.

CWOBJ3013E: The EntityMetadata repository is not available. Timeout
threshold reached when trying to register the entity: entity_name.

2. Deploy and start your application.
The container starts automatically when the module is started. The catalog
service starts to place partition primaries and replicas (shards) as soon as
possible. This placement occurs immediately unless you define a
numInitialContainers attribute in the objectGridDeployment.xml file. If you
define the numInitialContainers attribute, then placement starts when that
number of containers has started.

What to do next

Applications within the same cell as the containers can connect to these data grids
by using a ObjectGridManager.connect(null, null) method and then call the
getObjectGrid(ccc, "object grid name") method. The connect or getObjectGrid
methods might be blocked until the containers have placed the shards, but this
blocking is only an issue when the data grid is starting.

ClassLoaders

Any plug-ins or objects stored in an eXtreme Scale are loaded on a certain class
loader. Two EJB modules in the same EAR can include these objects. The objects
are the same but are loaded with different ClassLoaders. If application A stores a
Person object in a map that is local to the server, application B receives a
ClassCastException if it tries to read that object. This exception occurs because
application B loaded the Person object on a different class loader.

One approach to resolve this problem is to have a root module contain the
necessary plug-ins and objects that are stored in the eXtreme Scale. Each module
that uses eXtreme Scale must reference that module for its classes. Another
resolution is to place these shared objects in a utility JAR file that is on a common
class loader shared by both modules and applications. The objects can also be
placed in the WebSphere classes or lib/ext directory, however this placement
complicates the deployment.

EJB modules in an EAR file typically share the same ClassLoader and are not
affected by this problem. Each WAR module has its own ClassLoader and is
affected by this problem.

Chapter 7. Configuring the deployment environment 223

Connecting to a data grid client-only

If the catalog.services.cluster property is defined in the cell, node or server
custom properties, any module in the EAR file can call the
ObjectGridManager.connect
(ServerFactory.getServerProperties().getCatalogServiceBootstrap(), null, null)
method to get a ClientClusterContext. The module can also call the
ObjectGridManager.getObjectGrid(ccc, "grid name") method to gain a reference to
the data grid. If any application objects are stored in Maps, verify that those objects
are present in a common ClassLoader.

Java clients or clients outside the cell can connect with the bootstrap IIOP port of
the catalog service. In WebSphere Application Server, the deployment manager
hosts the catalog service by default. The client can then obtain a
ClientClusterContext and the named data grid.

Entity manager

With the entity manager, the tuples are stored in the maps instead of application
objects, resulting in fewer class loader problems. Plug-ins can be a problem,
however. Also note that a client override ObjectGrid descriptor XML file is always
required when connecting to a data grid that has entities defined:
ObjectGridManager.connect("host:port[,host:port], null, objectGridOverride) or
ObjectGridManager.connect(null, objectGridOverride).

Configuring the quorum mechanism
The quorum mechanism is configured for each catalog service. You must enable
the quorum mechanism on all of the catalog servers in the catalog service domain.

Before you begin

Before you enable the quorum mechanism, you must configure a topology that
supports this type of configuration. The configuration must support the following
requirements:
v Flat IP address space: Any addressable element on the network must be able to

connect to any other addressable element on the network unimpeded. You must
use a flat IP address naming space. All the firewalls in the configuration must
allow all traffic to flow between the IP addresses and ports that are being used
to host catalog servers and container servers.

v Number of catalog servers: You must start at least one catalog server for each
data center in the configuration.

v Heartbeat interval setting: If you do not define the heartbeat interval, the
default value is 30 seconds. WebSphere eXtreme Scale checks on the JVMs in a
single zone at the defined interval. For example, if a heartbeat on a container
server is missed, and quorum is established, a failover event occurs to place a
new container server. See “Configuring the heartbeat interval setting for failover
detection” on page 190 for more information.

v Transport security: Because data centers are normally deployed in different
geographical locations, you might want to enable transport security between the
data centers for security reasons. Read about transport layer security in the
Administration Guide.

224 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About this task

The quorum mechanism is disabled by default. Enable the quorum mechanism in
the following scenarios:
v When your catalog service domain spans a network that is unpredictable or

unstable. This type of network might span multiple data centers.
v When you want to prevent the data grid from self-healing during a brownout on

the network, and instead temporarily pause data grid operations from occurring.

You can leave the quorum mechanism disabled if your catalog service domain is
contained within a single data center, or is on a local area network (LAN). In this
type of configuration, default heart beating is used and brownouts are assumed to
be shorter than 10 seconds. Because the detection period is approximately 30
seconds, any short brownouts that occur do not cause placement changes to occur
in the data grid.

If you enable quorum, all the catalog servers must be available and communicating
with the data grid to conduct placement operations. If a network brownout occurs,
placement is paused until all the catalog servers are available. If a data center
failure occurs, manual administrator actions are required to remove the failed
catalog server from the quorum.

Procedure
1. Enable quorum on the catalog servers. In WebSphere Application Server, you

must configure quorum with the server properties file. In a stand-alone
environment you can either use the properties method or enable quorum when
you start the server:
v Set the enableQuorum=true property in the server properties file.

You can use this configuration in a WebSphere Application Server or
stand-alone environment.

For more information about configuring the properties file, see “Server
properties file” on page 199.

v Pass the -quorum enabled flag on the startOgServer command.

You can use this configuration method when you start stand-alone servers
only.
bin/startOgServer cat0 –serverProps objectGridServer.properties -quorum true

For more information about the startOgServer command, see
“startOgServer script” on page 356.

2. Start container servers in the same zone.

When you are running a data grid across data centers, the servers must use the
zone information to identify the data center in which they reside. Setting the
zone on the container servers allows WebSphere eXtreme Scale to monitor
health of the container servers that are scoped to the data center, minimizing
cross-data-center traffic. The container server JVMs in a core group must never
span multiple LANs that are connected with links, like in a wide area network.

catalogClusterEndPoints=cat0:cat0.domain.com:6600:6601,
cat1:cat1.domain.com:6600:6601
catalogServiceEndPoints= cat0.domain.com:2809, cat1.domain.com:2809
enableQuorum=true

Figure 16. objectGridServer.properties file

Chapter 7. Configuring the deployment environment 225

See “Defining zones for container servers” on page 184 for more information
about defining zones for container servers.
Container server JVMs are tagged with a zone identifier. The data grid of
container JVMs is automatically broken in to small core groups of JVMs. A core
group only includes JVMs from the same zone. JVMs from different zones are
never in the same core group.
A core group aggressively tries to detect the failure of its member JVMs.

Results

By setting the quorum mechanism to be enabled on the catalog servers within a
catalog service domain, all the catalog servers must be available for data grid
placement operations to occur. In the event of a short network brownout,
placement operations are temporarily stopped until all the catalog servers in the
quorum are available.

You can add additional catalog servers to the quorum by repeating these steps.

What to do next
v You can remove a catalog server from the quorum by stopping the catalog

server with the administrative method that is required by the configuration.
When a catalog server is stopped through administrative actions, quorum is
automatically reestablished among the remaining catalog servers, and placement
can continue. If you restart the catalog server with the steps described in this
topic, the catalog server can rejoin the quorum.

v If a long-term or permanent failure of a catalog server that is in the currently
defined quorum occurs, you must override the quorum mechanism so that
placement can continue. See “Managing data center failures” on page 371 for
more information about overriding the quorum mechanism.

Best practice: Clustering the catalog service
When you are using the catalog service, a minimum of two catalog servers are
required to avoid a single point of failure. Depending on the number of nodes in
your environment, you can create different configurations to ensure that at least
two catalog servers are always running.

Number of catalog servers

The best practice to avoid a single point of failure for your catalog service domain
is to start a minimum of three catalog servers on three different nodes.

If you are using only two nodes, configure two catalog servers on each of the two
nodes for a total of four catalog server processes. Creating this configuration
ensures that when only one of the nodes is started, the required two catalog
servers are running. You must start at least two catalog servers at the same time.
When catalog servers start, they look for other catalog servers in the configuration,
and do not start successfully until at least one other catalog sever is found.

Example: Starting four catalog servers on two nodes in a
stand-alone environment

The following script starts catalog servers cs0 and cs1 on the host1 node, and starts
catalog servers cs2 and cs3 on the host2 node.

226 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

./startOgServer.sh|bat cs0 -listenerPort 2809 -catalogServiceEndPoints
cs0:host1:6601:6602,cs1:host1:6603:6604,cs2:host2:6601:6602,cs3:host2:6603:6604
-quorum true -jvmArgs -Xmx256m

./startOgServer.sh|bat cs1 -listenerPort 2810 -catalogServiceEndPoints
cs0:host1:6601:6602,cs1:host1:6603:6604,cs2:host2:6601:6602,cs3:host2:6603:6604
-quorum true -jvmArgs -Xmx256m

./startOgServer.sh|bat cs2 -listenerPort 2809 -catalogServiceEndPoints
cs0:host1:6601:6602,cs1:host1:6603:6604,cs2:host2:6601:6602,cs3:host2:6603:6604
-quorum true -jvmArgs -Xmx256m

./startOgServer.sh|bat cs3 -listenerPort 2810 -catalogServiceEndPoints
cs0:host1:6601:6602,cs1:host1:6603:6604,cs2:host2:6601:6602,cs3:host2:6603:6604
-quorum true -jvmArgs -Xmx256m

Remember: You must use the -listenerPort option because the catalog servers
that are running on a node each require a unique port number.

Example: Starting multiple catalog servers in a WebSphere
Application Server environment

Catalog servers start automatically in a WebSphere Application Server
environment. You can define multiple catalog servers to start by creating a catalog
service domain. After you specify multiple endpoints in the catalog service
domain, restart the included application servers so that the catalog servers start in
parallel.
v WebSphere Application Server Network Deployment: You can choose multiple

existing application servers from the cell to be members of your catalog service
domain.

v Base WebSphere Application Server: You can start the catalog service on
multiple stand-alone nodes. By defining multiple profiles on the same
installation image with the profile management tool, you can create a set of
stand-alone nodes that each have unique ports assigned. In each application
server, define the catalog service domain. You can specify any other application
servers by adding remote servers to the configuration. After you create this
configuration on all of the stand-alone servers, you can start the set of base
application servers in parallel by running the startServer script or by using a
Windows service to start the servers.

Configuring multi-master replication topologies
With the multi-master asynchronous replication feature, you use links to
interconnect a set of domains, then eXtreme Scale synchronizes the domains, using
replication over the links. Because you define the links among domains, you can
construct almost any topology. Define links in the properties files of the catalog
servers for each domain, or define links at runtime using Java Management
Extensions (JMX) programs or the xsadmin command line utility. However you
create links, the set of current links for a domain is stored in the catalog service,
enabling you to add and remove links without restarting the domain (data grid).

Before you begin

Multi-master data grid replication topologies (AP) introduces you to the
characteristics of various multi-master replication topologies. The following
procedure describes the mechanics of configuring various links among domains to

Chapter 7. Configuring the deployment environment 227

form the topology you choose. The section after the procedure provides some
examples to illustrate how to set up specific topologies, such as a hub and spoke
formation.

Also, map sets must have the following characteristics to replicate changes across
catalog service domain links.
v The ObjectGrid name and map set name within a catalog service domain must

match the ObjectGrid name and map set name of other catalog service domains.
For example, ObjectGrid "og1" and map set "ms1" must be configured in domain
A and domain B to replicate the data in the map set between the catalog service
domains.

v Is a FIXED_PARTITION data grid. PER_CONTAINER data grids cannot be
replicated.

v Has the same number of partitions in each catalog service domain, but is
unrestricted with respect to the number or type of replicas.

v Has the same data types replicated in each catalog service domain.
v Contains the same maps and dynamic map templates in each catalog service

domain.

Any map sets with the preceding characteristics will be replicated after the catalog
service domains in the topology have been started.

Procedure
1. Define links in the properties file for the catalog server of each domain in the

topology, for bootstrap purposes.
The property file is detected automatically if you name it
objectGridServer.properties (case sensitive on some systems) and place it on
the classpath used when starting a catalog service instance. You also can specify
its location on the command line to the startOgServer script, using the
-serverProps parameter.
Because the property names are case sensitive, take care on capitalization when
updating the property file.

Local Domain name
Specify the name of "this" domain, such as domain A:

For example:
domainName=A

An optional list of foreign domain names

Specify the names of "other" domains in the multi-master replication
topology, such as domain B:
foreignDomains=B

An optional list of endpoints for the foreign domain names
Specifies the connection information for the catalog servers of the
foreign domains, such as domain B:

For example:
B.endPoints=hostB1:2809, hostB2:2809

If a foreign domain has multiple catalog servers, specify all of them.
2. Use the xsadmin command utility or JMX programming to add or remove links

at runtime.

228 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The links for a domain are kept in the catalog service in replicated memory.
This set of links can be changed at any time by the administrator without
requiring a restart of this domain or any other domain. The xsadmin command
line utility includes several options for working with links.
The xsadmin utility connects to a catalog service and thus a single domain.
Therefore, xsadmin can be used to create and destroy links between the domain
it attaches to and any other domain.
Use the command line to create a new link, for example:
xsadmin –ch host –p 1099 –establishLink dname fdHostA:2809,fdHostB:2809

The command establishes a new link between the ‘local' domain and the
foreign domain named “dname” whose catalog service is running at
fdHostA:2809 and fdHostB:2809. The local domain has a catalog service JVM
with a JMX address of host:1099. Specify all catalog endpoints from the foreign
domain so that fault tolerance connectivity to the domain is possible. It is not
recommended to use a single host:port pair for the catalog service of the
foreign domain.
It does not matter which local catalog service JVM the xsadmin specifies using
–ch and –p. Any catalog JVM will work. If the catalog is hosted in a WebSphere
Application Server deployment manager, then the port is usually 9809.
The ports specified for the foreign domain are NOT JMX ports. They are the
usual ports you would use for eXtreme Scale clients.
After the command to add a new link is issued, the catalog service instructs all
containers under its management to begin replicating to the foreign domain. A
link is not needed on both sides. It is only necessary to create a link on one
side.
Use the command line to remove a link, for example:
xsadmin –ch host –p 1099 –dismissLink dname

The command connects to the catalog service for a domain and instructs it to
stop replicating to a specific domain. A link only needs to be dismissed from
one side.

Example

Suppose that you want to configure a two-domain setup involving Domains A and
B.

Here is the property file for the catalog server in domain A:
domainName=A
foreignDomains=B
B.endPoints=hostB1:2809, hostB2:2809

A B

Figure 17. Link between domains

Chapter 7. Configuring the deployment environment 229

Here is the property file for the catalog server in domain B. Notice the similarity
between the two property files.
domainName=B
foreignDomains=A
A.endPoints=hostA1:2809,hostA2:2809

After the two domains are started, then any data grids with the following
characteristics will be replicated between the domains.
v Has a private catalog service with a unique domain name
v Has the same data grid name as other grids in the domain
v Has the same number of partitions as other data grids in the domain
v Is a FIXED_PARTITION data grid (PER_CONTAINER data grids cannot be

replicated)
v Has the same number of partitions (it might or might not have the same number

and types of replicas)
v Has the same data types being replicated as other data grids in the domain
v Has the same mapset name, map names, and dynamic map templates as other

data grids in the domain

Note that the replication policy of a domain will be ignored.

The preceding example shows how to configure each domain to have a link to the
other domain, but it is necessary only to define a link in one direction. This fact is
especially useful in hub and spoke topologies, allowing a much simpler
configuration. The hub property file does not require updates as spokes are added,
and each spoke file needs only to include hub information. Similarly, a ring
topology requires each domain to have only a link to the previous and next
domain in the ring.

230 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The hub and four spokes (domains A, B, C, and D) would have catalog server
property files like the following examples.
domainName=Hub

The first spoke would have the following properties:
domainName=A
foreignDomains=Hub
Hub.endPoints=hostH1:2809, hostH2:2809

The second spoke would have the following properties:
domainName=B
foreignDomains=Hub
Hub.endPoints=hostH1:2809, hostH2:2809

The third spoke would have the following properties:
domainName=C
foreignDomains=Hub
Hub.endPoints=hostH1:2809, hostH2:2809

The fourth spoke would have the following properties:
domainName=D
foreignDomains=Hub
Hub.endPoints=hostH1:2809, hostH2:2809

Configuring ports
WebSphere eXtreme Scale is a distributed cache that requires opening ports to
communicate with the Object Request Broker (ORB) and Transmission Control
Protocol (TCP) stack among Java virtual machine (JVM) and other servers.

A

B

C

HubD

Figure 18. Hub and spoke topology

Chapter 7. Configuring the deployment environment 231

Planning for network ports
WebSphere eXtreme Scale is a distributed cache that requires opening ports to
communicate with the Object Request Broker (ORB) and Transmission Control
Protocol (TCP) stack among Java virtual machines. Plan and control your ports,
especially in an environment that has a firewall, and when you are using a catalog
service and containers on multiple ports.

Important: When you are specifying port numbers, avoid setting ports that are in
the ephemeral range for your operating system. If you use a port that is in the
ephemeral range, port conflicts could occur.

Catalog service domain

A catalog service domain requires the following ports to be defined:

peerPort
Specifies the port for the high availability (HA) manager to communicate
between peer catalog servers over a TCP stack. In WebSphere Application
Server, this setting is inherited by the high availability manager port
configuration.

clientPort
Specifies the port for catalog servers to access catalog service data. In
WebSphere Application Server, this port is set through the catalog service
domain configuration.

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB. In WebSphere Application Server, the
listenerPort is inherited by the BOOTSTRAP_ADDRESS port configuration.

Default: 2809

Container servers

The WebSphere eXtreme Scale container servers also require several ports to
operate. By default, the eXtreme Scale container server generates its HA manager
port and ORB listener port automatically with dynamic ports. For an environment
that has a firewall, it is advantageous for you to plan and control ports. For
container servers to start with specific ports, you can use the following options in
the startOgServer command.

haManagerPort
Specifies the peer port. (Required for WebSphere Application Server
environments only.)

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB.

Default: 2809

Proper planning of port control is essential when hundreds of Java virtual
machines are started in a server. If a port conflict exists, container servers do not
start.

232 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Clients

WebSphere eXtreme Scale clients can receive callbacks from servers when you are
using the DataGrid API or several other commands. Use the listenerPort
property in the client properties file to specify the port in which the client listens
for callbacks from the server.

haManagerPort
Specifies the peer port. (Required for WebSphere Application Server
environments only.)

jvmArgs (optional)
Specifies a list of Java virtual machine (JVM) arguments. When security is
enabled, you must use the following argument to configure the Secure Socket
Layer (SSL) port: -jvmArgs Dcom.ibm.CSI.SSLPort=<sslPort>

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB.

Default: 2809

Ports in WebSphere Application Server
v The listenerPort value is inherited from the BOOTSTRAP_ADDRESS value for each

WebSphere Application Server application server.
v The haManagerPort and peerPort values inherited from the DCS_UNICAST_ADDRESS

value for each WebSphere Application Server application server.

You can define a catalog service domain in the administrative console as described
in “Creating catalog service domains in WebSphere Application Server” on page
206.

You can view the ports for a particular server by clicking one of the following
paths in the administrative console:
v WebSphere Application Server Network Deployment Version 6.1: Servers >

Application Servers > server_name > Ports > end_point_name.
v WebSphere Application Server Network Deployment Version 7.0: Servers >

Server Types > WebSphere Application Servers > server_name > Ports >
port_name

Configuring ports in stand-alone mode
You can configure the necessary ports for servers and clients in an eXtreme scale
deployment by using command-line parameters, property files or
programmatically. Most examples included in the following sections describe
command-line parameters to the startOgServer.sh or startOgServer.bat scripts or to
the java command. Equivalent configuration options can also be set in properties
files, using the embedded server API or the client API.

Procedure
1. Start catalog service endpoints

WebSphere eXtreme Scale uses IIOP to communicate between Java virtual
machines. The catalog service JVMs are the only processes that require the
explicit configuration of ports for the IIOP services and group services ports.
Other processes dynamically allocate ports.

Chapter 7. Configuring the deployment environment 233

The client port and peer port are used for communication between catalog
services in a catalog service domain. To specify the client port and peer port,
use the following command-line option:
-catalogServiceEndPoints <server:host:clientPort:peerPort,server:host:clientPort:peerPort>

The catalog service end points can also be set using the
catalogClusterEndPoints catalog server property. The Object Request Broker
(ORB) listener port is used for communication between catalog services in a
catalog service domain, and for communication between catalog services and
container servers and clients. To specify the listener port and listener host, use
the following command-line options:
-listenerHost <host_name>
-listenerPort <port>

The listener port and listener host can also be set using the listenerHost and
listenerPort server property.
The JMX service port is used for communication from JMX clients. To specify
the JMX service port, use the following command-line option:
-JMXServicePort <jmxPort>

The JMX service port can also be set using the JMXServicePort server property.
When security is enabled, a Secure Socket Layer (SSL) port is also required. To
specify the SSL port, use the following command-line option:
-jvmArgs -Dcom.ibm.CSI.SSLPort=<sslPort>

Example using the command-line

Start the first catalog server on hostA. An example of the command follows:
./startOgServer.sh cs1 -listenerHost hostA -listenerPort 2809

-catalogServiceEndPoints cs1:hostA:6601:6611,cs2:hostB:6601:6611

Start the second catalog server on hostB. An example of the command follows:
./startOgServer.sh cs2 -listenerHost hostB -listenerPort 2809

-catalogServiceEndPoints cs1:hostA:6601:6611,cs2:hostB:6601:6611

Catalog service Java virtual machine (JVM) end points

WebSphere eXtreme Scale uses IIOP mainly to communicate between Java
virtual machines. The catalog service Java virtual machines are the only Java
virtual machines that require the explicit configuration of ports for the IIOP
services and group services ports. The internal ports are specified using the
-catalogServiceEndPoints command line option:
-catalogServiceEndPoints <server:host:port:port,server:host:port:port>

The IIOP ports are configured using the following command line options:
-listenerHost <host_name>
-listenerPort <port>
-JMXServicePort <jmxPort>

When each catalog service JVM is started, specify the complete set of catalog
service endpoints along with a single listener port for that JVM.

2. Start container endpoints
The following command starts a container JVM to use with the example catalog
service:
./startOgServer.sh c0 -catalogServiceEndPoints hostA:2809,hostB:2809

The container Java virtual machines use two ports. The HA manager port is
used for internal communication between peer container servers and catalog
servers. The listener port is used for IIOP communication between peer
container servers, catalog servers and clients. If you do not specify, both ports

234 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

are dynamically selected. However, if you want to explicitly configure ports,
such as in a firewall environment, you can use a command line option to
specify the ORB port. To specify the listener port and listener host, use the
following command-line options:
-listenerHost <host_name>
-listenerPort <port>

The listener port and listener host can also be set using the listenerHost and
listenerPort server property.
The listener host is used to bind the ORB to a specific network adapter.
To specify the HA manager port, use the following command-line option:
-haManagerPort <port>

The listener port and listener host can also be set using the HAManagerPort
server property.
When security is enabled, a Secure Socket Layer (SSL) port is also required. To
specify the SSL port, use the following command-line option:
-jvmArgs -Dcom.ibm.CSI.SSLPort=<sslPort>

3. Start client endpoints
Clients only need to know the catalog service listener end points. Clients
retrieve end points for container Java virtual machines, which are the Java
virtual machines that hold the data, automatically from the catalog service. To
connect to the catalog service in the previous example, the client should pass
the following list of host:port pairs to the connect API:
hostA:2809,hostB:2809

The client can also receive callbacks from container servers when using the
DataGrid API. These callbacks communicate using IIOP with the ORB listener
port. To specify the port and network adapter to receive callbacks, set the
listenerHost and listenerPort properties in the client properties file.
When security is enabled, a Secure Socket Layer (SSL) port is also required. To
specify the SSL port, use the following system property when starting the client
process:

-Dcom.ibm.CSI.SSLPort=<sslPort>

Configuring ports in a WebSphere Application Server
environment

WebSphere eXtreme Scale catalog services, container servers and clients, when
running in WebSphere Application Server processes, utilize ports and services
already defined for the process.

About this task

The following sections explain details relating to using ports in your deployment.
1. Catalog service endpoints

WebSphere eXtreme Scale catalog services run in any WebSphere Application
Server process and are configured using the administrative console or using
administrative tasks. All ports are inherited by the process except for the client
port, which is explicitly configured. For details on which ports are used by the
catalog service, see “Planning for network ports” on page 232. For details on
configuring a catalog service domain, see “High-availability catalog service” on
page 96.

2. Container server endpoints

Chapter 7. Configuring the deployment environment 235

WebSphere eXtreme Scale container servers are hosted within Java EE modules.
The container servers use the ports defined for the application server process.
For details on which ports are used by the container service, see “Planning for
network ports” on page 232. For details on starting a container within a Java
EE module such as an Enterprise JavaBeans™ (EJB) or Web module, see
“Configuring WebSphere Application Server applications to automatically start
container servers” on page 222.

3. Client endpoints
WebSphere eXtreme Scale clients are hosted within Java EE web or EJB
modules.
Clients programmatically connect to the catalog service domain using the
ObjectGridManager.connect() API. When connecting to a catalog service domain
hosted within the same cell, the client connection will automatically find the
default catalog service domain by using the following API call on the
ObjectGridManager:
connect(securityProps, overRideObjectGridXML)

If the default catalog service domain is hosted remotely (external to the cell),
the catalog service endpoints must be specified using the following method on
the ObjectGridManager API:
connect(catalogServerAddresses, securityProps, overRideObjectGridXml)

If the default catalog service domain is defined in the cell, then the
CatalogServerProperties API can be used to retrieve the catalog server
addresses. The XSDomainManagement administrative task can also be used to
retrieve any configured catalog service domain endpoints.

Servers with multiple network cards
You can run eXtreme Scale processes on a server that has more than one network
card.

If a server or client is running on a server that contains more than one network
card, then you must specify the network port and host name in your eXtreme Scale
configuration to bind to a specified card. If this configuration is not specified, then
the eXtreme Scale runtime will automatically choose one, which may result in
connection failures or slower performance.

For catalog or container servers, you must set the listener host and listener port in
one of the following ways:
v server properties
v command-line parameter on the startOgServer.sh|bat script.

For clients, you cannot use the command line, and must use client properties.

Configuring Object Request Brokers
The Object Request Broker (ORB) is used by WebSphere eXtreme Scale to
communicate over a TCP stack. Use the orb.properties file to pass the properties
that are used by the ORB to modify the transport behavior of the data grid. No
action is required to use the ORB provided by WebSphere eXtreme Scale or
WebSphere Application Server for your WebSphere eXtreme Scale servers.

236 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Before you begin

Restriction: You cannot have servers in a WebSphere Application Server
environment with the same name when the servers are using the ORB to
communicate with each other. You can resolve this restriction by specifying the
system property -Dcom.ibm.websphere.orb.uniqueServerName=true for the
processes that have the same name. For example, when servers with the name
server1 on each node are used as a catalog service domain, or where multiple
node agents are used to form a catalog service domain.

ORB properties
Object Request Broker (ORB) properties modify the transport behavior of the data
grid. These properties can be set with an orb.properties file, as settings in the
WebSphere Application Server administrative console, or as custom properties on
the ORB in the WebSphere Application Server administrative console.

orb.properties

The orb.properties file is in the java/jre/lib directory. When you modify the
orb.properties file in a WebSphere Application Server java/jre/lib directory, the
ORB properties are updated on the node agent and any other Java virtual
machines (JVM) that are using the Java runtime environment (JRE). If you do not
want this behavior, use custom properties or the ORB settings WebSphere
Application Server administrative console.

Default WebSphere Application Server settings

WebSphere Application Server has some properties defined on the ORB by default.
These settings are on the application server container services and the deployment
manger. These default settings override any settings that you create in the
orb.properties file. For each described property, see the Where to specify section
to determine the location to define the suggested value.

File descriptor settings

For UNIX and Linux systems, a limit exists for the number of open files that are
allowed per process. The operating system specifies the number of open files
permitted. If this value is set too low, a memory allocation error occurs on AIX,
and too many files opened are logged.

In the UNIX system terminal window, set this value higher than the default system
value. For large SMP machines with clones, set to unlimited.

For AIX configurations set this value to -1 (unlimited) with the command: ulimit
-n -1.

For Solaris configurations set this value to 16384 with the command: ulimit -n
16384.

To display the current value use the command: ulimit –a.

Chapter 7. Configuring the deployment environment 237

Baseline settings

The following settings are a good baseline but not necessarily the best settings for
every environment. Understand the settings to help make a good decision on what
values are appropriate in your environment.
com.ibm.CORBA.RequestTimeout=30
com.ibm.CORBA.ConnectTimeout=10
com.ibm.CORBA.FragmentTimeout=30
com.ibm.CORBA.LocateRequestTimeout=10
com.ibm.CORBA.ThreadPool.MinimumSize=256
com.ibm.CORBA.ThreadPool.MaximumSize=256
com.ibm.CORBA.ThreadPool.IsGrowable=false
com.ibm.CORBA.ConnectionMultiplicity=1
com.ibm.CORBA.MinOpenConnections=1024
com.ibm.CORBA.MaxOpenConnections=1024
com.ibm.CORBA.ServerSocketQueueDepth=1024
com.ibm.CORBA.FragmentSize=0
com.ibm.CORBA.iiop.NoLocalCopies=true
com.ibm.CORBA.NoLocalInterceptors=true

Property descriptions

Timeout Settings

The following settings relate to the amount of time that the ORB waits before
giving up on request operations. Use these settings to prevent excess threads from
being created in an abnormal situation.

Request timeout

Property name: com.ibm.CORBA.RequestTimeout

Valid value: Integer value for number of seconds.

Suggested value: 30

Where to specify: WebSphere Application Server administrative console

Description: Indicates how many seconds any request waits for a response
before giving up. This property influences the amount of time a client
takes to fail over if a network outage failure occurs. If you set this property
too low, requests might time out inadvertently. Carefully consider the value
of this property to prevent inadvertent timeouts.

Connect timeout

Property name: com.ibm.CORBA.ConnectTimeout

Valid value: Integer value for number of seconds.

Suggested value: 10

Where to specify: orb.properties file

Description: Indicates how many seconds a socket connection attempt
waits before giving up. This property, like the request timeout, can
influence the time a client takes to fail over if a network outage failure
occurs. In general, set this property to a smaller value than the request
timeout value because the amount of time to establish connections is
relatively constant.

Fragment timeout

Property name: com.ibm.CORBA.FragmentTimeout

238 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Valid value: Integer value for number of seconds.

Suggested value: 30

Where to specify: orb.properties file

Description: Indicates how many seconds a fragment request waits before
giving up. This property is similar to the request timeout property.

Thread Pool Settings

These properties constrain the thread pool size to a specific number of threads. The
threads are used by the ORB to spin off the server requests after they are received
on the socket. Setting these property values too low results in an increased socket
queue depth and possibly timeouts.

Connection multiplicity

Property name: com.ibm.CORBA.ConnectionMultiplicity

Valid value: Integer value for the number of connections between the
client and server. The default value is 1. Setting a larger value sets
multiplexing across multiple connections.

Suggested value: 1

Where to specify: orb.properties fileDescription: Enables the ORB to use
multiple connections to any server. In theory, setting this value promotes
parallelism over the connections. In practice, performance does not benefit
from setting the connection multiplicity. Do not set this parameter.

Open connections

Property names: com.ibm.CORBA.MinOpenConnections,
com.ibm.CORBA.MaxOpenConnections

Valid value: An integer value for the number of connections.

Suggested value: 1024

Where to specify: WebSphere Application Server administrative
consoleDescription: Specifies a minimum and maximum number of open
connections. The ORB keeps a cache of connections that have been
established with clients. These connections are purged when this value is
passed. Purging connections might cause poor behavior in the data grid.

Is Growable

Property name: com.ibm.CORBA.ThreadPool.IsGrowable

Valid value: Boolean; set to true or false.

Suggested value: false

Where to specify: orb.properties fileDescription: If set to true, the thread
pool that the ORB uses for incoming requests can grow beyond what the
pool supports. If the pool size is exceeded, new threads are created to
handle the request but the threads are not pooled. Prevent thread pool
growth by setting the value to false.

Server socket queue depth

Property name: com.ibm.CORBA.ServerSocketQueueDepth

Valid value: An integer value for the number of connections.

Suggested value: 1024

Chapter 7. Configuring the deployment environment 239

Where to specify: orb.properties fileDescription: Specifies the length of
the queue for incoming connections from clients. The ORB queues
incoming connections from clients. If the queue is full, then connections are
refused. Refusing connections might cause poor behavior in the data grid.

Fragment size

Property name: com.ibm.CORBA.FragmentSize

Valid value: An integer number that specifies the number of bytes. The
default is 1024.

Suggested value: 0

Where to specify: orb.properties fileDescription: Specifies the maximum
packet size that the ORB uses when sending a request. If a request is larger
than the fragment size limit, then that request is divided into request
fragments that are each sent separately and reassembled on the server.
Fragmenting requests is helpful on unreliable networks where packets
might need to be resent. However, if the network is reliable, dividing the
requests into fragments might cause unnecessary processing.

No local copies

Property name: com.ibm.CORBA.iiop.NoLocalCopies

Valid value: Boolean; set to true or false.

Suggested value: true

Where to specify: WebSphere Application Server administrative console,
Pass by reference setting. Description: Specifies whether the ORB passes
by reference. The ORB uses pass by value invocation by default. Pass by
value invocation causes extra garbage and serialization costs to the path
when an interface is started locally. By setting this value to true, the ORB
uses a pass by reference method that is more efficient than pass by value
invocation.

No Local Interceptors

Property name: com.ibm.CORBA.NoLocalInterceptors

Valid value: Boolean; set to true or false.

Suggested value: true

Where to specify: orb.properties file Description: Specifies whether the
ORB starts request interceptors even when making local requests
(intra-process). The interceptors that WebSphere eXtreme Scale uses are for
security and route handling are not required if the request is handled
within the process. Interceptors that go between processes are only
required for Remote Procedure Call (RPC) operations. By setting the no
local interceptors, you can avoid the extra processing that using local
interceptors introduces.

Attention: If you are usingWebSphere eXtreme Scale security, set the
com.ibm.CORBA.NoLocalInterceptors property value to false. The security
infrastructure uses interceptors for authentication.

240 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Using the Object Request Broker with stand-alone WebSphere
eXtreme Scale processes

You can use WebSphere eXtreme Scale with applications that use the Object
Request Broker (ORB) directly in environments that do not contain WebSphere
Application Server or WebSphere Application Server Network Deployment.

Before you begin

If you use the ORB within the same process as eXtreme Scale when you are
running applications, or other components and frameworks, that are not included
with eXtreme Scale, you might need to complete additional tasks to ensure that
eXtreme Scale runs correctly in your environment.

About this task

Add the ObjectGridInitializer property to the orb.properties file to initialize
the use of the ORB in your environment. Use the ORB to enable communication
between eXtreme Scale processes and other processes that are in your environment.
The orb.properties file is in the java/jre/lib directory. See “ORB properties” on
page 237 for descriptions of the properties and settings.

Procedure

Type the following line, and save your changes:
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.objectgrid.corba.ObjectGridInitializer

Results

eXtreme Scale correctly initializes the ORB and coexists with other applications for
which the ORB is enabled.

To use a custom version of the ORB with eXtreme Scale, see “Configuring a
custom Object Request Broker.”

Configuring a custom Object Request Broker
WebSphere eXtreme Scale uses the Object Request Broker (ORB) to enable
communication among processes. No action is required to use the Object Request
Broker (ORB) provided by WebSphere eXtreme Scale or WebSphere Application
Server for your WebSphere eXtreme Scale servers. Little effort is required to use
the same ORBs for your WebSphere eXtreme Scale clients. If instead you must use
a custom ORB, the ORB supplied with the IBM SDK is a good choice, although
you must configure the ORB. ORBs from other vendors can be used, also with
configuration.

Before you begin

Determine if you are using the ORB provided with WebSphere eXtreme Scale or
WebSphere Application Server, the ORB provided with the IBM SDK, or an
external vendor ORB.

Chapter 7. Configuring the deployment environment 241

You can make separate decisions for the WebSphere eXtreme Scale server processes
and WebSphere eXtreme Scale client processes. While eXtreme Scale supports
developer kits from most vendors, it is recommended you use the ORB that is
supplied with eXtreme Scale for both your server and client processes. eXtreme
Scale does not support the ORB that is supplied with Sun Microsystems Java
Development Kit (JDK).

About this task

Become familiar with the configuration that is required to use the ORB of your
choice.

Case 1: Default ORB

v For your WebSphere eXtreme Scale server processes, no configuration is
required to use the ORB provided with WebSphere eXtreme Scale or
WebSphere Application Server.

v For your WebSphere eXtreme Scale client processes, minimal classpath
configuration is required to use the ORB provided with WebSphere
eXtreme Scale or WebSphere Application Server.

Case 2: Custom ORB (IBM)
To configure your WebSphere eXtreme Scale client processes to use the
ORB provided with the IBM SDK, see the instructions later in this topic.
You can use the IBM ORB whether you are using the IBM SDK or another
development kit.

Figure 19. Choosing an ORB

242 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Using IBM SDK Version 5 (or later) requires less configuration effort than
does IBM SDK Version 1.4.2.

Case 3: Custom ORB (supplied by an external vendor)
Using a vendor ORB for your WebSphere eXtreme Scale client processes is
the least tested option. Any problems that you encounter when you use
ORBs from independent software vendors must be reproducible with the
IBM ORB and compatible JRE before you contact support.

The ORB supplied with the Sun Microsystems Java Development Kit (JDK)
is not supported.

Procedure
v Configure your client processes to use one of the default ORBs (Case 1). Use the

following JVM argument :
-jvmArgs –Djava.endorsed.dirs=default_ORB_directory${pathSeparator}JRE_HOME/lib/endorsed

The default ORB directory is: wxs_home/lib/endorsed. Updating the following
properties in the orb.properties file might also be necessary:
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton

v Configure client or server processes to use IBM SDK, Version 5 (Case 2).
1. Copy the ORB Java archive (JAR) files into an empty directory, or the

custom_ORB_directory.
– ibmorb.jar

– ibmorbapi.jar

Tip: If using a custom ORB from an external vendor (Case 3), these
additional JAR files might be required:
– ibmext.jar

2. Specify the custom_ORB_directory as an endorsed directory in the scripts that
start the Java command.

Tip: If your Java commands already specify an endorsed directory, another
option is to place the custom_ORB_directory under the existing endorsed
directory. By placing the custom_ORB_directory under the existing endorsed
directory, updating the scripts is not necessary. If you decide to update the
scripts anyway, be sure to add the custom_ORB_directory as a prefix to your
existing –Djava.endorsed.dirs= argument, rather than completely replacing
the existing argument.
– Update scripts for a stand-alone eXtreme Scale environment.

Edit the path for the OBJECTGRID_ENDORSED_DIRS variable in the
setupCmdLine.bat|sh file to specify the custom_ORB_directory. Save your
changes.

– Update scripts when eXtreme Scale is embedded in a WebSphere
Application Server environment.
Add the following system property and parameters to the startOgServer
script:
-jvmArgs –Djava.endorsed.dirs=custom_ORB_directory

– Update custom scripts that you use to start a client application process or
a server process.
-Djava.endorsed.dirs=custom_ORB_directory

Chapter 7. Configuring the deployment environment 243

v Configure client or server processes to use IBM SDK, Version 1.4.2 (Case 2). If
your environment contains a Version 1.4.2 SDK, integrate the IBM ORB into the
specified SDK.
1. Download and extract the ORB from an IBM SDK, Version 1.4.2.

If no IBM SDK is available for your platform, download and extract the IBM
Developer Kit for Linux, Java Technology Edition. See IBM developer kits.

2. Copy the ORB JAR files to the target SDK. Copy the java/jre/lib/
ibmorb.jar and java/jre/lib/ibmorbapi.jar files to the java/jre/lib/ext
directory on the target SDK.

3. Update the ORB properties. Create or edit the orb.properties file, which is
in the java/jre/lib directory of the SDK. Add the following properties or
verify that the following properties exist in the file:
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton

For descriptions of the properties and settings, see “ORB properties” on page
237.

4. Ensure that the XML parser is available.
– Download Xerces2 Java 2.9 from The Apache Xerces Project - Downloads.
– Locate the xercesImpl.jar and xml-apis.jar files.
– Copy the files to the lib/ext directory.

Configuring clients
You can configure WebSphere eXtreme Scale to run in a stand-alone environment,
or you can configure eXtreme Scale to run in an environment with WebSphere
Application Server. For a WebSphere eXtreme Scale deployment to pick up
configuration changes on the server grid side, you must restart processes to make
these changes take effect rather than being applied dynamically. However, on the
client side, although you cannot alter the configuration settings for an existing
client instance, you can create a new client instance with the settings you require
by using an XML file or doing so programmatically. When creating a client, you
can override the default settings that come from the current server configuration.

You can configure an eXtreme Scale client in the following ways, each of which can
be done with a client override XML file or programmatically:
v XML configuration
v Programmatic configuration
v Spring Framework configuration
v Disabling the near cache

You can override the following plug-ins on a client:
v ObjectGrid plug-ins

– TransactionCallback plug-in
– ObjectGridEventListener plug-in

v BackingMap plug-ins

– Evictor plug-in
– MapEventListener plug-in
– numberOfBuckets attribute
– ttlEvictorType attribute
– timeToLive attribute

244 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/developerworks/java/jdk/index.html
http://xerces.apache.org/mirrors.cgi

Client properties file
You can create a properties file based on your requirements for WebSphere
eXtreme Scale client processes.

Sample client properties file

You can use the sampleClient.properties file that is in the wxs_home/properties
directory to create your properties file.

Specifying a client properties file

You can specify the client properties file in one of the following ways. Specifying a
setting by using one of the items later in the list overrides the previous setting. For
example, if you specify a system property value for the client properties file, the
properties in that file override the values in the objectGridClient.properties file
that is in the class path.
1. As a well-named file anywhere in the class path. Putting this file in the system

current directory is not supported:
objectGridClient.properties

2. As a system property in either a stand-alone or WebSphere Application Server
configuration. This value can specify a file in the system current directory, but
not a file in the class path:
-Dobjectgrid.client.props=file_name

3. As a programmatic override using the ClientClusterContext.getClientProperties
method. The data in the object is populated with the data from the properties
files. You cannot configure security properties with this method.

Client properties

Client properties

7.1+ listenerHost
Specifies the host name to which the Object Request Broker (ORB) binds.

For a multiple network card configuration, set the listener host and port to
let the Object Request Broker in the JVM know the IP address on which to
bind. For the client, use the client properties file. If you do not specify
which IP address to use, the following problems might occur: connection
timeouts, unusual API failures, and clients that seem to hang.

7.1+ listenerPort
Specifies the port number to which the Object Request Broker (ORB) binds.

preferLocalProcess
This property is not currently used. It is reserved for future use.

preferLocalHost
This property is not currently used. It is reserved for future use.

preferZones
Specifies a list of preferred routing zones. Each specified zone is separated
by a comma in the form: preferZones=ZoneA,ZoneB,ZoneC

Default: no value

requestRetryTimeout
Specifies how long to retry a request (in milliseconds). Use one of the
following valid values:

Chapter 7. Configuring the deployment environment 245

v A value of 0 indicates that the request should fail fast and skip over the
internal retry logic.

v A value of -1 indicates that the request retry timeout is not set, meaning
that the request duration is governed by the transaction timeout.
(Default)

v A value over 0 indicates the request entry timeout value in milliseconds.
Exceptions that cannot succeed even if tried again such as a
DuplicateException exception are returned immediately. The transaction
timeout is still used as the maximum time to wait.

Security client properties

General security properties

securityEnabled
Enables WebSphere eXtreme Scale client security. This setting should match
with the securityEnabled setting in theWebSphere eXtreme Scale server
properties file. If the settings do not match, an exception results.

Default: false

Credential authentication configuration properties

credentialAuthentication
Specifies the client credential authentication support. Use one of the
following valid values:
v Never: The client does not support credential authentication.
v Supported: The client supports credential authentication if the server also

supports credential authentication. (Default)
v Required: The client requires credential authentication.

authenticationRetryCount
Specifies the number of times that authentication is tried if the credential is
expired. If the value is set to 0, attempts to authenticate are not tried again.

Default: 3

credentialGeneratorClass
Specifies the name of the class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
interface. This class is used to get credentials for clients.

Default: no value

credentialGeneratorProps
Specifies the properties for the CredentialGenerator implementation class.
The properties are set to the object with the setProperties(String) method.
The credentialGeneratorprops value is used only if the value of the
credentialGeneratorClass property is not null.

Transport layer security configuration properties

transportType
Specifies the client transport type. The possible values are:
v TCP/IP: Indicates that the client only supports TCP/IP connections.
v SSL-Supported: Indicates that the client supports both TCP/IP and

Secure Sockets Layer (SSL) connections. (Default)
v SSL-Required: Indicates that the client requires SSL connections.

SSL configuration properties

246 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

alias Specifies the alias name in the keystore. This property is used if the
keystore has multiple key pair certificates and you want to select one of
the certificates.

Default: no value

contextProvider
Specifies the name of the context provider for the trust service. If you
indicate a value that is not valid, a security exception results that indicates
that the context provider type is incorrect.

Valid values: IBMJSSE2, IBMJSSE, IBMJSSEFIPS, and so on.

protocol
Indicates the type of security protocol to use for the client. Set this protocol
value based on which Java Secure Socket Extension (JSSE) provider you
use. If you indicate a value that is not valid, a security exception results
that indicates that the protocol value is incorrect.

Valid values: SSL, SSLv2, SSLv3, TLS, TLSv1, and so on.

keyStoreType
Indicates the type of keystore. If you indicate a value that is not valid, a
runtime security exception occurs.

Valid values: JKS, JCEK, PKCS12, and so on.

trustStoreType
Indicates the type of truststore. If you indicate a value that is not valid, a
runtime security exception results.

Valid values: JKS, JCEK, PKCS12, and so on.

keyStore
Specifies a fully qualified path to the keystore file.

Example:

etc/test/security/client.private

trustStore
Specifies a fully qualified path to the truststore file.

Example:

etc/test/security/server.public

keyStorePassword
Specifies the string password to the keystore. You can encode this value or
use the actual value.

trustStorePassword
Specifies a string password to the truststore. You can encode this value or
use the actual value.

Configuring clients with WebSphere eXtreme Scale
You can configure a WebSphere eXtreme Scale client based on your requirements
such as the need to override settings.

Override plug-ins

You can override the following plug-ins on a client:
v ObjectGrid plug-ins

Chapter 7. Configuring the deployment environment 247

– TransactionCallback plug-in
– ObjectGridEventListener plug-in

v BackingMap plug-ins

– Evictor plug-in
– MapEventListener plug-in
– numberOfBuckets attribute
– ttlEvictorType attribute
– timeToLive attribute

Configure the client with XML

An ObjectGrid XML file can be used to alter settings on the client side. To change
the settings on a WebSphere eXtreme Scale client, you must create an ObjectGrid
XML file that is similar in structure to the file that was used for the WebSphere
eXtreme Scale server.

Assume that the following XML file was paired with a deployment policy XML
file, and these files were used to start a WebSphere eXtreme Scale server.
companyGridServerSide.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

<bean id="TransactionCallback"
className="com.company.MyTxCallback" />

<bean id="ObjectGridEventListener"
className="com.company.MyOgEventListener" />

<backingMap name="Customer"
pluginCollectionRef="customerPlugins" />

<backingMap name="Item" />
<backingMap name="OrderLine" numberOfBuckets="1049"

timeToLive="1600" ttlEvictorType="LAST_ACCESS_TIME" />
<backingMap name="Order" lockStrategy="PESSIMISTIC"

pluginCollectionRef="orderPlugins" />
</objectGrid>

</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">

<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor" />

<bean id="MapEventListener"
className="com.company.MyMapEventListener" />

</backingMapPluginCollection>
<backingMapPluginCollection id="orderPlugins">

<bean id="MapIndexPlugin"
className="com.company.MyMapIndexPlugin" />

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

On a WebSphere eXtreme Scale server, the ObjectGrid instance named
CompanyGrid behaves as defined by the companyGridServerSide.xml file. By
default, the CompanyGrid client has the same settings as the CompanyGrid
instance running on the server. However, some of the settings can be overridden
on the client, as follows:
1. Create a client-specific ObjectGrid instance.
2. Copy the ObjectGrid XML file that was used to open the server.
3. Edit the new file to customize for the client side.

248 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v To set or update any of the attributes on the client, specify a new value or
change the existing value.

v To remove a plug-in from the client, use the empty string as the value for the
className attribute.

v To change an existing plug-in, specify a new value for the className
attribute.

v You can also add any plug-in supported for a client override:
TRANSACTION_CALLBACK, OBJECTGRID_EVENT_LISTENER, EVICTOR,
MAP_EVENT_LISTENER.

4. Create a client with the newly created client-override XML file.

The following ObjectGrid XML file can be used to specify some of the attributes
and plug-ins on the CompanyGrid client.
companyGridClientSide.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

<bean id="TransactionCallback"
className="com.company.MyClientTxCallback" />

<bean id="ObjectGridEventListener" className="" />
<backingMap name="Customer" numberOfBuckets="1429"

pluginCollectionRef="customerPlugins" />
<backingMap name="Item" />
<backingMap name="OrderLine" numberOfBuckets="701"

timeToLive="800" ttlEvictorType="LAST_ACCESS_TIME" />
<backingMap name="Order" lockStrategy="PESSIMISTIC"

pluginCollectionRef="orderPlugins" />
</objectGrid>

</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">

<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor" />

<bean id="MapEventListener" className="" />
</backingMapPluginCollection>
<backingMapPluginCollection id="orderPlugins">

<bean id="MapIndexPlugin"
className="com.company.MyMapIndexPlugin" />

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

v The TransactionCallback on the client is com.company.MyClientTxCallback
instead of the server-side setting of com.company.MyTxCallback.

v The client does not have an ObjectGridEventListener plug-in because the
className value is the empty string.

v The client sets the numberOfBuckets to 1429 for the Customer backingMap,
retains its Evictor plug-in, and removes the MapEventListener plug-in.

v The numberOfBuckets and timeToLive attributes of the OrderLine backingMap
have changed

v Although a different lockStrategy attribute is specified, there is no effect because
the lockStrategy attribute is not supported for a client override.

To create the CompanyGrid client using the companyGridClientSide.xml file, pass
the ObjectGrid XML file as a URL to one of the connect methods on the
ObjectGridManager.
Creating the client for XML
ObjectGridManager ogManager =
ObjectGridManagerFactory.ObjectGridManager();

Chapter 7. Configuring the deployment environment 249

ClientClusterContext clientClusterContext =
ogManager.connect("MyServer1.company.com:2809", null, new URL(

"file:xml/companyGridClientSide.xml"));

Configure the client programmatically

You can also override client-side ObjectGrid settings programmatically. Create an
ObjectGridConfiguration object that is similar in structure to the server-side
ObjectGrid instance. The following code creates a client-side ObjectGrid instance
that is functionally equivalent to the client override in the previous section which
uses an XML file.
client-side override programmatically
ObjectGridConfiguration companyGridConfig = ObjectGridConfigFactory

.createObjectGridConfiguration("CompanyGrid");
Plugin txCallbackPlugin = ObjectGridConfigFactory.createPlugin(

PluginType.TRANSACTION_CALLBACK, "com.company.MyClientTxCallback");
companyGridConfig.addPlugin(txCallbackPlugin);

Plugin ogEventListenerPlugin = ObjectGridConfigFactory.createPlugin(
PluginType.OBJECTGRID_EVENT_LISTENER, "");

companyGridConfig.addPlugin(ogEventListenerPlugin);

BackingMapConfiguration customerMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("Customer");

customerMapConfig.setNumberOfBuckets(1429);
Plugin evictorPlugin = ObjectGridConfigFactory.createPlugin(PluginType.EVICTOR,

"com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor");
customerMapConfig.addPlugin(evictorPlugin);

companyGridConfig.addBackingMapConfiguration(customerMapConfig);

BackingMapConfiguration orderLineMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("OrderLine");

orderLineMapConfig.setNumberOfBuckets(701);
orderLineMapConfig.setTimeToLive(800);
orderLineMapConfig.setTtlEvictorType(TTLType.LAST_ACCESS_TIME);

companyGridConfig.addBackingMapConfiguration(orderLineMapConfig);

List ogConfigs = new ArrayList();
ogConfigs.add(companyGridConfig);

Map overrideMap = new HashMap();
overrideMap.put(CatalogServerProperties.DEFAULT_DOMAIN, ogConfigs);

ogManager.setOverrideObjectGridConfigurations(overrideMap);
ClientClusterContext client = ogManager.connect(catalogServerAddresses, null, null);
ObjectGrid companyGrid = ogManager.getObjectGrid(client, objectGridName);

The ogManager instance of the ObjectGridManager interface checks for overrides
only in the ObjectGridConfiguration and BackingMapConfiguration objects that
you include in the overrideMap Map. For instance, the previous code overrides the
number of buckets on the OrderLine Map. However, the Order map remains
unchanged on the client side because no configuration for that map is included.

Configure the client in the Spring Framework

Client-side ObjectGrid settings can also be overridden using the Spring
Framework. The following example XML file shows how to build an
ObjectGridConfiguration element, and use it to override some client side settings.
This example calls the same APIs that are demonstrated in the programmatic
configuration. The example is also functionally equivalent to the example in the
ObjectGrid XML configuration.
client configuration with Spring
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="companyGrid" factory-bean="manager" factory-method="getObjectGrid"

250 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

singleton="true">
<constructor-arg type="com.ibm.websphere.objectgrid.ClientClusterContext">
<ref bean="client" />

</constructor-arg>
<constructor-arg type="java.lang.String" value="CompanyGrid" />

</bean>

<bean id="manager" class="com.ibm.websphere.objectgrid.ObjectGridManagerFactory"
factory-method="getObjectGridManager" singleton="true">
<property name="overrideObjectGridConfigurations">
<map>
<entry key="DefaultDomain">
<list>
<ref bean="ogConfig" />

</list>
</entry>

</map>
</property>

</bean>

<bean id="ogConfig"
class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createObjectGridConfiguration">
<constructor-arg type="java.lang.String">
<value>CompanyGrid</value>

</constructor-arg>
<property name="plugins">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="TRANSACTION_CALLBACK" />

<constructor-arg type="java.lang.String"
value="com.company.MyClientTxCallback" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="OBJECTGRID_EVENT_LISTENER" />

<constructor-arg type="java.lang.String" value="" />
</bean>

</list>
</property>

<property name="backingMapConfigurations">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">
<constructor-arg type="java.lang.String" value="Customer" />
<property name="plugins">

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"

value="EVICTOR" />
<constructor-arg type="java.lang.String"

value="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />
</bean>

</property>
<property name="numberOfBuckets" value="1429" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">
<constructor-arg type="java.lang.String" value="OrderLine" />
<property name="numberOfBuckets" value="701" />

<property name="timeToLive" value="800" />
<property name="ttlEvictorType">

<value type="com.ibm.websphere.objectgrid.
TTLType">LAST_ACCESS_TIME</value>

</property>
</bean>

</list>
</property>

</bean>

<bean id="client" factory-bean="manager" factory-method="connect"
singleton="true">
<constructor-arg type="java.lang.String">

<value>localhost:2809</value>
</constructor-arg>

<constructor-arg
type="com.ibm.websphere.objectgrid.security.

Chapter 7. Configuring the deployment environment 251

config.ClientSecurityConfiguration">
<null />

</constructor-arg>
<constructor-arg type="java.net.URL">
<null />

</constructor-arg>
</bean>

</beans>

After creating the XML file, load the file and build the ObjectGrid with the
following code snippet.

BeanFactory beanFactory = new XmlBeanFactory(new

UrlResource("file:test/companyGridSpring.xml"));

ObjectGrid companyGrid = (ObjectGrid) beanFactory.getBean("companyGrid");

Read about the Spring framework integration overview for more information on
creating an XML descriptor file.

Disable the client near cache

The near cache is enabled by default when locking is configured as optimistic or
none. Clients do not maintain a near cache when the locking setting is configured
as pessimistic. To disable the near cache, you must set the numberOfBuckets
attribute to 0 in the client override ObjectGrid descriptor file.

Enabling the client invalidation mechanism
In a distributed WebSphere eXtreme Scale environment, the client side has a near
cache by default when using the optimistic locking strategy or when locking is
disabled. The near cache has its own local cached data. If an eXtreme Scale client
commits an update, the update goes to the client near cache and server. However,
other eXtreme Scale clients do not receive the update information and might have
data that is out of date.

Near cache

Applications must be aware of this stale data issue in eXtreme Scale client. You can
use the built-in Java Message Service (JMS)-based ObjectGridEventListener
com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener class to
enable the client invalidation mechanism within a distributed eXtreme Scale
environment.

The client invalidation mechanism is the solution for the issue of stale data in
client near cache in distributed eXtreme Scale environment. This mechanism
ensures that the client near cache is synchronized with servers or other clients.
However, even with this JMS-based client invalidation mechanism, the client near
cache does not immediately update. A delay occurs when the eXtreme Scale
runtime publishes updates.

Two models are available for the client invalidation mechanism in a distributed
eXtreme Scale environment:
v Client-server model: In this model, all server processes are in a publisher role

that publishes all the transaction changes to the designated JMS destination. All
client processes are in receiver roles and receive all transactional changes from
the designated JMS destination.

252 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Client as dual roles model: In this model, all server processes have nothing to do
with the JMS destination. All client processes are both JMS publisher and
receiver roles. Transactional changes that occur on the client are published to the
JMS destination and all the clients receive these transactional changes.

For more information, read about the “JMS event listener” on page 150.

Client-server model

In a client-server model, the servers are in a JMS publisher role and the client is in
JMS receiver role.

client-server model XML example
<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="AgentObjectGrid">
<bean id="ObjectGridEventListener"
className="com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener">
<property name="invalidationModel" type="java.lang.String" value="CLIENT_SERVER_MODEL" description="" />
<property name="invalidationStrategy" type="java.lang.String" value="PUSH" description="" />
<property name="mapsToPublish" type="java.lang.String" value="agent;profile;pessimisticMap" description="" />
<property name="jms_topicConnectionFactoryJndiName" type="java.lang.String" value="defaultTCF" description="" />
<property name="jms_topicJndiName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_topicName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_userid" type="java.lang.String" value="" description="" />
<property name="jms_password" type="java.lang.String" value="" description="" />
<property name="jndi_properties" type="java.lang.String"
value="java.naming.factory.initial=org.apache.activemq.jndi.ActiveMQInitialContextFactory;

java.naming.provider.url=
tcp://localhost:61616;connectionFactoryNames=defaultTCF;topic.defaultTopic=defaultTopic"

description="jndi properties" />
</bean>

<backingMap name="agent" readOnly="false" pluginCollectionRef="agent" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="28800" />

<backingMap name="profile" readOnly="false" pluginCollectionRef="profile" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="pessimisticMap" readOnly="false" pluginCollectionRef="pessimisticMap" preloadMode="false"
lockStrategy="PESSIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="excludedMap1" readOnly="false" pluginCollectionRef="excludedMap1" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="excludedMap2" readOnly="false" pluginCollectionRef="excludedMap2" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="agent">
<bean id="ObjectTransformer" className="com.ibm.ws.objectgrid.test.scenario.AgentObjectTransformer" />

</backingMapPluginCollection>
<backingMapPluginCollection id="profile">
<bean id="ObjectTransformer" className="com.ibm.ws.objectgrid.test.scenario.ProfileObjectTransformer" />
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">
<property name="maxSize" type="int" value="2000" description="set max size for LRU evictor" />
<property name="sleepTime" type="int" value="15" description="evictor thread sleep time" />
<property name="numberOfLRUQueues" type="int" value="50" description="set number of LRU queues" />

</bean>
</backingMapPluginCollection>

<backingMapPluginCollection id="pessimisticMap" />
<backingMapPluginCollection id="excludedMap1" />
<backingMapPluginCollection id="excludedMap2" />

</backingMapPluginCollections>

</objectGridConfig>

Client as dual roles model

In client as dual roles model, each client has both JMS publisher and receiver roles.
The client publishes every committed transactional change to a designated JMS

Chapter 7. Configuring the deployment environment 253

destination and receives all the committed transactional changes from other clients.
The server has nothing to do with JMS in this model.

dual-roles model XML example
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="AgentObjectGrid">
<bean id="ObjectGridEventListener"
className="com.ibm.websphere.objectgrid.plugins.builtins.JMSObjectGridEventListener">
<property name="invalidationModel" type="java.lang.String" value="CLIENT_AS_DUAL_ROLES_MODEL" description="" />
<property name="invalidationStrategy" type="java.lang.String" value="PUSH" description="" />
<property name="mapsToPublish" type="java.lang.String" value="agent;profile;pessimisticMap" description="" />
<property name="jms_topicConnectionFactoryJndiName" type="java.lang.String" value="defaultTCF" description="" />
<property name="jms_topicJndiName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_topicName" type="java.lang.String" value="defaultTopic" description="" />
<property name="jms_userid" type="java.lang.String" value="" description="" />
<property name="jms_password" type="java.lang.String" value="" description="" />
<property name="jndi_properties" type="java.lang.String"
value="java.naming.factory.initial=org.apache.activemq.jndi.ActiveMQInitialContextFactory;java.naming.provider.url=

tcp://localhost:61616;connectionFactoryNames=defaultTCF;topic.defaultTopic=defaultTopic"
description="jndi properties" />

</bean>

<backingMap name="agent" readOnly="false" pluginCollectionRef="agent" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="28800" />

<backingMap name="profile" readOnly="false" pluginCollectionRef="profile" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="pessimisticMap" readOnly="false" pluginCollectionRef="pessimisticMap" preloadMode="false"
lockStrategy="PESSIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="excludedMap1" readOnly="false" pluginCollectionRef="excludedMap1" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

<backingMap name="excludedMap2" readOnly="false" pluginCollectionRef="excludedMap2" preloadMode="false"
lockStrategy="OPTIMISTIC" copyMode="COPY_ON_READ_AND_COMMIT" ttlEvictorType="LAST_ACCESS_TIME"
timeToLive="2700" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="agent">
<bean id="ObjectTransformer" className="com.ibm.ws.objectgrid.test.scenario.AgentObjectTransformer" />

</backingMapPluginCollection>
<backingMapPluginCollection id="profile">
<bean id="ObjectTransformer" className="com.ibm.ws.objectgrid.test.scenario.ProfileObjectTransformer" />
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">
<property name="maxSize" type="int" value="2000" description="set max size for LRU evictor" />
<property name="sleepTime" type="int" value="15" description="evictor thread sleep time" />
<property name="numberOfLRUQueues" type="int" value="50" description="set number of LRU queues" />

</bean>
</backingMapPluginCollection>

<backingMapPluginCollection id="pessimisticMap" />
<backingMapPluginCollection id="excludedMap1" />
<backingMapPluginCollection id="excludedMap2" />

</backingMapPluginCollections>

</objectGridConfig>

Configuring request retry timeout values
With reliable maps, you can supply a retry timeout value in milliseconds to
WebSphere eXtreme Scale for transaction requests.

About this task

You can configure the timeout value on the client properties file or in a session.
The session value overrides the client properties setting. If the value is set to
greater than zero, the request is tried until either the timeout condition is met or a
permanent failure occurs. A permanent failure might be a DuplicateKeyException
exception. A value of zero indicates the fail-fast mode setting and eXtreme Scale
does not attempt to try the transaction again after any type of transaction.

During run time, the transaction timeout value is used with the retry timeout
value, ensuring that the retry timeout does not exceed the transaction timeout.

254 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Two types of transactions exist: Autocommit transactions, and transactions that use
explicit begin and commit methods. The valid exceptions for retry differ between
these two types of transactions:
v For transactions that are called within a session, transactions are tried again for

CORBA SystemException and eXtreme Scale TargetNotAvailable exceptions.
v For autocommit transactions, the transactions are tried again for CORBA

SystemException and eXtreme Scale auvailability exceptions. These exceptions
include the ReplicationVotedToRollbackTransactionException,
TargetNotAvailable, and AvailabilityException exceptions. For more information
about autocommit transactions, see the topic on using sessions to access data in
the grid in the Programming Guide.

Application or other permanent failures return immediately and the client does not
try the transaction again. These permanent failures include the
DuplicateKeyException and KeyNotFoundException exceptions. Use the fail-fast
setting to return all exceptions without trying transactions again after any
exceptions.

Exceptions where the client tries the transaction again:

v ReplicationVotedToRollbackTransactionException (only on autocommit)
v TargetNotAvailable
v org.omg.CORBA.SystemException
v AvailabilityException (only on autocommit)
v LockTimeoutException (only on autocommit)
v UnavailableServiceException (only on autocommit)

Permanent exceptions, where the transaction is not tried again:

v DuplicateKeyException
v KeyNotFoundException
v LoaderException
v TransactionAffinityException
v LockDeadlockException
v OptimisticCollisionException

Procedure
v Set the timeout value in a client property file.

To set the requestRetryTimeout value on a client, add or modify the
requestRetryTimeout property in the “Client properties file” on page 245. The
client properties is the objectGridClient.properties file by default. The
requestRetryTimeout property is set in milliseconds. Set the value greater than
zero for the request to be retried on exceptions for which retry is available. Set
the value to 0 to fail without retries on exceptions. To use the default behavior,
remove the property or set the value to -1. An example of the value in the
objectGridClient.properties file follows:
requestRetryTimeout = 30000

The requestRetryTimeout value is specified in milliseconds. In the example, if
the value is used on an ObjectGrid instance, the requestRetryTimeout value is 30
seconds.

v Set the timeout value programmatically.
To set the client properties programmatically, first create a client properties file
in an appropriate <location> for your application. In the following example, the

Chapter 7. Configuring the deployment environment 255

client properties file refers to the objectGridClient.properties snippet in the
previous section. After you connect to ObjectGridManager instance, set the client
properties as described. Then, when you have an ObjectGrid instance, the
instance has the client properties you defined in the file. If you change the client
properties file, you must explicitly get a new ObjectGrid instance each time.
ObjectGridManager manager = ObjectGridManagerFactory.getObjectGridManager();
String objectGridName = “testObjectGrid”;
URL clientXML = null;
ClientClusterContext ccc = manager.connect("localhost:2809", null, clientXML);
File file = new File("<location>/objectGridClient.properties");
URL url = file.toURI().toURL();
ccc.setClientProperties(objectGridName, url);
ObjectGrid objectGrid = ogManager.getObjectGrid(ccc, objectGridName);

v Set the override file during a session commit.
To set the request retry timeout on a session or to override the
requestRetryTimeout client property, call the setRequestRetryTimeout(long)
method on the Session interface.
Session sessionA = objectGrid.getSession();
sessionA.setRequestRetryTimeout(30000);
ObjectMap mapA = sessionA.getMap("payroll");
String key = "key:" + j;
mapA.insert(key, "valueA");

This session now uses a requestRetryTimeout value of 30000 milliseconds or 30
seconds, regardless of the value that is set in the client properties file. For more
information on the session interface, see Using Sessions to access data in the
data grid.

Configuring entities
A data grid can have any number of logical entity schemas. Entities are defined
using annotated Java classes, XML, or a combination of both XML and Java classes.
Defined entities are then registered with an eXtreme Scale server and are bound to
BackingMaps, indexes and other plug-ins.

Before you begin

An entity schema is a set of entities and the relationships between the entities.
Read about Defining an entity schema for details about schema definition and
entity configuration.

Relationship management
Object-oriented languages such as Java, and relational databases support
relationships or associations. Relationships decrease the amount of storage through
the use of object references or foreign keys.

When you are using relationships in a data grid, the data must be organized in a
constrained tree. One root type must exist in the tree and all children must be
associated to only one root. For example: Department can have many Employees
and an Employee can have many Projects. But a Project cannot have many
Employees that belong to different departments. Once a root is defined, all access
to that root object and its descendants are managed through the root. WebSphere
eXtreme Scale uses the hash code of the root object's key to choose a partition. For
example:
partition = (hashCode MOD numPartitions).

When all of the data for a relationship is tied to a single object instance, the entire
tree can be collocated in a single partition and can be accessed very efficiently

256 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

using one transaction. If the data spans multiple relationships, then multiple
partitions must be involved which involves additional remote calls, which can lead
to performance bottlenecks.

Reference data

Some relationships include look-up or reference data such as: CountryName. With
look-up or reference data, the data should exist in every partition. The data can be
accessed by any root key and the same result is returned. Reference data such as
this should only be used in cases where the data is fairly static. Updating this data
can be expensive because the data needs to be updated in every partition. The
DataGrid API is a common technique to keeping reference data up-to-date.

Costs and benefits of normalization

Normalizing the data using relationships can help reduce the amount of memory
used by the data grid since duplication of data is decreased. However, in general,
the more relational data that is added, the less it will scale out. When data is
grouped together, it becomes more expensive to maintain the relationships and to
keep the sizes manageable. Since the grid partitions data based on the key of the
root of the tree, the size of the tree isn't taken into account. Therefore, if you have
a lot of relationships for one tree instance, the data grid may become unbalanced,
causing one partition to hold more data than the others.

When the data is denormalized or flattened, the data that would normally be
shared between two objects is instead duplicated and each table can be partitioned
independently, providing a much more balanced data grid. Although this increases
the amount of memory used, it allows the application to scale since a single row of
data can be accessed that has all of the necessary data. This is ideal for read-mostly
grids since maintaining the data becomes more expensive.

For more information, see Classifying XTP systems and scaling.

Managing relationships using the data access APIs

The ObjectMap API is the fastest, most flexible and granular of the data access
APIs, providing a transactional, session-based approach at accessing data in the
grid of maps. The ObjectMap API allows clients to use common CRUD (create,
read, update and delete) operations to manage key-value pairs of objects in the
distributed data grid.

When using the ObjectMap API, object relationships must be expressed by
embedding the foreign key for all relationships in the parent object.

An example follows.
public class Department {
Collection<String> employeeIds;
}

The EntityManager API simplifies relationship management by extracting the
persistent data from the objects including the foreign keys. When the object is later
retrieved from the data grid, the relationship graph is rebuilt, as in the following
example.
@Entity
public class Department {
Collection<String> employees;
}

Chapter 7. Configuring the deployment environment 257

http://www.devwebsphere.com/devwebsphere/2009/03/classifying-xtp-systems.html

The EntityManager API is very similar to other Java object persistence technologies
such as JPA and Hibernate in that it synchronizes a graph of managed Java object
instances with the persistent store. In this case, the persistent store is an eXtreme
Scale data grid, where each entity is represented as a map and the map contains
the entity data rather than the object instances.

Entity metadata descriptor XML file
The entity metadata descriptor file is an XML file that is used to define an entity
schema for WebSphere eXtreme Scale. Define all of the entity metadata in the XML
file, or define the entity metadata as annotations on the entity Java class file. The
primary use is for entities that cannot use Java annotations.

Use XML configuration to create entity metadata that is based on the XML file.
When used in conjunction with annotation, some of the attributes that are defined
in the XML configuration override the corresponding annotations. If you can
override an element, the override is explicitly in the following sections. See
“emd.xsd file” on page 263 for an example of the entity metadata descriptor XML
file.

id element

The id element implies that the attribute is a key. At a minimum, at least one id
element must be specified. You can specify multiple id keys for use as a compound
key.

Attributes

name
Specifies the name of the attribute. The attribute must exist in the Java file.

alias
Specifies the element alias. The alias value is overridden if used in conjunction
with an annotated entity.

basic element

The basic element implies that the attribute is a primitive type or wrappers to
primitive types:
v java.lang.String
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.util.Calendar
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp
v byte[]
v Byte[]
v char[]
v Character[]
v Java Platform, Standard Edition Version 5 enum

258 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

It is not necessary to specify any attribute as basic. The basic element attributes are
automatically configured using reflection.

Attributes

name
Specifies the name of the attribute in the class.

alias
Specifies the element alias. The alias value is overridden if used in conjunction
with an annotated entity.

fetch
Specifies the fetch type. Valid values include: LAZY or EAGER.

id-class element

The id_class element specifies a compound key class, which helps to find entities
with compound keys.

Attributes

class-name
Specifies the class name, which is an id-class, to use with the id-class element.

transient element

The transient element implies that it is ignored and not processed. It also can be
overridden if used in conjunction with annotated entities.

Attributes

name
Specifies the name of the attribute, which is ignored.

version element

Attributes

name
Specifies the name of the attribute, which is ignored.

cascade-type element

Child elements

v cascade-all: Cascades the all operation to associations.
v cascade-persist: Cascades the persist operation to associations.
v cascade-remove: Cascades the remove operation to associations.
v cascade-merge: Currently not used.
v cascade-refresh: Currently not used.

one-to-one element

Attributes

name
Specifies the name of the class, which has a one-to-one relationship.

Chapter 7. Configuring the deployment environment 259

alias
Specifies a name alias.

target-entity
Specifies the association class. This value is a fully-qualified class name.

fetch
Specifies the fetch type. Valid values include: LAZY or EAGER.

mapped-by
Specifies the field that owns the relationship. The mapped-by element is only
specified on the inverse (non-owning) side of the association.

id Identifies the association as key.

Child elements

v cascade: “cascade-type element” on page 259

one-to-many element

Attributes

name
Specifies the name of the attribute in the class.

alias
Specifies a name alias.

target-entity
Specifies the association class. This value is a fully-qualified class name.

fetch
Specifies the fetch type. Valid values include: LAZY or EAGER.

mapped-by
Specifies the field that owns the relationship. The mapped-by element is only
specified on the inverse (non-owning) side of the association.

Child elements

v order-by

v cascade: “cascade-type element” on page 259

many-to-one element

Attributes

name
Specifies the name of the attribute in the class.

alias
Specifies a name alias.

target-entity
Specifies the class to which this attribute refers. This value is a fully-qualified
class name.

fetch
Specifies the fetch type. Valid values include: LAZY or EAGER.

id Identifies the association as a key.

Child elements

260 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v cascade: “cascade-type element” on page 259

many-to-many element

Attributes

name
Specifies the name of the attribute in the class.

alias
Specifies a name alias.

target-entity
Specifies the class to which this attribute refers. This value is a fully-qualified
class name.

fetch
Specifies the fetch type. Valid values include: LAZY or EAGER.

mapped-by
Specifies the filed that owns the relationship. The mapped-by element is only
specified on the inverse (non-owning) side of the association.

Child elements

v order-by

v cascade: “cascade-type element” on page 259

attributes element

Child elements

v “id element” on page 258
v “basic element” on page 258
v “version element” on page 259
v “many-to-one element” on page 260
v “one-to-many element” on page 260
v “one-to-one element” on page 259
v “many-to-many element”
v “transient element” on page 259

Entity element

Attributes

name(required)
Specifies the name of the attribute in the class.

class-name
Specifies the fully-qualified class name.

access
Specifies the access type. The valid values are PROPERTY or FIELD.

schemaRoot
Specifies that this entity is the schema root and is used as a parent class for
partitioned data.

Child elements

v description: Specifies a description.

Chapter 7. Configuring the deployment environment 261

v “id-class element” on page 259
v “attributes element” on page 261

entity-mappings element

Child elements

v description: Specifies a description.
v “Entity element” on page 261

entity-listener element

Attributes

class-name (required)
Specifies the name of the listener class.

Child elements

v “PrePersist element”
v “PostPersist element”
v “PreRemove element”
v “PreUpdate element”
v “PostUpdate element”
v “PostLoad element” on page 263

PrePersist element

Attributes

method-name (required)
Specifies the lifecycle callback method for the PrePersist event.

PostPersist element

Attributes

method-name (required)
Specifies the lifecycle callback method for the PostPersist event.

PreRemove element

Attributes

method-name (required)
Specifies the lifecycle callback method for the PreRemove event.

PreUpdate element

Attributes

method-name (required)
Specifies the lifecycle callback method for the PreUpdate event.

PostUpdate element

Attributes

262 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

method-name (required)
Specifies the lifecycle callback method for the PostUpdate event.

PostLoad element

Attributes

method-name (required)
Specifies the lifecycle callback method for the PostLoad event.

emd.xsd file
Use the entity metadata XML schema definition to create a descriptor XML file and
define an entity schema for WebSphere eXtreme Scale.

See the “Entity metadata descriptor XML file” on page 258 for the descriptions of
each element and attribute of the emd.xsd file.

emd.xsd file
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:emd="http://ibm.com/ws/projector/config/emd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ibm.com/ws/projector/config/emd"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">

<!-- ** -->
<xsd:element name="entity-mappings">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0" />
<xsd:element name="entity" type="emd:entity" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>
<xsd:unique name="uniqueEntityClassName">

<xsd:selector xpath="emd:entity" />
<xsd:field xpath="@class-name" />

</xsd:unique>
</xsd:element>

<!-- ** -->
<xsd:complexType name="entity">

<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0" />
<xsd:element name="id-class" type="emd:id-class" minOccurs="0" />
<xsd:element name="attributes" type="emd:attributes" minOccurs="0" />
<xsd:element name="entity-listeners" type="emd:entity-listeners" minOccurs="0" />
<xsd:element name="pre-persist" type="emd:pre-persist" minOccurs="0" />
<xsd:element name="post-persist" type="emd:post-persist" minOccurs="0" />
<xsd:element name="pre-remove" type="emd:pre-remove" minOccurs="0" />
<xsd:element name="post-remove" type="emd:post-remove" minOccurs="0" />
<xsd:element name="pre-invalidate" type="emd:pre-invalidate" minOccurs="0" />
<xsd:element name="post-invalidate" type="emd:post-invalidate" minOccurs="0" />
<xsd:element name="pre-update" type="emd:pre-update" minOccurs="0" />
<xsd:element name="post-update" type="emd:post-update" minOccurs="0" />
<xsd:element name="post-load" type="emd:post-load" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class-name" type="xsd:string" use="required" />
<xsd:attribute name="access" type="emd:access-type" />
<xsd:attribute name="schemaRoot" type="xsd:boolean" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="attributes">

<xsd:sequence>
<xsd:choice>

<xsd:element name="id" type="emd:id" minOccurs="0" maxOccurs="unbounded" />
</xsd:choice>
<xsd:element name="basic" type="emd:basic" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="version" type="emd:version" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="many-to-one" type="emd:many-to-one" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="one-to-many" type="emd:one-to-many" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="one-to-one" type="emd:one-to-one" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="many-to-many" type="emd:many-to-many" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="transient" type="emd:transient" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

<!-- ** -->

Chapter 7. Configuring the deployment environment 263

<xsd:simpleType name="access-type">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="PROPERTY" />
<xsd:enumeration value="FIELD" />

</xsd:restriction>
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="id-class">

<xsd:attribute name="class-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="id">

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="alias" type="xsd:string" use="optional" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="transient">

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="basic">

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />

</xsd:complexType>

<!-- ** -->
<xsd:simpleType name="fetch-type">

<xsd:restriction base="xsd:token">
<xsd:enumeration value="LAZY" />
<xsd:enumeration value="EAGER" />

</xsd:restriction>
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="many-to-one">

<xsd:sequence>
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="id" type="xsd:boolean" />

</xsd:complexType>
<!-- ** -->
<xsd:complexType name="one-to-one">

<xsd:sequence>
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />
<xsd:attribute name="id" type="xsd:boolean" />

</xsd:complexType>
<!-- ** -->
<xsd:complexType name="one-to-many">

<xsd:sequence>
<xsd:element name="order-by" type="emd:order-by" minOccurs="0" />
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="many-to-many">

<xsd:sequence>
<xsd:element name="order-by" type="emd:order-by" minOccurs="0" />
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />

</xsd:complexType>

<!-- ** -->
<xsd:simpleType name="order-by">

264 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<xsd:restriction base="xsd:string" />
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="cascade-type">

<xsd:sequence>
<xsd:element name="cascade-all" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-persist" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-remove" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-invalidate" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-merge" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-refresh" type="emd:emptyType" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="emptyType" />

<!-- ** -->
<xsd:complexType name="version">

<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />

</xsd:complexType>

<!-- ** -->

<xsd:complexType name="entity-listeners">
<xsd:sequence>

<xsd:element name="entity-listener" type="emd:entity-listener" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="entity-listener">

<xsd:sequence>
<xsd:element name="pre-persist" type="emd:pre-persist" minOccurs="0" />
<xsd:element name="post-persist" type="emd:post-persist" minOccurs="0" />
<xsd:element name="pre-remove" type="emd:pre-remove" minOccurs="0" />
<xsd:element name="post-remove" type="emd:post-remove" minOccurs="0" />
<xsd:element name="pre-invalidate" type="emd:pre-invalidate" minOccurs="0" />
<xsd:element name="post-invalidate" type="emd:post-invalidate" minOccurs="0" />
<xsd:element name="pre-update" type="emd:pre-update" minOccurs="0" />
<xsd:element name="post-update" type="emd:post-update" minOccurs="0" />
<xsd:element name="post-load" type="emd:post-load" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="class-name" type="xsd:string" use="required" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-persist">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-persist">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-remove">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-remove">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-invalidate">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-invalidate">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-update">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-update">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-load">

Chapter 7. Configuring the deployment environment 265

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:schema>

Configuring cache integration
WebSphere eXtreme Scale can integrate with other caching-related products. You
can use a Java Persistence API (JPA) between WebSphere eXtreme Scale and the
database to integrate changes as a loader. You can also use the WebSphere eXtreme
Scale dynamic cache provider to plug WebSphere eXtreme Scale into the dynamic
cache component in WebSphere Application Server. Another extension to
WebSphere Application Server is the WebSphere eXtreme Scale HTTP session
manager, which can help to cache HTTP sessions.

Configuring JPA loaders
A Java Persistence API (JPA) Loader is a plug-in implementation that uses JPA to
interact with the database.

Before you begin
v You must have a JPA implementation, such as Hibernate or OpenJPA.
v Your database can be any back end that is supported by the chosen JPA

provider.
v You can use the JPALoader plug-in when you are storing data using the

ObjectMap API. Use the JPAEntityLoader plug-in when you are storing data
using the EntityManager API.

About this task

For more information about how the Java Persistence API (JPA) Loader works, see
the information in the Product Overview.

Procedure
1. Configure the necessary parameters that JPA requires to interact with a

database.
The following parameters are required. These parameters are configured in the
JPALoader or JPAEntityLoader bean, and JPATxCallback bean.
v persistenceUnitName: Specifies the persistence unit name. This parameter is

required for two purposes: for creating a JPA EntityManagerFactory, and for
locating the JPA entity metadata in the persistence.xml file. This attribute is
set on the JPATxCallback bean.

v JPAPropertyFactory: Specifies the factory to create a persistence property
map to override the default persistence properties. This attribute is set on the
JPATxCallback bean. To set this attribute, Spring style configuration is
required.

v entityClassName: Specifies the entity class name that is required to use JPA
methods, such as EntityManager.persist, EntityManager.find, and so on. The
JPALoader requires this parameter, but the parameter is optional for
JPAEntityLoader. In the case of JPAEntityLoader, if an entityClassName
parameter is not configured, the entity class configured in the ObjectGrid
entity map is used. You must use the same class for the eXtreme Scale
EntityManager and for the JPA provider. This attribute is set on the
JPALoader or JPAEntityLoader bean.

v preloadPartition: Specifies the partition at which the map preload is started.
If the preload partition is less than zero, or greater than the total number of

266 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

partitions minus 1, the map preload is not started. The default value is -1,
which means the preload does not start by default. This attribute is set on
the JPALoader or JPAEntityLoader bean.

Other than the four JPA parameters to be configured in eXtreme Scale, JPA
meta-data are used to retrieve the key from the JPA entities. The JPA metadata
can be configured as annotation, or as an orm.xml file specified in the
persistence.xml file. It is not part of the eXtreme Scale configuration.

2. Configure XML files for the JPA configuration.
To configure a JPALoader or JPAEntityLoader, see the information about loader
plug-ins in the Programming Guide.
Configure a JPATxCallback transaction callback along with the loader
configuration. The following example is an ObjectGrid XML descriptor file
(objectgrid.xml), that has a JPAEntityLoader and JPATxCallback configured:
configuring a loader including callback - XML example
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="JPAEM" entityMetadataXMLFile="jpaEMD.xml">

<bean id="TransactionCallback"
className="com.ibm.websphere.objectgrid.jpa.JPATxCallback">
<property

name="persistenceUnitName"
type="java.lang.String"
value="employeeEMPU" />

</bean>
<backingMap name="Employee" pluginCollectionRef="Employee" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="Employee">

<bean id="Loader"
className="com.ibm.websphere.objectgrid.jpa.JPAEntityLoader">

<property
name="entityClassName"
type="java.lang.String"
value="com.ibm.ws.objectgrid.jpa.test.entity.Employee"/>

</bean>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

If you want to configure a JPAPropertyFactory, you have to use a Spring style
configuration. The following is an XML configuration file sample,
JPAEM_spring.xml, which configures a Spring bean to be used for eXtreme Scale
configurations.
configuring a loader including JPA property factory - XML example
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<objectgrid:JPAEntityLoader id="jpaLoader"
entityClassName="com.ibm.ws.objectgrid.jpa.test.entity.Employee"/>
<objectgrid:JPATxCallback id="jpaTxCallback" persistenceUnitName="employeeEMPU" />

</beans>

Chapter 7. Configuring the deployment environment 267

The Objectgrid.xml configuration XML file follows. Notice the ObjectGrid
name is JPAEM, which matches the ObjectGrid name in the JPAEM_spring.xml
Spring configuration file.
JPAEM loader configuration - XML example
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="JPAEM" entityMetadataXMLFile="jpaEMD.xml">
<bean id="TransactionCallback"

className="{spring}jpaTxCallback"/>
<backingMap name="Employee" pluginCollectionRef="Employee"

writeBehind="T4"/>
</objectGrid>

</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="Employee">

<bean id="Loader" className="{spring}jpaLoader" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

An entity can be annotated with both the JPA annotations and eXtreme Scale
entity manager annotations. Each annotation has an XML equivalent that can
be used. Thus, eXtreme Scale added the Spring namespace. You can also
configure these using the Spring namespace support.

Configuring a JPA time-based data updater
You can configure a time-based database update using XML for a local or
distributed eXtreme Scale configuration. You can also configure a local
configuration programmatically.

About this task

For more information about how the Java Persistence API (JPA) time-based data
updater works, see the information in the Programming Guide.

Procedure

Create a timeBasedDBUpdate configuration.
v With an XML file:

The following example shows an objectgrid.xml file that contains a
timeBasedDBUpdate configuration:
JPA time-based updater - XML example
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="changeOG"

entityMetadataXMLFile="userEMD.xml">
<backingMap name="user" >

<timeBasedDBUpdate timestampField="rowChgTs"
persistenceUnitName="userderby"
entityClass="com.test.UserClass"
mode="INVALIDATE_ONLY"

/>
</backingMap>

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

</objectGridConfig>

In this example, the map "user" is configured with time-based database update.
The database update mode is INVALIDATE_ONLY, and the timestamp field is
rowChgTs.

268 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

When the distributed ObjectGrid "changeOG" is started in the container server, a
time-based database update thread is automatically started in partition 0.

v Programmatically:

If you create a local ObjectGrid, you can also create a
TimeBasedDBUpdateConfig object and set it on the BackingMap instance:
public void setTimeBasedDBUpdateConfig(TimeBasedDBUpdateConfig dbUpdateConfig);

For more information about setting an object on the BackingMap instance, see
the information about the BackingMap interface in the API documentation.
Alternatively, you can annotate the timestamp field in the entity class using the
com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp annotation.
By configuring the value in the class, you do not have to configure the
timestampField in the XML configuration.

What to do next

Start the JPA time-based data updater. See the information about starting the JPA
time-based data updater in the Programming Guide for more information.

JPA cache configuration properties
WebSphere eXtreme Scale includes level 2 cache plug-ins for both OpenJPA and
Hibernate Java Persistence API (JPA) providers.

You can configure the JPA cache plug-in with the following properties, all of which
are optional.

ObjectGridName
Specifies the unique ObjectGrid name. The default value is the defined
persistence unit name. If the persistence unit name is not available from
the JPA provider, a generated name is used.

ObjectGridType
Specifies the type of ObjectGrid.

Valid values:

v EMBEDDED: The default and recommended configuration type. Its
default settings include: NumberOfPartitions=1, ReplicaMode=SYNC,
ReplicaReadEnabled=true and MaxNumberOfReplicas=47. Use the
ReplicaMode parameter to set the replication mode and the
MaxNumberOfReplicas parameter to set the maximum number of replicas.
If a system has more than 47 Java virtual machines, set the
MaxNumberOfReplicas value to be equal to the number of Java virtual
machines.

v EMBEDDED_PARTITION: The type to use when the system needs to
cache a large amount of data in a distributed system. The default
number of partitions is 47 with a replica mode of NONE. In a small system
that has only a few Java virtual machines, set the NumberOfPartitions
value to be equal or less than the number of Java virtual machines. You
can specify the ReplicaMode, NumberOfPartitions, and
ReplicaReadEnabled values to tune the system.

v REMOTE: The cache tries to connect to a remote, distributed ObjectGrid
from the catalog service.

NumberOfPartitions

Chapter 7. Configuring the deployment environment 269

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp

Valid values: greater than or equal to 1Specifies the number of partitions
to be used for the cache. This property applies when the ObjectGridType
value is set to EMBEDDED_PARTITION. The default value is 47. For the
EMBEDDED type, the NumberOfPartitions value is always 1.

ReplicaMode

Valid values: SYNC/ASYNC/NONESpecifies the method that is used to copy
the cache to the replicas. This property applies when you have the
ObjectGridType value set to EMBEDDED or EMBEDDED_PARTITION. The default
value is NONE for the EMBEDDED_PARTITION type and SYNC for the EMBEDDED
type. If the ReplicaMode value is set to NONE for the EMBEDDED
ObjectGridType, the EMBEDDED type still uses a ReplicaMode of SYNC.

ReplicaReadEnabled

Valid values: TRUE or FALSEWhen enabled, clients read from replicas. This
property applies to the EMBEDDED_PARTITION type. The default value is
FALSE for the EMBEDDED_PARTITION type. The EMBEDDED type always sets the
ReplicaReadEnabled value to TRUE.

MaxUsedMemory

Valid values: TRUE or FALSEEnables eviction of cache entries when memory
becomes constrained. The default value is TRUE and evicts data when the
JVM heap utilization threshold exceeds 70 percent. You can modify the
default JVM heap utilization threshold percentage by setting the
memoryThresholdPercentage property in the objectGridServer.properties
file and placing this file in the class path. For more information about
evictors, see the information about evictors in the Product Overview. For
more information about the server properties file, see the Administration
Guide.

MaxNumberOfReplicas

Valid values: greater than or equal to 1Specifies the maximum number of
replicas to be use for the cache. This value only applies to the EMBEDDED
type. This number should be equal to or greater than the number of Java
virtual machines in a system. The default value is 47.

The NumberOfPartitions, ReplicaMode, ReplicaReadEnabled, and
MaxNumberOfReplicas properties are ObjectGrid deployment factors. The
NumberOfPartitions, ReplicaMode, and ReplicaReadEnabled apply to the
EMBEDDED_PARTITION type. Both ReplicaMode and MaxNumberOfReplicas
apply to the EMBEDDED type.

EMBEDDED and EMBEDDED_PARTITION considerations

The embedded ObjectGrid types use the configuration properties previously
described to configure and deploy a set of ObjectGrid container servers and a
catalog service when necessary. The life cycle of the containers is bound to the JPA
application and is collocated within the application class path. When an
application is started, the plug-in automatically detects or starts a catalog service,
starts a container, and connects to the catalog service. The plug-in then
communicates with the ObjectGrid container and its peers that are running in
other application server processes using the client connection.

Each JPA entity has an independent backing map assigned using the class name of
the entity. Each BackingMap has the following attributes.
v readOnly="false"

270 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v copyKey="false"

v lockStrategy="NONE"

v copyMode="NO_COPY"

Note: When you are using the EMBEDDED or EMBEDDED_PARTITION ObjectGridType
value in a Java SE environment, use the System.exit(0) method at the end of the
program to stop the embedded eXtreme Scale server. Otherwise, the program
seems to become unresponsive.

ObjectGridType value defaults

The ObjectGridType value specifies the topology in which the ObjectGrid cache is
deployed. The default and best performing type is EMBEDDED. The following
sections describe the default properties for each of the ObjectGridType values.

EMBEDDED ObjectGrid JPA cache topology defaults

When you are using the EMBEDDED ObjectGrid type, the following default property
values are used if you do not specify any values in the configuration:
v ObjectGridName: persistence unit name
v ObjectGridType: EMBEDDED
v NumberOfPartitions: 1 (cannot be changed when ObjectGrid type is EMBEDDED)
v ReplicaMode: SYNC
v ReplicaReadEnabled: TRUE (cannot be changed when ObjectGrid type is

EMBEDDED)
v MaxUsedMemory: TRUE
v MaxNumberOfReplicas: 47 (should be less than or equal to the number of Java

virtual machines in a distributed system)

You should specify a unique ObjectGridName value to avoid naming conflicts. The
MaxNumberOfReplicas value should be equal to or greater than the total number
of Java virtual machines in the system.

REMOTE ObjectGrid cache topology

The REMOTE ObjectGrid type does not require any property settings because the
ObjectGrid and deployment policy is defined separately from the JPA application.
The JPA cache plug-in remotely connects to an existing remote ObjectGrid.

Because all interaction with the ObjectGrid is remote, this topology has the slowest
performance among all ObjectGrid types.

Catalog service considerations and configuration

When you are running in an EMBEDDED or EMBEDDED_PARTITION topology, the JPA
cache plug-in automatically starts a single catalog service within one of the
application processes if needed. In a production environment, you should create a
catalog service domain. For more information about defining a catalog service, see
.the information about the high-availability catalog service in the Product Overview

If you are running inside a WebSphere Application Server process, the JPA cache
plug-in automatically connects to the catalog service or catalog service domain that

Chapter 7. Configuring the deployment environment 271

is defined for the WebSphere Application Server cell. For more information about
defining a catalog service domain, see the information about starting the catalog
service in the Administration Guide.

If you are not running your servers inside a WebSphere Application Server process,
the catalog service domain hosts and ports are specified using properties file
named objectGridServer.properties. This file must be stored in the class path of
the application and have the catalogServiceEndPoints property defined. The
catalog service grid is started independently from the application processes and
must be started before the application processes are started.

The format of the objectGridServer.properties file follows:
catalogServiceEndPoints=<hostname1>:<port1>,<hostname2>:<port2>

JPA cache plug-in
WebSphere eXtreme Scale includes level 2 (L2) cache plug-ins for both OpenJPA
and Hibernate Java Persistence API (JPA) providers.

Using eXtreme Scale as an L2 cache provider increases performance when you are
reading and querying data and reduces load to the database. WebSphere eXtreme
Scale has advantages over built-in cache implementations because the cache is
automatically replicated between all processes. When one client caches a value, all
other clients are able to use the cached value that is locally in-memory.

With the OpenJPA and Hibernate ObjectGrid cache plug-ins, you can create three
topology types: embedded, embedded-partitioned, and remote.

Embedded topology

An embedded topology creates an eXtreme Scale server within the process space of
each application. OpenJPA and Hibernate read the in-memory copy of the cache
directly and write to all of the other copies. You can improve the write
performance by using asynchronous replication. This default topology performs
best when the amount of cached data is small enough to fit in a single process.

272 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Advantages:
v All cache reads are very fast, local accesses.
v Simple to configure.

Limitations:
v Amount of data is limited to the size of the process.
v All cache updates are sent to one process.

Embedded, partitioned topology

When the cached data is too large to fit in a single process, the embedded,
partitioned topology uses ObjectGrid partitions to divide the data over multiple
processes. Performance is not as high as the embedded topology because most
cache reads are remote. However, you can still use this option when database
latency is high.

Database

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

ObjectGrid Server
Primary (Read/Write)

ObjectGrid Server
Replica (Read Only)

Figure 20. JPA embedded topology

Chapter 7. Configuring the deployment environment 273

Advantages:
v Stores large amounts of data.
v Simple to configure
v Cache updates are spread over multiple processes.

Limitation:
v Most cache reads and updates are remote.

For example, to cache 10 GB of data with a maximum of 1 GB per JVM, ten Java
virtual machines are required. The number of partitions must therefore be set to 10
or more. Ideally, the number of partitions should be set to a prime number where
each shard stores a reasonable amount of memory. Usually, the numberOfPartitions
setting is equal to the number of Java virtual machines. With this setting, each JVM
stores one partition. If you enable replication, you must increase the number of
Java virtual machines in the system. Otherwise, each JVM also stores one replica
partition, which consumes as much memory as a primary partition.

Read about sizing memory and partition count calculation in the Administration
Guide to maximize the performance of your chosen configuration.

For example, in a system with 4 Java virtual machines, and the numberOfPartitions
setting value of 4, each JVM hosts a primary partition. A read operation has a 25
percent chance of fetching data from a locally available partition, which is much
faster compared to getting data from a remote JVM. If a read operation, such as
running a query, needs to fetch a collection of data that involves 4 partitions
evenly, 75 percent of the calls are remote and 25 percent of the calls are local. If the
ReplicaMode setting is set to either SYNC or ASYNC and the ReplicaReadEnabled
setting is set to true, then four replica partitions are created and spread across four
Java virtual machines. Each JVM hosts one primary partition and one replica
partition. The chance that the read operation runs locally increases to 50 percent.
The read operation that fetches a collection of data that involves four partitions

Database

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

ObjectGrid Server
Primary 0 (Read/Write)

ObjectGrid Server
Primary 1 (Read/Write)

Figure 21. JPA embedded, partitioned topology

274 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

evenly has 50 percent remote calls and 50 percent local calls. Local calls are much
faster than remote calls. Whenever remote calls occur, the performance drops.

Remote topology

A remote topology stores all of the cached data in one or more separate processes,
reducing memory use of the application processes. You can take advantage of
distributing your data over separate processes by deploying a partitioned,
replicated eXtreme Scale data grid. As opposed to the embedded and embedded
partitioned configurations described in the previous sections, if you want to
manage the remote data grid, you must do so independent of the application and
JPA provider. Read about monitoring your deployment environment for more
information on managing an eXtreme Scale data grid deployment.

Advantages:
v Stores large amounts of data.
v Application process is free of cached data.
v Cache updates are spread over multiple processes.
v Very flexible configuration options.

Limitation:
v All cache reads and updates are remote.

Database

ObjectGrid

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

Figure 22. JPA remote topology

Chapter 7. Configuring the deployment environment 275

Hibernate cache plug-in configuration
An eXtreme Scale cache can be enabled for Hibernate by setting properties in the
configuration file.

7.1+ For integration with WebSphere Application Server, the hibernate cache
plug-in is packaged in oghibernate-cache.jar and installed in
was_root/optionalLibraries/ObjectGrid. To use the hibernate cache plug-in, you
have to include the oghibernate-cache.jar file in the hibernate library. For
example, if you include the hibernate library in your application, you have to
include the oghibernate-cache.jar file, too. If you define a shared library to
include hibernate library, you have to put the oghibernate-cache.jar file into the
shared library directory.

7.1+ eXtreme Scale, Version 7.1, does not install the cglib.jar file in the
WebSphere Application Server environment. If you have existing applications or
shared libraries, such as hibernate, which depend on the cglib.jar, locate
cglib.jar and include it in the classpath. For example, if your application includes
all hibernate library JAR files, but excludes the cglib.jar available with hibernate,
you must include the cglib.jar comes from hibernate in your application.

Settings

The syntax for setting the property in the persistence.xml file follows:
persistence.xml

<property name="hibernate.cache.provider_class"
value="com.ibm.websphere.objectgrid.hibernate.cache.ObjectGridHibernateCacheProvider" />

<property name="hibernate.cache.use_query_cache" value="true"/>
<property name="objectgrid.configuration" value="<property>=<value>,..." />
<property name="objectgrid.hibernate.regionNames" value="<regionName>,.." />

The syntax for setting the property in the hibernate.cfg.xml file follows:
hibernate.cfg.xml

<property name="cache.provider_class">com.ibm.websphere.objectgrid.
hibernate.cache.ObjectGridHibernateCacheProvider</property>

<property name="cache.use_query_cache">true</property>
<property name="objectgrid.configuration"><property>=<value>,...</property>
<property name="objectgrid.hibernate.regionNames"><regionName>,...</property>

The provider_class property is the
com.ibm.websphere.objectgrid.hibernate.cache.ObjectGridHibernateCacheProvider
property. To enable query cache, set the value to true on the use_query_cache
property. Use the objectgrid.configuration property to specify eXtreme Scale cache
configuration properties.

You must specify a unique ObjectGridName property value to avoid potential
naming conflicts. The other eXtreme Scale cache configuration properties are
optional.

The objectgrid.hibernate.regionNames property is optional and should be specified
when the regionNames values are defined after the eXtreme Scale cache is
initialized. Consider the example of an entity class that is mapped to a
regionName with the entity class unspecified in the persistence.xml file or not
included in the Hibernate mapping file. Further, say it does have Entity annotation.
Then, the regionName for this entity class is resolved at class loading time when
the eXtreme Scale cache is initialized. Another example is the
Query.setCacheRegion(String regionName) method that runs after the eXtreme
Scale cache initialization. In these situations, include all possible dynamic

276 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

determined regionNames in the objectgrid.hibernate.regionNames property so that
the eXtreme Scale cache can prepare BackingMaps for all regionNames.

The following are examples of the persistence.xml and hibernate.cfg.xml files:
persistence.xml

<persistence-unit name="testPU2">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<class>com.ibm.websphere.objectgrid.jpa.test.Department</class>
<properties>

<property name="hibernate.show_sql" value="true" />
<property name="hibernate.connection.url" value="jdbc:derby:DB_testPU2;create=true" />
<property name="hibernate.connection.driver_class" value="org.apache.derby.jdbc.EmbeddedDriver" />

<property name="hibernate.cache.provider_class" value="com.ibm.websphere.objectgrid.
hibernate.cache.ObjectGridHibernateCacheProvider" />

<property name="hibernate.cache.use_query_cache" value="true"/>
<property name="objectgrid.configuration" value="ObjectGridName=myOGName,ObjectGridType=

EMBEDDED,MaxNumberOfReplicas=4" writeBehind=true, writeBehindInterval=5000,
writeBehindPoolSize=10, writeBehindMaxBatchSize=1000" />

<property name="objectgrid.hibernate.regionNames" value="queryRegion1, queryRegion2" />
</properties>

</persistence-unit>

7.1+ Version 7.1 introduces additional write behind function specific
configuration options for the Hibernate cache plug-in, in addition to standard JPA
cache plug-in configuration options.

writeBehind

Valid values: TRUE or FALSE

Default value: FALSE

When writeBehind is enabled, updates are temporarily stored in a JVM
scope data storage until either the writeBehindInterval or
writeBehindMaxBatchSize condition is met.

Attention: Unless writeBehind is enabled, the other write behind
configuration settings are disregarded.

writeBehindInterval

Valid values: greater than or equal to 1

Default value: 5000 (5 seconds)

Specifies the time interval in milliseconds to flush updates to the cache.

writeBehindPoolSize

Valid values: greater than or equal to 1

Default value: 5

Specifies the maximum size of the thread pool used in flushing updates to
the cache.

writeBehindMaxBatchSize

Valid values: greater than or equal to 1

Default value: 1000

Specifies the maximum batch size per region cache in flushing updates to
the cache.

The preceding code example displays the following write behind function
configuration:
writeBehind=true, writeBehindInterval=5000, writeBehindPoolSize=10, writeBehindMaxBatchSize=1000

Chapter 7. Configuring the deployment environment 277

where
v writeBehind=TRUE enables the write behind function
v writeBehindInterval=5000 means that updates will flush to the cache

approximately every 5 seconds
v writeBehindPoolSize=10 indicates that the maximum number of threads used to

perform the work is 10 threads, when flushing updates to the cache
v writeBehindMaxBatchSize=1000 means that if the updates stored in the write

behind storage of a region cache exceeds 1000 entries, the updates will be
flushed to the cache, even the specified writeBehindInterval condition is not met.
In other words, updates will flush to cache either approximately every 5 seconds
or whenever the size of write behind storage of each region cache exceeds 1000
entries. Note, in the case of the writeBehindMaxBatchSize condition met; only
the region cache that meets this condition will flush its updates in write behind
storage to cache. A region cache usually is corresponding to an entity or a query.

Important:

Take care when using the write behind function configuration. It introduces longer
latency of data synchronization across all JVMs and a higher chance of lost
updates. In a system using write behind configuration with four or more JVMs, the
update performed on one JVM will have an approximate 15 second delay before
the update becomes available to other JVMs. If any two JVMs update the same
entry, the one that flushes the update first will lose its update.
hibernate.cfg.xml

<hibernate-configuration>
<session-factory>

<!-- Database connection settings -->
<property name="connection.driver_class">org.apache.derby.jdbc.EmbeddedDriver</property>
<property name="connection.url">jdbc:derby:DB_testPU2;create=true</property>
<!-- ObjectGrid cache setting-->
<property name="cache.provider_class">com.ibm.websphere.objectgrid.hibernate.cache.

ObjectGridHibernateCacheProvider</property>
<property name="cache.use_query_cache">true</property>
<property name="objectgrid.configuration">ObjectGridName=myOGName,

ObjectGridType=EMBEDDED,MaxNumberOfReplicas=4 </property>
<property name="objectgrid.hibernate.regionNames">queryRegion1, queryRegion2</property>

<mapping resource="com/ibm/websphere/objectgrid/jpa/test/Employee.hbm.xml"/>

</session-factory>
</hibernate-configuration>

Preloading data into the ObjectGrid cache

You can use the preload method of the ObjectGridHibernateCacheProvider class to
preload data into the ObjectGrid cache for an entity class.

Example 1

Using EntityManagerFactory
EntityManagerFactory emf = Persistence.createEntityManagerFactory("testPU");
ObjectGridHibernateCacheProvider.preload("objectGridName", emf, TargetEntity.class, 100, 100);

Important: By default, entities are not part of the second level cache. In the Entity
classes that need caching, add the @cache annotation. An example follows:
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;
@Entity
@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class HibernateCacheTest { ... }

278 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can override this default by setting the shared-cache-mode element in your
persistence.xml file or by using the javax.persistence.sharedCache.mode property.

Example 2

Using SessionFactory
org.hibernate.cfg.Configuration cfg = new Configuration();
// use addResource, addClass, and setProperty method of Configuration to prepare
// configuration required to create SessionFactor
SessionFactory sessionFactory= cfg.buildSessionFactory();
ObjectGridHibernateCacheProvider.preload("objectGridName", sessionFactory,
TargetEntity.class, 100, 100);

Note:

1. In a distributed system, this preload mechanism can only be invoked from one
Java virtual machine. The preload mechanism cannot run simultaneously from
multiple Java virtual machines.

2. Before running the preload, you must initialize the eXtreme Scale cache by
creating EntityManager using EntityManagerFactory in order to have all
corresponding BackingMaps created; otherwise, the preload forces the cache to
be initialized with only one default BackingMap to support all entities. This
means a single BackingMap is shared by all entities.

Customizing Hibernate cache configuration with XML

For most scenarios, setting cache properties should be sufficient. To further
customize the ObjectGrid used by the cache, you can provide Hibernate ObjectGrid
configuration XML files in the META-INF directory similarly to the persistence.xml
file. During initialization, the cache will try to locate these XML files and process
them if found.

There are three types of Hibernate ObjectGrid configuration XML files:
hibernate-objectGrid.xml (ObjectGrid configuration), hibernate-
objectGridDeployment.xml (deployment policy), and hibernate-objectGrid-
client-override.xml (client ObjectGrid override configuration). Depending on the
configured eXtreme Scale topology, you can provide any one of these three XML
files to customize that topology.

For both the EMBEDDED and EMBEDDED_PARTITION type, you can provide
any one of the three XML files to customize the ObjectGrid, deployment policy,
and client ObjectGrid override configuration.

For a REMOTE ObjectGrid, the cache does not create a dynamic ObjectGrid. The
cache only obtains a client-side ObjectGrid from the catalog service. You can only
provide a hibernate-objectGrid-client-override.xml file to customize client
ObjectGrid override configuration.
1. ObjectGrid configuration: Use the META-INF/hibernate-objectGrid.xml file.

This file is used to customize ObjectGrid configuration for both the
EMBEDDED and EMBEDDED_PARTITION type. With the REMOTE type, this
file is ignored. By default, each entity class has an associated regionName
(default to entity class name) that is mapped to a BackingMap configuration
named as regionName within the ObjectGrid configuration. For example, the
com.mycompany.Employee entity class has an associated regionName default
to com.mycompany.Employee BackingMap. The default BackingMap
configuration is readOnly="false", copyKey="false", lockStrategy="NONE", and
copyMode="NO_COPY". You can customize some BackingMaps with a chosen
configuration. The reserved key word "ALL_ENTITY_MAPS" can be used to

Chapter 7. Configuring the deployment environment 279

represent all maps excluding other customized maps listed in the
hibernate-objectGrid.xmlfile. BackingMaps that are not listed in this
hibernate-objectGrid.xml file use the default configuration.

2. ObjectGridDeployment configuration: Use the META-INF/hibernate-
objectGridDeployment.xml file. This file is used to customize deployment
policy. When you are customizing deployment policy, if the
hibernate-objectGridDeployment.xml is provided, the default deployment
policy is discarded. All deployment policy attribute values will come from the
provided hibernate-objectGridDeployment.xml file.

3. Client override ObjectGrid configuration: Use the META-INF/hibernate-
objectGrid-client-override.xml file . This file is used to customize a
client-side ObjectGrid. By default, the ObjectGrid cache applies a default client
override configuration that disables the near cache. If the application requires a
near cache, it can provide this file and specify numberOfBuckets="xxx". The
default client override disables the near cache by setting numberOfBuckets="0".
The near cache can be active when resetting numberOfBuckets attribute to a
value greater than 0 with the hibernate-objectGrid-client-override.xml file.
The way that the hibernate-objectGrid-client-override.xml file works is
similar to hibernate-objectGrid.xml: It overrides or extends the default client
ObjectGrid override configuration.

Hibernate ObjectGrid XML file examples

Hibernate ObjectGrid XML files should be created based on the configuration of a
persistence unit.

An example persistence.xml file that represents the configuration of a persistence
unit follows:
persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.0">
<persistence-unit name="AnnuityGrid">

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.FixedAnnuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.EquityAnnuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Person</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityHolder</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Address</class>

<exclude-unlisted-classes>true</exclude-unlisted-classes>

<properties>
<property name="hibernate.show_sql" value="false" />
<property name="hibernate.connection.url" value="jdbc:db2:Annuity" />
<property name="hibernate.connection.driver_class" value="com.ibm.db2.jcc.DB2Driver" />
<property name="hibernate.default_schema" value="EJB30" />

<!-- Cache -->
<property name="hibernate.cache.provider_class"

value="com.ibm.websphere.objectgrid.hibernate.cache.ObjectGridHibernateCacheProvider" />
<property name="hibernate.cache.use_query_cache" value="true" />
<property name="objectgrid.configuration" value="ObjectGridType=EMBEDDED,

ObjectGridName=Annuity, MaxNumberOfReplicas=4" />
</properties>

</persistence-unit>

</persistence>

The following is the hibernate-objectGrid.xml file that matches the
persistence.xml file:

280 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

hibernate-objectGrid.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="Annuity">
<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" readOnly="false" copyKey="false"

lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" />

<backingMap name="defaultCacheMap" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="defaultCacheMap" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" />

<backingMap name="org.hibernate.cache.UpdateTimestampsCache" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="org.hibernate.cache.UpdateTimestampsCache" />

<backingMap name="org.hibernate.cache.StandardQueryCache" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="org.hibernate.cache.StandardQueryCache" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity">
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="defaultCacheMap">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="org.hibernate.cache.UpdateTimestampsCache">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="org.hibernate.cache.StandardQueryCache">

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Note: The org.hibernate.cache.UpdateTimestampsCache,
org.hibernate.cache.StandardQueryCache and defaultCacheMap maps are required.

The hibernate-objectGridDeployment.xml file that matches the persistence.xml
follows:
hibernate-objectGridDeployment.xml

<?xml version="1.0" encoding="UTF-8" ?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 7. Configuring the deployment environment 281

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="Annuity">

<mapSet name="MAPSET_Annuity" numberOfPartitions="1" numInitialContainers="1" minSyncReplicas="0"
maxSyncReplicas="4" maxAsyncReplicas="0" replicaReadEnabled="true">

<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" />
<map ref="defaultCacheMap" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" />
<map ref="org.hibernate.cache.UpdateTimestampsCache" />
<map ref="org.hibernate.cache.StandardQueryCache" />

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Important: The org.hibernate.cache.UpdateTimestampsCache,
org.hibernate.cache.StandardQueryCache and defaultCacheMap maps are required.

External system for a cache with REMOTE ObjectGrid type

You must set up an external eXtreme Scale system if you want to configure a cache
with a REMOTE ObjectGrid type. You need both ObjectGrid and
ObjectGridDeployment configuration XML files that are based on the
persistence.xml file to set up an external system. The Hibernate ObjectGrid and
ObjectGridDeployment configuration XML files that are described in the Hibernate
ObjectGrid XML files example section can also be used to setup an external
eXtreme Scale system.

An external ObjectGrid system has both catalog service and ObjectGrid server
processes. You must start a catalog service before starting container servers. See the
details on starting stand-alone eXtreme Scale servers and container processes in the
Administration Guide for more information.

Troubleshooting
1. CacheException: Failed to get ObjectGrid server

With either an EMBEDDED or EMBEDDED_PARTITION ObjectGridType, the
cache tries to obtain a server instance from the eXtreme Scale runtime. In a Java
Platform, Standard Edition environment, an eXtreme Scale server with
embedded catalog service will be started. The embedded catalog service tries to
listen to port 2809; if that port is being used by another process, this error
occurs. If external catalog service endpoints are specified, for instance, with the
objectGridServer.properties file, this error occurs if the host name or port is
specified incorrectly.

2. CacheException: Failed to get REMOTE ObjectGrid for configured REMOTE
ObjectGrid. objectGridName = [ObjectGridName], PU name =
[persistenceUnitName]

This error occurs when the cache fails to obtain an ObjectGrid from the
provided catalog service end points. Typically, the error is because of an
incorrect host name or port.

3. CacheException: Cannot have two PUs [persistenceUnitName_1,
persistenceUnitName_2] configured with same ObjectGridName
[ObjectGridName] of EMBEDDED ObjectGridType

This exception occurs if you have a configuration with many persistence units
and the caches of these units are configured with the same ObjectGrid name
and EMBEDDED ObjectGridType. These persistence unit configurations coan be
in the same or different persistence.xml files. You must verify that the
ObjectGrid name is unique for each persistence unit when ObjectGridType is
EMBEDDED.

282 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

4. CacheException: REMOTE ObjectGrid [ObjectGridName] does not include
required BackingMaps [mapName_1, mapName_2,...]

With a REMOTE ObjectGrid type, if the obtained client-side ObjectGrid does
not have complete entity BackingMaps to support the cache for the persistence
unit, this exception results. For example, five entity classes are listed in the
configuration for the persistence unit, but the obtained ObjectGrid only has two
BackingMaps. Even though the obtained ObjectGrid might have ten
BackingMaps, if any one of the five required entity BackingMaps are not found
in the ten BackingMaps, this exception still occurs.

OpenJPA cache plug-in configuration
WebSphere eXtreme Scale provides both DataCache and QueryCache
implementations for OpenJPA. The OpenJPA ObjectGrid cache or ObjectGrid cache
in short, is a common term for both the DataCache and QueryCache
implementations.

Settings

The eXtreme Scale cache is enabled or disabled for OpenJPA by setting the
openjpa.DataCache and openjpa.QueryCache configuration properties in the
persistence.xml file. The syntax for setting the property follows:
<property name="openjpa.DataCache"

value="<object_grid_datacache_class(<property>=<value>,...)"/>
<property name="openjpa.QueryCache"

value="<object_grid_querycache_class(<property>=<value>,...)"/>

Both DataCache and QueryCache can take eXtreme Scale cache properties to
configure the cache used by the persistence unit.

In addition to the eXtreme Scale cache setting, the openjpa.RemoteCommitProvider
property has to be set to sjvm:

<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

The timeout value specified with @DataCache annotation for each entity class is
carried down to the BackingMap to which each entity is cached. However, the
name value specified with @DataCache annotation is ignored by the eXtreme Scale
cache. The fully qualified entity class name is the cache map name.

The pin and unpin methods of OpenJPA StoreCache and QueryCache are not
supported and perform no function.

You can specify the ObjectGridName property, the ObjectGridType property, and
other simple deployment policy-related properties in the property list of the
ObjectGrid cache class to customize cache configuration. An example follows:
<property name="openjpa.DataCache"

value="com.ibm.websphere.objectgrid.openjpa.ObjectGridDataCache(
ObjectGridName=BasicTestObjectGrid,ObjectGridType=EMBEDDED,
maxNumberOfReplicas=4)"/>

<property name="openjpa.QueryCache"
value="com.ibm.websphere.objectgrid.openjpa.ObjectGridQueryCache()"/>

<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

DataCache and QueryCache configurations are independent of one another. You
can enable either configuration. However, if both configurations are enabled, the
QueryCache configuration uses the same configuration as the DataCache
configuration, and its configuration properties are discarded.

Chapter 7. Configuring the deployment environment 283

Customizing OpenJPA cache configuration with XML

For most scenarios, setting eXtreme Scale cache properties should be sufficient. To
further customize the ObjectGrid used by the cache, you can provide OpenJPA
ObjectGrid configuration XML files in your META-INF directory similarly to the
persistence.xml file. During cache initialization, the ObjectGrid cache tries to
locate these XML files and process the files if they are found.

There are three types of OpenJPA ObjectGrid configuration XML files: the
openjpa-objectGrid.xml (ObjectGrid configuration), openjpa-
objectGridDeployment.xml (deployment policy), and openjpa-objectGrid-client-
override.xml (client ObjectGrid override configuration) files. Depending on the
configured ObjectGrid type, you can provide any one of these three XML files to
customize the ObjectGrid.

For both the EMBEDDED and EMBEDDED_PARTITION types, you can provide
any one of the three XML files to customize the ObjectGrid, deployment policy,
and client ObjectGrid override configuration.

For a REMOTE ObjectGrid, the ObjectGrid cache does not create a dynamic
ObjectGrid. Instead, the cache only obtains a client-side ObjectGrid from the
catalog service. You can only provide the openjpa-objectGrid-client-
override.xml file to customize the client ObjectGrid override configuration.
1. ObjectGrid configuration: Use the META-INF/openjpa-objectGrid.xml file. This

file is used to customize ObjectGrid configuration for both the EMBEDDED and
EMBEDDED_PARTITION type. With the REMOTE type, this file is ignored. By
default, each entity class is mapped to its own BackingMap configuration
named as an entity class name within the ObjectGrid configuration. For
example, com.mycompany.Employee entity class is mapped to
com.mycompany.Employee BackingMap. The default BackingMap configuration
is readOnly="false", copyKey="false", lockStrategy="NONE", and
copyMode="NO_COPY". You can customize some BackingMaps with your chosen
configuration. You can use the ALL_ENTITY_MAPS reserved keyword to represent
all maps excluding other customized maps listed in the openjpa-
objectGrid.xml file. BackingMaps that are not listed in this
openjpa-objectGrid.xml file use the default configuration. If customized
BackingMaps do not specify the BackingMaps attribute or properties and these
attributes are specified in the default configuration, the attribute values from
the default configuration are applied. For example, if an entity class is
annotated with timeToLive=30, the default BackingMap configuration for that
entity has a timeToLive=30. If the custom openjpa-objectGrid.xml file also
includes that BackingMap but does not specify timeToLive value, then the
customize BackingMap has a timeToLive=30 value by default. The
openjpa-objectGrid.xml file intends to override or extend the default
configuration.

2. ObjectGridDeployment configuration: Use the META-INF/openjpa-
objectGridDeployment.xml file. This file is used to customize deployment
policy. When you are customizing deployment policy, if the
openjpa-objectGridDeployment.xml file is provided, the default deployment
policy is discarded. All deployment policy attribute values are from the
provided openjpa-objectGridDeployment.xml file.

3. Client override ObjectGrid configuration: Use the META-INF/openjpa-
objectGrid-client-override.xml file. This file is used to customize a client-side
ObjectGrid. By default, the ObjectGrid cache applies a default client override
ObjectGrid configuration that disables a near cache. If an application requires a

284 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

near cache, it can provide this file and specify numberOfBuckets="xxx". The
default client override disables the near cache by setting numberOfBuckets="0".
The near cache can be active when resetting numberOfBuckets to a value
greater than 0 with the openjpa-objectGrid-client-override.xml file. The way
that the openjpa-objectGrid-client-override.xml file works is similar to the
openjpa-objectGrid.xml file. It overrides or extends the default client
ObjectGrid override configuration.

OpenJPA ObjectGrid XML file examples

OpenJPA ObjectGrid XML files should be created based on the configuration of the
persistence unit.

A persistence.xml file that is an example that represents the configuration of a
persistence unit follows:
persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.0">
<persistence-unit name="AnnuityGrid">

<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.FixedAnnuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.EquityAnnuity</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Person</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityHolder</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact</class>
<class>com.ibm.wssvt.acme.annuity.common.bean.jpa.Address</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>

<properties>
<!-- Database setting -->

<!-- enable cache -->
<property name="openjpa.DataCache"

value="com.ibm.websphere.objectgrid.openjpa.ObjectGridDataCache(objectGridName=Annuity,
objectGridType=EMBEDDED, maxNumberOfReplicas=4)" />

<property name="openjpa.RemoteCommitProvider" value="sjvm" />
<property name="openjpa.QueryCache"

value="com.ibm.websphere.objectgrid.openjpa.ObjectGridQueryCache()" />
</properties>

</persistence-unit>
</persistence>

The openjpa-objectGrid.xml file that matches the persistence.xml file follows:
openjpa-objectGrid.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="Annuity">
<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" readOnly="false" copyKey="false"

lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Address" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Address" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject"
readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject" />

Chapter 7. Configuring the deployment environment 285

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" />

<backingMap name="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" evictionTriggers="MEMORY_USAGE_THRESHOLD"
pluginCollectionRef="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" />

<backingMap name="ObjectGridQueryCache" readOnly="false" copyKey="false"
lockStrategy="NONE" copyMode="NO_COPY" pluginCollectionRef="ObjectGridQueryCache"
evictionTriggers="MEMORY_USAGE_THRESHOLD" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity">
<bean id="ObjectTransformer"

className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Address">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection

id="com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject">
<bean id="ObjectTransformer"

className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout">

<bean id="ObjectTransformer"
className="com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer" />

<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
<backingMapPluginCollection id="ObjectGridQueryCache">

<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex" >
<property name="Name" type="java.lang.String"

value="QueryCacheKeyIndex" description="name of index"/>
<property name="POJOKeyIndex" type="boolean" value="true" description="POJO Key Index "/>

</bean>
<bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" >
</bean>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Important:

1. Each entity is mapped to a BackingMap named as the fully qualified entity
class name.
By default, entities are part of the second level cache. In the Entity classes
which needs to be excluded from caching, You can include the
@DataCache(enabled=false) annotation on the entity class that you want to
exclude from L2 cache:

286 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

import org.apache.openjpa.persistence.DataCache;
@Entity
@DataCache(enabled=false)
public class OpenJPACacheTest { ... }

2. If entity classes are in an inheritance hierarchy, child classes map to the parent
BackingMap. The inheritance hierarchy shares a single BackingMap.

3. The ObjectGridQueryCache map is required to support QueryCache.
4. The backingMapPluginCollection for each entity map must have the

ObjectTransformer using the
com.ibm.ws.objectgrid.openjpa.ObjectGridPCDataObjectTransformer class.

5. The backingMapPluginCollection for ObjectGridQueryCache map must have
the key index named as QueryCacheKeyIndex as shown in the sample.

6. The evictor is optional for each map.

The openjpa-objectGridDeployment.xml file that matches the persistence.xml file
follows:
openjpa-objectGridDeployment.xml

<?xml version="1.0" encoding="UTF-8" ?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="Annuity">

<mapSet name="MAPSET_Annuity" numberOfPartitions="1" numInitialContainers="1"
minSyncReplicas="0" maxSyncReplicas="4" maxAsyncReplicas="0"
replicaReadEnabled="true">

<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Annuity" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Address" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payor" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Person" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Contact" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.AnnuityPersistebleObject" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Rider" />
<map ref="com.ibm.wssvt.acme.annuity.common.bean.jpa.Payout" />
<map ref="ObjectGridQueryCache" />

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Note: The ObjectGridQueryCache map is required to support QueryCache.

External system for a cache with REMOTE ObjectGrid type

You must set up an external system if you want to configure an cache with
REMOTE ObjectGrid type. You need both ObjectGrid and ObjectGridDeployment
configuration XML files that are based on a persistence.xml file to set up an
external system. The OpenJPA ObjectGrid and ObjectGridDeployment
configuration XML files described in the OpenJPA ObjectGrid XML file examples
section can also be used to set up an external eXtreme Scale system.

An external eXtreme Scale system has both catalog service and container server
processes. You must start the catalog server before starting container servers.

Troubleshooting
1. CacheException: Failed to get ObjectGrid server

With either an EMBEDDED or EMBEDDED_PARTITION ObjectGridType, the
eXtreme Scale cache tries to obtain a server instance from the run time. In a
Java Platform, Standard Edition environment, an eXtreme Scale server with
embedded catalog service is started. The embedded catalog service tries to
listen to port 2809; if that port is being used by another process, the error
occurs. If external catalog service endpoints are specified, for example, with the
objectGridServer.properties file, this error occurs if the host name or port is
specified incorrectly.

Chapter 7. Configuring the deployment environment 287

2. CacheException: Failed to get REMOTE ObjectGrid for configured REMOTE
ObjectGrid. objectGridName = [ObjectGridName], PU name =
[persistenceUnitName]

This error occurs when the cache fails to obtain an ObjectGrid from the
provided catalog service endpoints. Typically, the error is because of an
incorrect host name or port.

3. CacheException: Cannot have two PUs [persistenceUnitName_1,
persistenceUnitName_2] configured with same ObjectGridName
[ObjectGridName] of EMBEDDED ObjectGridType

This exception results if you have a many persistence unit configuration and
the eXtreme Scale caches of these units are configured with the same
ObjectGrid name and EMBEDDED ObjectGridType. These persistence unit
configurations could be in the same or different persistence.xml files. You
must verify that the ObjectGrid name is unique for each persistence unit when
ObjectGridType is EMBEDDED.

4. CacheException: REMOTE ObjectGrid [ObjectGridName] does not include
required BackingMaps [mapName_1, mapName_2,...]

With a REMOTE ObjectGrid type, if the obtained client-side ObjectGrid does
not have complete entity BackingMaps to support the persistence unit cache,
this exception occurs. For example, five entity classes are listed in the
persistence unit configuration, but the obtained ObjectGrid only has two
BackingMaps. Even though the obtained ObjectGrid might have ten
BackingMaps, if any one of the five required entity BackingMaps is not found
in the ten BackingMaps, this exception still occurs.

Note: The OpenJPA eXtreme Scale cache has changed data format to improve
performance. Any systems that are hosting OpenJPA applications that are
configured with eXtreme Scale as an L2 cache must be stopped before migrating to
WebSphere eXtreme Scale Version 7.0.

Configuring HTTP session managers
The HTTP session manager provides session replication capabilities for an
associated application. The session manager works with the Web container to
create and manage the life cycles of HTTP sessions that are associated with the
application.

About this task

Attention: 7.1.0.3+ With Version 7.1.0.3 and later, you can persist sessions that
use URL rewriting or cookies as a session tracking mechanism. Before Version
7.1.0.3, you can save only sessions that use cookies as the session tracking
mechanism to the data grid.

Configuring the HTTP session manager with WebSphere
Application Server
While WebSphere Application Server provides session management function, the
performance degrades as the number of requests increases. WebSphere eXtreme
Scale comes bundled with a session management implementation that provides
session replication, high availability, better scalability and more robust
configuration options.

Before you begin
v WebSphere eXtreme Scale must be installed on your WebSphere Application

Server or WebSphere Application Server Network Deployment cell to use the

288 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

eXtreme Scale session manager. See “Installing WebSphere eXtreme Scale or
WebSphere eXtreme Scale Client with WebSphere Application Server” on page
26 for more information.

v Global security must be enabled in the WebSphere Application Server
administrative console, if the catalog servers within your catalog service domain
have Secure Sockets Layer (SSL) enabled or you want to use SSL for a catalog
service domain with SSL supported. You require SSL for a catalog server by
setting the transportType attribute to SSL-Required in the “Server properties file”
on page 199. For more information about configuring global security, see Global
security settings.

v 7.1.0.3+ If you are using Version 7.1.0.3 or later, you can persist sessions that
use URL rewriting or cookies as a session tracking mechanism to the data grid.
For releases before Version 7.1.0.3, you cannot persist sessions that use URL
rewriting as a session tracking mechanism. To enable the persistence of sessions
that use URL rewriting, set the useURLEncoding property to true in the
splicer.properties file.

About this task

The WebSphere eXtreme Scale HTTP session manager supports both embedded
and remote servers for caching.
v Embedded scenario

In the embedded scenario, the WebSphere eXtreme Scale servers are collocated
in the same processes where the servlets run. The session manager can
communicate directly with the local ObjectGrid instance, avoiding costly
network delays.
If you are using WebSphere Application Server, place the supplied
wxs_home/session/samples/objectGrid.xml and wxs_home/session/samples/
objectGridDeployment.xml files into the META-INF directories of your Web
archive (WAR) files. eXtreme Scale automatically detects these files when the
application starts and automatically starts the eXtreme Scale containers in the
same process as the session manager.
You can modify the objectGridDeployment.xml file depending on if you want to
use synchronous or asynchronous replication and how many replicas you want
configured.

v Remote servers scenario

In the remote servers scenario, the container servers run in different processes
than the servlets. The session manager communicates with a remote container
server. To use a remote, network-attached container server, the session manager
must be configured with the host names and port numbers of the catalog service
domain. The session manager then uses an eXtreme Scale client connection to
communicate with the catalog server and the container servers.
If the container servers are starting in independent, stand-alone processes, start
the eXtreme Scale containers with the objectGridStandAlone.xml and
objectGridDeploymentStandAlone.xml files that are supplied in the session
manager samples directory.

Procedure
1. Splice your application so that it can use the session manager. To use the

session manager, you must add the appropriate filter declarations to the Web
deployment descriptors for the application. In addition, session manager
configuration parameters are passed in to the session manager in the form of

Chapter 7. Configuring the deployment environment 289

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=usec_secureadminappinfra
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=usec_secureadminappinfra

servlet context initialization parameters in the deployment descriptors. There
are multiple ways in which you can introduce this information into your
application:

v 7.1+ Auto-splice with WebSphere Application Server

You can configure your application to use the WebSphere eXtreme Scale
HTTP session manager when you install your application. You can also edit
the application or server configuration to use the WebSphere eXtreme Scale
HTTP session manager. See “Automatically splicing applications for HTTP
session management in WebSphere Application Server” on page 292 for more
information.
Attention: 7.1.0.3+ If you want to enable persistence for sessions that use
URL rewriting, you must edit the splicer.properties file after your
auto-splice the application. In the splicer.properties file, set the
useURLEncoding property to true. Synchronize the nodes to propagate the
changes to other nodes in the configuration.

v Auto-splice the application with custom properties

You do not need to manually splice your applications when the application is
running in WebSphere Application Server or WebSphere Application Server
Network Deployment.
Add a custom property to either a cell or a server to set the
splicer.properties file for all of the Web applications at that scope. Use the
following steps to configure the custom property:
a. In the WebSphere Application Server administrative console, navigate to

the correct path for where you want to set the custom property to
indicate the location of the splicer.properties file.
– To set the custom property for all applications or a specific application,

click System administration > Cell > Custom properties.
– To set the custom property to apply to all the applications on a specific

application server, click Application server > <server_name> >
Administration > Custom properties. The property name is
com.ibm.websphere.xs.sessionFilterProps, and its value is the
location of the splicer.properties file your applications require. An
example path for the location of a file follows: /opt/
splicer.properties.

b. Add the com.ibm.websphere.xs.sessionFilterProps custom property.
This custom property value gives the location of the splicer.properties
file to edit. The file exists on the deployment manager. If you want to
indicate the splicer.properties file for a specific application with a
cell-level custom property, enter the name of the custom property as:
<application_name>,com.ibm.websphere.xs.sessionFilterProps, where
application_name indicates the name of the application for which you want
to apply the custom property.

c. Edit the splicer.properties file that is in the path for the custom
property on the deployment manager profile.

d. Synchronize your nodes so the updated splicer.properties file is
propagated to your nodes. Click System Administration > Nodes.
Choose the nodes on which the application is installed, and click
Synchronize.

Important: Ensure that the updated splicer.properties file is on the same
path on all nodes containing an application server hosting the application or
applications that are being spliced for session replication."

290 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The cell, server, and application scope are available scopes and are only
available when running in a deployment manager. If you require a different
scope, manually splice your Web applications.

Remember: Also, note that the auto-splice option works only if all of the
nodes running the application contain the splicer.properties file at the
same path. For mixed environments containing Windows and UNIX nodes,
this option is not possible, so you must manually splice the application.

v Splice the application with the addObjectGridFilter script

Use a command-line script provided along with eXtreme Scale to splice an
application with filter declarations and configuration in the form of servlet
context initialization parameters. For a WebSphere Application Server
deployment, this script is located in <was_home>/optionalLibraries/
ObjectGrid/session/bin/addObjectGridFilter.bat/sh . For a stand-alone
deployment, the script is at WXS_HOME/ObjectGrid/session/bin/
addObjectGridFilter.sh/bat. The oddObjectGridFilter script takes two
parameters:
– Application - absolute path to the enterprise archive file to be spliced
– Absolute path to the splicer properties file that contains various

configuration properties.
The usage format of this script is as follows:

Windows

addObjectGridFilter.bat [location of ear file] [location of splicer properties file]

UNIX

addObjectGridFilter.sh [location of ear file] [location of splicer properties file]

UNIX Example using eXtreme Scale installed on WebSphere
Application Server on UNIX:

a. cd wxs_home/optionalLibraries/ObjectGrid/session/bin

b. addObjectGridFilter.sh /tmp/mySessionTest.ear was_root/
optionalLibraries/ObjectGrid/session/samples/splicer.properties

UNIX Example using eXtreme Scale installed in a stand-alone directory
on UNIX:

a. cd was_root/session/bin

b. addObjectGridFilter.sh /tmp/mySessionTest.ear was_root/session/
samples/splicer.properties

The servlet filter that is spliced maintains defaults for configuration values.
You can override these default values with configuration options that you
specify in the properties file in the second argument. For a list of the
parameters that you can use, see “Servlet context initialization parameters”
on page 308.
You can modify and use the sample splicer.properties file that is provided
witheXtreme Scale installation. You can also use the addObjectGridServlets
script, which inserts the session manager by extending each servlet.
However, the recommended script is the addObjectGridFilter script.

v Manually splice the application with the Ant build script

WebSphere eXtreme Scale ships with a build.xml file that can be used by
Apache Ant, which is included in the was_root/bin folder of a WebSphere
Application Server installation. You can modify the build.xml file to change
the session manager configuration properties. The configuration properties

Chapter 7. Configuring the deployment environment 291

are identical to the property names in the splicer.properties file. You
modify the build.xml file, invoke the Ant process by running the following
command:

– UNIX ant.sh, ws_ant.sh

– Windows ant.bat, ws_ant.bat

(UNIX) or (Windows).
v Manually update the Web descriptor

Edit the web.xml file that is packaged with the Web application to incorporate
the filter declaration, its servlet mapping, and servlet context initialization
parameters. Do not use this method because it is prone to errors.

For a list of the parameters that you can use, see “Servlet context initialization
parameters” on page 308.

2. Deploy the application. Deploy the application with your normal set of steps
for a server or cluster. After you deploy the application, you can start the
application.

3. Access the application. You can now access the application, which interacts
with the session manager and WebSphere eXtreme Scale.

What to do next

You can change a majority of the configuration attributes for the session manager
when you instrument your application to use the session manager. These attributes
include: synchronous or asynchronous replication, in-memory session table size,
and so on. Apart from the attributes that can be changed at application
instrumentation time, the only other configuration attributes that you can change
after the application deployment are the attributes that are related to the
WebSphere eXtreme Scale server cluster topology and the way that their clients
(session managers) connect to them.

7.1.0.3+ Remote scenario behavior: If the entire data grid that is hosting the
application session data is unreachable from the web container client, the client
instead uses the base web container in WebSphere Application Server for session
management. The data grid might be unreachable in the following scenarios:
v A network problem between the Web container and the remote container

servers.
v The remote container server processes have been stopped.

The number of session references kept in memory, specified by sessionTableSize
parameter, is still maintained when the sessions are stored in the base web
container. The least recently used sessions are invalidated from the web container
session cache when the sessionTableSize value is exceeded. If the remote data
grid becomes available, sessions that were invalidated from the web container
cache can retrieve data from the remote data grid and load the data into a new
session. If the entire remote data grid is not available and the session is invalidated
from the session cache, the user session data is lost. Because of this issue, do not
shut down the entire production remote data grid when the system is running
under load.

Automatically splicing applications for HTTP session management in
WebSphere Application Server:

292 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can configure your WebSphere Application Server application to persist
sessions to a data grid. This data grid can be in an embedded container server that
runs within WebSphere Application Server, or it can be in a remote data grid.

Before you begin

Before you change the configuration in WebSphere Application Server, you must
have:
v The name of the session data grid that you want to use. See “Configuring the

HTTP session manager with WebSphere Application Server” on page 288 for
information about creating a session data grid.

v If the catalog service that you want to use to manage your sessions is outside of
the cell in which you are installing your session application, you must create a
catalog service domain. See “Creating catalog service domains in WebSphere
Application Server” on page 206 for more information.

v If you are configuring a catalog service domain, you might need to enable client
security on the catalog service domain if the container servers require
authentication. These settings inform the run time which CredentialGenerator
implementation to use. This implementation generates a credential to pass to the
remote data grid. See “Configuring client security on a catalog service domain”
on page 296 for more information about configuring these settings.

v Global security enabled in the WebSphere Application Server administrative
console, if you want to support one of the following scenarios:
– The catalog servers within your catalog service domain have Secure Sockets

Layer (SSL) enabled.
– You want to use SSL for a catalog service domain with SSL supported.

You require SSL for a catalog server by setting the transportType attribute to
SSL-Required in the “Server properties file” on page 199. For more information
about configuring global security, see Global security settings.

v 7.1.0.3+ If you are using Version 7.1.0.3 or later, you can persist sessions that
use URL rewriting or cookies as a session tracking mechanism to the data grid.
For releases before Version 7.1.0.3, you cannot persist sessions that use URL
rewriting as a session tracking mechanism. To enable the persistance of sessions
that use URL rewriting, set the useURLEncoding property to true in the
splicer.properties file after you automatically splice the application.

Procedure

v To configure session management when you are installing the application,
complete the following steps:

1. In the WebSphere Application Server administrative console, click
Applications > New application > New Enterprise Application. Choose the
Detailed path for creating the application and complete the initial wizard
steps.

2. In the eXtreme Scale session management settings step of the wizard,
configure the data grid that you want to use. Choose either the Remote
eXtreme Scale data grid or the Embedded eXtreme Scale data grid.
– For the Remote eXtreme Scale data grid option, choose the catalog service

domain that manages the session data grid, and choose a data grid from
the list of active session data grids.

– For the Embedded eXtreme Scale data grid option, choose either the
default ObjectGrid configuration or specify the specific location of your
ObjectGrid configuration files.

Chapter 7. Configuring the deployment environment 293

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=usec_secureadminappinfra

3. Complete the wizard steps to finish installing your application.

You can also install the application with a wsadmin script. In the following
example, the -SessionManagement parameter creates the same configuration that
you can in the administrative console:
For the remote eXtreme Scale data grid configuration:

AdminApp.install(’C:/A.ear’, ’[-nopreCompileJSPs -distributeApp
-nouseMetaDataFromBinary -nodeployejb -appname A -edition 8.0
-createMBeansForResources -noreloadEnabled -nodeployws -validateinstall
off -noprocessEmbeddedConfig -filepermission .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
-buildVersion Unknown -noallowDispatchRemoteInclude -noallowServiceRemoteInclude
-asyncRequestDispatchType DISABLED -nouseAutoLink -SessionManagement [[true
XSRemoteSessionManagement cs0:!:grid0]]
-MapWebModToVH [[MicroWebApp microwebapp.war,WEB-INF/web.xml default_host] [MicroSipApp
microsipapp.war,WEB-INF/web.xml default_host] [MicroDG1App microdg1app.war,WEB-INF/web.xml
default_host] [MicroDG2App microdg2app.war,WEB-INF/web.xml default_host] [MicroSip2App
microsip2app.war,WEB-INF/web.xml default_host]]]’)

For the eXtreme Scale embedded scenario with default configuration:
AdminApp.install(’C:/A.ear’, ’[-nopreCompileJSPs -distributeApp
-nouseMetaDataFromBinary -nodeployejb -appname A -edition 8.0
-createMBeansForResources -noreloadEnabled -nodeployws -validateinstall
off -noprocessEmbeddedConfig -filepermission .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
-buildVersion Unknown -noallowDispatchRemoteInclude -noallowServiceRemoteInclude
-asyncRequestDispatchType DISABLED -nouseAutoLink -SessionManagement [[true
XSRemoteSessionManagement :!: :!:default]] -MapWebModToVH [[MicroWebApp microwebapp.war,
WEB-INF/web.xml default_host] [MicroSipApp
microsipapp.war,WEB-INF/web.xml default_host] [MicroDG1App microdg1app.war,WEB-INF/web.xml
default_host] [MicroDG2App microdg2app.war,WEB-INF/web.xml default_host] [MicroSip2App
microsip2app.war,WEB-INF/web.xml default_host]]]’)

For the eXtreme Scale embedded scenario with a custom configuration:
AdminApp.install(’C:/A.ear’, ’[-nopreCompileJSPs -distributeApp
-nouseMetaDataFromBinary -nodeployejb -appname A -edition 8.0
-createMBeansForResources -noreloadEnabled -nodeployws -validateinstall
off -noprocessEmbeddedConfig -filepermission .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
-buildVersion Unknown -noallowDispatchRemoteInclude -noallowServiceRemoteInclude
-asyncRequestDispatchType DISABLED -nouseAutoLink -SessionManagement [[true
XSRemoteSessionManagement :!: :!:custom:!:c:\XS\objectgrid.xml:!:c:\XS\objectgriddeployment.xml]]
-MapWebModToVH [[MicroWebApp microwebapp.war,WEB-INF/web.xml default_host] [MicroSipApp
microsipapp.war,WEB-INF/web.xml default_host] [MicroDG1App microdg1app.war,WEB-INF/web.xml
default_host] [MicroDG2App microdg2app.war,WEB-INF/web.xml default_host] [MicroSip2App
microsip2app.war,WEB-INF/web.xml default_host]]]’)

v To configure session management on an existing application in the
WebSphere Application Server administrative console:

1. In the WebSphere Application Server administrative console, click
Applications > Application Types > WebSphere enterprise applications >
application_name > Web Module properties > Session management >
eXtreme Scale session management settings.

2. Update the fields to enable session persistence to a data grid.

You can also update the application with a wsadmin script. In the following
example, the -SessionManagement parameter creates the same configuration that
you can in the administrative console:
For the remote eXtreme Scale data grid configuration:
AdminApp.edit(’DefaultApplication’,’[-SessionManagement[[[true
XSRemoteSessionManagement cs0:!:grid0]]]’)

For the eXtreme Scale embedded scenario with default configuration:

294 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

AdminApp.edit(’DefaultApplication’,’[-SessionManagement[[[true
XSEmbeddedSessionManagement :!: :!:default]]]’)

For the eXtreme Scale embedded scenario with a custom configuration:
AdminApp.edit(’DefaultApplication’,’[-SessionManagement[[[true
XSEmbeddedSessionManagement :!: :!:
custom:!:c:\XS\objectgrid.xml:!:c:\XS\objectgriddeployment.xml]]]’)

When you save the changes, the application uses the configured data grid for
session persistence on the appliance.

v To configure session management on an existing server:

1. In the WebSphere Application Server administrative console, click Servers >
Server Types > WebSphere application servers > server_name > Session
management > eXtreme Scale session management settings.

2. Update the fields to enable session persistence.

You can also configure session management on an existing server with the
following wsadmin tool commands:
For the remote eXtreme Scale data grid configuration:

AdminTask.configureServerSessionManagement(’[-nodeName IBM-C77EE220EB6Node01 -serverName server1
-enableSessionManagement true -sessionManagementType XSRemoteSessionManagement -XSRemoteSessionManagement
[-catalogService cs0 -csGridName grid0]]’)

For the eXtreme Scale embedded configuration:

– The default configuration, if you are using the default XML files:
AdminTask.configureServerSessionManagement(’[-nodeName IBM-C77EE220EB6Node01 -serverName server1
-enableSessionManagement true -sessionManagementType XSEmbeddedSessionManagement
-XSEmbeddedSessionManagement [-embeddedGridType default -objectGridXML -objectGridDeploymentXML]]’)

– The custom configuration, if you are using customized XML files:
AdminTask.configureServerSessionManagement(’[-nodeName IBM-C77EE220EB6Node01 -serverName server1
-enableSessionManagement true -sessionManagementType XSEmbeddedSessionManagement
-XSEmbeddedSessionManagement
[-embeddedGridType custom -objectGridXML c:\XS\objectgrid.xml -objectGridDeploymentXML
c:\XS\objectgriddeployment.xml]]’)

When you save the changes, the server now uses the configured data grid for
session persistence with any applications that are running on the server.

v If you want to edit other aspects of the HTTP session configuration, you can edit
the splicer.properties file. You can get the path location of the
splicer.properties file by locating the
com.ibm.websphere.xs.sessionFilterProps custom property in one of the
following locations:
– In a WebSphere Application Server Network Deployment environment: A

custom property on the cell
– In a stand-alone WebSphere Application Server environment: A custom

property on the application server

You can open the indicated file, make changes, and synchronize the nodes so the
updated properties file gets propagated to the other nodes in the configuration.
All application server nodes require the splicer.properties file to be in the
specified path to properly persist sessions.

Attention: 7.1.0.3+ If you want to enable persistance for sessions that use
URL rewriting, set the useURLEncoding property to true in the
splicer.properties file.
For more information about the properties in the splicer.properties file, see
“splicer.properties file” on page 297.

Chapter 7. Configuring the deployment environment 295

Results

You configured HTTP session manager to persist the sessions to a data grid.
Entries are removed from the data grid when the sessions time out. See Session
management settings for more information about updating the session timeout
value in the WebSphere Application Server administrative console.

Configuring client security on a catalog service domain:

By configuring client security on a catalog service domain, you can define default
client authentication configuration properties. These properties are used when a
client properties file is not located in the Java virtual machine (JVM) that is hosting
the client or when the client does not programmatically specify security
properties. If a client properties file exists, the properties that you specify in the
console override the values in the file. You can override these properties by
specifying a splicer.properties file with the
com.ibm.websphere.xs.sessionFilterProps custom property or by splicing the
application EAR file.

Before you begin

v You must know the CredentialGenerator implementation that you are using to
authenticate clients with the remote data grid. You can use one of the
implementations that are provided by WebSphere eXtreme Scale:
UserPasswordCredentialGenerator or WSTokenCredentialGenerator.
You can also use a custom implementation of the CredentialGenerator interface.
The custom implementation must be in the class path of the runtime client and
the server. If you are configuring an HTTP session scenario with WebSphere
Application Server, you must put the implementation in the class path of the
deployment manager and the class path of the application server in which the
client is running.

v You must have a catalog service domain defined. See “Creating catalog service
domains in WebSphere Application Server” on page 206 for more information.

About this task

You must configure client security on the catalog service domain when you have
enabled credential authentication on the server side, by configuring one of the
following scenarios:
v The server-side security policy has the credentialAuthentication property set to

Required.
v The server-side security policy has the credentialAuthentication property set to

Supported AND an authorizationMechanism has been specified in the ObjectGrid
XML file.

In these scenarios, a credential must be passed from the client. The credential that
is passed from the client is retrieved from the getCredential method on a class that
implements the CredentialGenerator interface. In an HTTP session configuration
scenario, the run time must know the CredentialGenerator implementation to use
to generate a credential that is passed to a remote data grid. If you do not specify
the CredentialGenerator implementation class to use, the remote data grid would
reject requests from the client because the client cannot be authenticated.

296 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/uprs_rsession_manager.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/uprs_rsession_manager.html

Procedure

Define client security properties. In the WebSphere Application Server
administrative console, click System administration > WebSphere eXtreme Scale >
Catalog service domains > catalog_service_domain_name > Client security
properties. Specify client security properties on the page and save your changes.
See “Client security properties” on page 219 for a list of the properties you can set.

Results

The client security properties that you configured on the catalog service domain
are used as default values. The values you specify override any properties that are
defined in the client.properties files.

What to do next

Configure your applications to use WebSphere eXtreme Scale for session
management. See “Automatically splicing applications for HTTP session
management in WebSphere Application Server” on page 292 for more information.

splicer.properties file:

The splicer.properties file contains all of the configuration options for
configuring a servlet-filter-based session manager.

Sample splicer properties

If you choose to use any of the additional properties that are described in this file,
be sure to uncomment the lines for the properties that you want to enable.
Properties file that contains all the configuration
options that the servlet filter based ObjectGrid session
manager can be configured to use.
#
This properties file can be made to hold all the default
values to be assigned to these configuration settings, and
individual settings can be overridden using ANT Task
properties, if this properties file is used in conjunction
with the filtersplicer ANT task.

A string value of either "REMOTE" or "EMBEDDED". The default is REMOTE.
If it is set to "REMOTE", the session data will be stored outside of
the server on which the web application is running. If it is set to
"EMBEDDED", an embedded WebSphere eXtreme Scale container will start
in the application server process on which the web application is running.

objectGridType = REMOTE

A string value that defines the name of the ObjectGrid
instance used for a particular web application. The default name
is session. This property must reflect the objectGridName in both
the objectgrid xml and deployment xml files used to start the eXtreme
Scale containers.

objectGridName = session

Catalog Server can be contacted to obtain a client side
ObjectGrid instance. The value needs to be of the
form "host:port<,host:port>", where the host is the listener host
on which the catalog server is running, and the port is the listener
port for that catalog server process.
This list can be arbitrarily long and is used for bootstrapping only.

Chapter 7. Configuring the deployment environment 297

The first viable address will be used. It is optional inside WebSphere
if the catalog.services.cluster property is configured.

catalogHostPort = host:port<,host:port>

An integer value (in seconds) that defines the time in seconds between
writing of updated sessions to ObjectGrid. The default is 2. This property
is only used when objectGridType is set to REMOTE. Possible values are
from 0 to 60. 0 means updated sessions are written to the ObjectGrid
at the end of servlet service method call for each request.

replicationInterval = 2

An integer value that defines the number of session references
kept in memory. The default is 2000. This property is only used when
objectGridType is set to REMOTE. When the number of sessions stored
in memory in the web container exceeds this value, the least recently
accessed session is invalidated from the web container. If a request
comes in for that session after it’s been invalidated, a new session
will be created (with a new session ID), populated with the invalidated
session’s attributes. This value should always be set to be higher than
the maximum size of the web container thread pool to avoid contention
on this session cache.

sessionTableSize = 2000

A string value of either "true" or "false", default is "true".
It is to control whether we store session data as a whole entry
or store each attribute separately.
This property was referred to as persistenceMechanism in the
previous filter-based implementation, with the possible values
of ObjectGridStore (fragmented) and ObjectGridAtomicSessionStore
(not fragmented).

fragmentedSession = true

A string value of either "true" or "false", default is "false".
Enables eXtreme Scale client security. This setting needs to match
the securityEnabled setting in the eXtreme Scale server properties
file. If the settings do not match, an exception occurs.

securityEnabled = false

Specifies the client credential authentication support.
The possible values are:
Never - The client does not support credential authentication.
Supported* - The client supports the credential authentication if and only if the server
supports too.
Required - The client requires the credential authentication.
The default value is Supported.

credentialAuthentication =

Specifies the retry count for authentication if the credential
is expired. If the value is set to 0, there will not be
any authentication retry.

authenticationRetryCount =

Specifies the name of the class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
interface. This class is used to get credentials for clients.

credentialGeneratorClass =

Specifies the properties for the CredentialGenerator implementation
class. The properties are set to the object with the setProperties(String)

298 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

method. The credentialGeneratorProps value is used only if the value of the
credentialGeneratorClass property is not null.

credentialGeneratorProps =

The file location of the objectgrid xml file.
The built-in xml file packaged in the eXtreme Scale library
will automatically be loaded if this property
is not specified and if objectGridType=EMBEDDED

objectGridXML =

The file location of the objectGrid deployment policy xml file.
The built-in xml file packaged in the eXtreme Scale library
will automatically be loaded if this property
is not specified and if objectGridType=EMBEDDED

objectGridDeploymentXML =

A string of IBM WebShere trace specification,
useful for all other application servers besides WebSphere.

traceSpec =

A string of trace file location.
useful for all other application servers besides WebSphere.

traceFile=

Allows for the override of the servlet spec designated
cookie / encoded URL name of "JSESSIONID"
If the cookieName value is changed from JSESSIONID, the
application servers must be configured to use this value
as well.

cookieName = JSESSIONID

This property should be set if you require sessions to be
accessible across hosts. The value will be the name of the
common domain between the hosts.

cookieDomain=

Set to true if the underlying web container will reuse
session ID’s across requests to different hosts. Default is
false. The value of this should be the same as what is set
in the web container.

reuseSessionId=

A string value of either "true" or "false". The default is
"false". Per the servlet specification, HTTP Sessions cannot
be shared across web applications. An extension to the servlet
specification is provided to allow this sharing.

shareSessionsAcrossWebApps = false

Set to true if you want to enable urlRewriting. Default is
false, which means cookies will be used to store data. The
value of this should reflect what is set in the web container
settings for session management.

useURLEncoding = false

Using WebSphere eXtreme Scale for SIP session management:

Chapter 7. Configuring the deployment environment 299

You can use WebSphere eXtreme Scale as a Session Initiation Protocol (SIP)
replication mechanism as a reliable alternative to the data replication service (DRS)
for SIP session replication.

SIP session management configuration

To use WebSphere eXtreme Scale as the SIP replication mechanism, set the
com.ibm.sip.ha.replicator.type custom property. In the administrative console, select
Application servers > my_application_server > SIP container > Custom
properties for each server to add the custom property. Type
com.ibm.sip.ha.replicator.type for the Name and OBJECTGRID for the Value.

Use the following properties to customize the behavior of the ObjectGrid that is
used to store SIP sessions. In the administrative console, click Application servers
> my_application_server > SIP container > Custom properties for each server to
add the custom property. Type the Name and Value. Each server must have the
same properties set to function properly.

Table 21. Custom properties for SIP session management with ObjectGrid

Property Value Default

com.ibm.sip.ha.replicator.type OBJECTGRID: use ObjectGrid as SIP session store

min.synchronous.replicas Minimum number of synchronous replicas 0

max.synchronous.replicas Maximum number of synchronous replicas 0

max.asynchronous.replicas Maximum number of asynchronous replicas 1

auto.replace.lost.shards See “Configuring distributed deployments” on page
174 for more information.

true

development.mode
v true - allow replicas to be active on same node as

primaries

v false - replicas must be on different node than
primaries

false

XML files for HTTP session manager configuration
When you start a container server that stores HTTP session data, you can either
use the default XML files or you can specify customized XML files that create
specific ObjectGrid names, number of replicas, and so on.

Sample files location

These XML files are packaged in wxs_install_root/ObjectGrid/session/samples for a
stand-alone installation or was_root/optionalLibraries/ObjectGrid/session/
samples for WebSphere eXtreme Scale installed in a WebSphere Application Server
cell.

Embedded XML package

If you are configuring an embedded scenario, which means that the container
server starts in the web container tier, the objectGrid.xml and
objectGridDeployment.xml files are provided by default. You can update these files
to customize the behavior of the HTTP session manager.

objectGrid.xml file
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd" xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="session">

300 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<bean id="ObjectGridEventListener" className="com.ibm.ws.xs.sessionmanager.SessionHandleManager"/>
<backingMap name="objectgridSessionMetadata" pluginCollectionRef="objectgridSessionMetadata" readOnly="false"
lockStrategy="PESSIMISTIC" ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3600" copyMode="NO_COPY"/>

<backingMap name="objectgridSessionAttribute.*" template="true" readOnly="false" lockStrategy="PESSIMISTIC"
ttlEvictorType="NONE" copyMode="NO_COPY"/>
<backingMap name="objectgridSessionTTL.*" template="true" readOnly="false" lockStrategy="PESSIMISTIC"

ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3600" copyMode="NO_COPY"/>
</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="objectgridSessionMetadata">

<bean id="MapEventListener" className="com.ibm.ws.xs.sessionmanager.MetadataMapListener"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Values you can change:

v ObjectGrid name attribute: The value must match the following values in other
configuration files:
– The objectGridName property in the splicer.properties file that is used to

splice the web application.
– The objectgridName attribute in the objectGridDeployment.xml file.

If you have multiple applications, and you want the session data to be stored in
different grids, those applications should have different ObjectGrid name
attribute values. The name of the ObjectGrid is the only thing that can be
changed in this file.

Values that you cannot change:

v ObjectGridEventListener: The ObjectGridEventListener line cannot be changed
and is used internally.

v objectgridSessionMetadata: The objectgridSessionMetadata line refers to the
map where the HTTP session metadata is stored. There is one entry for every
HTTP session stored in the grid in this map.

v objectgridSessionTTL*: This value cannot be changed and is for future use.
v objectgridSessionAttribute.* The objectgridSessionAttribute.* line defines a

dynamic map that is used to create the map in which HTTP session attributes
are stored when the fragmentedSession parameter is set to true in the
splicer.properties file that is used to splice the web application. This dynamic
map is called objectgridSessionAttribute. Another map is created based on this
template called objectgridSessionAttributeEvicted, which stores sessions that
have timed out, but the web container has not invalidated.

v The MapEventListener line is internal and cannot be modified

objectGridDeployment.xml file
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="session">
<mapSet name="sessionMapSet" numberOfPartitions="5" minSyncReplicas="0" maxSyncReplicas="0"
maxAsyncReplicas="1" developmentMode="false" placementStrategy="PER_CONTAINER">

<map ref="objectgridSessionMetadata"/>
<map ref="objectgridSessionAttribute.*"/>
<map ref="objectgridSessionTTL.*"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Values you can change:

v objectgridName attribute: The value must match the following values in other
configuration files:

Chapter 7. Configuring the deployment environment 301

– The objectGridName property in the splicer.properties file that is used to
splice the web application.

– The ObjectGrid name attribute in the objectGrid.xml file.

If you have multiple applications, and you want the session data to be stored in
different grids, those applications should have different ObjectGrid name
attribute values.

v mapSet element attributes: You can change all mapSet properties can be
changed except for the placementStrategy attribute.

Name Can be updated to any value.

numberOfPartitions
Specifies the number of primary partitions that are started in each server
that is hosting the web application. As you add partitions, the data
becomes more spread out in the event of a failover. The default value is
5 partitions, and is fine for most applications.

minSyncReplicas, maxSyncReplicas, and maxAsyncReplicas
Specifies the number and type of replicas that store the HTTP session
data. The default is 1 asynchronous replica, which is fine for most
applications. Synchronous replication occurs during the request path,
which can increase the response times for your web application.

developmentMode
Informs the eXtreme Scale placement service whether the replica shards
for a partition can be placed on the same node as its primary shard. You
can set the value to true in a development environment, but disable this
function in a production environment because a node failure could cause
the loss of session data.

placementStrategy
Do not change the value of this attribute.

v The rest of the file refers to the same map names as in the objectGrid.xml. These
names cannot be changed.

Values you cannot change:

v The placementStrategy attribute on the mapSet element.

Remote XML package

When you are using the remote mode, where the containers run as standalone
processes, you must use the objectGridStandAlone.xml and
objectGridDeploymentStandAlone.xml files to start the processes. You can update
these files to modify the configuration.

objectGridStandAlone.xml file
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="session">
<bean id="ObjectGridEventListener" className="com.ibm.ws.xs.sessionmanager.SessionHandleManager"/>

<backingMap name="objectgridSessionMetadata" pluginCollectionRef="objectgridSessionMetadata"
readOnly="false" lockStrategy="PESSIMISTIC" ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3600"
copyMode="COPY_TO_BYTES"/>

<backingMap name="objectgridSessionAttribute.*" template="true" readOnly="false" lockStrategy="PESSIMISTIC"
ttlEvictorType="NONE" copyMode="COPY_TO_BYTES"/>

<backingMap name="objectgridSessionTTL.*" template="true" readOnly="false" lockStrategy="PESSIMISTIC"
ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3600" copyMode="COPY_TO_BYTES"/>

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="objectgridSessionMetadata">

302 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<bean id="MapEventListener" className="com.ibm.ws.xs.sessionmanager.MetadataMapListener"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Values you can change:

v objectgridName attribute: The value must match the following values in other
configuration files:
– The objectGridName property in the splicer.properties file that is used to

splice the web application.
– The ObjectGrid name attribute in the objectGridStandAlone.xml file.

If you have multiple applications, and you want the session data to be stored in
different grids, those applications should have different ObjectGrid name
attribute values. The name of the ObjectGrid is the only thing that can be
changed in this file.

Values you cannot change:

v ObjectGridEventListener: The ObjectGridEventListener line cannot be changed
and is used internally.

v objectgridSessionMetadata: The objectgridSessionMetadata line refers to the
map where the HTTP session metadata is stored. There is one entry for every
HTTP session stored in the grid in this map.

v objectgridSessionTTL*: This value cannot be changed and is for future use.
v objectgridSessionAttribute.* The objectgridSessionAttribute. line defines a

dynamic map that is used to create the map in which HTTP session attributes
are stored when the fragmentedSession parameter is set to true in the
splicer.properties file that is used to splice the web application. This dynamic
map is called objectgridSessionAttribute. Another map is created based on this
template called objectgridSessionAttributeEvicted, which stores sessions that
have timed out, but the web container has not invalidated.

v The MetadataMapListener line is internal and cannot be modified

objectGridDeploymentStandAlone.xml file
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="session">
<mapSet name="sessionMapSet" numberOfPartitions="5" minSyncReplicas="0" maxSyncReplicas="0"
maxAsyncReplicas="1" developmentMode="false" placementStrategy="PER_CONTAINER">

<map ref="objectgridSessionMetadata"/>
<map ref="objectgridSessionAttribute.*"/>
<map ref="objectgridSessionTTL.*"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Values you can change:

v objectgridName attribute: The value must match the following values in other
configuration files:
– The objectGridName property in the splicer.properties file that is used to

splice the web application.
– The ObjectGrid name attribute in the objectGrid.xml file.

Chapter 7. Configuring the deployment environment 303

If you have multiple applications, and you want the session data to be stored in
different grids, those applications should have different ObjectGrid name
attribute values.

v mapSet element attributes: You can change all mapSet properties except for the
placementStrategy attribute.

Name Can be updated to any value.

numberOfPartitions
Specifies the number of primary partitions that are started in each server
that is hosting the web application. As you add partitions, the data
becomes more spread out in the event of a failover. The default value is
5 partitions, and is fine for most applications.

minSyncReplicas, maxSyncReplicas, and maxAsyncReplicas
Specifies the number and type of replicas that store the HTTP session
data. The default is 1 asynchronous replica, which is fine for most
applications. Synchronous replication occurs during the request path,
which can increase the response times for your web application.

developmentMode
Informs the eXtreme Scale placement service whether the replica shards
for a partition can be placed on the same node as its primary shard. You
can set the value to true in a development environment, but disable this
function in a production environment because a node failure could cause
the loss of session data.

placementStrategy
Do not change the value of this attribute.

v The rest of the file refers to the same map names as in the objectGrid.xml file.
These names cannot be changed.

Values you cannot change:

v The placementStrategy attribute on the mapSet element.

Configuring HTTP session manager with WebSphere Portal
You can persist HTTP sessions from WebSphere Portal into a data grid.

Before you begin

Your WebSphere eXtreme Scale and WebSphere Portal environment must meet the
following requirements:

v
Fix 1+ WebSphere eXtreme Scale Version 7.1 must have Fix 1 or later

applied.
How you install WebSphere eXtreme Scale depends on your deployment
scenario. You can run the container servers, which host the data grids, either
inside or outside of the WebSphere Application Server cell:
– If you are running container servers in the WebSphere Application Server cell

(embedded scenario): Install both the WebSphere eXtreme Scale client and
server on your WebSphere Application Server and WebSphere Portal nodes.

– If you are running container servers outside of the WebSphere Application
Server cell (remote scenario): Install WebSphere eXtreme Scale Client on your
WebSphere Application Server and WebSphere Portal nodes.

See “Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client
with WebSphere Application Server” on page 26 for more information.

v WebSphere Portal Version 7.0.0.0.

304 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Custom portlets must be configured within WebSphere Portal. The
administrative portlets that come with WebSphere Portal cannot currently be
integrated with data grids.

About this task

Introducing WebSphere eXtreme Scale into a WebSphere Portal environment can be
beneficial in the following scenarios:

Important: Although the following scenarios introduce benefits, increased
processor usage in the WebSphere Portal tier can result from introducing
WebSphere eXtreme Scale into the environment.
v When session persistence is required.

For example, if the session data from your custom portlets must stay available
during a WebSphere Portal Server failure, you can persist the HTTP sessions to
the WebSphere eXtreme Scale data grid. Data replicates among many servers,
increasing data availability.

v In a multiple data center topology.

If your topology spans multiple data centers across different physical locations,
you can persist the WebSphere Portal HTTP sessions to the WebSphere eXtreme
Scale data grid. The sessions replicate across data grids in the data centers. If a
data center fails, the sessions are rolled over to another data center that has a
copy of the data grid data.

v To lower memory requirements on the WebSphere Portal Server tier.

By offloading session data to a remote tier of container servers, a subset of
sessions are on the WebSphere Portal servers. This offload of data reduces the
memory requirements on the WebSphere Portal Server tier.

Procedure
1. Splice the wps WebSphere Portal application and any custom portlets to enable

the sessions to be stored in the data grid.
You can splice the application by configuring HTTP session management when
you deploy the application, or you can use custom properties to automatically
splice your applications. See “Configuring the HTTP session manager with
WebSphere Application Server” on page 288 for more information about
splicing the application.

2. If you are using a remote scenario where container servers run in different
processes than the servlets, set the timeout.resume.session custom property in
the WebSphere Application Server administrative console. By default,
WebSphere Portal verifies the HTTP session ID at various times during a
request. When you are running a WebSphere eXtreme Scale remote scenario
and the number of HTTP sessions is higher than the configured
sessionTableSize parameter, the session ID can change. For more information
about the sessionTableSize attribute, see “Servlet context initialization
parameters” on page 308. You must configure the timeout.resume.session
within the WP_ConfigService resource environment provider to prevent users
from being logged out if their session is invalidated from the WebSphere
session cache.
a. In the WebSphere Application Server administrative console, click

Resources > Resource Environment > Resource Environment Providers >
WP_ConfigService > Custom Properites > New.

b. Create a custom property with a name of timeout.resume.session and a
value of true.

Chapter 7. Configuring the deployment environment 305

3. If you are using the remote scenario, where your container servers are outside
of the WebSphere Application Server, explicitly start remote eXtreme Scale
containers for remote HTTP session persistence scenarios. Start the containers
with the XS/ObjectGrid/session/samples/objectGridStandAlone.xml and
objectGridDeploymentStandAlone.xml configuration files. For example, you
might use the following command:
startOgServer.sh xsContainer1 -catalogServiceEndPoints <host>:<port>
-objectgridFile XS/ObjectGrid/session/samples/objectGridStandAlone.xml -deploymentPolicyFile
XS/ObjectGrid/session/samples/objectGridDeploymentStandAlone.xml

For more information about starting container servers, see “Starting container
processes” on page 354. If you are using an embedded scenario, see
“Configuring container servers in WebSphere Application Server” on page 221
for more information about configuring and starting container servers.

4. Restart the WebSphere Portal servers. See WebSphere Portal Version 7: Starting
and stopping servers, deployment managers, and node agents for more
information.

Results

You can access the WebSphere Portal Server, and HTTP session data for the
configured custom portlets is persisted to the data grid.

7.1.0.3+ If the entire data grid that is hosting the application session data is
unreachable from the web container client, the client instead uses the base web
container in WebSphere Application Server for session management. The data grid
might be unreachable in the following scenarios:
v A network problem between the Web container and the remote container

servers.
v The remote container server processes have been stopped.

The number of session references kept in memory, specified by sessionTableSize
parameter, is still maintained when the sessions are stored in the base web
container. The least recently used sessions are invalidated from the web container
session cache when the sessionTableSize value is exceeded. If the remote data
grid becomes available, sessions that were invalidated from the web container
cache can retrieve data from the remote data grid and load the data into a new
session. If the entire remote data grid is not available and the session is invalidated
from the session cache, the user’s session data is lost. Because of this issue, you
should not shut down the entire production remote data grid when the system is
running under load.

Configuring the HTTP session manager for various application
servers
WebSphere eXtreme Scale is bundled with a session management implementation
that overrides the default session manager for a web container and provides
session replication, high availability, better scalability, and configuration options.
You can enable the WebSphere eXtreme Scale session replication manager and
generic embedded ObjectGrid container startup.

About this task

You can use the HTTP session manager with other application servers that are not
running WebSphere Application Server, such as WebSphere Application Server
Community Edition. To configure other application servers to use the data grid,

306 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Starting_and_stopping_servers_deployment_managers_and_node_agents_wp7
http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Starting_and_stopping_servers_deployment_managers_and_node_agents_wp7

you must splice your application and incorporate WebSphere eXtreme Scale Java
archive (JAR) files into your application.

Procedure
1. Splice your application so that it can use the session manager. To use the

session manager, you must add the appropriate filter declarations to the web
deployment descriptors for the application. In addition, session manager
configuration parameters are passed in to the session manager in the form of
servlet context initialization parameters in the deployment descriptors. There
are three ways in which you can introduce this information into your
application:
v addObjectGridFilter script

Use a command-line script provided along with eXtreme Scale to splice an
application with filter declarations and configuration in the form of servlet
context initialization parameters. Thewxs_home/session/bin/
addObjectGridFilter.sh|bat script takes two parameters: the absolute path
to the enterprise archive (EAR) file that you want to splice, and the absolute
path to the splicer properties file that contains various configuration
properties. The usage format of this script is as follows:

Windows

addObjectGridFilter.bat [location of ear file] [location of properties file]

UNIX

addObjectGridFilter.sh [location of ear file] [location of properties file]

UNIX Example using eXtreme Scale installed in a stand-alone directory
on UNIX:

a. cd wxs_home/session/bin

b. addObjectGridFilter.sh /tmp/mySessionTest.ear wxs_home/session/
samples/splicer.properties

The servlet filter that is spliced in maintains defaults for configuration
values. You can override these default values with configuration options that
you specify in the properties file in the second argument. For a list of the
parameters that you can use, see “Servlet context initialization parameters”
on page 308.
You can modify and use the sample splicer.properties file that is provided
with the eXtreme Scale installation. You can also use the
addObjectGridServlets script, which inserts the session manager by
extending each servlet. However, the recommended script is the
addObjectGridFilter script.

v Ant build script

WebSphere eXtreme Scale ships with a build.xml file that can be used by
Apache Ant, which is included in the was_root/bin folder of a WebSphere
Application Server installation. You can modify the build.xml file to change
the session manager configuration properties. The configuration properties
are identical to the property names in the splicer.properties file. After the
build.xml file has been modified, invoke the Ant process by running ant.sh,
ws_ant.sh (UNIX) or ant.bat, ws_ant.bat (Windows).

v Update the web descriptor manually

Edit the web.xml file that is packaged with the web application to incorporate
the filter declaration, its servlet mapping, and servlet context initialization
parameters. Do not use this method because it is prone to errors.

Chapter 7. Configuring the deployment environment 307

For a list of the parameters that you can use, see “Servlet context initialization
parameters.”

2. Incorporate the WebSphere eXtreme Scale session replication manager JAR files
into your application. You can embed the files into the application module
WEB-INF/lib directory or in the application server classpath. The required JAR
files vary depending on the type of containers that you are using:
v Remote container servers: ogclient.jar and sessionobjectgrid.jar

v Embedded container servers: objectgrid.jar and sessionobjectgrid.jar

3. Optional: If you use remote container servers, start the container servers. See
“Starting container processes” on page 354 for details.

4. Deploy the application. Deploy the application with your normal set of steps
for a server or cluster. After you deploy the application, you can start the
application.

5. Access the application. You can now access the application, which interacts
with the session manager and WebSphere eXtreme Scale.

What to do next

You can change a majority of the configuration attributes for the session manager
when you instrument your application to use the session manager. These attributes
include variations to the replication type (synchronous or asynchronous),
in-memory session table size, and so on. Apart from the attributes that can be
changed at application instrumentation time, the only other configuration
attributes that you can change after the application deployment are the attributes
that are related to the WebSphere eXtreme Scale server cluster topology and the
way that their clients (session managers) connect to them.

7.1.0.3+ Remote scenario behavior: If the entire data grid that is hosting the
application session data is unreachable from the web container client, the client
instead uses the base web container of the application server for session
management. The data grid might be unreachable in the following scenarios:
v A network problem between the Web container and the remote container

servers.
v The remote container server processes have been stopped.

The number of session references kept in memory, specified by sessionTableSize
parameter, is still maintained when the sessions are stored in the base web
container. The least recently used sessions are invalidated from the web container
session cache when the sessionTableSize value is exceeded. If the remote data
grid becomes available, sessions that were invalidated from the web container
cache can retrieve data from the remote data grid and load the data into a new
session. If the entire remote data grid is not available and the session is invalidated
from the session cache, the user session data is lost. Because of this issue, do not
shut down the entire production remote data grid when the system is running
under load.

Servlet context initialization parameters
The following list of servlet context initialization parameters can be specified in the
splicer properties file as required in the chosen splicing method.

Parameters

objectGridType

A string value of either "REMOTE" or "EMBEDDED". The default is REMOTE.

308 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

If it is set to "REMOTE", the session data is stored outside of the server on
which the web application is running.

If it is set to "EMBEDDED", an embedded eXtreme Scale container starts in the
application server process on which the web application is running.

objectGridName

A string value that defines the name of the ObjectGrid instance used for a
particular web application. The default name is session.

This property must reflect the objectGridName in both the ObjectGrid XML
and deployment XML files used to start the eXtreme Scale containers.

catalogHostPort

The catalog server can be contacted to obtain a client side ObjectGrid instance.
The value must be of the form host:port<,host:port>, where the host is the
listener host on which the catalog server is running, and the port is the listener
port for that catalog server process. This list can be arbitrarily long and is used
for bootstrapping only. The first viable address is used. It is optional inside
WebSphere Application Server if the catalog.services.cluster property is
configured.

replicationInterval

An integer value (in seconds) that defines the time between writing of updated
sessions to ObjectGrid. The default is 2. Possible values are from 0 to 60. 0
means that updated sessions are written to the ObjectGrid at the end of servlet
service method call for each request. A higher replicationInterval value
improves performance because fewer updates are written to the data grid.
However, a higher value makes the configuration less fault tolerant.

This setting applies only when objectGridType is set to "REMOTE".

sessionTableSize

An integer value that defines the number of session references kept in memory.
The default is 2000.

This setting pertains only to a REMOTE topology because the EMBEDDED
topology already has the session data in the same tier as the web container.

Sessions are evicted from the in-memory table based on Least Recently Used
logic. When a session is evicted from the in-memory table, it is invalidated
from the web container. However, the data is not removed from the grid, so
subsequent requests for that session can still retrieve the data. This value must
be set higher than the web container maximum thread pool value, which
reduces contention on the session cache.

fragmentedSession

A string value of either "true" or "false." The default value is "true." Use this
setting to control whether the product stores session data as a whole entry, or
stores each attribute separately.

Set fragmentedSession to "true" if the web application session has many
attributes or attributes with large sizes. Set fragmentedSession to "false" only if
a session has few attributes, because all the attributes are stored in the same
key in the data grid.

In the previous, filter-based implementation, this property was referred to as
persistenceMechanism, with the possible values of ObjectGridStore
(fragmented) and ObjectGridAtomicSessionStore (not fragmented).

Chapter 7. Configuring the deployment environment 309

securityEnabled

A string value of either "true" or "false." The default value is "false." This
setting enables eXtreme Scale client security. It must match the securityEnabled
setting in the eXtreme Scale server properties file. If the settings do not match,
an exception occurs.

credentialGeneratorClass

The name of the class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface.
This class is used to obtain credentials for clients.

credentialGeneratorProps

The properties for the CredentialGenerator implementation class. The
properties are set to the object with the setProperties(String) method. The
credentialGeneratorProps value is used only if the value of the
credentialGeneratorClass property is not null.

objectGridXML

The file location of the objectgrid.xml file. The built-in XML file packaged in
the eXtreme Scale library will be loaded automatically if
objectGridType=EMBEDDED and the objectGridXML property is not specified.

objectGridDeploymentXML

Specifies the location of the objectGrid deployment policy XML file. The
built-in XML file packaged in the eXtreme Scale library is loaded automatically
if objectGridType=EMBEDDED and the objectGridDeploymentXML property is
not specified.

traceSpec

Specifies the IBM WebSphere trace specification as a string value. Use this
setting for application servers other than WebSphere Application Server.

traceFile

Specifies the trace file location as a string value. Use this setting for application
servers other than WebSphere Application Server.

Fix 1+ cookieName
Overrides the servlet specification that is designated as the cookie or encoded
URL name of JSESSIONID. If the cookieName value is changed from
JSESSIONID, you must configure the application servers to use this value as
well.

Fix 1+ cookieDomain
Specifies if you require sessions to be accessible across hosts. Set the value to
the name of the common domain between the hosts.

Fix 1+ reuseSessionID
Set to true if the underlying web container reuses session IDs across requests
to different hosts. The default value is false. The value of this property must
be the same as the value in the web container.

Fix 1+ shareSessionsAcrossWebApps
Specifies if sessions are shared across web applications, specified as a string
value of either true or false. The default is false. The servlet specification

310 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

states that HTTP Sessions cannot be shared across web applications. An
extension to the servlet specification is provided to allow this sharing.

7.1.0.3+ useURLEncoding
Set to true if you want to enable URL rewriting. The default value is false,
which indicates that cookies are used to store session data. The value of this
parameter must be the same as the web container settings for session
management.

Configuring the dynamic cache provider for WebSphere
eXtreme Scale

Installing and configuring the dynamic cache provider for eXtreme Scale depends
on what your requirements are and the environment you have set up.

Before you begin
v To use the dynamic cache provider, WebSphere eXtreme Scale must be installed

on top of the WebSphere Application Server node deployments, including the
deployment manager node. See “Installing WebSphere eXtreme Scale or
WebSphere eXtreme Scale Client with WebSphere Application Server” on page
26 for more information.

v Global security must be enabled in the WebSphere Application Server
administrative console, if the catalog servers within your catalog service domain
have Secure Sockets Layer (SSL) enabled or you want to use SSL for a catalog
service domain with SSL supported. You require SSL for a catalog server by
setting the transportType attribute to SSL-Required in the “Server properties file”
on page 199. For more information about configuring global security, see Global
security settings.

About this task

For information about using the eXtreme Scale dynamic cache provider with IBM
WebSphere Commerce, see the following topics in the IBM WebSphere Commerce
documentation:
v Enabling the dynamic cache service and servlet caching
v Enabling WebSphere Commerce data cache

If you are not specifically directing your caching to a defined Object Cache or
Servlet Cache instance, then it is likely that the Dynamic Cache API calls are being
serviced by the baseCache. If you want to use the eXtreme Scale dynamic cache
provider for JSP, Web services or command caching, then you must set the
baseCache instance to use the eXtreme Scale dynamic cache provider. The same
configuration properties are used to configure the baseCache instance. Remember
that these configuration properties need to be set as Java Virtual Machine (JVM)
custom properties. This caveat applies to any cache configuration property
discussed in this section except for servlet caching. To use eXtreme Scale with the
dynamic cache provider for servlet caching, be sure to configure enablement in
system properties rather than custom properties.

Procedure
1. Enable the eXtreme Scale dynamic cache provider.

v WebSphere Application Server Version 7.0 and later:

You can configure the dynamic cache service to use the eXtreme Scale
dynamic cache provider with the administrative console. After you install
eXtreme Scale, the eXtreme Scale dynamic cache provider is immediately

Chapter 7. Configuring the deployment environment 311

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=usec_secureadminappinfra
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=usec_secureadminappinfra
http://publib.boulder.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.admin.doc/tasks/tdcendcservice.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.admin.doc/tasks/tdcenabcommdatacache.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/xrun_jvm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/xrun_jvm.html

available as a Cache Provider option in the administrative console. For more
information, seeWebSphere Application Server Version 7.0 information center:
Selecting a cache service provider.

v WebSphere Application Server Version 6.1:

Use a custom property to configure the dynamic cache service to use the
eXtreme Scale dynamic cache provider. You can also use these custom
properties in WebSphere Application Server Version 7.0 and later. To create a
custom property on a cache instance, click Resources > Cache instances >
cache_instance_type > cache_instance_name > Custom properties > New. If
you are using the base cache instance, create the custom properties on the
JVM.

com.ibm.ws.cache.CacheConfig.cacheProviderName
To use the eXtreme Scale dynamic cache provider, set the value to
com.ibm.ws.objectgrid.dynacache.CacheProviderImpl. You can
create this custom property on a dynamic cache instance, or the base
cache instance. If you choose to set the custom property on the base
cache instance, then all other cache instances on the server use the
eXtreme Scale provider by default. Any eXtreme Scale dynamic cache
provider configuration properties set for the baseCache are the
default configuration properties for all cache instances backed by
eXtreme Scale. To override the base cache instance and make a
particular dynamic cache instance use the default dynamic cache
provider, create the
com.ibm.ws.cache.CacheConfig.cacheProviderName custom property
on the dynamic cache instance and set the value to default.

2. Optional: If you are using replicated cache instances, configure the replication
setting for the cache.
With the eXtreme Scale dynamic cache provider, you can have local cache
instances or replicated cache instances. If you are only using local cache
instances, you can skip this step.
Use one of the following methods to configure the replicated cache:
v Enable cache replication with the administrative console. You can enable

cache replication at any time in WebSphere Application Server Version 7.0. In
WebSphere Application Server Version 6.1, you must create a DRS replication
domain.

v Enable cache replication with the
com.ibm.ws.cache.CacheConfig.enableCacheReplication custom property to
force the cache to report that it is a replicated cache, even though a DRS
replication domain has not been assigned to it. Set the value of this custom
property to true. Set this custom property on the cache instance if you are
using an object cache or servlet cache, or on the JVM if you are using the
baseCache instance.

3. Optional: If you are using eXtreme Scale as a JSP fragment cache, set the
com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation custom property to
true to disable template-based invalidations during JSP reloads.

4. Configure the topology for the dynamic cache service.
The only required configuration parameter for the eXtreme Scale dynamic cache
provider is the cache topology. Set the custom property on the dynamic cache
service. Enter the name of the custom property as:
com.ibm.websphere.xs.dynacache.topology.
The three possible values for this property follow. You must use one of the
allowed values:

312 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udyn_rcachesettings.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udyn_rcachesettings.html

v embedded

v embedded_partitioned

v remote

If you are using embedded or embedded partitioned topologies, consider
setting the com.ibm.ws.cache.CacheConfig.ignoreValueInInvalidationEvent
custom property to true to save some serialization costs. Set this custom
property on the cache instance or the JVM if you are using the baseCache
instance.

5. Optional: If you are using an embedded partitioned topology, configure the
number of initial containers for the dynamic cache service.
You can maximize the performance of caches that are using the embedded
partitioned topology by configuring the number of initial containers. Set the
variable as a system property on the WebSphere Application Server Java virtual
machine.
Enter the name of the property as:
com.ibm.websphere.xs.dynacache.num_initial_containers.
The recommended value of this configuration property is an integer that is
equal to or slightly less than the total number of WebSphere Application Server
instances that are accessing this distributed cache instance. For example, if a
dynamic cache service is shared between data grid members, then the value
should be set to the number of data grid members.
For embedded or embedded_partitioned topologies, you must be using Version
7.0 of WebSphere Application Server. Set the following custom property on the
JVM process to ensure that the initial containers are available right away.
com.ibm.ws.cache.CacheConfig.createCacheAtServerStartup=true

6. Configure the eXtreme Scale catalog service grid.
When you are using eXtreme Scale as the dynamic cache provider for a
distributed cache instance, you must configure an eXtreme Scale catalog service
domain.
A single catalog service domain can service multiple dynamic cache service
providers backed by eXtreme Scale.

7.1+ A catalog service can run inside or outside of WebSphere Application
Server processes. Starting with eXtreme Scale Version 7.1, when you use the
administrative console to configure catalog service domains, the dynamic cache
uses these settings. It is not necessary to take additional steps to set up a
catalog service. For more information, see “Creating catalog service domains in
WebSphere Application Server” on page 206.

7. Configure custom key objects.
When you are using custom objects as keys the objects must implement the
Serializable or Externalizable interface. When you are using the embedded or
embedded partitioned topologies, you must place objects on the WebSphere
shared library path, just like if they were being used with the default dynamic
cache provider. See Using the DistributedMap and DistributedObjectCache
interfaces for the dynamic cache in the WebSphere Application Server Network
Deployment information center for more details.
If you are using the remote topology, you must place the custom key objects on
the CLASSPATH for the standalone eXtreme Scale containers. See “Starting
container processes” on page 354 for more information.

8. Optional: If you are using a remote topology, configure the eXtreme Scale
container servers.
v Embedded or embedded partitioned topology:

Chapter 7. Configuring the deployment environment 313

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tdyn_distmap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tdyn_distmap.html

The cached data is stored in WebSphere eXtreme Scale container servers.
Container servers can run inside or outside of WebSphere Application Server
processes. The eXtreme Scale provider automatically creates containers inside
the WebSphere process when you are using embedded or embedded
partitioned topologies for a cache instance. No further configuration is
needed for these topologies.

v Remote topology:

When you are using the remote topology, you must start up stand-alone
eXtreme Scale container servers before the WebSphere Application Server
instances that access the cache instance start. See the steps to start
stand-alone container servers in the Administration Guide for more
information. Verify that all the container servers for a specific dynamic cache
service point to the same catalog service endpoints.
The XML configuration files for the stand-alone eXtreme Scale dynamic cache
provider containers are in either the wxs_install_root/customLibraries/
ObjectGrid/dynacache/etc directory for installations on top of WebSphere
Application Server, or the wxs_install_root/ObjectGrid/dynacache/etc
directory for stand-alone installations. The files are named
dynacache-remote-objectgrid.xml and dynacache-remote-definition.xml.
Make copies of these files to edit and use when you are starting stand-alone
containers for the eXtreme Scale dynamic cache provider. The
numInitialContainers parameter in the dynacache-remote-deployment.xml
file must match the number of container processes that are running. Note
that the numberOfPartitions attribute in the dynacache-remote-
objectgrid.xml file has a default value of 47.

Note: The set of container server processes must have enough free memory
to service all the dynamic cache instances that are configured to use the
remote topology. Any WebSphere Application Server process that shares the
same or equivalent values for the catalog.services.cluster custom property
must use the same set of stand-alone containers. The number of containers
and number of servers on which they reside must be sized appropriately. See
“Dynamic cache capacity planning” on page 12 for additional details.
A command line entry that starts a stand-alone container for the eXtreme
Scale dynamic cache provider follows:

UNIX

startOgServer.sh container1 -objectGridFile
../dynacache/etc/dynacache-remote-objectgrid.xml -deploymentPolicyFile
../dynacache/etc/dynacache-remote-deployment.xml -catalogServiceEndPoints
MyServer1.company.com:2809

9. For distributed or embedded topologies, enable the sizing agent to improve
memory consumption estimates.
The sizing agent estimates memory consumption (usedBytes statistic). The
agent requires a Java 5 or higher JVM.
Load the agent by adding the following argument to the JVM command line:
-javaagent:WXS lib directory/wxssizeagent.jar

For an embedded topology, add the argument to the command line of the
WebSphere Application Server process.
For a distributed topology, add the argument to command line of the eXtreme
Scale processes (containers) and the WebSphere Application Server process.

314 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Configuring Spring integration
You can configure Spring to manage WebSphere eXtreme Scale transactions and
configure clients and servers.

Spring descriptor XML file
Use a Spring descriptor XML file to configure and integrate eXtreme Scale with
Spring.

In the following sections, each element and attribute of the Spring objectgrid.xsd
file is defined. The Spring objectgrid.xsd file is in the ogspring.jar file and the
objectgrid namespace com/ibm/ws/objectgrid/spring/namespace. See the “Spring
objectgrid.xsd file” on page 321 for an example of the descriptor XML schema.

register element

Use the register element to register the default bean factory for the ObjectGrid.
v Number of occurrences: Zero to many
v Child element: None

Attributes

id Specifies the name of the default bean directory for a particular ObjectGrid.

gridname
Specifies the name of the ObjectGrid instance. The value assigned to this
attribute must correspond to a valid ObjectGrid configured in the ObjectGrid
descriptor file.

<register
id="register id"
gridname="ObjectGrid name"
/>

server element

Use the server element to define a server, which can host a container, a catalog
service, or both.
v Number of occurrences: Zero to many
v Child element: None

Attributes

id Specifies the name of the eXtreme Scale server.

tracespec
Indicates the type of trace and enables trace and trace specification for the
server.

tracefile
Provides the path and name of the traceFile to create and use.

statspec
Indicates the statistic specification for the server.

jmxport
Designates the unused port number through which you want to enable
JMX/RMI connections. JMX enables monitoring and management from remote
systems.

Chapter 7. Configuring the deployment environment 315

isCatalog
Specifies whether the particular server hosts a catalog service. The default
value is false.

name
Specifies the name of the server.

haManagerPort
Sets the port number for the High Availability Manager (HA Manager).

listenerHost
Sets the host name to which the ORB should bind.

listenerPort
Sets the port to which the ORB should bind.

maximumThreadPoolSize
Sets the maximum number of threads in the pool.

memoryThresholdPercentage
Sets the memory threshold (percentage of max heap) for memory based
eviction.

minimumThreadPoolSize
Sets the minimum number of threads in the pool.

workingDirectory
The property that defines which directory the ObjectGrid server should use for
all default settings.

zoneName
Defines the zone to which this server belongs.

enableSystemStreamToFile
Defines whether SystemOut and SystemErr should be sent to a file.

enableMBeans
Determines whether or not the ObjectGrid will register MBeans in this process.

serverPropertyFile
Loads the server properties from a file.

catalogServerProperties
Specifies the catalog server that hosts server.

<server
id="server id"
tracespec="the server trace specification"
tracefile="the server trace file"
statspec="the server statistic specification"
jmxport="JMX port number"
isCatalog="true"|”false”
name="the server name”
haManagerPort="the haManager port"
listenerHost="the orb binding host name"
listenerPort="the orb binding listener port"
maximumThreadPoolSize="the number of maximum threads"
memoryThresholdPercentage="the memory threshold (percentage of max heap)"
minimumThreadPoolSize="the number of minimum threads"
workingDirectory="location for the working directory"
zoneName="the zone name"
enableSystemStreamToFile="true"|”false”
enableMBeans="true"|”false”
serverPropertyFile="location of the server properties file."
catalogServerProperties="the catalog server properties reference"
/>

catalog element

Use the catalog element to route to container servers in the data grid.
v Number of occurrences: Zero to many

316 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Child element: None

Attributes

host
Specifies the host name of the workstation where the catalog service is
running.

port
Specifies the port number paired with the host name to determine the catalog
service port which the client can connect to.

<catalog
host="catalog service host name"
port="catalog service port number"
/>

catalog server element

Use the catalog Server properties element to define a catalog server service.
v Number of occurrences: Zero to many
v Child element: None

Attributes

catalogServerEndPoint
Specifies the connection properties for the catalog server.

enableQuorum
Determines whether to enable quorum.

heartBeatFrequencyLevel
Sets the heartbeat frequency level.

domainName
Defines the domain name used to uniquely identify this catalog service grid to
clients when routing to multiple domains.

foreignDomains
A bidirectional connection will be established to each of the foreign domains
for the purpose of exchanging data in a multi-primary scenario.

clusterSecurityURL
Sets the location of the security file specific to the catalog service.

<catalog server
catalogServerEndPoint="a catalog server endpoint reference "
enableQuorum="true"|”false”
heartBeatFrequencyLevel="
HEARTBEAT_FREQUENCY_LEVEL_TYPICAL|
HEARTBEAT_FREQUENCY_LEVEL_RELAXED|
HEARTBEAT_FREQUENCY_LEVEL_AGGRESSIVE"
domainName="the domain name used to uniquely identify this catalog service grid"
domainEndpoints="a reference to the domain name endpoints"
foreignDomains="the name of the foreign domain"
clusterSecurityURL="the The cluster security file location."

/>

catalog server endpoint element

Use the catalog server endpoint element to create a catalog server endpoint to be
used by a catalog server element.
v Number of occurrences: Zero to many
v Child element: None

Attributes

Chapter 7. Configuring the deployment environment 317

serverName
Specifies the name that identifies the process that you are launching.

hostName
Specifies the host name for the machine where the server is launched.

clientPort
Specifies the port used for peer catalog cluster communication.

peerPort
Specifies the port used for peer catalog cluster communication.

<catalogServerEndPoint
name="catalog server endpoint name"
host=""
clientPort=""
peerPort""
/>

container element

Use the container element to store the data itself.
v Number of occurrences: Zero to many
v Child element: None

Attributes

objectgridxml
Specifies the path and name of the descriptor XML file to use that specifies
characteristics for the ObjectGrid, including maps, locking strategy, and
plug-ins.

deploymentxml
Specifies the path and name of the XML file that is used with the descriptor
XML to determine partitioning, replication, number of initial containers, and
other settings.

server
Specifies the server on which the container is hosted.

<server
objectgridxml="the objectgrid descriptor XML file"
deploymentxml ="the objectgrid deployment descriptor XML file "
server="the server reference "
/>

JPALoader element

Use the JPALoader element to synchronize the ObjectGrid cache with an existing
backend data-store when using the ObjectMap API.
v Number of occurrences: Zero to many
v Child element: None

Attributes

entityClassName
Enables usage of JPAs such as EntityManager.persist and EntityManager.find.
The entityClassName attribute is required for the JPALoader.

preloadPartition
Specifies the partition number at which the map preload is started. If the value
is less than 0, or greater than (totalNumberOfPartition – 1), the map preload is
not started.

318 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<JPALoader
entityClassName="the entity class name"
preloadPartition ="int"
/>

JPATxCallback element

Use the JPATxCallback element to coordinate JPA and ObjectGrid transactions.
v Number of occurrences: Zero to many
v Child element: None

Attributes

persistenceUnitName
Creates a JPA EntityManagerFactory and locates the JPA entity meta-data in the
persistence.xml file. The persistenceUnitName attribute is required.

jpaPropertyFactory
Specifies the factory to create a persistence property map to override the
default persistence properties. This attribute should reference a bean.

exceptionMapper
Specifies the ExceptionMapper plug-in that can be used for JPA-specific or
database-specific exception mapping functions. This attribute should reference
a bean.

<JPATxCallback
persistenceUnitName="the JPA persistence unit name"
jpaPropertyFactory ="JPAPropertyFactory bean reference"
exceptionMapper="ExceptionMapper bean reference"
/>

JPAEntityLoader element

Use the JPAEntityLoader element to synchronize the ObjectGrid cache with an
existing backend data-store when using the EntityManager API.
v Number of occurrences: Zero to many
v Child element: None

Attributes

entityClassName
Enables usage of JPAs such as EntityManager.persist and EntityManager.find.
The entityClassName attribute is optional for the JPAEntityLoader element. If
the element is not configured, the entity class configured in the ObjectGrid
entity map is used. The same class must be used for the ObjectGrid
EntityManager and for the JPA provider.

preloadPartition
Specifies the partition number at which the map preload is started. If the value
is less than 0, or greater than (totalNumberOfPartition – 1) the map preload is
not launched.

<JPAEntityLoader
entityClassName="the entity class name"
preloadPartition ="int"
/>

LRUEvictor element

Use the LRUEvictor element to decide which entries to evict when a map exceeds
its maximum number of entries.
v Number of occurrences: Zero to many

Chapter 7. Configuring the deployment environment 319

v Child element: None

Attributes

maxSize
Specifies the total entries in a queue until the evictor must intervene.

sleepTime
Sets the time in seconds between an evictor's sweep over map queues to
determine any necessary actions on the map.

numberOfLRUQueues
Specifies the setting of how many queues the evictor must scan to avoid
having a single queue that is the size of the entire map.

<LRUEvictor
maxSize="int"
sleepTime ="seconds"
numberOfLRUQueues ="int"
/>

LFUEvictor element

Use the LFUEvictor element to determine which entries to evict when a map
exceeds its maximum number of entries.
v Number of occurrences: Zero to many
v Child element: None

Attributes

maxSize
Specifies the total entries that are allowed in each heap until the evictor must
act.

sleepTime
Sets the time in seconds between an evictor's sweeps over map heaps to
determine any necessary actions on the map.

numberOfHeaps
Specifies the setting of how many heaps the evictor must scan to avoid having
a single heap that is the size of the entire map.

<LFUEvictor
maxSize="int"
sleepTime ="seconds"
numberOfHeaps ="int"
/>

HashIndex element

Use the HashIndex element with Java reflection to dynamically introspect objects
stored in a map when the objects are updated.
v Number of occurrences: Zero to many
v Child element: None

Attributes

name
Specifies the name of the index, which must be unique for each map.

attributeName
Specifies the name of the attribute to index. For field-access indexes, the
attribute name is equivalent to the field name. For property-access indexes, the
attribute name is the JavaBean-compatible property name.

320 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

rangeIndex
Indicates whether range indexing is enabled. The default value is false.

fieldAccessAttribute
Used for non-entity maps. The getter method is used to access the data. The
default value is false. If you specify the value as true, the object is accessed
using the fields directly.

POJOKeyIndex
Used for non-entity maps. The default value is false. If you specify the value
as true, the index introspects the object in the key part of the map, which is
useful when the key is a composite key and the value does not have the key
embedded within it. If you do not set the value or you specify the value as
false, the index introspects the object in the value part of the map.

<HashIndex
name="index name"
attributeName="attribute name"
rangeIndex ="true"|"false"
fieldAccessAttribute ="true"|"false"
POJOKeyIndex ="true"|"false"
/>

Spring objectgrid.xsd file
Use the Spring objectgrid.xsd file to integrate eXtreme Scale with Spring to
manage eXtreme Scale transactions and configure clients and servers.

See the “Spring descriptor XML file” on page 315 for descriptions of the elements
and attributes defined in the Spring objectgrid.xsd file.

Spring objectgrid.xsd file
<xsd:schema xmlns="http://www.ibm.com/schema/objectgrid"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
targetNamespace="http://www.ibm.com/schema/objectgrid"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:import namespace="http://www.springframework.org/schema/beans"/>

<xsd:element name="transactionManager">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="register">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="gridname" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="server">
<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="catalog"/>

</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="tracespec" type="xsd:string"/>
<xsd:attribute name="tracefile" type="xsd:string"/>
<xsd:attribute name="statspec" type="xsd:string"/>
<xsd:attribute name="jmxport" type="xsd:integer"/>
<xsd:attribute name="isCatalog" type="xsd:boolean"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="haManagerPort" type="xsd:integer"/>
<xsd:attribute name="listenerHost" type="xsd:string"/>
<xsd:attribute name="listenerPort" type="xsd:integer"/>
<xsd:attribute name="maximumThreadPoolSize" type="xsd:integer"/>
<xsd:attribute name="memoryThresholdPercentage" type="xsd:integer"/>
<xsd:attribute name="minimumThreadPoolSize" type="xsd:integer"/>
<xsd:attribute name="workingDirectory" type="xsd:string"/>
<xsd:attribute name="zoneName" type="xsd:string"/>
<xsd:attribute name="enableSystemStreamToFile" type="xsd:boolean"/>
<xsd:attribute name="enableMBeans" type="xsd:boolean"/>

Chapter 7. Configuring the deployment environment 321

<xsd:attribute name="serverPropertyFile" type="xsd:string"/>
<xsd:attribute name="catalogServerProperties" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="catalog">
<xsd:complexType>

<xsd:attribute name="host" type="xsd:string"/>
<xsd:attribute name="port" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="catalogServerProperties">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="catalogServerEndPoint"/>
</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attribute name="enableQuorum" type="xsd:boolean"/>
<xsd:attribute name="heartBeatFrequencyLevel" type="xsd:integer"/>
<xsd:attribute name="domainName" type="xsd:string"/>
<xsd:attribute name="domainEndpoints" type="xsd:string"/>
<xsd:attribute name="foreignDomains" type="xsd:string"/>
<xsd:attribute name="clusterSecurityURL" type="xsd:anyURI"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="catalogServerEndPoint">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="host" type="xsd:string"/>
<xsd:attribute name="clientPort" type="xsd:integer"/>
<xsd:attribute name="peerPort" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="container">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="objectgridxml" type="xsd:string"/>
<xsd:attribute name="deploymentxml" type="xsd:string"/>
<xsd:attribute name="server" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="JPALoader">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="entityClassName" type="xsd:string"/>
<xsd:attribute name="preloadPartition" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="JPATxCallback">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="persistenceUnitName" type="xsd:string"/>

<xsd:attribute name="jpaPropertyFactory" type="xsd:string"/>
<xsd:attribute name="exceptionMapper" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="JPAEntityLoader">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="entityClassName" type="xsd:string"/>
<xsd:attribute name="preloadPartition" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="LRUEvictor">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="maxSize" type="xsd:integer"/>
<xsd:attribute name="sleepTime" type="xsd:integer"/>
<xsd:attribute name="numberOfLRUQueues" type="xsd:integer"/>
<xsd:attribute name="useMemoryUsageThresholdEviction" type="xsd:boolean"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="LFUEvictor">
<xsd:complexType>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="maxSize" type="xsd:integer"/>
<xsd:attribute name="sleepTime" type="xsd:integer"/>
<xsd:attribute name="numberOfHeaps" type="xsd:integer"/>
<xsd:attribute name="useMemoryUsageThresholdEviction" type="xsd:boolean"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="HashIndex">

322 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

<xsd:complexType>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="attributeName" type="xsd:string"/>
<xsd:attribute name="rangeIndex" type="xsd:boolean"/>
<xsd:attribute name="fieldAccessAttribute" type="xsd:boolean"/>
<xsd:attribute name="POJOKeyIndex" type="xsd:boolean"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Spring extension beans and namespace support
WebSphere eXtreme Scale provides a feature to declare plain old Java objects
(POJOs) to use as extension points in the objectgrid.xml file and a way to name
the beans and then specify the class name. Normally, instances of the specified
class are created, and those objects are used as the plug-ins. Now, eXtreme Scale
can delegate to Spring to obtain instances of these plug-in objects. If an application
uses Spring then typically such POJOs have a requirement to be wired in to the
rest of the application.

In some scenarios, you must use Spring to configure a plug-in, as in the following
example:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="com.ibm.websphere.objectgrid.jpa.JPATxCallback">
<property name="persistenceUnitName" type="java.lang.String" value="employeePU" />

</bean>
...

</objectGrid>

The built-in TransactionCallback implementation, the
com.ibm.websphere.objectgrid.jpa.JPATxCallback class, is configured as the
TransactionCallback class. This class is configured with the persistenceUnitName
property as shown in the previous example. The JPATxCallback class also has the
JPAPropertyFactory attribute, which is of type java.lang.Object. The ObjectGrid
XML configuration cannot support this type of configuration.

The eXtreme Scale Spring integration solves this problem by delegating the bean
creation to the Spring framework. The revised configuration follows:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="{spring}jpaTxCallback"/>
...

</objectGrid>

The spring file for the "Grid" object contains the following information:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.
JPAPropFactoryImpl" scope="shard">
</bean>

Here, the TransactionCallback is specified as {spring}jpaTxCallback, and the
jpaTxCallback and jpaPropFactory bean are configured in the spring file as shown
in the previous example. The Spring configuration makes it possible to configure a
JPAPropertyFactory bean as a parameter of the JPATxCallback object.

Default Spring bean factory

When eXtreme Scale finds a plug-in or an extension bean (such as an
ObjectTransformer, Loader, TransactionCallback, and so on) with a classname value

Chapter 7. Configuring the deployment environment 323

that begins with the prefix {spring}, then eXtreme Scale uses the remainder of the
name as a Spring Bean name and obtain the bean instance using the Spring Bean
Factory.

By default, if no bean factory was registered for a given ObjectGrid, then it tries to
find an ObjectGridName_spring.xml file. For example, if your data grid is called
"Grid" then the XML file is called /Grid_spring.xml. This file should be in the class
path or in a META-INF directory which is in the class path. If this file is found, then
eXtreme Scale constructs an ApplicationContext using that file and constructs
beans from that bean factory.

Custom Spring bean factory

WebSphere eXtreme Scale also provides an ObjectGridSpringFactory API to register
a Spring Bean Factory instance to use for a specific named ObjectGrid. This API
registers an instance of BeanFactory with eXtreme Scale using the following static
method:

void registerSpringBeanFactoryAdapter(String objectGridName, Object
springBeanFactory)

Namespace support

Since version 2.0, Spring has a mechanism for schema-based extensions to the basic
Spring XML format for defining and configuring beans. ObjectGrid uses this new
feature to define and configure ObjectGrid beans. With Spring XML schema
extension, some of the built-in implementations of eXtreme Scale plug-ins and
some ObjectGrid beans are predefined in the "objectgrid" namespace. When writing
the Spring configuration files, you do not have to specify the full class name of the
built-in implementations. Instead, you can reference the predefined beans.

Also, with the attributes of the beans defined in the XML schema, you are less
likely to provide a wrong attribute name. XML validation based on the XML
schema can catch these kind of errors earlier in the development cycle.

These beans defined in the XML schema extensions are:
v transactionManager
v register
v server
v catalog
v catalogServerProperties
v container
v JPALoader
v JPATxCallback
v JPAEntityLoader
v LRUEvictor
v LFUEvictor
v HashIndex

These beans are defined in the objectgrid.xsd XML schema. This XSD file is
shipped as com/ibm/ws/objectgrid/spring/namespace/objectgrid.xsd file in the

324 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

ogspring.jar file . For detailed descriptions of the XSD file and the beans defined
in the XSD file, see the information about the Spring descriptor file in the
Administration Guide.

Use the JPATxCallback example from the previous section. In the previous section,
the JPATxCallback bean is configured as the following:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard">
</bean>

Using this namespace feature, the spring XML configuration can be written as the
following:
<objectgrid:JPATxCallback id="jpaTxCallback" persistenceUnitName="employeeEMPU"
jpaPropertyFactory="jpaPropFactory" />

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl"
scope="shard">
</bean>

Notice here that instead of specifying the
com.ibm.websphere.objectgrid.jpa.JPATxCallback class as in the previous example,
we directly use the pre-defined objectgrid:JPATxCallback bean. As you can see, this
configuration is less verbose and more friendly to error checking.

For a description of working with Spring beans, consult “Starting a container
server with Spring.”

Starting a container server with Spring
You can start a container server using Spring managed extension beans and
namespace support.

About this task

With several XML files configured for Spring, you can start basic eXtreme Scale
container servers.

Procedure
1. ObjectGrid XML file:

First of all, define a very simple ObjectGrid XML file which contains one
ObjectGrid "Grid" and one map "Test". The ObjectGrid has an
ObjectGridEventListener plug-in called "partitionListener", and the map "Test"
has an Evictor plugged in called "testLRUEvictor". Notice both the
ObjectGridEventListener plug-in and Evictor plug-in are configured using
Spring as their names contain "{spring}".
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<bean id="ObjectGridEventListener" className="{spring}partitionListener" />
<backingMap name="Test" pluginCollectionRef="test" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="test">

Chapter 7. Configuring the deployment environment 325

<bean id="Evictor" className="{spring}testLRUEvictor"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

2. ObjectGrid deployment XML file:

Now, create a simple ObjectGrid deployment XML file as follows. It partitions
the ObjectGrid into 5 partitions, and no replica is required.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numInitialContainers="1" numberOfPartitions="5" minSyncReplicas="0"

maxSyncReplicas="1" maxAsyncReplicas="0">
<map ref="Test"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

3. ObjectGrid Spring XML file:

Now we will use both ObjectGrid Spring managed extension beans and
namespace support features to configure the ObjectGrid beans. The spring xml
file is named Grid_spring.xml. Notice two schemas are included in the XML
file: spring-beans-2.0.xsd is for using the Spring managed beans, and
objectgrid.xsd is for using the beans predefined in the objectgrid namespace.
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="
http://www.ibm.com/schema/objectgrid

http://www.ibm.com/schema/objectgrid/objectgrid.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<objectgrid:register id="ogregister" gridname="Grid"/>

<objectgrid:server id="server" isCatalog="true" name="server">
<objectgrid:catalog host="localhost" port="2809"/>

</objectgrid:server>

<objectgrid:container id="container"
objectgridxml="com/ibm/ws/objectgrid/test/springshard/objectgrid.xml"

deploymentxml="com/ibm/ws/objectgrid/test/springshard/deployment.xml"
server="server"/>

<objectgrid:LRUEvictor id="testLRUEvictor" numberOfLRUQueues="31"/>

<bean id="partitionListener"
class="com.ibm.websphere.objectgrid.springshard.ShardListener" scope="shard"/>

</beans>

There were six beans defined in this spring XML file:
a. objectgrid:register: This register the default bean factory for the ObjectGrid

"Grid".
b. objectgrid:server: This defines an ObjectGrid server with name "server". This

server will also provide catalog service since it has an objectgrid:catalog
bean nested in it.

c. objectgrid:catalog: This defines an ObjectGrid catalog service endpoint, which
is set to "localhost:2809".

d. objectgrid:container: This defines an ObjectGrid container with specified
objectgrid XML file and deployment XML file as we discussed before. The
server property specifies which server this container is hosted in.

326 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

e. objectgrid:LRUEvictor: This defines an LRUEvictor with the number of LRU
queues to use set to 31.

f. bean partitionListener: This defines a ShardListener plug-in. You must provide
an implementation for this plug-in, so it cannot use the pre-defined beans.
Also this scope of the bean is set to "shard", which means there is only one
instance of this ShardListener per ObjectGrid shard.

4. Starting the server:

The snippet below starts the ObjectGrid server, which hosts both the container
service and the catalog service. As we can see, the only method we need to call
to start the server is to get a bean "container" from the bean factory. This
simplifies the programming complexity by moving most of the logic into
Spring configuration.
public class ShardServer extends TestCase
{

Container container;
org.springframework.beans.factory.BeanFactory bf;

public void startServer(String cep)
{

try
{

bf = new org.springframework.context.support.ClassPathXmlApplicationContext(
"/com/ibm/ws/objectgrid/test/springshard/Grid_spring.xml", ShardServer.class);

container = (Container)bf.getBean("container");
}
catch(Exception e)
{

throw new ObjectGridRuntimeException("Cannot start OG container", e);
}

}

public void stopServer()
{

if(container != null)
container.teardown();

}
}

Configuring the REST data service
Use the following links to find information about administering the REST data
service. See also the application programming interface information about the
RestService Mbean.

REST data service properties file
To configure the REST data service, edit the properties file for REST and define the
required entity schema for a data grid.

The REST data service properties file is the main configuration file for the eXtreme
Scale REST data service. This file is a Java property file with key-value pairs. By
default, the REST data service runtime looks for a well-named
wxsRestService.properties file in the classpath. The file can also be explicitly
defined by using the system property: wxs.restservice.props.

-Dwxs.restservice.props=/usr/configs/dataservice.properties

When the REST data service is loaded, the property file used is displayed in the
log files:

CWOBJ4004I: The eXtreme Scale REST data service properties files were
loaded: [/usr/configs/RestService.properties]

Chapter 7. Configuring the deployment environment 327

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

The REST data service properties file supports the following properties:

Table 22. Properties for the REST data service

Property Description

catalogServiceEndPoints The required comma-delimited list of hosts
and ports of a catalog service domain in the
format: <host:port>. This is optional if using
WebSphere Application Server integrated
with WebSphere eXtreme Scale to host the
REST data service. See “Starting a
stand-alone catalog service” on page 351 for
more information.

catalogServiceEndPoints=

server1:2809,server2:2809

objectGridNames The required names of the ObjectGrids to
expose to the REST service. At least one
ObjectGrid name is required. Separate
multiple ObjectGrid names using a comma:

ECommerceGrid,InventoryGrid

objectGridClientXML The optional name of the ObjectGrid client
override XML file. The name specified here
will be loaded from the classpath. The
default is:

/META-INF/objectGridClient.xml. See the
WebSphere eXtreme Scale product
documentation for details on how to
configure an eXtreme Scale client.

objectGridNames The required names of the ObjectGrids to
expose to the REST service. At least one
ObjectGrid name is required. Separate
multiple ObjectGrid names using a comma:

ECommerceGrid,InventoryGrid

objectGridClientXML The optional name of the ObjectGrid client
override XML file. The name specified here
will be loaded from the classpath. The
default is: /META-INF/objectGridClient.xml

. See the WebSphere eXtreme Scale product
documentation for details on how to
configure an eXtreme Scale client.

ogClientPropertyFile The optional name of the ObjectGrid client
property file. This file contains security
properties that are required for enabling
ObjectGrid client security. If the
"securityEnabled" attribute is set in the
property file, security will be enabled on the
ObjectGrid client used by the REST service.
The "credentialGeneratorProps" must also be
set in the property file to a value in the
format of "user:pass" or a value of
{xor_encoded user:pass}

328 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 22. Properties for the REST data service (continued)

Property Description

loginType The type of authentication used by the REST
Service when ObjectGrid client security is
enabled. If ObjectGrid client security is not
enabled, this property is ignored.

If ObjectGrid client security is enabled and
loginType is set to basic, the REST service
will:

v Use the credentials specified in the
'credentialGeneratorProps' property of the
ObjectGrid client property file for
ObjectGrid operations at service
initialization.

v Use HTTP BASIC authentication for per
request ObjectGrid session operations

If ObjectGrid client security is enabled and
loginType is set to none the REST service
will:

v Use the credentials specified in the
'credentialGeneratorProps' property of the
ObjectGrid client property file for
ObjectGrid operations at service
initialization.

v Use the credentials specified in the
'credentialGeneratorProps' property of the
ObjectGrid client property file for per
request ObjectGrid session operations.

traceFile The optional name of the file to redirect the
trace output to. The default is
logs/trace.log.

traceSpec The optional trace specification that the
eXtreme Scale runtime server should initially
use. The default is *=all=disabled. To trace
the entire REST data service, use:
ObjectGridRest*=all=enabled

verboseOutput If set to true, REST data service clients
receive additional diagnostic information
when failures occur. The default is false.
This optional value should be set to false for
production environments as sensitive
information may be revealed.

maxResultsPerCollection The optional maximum number of results
that will be returned in a query. The default
value is unlimited. Any positive integer is a
valid value.

wxsRestAccessRightsFile The optional name of the eXtreme Scale
REST service access rights property file
which specifies the access rights for the
service operations and the ObjectGrid
entities. If this property is specified, the
REST service will try to load the file from
the path specified, else it will try to load the
file from its classpath.

Chapter 7. Configuring the deployment environment 329

WebSphere eXtreme Scale configuration

The eXtreme Scale REST data service interacts with eXtreme Scale using the
EntityManager API. An entity schema is defined for an eXtreme Scale data grid
and the metadata for the entities is automatically consumed by the REST data
service. See Defining an entity schema for details about configuring an entity
schema.

For example, you can define an entity representing a Person in an eXtreme Scale
data grid as follows:
@Entity
public class Person {

@Id String taxId;
String firstName;
String lastName;

}

Tip: The annotations used here are in the
com.ibm.websphere.projector.annotations package.

The REST service automatically creates an ADO.NET Entity Data Model for Data
Services (EDMX) document, which is available using the $metadata URI:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata

After the data grid is configured and running, configure and package an eXtreme
Scale client. For details on configuring the eXtreme Scale REST data service client
package, see the packaging and deployment information in “Installing the REST
data service” on page 339.

Entity model

WebSphere eXtreme Scale entities are modeled using the entity annotations or an
entity metadata descriptor file. For details on how to configure an entity schema,
see the information on defining an entity schema in the Programming Guide. The
eXtreme Scale REST service uses the entity metadata to automatically create an
EDMX model for the data service.

This version of the WebSphere eXtreme Scale REST data service has the following
schema restrictions:
v When defining entities in a partitioned data grid, all entities must have a direct

or indirect single valued association to the root entity (a key association). The
WCF data service client runtime must be able to access every entity directly
through its canonical address. Therefore, the key of the root entity that is used
for partition routing (the schema root) must be part of the key in the child entity.
For example:
@Entity(schemaRoot=true)
public class Person {

@Id String taxId;
String firstName;
String lastName;
@OneToMany(mappedBy="person")
List<Address> addresses;

}

@Entity
public class Address {

330 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

@Id int addrId;
@Id @ManyToOne Person person;
String street;

}

v Bi-directional and uni-directional associations are supported. However,
uni-directional associations may not always work from a Microsoft WCF Data
Services client since they can only be navigated in one direction and the
Microsoft specification requires all associations to be bi-directional.

v Referential constraints are not supported. The WebSphere eXtreme Scale runtime
does not validate keys between entities. Associations between entities must be
managed by the client.

v Complex types are not supported. The EntityManager API does not support
embeddable attributes. All attributes are expected to be simple type attributes
(see the simple attribute types listed below). Non-simple type attributes are
treated as a binary object from the perspective of the client.

v Entity inheritance is not supported. The EntityManager API does not support
inheritance.

v Media Resources and Media Links are not supported. The HasStream attribute
of the EntityType in the Conceptual Schema Definition Language Document for
Data Services is never used.

Mapping between EDM data types and Java data types

The OData protocol defines the following list of Entity Data Model (EDM) types in
its abstract type system. The following topics describe how the eXtreme Scale REST
adapter chooses the EDM type based on the basic type defined in the entity. For
details on EDM types, see: MSDN Library: Abstract Type System.

The following EDM types are available in WCF Data Services:
v Edm.Binary
v Edm.Boolean
v Edm.Byte
v Edm.DateTime
v Edm.Time
v Edm.Decimal
v Edm.Double
v Edm.Single
v Edm.Float
v Edm.Guid *
v Edm.Int16
v Edm.Int32
v Edm.Int64
v Edm.SByte
v Edm.String

The EDM type: Edm.Guid is not supported by the eXtreme Scale REST data
service.

Mapping Java types to EDM types

The eXtreme Scale REST data service automatically converts basic entity types into
EDM types. The type mapping can be seen by displaying the Entity Data Model

Chapter 7. Configuring the deployment environment 331

http://msdn.microsoft.com/en-us/library/dd541295(PROT.10).aspx

Extensions (EDMX) metadata document using the $metadata URI. The EDM type
is used by clients to read and write data to the REST data service.

Table 23. Java types mapped to EDM types. The table shows the mapping from the Java
type defined for an entity to the EDM data type. When retrieving data using a query, the
data will be represented with these types:

Java Type EDM Type

boolean java.lang.Boolean Edm.Boolean

byte java.lang.Byte Edm.SByte

short java.lang.Short Edm.Int16

int java.lang.Integer Edm.Int32

long java.lang.Long Edm.Int64

float java.lang.Float Edm.Single

double java.lang.Double Edm.Double

java.math.BigDecimal Edm.Decimal

java.math.BigInteger java.math.BigInteger

java.lang.String Edm.String

char char

java.lang.Character java.lang.Character

Char[] Char[]

java.lang.Character[] java.lang.Character[]

java.util.Calendar Edm.DateTime

java.util.Date java.util.Date

java.sql.Date java.sql.Date

java.sql.Timestamp java.sql.Timestamp

java.sql.Time java.sql.Time

Other types Edm.Binary

Mapping from EDM types to Java types

For Update requests and Insert requests, the payload specifies the data to be
updated or inserted into the eXtreme Scale REST data service. The service can
automatically convert compatible data types to the data types defined in the
EDMX document. The REST data service converts the XML encoded string
representations of the value into the correct type using the following two-step
process:
1. A type check is performed to make sure the EDM type is compatible with the

Java type. An EDM type is compatible with a Java type if the data supported
by the EDM type is a subset of the data supported by the Java type. For
example, Edm.int32 type is compatible with a Java long type, but Edm.int32
type is not compatible with a Java short type.

2. A target Java type object will be created which represents the string value in
the payload.

332 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 24. Compatible EDM type to Java type

EDM Type Java Type

Edm.Boolean boolean

java.lang.Boolean

Edm.SByte byte

java.lang.Byte

short

java.lang.Short

int

java.lang.Integer

long

java.lang.Long

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

char

java.lang.Character

Edm.Byte, Edm.Int16 short

java.lang.Short

int

java.lang.Integer

long

java.lang.Long

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

char

java.lang.Character

Chapter 7. Configuring the deployment environment 333

Table 24. Compatible EDM type to Java type (continued)

EDM Type Java Type

Edm.Int32 int

java.lang.Integer

long

java.lang.Long

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Int64 long

java.lang.Long

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Double double

java.lang.Double

java.math.BigDecimal

Edm.Decimal double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Single float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

334 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 24. Compatible EDM type to Java type (continued)

EDM Type Java Type

Edm.String java.lang.String

char

java.lang.Character

Char[]

java.lang.Character[]

java.math.BigDecimal

java.math.BigInteger

Edm.DateTime java.util.Calendar

java.util.Date

java.sql.Date

java.sql.Time

java.sql.Timestamp

Edm.Time java.sql.Time

java.sql.Timestamp

Mapping temporal types

Java includes five temporal types for storing date, time or both: java.util.Date,
java.sql.Date, java.sql.Time, java.sql.Timestamp and java.util.Calendar. All of these
types are expressed in the entity data model as Edm.DateTime. The eXtreme Scale
REST data service automatically converts and normalizes the data depending on
the Java type. This topic describes several issues that developers must be aware of
when using any temporal type.

Time zone differences

In WCF Data Services, the descriptions of time values in the Edm.DateTime type
are always expressed using the Coordinated Universal Time (UTC) standard, which
is the internationally recognized name for Greenwich Mean Time (GMT).
Coordinated Universal Time is the time as measured at zero degrees longitude, the
UTC origin point. Daylight saving time is not applicable to UTC.

Converting between entity and EDM types

When a client sends a request to the REST data service, the date and time is
represented as a GMT time zone time, like the following example:

"2000-02-29T21:30:30.654123456"

The REST data service will then construct the appropriate Java temporal type
instance and insert it into the entity in the data grid.

Chapter 7. Configuring the deployment environment 335

When a client requests a property which is a Java temporal type from the eXtreme
Scale REST data service, the value is always normalized as a GMT time zone
value. For example, if an entity java.util.Date is constructed as follows:
Calendar c = Calendar.getInstance();
c.clear();
c.set(2000, 1, 29, 21, 30, 30);
Date d = c.getTime();

The date and time are represented using the default time zone of the Java process
because Calendar.getInstance() will create a Calendar object with local time zone. If
the local time zone is CST, then the date, when retrieved from the REST data
service will be the GMT representation of the time: "2000-03-01T03:30:30"

java.sql.Date normalization

An eXtreme Scale entity can define an attribute with Java type java.sql.Date. This
data type does not include the time and is normalized by the REST data service.
This means that the eXtreme Scale runtime does not store any hours, minutes,
seconds, or milliseconds information in the java.sql.Date attribute. Regardless of
the time zone offset, the date is always represented as a local date.

For example, if the client updates a java.sql.Date property with the value
“2009-01-01T03:00:00”, the REST data service, which is in the CST time zone
(-06:00), will simply create a java.sql.Date instance of which the time is set to
“2009-01-01T00:00:00” of the local CST time. There is no time zone conversion done
to create the java.sql.Date value. When the REST service client retrieves the value
of this attribute, it will be displayed as “2009-01-01T00:00:00Z”. If a time zone
conversion were done, the value would be displayed as having the date of
“2008-12-31”, which would be incorrect.

java.sql.Time normalization

Similar to java.sql.Date, the java.sql.Time values are normalized and do not include
date information. This means that the eXtreme Scale run time does not store the
year, month or day. The time is stored using the GMT time from the epoch January
1, 1970, which is consistent with the java.sql.Time implementation.

For example, if the client updates a java.sql.Time property with the value
"2009-01-01T03:00:00", the REST data service, will create a java.sql.Time instance
with the milliseconds set to 3*60*60*1000, which is equal to 3 hours. When the rest
service retrieves the value, it will be displayed as "1970-01-01:03:00:00Z".

Associations

Associations define the relationship between two peer entities. The eXtreme Scale
REST service reflects the associations modeled with entities defined with eXtreme
Scale annotated entities or entities defined using an entity descriptor XML file.

Association maintenance

The eXtreme Scale REST data service does not support referential integrity
constraints. The client should ensure that references are updated when entities are
removed or added. If a target entity of an association is removed from the data
grid, but the link between the source and target entity is not removed, then the
link is broken. The eXtreme Scale REST data service and EntityManager API

336 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

tolerates broken links and logs the broken links as CWPRJ1022W warnings. Broken
associations are removed from the request payload.

Use a batch request to group association updates in a single transaction to avoid
broken links. See the following section for details on batch requests.

The ADO.NET Entity Data Model ReferentialConstraint element is not used by the
eXtreme Scale REST data service.

Association multiplicity

Entities can have multi-valued associations or single-valued associations.
Multi-valued associations, or collections, are one-to-many or many-to-many
associations. Single-valued associations are one-to-one or many-to-one associations.

In a partitioned data grid, all entities should have a single-valued key-association
path to a root entity. Another section of this topic shows how to define a key
association. Because the root entity is used to partition the entity, many-to-many
associations are not allowed for partitioned data grids. For an example on how to
model a relational entity schema for a partitioned data grid, see Scalable data
model in eXtreme Scale.

The following example describes how the EntityManager API association types,
modeled using annotated Java classes map to the ADO.NET Entity Data Model:
@Entity
public class Customer {

@Id String customerId;
@OneToOne TaxInfo taxInfo;
@ManyToOne Address homeAddress;
@OneToMany Collection<Order> orders;
@ManyToMany Collection<SalesPerson> salespersons;

}

<Association Name="Customer_TaxInfo">
<End Type="Model1.Customer" Role="Customer" Multiplicity="1" />
<End Type="Model1.TaxInfo " Role="TaxInfo" Multiplicity="1" />

</Association>
<Association Name="Customer_Address">

<End Type="Model1.Customer" Role="Customer" Multiplicity="1" />
<End Type="Model1.Address" Role="TaxInfo" Multiplicity="*" />

</Association>
<Association Name="Customer_Order">

<End Type="Model1.Customer" Role="Customer" Multiplicity="*" />
<End Type="Model1.Order" Role="TaxInfo" Multiplicity="1" />

</Association>
<Association Name="Customer_SalesPerson">

<End Type="Model1.Customer" Role="Customer" Multiplicity="*" />
<End Type="Model1.SalesPerson" Role="TaxInfo" Multiplicity="*" />

</Association>

Bi-directional and uni-directional associations

Entities associations can be uni-directional or bi-directional. By specifying the
"mappedBy" attribute on the @OneToOne, @OneToMany or @ManyToMany
annotation or the "mapped-by" attribute on the one-to-one, one-to-many or
many-to-many XML attribute tag, the entity becomes bi-directional. The OData
protocol currently requires all entities to be bi-directional, allowing clients to
generate navigation paths in both directions. The eXtreme Scale EntityManager API
allows modeling uni-directional associations which can save memory and simplify

Chapter 7. Configuring the deployment environment 337

maintenance of the associations. If a uni-directional association is used, the REST
data services client must only navigate through the association using the defined
association.

For example: If a uni-directional many-to-one association is defined between
Address and Country, the following URI is not allowed:

/restservice/CustomerGrid/Country('USA')/addresses

Key associations

Single-valued associations (one-to-one and many-to-one) can also be included as all
or part of the entities key. This is known as a key-association.

Key associations are required when using a partitioned data grid. The key
association must be defined for all child entities in a partitioned entity schema. The
OData protocol requires that all entities are directly addressable. This means that
the key in the child entity must include the key used for partitioning.

In the following example, Customer has a one-to-many association to Order. The
Customer entity is the root entity and the customerId attribute is used to partition
the entity. Order has included the Customer as part of its identity:
@Entity(schemaRoot="true")
public class Customer {

@Id String customerId;
@OneToMany(mappedBy="customer") Order orders

}

@Entity
public class Order {

@Id int orderId;
@Id @ManyToOne Customer customer;
java.util.Date orderDate;

}

When the REST data service generates the EDMX document for this model, the
Customer key fields are automatically included as part of the Order entity:
<EntityType Name="Order">
<Key>

<PropertyRef Name="orderId"/>
<PropertyRef Name="customer_customerId"/>

</Key>

<Property Name="orderId" Type="Edm.Int64" Nullable="false"/>
<Property Name="customer_customerId" Type="Edm.String"

Nullable="false"/>
<Property Name="orderDate" Type="Edm.DateTime" Nullable="true"/>
<NavigationProperty Name="customer"

Relationship="NorthwindGridModel.Customer_orders"
FromRole="Order" ToRole="Customer"/>

<NavigationProperty Name="orderDetails"
Relationship="NorthwindGridModel.Order_orderDetails"
FromRole="Order" ToRole="OrderDetail"/>

</EntityType>

When an entity is created, the key must never change. This means if the key
association between a child entity and its parent must change, the child entity

338 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

must be removed and re-created with a different parent. In a partitioned data grid,
this will require two different batch change sets since the move will likely involve
more than one partition.

Cascading operations

The EntityManager API allows a flexible cascade policy. Associations can be
marked to cascade a persist, remove, invalidate or merge operation. Such cascade
operations can happen on one or both sides of a bi-directional association.

The OData protocol only allows cascade delete operations on the single-side of the
association. The CascadeType.REMOVE annotation or cascade-remove XML
attribute cannot be defined on both sides of a one-to-one bi-directional association
or on the many-side of a one-to-many association. The following example
illustrates a valid Cascade.REMOVE bi-directional association:
@Entity(schemaRoot="true")
public class Customer {

@Id String customerId;
@OneToMany(mappedBy="customer", cascade=CascadeType.REMOVE)
Order orders

}

@Entity
public class Order {

@Id int orderId;
@Id @ManyToOne Customer customer;
java.util.Date orderDate;

}

The resulting EDMX association looks as follows:
<Association Name="Customer_orders">

<End Type="NorthwindGridModel.Customer" Role="Customer"
Multiplicity="1">
<OnDelete Action="Cascade"/>

</End>
<End Type="NorthwindGridModel.Order" Role="Order"

Multiplicity="*"/>
</Association>

Administering the REST data service
About this task

Use the following links to find information about administering the REST data
service. See also the RestService Mbean information.

Installing the REST data service
This topic describes how to install the WebSphere eXtreme Scale REST data service
into a Web server.

Before you begin

Software requirements

The WebSphere eXtreme Scale REST data service is a Java Web application that can
be deployed to any application server that supports Java servlet specification,
Version 2.3 and a Java runtime environment, Version 5 or later.

The following software is required:

Chapter 7. Configuring the deployment environment 339

v Java Standard Edition 5 or later

Restriction: Although eXtreme Scale supports Java Standard Edition 1.4 or later,
the REST data service requires Java Standard Edition 5 or later.

v Web servlet container, Version 2.3 or later, which includes one of the following:
– WebSphere Application Server Version 6.1.0.25 or later
– WebSphere Application Server Version 7.0.0.5 or later
– WebSphere Community Edition Version 2.1.1.3 or later
– Apache Tomcat Version 5.5 or later

v eXtreme Scale, Version 7.1 or later, including the trial.

About this task

The WebSphere eXtreme Scale REST data service includes a single WAR file
wxsrestservice.war. The wxsrestservice.war file includes a single servlet that acts
as a gateway between your WCF Data Services client applications or any other
HTTP REST client and a data grid.

The REST data service includes a sample that allows you to quickly create an
eXtreme Scale grid and interact with it using an eXtreme Scale client or the REST
data service. See REST data services sample and tutorial for details on using the
sample.

When WebSphere eXtreme Scale 7.1 is installed or the eXtreme Scale Version 7.1
trial is extracted, the following directories and files are included:
v restservice_home/lib

The lib directory contains these files:
– wxsrestservice.ear – The REST data service enterprise application archive

for use with WebSphere Application Server and WebSphere Application
Server CE.

– wxsrestservice.war – The REST data service web module for use with
Apache Tomcat.

The wxsrestservice.ear file includes the wxsrestservice.war file and are both
tightly coupled with the WebSphere WebSphere eXtreme Scale runtime. If
WebSphere eXtreme Scale is upgraded to a new version or a fix pack applied,
the wxsrestservice.war file or wxsrestservice.ear file will need to be manually
upgraded to the version installed in this directory.

v restservice_home/gettingstarted

The gettingstarted directory contains a simple sample that demonstrates how
to use the WebSphere eXtreme Scale REST data service with a data grid.

Procedure

Package and deploy the REST data service.
The REST data service is designed as a self-contained WAR module. To configure
the REST data service, you must first package the REST data service configuration
and optional WebSphere eXtreme Scale configuration files into a JAR file or
directory. This application packaging is then referenced by the web container
server runtime. The following diagram illustrates files used by the eXtreme Scale
REST data service.

340 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The REST service configuration JAR or directory must contain the following file:
wxsRestService.properties: The wxsRestService.properties file includes the
configuration options for the REST data service. This includes the catalog service
endpoints, ObjectGrid names to expose, trace options and more. See “REST data
service properties file” on page 327.
The following ObjectGrid client files are optional:
v META-INF/objectGridClient.xml: The ObjectGrid client override XML file is used

to connect to the remote eXtreme Scale grid. By default this file is not required.
If this file is not present, the REST service uses the server configuration,
disabling the near cache.
The name of the file can be overridden using the objectGridClientXML REST
data service configuration property. If provided, this XML file should include:
1. Any ObjectGrids that you want to expose to the REST data service.
2. Any reference to the entity descriptor XML file associated with each

ObjectGrid configuration.
v META-INF/entity descriptor XML files: One or more entity descriptor XML

files are required only if the client needs to override the entity definition of the
client. The entity descriptor XML file must be used in conjunction with the
ObjectGrid client override XML descriptor file.

v Entity classes Annotated entity classes or an entity descriptor XML file can be
used to describe the entity metadata. The REST service only requires entity
classes in the classpath if the eXtreme Scale servers are configured with entity
metadata classes and a client override entity XML descriptor is not used.
An example with the minimum required configuration file, where the entities are
defined in XML on the servers:
restserviceconfig.jar:
wxsRestService.properties

The property file contains:

REST Service

Servlet

WXSRESTSERVICE.WAR

REST Data Service Config Jar or Directory

Grid Client

REST Service Files

(required)

wxsRestService
properties

Grid Client Files

(optional)

ObjectGrid Client
Override XML
Entity XML
Entity Classes

Figure 23. WebSphere eXtreme Scale REST Data Service Files

Chapter 7. Configuring the deployment environment 341

catalogServiceEndPoints=localhost:2809
objectGridNames=NorthwindGrid

An example with one entity, override XML files and entity classes:
restserviceconfig.jar:
wxsRestService.properties

The property file contains:
catalogServiceEndPoints=localhost:2809
objectGridNames=NorthwindGrid

com/acme/entities/Customer.class
META-INF/objectGridClient.xml

The client ObjectGrid descriptor XML file contains:
<objectGrid name="CustomerGrid" entityMetadataXMLFile="emd.xml"/>
META-INF/emd.xml

The entity metadata descriptor XML file contains:
<entity class-name="com.acme.entities.Customer" name="Customer"/>

Deploying the REST data service on WebSphere Application
Server
This topic describes how to configure the WebSphere eXtreme Scale REST data
service on WebSphere Application Server orWebSphere Application Server
Network Deployment Version 6.1.0.25 or later. These instructions also apply to
deployments whereWebSphere eXtreme Scale is integrated with the WebSphere
Application Server deployment.

Before you begin

You must have one of the following environments on your system to configure and
deploy the REST data service for WebSphere eXtreme Scale.
v WebSphere Application Server with the stand-alone WebSphere eXtreme Scale

client:
– The WebSphere eXtreme Scale Trial Version 7.1 with the REST data service is

downloaded and extracted or theWebSphere eXtreme Scale Version 7.1.0.0
with cumulative fix 2 product is installed into a stand-alone directory.

– WebSphere Application Server Version 6.1.0.25 or 7.0.0.5 or later is installed
and running.

v WebSphere Application Server integrated with WebSphere eXtreme Scale:
WebSphere eXtreme Scale Version 7.1.0.0 with cumulative fix 2 is installed on
top of WebSphere Application Server Version 6.1.0.25 or 7.0 (or later).

Tip: The WebSphere eXtreme Scale REST data service only requires that the
WebSphere eXtreme Scale client option be installed. The profile does not need to
be augmented.
Read about how to enable Java 2 security in the WebSphere Application Server
information center.

Procedure
1. Configure and start a data grid.

a. For details on configuring a data grid for use with the REST data service,
see Chapter 7, “Configuring the deployment environment,” on page 115.

b. Verify that an eXtreme Scale client can connect to and access entities in the
data grid. For an example, see Chapter 1, “Running the getting started
sample application,” on page 1.

342 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

2. Build the eXtreme Scale REST service configuration JAR or directory. See the
information about packaging and deploying the REST service in “Installing the
REST data service” on page 339.

3. Add the REST data service configuration JAR or directory to the application
server classpath:
a. Open the WebSphere Application Server administrative console
b. Navigate to Environment > Shared libraries

c. Click New

d. Add the following entries into the appropriate fields:
v Name: extremescale_rest _configuration

v Classpath: <REST service configuration jar or directory>
e. Click OK

f. Save the changes to the master configuration
4. If WebSphere eXtreme Scale is integrated with the WebSphere Application

Server installation, skip this step and proceed to step 5. Otherwise, continue:
Add the WebSphere eXtreme Scale client runtime JAR, wsogclient.jar, and the
REST data service configuration JAR or directory to the application server
classpath:
a. Open theWebSphere Application Server administrative console
b. Navigate to Environment > Shared libraries

c. Click New

d. Add the following entries into the fields:
v Name: extremescale_client_v71
v Classpath: wxs_home/lib/wsogclient.jar

e. Click OK
f. Save the changes to the master configuration

5. Install the REST data service EAR file, wxsrestservice.ear, to the WebSphere
Application Server using the administrative console:
a. Open the WebSphere Application Server administrative console
b. Navigate to Applications > New application

c. Browse to the /lib/wxsrestservice.ear file on the file system and select it
and click Next.
v If using WebSphere Application Server version 7.0, click Next.
v If using WebSphere Application Server version 6.1, enter a Context Root

value with the name: /wxsrestservice and continue to the next step.
d. Choose the detailed installation option, and click Next.
e. On the application security warnings screen, click Continue.
f. Choose the default installation options, and click Next.
g. Choose a server to map the application to, and click Next.
h. On the JSP reloading page, use the defaults, and click Next.
i. On the shared libraries page, map the "wxsrestservice.war" module to the

following shared libraries defined in steps 3 and 4:
v extremescale_rest_configuration

v extremescale_client_v71

Tip: This shared library is required only if WebSphere eXtreme Scale is not
integrated with WebSphere Application Server.

Chapter 7. Configuring the deployment environment 343

j. On the map shared library relationship page, use the defaults, and click
Next.

k. On the map virtual hosts page, use the defaults, and click Next.
l. On the map context roots page, set the context root to: wxsrestservice
m. On the Summary screen, click Finish to complete the installation.
n. Save the changes to the master configuration.

6. Start the "wxsrestservice" WebSphere eXtreme Scale REST data service
application:
a. Choose application

v If using WebSphere Application Server version 7.0: In the administrative
console, click onApplications > Application Types > WebSphere
Applications

v If using WebSphere Application Server version 6.1: In the administrative
console, click on ApplicationsEnterprise Applications.

b. Check the check box next to the "wxsrestservice " application, and click
Start.

c. Review the SystemOut.log file for the application server profile. When the
REST data service has started successfully, the following message is
displayed in the SystemOut.log file for the server profile:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

7. Verify the REST data service is working: The port number can be found in the
SystemOut.log file within the application server profile logs directory by
looking at the first port displayed for message identifier: SRVE0250I. The
default port is 9080.
For example: http://localhost:9080/wxsrestservice/restservice/
NorthwindGrid/ Result: The AtomPub service document is displayed.

Deploying the REST data service on WebSphere Application
Server Community Edition
This topic describes how to configure the eXtreme Scale REST data service on
WebSphere Application Server Community Edition Version 2.1.1.3 or later.

Before you begin
v An IBM (recommended) or Sun JRE or JDK, Version 5 or later is installed and

the JAVA_HOME environment variable is set.
v Download and install WebSphere Application Server Community Edition

Version 2.1.1.3 or later to the wasce_root directory, for example the
/opt/IBM/wasce directory. Read the installation instructions for information on
version 2.1.1 or other versions.

v The eXtreme Scale Trial Version 7.1 with the REST data service is downloaded
and extracted or the WebSphere eXtreme Scale 7.1.0.0 with cumulative fix 2
product is installed into a stand-alone directory.

Procedure
1. Configure and start an eXtreme Scale data grid.

a. For details on configuring an eXtreme Scale data grid for use with the REST
data service, read about Chapter 7, “Configuring the deployment
environment,” on page 115.

b. Verify that an eXtreme Scale client can connect to and access entities in the
data grid. For an example, see REST data services sample and tutorial.

344 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/software/webservers/appserv/community/
http://www.ibm.com/software/webservers/appserv/community/
http://www.ibm.com/software/webservers/appserv/community/

2. Build the eXtreme Scale REST service configuration JAR or directory. See the
packaging and deployment information in the “Installing the REST data
service” on page 339 topic for details.

3. Start the WebSphere Application Server Community Edition server:
a. To start the server without Java SE security enabled, run the following

command:

UNIX Linux wasce_root/bin/startup.sh

Windows wasce_root/bin/startup.bat

b. To start the server with Java SE security enabled, follow these steps:
UNIX Linux

1) Open a command-line or terminal window and run the following copy
command (or copy the contents of the specified policy file into your
existing policy): cp restservice_home/gettingstarted/wasce/
geronimo.policy wasce_root/bin

2) Edit the wasce_root/bin/setenv.sh file
3) After the line that contains "WASCE_JAVA_HOME=", add the following:

export JAVA_OPTS="-Djava.security.manager
-Djava.security.policy=geronimo.policy"

Windows

1) Open a command-line window and run the following copy command or
copy the contents of the specified policy file into your existing policy:
copy restservice_home\gettingstarted\wasce\geronimo.policy\bin

2) Edit the wasce_root\bin\setenv.bat file
3) After the line that contains "set WASCE_JAVA_HOME=", add the

following:
set JAVA_OPTS="-Djava.security.manager
-Djava.security.policy=geronimo.policy"

4. Add the ObjectGrid client runtime JAR to the WebSphere Application Server
Community Edition repository:
a. Open the WebSphere Application Server Community Edition administration

console and log in. The default URL is: http://localhost:8080/console and
the default userid is system and password is manager.

b. Click the Repository link on the left side of the console window, in the
Services folder.

c. In the Add Archive to Repository section, fill in the following into the
input text boxes:

Table 25. Add Archive to Repository

Text box Value

File wxs_home/lib/ogclient.jar

Group com.ibm.websphere.xs

Artifact ogclient

Version 7.1

Type JAR

d. Click the Install button

Chapter 7. Configuring the deployment environment 345

See the following tech note for details on different ways class and library
dependencies can be configured: Specifying external dependencies to
applications running on WebSphere Application Server Community Edition.

5. Deploy and start the REST data service module, the wxsrestservice.war file, to
the WebSphere Application Server Community Edition server.
a. Copy and edit the sample deployment plan XML file: restservice_home/

gettingstarted/wasce/geronimo-web.xml to include path dependencies to
your REST data service configuration JAR or directory. See section for an
example on setting the classpath to include your
wxsRestService.properties file and other configuration files and metadata
classes.

b. Open the WebSphere Application Server Community Edition administration
console and log in.

Tip: The default URL is: http://localhost:8080/console. The default
userid is system and password is manager.

c. Click on the Deploy Newlink on the left side of the console window.
d. On the Install New Applications page, enter the following values into the

text boxes:

Table 26. Install New Applications

Text box Value

Archive restservice_home/lib/wxsrestservice.war

Plan restservice_home/gettingstarted/wasce/geronimo-web.xml

Tip: Use the path to the geronimo-web.xml file that you copied and edited
in step 3.

e. Click on the Install button. The console page then indicates that the
application was successfully installed and started.

f. Examine the WebSphere Application Server Community Edition system
output log or console to verify that the REST data service has started
successfully. The following message must appear:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

6. Start the WebSphere Application Server Community Edition server by running
the following command:

v UNIX Linux wasce_root/bin/startup.sh

v Windows wasce_root/bin/startup.bat

7. Install the eXtreme Scale REST data service and the provided sample into the
WebSphere Application Server Community Edition server:
a. Add the ObjectGrid client runtime JAR to the WebSphere Application Server

Community Edition repository:
1) Open the WebSphere Application Server Community Edition

administration console and log in. The default URL is:
http://localhost:8080/console. The default userid is system and
password is manager.

2) Click the Repository link on the left side of the console window, in the
Services folder.

3) In the Add Archive to Repository section, fill in the following into the
input text boxes:

346 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/support/docview.wss?uid=swg21266061
http://www.ibm.com/support/docview.wss?uid=swg21266061

Table 27. Add Archive to Repository

Text box Value

File wxs_home/lib/ogclient.jar

Group com.ibm.websphere.xs

Artifact ogclient

Version 7.1

Type JAR

4) Click the install button.

Tip: See the following technote for details on different ways class and
library dependencies can be configured: Specifying external
dependencies to applications running on WebSphere Application Server
Community Edition

b. Deploy the REST data service module: wxsrestservice.war to the
WebSphere Application Server Community Edition server.
1) Edit the sample restservice_home/gettingstarted/wasce/geronimo-

web.xml deployment XML file to include path dependencies to the
getting started sample classpath directories:
v Change the "classesDirs" for the two getting started client GBeans:

The "classesDirs" path for the GettingStarted_Client_SharedLib GBean
should be set to: restservice_home/gettingstarted/restclient/bin
The "classesDirs" path for the GettingStarted_Common_SharedLib
GBean should be set to: restservice_home/gettingstarted/common/bin

2) Open the WebSphere Application Server Community Edition
administration console and log in.

3) Click on the Deploy Newlink on the left side of the console window.
4) On the Install New Applications page, enter the following values into

the text boxes:

Table 28. Install New Applications

Text box Value

Archive restservice_home/lib/wxsrestservice.war

Plan restservice_home/gettingstarted/wasce/geronimo-web.xml

5) Click the Install button.
The console page then indicates that the application has successfully
installed and started.

6) Examine the WebSphere Application Server Community Edition system
output log to verify that the REST data service has started successfully
by verifying that the following message is present:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has
been started.

8. Verify that the REST data service is working:
Open a Web browser and navigate to the following URL: http://
<host>:<port>/<context root>/restservice/<Grid Name>

The default port for WebSphere Application Server Community Edition is 8080
and is defined using the "HTTPPort" property in the /var/config/config-
substitutions.properties file.

Chapter 7. Configuring the deployment environment 347

http://www.ibm.com/support/docview.wss?uid=swg21266061
http://www.ibm.com/support/docview.wss?uid=swg21266061
http://www.ibm.com/support/docview.wss?uid=swg21266061

For example: http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/

Results

The AtomPub service document is displayed.

Deploying the REST data service on Apache Tomcat
This topic describes how to configure theWebSphere eXtreme Scale REST data
service on Apache Tomcat Version 5.5 or later.

About this task
v An IBM or Sun JRE or JDK, Version 5 or later installed and a specified

JAVA_HOME environment variable.
v Apache Tomcat Version 5.5 or later is installed. See Apache Tomcat for details on

how to install Tomcat.
v The WebSphere eXtreme Scale Trial Version 7. with the REST data service is

downloaded and extracted or the WebSphere eXtreme Scale Version 7.1.0.0 with
cumulative fix 2 product is installed into a stand-alone directory.

Procedure
1. If using a Sun JRE or JDK, install the IBM ORB into Tomcat:

a. Tomcat version 5.5:
Copy all of the JAR files from:
the wxs_home/lib/endorsed directory
to:
the tomcat_root/common/endorsed directory

b. Tomcat version 6.0:
Create an "endorsed" directory:

UNIX Linux mkdir tomcat_root/endorsed

Windows md tomcat_root/endorsed

Copy all of the JAR files from:
wxs_home/lib/endorsed

to:
tomcat_root/common/endorsed

2. Configure and start a data grid.
a. For details on configuring a data grid for use with the REST data service,

see Chapter 7, “Configuring the deployment environment,” on page 115.
b. Verify that an eXtreme Scale client can connect to and access entities in the

grid. For an example, see REST data services sample and tutorial.
3. Build the eXtreme Scale REST service configuration JAR or directory. See the

packaging and deployment information in “Installing the REST data service”
on page 339 for details.

4. Deploy the REST data service module: wxsrestservice.war to the Tomcat server.
Copy the wxsrestservice.war file from:
restservice_home/lib

to:
tomcat_root/webapps

348 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://tomcat.apache.org

5. Add the ObjectGrid client runtime JAR and the application JAR to the shared
classpath in Tomcat:
a. Edit the tomcat_root/conf/catalina.properties file
b. Append the following path names to the end of the shared.loader property,

separating each path name with a comma:
v wxs_home/lib/ogclient.jar

v restservice_home/gettingstarted/restclient/bin

v restservice_home/gettingstarted/common/bin

6. If you are using Java 2 security, add security permissions to the tomcat policy
file:
v If using Tomcat version 5.5:

Merge the contents of the sample 5.5 catalina policy file found in
restservice_home/gettingstarted/tomcat/catalina-5_5.policy with the
tomcat_root/conf/catalina.policy file.

v If using Tomcat version 6.0:
Merge the contents of the sample 6.0 catalina policy file found in
restservice_home/gettingstarted/tomcat/catalina-6_0.policy with the
tomcat_root/conf/catalina.policy file.

7. Start the Tomcat server:
v If using Tomcat 5.5 on UNIX or Windows, or the Tomcat 6.0 ZIP

distribution:

a. cd tomcat_root/bin

b. Start the server:
– Without Java 2 security enabled:

UNIX Linux ./catalina.sh run

Windows catalina.bat run

– With Java 2 security enabled:

UNIX Linux ./catalina.sh run -security

Windows catalina.bat run -security

c. The Apache Tomcat logs are displayed to the console. When the REST
data service has started successfully, the following message is displayed
in the administrative console:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

v If using Tomcat 6.0 on Windows using the Windows installer distribution:

a. cd /bin

b. Start the Apache Tomcat 6 configuration tool:
tomcat6w.exe

c. To enable Java 2 security (optional):
Add the following entries to the Java Options in the Java tab in the
Apache Tomcat 6 properties window:
-Djava.security.manager

-Djava.security.policy=\conf\catalina.policy

d. Click on the Start button on the Apache Tomcat 6 properties window to
start the Tomcat server.

Chapter 7. Configuring the deployment environment 349

e. Review the following logs to verify that the Tomcat server has started
successfully:
– tomcat_root/bin/catalina.log

Displays the status of the Tomcat server engine
– tomcat_root/bin/stdout.log

Displays the system output log
f. When the REST data service has started successfully, the following

message is displayed in the system output log:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

8. Verify the REST data service is working.
Open a Web browser and navigate to the following URL:
http://host:port/context_root/restservice/grid_name

The default port for Tomcat is 8080 and is configured in the
tomcat_root/conf/server.xml file in the <Connector> element.
For example:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Results

The AtomPub service document is displayed.

350 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 8. Administering the deployment environment

Operating the product environment includes starting and stopping servers,
managing the availability of the data grid, and recovering from data center failure
scenarios.

About this task

After you configure your catalog servers and container servers, you can start and
stop the servers using various methods. The method that you use to start and stop
servers depends on if you are using an embeded topology, a stand-alone topology,
or a topology that is running within WebSphere Application Server.

Starting and stopping stand-alone servers
You can start and stop stand-alone catalog and container servers with the
startOgServer and stopOgServer scripts or the embedded server API.

Before you begin

7.1.0.3+ If you are starting or stopping servers in a stand-alone environment that
is using an external client security provider, you must set the CLIENT_AUTH_LIB
environment variable before you run the startOgServer or stopOgServer scripts.
For more information about setting this environment variable, see “Starting secure
servers in a stand-alone environment” on page 430.

Starting stand-alone servers
When you are running a stand-alone configuration, the environment is comprised
of catalog servers, container servers, and client processes. WebSphere eXtreme Scale
servers can also be embedded within existing Java applications by using the
embedded server API. You must manually configure and start these processes.

startOgServer
Before you begin

You can start WebSphere eXtreme Scale servers in an environment that does not
have WebSphere Application Server installed. If you are using WebSphere
Application Server, see “Configuring WebSphere eXtreme Scale with WebSphere
Application Server” on page 205.

Starting a stand-alone catalog service
You must start the catalog service manually when you are using a distributed
WebSphere eXtreme Scale environment that is not running in WebSphere
Application Server.

Before you begin
v If you are using WebSphere Application Server, the catalog service automatically

starts within the existing processes. See Starting the catalog service in
WebSphere Application Server for more information.

© Copyright IBM Corp. 2009, 2011 351

About this task

Start the catalog service with the startOgServer script. When you call the start
command, use the startOgServer.sh script on Unix platforms or
startOgServer.bat on Windows.

The catalog service can run in a single process or can include multiple catalog
servers to form a catalog service domain. A catalog service domain is required in a
production environment for high availability. For more information catalog service
domains, see the information about catalog service domains in the Product
Overview. You can also specify additional parameters to the script to bind the
Object Request Broker (ORB) to a specific host and port, specify the domain, or
enable security.

Procedure
v Start a single catalog server process.

To start a single catalog server, type the following commands from the command
line:
1. Navigate to the bin directory.

cd objectgridRoot/bin

2. Run the startOgServer command.
startOgServer.bat|sh catalogServer

For a list of all of the available command line parameters, see “startOgServer
script” on page 356. Do not use a single Java virtual machine (JVM) to run the
catalog service in a production environment. If the catalog service fails, no new
clients are able to route to the deployed eXtreme Scale, and no new ObjectGrid
instances can be added to the domain. For these reasons, you should start a set
of Java virtual machines to run a catalog service domain.

v Start a catalog service domain that consists of multiple endpoints.

To start a set of servers to run a catalog service, you must use the
-catalogServiceEndPoints option on the startOgServer script. This argument
accepts a list of catalog service endpoints in the format of
serverName:hostName:clientPort:peerPort.The following example shows how
to start the first of three Java virtual machines to host a catalog service:
1. Navigate to the bin directory.

cd wxs_install_root/bin

2. Run the startOgServer command.
startOgServer.bat|sh cs1 -catalogServiceEndPoints
cs1:MyServer1.company.com:6601:6602,
cs2:MyServer2.company.com:6601:6602,
cs3:MyServer3.company.com:6601:6602

In this example, the cs1 server on the MyServer1.company.com host is started.
This server name is the first argument that is passed to the script. During
initialization of the cs1 server, the catalogServiceEndpoints parameters are
examined to determine which ports are allocated for this process. The list is
also used to allow the cs1 server to accept connections from other servers:
cs2 and cs3.

3. To start the remaining catalog servers in the list, pass the following
arguments to the startOgServer script. Starting the cs2 server on the
MyServer2.company.com host.

352 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

startOgServer.bat|sh cs2 -catalogServiceEndPoints
cs1:MyServer1.company.com:6601:6602,
cs2:MyServer2.company.com:6601:6602,
cs3:MyServer3.company.com:6601:6602

Starting cs3 on MyServer3.company.com:
startOgServer.bat|sh cs3 -catalogServiceEndPoints
cs1:MyServer1.company.com:6601:6602,
cs2:MyServer2.company.com:6601:6602,
cs3:MyServer3.company.com:6601:6602

Important: Start at least two catalog servers in parallel.

You must start catalog servers that are in a data grid in parallel, because each
server pauses to wait for the other catalog servers to join the core group. A
catalog server that is configured for a data grid does not start until it
identifies other members in the group. The catalog server eventually times
out if no other servers become available.

v Bind the ORB to a specific host and port.

Aside from ports defined in the catalogServiceEndpoints argument, each
catalog service also uses an Object Request Broker (ORB) to accept connections
from clients and containers. By default, the ORB listens on port 2809 of the
localhost. If you want to bind the ORB to a specific host and port on a catalog
service JVM, use the -listenerHost and -listenerPort arguments. The
following example shows how to start a single JVM catalog server with its ORB
bound to port 7000 on MyServer1.company.com:
startOgServer.sh catalogServer -listenerHost MyServer1.company.com
-listenerPort 7000

Each eXtreme Scale container and client must be provided with catalog service
ORB endpoint data. Clients only need a subset of this data, but you should use
at least two endpoints for high availability.

v Optional: Name the catalog service domain

A catalog service domain name is not required when starting a catalog service.
However, if you are using multi-master replication or are using multiple catalog
service domains within the same set of processes, then you need to define a
unique catalog service domain name. The default domain name is
DefaultDomain. To give your domain a name, use the -domain option. The
following example demonstrates how to start a single catalog service JVM with
the domain name myDomain.
startOgServer.sh catalogServer -domain myDomain

For more information about configuring multi-master replication, see
“Configuring multi-master replication topologies” on page 227.

v Start a secure catalog service. See “Starting secure servers in a stand-alone
environment” on page 430 for more information.

v Start the catalog service programmatically.

Any JVM setting that is flagged by the CatalogServerProperties.setCatalogServer
method can host the catalog service for eXtreme Scale. This method indicates to
the eXtreme Scale server run time to instantiate the catalog service when the
server is started. The following code shows how to instantiate the eXtreme Scale
catalog server:
CatalogServerProperties catalogServerProperties =
ServerFactory.getCatalogProperties();
catalogServerProperties.setCatalogServer(true);

Chapter 8. Administering the deployment environment 353

//The getInstance() method will start the catalog service.
Server server = ServerFactory.getInstance();

For more information about starting servers programmatically, see “Using the
embedded server API to start and stop servers” on page 364.

Starting container processes
You can start eXtreme Scale from the command line using a deployment topology
or using a server.properties file.

About this task

To start a container process, you need an ObjectGrid XML file. The ObjectGrid
XML file specifies which eXtreme Scale servers the container hosts. Ensure that
your container is equipped to host each ObjectGrid in the XML that you pass to it.
All of the classes that these ObjectGrids require must be in the classpath for the
container. For more information about the ObjectGrid XML file, see
“objectGrid.xsd file” on page 169.

Procedure
v Start the container process from the command line.

1. From the command line, navigate to the bin directory:
cd wxs_install_root/bin

2. Run the following command:
startOgServer.sh c0 -objectGridFile ../xml/companyGrid.xml
-catalogServiceEndPoints MyServer1.company.com:2809

Important: On the container, the -catalogServiceEndPoints option is used to
reference the Object Request Broker (ORB) host and port on the catalog service.
The catalog service uses the -listenerHost and -listenerPort options to specify
the host and port for ORB binding or accepts the default binding. When you are
starting a container, use the -catalogServiceEndPoints option to reference the
values that are passed to the -listenerHost and -listenerPort options on the
catalog service. If -listenerHost and -listenerPort options are not used when
the catalog service is started, the ORB binds to port 2809 on the localhost for the
catalog service. Do not use the -catalogServiceEndPoints option to reference the
hosts and ports that were passed to the -catalogServiceEndPoints option on the
catalog service. On the catalog service, the -catalogServiceEndPoints option is
used to specify ports necessary for static server configuration.
This process is identified by c0, the first argument passed to the script. Use the
companyGrid.xml to start the container. If your catalog server ORB is running on
a different host than your container or it is using a non-default port, you must
use the -catalogServiceEndPoints argument to connect to the ORB. For this
example, assume that a single catalog service is running on port 2809 on
MyServer1.company.com

v Start the container using a deployment policy.

Although not required, a deployment policy is recommended during container
start up. The deployment policy is used to set up partitioning and replication for
eXtreme Scale. The deployment policy can also be used to influence placement
behavior. Because the previous example did not provide a deployment policy
file, the example receives all default values with regard to replication,
partitioning, and placement. So, the maps in the CompanyGrid are in one
mapSet. The mapSet is not partitioned or replicated. For more information about

354 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

deployment policy files, see “Deployment policy descriptor XML file” on page
192. The following example uses the companyGridDpReplication.xml file to start
a container JVM, the c0 JVM:
1. From the command line, navigate to the bin directory:

cd wxs_install_root/bin

2. Run the following command:
startOgServer.sh c0 -objectGridFile ../xml/companyGrid.xml
-deploymentPolicyFile ../xml/companyGridDpReplication.xml
-catalogServiceEndPoints MyServer1.company.com:2809

Note: If you have Java classes stored in a specific directory, instead of altering
the StartOgServer script, you can launch the server with arguments as follows:
-jvmArgs -cp C:\ . . . \DirectoryPOJOs\POJOs.jar
. In the companyGridDpReplication.xml file, a single map set contains all of the
maps. This mapSet is divided into 10 partitions. Each partition has one
synchronous replica and no asynchronous replicas. Any container that uses the
companyGridDpReplication.xml deployment policy paired with the
companyGrid.xml ObjectGrid XML file is also able to host CompanyGrid shards.
Start another container JVM, the c1 JVM:
1. From the command line, navigate to the bin directory:

cd wxs_install_root/bin

2. Run the following command:
startOgServer.sh c1 -objectGridFile ../xml/companyGrid.xml
-deploymentPolicyFile ../xml/companyGridDpReplication.xml
-catalogServiceEndPoints MyServer1.company.com:2809

Each deployment policy contains one or more objectgridDeployment elements.
When a container is started, it publishes its deployment policy to the catalog
service. The catalog service examines each objectgridDeployment element. If the
objectgridName attribute matches the objectgridName attribute of a previously
received objectgridDeployment element, the latest objectgridDeployment element
is ignored. The first objectgridDeployment element received for a specific
objectgridName attribute is used as the master. For example, assume that the c2
JVM uses a deployment policy that divides the mapSet into a different number
of partitions:
companyGridDpReplicationModified.xml

<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"

xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="CompanyGrid">
<mapSet name="mapSet1" numberOfPartitions="5"

minSyncReplicas="1" maxSyncReplicas="1"
maxAsyncReplicas="0">
<map ref="Customer" />
<map ref="Item" />
<map ref="OrderLine" />
<map ref="Order" />

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Now, you can start a third JVM, the c2 JVM:
1. From the command line, navigate to the bin directory:

Chapter 8. Administering the deployment environment 355

cd wxs_install_root/bin

2. Run the following command:
startOgServer.sh c2 -objectGridFile ../xml/companyGrid.xml
-deploymentPolicyFile ../xml/companyGridDpReplicationModified.xml
-catalogServiceEndPoints MyServer1.company.com:2809

The container on the c2 JVM is started with a deployment policy that specifies 5
partitions for mapSet1. However, the catalog service already holds the master
copy of the objectgridDeployment for the CompanyGrid. When the c0 JVM was
started it specified that 10 partitions exist for this mapSet. Because it was the
first container to start and publish its deployment policy, its deployment policy
became the master. Therefore, any objectgridDeployment attribute value that is
equal to CompanyGrid in a subsequent deployment policy is ignored.

v Start a container using a server properties file.

You can use a server properties file to set up trace and configure security on a
container. Run the following commands to start container c3 with a server
properties file:
1. From the command line, navigate to the bin directory:

cd wxs_install_root/bin

2. Run the following command:
startOgServer.sh c3 -objectGridFile ../xml/companyGrid.xml
-deploymentPolicyFile ../xml/companyGridDpReplicationModified.xml
-catalogServiceEndPoints MyServer1.company.com:2809
-serverProps ../serverProps/server.properties

An example server.properties file follows:
server.properties
workingDirectory=
traceSpec=*=all=disabled
systemStreamToFileEnabled=true
enableMBeans=true
memoryThresholdPercentage=50

This is a basic server properties file that does not have security enabled. For
more information about the server.properties file, see “Server properties file”
on page 199.

v Start a container server programmatically.

For more information about starting container servers programmatically, see
“Using the embedded server API to start and stop servers” on page 364.

startOgServer script
The startOgServer script starts container and catalog servers. You can use a
variety of parameters when you start your servers to enable trace, specify port
numbers, and so on.

startOgServer
Purpose

You can use the startOgServer script to start servers.

Location

The startOgServer script is in the bin directory of the root directory, for example:
cd wxs_install_root/bin

356 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Note: If you have Java classes stored in a specific directory, instead of altering the
startOgServer script, you can launch the server with arguments as follows:
-jvmArgs -cp C:\ . . . \DirectoryPOJOs\POJOs.jar

.

Usage for catalog servers

To start a catalog server:

Windows

startOgServer.bat <server> [options]

UNIX

startOgServer.sh <server>[options]

To start a default configured catalog server, use the following commands:

Windows

startOgServer.bat catalogServer

UNIX

startOgServer.sh catalogServer

Options for starting catalog servers

The following parameters are all optional.

Parameters for starting a catalog server:

-catalogServiceEndPoints <serverName:hostName:clientPort:peerPort>
On the container, the -catalogServiceEndPoints option is used to reference the
Object Request Broker (ORB) host and port on the catalog service. Each
attribute is defined as follows:

serverName
Specifies a name to identify the process that you are launching.

hostName
Specifies the host name for the computer where the server is launched.

clientPort
Specifies the port that is used for peer catalog grid communication.

peerPort
This is the same as the haManagerPort. Specifies the port that is used
for peer catalog grid communication.

The following example starts the cs1 catalog server, which is in the same
catalog service domain as the cs2 and cs3 servers:
startOgServer.bat|sh cs1 -catalogServiceEndPoints
cs1:MyServer1.company.com:6601:6602,
cs2:MyServer2.company.com:6601:6602,
cs3:MyServer3.company.com:6601:6602

-clusterSecurityFile <cluster security xml file>
Specifies the objectGridSecurity.xml file on the hard disk, which describes the
security properties that are common to all servers (including catalog servers

Chapter 8. Administering the deployment environment 357

and container servers). One of the property example is the authenticator
configuration which represents the user registry and authentication
mechanism.

Example:/opt/xs/ogsecurity.xml

-clusterSecurityUrl <cluster security xml URL>
Specifies the objectGridSecurity.xml file as a URL to the file on the hard disk
or on the network, which describes the security properties that are common to
all servers (including catalog servers and container servers). One of the
property example is the authenticator configuration which represents the user
registry and authentication mechanism.

Example:file:///opt/xs/ogsecurity.xml

-domain <domain name>
Specifies the name of the catalog service domain for this catalog server. The
catalog service domain creates a group of highly available catalog servers. Each
catalog server for a single domain should specify the same value for the
-domain parameter.

-haManagerPort <port>
Default: This is the same as the peerport. If this property is not set, the catalog
service automatically generates an available port.

Specifies the port number the high availability manager uses.

-JMXServicePort <port>
Default: 1099

Specifies the port number for communication with Java Management
Extensions (JMX). You must use a different port number for each JVM in your
configuration. If you want to use JMX/RMI, explicitly specify the
-JMXServicePort option and port number, even if you want to use the default
port value.

-jvmArgs <JVM arguments>
Specifies a set of JVM arguments. Every option after the -jvmArgs option is
used to start the server Java virtual machine (JVM). When the -jvmArgs
parameter is used, ensure that it is the last optional script argument specified.

Example:-jvmArgs -Xms256M -Xmx1G

-listenerHost <host name>
Default: localhost

Specifies the listener host for communication with Internet Inter-ORB Protocol
(IIOP).

-listenerPort <port>
Default: 2809

Specifies the listener port for communication with IIOP. You must use a
different port number for each JVM in your configuration.

-quorum true|false
Enables quorum on the catalog server. See “Catalog server quorums” on page
98 for more information.

-script <script file>
Specifies the location of a custom script for commands you specify to start
catalog servers or containers and then parameterize or edit as you require.

358 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

-serverProps <server properties file>
Specifies the server property file that contains the server-specific security
properties. The file name specified for this property is just in plain file path
format, such as c:/tmp/og/catalogserver.props.

-traceSpec <trace specification>
Specifies a string that specifies the scope of the trace that is enabled when the
server starts.

Example:

v ObjectGrid=all=enabled

v ObjectGrid*=all=enabled

-traceFile <trace file>
Specifies the path of a file in which to save trace information.

Example: ../logs/c4Trace.log

-timeout <seconds>
Specifies a number of seconds before the server start times out.

Usage for container servers Windows

startOgServer.bat <server> -objectgridFile <xml file>
-deploymentPolicyFile <xml file> [options]

Windows

startOgServer.bat <server> -objectgridUrl <xml URL>
-deploymentPolicyUrl <xml URL> [options]

UNIX

startOgServer.sh <server> -objectgridFile <xml file>
-deploymentPolicyFile <xml file> [options]

UNIX

startOgServer.sh <server> -objectgridUrl <xml URL>
-deploymentPolicyUrl <xml URL> [options]

Options for container servers

-catalogServiceEndPoints <hostName:port,hostName:port>
Specifies the Object Request Broker (ORB) host and port on the catalog service.

Default: localhost:2809

-deploymentPolicyFile <deployment policy xml file>
Specifies the path to the deployment policy file on the hard disk. The
deployment policy is used to set up partitioning and replication. The
deployment policy can also be used to influence placement behavior.

Example: ../xml/SimpleDP.xml

-deploymentPolicyUrl <deployment policy url>
Specifies the URL for the deployment policy file on the hard disk or on the
network. The deployment policy is used to set up partitioning and replication.
The deployment policy can also be used to influence placement behavior.

Example: file://xml/SimpleDP.xml

-JMXServicePort <port>
Default: 1099

Chapter 8. Administering the deployment environment 359

Specifies the port number for communication with Java Management
Extensions (JMX). You must use a different port number for each JVM in your
configuration.

-jvmArgs <JVM arguments>
Specifies a set of JVM arguments. Every option after the -jvmArgs option is
used to start the server Java virtual machine (JVM). When the -jvmArgs
parameter is used, ensure that it is the last optional script argument specified.

Example:-jvmArgs -Xms256M -Xmx1G

-listenerHost <host name>
Default: localhost

Specifies the listener host for communication with Internet Inter-ORB Protocol
(IIOP).

-listenerPort <port>
Default: 2809

Specifies the listener port for communication with IIOP. You must use a
different port number for each JVM in your configuration.

-objectgridFile <ObjectGrid descriptor xml file>
Specifies the path to the ObjectGrid descriptor file. The ObjectGrid XML file
specifies which eXtreme Scale servers the container hosts.

-objectgridUrl <ObjectGrid descriptor url>
Specifies a URL for the ObjectGrid descriptor file. The ObjectGrid XML file
specifies which eXtreme Scale servers the container hosts.

-script <script file>
Specifies the location of a custom script for commands you specify to start
catalog servers or containers and then parameterize or edit as you require.

-serverProps <server properties file>
Specifies the path to the server property file.

Example:../security/server.props

-timeout <seconds>
Specifies a number of seconds before the server start times out.

-traceFile <trace file>
Specifies the path of a file in which to save trace information.

Example: ../logs/c4Trace.log

-traceSpec <trace specification>
Specifies a string that specifies the scope of the trace that is enabled when the
server starts.

Example:

v ObjectGrid=all=enabled

v ObjectGrid*=all=enabled

-zone <zone name>
Specifies the zone to use for all of the containers within the server. See the
information about zones in the Product Overview for more information about
configuring zones.

Stopping stand-alone servers
You can use the stopOgServer script to stop eXtreme Scale server processes.

360 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About this task

Run the stopOgServer script by navigating to the bin directory:
cd wxs_install_root/bin

Procedure
v Stop container servers.

Run the stopOgServer script to stop the container server.
stopOgServer containerServer -catalogServiceEndPoints MyServer1.company.com:2809

Use the same script to stop multiple servers by separating a list of servers with
commas:
stopOgServer cs0,cs1,cs2 -catalogServiceEndPoints MyServer1.company.com:2809

Attention: The -catalogServiceEndPoints option should match the value of
the -catalogServiceEndPoints option that was used to start the container. If a
-catalogServiceEndPoints was not used to start the container, the default values
are likely localhost or the hostname and 2809 for the ORB port to connect to the
catalog service. Otherwise, use the values that are passed to -listenerHost and
-listenerPort on the catalog service. If the -listenerHost and -listenerPort
options are not used when starting the catalog service, the ORB binds to port
2809 on the localhost for the catalog service.

v Stop catalog servers.

Run the stopOgServer script to stop the catalog server.
stopOgServer.sh catalogServer -catalogServiceEndPoints MyServer1.company.com:2809

Attention: When you are stopping a catalog service, use the
-catalogServiceEndPoints option to reference the Object Request Broker (ORB)
host and port on the catalog service. The catalog service uses -listenerHost and
-listenerPort options to specify the host and port for ORB binding or accepts
the default binding. If the -listenerHost and -listenerPort options are not
used when starting the catalog service, the ORB binds to port 2809 on the
localhost for the catalog service. The -catalogServiceEndPoints option is
different when stopping a catalog service than when you started the catalog
service.

Starting a catalog service requires peer access ports and client access ports, if the
default ports were not used. Stopping a catalog service requires only the ORB
port.

v Enable trace for the server stop process.

If a container fails to stop, you can enable trace to help with debugging the
problem. To enable trace during the stop of a server, add the -traceSpec and
-traceFile parameters to the stop commands. The -traceSpec parameter
specifies the type of trace to enable and the -traceFile parameter specifies path
and name of the file to create and use for the trace data.
1. From the command line, navigate to the bin directory.

cd wxs_install_root/bin

2. Run the stopOgServer script with trace enabled.
stopOgServer.sh c4 -catalogServiceEndPoints MyServer1.company.com:2809
-traceFile ../logs/c4Trace.log -traceSpec ObjectGrid=all=enabled

After the trace is obtained, look for errors related to port conflicts, missing
classes, missing or incorrect XML files or any stack traces. Suggested startup
trace specifications are:

Chapter 8. Administering the deployment environment 361

– ObjectGrid=all=enabled

– ObjectGrid*=all=enabled

For all of the trace specification options, see “Trace options” on page 531.
v Stop embedded servers programmatically.

For more information about stopping embedded servers programmatically, see
“Using the embedded server API to start and stop servers” on page 364.

stopOgServer script
The stopOgServer script stops catalog and container servers.

stopOgServer
Purpose

Use the stopOgServer script to stop a server. You must provide the name of the
server and its catalog service endpoints.

Location

The stopOgServer script is in the bin directory of the root directory, for example:
cd wxs_install_root/bin

Usage

To stop a catalog or container server: Windows

stopOgServer.bat <server_name> -catalogServiceEndPoints
<csHost:csListenerPort,csHost:csListenerPort> [options]

UNIX

stopOgServer.sh <server_name> -catalogServiceEndPoints
<csHost:csListenerPort,csHost:csListenerPort> [options]

Options

-catalogServiceEndPoints <csHost:csListenerPort, csHost:csListenerPort...>
Specifies the Object Request Broker (ORB) host and port number.

For container severs: The list of catalog service endpoints should be the same
as the list that was used to start the container server. If you did not specify this
option when you started the container server, use the default value of
localhost:2809.

For catalog servers: If you are stopping the catalog service, use the values that
you indicated for the -listenerHost and -listenerPort options when you
started the catalog service. If you did not specify these options when you
started the catalog server, use the default value of localhost:2809. The
-catalogServiceEndPoints value you use when you stop the catalog service is
different from when you start the catalog service.

-clientSecurityFile <security properties file>
Specifies the path to the client properties file that defines security properties
for the client. See “Client properties file” on page 245 for more information
about the security settings in this file.

-traceSpec <trace specification>
Specifies a string that specifies the scope of the trace that is enabled when the
server starts.

362 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Example:

v ObjectGrid=all=enabled

v ObjectGrid*=all=enabled

-traceFile <trace file>
Specifies the path of a file in which to save trace information.

Example: ../logs/c4Trace.log

-jvmArgs <JVM arguments>
Specifies a set of JVM arguments. Every option after the -jvmArgs option is
used to start the server Java virtual machine (JVM). When the -jvmArgs
parameter is used, ensure that it is the last optional script argument specified.

Example:-jvmArgs -Xms256M -Xmx1G

Stopping servers gracefully with the xsadmin tool
You can use the xsadmin tool with the -teardown parameter to stop a list or group
of catalog and container servers. This command simplifies shutting down all or
portions of a data grid, avoiding unnecessary placement and recovery actions by
the catalog service that normally occur when processes are stopped or killed.

Procedure
v Stop a specific list of servers.

Provide a list of servers after the -teardown parameter:
xsadmin –teardown <server_name>[,<server_name>]

v Stop all the servers in a specific zone.
Use the -fz parameter and provide the name of the zone. The catalog server
determines the servers that are running in the zone, and the xsadmin tool
prompts you with a list of the servers in the selected zone before shutting down
the servers:
xsadmin –teardown –fz <zone_name>

v Stop all the servers on a specific host.
Use the -fh parameter and provide the name of the host. For example to shut
down all the servers on myhost.mycompany.com, enter -fh myhost.mycompany.com.
The catalog server determines the servers that are running on the host, and the
xsadmin tool prompts you with a list of the servers in the selected host before
shutting down the servers:
xsadmin –teardown –fh <host_name>

Starting and stopping servers in a WebSphere Application Server
environment

Catalog and container servers can automatically start in a WebSphere Application
Server or WebSphere Application Server Network Deployment environment.

Before you begin

Configure catalog servers and container servers to run on WebSphere Application
Server:
v “Configuring the catalog service in WebSphere Application Server” on page 205
v “Configuring container servers in WebSphere Application Server” on page 221

Chapter 8. Administering the deployment environment 363

About this task

The life cycle of catalog and container servers in WebSphere Application Server is
linked to the processes on which these servers run.

Procedure
v Starting catalog services in WebSphere Application Server:

The life cycle a catalog server is tied to the WebSphere Application Server
process. After you configure the catalog service domain in WebSphere
Application Server, restart each server that you defined as a part of the catalog
service domain. The catalog service starts automatically on the servers that you
associated with the catalog service domain. The catalog service can also start
automatically in the following scenarios, depending on the edition of WebSphere
Application Server:
– Base WebSphere Application Server: You can configure your application to

automatically start a container server and catalog service. This feature
simplifies unit testing in development environments such as Rational®

Application Developer because you do not need to explicitly start a catalog
service. See “Configuring WebSphere Application Server applications to
automatically start container servers” on page 222 for more information.

– WebSphere Application Server Network Deployment: The catalog service
automatically starts in the deployment manager process if the deployment
manager node has WebSphere eXtreme Scale installed and the deployment
manager profile is augmented. See “Configuring the catalog service in
WebSphere Application Server” on page 205 for more information.

v Starting container servers in WebSphere Application Server:
The life cycle of a container server is tied to the WebSphere Application Server
application. When you start the configured application, the container servers
also start.

v Stopping an entire data grid of servers:
You can stop catalog and container servers by stopping the applications and
associated application servers. However, you can also stop an entire data grid
with the xsadmin tool or MBeans:
– In the xsadmin tool:

See “Stopping servers gracefully with the xsadmin tool” on page 363 for more
information about stopping an entire data grid.

– With Mbeans:

Use the tearDownServers operation on the PlacementServiceMBean Mbean.

Using the embedded server API to start and stop servers
With WebSphere eXtreme Scale, you can use a programmatic API for managing the
life cycle of embedded servers and containers. You can programmatically
configure the server with any of the options that you can also configure with the
command line options or file-based server properties. You can configure the
embedded server to be a container server, a catalog service, or both.

Before you begin

You must have a method for running code from within an already existing Java
virtual machine. The eXtreme Scale classes must be available through the class
loader tree.

364 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About this task

You can run many administration tasks with the Administration API. One common
use of the API is as an internal server for storing Web application state. The Web
server can start an embedded WebSphere eXtreme Scale server, report the container
server to the catalog service, and the server is then added as a member of a larger
distributed grid. This usage can provide scalability and high availability to an
otherwise volatile data store.

You can programmatically control the complete life cycle of an embedded eXtreme
Scale server. The examples are as generic as possible and only show direct code
examples for the outlined steps.

Procedure
1. Obtain the ServerProperties object from the ServerFactory class and configure

any necessary options.
Every eXtreme Scale server has a set of configurable properties. When a server
starts from the command line, those properties are set to defaults, but you can
override several properties by providing an external source or file. In the
embedded scope, you can directly set the properties with a ServerProperties
object. You must set these properties before you obtain a server instance from
the ServerFactory class. The following example snippet obtains a
ServerProperties object, sets the CatalogServiceBootStrap field, and initializes
several optional server settings. See the API documentation for a list of the
configurable settings.
ServerProperties props = ServerFactory.getServerProperties();
props.setCatalogServiceBootstrap("host:port"); // required to connect to specific catalog service
props.setServerName("ServerOne"); // name server
props.setTraceSpecification("com.ibm.ws.objectgrid=all=enabled"); // Sets trace spec

2. If you want the server to be a catalog service, obtain the
CatalogServerProperties object.
Every embedded server can be a catalog service, a container server, or both a
container server and a catalog service. The following example obtains the
CatalogServerProperties object, enables the catalog service option, and
configures various catalog service settings.
CatalogServerProperties catalogProps = ServerFactory.getCatalogProperties();
catalogProps.setCatalogServer(true); // false by default, it is required to set as a catalog service
catalogProps.setQuorum(true); // enables / disables quorum

3. Obtain a Server instance from the ServerFactory class. The Server instance is a
process-scoped singleton that is responsible for managing the membership in
the grid. After this instance has been instantiated, this process is connected
and is highly available with the other servers in the grid. The following
example shows how to create the Server instance:
Server server = ServerFactory.getInstance();

Reviewing the previous example, the ServerFactory class provides a static
method that returns a Server instance. The ServerFactory class is intended to
be the only interface for obtaining a Server instance. Therefore, the class
ensures that the instance is a singleton, or one instance for each JVM or isolated
classloader. The getInstance method initializes the Server instance. You must
configure all the server properties before you initialize the instance. The Server
class is responsible for creating new Container instances. You can use both the
ServerFactory and Server classes for managing the life cycle of the embedded
Server instance.

4. Start a Container instance using the Server instance.

Chapter 8. Administering the deployment environment 365

Before shards can be placed on an embedded server, you must create a
container on the server. The Server interface has a createContainer method
that takes a DeploymentPolicy argument. The following example uses the
server instance that you obtained to create a container using a created
DeploymentPolicy file. Note that Containers require a classloader that has the
application binaries available to it for serialization. You can make these
binaries available by calling the createContainer method with the Thread
context classloader set to the classloader that you want to use.
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(new

URL("file://urltodeployment.xml"),
new URL("file://urltoobjectgrid.xml"));
Container container = server.createContainer(policy);

5. Remove and clean up a container.
You can remove and clean up a container server by using the running the
teardown method on the obtained Container instance. Running the teardown
method on a container properly cleans up the container and removes the
container from the embedded server.
The process of cleaning up the container includes the movement and tearing
down of all the shards that are placed within that container. Each server can
contain many containers and shards. Cleaning up a container does not affect
the life cycle of the parent Server instance. The following example
demonstrates how to run the teardown method on a server. The teardown
method is made available through the ContainerMBean interface. By using the
ContainerMBean interface, if you no longer have programmatic access to this
container, you can still remove and clean up the container with its MBean. A
terminate method also exists on the Container interface, do not use this method
unless it is absolutely needed. This method is more forceful and does not
coordinate appropriate shard movement and clean up.
container.teardown();

6. Stop the embedded server.
When you stop an embedded server, you also stop any containers and shards
that are running on the server. When you stop an embedded server, you must
clean up all open connections and move or tear down all the shards. The
following example demonstrates how to stop a server and using the waitFor
method on the Server interface to ensure that the Server instance shuts down
completely. Similarly to the container example, the stopServer method is made
available through the ServerMBean interface. With this interface, you can stop
a server with the corresponding Managed Bean (MBean).
ServerFactory.stopServer(); // Uses the factory to kill the Server singleton
// or
server.stopServer(); // Uses the Server instance directly
server.waitFor(); // Returns when the server has properly completed its shutdown procedures

Full code example:
import java.net.MalformedURLException;
import java.net.URL;

import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.deployment.DeploymentPolicy;
import com.ibm.websphere.objectgrid.deployment.DeploymentPolicyFactory;
import com.ibm.websphere.objectgrid.server.Container;
import com.ibm.websphere.objectgrid.server.Server;
import com.ibm.websphere.objectgrid.server.ServerFactory;
import com.ibm.websphere.objectgrid.server.ServerProperties;

public class ServerFactoryTest {

public static void main(String[] args) {

try {

ServerProperties props = ServerFactory.getServerProperties();

366 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

props.setCatalogServiceBootstrap("catalogservice-hostname:catalogservice-port");
props.setServerName("ServerOne"); // name server
props.setTraceSpecification("com.ibm.ws.objectgrid=all=enabled"); // TraceSpec

/*
* In most cases, the server will serve as a container server only
* and will connect to an external catalog service. This is a more
* highly available way of doing things. The commented code excerpt
* below will enable this Server to be a catalog service.
*
*
* CatalogServerProperties catalogProps =
* ServerFactory.getCatalogProperties();
* catalogProps.setCatalogServer(true); // enable catalog service
* catalogProps.setQuorum(true); // enable quorum
*/

Server server = ServerFactory.getInstance();

DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy
(new URL("url to deployment xml"), new URL("url to objectgrid xml file"));

Container container = server.createContainer(policy);

/*
* Shard will now be placed on this container if the deployment requirements are met.
* This encompasses embedded server and container creation.
*
* The lines below will simply demonstrate calling the cleanup methods
*/

container.teardown();
server.stopServer();
int success = server.waitFor();

} catch (ObjectGridException e) {
// Container failed to initialize

} catch (MalformedURLException e2) {
// invalid url to xml file(s)

}

}

}

Embedded server API
WebSphere eXtreme Scale includes application programming interfaces (APIs) and
system programming interfaces for embedding eXtreme Scale servers and clients
within your existing Java applications. The following topic describes the available
embedded server APIs.

Instantiating the eXtreme Scale server

You can use several properties to configure the eXtreme Scale server instance,
which you can retrieve from the ServerFactory.getServerProperties method. The
ServerProperties object is a singleton, so each call to the getServerProperties
method retrieves the same instance.

You can create a new server with the following code.
Server server = ServerFactory.getInstance();

All properties set before the first invocation of getInstance are used to initialize the
server.

Setting server properties

You can set the server properties until the ServerFactory.getInstance is called for
the first time. The first call of the getInstance method instantiates the eXtreme Scale

Chapter 8. Administering the deployment environment 367

server, and reads all the configured properties. Setting the properties after creation
has no effect. the following example shows how to set properties prior to
instantiating a Server instance.
// Get the server properties associated with this process.
ServerProperties serverProperties = ServerFactory.getServerProperties();

// Set the server name for this process.
serverProperties.setServerName("EmbeddedServerA");

// Set the name of the zone this process is contained in.
serverProperties.setZoneName("EmbeddedZone1");

// Set the end point information required to bootstrap to the catalog service.
serverProperties.setCatalogServiceBootstrap("localhost:2809");

// Set the ORB listener host name to use to bind to.
serverProperties.setListenerHost("host.local.domain");

// Set the ORB listener port to use to bind to.
serverProperties.setListenerPort(9010);

// Turn off all MBeans for this process.
serverProperties.setMBeansEnabled(false);

Server server = ServerFactory.getInstance();

Embedding the catalog service

Any JVM setting that is flagged by the CatalogServerProperties.setCatalogServer
method can host the catalog service for eXtreme Scale. This method indicates to the
eXtreme Scale server runtime to instantiate the catalog service when the server is
started. The following code shows how to instantiate the eXtreme Scale catalog
server:
CatalogServerProperties catalogServerProperties =
ServerFactory.getCatalogProperties();
catalogServerProperties.setCatalogServer(true);

Server server = ServerFactory.getInstance();

Embedding the eXtreme Scale container

Issue the Server.createContainer method for any JVM to host multiple eXtreme
Scale containers. The following code shows how to instantiate an eXtreme Scale
container:
Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL());

Container container = server.createContainer(policy);

Self-contained server process

You can start all the services together, which is useful for development and also
practical in production. By starting the services together, a single process does all
of the following: Starts the catalog service, starts a set of containers, and runs the
client connection logic. Starting the services in this way sorts out programming
issues prior to deploying in a distributed environment. The following code shows
how to instantiate a self-contained eXtreme Scale server:

368 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

CatalogServerProperties catalogServerProperties =
ServerFactory.getCatalogProperties();
catalogServerProperties.setCatalogServer(true);

Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL());

Container container = server.createContainer(policy);

Embedding eXtreme Scale in WebSphere Application Server

The configuration for eXtreme Scale is set up automatically when you install
eXtreme Scale in a WebSphere Application Server environment. You are not
required to set any properties before you access the server to create a container.
The following code shows how to instantiate an eXtreme Scale server in
WebSphere Application Server:
Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL);

Container container = server.createContainer(policy);

For a step by step example on how to start an embedded catalog service and
container programmatically, see “Using the embedded server API to start and stop
servers” on page 364.

Managing ObjectGrid availability
The availability state of an ObjectGrid instance determines which requests can be
processed at any particular time. You can use the StateManager interface to set and
retrieve the state of an ObjectGrid instance.

About this task

Four availability states exist for a given ObjectGrid instance.

ONLINE
The ONLINE state is the default availability state for an ObjectGrid. An

Online

Quiesce

Offline

Preload

Set offline

Set offline Set online

Set preload

Figure 24. Availability states of an ObjectGrid instance

Chapter 8. Administering the deployment environment 369

ONLINE ObjectGrid is able to process any requests from a typical eXtreme
Scale client. However, requests from a preload client are rejected while the
ObjectGrid is ONLINE.

QUIESCE
The QUIESCE state is transitional. An ObjectGrid that is in QUIESCE is
soon moved to the OFFLINE state. While in the QUIESCE state, an
ObjectGrid is allowed to process outstanding transactions. However, any
new transactions are rejected. An ObjectGrid can remain in QUIESCE for
up to 30 seconds. After this time, the availability state is moved to
OFFLINE.

OFFLINE
The OFFLINE state results in the rejection of all transactions that are sent
to the ObjectGrid.

PRELOAD
The PRELOAD state can be used to load data into an ObjectGrid from a
preload client. While the ObjectGrid is in the PRELOAD state, only a
preload client can commit transactions against the ObjectGrid. All other
transactions are rejected.

A request is rejected if an ObjectGrid is not in the appropriate availability state to
support that request. An AvailabilityException exception results whenever a
request is rejected.

Procedure
1. Set the initial state of an ObjectGrid with the ObjectGrid configuration XML

file.
You can use the initialState attribute on an ObjectGrid to indicate its startup
state. Normally, when an ObjectGrid completes initialization, it is available for
routing. The state can later be changed to prevent traffic from routing to an
ObjectGrid. If the ObjectGrid needs to be initialized, but not immediately
available, you can use the initialState attribute.
The initialState attribute is set on the ObjectGrid configuration XML file. The
default state is ONLINE. Valid values include:
v ONLINE (default)
v PRELOAD
v OFFLINE

See “ObjectGrid descriptor XML file” on page 153 for more information about
the initialState attribute.
If the initialState attribute is set on an ObjectGrid, the state must be explicitly
set back to online or the ObjectGrid will remain unavailable. An
AvailabilityException exception results if the ObjectGrid is not in the ONLINE
state.
See AvailabilityState API documentation for more information.
Using the initialState attribute for preloading

If the ObjectGrid is preloaded with data, there can be a period of time between
when the ObjectGrid is available and switching to a preload state to block
client traffic. To avoid this time period, the initial state on an ObjectGrid can be
set to PRELOAD. The ObjectGrid still completes all the necessary initialization,
but it blocks traffic until the state has changed and allows the preload to occur.
The PRELOAD and OFFLINE states both block traffic, but you must use the
PRELOAD state if you want to initiate a preload.

370 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Failover and balancing behavior

If a replica data grid is promoted to be a primary data grid, the replica does
not use the initialState setting. If the primary data grid is moved for a
rebalance, the initialState setting is not used because the data is copied to the
new primary location before the move is completed. If replication is not
configured, then the primary goes into the initialState setting if failover
occurs, and a new primary must be placed.

2. Change the availability state with the StateManager interface.
Use the StateManager interface to set the availability state of an ObjectGrid. To
set the availability state of an ObjectGrid running on the servers, pass a
corresponding ObjectGrid client to the StateManager interface. The following
code demonstrates how to change the availability state of an ObjectGrid.
ClientClusterContext client = ogManager.connect("localhost:2809", null, null);
ObjectGrid myObjectGrid = ogManager.getObjectGrid(client, "myObjectGrid");
StateManager stateManager = StateManagerFactory.getStateManager();
stateManager.setObjectGridState(AvailabilityState.OFFLINE, myObjectGrid);

Each shard of the ObjectGrid transitions to the desired state when the
setObjectGridState method is called on the StateManager interface. When the
method returns, all shards within the ObjectGrid should be in the proper state.
Use an ObjectGridEventListener plug-in to change the availability state of a
server side ObjectGrid. Only change the availability state of a server-side
ObjectGrid when the ObjectGrid has a single partition. If the ObjectGrid has
multiple partitions, the shardActivated method is called on each primary, which
results in superfluous calls to change the state of the ObjectGrid
public class OGListener implements ObjectGridEventListener,

ObjectGridEventGroup.ShardEvents {
public void shardActivated(ObjectGrid grid) {

StateManager stateManager = StateManagerFactory.getStateManager();
stateManager.setObjectGridState(AvailabilityState.PRELOAD, grid);

}
}

Because QUIESCE is a transitional state, you cannot use the StateManager
interface to put an ObjectGrid into the QUIESCE state. An ObjectGrid passes
through this state on its way to the OFFLINE state.

3. Retrieve the availability state.
Use the getObjectGridState method of the StateManager interface to retrieve the
availability state of a particular ObjectGrid.
StateManager stateManager = StateManagerFactory.getStateManager();
AvailabilityState state = stateManager.getObjectGridState(inventoryGrid);

The getObjectGridState method chooses a random primary within the
ObjectGrid and returns its AvailabilityState. Because all shards of an ObjectGrid
should be in the same availability state or transitioning to the same availability
state, this method provides an acceptable result for the current availability state
of the ObjectGrid.

Managing data center failures
When the data center enters a failure scenario, consider overriding quorum so that
container server events are not ignored. You can use the xsadmin tool to query
about and run quorum tasks, such as the quorum status and overriding quorum.

Chapter 8. Administering the deployment environment 371

Before you begin
v Configure the quorum mechanism to be the same setting in all of your catalog

servers. See “Configuring the quorum mechanism” on page 224 for more
information.

v Quorum is the minimum number of catalog servers that are necessary to
conduct placement operations for the data grid and is the full set of catalog
servers, unless you configure a lower number. WebSphere eXtreme Scale expects
to lose quorum for the following reasons:
– Catalog service JVM member fails
– Network brown out
– Data center loss
The following message indicates that quorum has been lost. Look for this
message in your catalog service logs.
CWOBJ1254W: The catalog service is waiting for quorum.

About this task

Override quorum in a data center failure scenario only. When you override
quorum, any surviving catalog server instance can be used. All survivors are
notified when one is told to override quorum.

Procedure
v Query quorum status with the xsadmin tool.

xsadmin -ch cathost -p 1099 -quorumstatus

Use this option to display the quorum status of a catalog service instance. One
of the following outcomes is displayed:
– Quorum is disabled: The catalog servers are running in a quorum-disabled

mode. Quroum disabled mode is a development or single data center mode.
Do not use quorum disabled mode for multiple data center configurations.

– Quorum is enabled and the catalog server has quorum: Quorum is enabled
and the system is working normally.

– Quorum is enabled but the catalog server is waiting for quorum: Quorum
is enabled and quorum has been lost.

– Quorum is enabled and the quorum is overridden: Quorum is enabled and
quorum has been overridden.

– Quorum status is outlawed: When a brown out occurs, splitting the catalog
service into two partitions, A and B. The catalog server A has overridden
quorum. The network partition resolves and the server in the B partition is
outlawed, requiring a JVM restart. It also occurs if the catalog JVM in B
restarts during the brown out and then the brown out clears.

v Override quorum with the xsadmin tool.
xsadmin -ch cathost -p 1099 -overridequorum

Running this command forces the surviving catalog servers to re-establish a
quorum.

v Diagnose quorum with the xsadmin tool.
– Display a list of the core groups:

Use the -coregroups option to display a list of all the core groups for the
catalog server.
xsadmin –ch cathost –p 1099 –coregroups

372 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

– Teardown servers:

Use the -teardown option to remove a server manually from the data grid.
Removing a server from the grid is usually not necessary. Servers are
automatically removed when they are detected as failed, but the command is
provided for use under the guidance of IBM support. See “Stopping servers
gracefully with the xsadmin tool” on page 363 for more information about
using this command.
xsadmin –ch cathost –p 1099 –g Grid –teardown server1,server2,server3

– Display the route table:

Use the -routetable option to display the current route table by simulating a
new client connection to the data grid. It also validates the route table by
confirming that all container servers are recognizing their role in the route
table, such as which type of shard for which partition.
xsadmin –ch cathost –p 1099 –g myGrid -routetable

– Check the map sizes:

Use the -mapsizes option to verify that key distribution is uniform over the
shards in the key. If some container servers have more keys than others, then
it is likely the hash function on the key objects has a poor distribution.
xsadmin -ch cathost -p 1099 -g myGrid -m myMapSet -mapsizes myMap

– Set trace strings:

Use the -settracespec option to set the trace settings for all JVMs that match
the filter specified for the xsadmin command. This setting changes the trace
settings only, until another command is used or the JVMs modified fail or
stop.
xsadmin –ch cathost –p 1099 –g myGrid –fh host1 –settracespec
ObjectGrid*=event=enabled

This string enables trace for all JVMs on the server with the specified host
name, in this case host1.

– Display unassigned shards:

Use the -unassigned option to display the list of shards that cannot be placed
on the data grid. Shards cannot be placed when the placement service has a
constraint that is preventing placement. For example, if you start JVMs on a
single physical server while in production mode, then only primary shards
can be placed. Replicas are not assigned until JVMs start on a second physical
server. The placement service places replicas only on JVMs with different IP
addresses than the JVMs that are hosting the primary shards. Having no
JVMs in a zone can also cause shards to be unassigned.
xsadmin –ch cathost –p 1099 –g myGrid –unassigned

Forcing placement to occur
Consider forcing placement to occur when you are maintaining servers and must
temporarily take some of your servers offline.

Before you begin

7.1.0.2+ You must be using Version 7.1.0.2 or later to run the xsadmin
-triggerPlacement command.

Chapter 8. Administering the deployment environment 373

About this task

In a typical configuration, you can use the numInitialContainers attribute in the
deployment policy descriptor XML file to prevent shard placement on the data
grid until the specified number of container servers are running. Using this setting
can reduce unnecessary processing and rebalancing during a cold start. When this
setting is configured, placement does not occur when the number of available
container servers is lower than the numInitialContainers value.

You might want placement to continue running even when the available number of
container servers drops below the numInitialContainers value. For example, you
take some of your servers offline for maintenance. You want placement to occur on
the remaining servers in the configuration. Instead of temporarily changing your
configuration files to reduce the numInitialContainers value, you can use the
xsadmin -triggerPlacement command.

Placement occurs during failover conditions regardless of the
numInitialContainers value and the number of container servers that are running.
The numInitialContainers value is used during cold startups or when you are
starting additional container servers.

Procedure
1. Trigger placement to occur when you stop container servers. When you stop

container servers, the number of running container servers can drop below the
numInitialContainers value, which causes shard placement to stop. For
example, in an environment that has four physical servers each running three
container servers, you might set the numInitialContainers value to 12. If you
must take two of the physical servers offline, the remaining number of running
container servers is down to six servers.
To activate shard placement on the remaining container servers in the
configuration, run the following command:
xsadmin -triggerPlacement myOG myMapSet

2. Trigger placement to occur when you start additional container servers, but the
numInitialContainers value is still not met. Continuing with the previous
example, you finish the maintenance on one of the physical servers, and start
the three container servers. Starting these container servers brings the total
number of container servers to nine servers. Because the value is still below the
numInitialContainers value, you must run the following command again to
run placement on the three new container servers:
xsadmin -triggerPlacement myOG myMapSet

3. When the number of container servers reaches the numInitialContainers value,
no action is needed. When you finish maintenance on the second physical
server and start the three container servers, placement occurs automatically
because the numInitialContainers value is met.

What to do next

You can monitor the placement of your environment with the xsadmin
-placementStatus command.

Administering programmatically with Managed Beans (MBeans)
You can use several different types of Java Management Extensions (JMX) MBeans
to administer and monitor deployments. Each MBean refers to a specific entity,
such as a map, data grid, server, or service.

374 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

JMX MBean interfaces and WebSphere eXtreme Scale

Each MBean has get methods that represent attribute values. These get methods
cannot be called directly from your program. The JMX specification treats
attributes differently from operations. You can view attributes with a vendor JMX
console, and you can perform operations in your program or with a vendor JMX
console.

Package com.ibm.websphere.objectgrid.management

See the API documentation for an overview and detailed programming
specifications for all of the available MBeans:Package
com.ibm.websphere.objectgrid.management .

Accessing Managed Beans (MBeans) using the wsadmin tool
You can use the wsadmin utility provided in WebSphere Application Server to
access managed bean (MBean) information.

Procedure

Run the wsadmin tool from the bin directory in your WebSphere Application
Server installation. The following example retrieves a view of the current shard
placement in a dynamic eXtreme Scale. You can run the wsadmin tool from any
installation where eXtreme Scale is running. You do not have to run the wsadmin
tool on the catalog service.
$ wsadmin.sh -lang jython
wsadmin>placementService = AdminControl.queryNames
("com.ibm.websphere.objectgrid:*,type=PlacementService")
wsadmin>print AdminControl.invoke(placementService,
"listObjectGridPlacement","library ms1")

<objectGrid name="library" mapSetName="ms1">
<container name="container-0" zoneName="DefaultDomain"
hostName="host1.company.org" serverName="server1">

<shard type="Primary" partitionName="0"/>
<shard type="SynchronousReplica" partitionName="1"/>

</container>
<container name="container-1" zoneName="DefaultDomain"
hostName="host2.company.org" serverName="server2">

<shard type="SynchronousReplica" partitionName="0"/>
<shard type="Primary" partitionName="1"/>

</container>
<container name="UNASSIGNED" zoneName="_ibm_SYSTEM"
hostName="UNASSIGNED" serverName="UNNAMED">

<shard type="SynchronousReplica" partitionName="0"/>
<shard type="AsynchronousReplica" partitionName="0"/>

</container>
</objectGrid>

Accessing Managed Beans (MBeans) programmatically
You can connect to MBeans with Java applications. These applications use the
interfaces in the com.ibm.websphere.objectgrid.management package.

About this task

Programmatic methods for accessing MBeans vary depending on the type of server
to which you are connecting.
v Connect to a stand-alone catalog service MBean server

Chapter 8. Administering the deployment environment 375

v Connect to connect to a container MBean server
v Connect to a catalog service MBean server that is hosted in WebSphere

Application Server
v Connect to a catalog service MBean server with security enabled

Procedure
v Connect to a stand-alone catalog service MBean server:

The following example program connects to a stand-alone catalog service MBean
server and returns an XML formatted string that lists each container server along
with its allocated shards for a given ObjectGrid and MapSet.

A few notes regarding the sample program:

package com.ibm.ws.objectgrid.test.catalogserver;

import java.util.Set;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

/**
* Collects the placement information from the Catalog Server for a given ObjectGrid.
*/

public final class CollectPlacementPlan {
private static String hostName = "localhost";

private static int port = 1099;

private static String objectGridName = "library";

private static String mapSetName = "ms1";

/**
* Connects to the ObjectGrid Catalog Service to retrieve placement information and prints it out.
*
* @param args
* @throws Exception
* If there is a problem connecting to the catalog service MBean server.
*/
public static void main(String[] args) throws Exception {

String serviceURL = "service:jmx:rmi:///jndi/rmi://" + hostName + ":" + port +
"/objectgrid/MBeanServer";

JMXServiceURL jmxUrl = new JMXServiceURL(serviceURL);
JMXConnector jmxCon = JMXConnectorFactory.connect(jmxUrl);

MBeanServerConnection catalogServerConnection = jmxCon.getMBeanServerConnection();

Set placementSet = catalogServerConnection.queryNames(new ObjectName("com.ibm.websphere.objectgrid"
+ ":*,type=PlacementService"), null);

ObjectName placementService = (ObjectName) placementSet.iterator().next();
Object placementXML = catalogServerConnection.invoke(placementService,

"listObjectGridPlacement", new Object[] {
objectGridName, mapSetName }, new String[] { String.class.getName(), String.class.getName() });

System.out.println(placementXML);
}

}

Figure 25. CollectPlacementPlan.java

376 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

– The JMXServiceURL value for the catalog service is always of the following
form: service:jmx:rmi:///jndi/rmi://<host>:<port>/objectgrid/
MBeanServer, where <host> is the host on which the catalog service is running
and <port> is the JMX service port that is provided with the -JMXServicePort
option when starting the catalog service. If no port is specified, the default is
1099.

– For the ObjectGrid or map statistics to be enabled, you must specify the
following property in the server properties file when you are starting an
ObjectGrid container: statsSpec=all=enabled

– To disable the MBeans that are running in the container servers, specify the
following property in the server properties file: enableMBeans=false.

An example of the output follows. This output indicates that two container
servers are active. The Container-0 container server hosts four primary shards.
The Container-1 container server hosts a synchronous replica for each of the
primary shards on the Container-0 container server. In this configuration, two
synchronous replicas and one asynchronous replica are configured. As a result,
the Unassigned container server is left with the remaining shards. If two more
container servers are started, the Unassigned container server is not displayed.
<objectGrid name="library" mapSetName="ms1">

<container name="Container-1" zoneName="DefaultZone"
hostName="myhost.mycompany.com" serverName="ogserver">
<shard type="SynchronousReplica" partitionName="0"/>
<shard type="SynchronousReplica" partitionName="1"/>
<shard type="SynchronousReplica" partitionName="2"/>
<shard type="SynchronousReplica" partitionName="3"/>

</container>
<container name="Container-0" zoneName="DefaultZone"

hostName="myhost.mycompany.com" serverName="ogserver">
<shard type="Primary" partitionName="0"/>
<shard type="Primary" partitionName="1"/>
<shard type="Primary" partitionName="2"/>
<shard type="Primary" partitionName="3"/>

</container>
<container name="library:ms1:_UnassignedContainer_" zoneName="_ibm_SYSTEM"

hostName="UNASSIGNED" serverName="UNNAMED">
<shard type="SynchronousReplica" partitionName="0"/>
<shard type="SynchronousReplica" partitionName="1"/>
<shard type="SynchronousReplica" partitionName="2"/>
<shard type="SynchronousReplica" partitionName="3"/>
<shard type="AsynchronousReplica" partitionName="0"/>
<shard type="AsynchronousReplica" partitionName="1"/>
<shard type="AsynchronousReplica" partitionName="2"/>
<shard type="AsynchronousReplica" partitionName="3"/>

</container>
</objectGrid>

v Connect to a container MBean server:

Container servers host MBeans to query information about the individual maps
and ObjectGrid instances that are running within the container server. The
following example program prints the status of each container server that is
hosted by the catalog server with the JMX address of localhost:1099:

Chapter 8. Administering the deployment environment 377

The example program prints out the container server status for each container.
An example of the output follows:
<container name="Container-0" zoneName="DefaultZone" hostName="descartes.rchland.ibm.com"
serverName="ogserver">
<shard type="Primary" partitionName="1"/>
<shard type="Primary" partitionName="0"/>
<shard type="Primary" partitionName="3"/>
<shard type="Primary" partitionName="2"/>

</container>

v Connect to a catalog service MBean server that is hosted in WebSphere
Application Server:

The method for programmatically accessing MBeans in WebSphere Application
Server is slightly different from accessing MBeans in a stand-alone configuration.
1. Create and compile a Java program to connect to the MBean server. An

example program follows:

package com.ibm.ws.objectgrid.test.catalogserver;

import java.util.List;
import java.util.Set;

import javax.management.MBeanServerConnection;
import javax.management.ObjectInstance;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

/**
* Collects placement status from each of the available containers directly.
*/
public final class CollectContainerStatus {

private static String hostName = "localhost";

private static int port = 1099;

/**
* @param args
*/
public static void main(String[] args) throws Exception {

String serviceURL = "service:jmx:rmi:///jndi/rmi://" + hostName + ":" + port + "/objectgrid/MBeanServer";
JMXServiceURL jmxUrl = new JMXServiceURL(serviceURL);
JMXConnector jmxCon = JMXConnectorFactory.connect(jmxUrl);

MBeanServerConnection catalogServerConnection = jmxCon.getMBeanServerConnection();

Set placementSet = catalogServerConnection.queryNames(new ObjectName("com.ibm.websphere.objectgrid"
+ ":*,type=PlacementService"), null);

ObjectName placementService = (ObjectName) placementSet.iterator().next();
List<String> containerJMXAddresses = (List<String>) catalogServerConnection.invoke(placementService,

"retrieveAllServersJMXAddresses", new Object[0], new String[0]);
for (String address : containerJMXAddresses) {

JMXServiceURL containerJMXURL = new JMXServiceURL(address);
JMXConnector containerConnector = JMXConnectorFactory.connect(containerJMXURL);
MBeanServerConnection containerConnection = containerConnector.getMBeanServerConnection();
Set<ObjectInstance> containers = containerConnection.queryMBeans(

new ObjectName("*:*,type=ObjectGridContainer"), null);
for (ObjectInstance container : containers) {

System.out.println(containerConnection.getAttribute(container.getObjectName(), "Status"));
}

}

}
}

Figure 26. CollectContainerStatus.java

378 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

2. Run the following command.
"$JAVA_HOME/bin/java" "$WAS_LOGGING" -Djava.security.auth.login.config="$app_server_root/properties/wsjaas_client.conf" \
-Djava.ext.dirs="$JAVA_HOME/jre/lib/ext:$WAS_EXT_DIRS:$WAS_HOME/plugins:$WAS_HOME/lib/WMQ/java/lib" \
-Djava.naming.provider.url=<an_IIOP_URL_or_a_corbaloc_URL_to_your_application_server_machine_name> \
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory \
-Dserver.root="$WAS_HOME" "$CLIENTSAS" "$CLIENTSSL" $USER_INSTALL_PROP \
-classpath "$WAS_CLASSPATH":<list_of_your_application_jars_and_classes> \
<fully_qualified_class_name_to_run> <your_application_parameters>

This command assumes that the was_root/bin/setupCmdLine.sh script has
been run to set the variables properly. An example of the format of the
java.naming.provider.url property value is
corbaloc:iiop:1.0@<host>:<port>/NameService.

v Connect to a catalog service MBean server with security enabled:

For more information about connecting to the catalog service MBean with
security enabled, see “Java Management Extensions (JMX) security” on page 443.

What to do next

For more examples on how to display statistics and perform administrative
operations with MBeans, see the xsadmin sample application. You can look at the

package com.ibm.ws.objectgrid.test.catalogserver;

import java.util.Set;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

/**
* Collects the placement information from the catalog server running in a deployment manager for a given ObjectGrid.
*/
public final class CollectPlacementPlan {

private static String hostName = "localhost";

private static int port = 9809;

private static String objectGridName = "library";

private static String mapSetName = "ms1";

/**
* Connects to the catalog service to retrieve placement information and prints it out.
*
* @param args
* @throws Exception
* If there is a problem connecting to the catalog service MBean server.
*/
public static void main(String[] args) throws Exception {

// connect to bootstrap port of the deployment manager
String serviceURL = "service:jmx:iiop://" + hostName + ":" + port + "/jndi/JMXConnector";
JMXServiceURL jmxUrl = new JMXServiceURL(serviceURL);
JMXConnector jmxCon = JMXConnectorFactory.connect(jmxUrl);

MBeanServerConnection catalogServerConnection = jmxCon.getMBeanServerConnection();

Set placementSet = catalogServerConnection.queryNames(new ObjectName("com.ibm.websphere.objectgrid"
+ ":*,type=PlacementService"), null);

ObjectName placementService = (ObjectName) placementSet.iterator().next();
Object placementXML = catalogServerConnection.invoke(placementService, "listObjectGridPlacement", new Object[] {

objectGridName, mapSetName }, new String[] { String.class.getName(), String.class.getName() });
System.out.println(placementXML);

}

}

Figure 27. CollectPlacementPlan.java

Chapter 8. Administering the deployment environment 379

source code of the xsadmin sample application in the wxs_home/samples/
xsadmin.jar file in a stand-alone installation, or in the wxs_home/xsadmin.jar file
in a WebSphere Application Server installation. See “Monitoring with the xsadmin
utility” on page 470 for more information about the operations you can complete
with the xsAdmin sample application.

You can also find more information about MBeans in the
com.ibm.websphere.objectgrid.management package.

380 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 9. Securing the deployment environment

WebSphere eXtreme Scale can secure data access, including allowing for integration
with external security providers. Aspects of security include authentication,
authorization, transport security, data grid security, local security, and JMX
(Mbean) security.

Tutorial: Integrate WebSphere eXtreme Scale security with WebSphere
Application Server

This tutorial demonstrates how to secure a WebSphere eXtreme Scale server
deployment in a WebSphere Application Server environment.

Learning objectives

The learning objectives for this tutorial follow:
v Configure WebSphere eXtreme Scale to use WebSphere Application Server

authentication plug-ins
v Configure WebSphere eXtreme Scale transport security to use WebSphere

Application Server CSIv2 configuration
v Use Java Authentication and Authorization Service (JAAS) authorization in

WebSphere Application Server
v Use a custom login module for group-based JAAS authorization
v Use WebSphere eXtreme Scale xsadmin tool in WebSphere Application Server

environment

Time required

This tutorial takes approximately 4 hours from start to finish.

Introduction: Integrate WebSphere eXtreme Scale security
with WebSphere Application Server using the WebSphere
Application Server Authentication plug-ins

In this tutorial, you integrate WebSphere eXtreme Scale security with WebSphere
Application Server. First, you configure authentication with a simple web
application that uses authenticated user credentials from the current thread to
connect to the ObjectGrid. Then, you investigate the encryption of data that is
transferred between the client and server with transport layer security. To give
users varying levels of permissions, you can configure Java Authentication and
Authorization Service (JAAS). After completing the configuration, you can use the
xsadmin tool to monitor your data grids and maps.

This tutorial assumes that all of your WebSphere eXtreme Scale clients, container
servers, and catalog servers are deployed in the WebSphere Application Server
environment.

Learning objectives

The learning objectives for this tutorial follow:

© Copyright IBM Corp. 2009, 2011 381

v Configure WebSphere eXtreme Scale to use WebSphere Application Server
authentication plug-ins

v Configure WebSphere eXtreme Scale transport security to use WebSphere
Application Server CSIv2 configuration

v Use Java Authentication and Authorization Service (JAAS) authorization in
WebSphere Application Server

v Use a custom login module for group-based JAAS authorization
v Use WebSphere eXtreme Scale xsadmin tool in WebSphere Application Server

environment

Time required

This tutorial takes approximately 4 hours from start to finish.

Skill level

Intermediate.

Audience

Developers and administrators that are interested in the security integration
between WebSphere eXtreme Scale and WebSphere Application Server.

System requirements and topology
v WebSphere Application Server Version 6.1 or Version 7.0.0.11 or later
v WebSphere eXtreme Scale Version 7.0 or Version 7.1 with interim fix PM20613

must be installed on the WebSphere Application Server nodes.
v Update the Java runtime to apply the following fix: IZ79819: IBMJDK FAILS TO

READ PRINCIPAL STATEMENT WITH WHITESPACE FROM SECURITY FILE

This tutorial uses four WebSphere Application Server application servers and one
deployment manager to demonstrate the sample.

Prerequisites

A basic understanding of the following items is helpful before you start this
tutorial:
v WebSphere eXtreme Scale programming model
v Basic WebSphere eXtreme Scale security concepts
v Basic WebSphere Application Server security concepts

For a background information about WebSphere eXtreme Scale and WebSphere
Application Server security integration, see “Security integration with WebSphere
Application Server” on page 427.

Module 1: Prepare WebSphere Application Server
Before you start the tutorial to integrate with WebSphere eXtreme Scale, you must
create a basic security configuration in WebSphere Application Server.

Learning objectives

With the lessons in this module, you learn how to:

382 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-01.ibm.com/support/docview.wss?rs=0&q1=PM20613&uid=swg1PM20613&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819

v Configure WebSphere Application Server security to use an internal file-based
federated repository as a user account registry.

v Create user groups and users.
v Create clusters for the application and WebSphere eXtreme Scale servers.

Time required

This module takes approximately 60 minutes.

Lesson 1.1: Understand the topology and get the tutorial files
To prepare your environment for the tutorial, you must configure WebSphere
Application Server security. You configure administration and application security
using internal file-based federated repositories as a user account registry.

This lesson guides you through the sample topology and applications that are used
to in the tutorial. To begin running the tutorial, you must download the
applications and place the configuration files in the correct locations for your
environment. You can download the sample application from the WebSphere
eXtreme Scale wiki.

WebSphere Application Server sample topology: This tutorial guides you
through creating four WebSphere Application Server application servers to
demonstrate using the sample applications with security enabled. These
application servers are grouped into two clusters, each with two servers:
v appCluster cluster: Hosts the EmployeeManagement sample enterprise

application. This cluster has two application servers: s1 and s2.
v xsCluster cluster: Hosts the eXtreme Scale container servers. This cluster has

two application servers: xs1 and xs2.

In this deployment topology, the s1 and s2 application servers are the client servers
that access data that is being stored in the data grid. The xs1 and xs2 servers are
the container servers that host the data grid.

The catalog server is deployed in the deployment manager process by default. This
tutorial uses the default behavior. Hosting the catalog server in the deployment
manager is not a recommended practice in a production environment. In a
production environment, you should create a catalog service domain to define
where catalog servers start. See “Creating catalog service domains in WebSphere
Application Server” on page 206 for more information.

Alternative configuration: You can host all of the application servers in a single
cluster, such as in the appCluster cluster. With this configuration, all of the servers
in the cluster are both clients and container servers. This tutorial uses two clusters
to distinguish between the application servers that are hosting the clients and
container servers.

Chapter 9. Securing the deployment environment 383

 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server
 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server

Applications: In this tutorial, you are using two applications and one shared
library file:
v EmployeeManagement.ear: The EmployeeManagement.ear application is a simplified

Java 2 Platform, Enterprise Edition (J2EE) enterprise application. It contains a
web module to manage the employee profiles. The web module contains the
management.jsp file to display, insert, update, and delete employee profiles that
are stored in the container servers.

v XSDeployment.ear: This application contains an enterprise application module
with no application artifacts. The cache objects are packaged in the
EmployeeData.jar file. The EmployeeData.jar file is deployed as a shared library
for the XSDeployment.ear file, so that the XSDeployment.ear file can access the
classes. The purpose of this application is to package the eXtreme Scale
configuration files. When this enterprise application is started, the eXtreme Scale
configuration files are automatically detected by the eXtreme Scale run time, so
the container servers are created. These configuration files include the
objectGrid.xml and objectGridDeployment.xml files.

v EmployeeData.jar: This jar file contains one class: the
com.ibm.websphere.sample.xs.data.EmployeeData class. This class represents
employee data that is stored in the grid. This Java archive (JAR) file is deployed
with the EmployeeManagement.ear and XSDeployment.ear files as a shared library.

Get the tutorial files:

1. Download the WASSecurity.zip and security.zip files. You can download the
sample application from the WebSphere eXtreme Scale wiki.

2. Extract the WASSecurity.zip file to a directory for viewing the binary and
source artifacts, for example the /wxs_samples/ directory. This directory is

Client
Browser xs1

XSDeployment
Module

xs2

xsCluster

Deployment manager

Catalog service

s1

s2

Employee
Management module

Servlet

appCluster

eXtreme

Scale Client

Object Grid container

Figure 28. Tutorial topology

384 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server

referred to as samples_home for the remainder of the tutorial. For a description
of the contents of the WASSecurity.zip file and how to load the source into
your Eclipse workspace, see the README.txt file in the package.

3. Extract the security.zip file to the samples_home directory. The security.zip
file contains the following security configuration files that are used in this
tutorial:
v catServer2.props

v server2.props

v client2.props

v securityWAS2.xml

v xsAuth2.props

About the configuration files:

The objectGrid.xml and objectGridDeployment.xml files create the data grids and
maps that store the application data.

These configuration files must be named objectGrid.xml and
objectGridDeployment.xml. When the application server starts, eXtreme Scale
detects these files in the META-INF directory of the EJB and web modules. If these
files are found, it assumed that the Java virtual machine (JVM) acts as a container
server for the defined data grids in the configuration files.

objectGrid.xml file

The objectGrid.xml file defined one ObjectGrid named Grid. The Grid data grid
has one map, the Map1 map, that stores the employee profile for the application.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">

<backingMap name="Map1" />
</objectGrid>

</objectGrids>

</objectGridConfig>

objectGridDeployment.xml file

The objectGridDeployment.xml file specifies how to deploy the Grid data grid.
When the grid is deployed, it has five partitions and one synchronous replica.
<?xml version="1.0" encoding="UTF-8"?>

<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="5" minSyncReplicas="0" maxSyncReplicas="1" >

<map ref="Map1"/>
</mapSet>

</objectgridDeployment>

</deploymentPolicy>

Lesson checkpoint:

Chapter 9. Securing the deployment environment 385

In this lesson, you learned about the topology for the tutorial and added the
configuration files and sample applications to your environment.

If you want to learn more about automatically starting container servers, see
“Configuring WebSphere Application Server applications to automatically start
container servers” on page 222.

Lesson 1.2: Configure the WebSphere Application Server
environment
To prepare your environment for the tutorial, you must configure WebSphere
Application Server security. Enable administration and application security using
internal file-based federated repositories as a user account registry. Then, you can
create server clusters to host the client application and container servers.

The following steps were written using WebSphere Application Server Version 7.0.
However, you can also apply the concepts apply to earlier versions of WebSphere
Application Server.

Configure WebSphere Application Server security:

1. Configure WebSphere Application Server security.
a. In the WebSphere Application Server administrative console, click Security

> Global Security.
b. Select Federated repositories as the User account repository. Click Set as

current.
c. Click Configure.. to go to the Federated repositories panel.
d. Enter the Primary administrative user name, for example, admin. Click

Apply.

e. When prompted, enter the administrative user password and click OK. Save
your changes.

f. On the Global Security page, verify that Federated repositories setting is set
to the current user account registry.

g. Select the following items: Enable administrative security, Enable
application security, and Use Java 2 security to restrict application access
to local resources. Click Apply and save your changes.

h. Restart the deployment manager and any running application servers.

The WebSphere Application Server administrative security is enabled using the
internal file-based federated repositories as the user account registry.

2. Create two user groups: adminGroup and operatorGroup.
a. Click Users and groups > Manage groups > Create...

b. Type adminGroup as the group name. Enter Administration group as the
description. Click Create.

c. Click Create alike. Type operatorGroup as the group name. Enter Operator
group as the description. Click Create.

d. Click Close.
3. Create users admin1 and operator1.

a. Click Users and groups > Manage users > Create...

b. Create a user called admin1 with the first name Joe and last name Doe with
the password admin1. Click Create.

c. Create a second user. Click Create alike to create a a user called operator1
with the first name Jane and last name Doe with the password operator1.
Click Create. Click Close.

386 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

4. Add users to the user groups. Add the admin1 user to the adminGroup and the
operator1 user to the operatorGroup.
a. Click Users and groups > Manage users.
b. Search for users to add to groups. Click Search.. and set the search for

value to an asterisk (*) to display all the users.
c. From the search result, select the admin1 user and click the Groups tab.

Click Add to add the group.
d. Search the groups to find the available groups. Click the adminGroup and

click Add.
e. Repeat these steps to add the operator1 user to the operatorGroup user

group.
5. Save your changes, log out of the administrative console, and restart the

deployment manager and node agent to enable the security settings.

You enabled security and created users and user groups have administrative and
operator access to your WebSphere Application Server configuration.

Create server clusters:

Create two server clusters in your WebSphere Application Server configuration:
The appCluster cluster to host the sample application for the tutorial and the
xsCluster cluster to host the data grid.
1. In the WebSphere Application Server administrative console, open the clusters

panel. Click Servers > Clusters > WebSphere application server clusters >
New.

2. Type appCluster as the cluster name, leave the Prefer local option selected, and
click Next.

3. Create servers in the cluster. Create a server named s1, keeping the default
options. Add an additional cluster member named s2.

4. Complete the remaining steps in the wizard to create the cluster. Save the
changes.

5. Repeat these steps to create the xsCluster cluster. This cluster has two servers,
named xs1 and xs2.

Lesson checkpoint:

You enabled global security for the WebSphere Application Server cell, created
users and user groups, and created clusters to host the application and data grid.

Module 2: Configure WebSphere eXtreme Scale to use
WebSphere Application Server Authentication plug-ins

After you have created the WebSphere Application Server configuration, you can
integrate WebSphere eXtreme Scale authentication with WebSphere Application
Server.

When a WebSphere eXtreme Scale client connects to a container server that
requires authentication, the client must provide a credential generator represented
by the com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface.
A credential generator is a factory to create a client credential. A client credential
can be: a user name and password pair, a Kerberos ticket, a client certificate, or
client identification data in any format that the client and server agree upon. See
the Credential API documentation for more details. In this sample, the WebSphere

Chapter 9. Securing the deployment environment 387

eXtreme Scale client is the EmployeeManagment web application that is deployed
in the appCluster cluster. The client credential is a WebSphere security token that
represents the web user identity.

Learning objectives

With the lessons in this module, you learn how to:
v Configure client server security.
v Configure catalog server security.
v Configure container server security.
v Install and run the sample application.

Time required

This module takes approximately 60 minutes.

Lesson 2.1: Configure client server security
The client properties file indicates the CredentialGenerator implementation class to
use.

Configure the client properties file with the -Dobjectgrid.client.props JVM
property. The file name specified for this property is an absolute file path, such as
samples_home/security/client2.props. See “Client properties file” on page 245 for
more information about the client properties file.

Client properties file contents:

This example uses WebSphere Application Server security tokens as the client
credential. The client2.props file is in the samples_home/security directory. The
client2.props file includes the following settings:

securityEnabled
When set to true, indicates that the client must send available security
information to the server.

credentialAuthentication
When set to Supported, indicates that the client supports credential
authentication.

credentialGeneratorClass
Indicates the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredentialGenerator
class so the client retrieves the security tokens from the thread. See
“Security integration with WebSphere Application Server” on page 427 for
more information about how security tokens are retrieved.

Setting the client properties file using Java virtual machine (JVM) properties:

In the administrative console, complete the following steps to both the s1 and s2
servers in the appCluster cluster. If you are using a different topology, complete
the following steps to all of the application servers to which the
EmployeeManagement application is deployed.
1. Servers > WebSphere application servers > server_name > Java and Process

Management > Process definition > Java Virtual Machine.
2. Create the following generic JVM property to set the location of the client

properties file:

388 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

-Dobjectgrid.client.props=samples_home/security/client2.props

3. Click OK and save your changes.

Lesson checkpoint:

You edited the client properties file and configured the servers in the appCluster
cluster to use the client properties file. This properties file indicates the
CredentialGenerator implementation class to use.

Lesson 2.2: Configure catalog server security
A catalog server contains two different levels of security information: The security
properties that are common to all the WebSphere eXtreme Scale servers, including
the catalog service and container servers, and the security properties that are
specific to the catalog server.

The security properties that are common to the catalog servers and container
servers are configured in the security XML descriptor file. An example of common
properties is the authenticator configuration, which represents the user registry and
authentication mechanism. See “Security descriptor XML file” on page 450 for
more information about the security properties.

To configure the security XML descriptor file, create a
-Dobjectgrid.cluster.security.xml.url property in the Java virtual machine (JVM)
argument. The file name specified for this property is in an URL format, such as
file:///samples_home/security/securityWAS2.xml.

securityWAS2.xml file:

In this tutorial, the securityWAS2.xml file is in the samples_home/security directory.
The content of the securityWAS2.xml file with the comments removed follows:
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/security ../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true">
<authenticator
className="com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator">
</authenticator>
</security>
</securityConfig>

The following properties are defined in the securityWAS2.xml file:

securityEnabled
The securityEnabled property is set to true, which indicates to the catalog
server that the WebSphere eXtreme Scale global security is enabled.

authenticator
The authenticator is configured as the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator
class. With this built-in implementation of the Authenticator plug-in, the
WebSphere eXtreme Scale server can convert the security tokens to a
Subject object. See “Security integration with WebSphere Application
Server” on page 427 for more information about how the security tokens
are converted.

catServer2.props file:

The server property file stores the server-specific properties, which include the
server-specific security properties. See “Server properties file” on page 199 for

Chapter 9. Securing the deployment environment 389

more information. You can configure the server property file with the
-Dobjectgrid.server.props property in the JVM argument. Specify the file name
value for this property is an absolute path, such as samples_home/security/
catServer2.props. For this tutorial, a catServer2.props file is included in the
samples_home/security directory. The content of the catServer2.props file with
comments removed follows:

securityEnabled
The securityEnabled property is set to true to indicate that this catalog
server is a secure server.

credentialAuthentication
The credentialAuthentication property is set to Required, so any client that
is connecting to the server is required to provide a credential.

secureTokenManagerType
The secureTokenManagerType is set to none to indicate that the
authentication secret is not encrypted when joining the existing servers.

authenticationSecret
The authenticationSecret property is set to ObjectGridDefaultSecret. This
secret string is used to join the eXtreme Scale server cluster. When a server
joins the data grid, it is challenged to present the secret string. If the secret
string of the joining server matches the string in the catalog server, the
joining server is accepted. If the string does not match, the join request is
rejected.

transportType
The transportType property is set to TCP/IP initially. Later in the tutorial,
transport security is enabled.

Setting the server properties file with JVM properties:

Set the server properties file on the deployment manager server. If you are using a
different topology than the topology for this tutorial, set the server properties file
on all of the application servers that you are using to host container servers.
1. Open the Java virtual machine configuration for the server. In the

administrative console, click System administration > Deployment manager >
Java and Process Management > Process definition > Java Virtual Machine.

2. Add the following generic JVM arguments:
-Dobjectgrid.cluster.security.xml.url=file:///samples_home/security/securityWAS2.xml
-Dobjectgrid.server.props=samples_home/security/catServer2.props

3. Click OK and save your changes.

Lesson checkpoint:

You configured catalog server security by associating the securityWAS2.xml and
catServer2.props files with the deployment manager, which hosts the catalog
server process in the WebSphere Application Server configuration.

Lesson 2.3: Configure container server security
When a container server connects to the catalog service, the container server gets
all the security configurations that are configured in the Object Grid Security XML
file, such as authenticator configuration, the login session timeout value, and other
configuration information. A container server also has its own server-specific
security properties in the server property file.

390 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Configure the server property file with the -Dobjectgrid.server.props Java virtual
machine (JVM) property. The file name for this property is an absolute file path,
such as samples_home/security/server2.props.

In this tutorial, the container servers are hosted in the xs1 and xs2 servers in the
xsCluster cluster.

server2.props file:

The server2.props file is in the samples_home/security directory under the
WASSecurity directory. The properties that are defined in the server2.props file
follow:

securityEnabled
The securityEnabled property is set to true to indicate that this container
server is a secure server.

credentialAuthentication
The credentialAuthentication property is set to Required, so any client that
is connecting to the server is required to provide a credential.

secureTokenManagerType
The secureTokenManagerType is set to none to indicate that the
authentication secret is not encrypted when joining the existing servers.

authenticationSecret
The authenticationSecret property is set to ObjectGridDefaultSecret. This
secret string is used to join the eXtreme Scale server cluster. When a server
joins the data grid, it is challenged to present the secret string. If the secret
string of the joining server matches the string in the catalog server, the
joining server is accepted. If the string does not match, the join request is
rejected.

Setting the server properties file with JVM properties:

Set the server properties file on the xs1 and xs2 servers. If you are not using the
topology for this tutorial, set the server properties file on all of the application
servers that you are using to host container servers.
1. Open the Java virtual machine page for the server. Servers > Application

servers > server_name > Java and Process Management > Process definition >
Java Virtual Machine

2. Add the generic JVM arguments:
-Dobjectgrid.server.props=samples_home/security/server2.props

3. Click OK and save your changes.

Lesson checkpoint:

Now the WebSphere eXtreme Scale server authentication is secured. By configuring
this security, all the applications that try to connect to the WebSphere eXtreme
Scale servers are required to provide a credential. In this tutorial, the
WSTokenAuthenticator is the authenticator. As a result, the client is required to
provide a WebSphere Application Server security token.

Lesson 2.4: Install and run the sample
After authentication is configured, you can install and run the sample application.

Creating a shared library for the EmployeeData.jar file:

Chapter 9. Securing the deployment environment 391

1. In the WebSphere Application Server administrative console, open the Shared
Libraries page. Click Environment > Shared libraries.

2. Choose the cell scope.
3. Create the shared library. Click New. Enter EmployeeManagementLIB as the

Name. Enter the path to the EmployeeData.jar in the classpath, for example,
samples_home/WASSecurity/EmployeeData.jar.

4. Click Apply.

Installing the sample:

1. Install the EmployeeManagement.ear file.
a. To begin the installation, click Applications > New application > New

Enterprise Application. Choose the detailed path for installing the
application.

b. On the Map modules to servers step, specify the appCluster cluster to
install the EmployeeManagementWeb module.

c. On the Map shared libraries step, select the EmployeeManagementWeb
module.

d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Map the webUser role to All Authenticated in Application's Realm.
f. Click OK.

The clients run in the s1 and s2 servers in this cluster.
2. Install the sample XSDeployment.ear file.

a. To begin the installation, click Applications > New application > New
Enterprise Application. Choose the detailed path for installing the
application.

b. On the Map modules to servers step, specify the xsCluster cluster to install
the XSDeploymentWeb web module.

c. On the Map shared libraries step, select the XSDeploymentWeb module.
d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Click OK.

The xs1 and xs2 servers in this cluster host the container servers.
3. Restart the deployment manager. When the deployment manager starts, the

catalog server also starts. If you look at the SystemOut.log file of the
deployment manager, you can see the following message that indicates that the
eXtreme Scale server properties file is loaded.
CWOBJ0913I: Server property files have been loaded:
/wxs_samples/security/catServer2.props.

4. Restart the xsCluster cluster. When the xsCluster starts, the XSDeployment
application starts, and a container server is started on the xs1 and xs2 servers
respectively. If you look at the SystemOut.log file of the xs1 and xs2 servers, the
following message that indicates the server properties file is loaded is
displayed:
CWOBJ0913I: Server property files have been loaded:
/wxs_samples/security/server2.props.

5. Restart the appClusters cluster. When the cluster appCluster starts, the
EmployeeManagement application also starts. If you look at the SystemOut.log
file of the s1 and s2 servers, you can see the following message that indicates
that the client properties file is loaded.
CWOBJ0924I: The client property file {0} has been loaded.

392 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can ignore the warning messages regarding the authenticationRetryCount,
transportType, and clientCertificateAuthentication properties. The default
values are be used because the values were not specified in the properties file.If
you are using WebSphere eXtreme Scale Version 7.0, the English-only
CWOBJ9000I message displays to indicate that the client property file has been
loaded. If you do not see the expected message, verify that you configured the
-Dobjectgrid.server.props or -Dobjectgrid.client.props property in the JVM
argument. If you do have the properties configured, make sure the dash (-) is a
UTF character.

Running the sample application:

1. Run the management.jsp file. In a web browser, access http://
<your_servername>:<port>/EmployeeManagementWeb/management.jsp. For
example, you might use the following URL: http://localhost:9080/
EmployeeManagementWeb/management.jsp.

2. Provide authentication to the application. Enter the credentials of the user that
you mapped to the webUser role. By default, this user role is mapped to all
authenticated users. Type admin1 as your user ID and admin1 as your password.
A page to display, add, update, and delete employees displays.

3. Display employees. Click Display an Employee. Enter emp1@acme.com as the
email address, and click Submit. A message displays that the employee cannot
be found.

4. Add an employee. click Add an Employee. Enter emp1@acme.com as the email
address, enter Joe as the first name, and Doe as the last name. Click Submit. A
message displays that an employee with the emp1@acme.com address has been
added.

5. Display the new employee. Click Display an Employee. Enter emp1@acme.com
as the email address with empty fields for the first and last names, and click
Submit. A message displays that the employee has been found, and the correct
names are displayed in the first name and last name fields.

6. Delete the employee. Click Delete an employee. Enter emp1@acme.com and click
Submit. A message is displayed that the employee has been deleted.

Lesson checkpoint:

You installed and ran the sample application. Because this tutorial uses WebSphere
Application Server integration, you cannot see the scenario when a client fails to
authenticate to the eXtreme Scale server. If the user authenticates to the WebSphere
Application Server successfully, eXtreme Scale is also successfully authenticated.

Module 3: Configure transport security
Configure transport security to secure data transfer between the clients and servers
in the configuration.

In the previous module in the tutorial, you enabled WebSphere eXtreme Scale
authentication. With authentication, any application that tries to connect to the
WebSphere eXtreme Scale server is required to provide a credential. Therefore, no
unauthenticated client can connect to the WebSphere eXtreme Scale server. The
clients must be an authenticated application that is running in a WebSphere
Application Server cell.

With the configuration up to this module, the data transfer between the clients in
the appCluster cluster and servers in the xsCluster cluster is not encrypted. This
configuration might be acceptable if your WebSphere Application Server clusters

Chapter 9. Securing the deployment environment 393

are installed on servers behind a firewall. However, in some scenarios,
non-encrypted traffic is not accepted for some reasons even though the topology is
protected by firewall. For example, a government policy might enforce encrypted
traffic. WebSphere eXtreme Scale supports Transport Layer Security/Secure Sockets
Layer (TLS/SSL) for secure communication between ObjectGrid endpoints, which
include client servers, container servers, and catalog servers.

In this sample deployment, the eXtreme Scale clients and container servers are all
running in the WebSphere Application Server environment. Client or server
properties are not necessary to configure the SSL settings because the eXtreme
Scale transport security is managed by the Application Server Common Secure
Interoperability Protocol Version 2 (CSIV2) transport settings. WebSphere eXtreme
Scale servers use the same Object Request Broker (ORB) instance as the application
servers in which they run. Specify all the SSL settings for client and container
servers in the WebSphere Application Server configuration using these CSIv2
transport settings. The catalog server has its own proprietary transport paths that
do not use which does not use Internet Inter-ORB Protocol (IIOP) or Remote
Method Invocation (RMI). Because of these proprietary transport paths, the catalog
server cannot be managed by the WebSphere Application Server CSIV2 transport
settings. Therefore, you must configure the SSL properties in the server properties
file for the catalog server.

Learning objectives

After completing the lessons in this module, you know how to:
v Configure CSIv2 inbound and outbound transport.
v Add SSL properties to the catalog server properties file.
v Check the ORB properties file.
v Run the sample.

Time required

This module takes approximately 60 minutes.

Prerequisites

This step of the tutorial builds upon the previous modules. Complete the previous
modules in this tutorial before you configure transport security.

Lesson 3.1: Configure CSIv2 inbound and outbound transport
To configure Transport Layer Security/Secure Sockets Layer (TLS/SSL) for the
server transport, set the Common Secure Interoperability Protocol Version 2
(CSIv2) inbound transport and CSIv2 outbound transport to SSL-Required for all
the WebSphere Application Server servers that host clients, catalog servers, and
container servers.

In the tutorial example topology, you must set these properties for the, s1, s2, xs1,
and xs2 application servers. The following steps configure the inbound and
outbound transports for all the servers in the configuration.

Set the inbound and outbound transports in the administrative console. Make sure
that administrative security is enabled.
v WebSphere Application Server Version 6.1: Click Security > Secure

Administration > Application.. > RMI/IIOP Security and change the transport
type to SSL-Required.

394 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v WebSphere Application Server Version 7.0: Click Security > Global Security >
RMI/IIOP Security > CSIv2 inbound communications. Change the transport
type under the CSIv2 Transport Layer to SSL-Required. Repeat this step to
configure CSIv2 outbound communications.

You can use centrally managed endpoint security settings, or you can configure
SSL repositories. See Common Secure Interoperability Version 2 transport inbound
settings for more information.

Lesson 3.2: Add SSL properties to the catalog server properties
file
The catalog server has its own proprietary transport paths that cannot be managed
by the WebSphere Application Server Common Secure Interoperability Protocol
Version 2 (CSIV2) transport settings. Therefore, you must configure the Secure
Sockets Layer (SSL) properties in the server properties file for the catalog server.

To configure catalog server security, additional steps are necessary because the
catalog server has its own proprietary transport paths. These transport paths
cannot be managed by the Application Server CSIV2 transport settings.
1. Edit the SSL properties in the catServer2.props file. To configure catalog server

security, uncomment the following SSL properties in the catalog server
properties file. For this tutorial, the catalog server properties are in the
catServer2.props file. Update the keyStore and trustStore properties to refer to
the proper location in your environment.
#alias=default
#contextProvider=IBMJSSE2
#protocol=SSL
#keyStoreType=PKCS12
#keyStore=/<WAS_HOME>/IBM/WebSphere/AppServer/profiles/<DMGR_NAME>/config/
cells/<CELL_NAME>/nodes/<NODE_NAME>/key.p12
#keyStorePassword=WebAS
#trustStoreType=PKCS12
#trustStore=/<WAS_HOME>/IBM/WebSphere/AppServer/profiles/<DMGR_NAME>/config/
cells/<CELL_NAME>/nodes/<NODE_NAME>/trust.p12
#trustStorePassword=WebAS
#clientAuthentication=false

The catServer2.props file is using the default WebSphere Application Server
node level keystore and truststore. If you are deploying a more complex
deployment environment, you must choose the correct keystore and truststore.
In some cases, you must create a keystore and truststore and import the keys
from keystores from the other servers. Notice that the WebAS string is the
default password of the WebSphere Application Server keystore and truststore.
See Default self-signed certificate configuration for more details.

2. In the catServer2.props file, update the value of the transportType property.
For previous steps of the tutorial, the value was set to TCP/IP. Change the
value to SSL-Required.

3. Restart the deployment manager to activate the changes to the catalog server
security settings.

Lesson checkpoint:

You configured the SSL properties for the catalog server.

Lesson 3.3: Check the orb.properties file
With WebSphere eXtreme Scale Version 7.0 or earlier, you must verify that the
Secure Sockets Layer (SSL) works correctly between WebSphere Application Server
and WebSphere eXtreme Scale servers. You must edit the orb.properties file in the
JAVA_HOME/jre/lib directory must contain the specific properties.

Chapter 9. Securing the deployment environment 395

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=usecinboundconn
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=usecinboundconn
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/csec_ssldefselfsigncertconf.html

If you are using WebSphere eXtreme Scale Version 7.1 or later, changing the
orb.properties file is not necessary. The attributes are automatically added at run
time if they are not present in the orb.properties file.

orb.properties file:

The following lines in bold text are not in the default orb.properties file in the
Java Development Kit that is shipped by WebSphere Application Server. Add these
lines to your orb.properties file:

IBM JDK properties
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
javax.rmi.CORBA.PortableRemoteObjectClass=com.ibm.rmi.javax.rmi.PortableRemoteObject
javax.rmi.CORBA.UtilClass=com.ibm.ws.orb.WSUtilDelegateImpl

WS Plugins
com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.WSTransport
com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.WSORBPropertyManager
com.ibm.CORBA.ORBPluginClass.com.ibm.ISecurityUtilityImpl.SecurityPropertyManager
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.objectgrid.corba.ObjectGridInitializer

WS ORB & Plugins properties
com.ibm.ws.orb.transport.ConnectionInterceptorName=com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor
com.ibm.ws.orb.transport.WSSSLClientSocketFactoryName=com.ibm.ws.security.orbssl.WSSSLClientSocketFactoryImpl
com.ibm.CORBA.enableLocateRequest=true
com.ibm.CORBA.ORBCharEncoding=UTF8
com.ibm.CORBA.ForceTunnel=never
com.ibm.CORBA.TransportMode=Pluggable
com.ibm.CORBA.ServerName=ogserver
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityComponentFactory

Lesson checkpoint:

For your WebSphere eXtreme Scale Version 7.0 or earlier configuration, you edited
the orb.properties file to contain the necessary properties.

Lesson 3.4: Run the sample
Restart all the servers and run the sample application again. You should be able to
run through the steps without any problems.

See “Lesson 2.4: Install and run the sample” on page 391 for more information
about running and installing the sample application.

Lesson checkpoint:

You ran the sample application with transport security enabled.

Module 4: Use Java Authentication and Authorization Service
(JAAS) authorization in WebSphere Application Server

Now that you have configured authentication for clients, you can further configure
authentication to give different users varying permissions. For example, an
operator user might only be able to view data, while an administrator user can
perform all operations.

After authenticating a client, as in the previous module in this tutorial, you can
give security privileges through eXtreme Scale authorization mechanisms. The
previous module of this tutorial demonstrated how to enable authentication for a
data grid using integration with WebSphere Application Server. As a result, no
unauthenticated client can connect to the eXtreme Scale servers or submit requests
to your system. However, every authenticated client has the same permission or

396 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

privileges to the server, such as reading, writing, or deleting data that is stored in
the ObjectGrid maps. Clients can also issue any type of query.

This part of the tutorial demonstrates how to use eXtreme Scale authorization to
give authenticated users varying privileges. WebSphere eXtreme Scale uses a
permission-based authorization mechanism. You can assign different permission
categories that are represented by different permission classes. This module
features the MapPermission class. For a list of all possible permissions, see the
client authorization reference in the Programming Guide.

In WebSphere eXtreme Scale, the
com.ibm.websphere.objectgrid.security.MapPermission class represents
permissions to the eXtreme Scale resources, specifically the methods of the
ObjectMap or JavaMap interfaces. WebSphere eXtreme Scale defines the following
permission strings to access the methods of ObjectMap and JavaMap:
v read: Grants permission to read the data from the map.
v write: Grants permission to update the data in the map.
v insert: Grants permission to insert the data into the map.
v remove: Grants permission to remove the data from the map.
v invalidate: Grants permission to invalidate the data from the map.
v all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when an eXtreme Scale client uses a data access API,
such as the ObjectMap ,JavaMap, or EntityManager APIs. The eXtreme Scale
runtime checks corresponding map permissions when the method is called. If the
required permissions are not granted to the client, an AccessControlException
exception results. This tutorial demonstrates how to use Java Authentication and
Authorization Service (JAAS) authorization to grant authorization map access for
different users.

Learning objectives

After completing the lessons in this module, you know how to:
v Enable authorization for WebSphere eXtreme Scale.
v Enable user-based authorization.
v Configure group-based authorization.

Time required

This module takes approximately 60 minutes.

Prerequisites

You must complete the prior modules in this tutorial before configuring
authentication.

Lesson 4.1: Enable WebSphere eXtreme Scale authorization
To enable authorization in WebSphere eXtreme Scale, you must enable security on
a specific ObjectGrid.

To enable authorization on the ObjectGrid, you must set the securityEnabled
attribute to true for that particular ObjectGrid in the XML file. For this tutorial, you
can either use the XSDeployment_sec.ear file in the samples_home/WASSecurity

Chapter 9. Securing the deployment environment 397

directory, which has already has security set in the objectGrid.xml file, or you can
edit the existing objectGrid.xml file to enable security. This lesson demonstrates
how to edit the file to enable security.
1. Extract the files in the XSDeployment.ear file, and then unzip the

XSDeploymentWeb.war file.
2. Open the objectGrid.xml file and set the securityEnabled attribute to true on

the ObjectGrid level. See an example of this attribute in the following example:
<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" securityEnabled="true">

<backingMap name="Map1" />
</objectGrid>

</objectGrids>

</objectGridConfig>

If you have multiple ObjectGrids defined, then you must set this attribute on
each data grid.

3. Repackage the XSDeploymentWeb.war and XSDeployment.ear files to include your
changes. Name the file XSDeployment_sec.ear so you do not overwrite the
original package.

4. Uninstall the existing XSDeployment application and install the
XSDeployment_sec.ear file. See “Lesson 2.4: Install and run the sample” on page
391 for more information about deploying applications.

Lesson checkpoint:

You enabled security on the ObjectGrid, which also enables authorization on the
data grid.

Lesson 4.2: Enable user-based authorization
In the authentication module of this tutorial, you created two users: operator1 and
admin1. You can assign varying permissions to these users with Java
Authentication and Authorization Service (JAAS) authorization.

Defining the Java Authentication and Authorization Service (JAAS)
authorization policy using user principals:

You can assign permissions to the users that you previously created. Assign the
operator1 user read permissions only to all maps. Assign the admin1 user all
permissions. Use the JAAS authorization policy file to grant permissions to
principals.

Edit the JAAS authorization file. The xsAuth2.policy file is in the
samples_homesecurity directory:
grant codebase http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction
Principal com.ibm.ws.security.common.auth.WSPrincipalImpl "defaultWIMFileBasedRealm/operator1" {

permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "read";
};

grant codebase http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction
Principal com.ibm.ws.security.common.auth.WSPrincipalImpl "defaultWIMFileBasedRealm/admin1" {

permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "all";
};

398 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

In this file, the http://www.ibm.com/com/ibm/ws/objectgrid/security/
PrivilegedAction codebase is a specially reserved URL for ObjectGrid. All
ObjectGrid permissions that are granted to principals should use this special code
base. The following permissions are assigned in this file:
v The first grant statement grants read map permission to the operator1 principal.

The operator1 user has only map read permission to the Map1 map the Grid
ObjectGrid instance.

v The second grant statement grants all map permission to the admin1 principal.
The admin1 user has all permissions to the Map1 map in the Grid ObjectGrid
instance.

v The principal name is defaultWIMFileBasedRealm/operator1, but not Operator1.
WebSphere Application Server automatically adds the realm name to the
principal name when federated repositories are used as the user account registry.
Adjust this value if needed.

Setting the JAAS authorization policy file using JVM properties:

Use the following steps to set JVM properties for the xs1 and xs2 servers, which
are in the xsCluster cluster. If you are using a topology that is different from the
sample topology that is used in this tutorial, set the file on all of your container
servers.
1. In the administrative console, click Servers > Application servers >

server_name > Java and Process Management > Process definition > Java
Virtual Machine.

2. Add the following generic JVM arguments:
-Djava.security.auth.policy=samples_home/security/xsAuth2.policy

3. Click OK and save your changes.

Running the sample application to test authorization:

You can use the sample application to test the authorization settings. The
administrator user continues to have all permissions in the Map1 map, including
displaying and adding employees. The operator user should only be able to view
employees because that user was assigned read permission only.
1. Restart all of the application servers that are running container servers.
2. Open the EmployeeManagementWeb application. In a web browser, open

http://<host>:<port>/EmployeeManagermentWeb/management.jsp.
3. Log in to the application as an administrator. Use the user name admin1 and

password admin1.
4. Attempt to display an employee. Click Display an Employee and search for

the authemp1@acme.com email address. A message displays that the user cannot
be found.

5. Add an employee. Click Add an Employee. Add the email authemp1@acme.com,
the first name Joe, and the last name Doe. Click Submit. A message displays
that the employee has been added.

6. Log in as the operator user. Open a second Web browser window and open
http://<host>:<port>/EmployeeManagermentWeb/management.jsp. Use the user
name operator1 and password operator1.

7. Attempt to display an employee. Click Display an Employee and search for
the authemp1@acme.com email address. The employee is displayed.

Chapter 9. Securing the deployment environment 399

8. Add an employee. Click Add an Employee. Add the email authemp2@acme.com,
the first name Joe, and the last name Doe. Click Submit. The following
message displays:
An exception occurs when Add the employee. See below for detailed exception messages.

The following exception is in the exception chain:
java.security.AccessControlException: Access denied
(com.ibm.websphere.objectgrid.security.MapPermission Grid.Map1 insert)

This message displays because the operator1 user does not have permission to
insert data into the Map1 map.

If you are running with a version of WebSphere Application Server that is earlier
than Version 7.0.0.11, you might see a java.lang.StackOverflowError error on the
container server. This error is caused by a problem with the IBM Developer Kit.
The problem is fixed in the IBM Developer Kit that is shipped with WebSphere
Application Server Version 7.0.0.11 and later.

Lesson checkpoint:

In this lesson, you configured authorization by assigning permissions to specific
users.

Lesson 4.3: Configure group-based authorization
In the previous lesson, you assigned individual user-based authorization with user
principals in the Java Authentication and Authorization Service. (JAAS)
authorization policy. However, when you have hundreds or thousands of users,
use group-based authorization, which authorizes access based on groups instead of
individual users.

Unfortunately, the Subject object that is authenticated from the WebSphere
Application Server only contains a user principal. This object does not contain a
group principal. You can add a custom login module to populate the group
principal into the Subject object.

For this tutorial, the custom login module is named
com.ibm.websphere.samples.objectgrid.security.lm.WASAddGroupLoginModule.
The module is in the groupLM.jar file. Place this JAR file in the
WAS-INSTALL/lib/ext directory.

The WASAddGroupLoginModule retrieves the public group credential from the
WebSphere Application Server subject and creates a Group principal,
com.ibm.websphere.samples.objectgrid.security.WSGroupPrincipal, to represent the
group. This group principal can then be used for group authorization. The groups
are defined in the xsAuthGroup2.policy file:

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"
principal com.ibm.websphere.sample.xs.security.WSGroupPrincipal
"defaultWIMFileBasedRealm/cn=operatorGroup,o=defaultWIMFileBasedRealm" {
permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "read";

};

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"
principal com.ibm.websphere.sample.xs.security.WSGroupPrincipal
"defaultWIMFileBasedRealm/cn=adminGroup,o=defaultWIMFileBasedRealm" {

permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "all";
};

The principal name is the WSGroupPrincipal, which represents the group.

400 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Adding the custom login module:

The custom login module must be added to each of the following system login
module entries: If you are using Lightweight Third Party Authentication (LTPA),
add the entry to the RMI_INBOUND login modules. LTPA is the default
authentication mechanism for WebSphere Application Server Version 7.0. For a
WebSphere Application Server Network Deployment configuration, you only need
to configure the LTPA authentication mechanism configuration entries.

Use the following steps to configure the supplied
com.ibm.websphere.samples.objectgrid.security.lm.WASAddGroupLoginModule
login module:
1. In the administrative console, click Security > Global Security > Java

Authentication and Authorization Service > System logins >
login_module_name > JAAS login modules > New.

2. Enter the class name as
com.ibm.websphere.sample.xs.security.lm.WASAddGroupLoginModule.

3. Optional: Add a property debug and set the value to true.
4. Click Apply to add the new module to the login module list.

Setting the JAAS Authorization Policy file using JVM Properties:

In the administrative console, perform the following steps to xs1 and xs2 servers in
the xsCluster. If a different deployment topology is used, perform the following
steps to the application servers that host the container servers.
1. In the administrative console, click Servers > Application servers >

server_name > Java and Process management > Process definition > Java
virtual machine

2. Enter the following Generic JVM arguments or replace the
-Djava.security.auth.policy entry with the following text:
-Djava.security.auth.policy=samples_home/security/xsAuthGroup2.policy

3. Click OK and save your changes.

Testing group authorization with the sample application:

You can test that group authorization is configured by the login module with the
sample application.
1. Restart the container servers. For this tutorial, the container servers are the xs1

and xs2 servers.
2. Log in to the sample application. In a web browser, open http://

<host>:<port>/EmployeeManagementWeb/management.jsp and login with the user
name admin1 and password admin1.

3. Display an employee. Click Display an Employee and search for the
authemp2@acme.com email address. A message displays that the user cannot be
found.

4. Add an employee. Click Add an Employee. Add the email authemp2@acme.com,
the first name Joe, and the last name Doe. Click Submit. A message displays
that the employee has been added.

5. Log in as the operator user. Open a second web browser window and open the
following URL: http://<host>:<port>/EmployeeManagermentWeb/
management.jsp. Use the user name operator1 and password operator1.

6. Attempt to display an employee. Click Display an Employee and search for
the authemp2@acme.com email address. The employee is displayed.

Chapter 9. Securing the deployment environment 401

7. Add an employee. Click Add an Employee. Add the email authemp3@acme.com,
the first name Joe, and the last name Doe. Click Submit. The following
message displays:
An exception occurs when Add the employee. See below for detailed exception messages.

The following exception is in the exception chain:
java.security.AccessControlException: Access denied
(com.ibm.websphere.objectgrid.security.MapPermission Grid.Map1 insert)

This message displays because the operator user does not have permission to
insert data into the Map1 map.

Lesson checkpoint:

You configured groups to simplify the assignment of permission to the users of
your application.

Module 5: Use the xsadmin tool to monitor data grids and
maps

You can use the xsadmin tool to show the primary data grids and map sizes of the
Grid data grid. The xsadmin tool uses the MBean to query all of the data grid
artifacts, such as primary shards, replica shards, container servers, map sizes, and
so on.

In this tutorial, the container and catalog servers are running in WebSphere
Application Server application servers. The WebSphere eXtreme Scale run time
registers the Managed Beans (MBean) with the MBean server that is created by the
WebSphere Application Server run time. The security that is used by the xsadmin
tool is provided by the WebSphere Application Server MBean security. Therefore,
WebSphere eXtreme Scale specific security configuration is not necessary.
1. Using a command-line tool, open the DMGR_PROFILE/bin directory.
2. Run the xsadmin tool. Use the -primaries parameter as in the following

examples:

Linux UNIX

xsadmin.sh -g Grid -m mapSet –dmgr -primaries

Windows

xsadmin.bat -g Grid -m mapSet –dmgr -primaries

Because the catalog server runs in the deployment manager, the -dmgr
parameter is required. With this parameter, the WebSphere eXtreme Scale run
time connects to the WebSphere Application Server MBean server. If your
BOOTSTRAP_PORT, is set to a value other than 2809, specify the port number
with the -p parameter.
Before you can view the output, you are prompted to log in with your
WebSphere Application Server ID and password.

3. View the command output.
*** Showing all primaries for grid - Grid & mapset - mapSet
Partition Container Host Server
0 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
1 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
2 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
3 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
4 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2

402 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

If you see the following exception on WebSphere eXtreme Scale Version 7.1, verify
that the PM20613 interim fix is installed:
Could not load class: com.ibm.ws.security.auth.ContextManagerImpl

Lesson checkpoint
You used the xsadmin tool in WebSphere Application Server by using the -dmgr
parameter.

Tutorial: Integrate WebSphere eXtreme Scale security in a mixed
environment with an external authenticator

This tutorial demonstrates how to secure WebSphere eXtreme Scale servers that are
partially deployed in a WebSphere Application Server environment.

In the deployment for this tutorial, the container servers are deployed in
WebSphere Application Server. The catalog server is deployed as stand-alone
server, and is started in a Java Standard Edition (Java SE) environment.

Because the catalog server is not deployed in WebSphere Application Server, you
cannot use the WebSphere Application Server Authentication plug-ins. For more
information about the process of configuring WebSphere Application Server
Authentication plug-ins, see “Tutorial: Integrate WebSphere eXtreme Scale security
with WebSphere Application Server” on page 381. In this tutorial, a different
authenticator is required for catalog server authentication. You configure a keystore
authenticator to authenticate the clients.

Learning objectives

The learning objectives for this tutorial follow:
v Configure WebSphere eXtreme Scale to use the KeyStoreLoginAuthenticator

plug-in
v Configure WebSphere eXtreme Scale transport security to use WebSphere

Application Server CSIv2 configuration and the WebSphere eXtreme Scale
properties file

v Use Java Authentication and Authorization Service (JAAS) authorization in
WebSphere Application Server

v Use the xsadmin tool to monitor the data grids and maps that you created in the
tutorial.

Time required

This tutorial takes approximately 4 hours from start to finish.

Introduction: Security in a mixed environment
In this tutorial, you integrate WebSphere eXtreme Scale security in a mixed
environment. The container servers run within WebSphere Application Server, and
the catalog service runs in stand-alone mode. Because the catalog server is in
stand-alone mode, you must configure an external authenticator.

Important: If both your container servers and catalog server are running within
WebSphere Application Server, you can use the WebSphere Application Server
Authentication plug-ins or an external authenticator. For more information about

Chapter 9. Securing the deployment environment 403

using the WebSphere Application Server Authentication plug-ins, see “Tutorial:
Integrate WebSphere eXtreme Scale security with WebSphere Application Server”
on page 381.

Learning objectives

The learning objectives for this tutorial follow:
v Configure WebSphere eXtreme Scale to use the KeyStoreLoginAuthenticator

plug-in
v Configure WebSphere eXtreme Scale transport security to use WebSphere

Application Server CSIv2 configuration and the WebSphere eXtreme Scale
properties file

v Use Java Authentication and Authorization Service (JAAS) authorization in
WebSphere Application Server

v Use the xsadmin tool to monitor the data grids and maps that you created in the
tutorial.

Time required

This tutorial takes approximately 4 hours from start to finish.

Skill level

Intermediate.

Audience

Developers and administrators that are interested in the security integration
between WebSphere eXtreme Scale and WebSphere Application Server and
configuring external authenticators.

System requirements
v WebSphere Application Server Version 6.1 or Version 7.0.0.11 or later with the

following fixes applied:interim fix PM20613 and interim fix PM15818.
v WebSphere eXtreme Scale Version 7.0 or Version 7.1. The catalog server must be

running on a stand-alone installation, not an installation that is integrated with
WebSphere Application Server.

v Update the Java runtime to apply the following fix: IZ79819: IBMJDK FAILS TO
READ PRINCIPAL STATEMENT WITH WHITESPACE FROM SECURITY FILE

v The stand-alone node that runs the catalog service must use the IBM Software
Development Kit Version 1.6 J9. This Software Development Kit is included in
the WebSphere Application Server installation. The catalog server node must be
a stand-alone installation because you cannot run the startOgServer command
within an installation of WebSphere eXtreme Scale on WebSphere Application
Server.

This tutorial uses four WebSphere Application Server application servers and one
deployment manager to demonstrate the sample.

Prerequisites

A basic understanding of the following items is helpful before you start this
tutorial:
v WebSphere eXtreme Scale programming model

404 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-01.ibm.com/support/docview.wss?rs=0&q1=PM20613&uid=swg1PM20613&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=PM20613&uid=swg1PM15818&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819

v Basic WebSphere eXtreme Scale security concepts
v Basic WebSphere Application Server security concepts

For a background information about WebSphere eXtreme Scale and WebSphere
Application Server security integration, see “Security integration with WebSphere
Application Server” on page 427.

Module 1: Prepare the mixed WebSphere Application Server
and stand-alone environment

Before you start the tutorial, you must create a basic topology that includes
container servers that run within WebSphere Application Server. In this tutorial,
the catalog servers run in stand-alone mode.

Learning objectives

With the lessons in this module, you learn how to:
v Understand the mixed topology and the files that are necessary for the tutorial
v Configure WebSphere Application Server to run the container servers

Time required

This module takes approximately 60 minutes.

Lesson 1.1: Understand the topology and get the tutorial files
To prepare your environment for the tutorial, you must configure the catalog and
container servers for the topology.

This lesson guides you through the sample topology and applications that are used
to in the tutorial. To begin running the tutorial, you must download the
applications and place the configuration files in the correct locations for your
environment. You can download the sample application from the WebSphere
eXtreme Scale wiki.

Topology: In this tutorial, you create the following clusters in the WebSphere
Application Server cell:
v appCluster cluster: Hosts the EmployeeManagement sample enterprise

application. This cluster has two application servers: s1 and s2.
v xsCluster cluster: Hosts the eXtreme Scale container servers. This cluster has

two application servers: xs1 and xs2.

In this deployment topology, the s1 and s2 application servers are the client servers
that access data that is being stored in the data grid. The xs1 and xs2 servers are
the container servers that host the data grid.

Alternative configuration: You can host all of the application servers in a single
cluster, such as in the appCluster cluster. With this configuration, all of the servers
in the cluster are both clients and container servers. This tutorial uses two clusters
to distinguish between the application servers that are hosting the clients and
container servers.

In this tutorial, you configure a catalog service domain that consists of a remote
server that is not in the WebSphere Application Server cell. This configuration is
not the default, which results in the catalog servers running on the deployment
manager and other processes in the WebSphere Application Server cell. See
“Creating catalog service domains in WebSphere Application Server” on page 206

Chapter 9. Securing the deployment environment 405

 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server
 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server

for more information about creating a catalog service domain that consists of
remote servers.

Applications: In this tutorial, you are using two applications and one shared
library file:
v EmployeeManagement.ear: The EmployeeManagement.ear application is a simplified

Java 2 Platform, Enterprise Edition (J2EE) enterprise application. It contains a
web module to manage the employee profiles. The web module contains the
management.jsp file to display, insert, update, and delete employee profiles that
are stored in the container servers.

v XSDeployment.ear: This application contains an enterprise application module
with no application artifacts. The cache objects are packaged in the
EmployeeData.jar file. The EmployeeData.jar file is deployed as a shared library
for the XSDeployment.ear file, so that the XSDeployment.ear file can access the
classes. The purpose of this application is to package the eXtreme Scale
configuration file and property file. When this enterprise application is started,
the eXtreme Scale configuration files are automatically detected by the eXtreme
Scale run time, so the container servers are created. These configuration files
include the objectGrid.xml and objectGridDeployment.xml files.

Figure 29. Tutorial topology

406 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v EmployeeData.jar: This jar file contains one class: the
com.ibm.websphere.sample.xs.data.EmployeeData class. This class represents
employee data that is stored in the grid. This Java archive (JAR) file is deployed
with the EmployeeManagement.ear and XSDeployment.ear files as a shared library.

Get the tutorial files:

1. Download the WASSecurity.zip and security_extauth.zip files from the
WebSphere eXtreme Scale wiki.

2. Extract the WASSecurity.zip file to a directory for viewing the binary and
source artifacts, for example a wxs_samples/ directory. This directory is referred
to as samples_home for the remainder of the tutorial. Refer to the README.txt file
in the package for a description of the contents and how to load the source into
your Eclipse workspace. The following ObjectGrid configuration files are in the
META-INF directory:
v objectGrid.xml

v objectGridDeployment.xml

3. Create a directory to store the property files that are used to secure this
environment. For example, you might create the /opt/wxs/security directory.

4. Extract the security_extauth.zip file to samples_home. The
security_extauth.zip file contains the following security configuration files
that are used in this tutorial:. These configuration files follow:
v catServer3.props

v server3.props

v client3.props

v security3.xml

v xsAuth3.props

v xsjaas3.config

v sampleKS3.jks

About the configuration files:

The objectGrid.xml and objectGridDeployment.xml files create the data grids and
maps that store the application data.

These configuration files must be named objectGrid.xml and
objectGridDeployment.xml. When the application server starts, eXtreme Scale
detects these files in the META-INF directory of the EJB and web modules. If these
files are found, it assumed that the Java virtual machine (JVM) acts as a container
server for the defined data grids in the configuration files.

objectGrid.xml file

The objectGrid.xml file defined one ObjectGrid named Grid. The Grid data grid
has one map, the Map1 map, that stores the employee profile for the application.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">

<backingMap name="Map1" />
</objectGrid>

</objectGrids>

</objectGridConfig>

Chapter 9. Securing the deployment environment 407

 https://www.ibm.com/developerworks/wikis/display/extremescale/Integrating+WebSphere+eXtreme+Scale+Security+with+WebSphere+Application+Server

objectGridDeployment.xml file

The objectGridDeployment.xml file specifies how to deploy the Grid data grid.
When the grid is deployed, it has five partitions and one synchronous replica.
<?xml version="1.0" encoding="UTF-8"?>

<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="5" minSyncReplicas="0" maxSyncReplicas="1" >

<map ref="Map1"/>
</mapSet>

</objectgridDeployment>

</deploymentPolicy>

Lesson checkpoint:

In this lesson, you learned about the topology for the tutorial and added the
configuration files and sample applications to your environment.

Lesson 1.2: Configure the WebSphere Application Server
environment
To prepare your environment for the tutorial, you must configure WebSphere
Application Server security. Enable administration and application security using
internal file-based federated repositories as a user account registry. Then, you can
create server clusters to host the client application and container servers. You also
must create and start the catalog servers.

The following steps were written using WebSphere Application Server Version 7.0.
However, you can also apply the concepts apply to earlier versions of WebSphere
Application Server.

Configure WebSphere Application Server security:

Create and augment profiles for the deployment manager and nodes with
WebSphere eXtreme Scale. See “Installing WebSphere eXtreme Scale or WebSphere
eXtreme Scale Client with WebSphere Application Server” on page 26 for more
information.

Configure WebSphere Application Server security.
1. In the WebSphere Application Server administrative console, click Security >

Global Security.
2. Select Federated repositories as the User account repository. Click Set as

current.
3. Click Configure.. to go to the Federated repositories panel.
4. Enter the Primary administrative user name, for example, admin. Click Apply.

5. When prompted, enter the administrative user password and click OK. Save
your changes.

6. On the Global Security page, verify that Federated repositories setting is set to
the current user account registry.

7. Select the following items: Enable administrative security, Enable application
security, and Use Java 2 security to restrict application access to local
resources. Click Apply and save your changes.

8. Restart the deployment manager and any running application servers.

408 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The WebSphere Application Server administrative security is enabled using the
internal file-based federated repositories as the user account registry.

Create server clusters:

Create two server clusters in your WebSphere Application Server configuration:
The appCluster cluster to host the sample application for the tutorial and the
xsCluster cluster to host the data grid.
1. In the WebSphere Application Server administrative console, open the clusters

panel. Click Servers > Clusters > WebSphere application server clusters >
New.

2. Type appCluster as the cluster name, leave the Prefer local option selected, and
click Next.

3. Create servers in the cluster. Create a server named s1, keeping the default
options. Add an additional cluster member named s2.

4. Complete the remaining steps in the wizard to create the cluster. Save the
changes.

5. Repeat these steps to create the xsCluster cluster. This cluster has two servers,
named xs1 and xs2.

Create a catalog service domain:

After configuring the server cluster and security, you must define where catalog
servers start.
v Define a catalog service domain in WebSphere eXtreme Scale Version 7.1 or

later

1. In the WebSphere Application Server administrative console, click System
administration > WebSphere eXtreme Scale > Catalog service domains.

2. Create the catalog service domain. Click New. Create the catalog service
domain with the name catalogService1, and enable the catalog service
domain as the default.

Note: If you are using Version 7.1 without fix 1 applied, set the JMX Port to
16099.

3. Add remote servers to the catalog service domain. Select Remote server.
Provide the host name where the catalog server is running. Use the listener
port value of 16809 for this example.

4. Click OK and save your changes.
v Define a catalog service domain in WebSphere eXtreme Scale Version 7.0

You can create the catalog.services.cluster custom property in a cell, node, or
server scope. For this example, you can create the catalog.server.cluster custom
property as a cell custom property.
1. In the WebSphere Application Server administrative console, click System

administration > Cell > Custom properties > New.
2. Specify the name as catalog.services.cluster and the value in the appropriate

form, using the defined attributes. For example, the value might be:
cs1:[your_node_hostname]:16601:16602:16809. See Version 7.0: Starting the
catalog service process in a WebSphere Application Server environment

Lesson checkpoint:

You enabled security in WebSphere Application Server, and created the server
topolgy for WebSphere eXtreme Scale.

Chapter 9. Securing the deployment environment 409

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.admin.doc/txscatalogstartwas.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.admin.doc/txscatalogstartwas.html

Module 2: Configure WebSphere eXtreme Scale authentication
in a mixed environment

By configuring authentication, you can reliably determine the identity of the
requester. WebSphere eXtreme Scale supports both client-to-server and
server-to-server authentication.

Authentication flow

The previous diagram shows two application servers. The first application server
hosts the web application, which is also a WebSphere eXtreme Scale client. The
second application server hosts a container server. The catalog server is running in
a stand-alone Java virtual machine (JVM) instead of WebSphere Application Server.

The arrows marked with numbers in the diagram indicate the authentication flow:
1. An enterprise application user accesses the web browser, and logs in to the first

application server with a user name and password. The first application server
sends the client user name and password to the security infrastructure to
authenticate to the user registry. This user registry is a keystore. As a result, the
security information is stored on the WebSphere Application Server thread.

2. The JavaServer Pages (JSP) file acts as a WebSphere eXtreme Scale client to
retrieve the security information from the client property file. The JSP
application that is acting as the WebSphere eXtreme Scale client sends the
WebSphere eXtreme Scale client security credential along with the request to
the catalog server. Sending the security credential with the request is
considered a runAs model. In a runAs model, the web browser client runs as a
WebSphere eXtreme Scale client to access the data stored in the container
server. The client uses a Java virtual machine (JVM)-wide client credential to

Figure 30. Authentication flow

410 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

connect to the WebSphere eXtreme Scale servers. Using the runAs model is like
connecting to a database with a data source level user ID and password.

3. The catalog server receives the WebSphere eXtreme Scale client credential,
which includes the WebSphere Application Server security tokens. Then, the
catalog server calls the authenticator plug-in to authenticate the client
credential. The authenticator connects to the external user registry and sends
the client credential to the user registry for authentication.

4. The client sends the user ID and password to the container server that is
hosted in the application server.

5. The container service, hosted in the application server, receives the WebSphere
eXtreme Scale client credential, which is the user id and password pair. Then,
the container server calls the authenticator plug-in to authenticate the client
credential. The authenticator connects to the keystore user registry and sends
the client credential to the user registry for authentication

Learning objectives

With the lessons in this module, you learn how to:
v Configure WebSphere eXtreme Scale client security.
v Configure WebSphere eXtreme Scale catalog server security.
v Configure WebSphere eXtreme Scale container server security.
v Install and run the sample application.

Time required

This module takes approximately 60 minutes.

Lesson 2.1: Configure WebSphere eXtreme Scale client security
You configure the client properties with a properties file. The client properties file
indicates the CredentialGenerator implementation class to use.

Client properties file contents:

The tutorial uses WebSphere Application Server security tokens for the client
credential. The samples_home/security_extauth directory contains the
client3.props file.

The client3.props file includes the following settings:

securityEnabled
Enables WebSphere eXtreme Scale client security. The value is set to true
to indicate that the client must send available security information to the
server.

credentialAuthentication
Specifies the client credential authentication support. The value is set to
Supported to indicate that the client supports credential authentication.

credentialGeneratorClass
Specifies the name of the class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
interface. The value is set to the
com.ibm.websphere.objectgrid.security.plugins.builtins.
UserPasswordCredentialGenerator class so that the client retrieves the
security information from the UserPasswordCredentialGenerator class.

Chapter 9. Securing the deployment environment 411

credentialGeneratorProps
Specifies the user name and password: manager manager1. The user name is
manager, and the password is manager1. You can also use the
FilePasswordEncoder.bat|sh command to encode this property using an
exclusive or (xor) algorithm.

Setting the client properties file using Java virtual machine (JVM) properties:

In the administrative console, complete the following steps to both the s1 and s2
servers in the appCluster cluster. If you are using a different topology, complete
the following steps to all of the application servers to which the
EmployeeManagement application is deployed.
1. Servers > WebSphere application servers > server_name > Java and Process

Management > Process definition > Java Virtual Machine.
2. Create the following generic JVM property to set the location of the client

properties file:
-Dobjectgrid.client.props=samples_home/security_extauth/client3.props

3. Click OK and save your changes.

Lesson checkpoint:

You edited the client properties file and configured the servers in the appCluster
cluster to use the client properties file. This properties file indicates the
CredentialGenerator implementation class to use.

Lesson 2.2: Configure catalog server security
A catalog server contains two different levels of security information: The first
level contains the security properties that are common to all the WebSphere
eXtreme Scale servers, including the catalog service and container servers. The
second level contains the security properties that are specific to the catalog server.

The security properties that are common to the catalog servers and container
servers are configured in the security XML descriptor file. An example of common
properties is the authenticator configuration, which represents the user registry and
authentication mechanism. See “Security descriptor XML file” on page 450 for
more information about the security properties.

To configure the security XML descriptor file in a Java SE environment, use a
-clusterSecurityFile option when you run the startOgServer command. Specify
a value in a file format, such as samples_home/security_extauth/security3.xml.

security3.xml file:

In this tutorial, the security3.xml file is in the samples_home/security_extauth
directory. The content of the security3.xml file with the comments removed
follows:
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/security ../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true">
<authenticator
className="com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator">
</authenticator>
</security>
</securityConfig>

The following properties are defined in the security3.xml file:

412 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

securityEnabled
The securityEnabled property is set to true, which indicates to the catalog
server that the WebSphere eXtreme Scale global security is enabled.

authenticator
The authenticator is configured as the
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator
class. With this built-in implementation of the Authenticator plug-in, the
user ID and password is passed to verify that it is configured in the
keystore file. The KeyStoreLoginAuthenticator class uses a KeyStoreLogin
login module alias, so a Java Authentication and Authorization Service
(JAAS) login configuration is required.

catServer3.props file:

The server property file stores the server-specific properties, which include the
server-specific security properties. See “Server properties file” on page 199 for
more information. You can use -serverProps option to specify the catalog server
property when you run the startOgServer command. For this tutorial, a
catServer3.props file is in the c directory. The content of the catServer3.props file
with the comments removed follows:
securityEnabled=true
credentialAuthentication=Required
transportType=TCP/IP
secureTokenManagerType=none
authenticationSecret=ObjectGridDefaultSecret

securityEnabled
The securityEnabled property is set to true to indicate that this catalog
server is a secure server.

credentialAuthentication
The credentialAuthentication property is set to Required, so any client that
is connecting to the server is required to provide a credential. Iin the client
property file, the credentialAuthentication value is set to Supported, so the
server receives the credentials that are sent by the client.

secureTokenManagerType
The secureTokenManagerType is set to none to indicate that the
authentication secret is not encrypted when joining the existing servers.

authenticationSecret
The authenticationSecret property is set to ObjectGridDefaultSecret. This
secret string is used to join the eXtreme Scale server cluster. When a server
joins the data grid, it is challenged to present the secret string. If the secret
string of the joining server matches the string in the catalog server, the
joining server is accepted. If the string does not match, the join request is
rejected.

transportType
The transportType property is set to TCP/IP initially. Later in the tutorial,
transport security is enabled.

xsjaas3.config file:

Because the KeyStoreLoginAuthenticator implementation uses a login module, you
must configure the login model with a JAAS authentication login configuration file.
The contents of the xsjaas3.config file follows:

Chapter 9. Securing the deployment environment 413

KeyStoreLogin{
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule required

keyStoreFile="samples_home/security_extauth/sampleKS3.jks" debug = true;
};

If you used a location for samples_home other than /wxs_samples/, you need to
update the location of the keyStoreFile. This login configuration indicates that the
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule
module is used as the login module. The keystore file is set to the sampleKS3.jks
file.

The sampleKS3.jks sample keystore file stores two user IDs and the passwords:
manager/manager1 and cashier/cashier1.

You can use the following keytool commands to create this keystore:
v keytool -genkey -v -keystore ./sampleKS3.jks -storepass sampleKS1

-alias manager -keypass manager1 -dname CN=manager,O=acme,OU=OGSample
-validity 10000

v keytool -genkey -v -keystore ./sampleKS3.jks -storepass sampleKS1
-alias operator -keypass operator1 -dname CN=operator,O=acme,OU=OGSample
-validity 10000

Start the catalog server with security enabled:

To start the catalog server, issue the startOgServer command with the
-clusterFile and -serverProps parameters to pass in the security properties.

Use a stand-alone installation of WebSphere eXtreme Scale to run the catalog
server. When using the stand-alone installation image, you must use the IBM
SDK. You can use the SDK that is included with WebSphere Application Server by
setting the JAVA_HOME variable to point to the IBM SDK. For example, set
JAVA_HOME=was_root/IBM/WebSphere/AppServer/java/

1. Go to the bin directory.
cd wxs_home/bin

2. Run the startOgServer command.

Linux UNIX

./startOgServer.sh cs1 -listenerPort 16809 -JMXServicePort 16099 -catalogServiceEndPoints
cs1:[HOST_NAME]:16601:16602 -clusterSecurityFile samples_home/security_extauth/security3.xml
-serverProps samples_home/security_extauth/catServer3.props -jvmArgs -Djava.security.auth.login.config=
"samples_home/security_extauth/xsjaas3.config"

Windows

startOgServer.bat cs1 -listenerPort 16809 -JMXServicePort 16099 -catalogServiceEndPoints
cs1:[HOST_NAME]:16601:16602 -clusterSecurityFile samples_home/security_extauth/security3.xml
-serverProps samples_home/security_extauth/catServer3.props -jvmArgs -Djava.security.auth.login.config=
"samples_home/security_extauth/xsjaas3.config"

After you run the startOgServer command, a secure server starts with listener port
16809, client port 16601, peer port 16602, and JMX port 16099. If a port conflict
exists, change the port number to an unused port number.

Stop a catalog server that has security enabled:

You can use the stopOgServer command to stop the catalog server.
1. Go to the bin directory.

cd wxs_home/bin

2. Run the stopOgServer command. Linux UNIX

414 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

stopOgServer.sh cs1 -catalogServiceEndPoints localhost:16809 -clientSecurityFile
samples_home/security_extauth/client3.props

Windows

stopOgServer.bat cs1 -catalogServiceEndPoints localhost:16809 -clientSecurityFile
samples_home/security_extauth/client3.props

Lesson checkpoint:

You configured catalog server security by associating the security3.xml,
catServer3.props, xsjaas3.config files with the catalog service.

Lesson 2.3: Configure container server security
When a container server connects to the catalog service, the container server gets
all the security configurations that are configured in the Object Grid Security XML
file. The ObjectGrid Security XML file defines authenticator configuration, the login
session timeout value, and other configuration information. A container server also
has its own server-specific security properties in the server property file.

Configure the server property file with the -Dobjectgrid.server.props Java virtual
machine (JVM) property. The file name specified for this property is an absolute
file path, such as samples_home/security_extauth/server3.props.

In this tutorial, the container servers are hosted in the xs1 and xs2 servers in the
xsCluster cluster.

server3.props file:

The server3.props file is in the samples_home/security_extauth/ directory. The
content of the server3.props file follows:
securityEnabled=true
credentialAuthentication=Required
secureTokenManagerType=none
authenticationSecret=ObjectGridDefaultSecret

securityEnabled
The securityEnabled property is set to true to indicate that this container
server is a secure server.

credentialAuthentication
The credentialAuthentication property is set to Required, so any client that
is connecting to the server is required to provide a credential. In the client
property file, the credentialAuthentication property is set to Supported, so
the server receives the credential that is sent by the client.

secureTokenManagerType
The secureTokenManagerType is set to none to indicate that the
authentication secret is not encrypted when joining the existing servers.

authenticationSecret
The authenticationSecret property is set to ObjectGridDefaultSecret. This
secret string is used to join the eXtreme Scale server cluster. When a server
joins the data grid, it is challenged to present the secret string. If the secret
string of the joining server matches the string in the catalog server, the
joining server is accepted. If the string does not match, the join request is
rejected.

Setting the server properties file with JVM properties:

Chapter 9. Securing the deployment environment 415

Set the server properties file on the xs1 and xs2 servers. If you are not using the
topology for this tutorial, set the server properties file on all of the application
servers that you are using to host container servers.
1. Open the Java virtual machine page for the server. Servers > WebSphere

application servers > server_name > Java and Process Management > Process
definition > Java Virtual Machine.

2. Add the generic JVM argument:
-Dobjectgrid.server.props=samples_home/security_extauth/server3.props

3. Click OK and save your changes.

Adding the custom login module:

The container server uses the same KeyStoreAuthenticator implementation as the
catalog server. The KeyStoreAuthenticator implementation uses a KeyStoreLogin
login module alias, so you must add a custom login module to the application
login model entries.
1. In the WebSphere Application Server administrative console, click Security >

Global security > Java Authentication and Authorization Service.
2. Click Application logins.
3. Click New, add an alias KeyStoreLogin. Click Apply.
4. Under JAAS login modules, click New.
5. Enter

com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule
as the module class name, and choose SUFFICIENT as the authentication
strategy. Click Apply.

6. Add the keyStoreFile custom property with value samples_home/
security_extauth/sampleKS.jks.

7. Optional: Add the debug custom property with value true.
8. Save the configuration.

Lesson checkpoint:

Now the WebSphere eXtreme Scale server authentication is secured. By configuring
this security, all the applications that try to connect to the WebSphere eXtreme
Scale servers are required to provide a credential. In this tutorial, the
KeyStoreLoginAuthenticator is the authenticator. As a result, the client is required
to provide a user name and password.

Lesson 2.4: Install and run the sample
After authentication is configured, you can install and run the sample application.

Creating a shared library for the EmployeeData.jar file:

1. In the WebSphere Application Server administrative console, open the Shared
Libraries page. Click Environment > Shared libraries.

2. Choose the cell scope.
3. Create the shared library. Click New. Enter EmployeeManagementLIB as the

Name. Enter the path to the EmployeeData.jar in the classpath, for example,
samples_home/WASSecurity/EmployeeData.jar.

4. Click Apply.

Installing the sample:

416 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

1. Install the EmployeeManagement_extauth.ear file under the samples_home/
security_extauth directory.

Important: The EmployeeManagement_extauth.ear file is different from the
samples_home/WASSecurity/EmployeeManagement.ear file. The manner in which
the ObjectGrid session is retrieved has been updated to use the credential that
is cached in the client property file in the EmployeeManagement_extauth.ear
application. See the comments in the
com.ibm.websphere.sample.xs.DataAccessor class in the samples_home/
WASSecurity/EmployeeManagementWeb project to see the code that was updated
for this change.
a. To begin the installation, click Applications > New application > New

Enterprise Application. Choose the detailed path for installing the
application.

b. On the Map modules to servers step, specify the appCluster cluster to
install the EmployeeManagementWeb module.

c. On the Map shared libraries step, select the EmployeeManagementWeb
module.

d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Map the webUser role to All Authenticated in Application's Realm.
f. Click OK.

The clients run in the s1 and s2 servers in this cluster.
2. Install the sample XSDeployment.ear file that is in the samples_home/WASSecurity

directory.
a. To begin the installation, click Applications > New application > New

Enterprise Application. Choose the detailed path for installing the
application.

b. On the Map modules to servers step, specify the xsCluster cluster to install
the XSDeploymentWeb web module.

c. On the Map shared libraries step, select the XSDeploymentWeb module.
d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Click OK.

The xs1 and xs2 servers in this cluster host the container servers.
3. Verify that the catalog server is started. For more information about starting a

catalog server for this tutorial, see “Start the catalog server with security
enabled” on page 414.

4. Restart the xsCluster cluster. When the xsCluster starts, the XSDeployment
application starts, and a container server is started on the xs1 and xs2 servers
respectively. If you look at the SystemOut.log file of the xs1 and xs2 servers, the
following message that indicates the server properties file is loaded is
displayed:
CWOBJ0913I: Server property files have been loaded:
samples_home/security_extauth/server3.props.

5. Restart the appClusters cluster. When the cluster appCluster starts, the
EmployeeManagement application also starts. If you look at the SystemOut.log
file of the s1 and s2 servers, you can see the following message that indicates
that the client properties file is loaded.
CWOBJ0924I: The client property file {0} has been loaded.

If you are using WebSphere eXtreme Scale Version 7.0, the English-only
CWOBJ9000I message displays to indicate that the client property file has been

Chapter 9. Securing the deployment environment 417

loaded. If you do not see the expected message, verify that you configured the
-Dobjectgrid.server.props or -Dobjectgrid.client.props property in the JVM
argument. If you do have the properties configured, make sure the dash (-) is a
UTF character.

Running the sample application:

1. Run the management.jsp file. In a web browser, access http://
<your_servername>:<port>/EmployeeManagementWeb/management.jsp. For
example, you might use the following URL: http://localhost:9080/
EmployeeManagementWeb/management.jsp.

2. Provide authentication to the application. Enter the credentials of the user that
you mapped to the webUser role. By default, this user role is mapped to all
authenticated users. Type any valid user name and password, such as the
administrative user name and password. A page to display, add, update, and
delete employees displays.

3. Display employees. Click Display an Employee. Enter emp1@acme.com as the
email address, and click Submit. A message displays that the employee cannot
be found.

4. Add an employee. click Add an Employee. Enter emp1@acme.com as the email
address, enter Joe as the first name, and Doe as the last name. Click Submit. A
message displays that an employee with the emp1@acme.com address has been
added.

5. Display the new employee. Click Display an Employee. Enter emp1@acme.com
as the email address with empty fields for the first and last names, and click
Submit. A message displays that the employee has been found, and the correct
names are displayed in the first name and last name fields.

6. Delete the employee. Click Delete an employee. Enter emp1@acme.com and click
Submit. A message is displayed that the employee has been deleted.

Because the catalog server transport type is set to TCP/IP, verify that the server s1
and s2 outbound transport setting is not set to SSL-Required. Otherwise, an
exception occurs. If you look at the system out file of the catalog server,
logs/cs1/SystemOut.log file, the following debug output to indicates the key store
authentication:
SystemOut O [KeyStoreLoginModule] initialize: Successfully loaded key store
SystemOut O [KeyStoreLoginModule] login: entry
SystemOut O [KeyStoreLoginModule] login: user entered user name: manager
SystemOut O Print out the certificates:
...

Lesson checkpoint:

You installed and ran the sample application.

Module 3: Configure transport security
Configure transport security to secure data transfer between the clients and servers
in the configuration.

In the previous module in the tutorial, you enabled WebSphere eXtreme Scale
authentication. With authentication, any application that tries to connect to the
WebSphere eXtreme Scale server is required to provide a credential. Therefore, no
unauthenticated client can connect to the WebSphere eXtreme Scale server. The
clients must be an authenticated application that is running in a WebSphere
Application Server cell.

418 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

With the configuration up to this module, the data transfer between the clients in
the appCluster cluster and servers in the xsCluster cluster is not encrypted. This
configuration might be acceptable if your WebSphere Application Server clusters
are installed on servers behind a firewall. However, in some scenarios,
non-encrypted traffic is not accepted for some reasons even though the topology is
protected by firewall. For example, a government policy might enforce encrypted
traffic. WebSphere eXtreme Scale supports Transport Layer Security/Secure Sockets
Layer (TLS/SSL) for secure communication between ObjectGrid endpoints, which
include client servers, container servers, and catalog servers.

In this sample deployment, the eXtreme Scale clients and container servers are all
running in the WebSphere Application Server environment. Client or server
properties are not necessary to configure the SSL settings because the eXtreme
Scale transport security is managed by the Application Server Common Secure
Interoperability Protocol Version 2 (CSIV2) transport settings. WebSphere eXtreme
Scale servers use the same Object Request Broker (ORB) instance as the application
servers in which they run. Specify all the SSL settings for client and container
servers in the WebSphere Application Server configuration using these CSIv2
transport settings. You must configure the SSL properties in the server properties
file for the catalog server.

Learning objectives

After completing the lessons in this module, you know how to:
v Configure CSIv2 inbound and outbound transport.
v Add SSL properties to the catalog server properties file.
v Check the ORB properties file.
v Run the sample.

Time required

This module takes approximately 60 minutes.

Prerequisites

This step of the tutorial builds upon the previous modules. Complete the previous
modules in this tutorial before you configure transport security.

Lesson 3.1: Configure CSIv2 inbound and outbound transport
To configure Transport Layer Security/Secure Sockets Layer (TLS/SSL) for the
server transport, set the Common Secure Interoperability Protocol Version 2
(CSIv2) inbound transport and CSIv2 outbound transport to SSL-Required for all
the WebSphere Application Server servers that host clients, catalog servers, and
container servers.

In the tutorial example topology, you must set these properties for the, s1, s2, xs1,
and xs2 application servers. The following steps configure the inbound and
outbound transports for all the servers in the configuration.

Set the inbound and outbound transports in the administrative console. Make sure
that administrative security is enabled.
v WebSphere Application Server Version 6.1: Click Security > Secure

Administration > Application.. > RMI/IIOP Security and change the transport
type to SSL-Required.

Chapter 9. Securing the deployment environment 419

v WebSphere Application Server Version 7.0: Click Security > Global Security >
RMI/IIOP Security > CSIv2 inbound communications. Change the transport
type under the CSIv2 Transport Layer to SSL-Required. Repeat this step to
configure CSIv2 outbound communications.

You can use centrally managed endpoint security settings, or you can configure
SSL repositories. See Common Secure Interoperability Version 2 transport inbound
settings for more information.

Lesson 3.2: Add SSL properties to the catalog server properties
file
The catalog server is running outside of WebSphere Application Server, so you
must configure the SSL properties in the server properties file.

The other reason to configure the SSL properties in the server properties file is
because the catalog server has its own proprietary transport paths that cannot be
managed by the WebSphere Application Server Common Secure Interoperability
Protocol Version 2 (CSIV2) transport settings. Therefore, you must configure the
Secure Sockets Layer (SSL) properties in the server properties file for the catalog
server.

SSL properties in the catServer3.props file:
alias=default
contextProvider=IBMJSSE2
protocol=SSL
keyStoreType=PKCS12
keyStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment_manager_name>/config/cells/<cell_name>/nodes/
<node_name>/key.p12
keyStorePassword=WebAS
trustStoreType=PKCS12
trustStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment_manager_name>/config/cells/<cell_name>/nodes/
<node_name>/trust.p12
trustStorePassword=WebAS
clientAuthentication=false

The catServer3.props file is using the default WebSphere Application Server node
level keystore and truststore. If you are deploying a more complex deployment
environment, you must choose the correct keystore and truststore. In some cases,
you must create a keystore and truststore and import the keys from keystores from
the other servers. Notice that the WebAS string is the default password of the
WebSphere Application Server keystore and truststore. See Default self-signed
certificate configuration for more details.

These entries are already included in the samples_home/security_extauth/
catServer3.props file as comments. You can uncomment the entries and make the
appropriate updates for your installation to the was_root,
<deployment_manager_name>, <cell_name>, and <node_name> variables.

After configuring the SSL properties, change the transportType property value
from TCP/IP to SSL-Required.

SSL properties in the client3.props file:

You must also configure the SSL properties in the client3.props file because this
file is used when you stop the catalog server that is running outside of WebSphere
Application Server.

420 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=usecinboundconn
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=usecinboundconn
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/csec_ssldefselfsigncertconf.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/csec_ssldefselfsigncertconf.html

These properties have no effect on the client servers that are running in WebSphere
Application Server because they are using the WebSphere Application Server
Common Security Interoperability Protocol Version 2 (CSIV2) transport settings.
However, when you stop the catalog server you must provide a client properties
file on the stopOgServer command. Set the following properties in the
<SAMPLES_HOME>/security_extauth/client3.props file to match the values
specified above in the catServer3.props file:
#contextProvider=IBMJSSE2
#protocol=SSL
#keyStoreType=PKCS12
#keyStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment_manager_name>/config/cells/<cell_name>/nodes/
<node_name>/key.p12
#keyStorePassword=WebAS
#trustStoreType=PKCS12
#trustStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment_manager_name>/config/cells/<cell_name>/nodes/
<node_name>/trust.p12
#trustStorePassword=WebAS

As with the catServer3.props file, you can use the comments that are already
provided in the samples_home/security_extauth/client3.props file with
appropriate updates to was_root, <deployment_manager_name>, <cell_name>, and
<node_name> variables to match your environment.

Lesson checkpoint:

You configured the SSL properties for the catalog server.

Lesson 3.3: Check the orb.properties file
With WebSphere eXtreme Scale Version 7.0 or earlier, you must verify that the
Secure Sockets Layer (SSL) works correctly between WebSphere Application Server
and WebSphere eXtreme Scale servers. You must edit the orb.properties file in the
JAVA_HOME/jre/lib directory must contain the specific properties.

If you are using WebSphere eXtreme Scale Version 7.1 or later, changing the
orb.properties file is not necessary. The attributes are automatically added at run
time if they are not present in the orb.properties file.

orb.properties file:

The following lines in bold text are not in the default orb.properties file in the
Java Development Kit that is shipped by WebSphere Application Server. Add these
lines to your orb.properties file:

IBM JDK properties
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
javax.rmi.CORBA.PortableRemoteObjectClass=com.ibm.rmi.javax.rmi.PortableRemoteObject
javax.rmi.CORBA.UtilClass=com.ibm.ws.orb.WSUtilDelegateImpl

WS Plugins
com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.WSTransport
com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.WSORBPropertyManager
com.ibm.CORBA.ORBPluginClass.com.ibm.ISecurityUtilityImpl.SecurityPropertyManager
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.objectgrid.corba.ObjectGridInitializer

WS ORB & Plugins properties
com.ibm.ws.orb.transport.ConnectionInterceptorName=com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor
com.ibm.ws.orb.transport.WSSSLClientSocketFactoryName=com.ibm.ws.security.orbssl.WSSSLClientSocketFactoryImpl
com.ibm.CORBA.enableLocateRequest=true
com.ibm.CORBA.ORBCharEncoding=UTF8
com.ibm.CORBA.ForceTunnel=never

Chapter 9. Securing the deployment environment 421

com.ibm.CORBA.TransportMode=Pluggable
com.ibm.CORBA.ServerName=ogserver
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityComponentFactory

Lesson checkpoint:

For your WebSphere eXtreme Scale Version 7.0 or earlier configuration, you edited
the orb.properties file to contain the necessary properties.

Lesson 3.4: Run the sample
Restart all the servers and run the sample application again. You should be able to
run through the steps without any problems.

See “Lesson 2.4: Install and run the sample” on page 416 for more information
about running and installing the sample application.

Module 4: Use Java Authentication and Authorization Service
(JAAS) authorization in WebSphere Application Server

Now that you have configured authentication for clients, you can further configure
authorization to give different users varying permissions. For example, an
"operator" user might only be able to view data, while a "manager" user can
perform all operations.

After authenticating a client, as in the previous module in this tutorial, you can
give security privileges through eXtreme Scale authorization mechanisms. The
previous module of this tutorial demonstrated how to enable authentication for a
data grid using integration with WebSphere Application Server. As a result, no
unauthenticated client can connect to the eXtreme Scale servers or submit requests
to your system. However, every authenticated client has the same permission or
privileges to the server, such as reading, writing, or deleting data that is stored in
the ObjectGrid maps. Clients can also issue any type of query.

This part of the tutorial demonstrates how to use eXtreme Scale authorization to
give authenticated users varying privileges. WebSphere eXtreme Scale uses a
permission-based authorization mechanism. You can assign different permission
categories that are represented by different permission classes. This module
features the MapPermission class. For a list of all possible permissions, see the
client authorization reference in the Programming Guide.

In WebSphere eXtreme Scale, the
com.ibm.websphere.objectgrid.security.MapPermission class represents
permissions to the eXtreme Scale resources, specifically the methods of the
ObjectMap or JavaMap interfaces. WebSphere eXtreme Scale defines the following
permission strings to access the methods of ObjectMap and JavaMap:
v read: Grants permission to read the data from the map.
v write: Grants permission to update the data in the map.
v insert: Grants permission to insert the data into the map.
v remove: Grants permission to remove the data from the map.
v invalidate: Grants permission to invalidate the data from the map.
v all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when an eXtreme Scale client uses a data access API,
such as the ObjectMap ,JavaMap, or EntityManager APIs. The eXtreme Scale
runtime checks corresponding map permissions when the method is called. If the
required permissions are not granted to the client, an AccessControlException

422 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

exception results. This tutorial demonstrates how to use Java Authentication and
Authorization Service (JAAS) authorization to grant authorization map access for
different users.

Learning objectives

After completing the lessons in this module, you know how to:
v Enable authorization for WebSphere eXtreme Scale.
v Enable user-based authorization.

Time required

This module takes approximately 60 minutes.

Lession 4.1: Enable WebSphere eXtreme Scale authorization
To enable authorization in WebSphere eXtreme Scale, you must enable security on
a specific ObjectGrid.

To enable authorization on the ObjectGrid, you must set the securityEnabled
attribute to true for that particular ObjectGrid in the XML file. For this tutorial, you
can either use the XSDeployment_sec.ear file from the samples_home/WASSecurity
directory, which has already has security set in the objectGrid.xml file, or you can
edit the existing objectGrid.xml file to enable security. This lesson demonstrates
how to edit the file to enable security.
1. Optional: Extract the files in the XSDeployment.ear file, and then unzip the

XSDeploymentWeb.war file.
2. Optional: Open the objectGrid.xml file and set the securityEnabled attribute to

true on the ObjectGrid level. See an example of this attribute in the following
example:
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15" securityEnabled="true">

<backingMap name="Map1" />
</objectGrid>

</objectGrids>

</objectGridConfig>

If you have multiple ObjectGrids defined, then you must set this attribute on
each grid.

3. Optional: Repackage the XSDeploymentWeb.war and XSDeployment.ear files to
include your changes.

4. Required: Uninstall the XSDeployment.ear file and then install the updated
XSDeployment.ear. You can either use the file you modified in the previous
steps, or you can install the XSDeployment_sec.ear file that is provided in the
samples_home/WASSecurity directory. See “Lesson 2.4: Install and run the
sample” on page 416 for more information about installing the application.

5. Restart all of the application servers to enable WebSphere eXtreme Scale
authorization.

Lesson checkpoint:

Chapter 9. Securing the deployment environment 423

You enabled security on the ObjectGrid, which also enables authorization on the
data grid.

Lesson 4.2: Enable user-based authorization
In the authentication module of this tutorial, you created two users: operator and
manager. You can assign varying permissions to these users with Java
Authentication and Authorization Service (JAAS) authorization.

Defining the Java Authentication and Authorization Service (JAAS)
authorization policy using user principals:

You can assign permissions to the users that you previously created. Assign the
operator user only read permissions to all maps. Assign the manager user all
permissions. Use the JAAS authorization policy file to grant permissions to
principals.

Edit the JAAS authorization file. The xsAuth3.policy file is in the
samples_home/security_extauth directory.
grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"

principal javax.security.auth.x500.X500Principal
"CN=operator,O=acme,OU=OGSample" {
permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "read";

};

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"
principal javax.security.auth.x500.X500Principal
"CN=manager,O=acme,OU=OGSample" {
permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Map1", "all";

};

In this file, the http://www.ibm.com/com/ibm/ws/objectgrid/security/
PrivilegedAction codebase is a specially reserved URL for ObjectGrid. All
ObjectGrid permissions that are granted to principals should use this special code
base. The following permissions are assigned in this file:
v The first grant statement grants read map permission to the

"CN=operator,O=acme,OU=OGSample" principal. The
"CN=operator,O=acme,OU=OGSample" user has only map read permission to the
Map1 map the Grid ObjectGrid instance.

v The second grant statement grants all map permission to the
"CN=manager,O=acme,OU=OGSample" principal. The
"CN=manager,O=acme,OU=OGSample" user has all permissions to the Map1 map in
the Grid ObjectGrid instance.

Setting the JAAS authorization policy file using JVM properties:

Use the following steps to set JVM properties for the xs1 and xs2 servers, which
are in the xsCluster cluster. If you are using a topology that is different from the
sample topology that is used in this tutorial, set the file on all of your container
servers.
1. In the administrative console, click Servers > Application servers >

server_name > Java and process management > Process definition > Java
virtual machine.

2. Add the following generic JVM arguments:
-Djava.security.auth.policy=samples_home/security_extauth/xsAuth3.policy

3. Click OK and save your changes.

Running the sample application to test authorization:

424 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can use the sample application to test the authorization settings. The manager
user continues to have all permissions in the Map1 map, including displaying and
adding employees. The operator user should only be able to view employees
because that user was assigned read permission only.
1. Restart all of the application servers that are running container servers. For this

tutorial, restart the xs1 and xs2 servers.
2. Open the EmployeeManagementWeb application. In a web browser, open

http://<host>:<port>/EmployeeManagermentWeb/management.jsp.
3. Log in to the application using any valid user name and password.
4. Attempt to display an employee. Click Display an Employee and search for

the authemp1@acme.com email address. A message displays that the user cannot
be found.

5. Add an employee. Click Add an Employee. Add the email authemp1@acme.com,
the first name Joe, and the last name Doe. Click Submit. A message displays
that the employee has been added.

6. Edit the samples_home/security_extauth/client3.props file. Change the value
of credentialGeneratorProps property from manager manager1 to operator
operator1. After you edit the file, the servlet uses user name "operator" and
password "operator1" to authenticate to the WebSphere eXtreme Scale servers.

7. Restart the appCluster cluster to pick up the changes in the
samples_home/security_extauth/client3.props file.

8. Attempt to display an employee. Click Display an Employee and search for
the authemp1@acme.com email address. The employee is displayed.

9. Add an employee. Click Add an Employee. Add the email authemp2@acme.com,
the first name Joe, and the last name Doe. Click Submit. The following
message displays:
An exception occurs when Add the employee. See below for detailed exception messages.

The detailed exception text follows:
java.security.AccessControlException: Access denied
(com.ibm.websphere.objectgrid.security.MapPermission Grid.Map1 insert)

This message displays because the operator user does not have permission to
insert data into the Map1 map.

If you are running with a version of WebSphere Application Server that is earlier
than Version 7.0.0.11, you might see a java.lang.StackOverflowError error on the
container server. This error is caused by a problem with the IBM Developer Kit.
The problem is fixed in the IBM Developer Kit that is shipped with WebSphere
Application Server Version 7.0.0.11 and later.

Lesson checkpoint:

In this lesson, you configured authorization by assigning permissions to specific
users.

Module 5: Use the xsadmin tool to monitor data grids and
maps

You can use the xsadmin tool to show the primary data grids and map sizes of the
Grid data grid. The xsadmin tool uses the MBean to query all of the data grid
artifacts, such as primary shards, replica shards, container servers, map sizes, and
other data.

Chapter 9. Securing the deployment environment 425

In this tutorial, the catalog server is running as a stand-alone Java SE server. The
container servers are running in WebSphere Application Server application servers.

For the catalog server, a MBean server is created in the stand-alone Java virtual
machine (JVM). When you use the xsadmin tool on the catalog server, WebSphere
eXtreme Scale security is used.

For the container servers, the WebSphere eXtreme Scale run time registers the
Managed Beans (MBean) with the MBean server that is created by the WebSphere
Application Server run time. The security that is used by the xsadmin tool is
provided by the WebSphere Application Server MBean security.
1. Using a command-line tool, open the DMGR_PROFILE/bin directory.
2. Run the xsadmin tool. Use the -primaries parameter as in the following

examples:

Linux UNIX

./xsadmin.sh -g Grid -m mapSet -primaries -username manager -password manager1 -p 16099

Windows

xsadmin.bat -g Grid -m mapSet -primaries -username manager -password manager1 -p 16099

The user name and password are passed to the catalog server for
authentication.

3. View the command results.
*** Showing all primaries for grid - Grid & mapset - mapSet
Partition Container Host Server
0 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
1 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
2 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
3 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2
4 myCell02\myNode04\xs2_C-1 myhost.mycompany.com myCell02\myNode04\xs2

4. Run the xsadmin tool. Use the -mapsizes parameter as in the following
examples:

Linux UNIX

./xsadmin.sh -g Grid -m mapSet -mapsizes -username manager -password manager1 -p 16099

Windows

xsadmin.bat -g Grid -m mapSet -mapsizes -username manager -password manager1 -p 16099

The user name and password are passed to the catalog server for
authentication. After you run the command, you are prompted for the
WebSphere Application Server user ID and password to authenticate to
WebSphere Application Server. You must provide this login information
because the -mapsizes option gets the map size from each container server,
which requires the WebSphere Application Server security.

5. View the command results.
************Displaying Results for Grid - Grid, MapSet - mapSet**************

*** Listing Maps for xddev15Cell02\xddev15Node04\xs1 ***
Map Name Partition Map Size Used Bytes (B) Shard Type
Map1 0 0 0 Primary
Map1 1 0 0 Primary
Map1 2 1 272 Primary
Map1 3 0 0 Primary
Map1 4 0 0 Primary
Server Total: 1 (272B)

426 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

6. Optional: You can change the PROFILE/properties/sas.client.props file to run
the command without the user ID and password being required. Change the
com.ibm.CORBA.loginSource property from prompt to properties and then
provide the user ID and password. An example of the properties in the
PROFILE/properties/sas.client.props file follows:
com.ibm.CORBA.loginSource=properties
RMI/IIOP user identity
com.ibm.CORBA.loginUserid=Admin
com.ibm.CORBA.loginPassword=xxxxxx

7. Optional: If you are using the xsadmin command on a WebSphere eXtreme
Scale stand-alone installation, then you must add the following options to
indicate the truststore, truststore type, and truststore password.
-trustStore
-trustStoreType
-trustStorePassword

You can also set up a properties file to contain these parameters. See “xsadmin
utility reference” on page 474 for more information.

Lesson checkpoint
You used the xsadmin tool to monitor data grids and maps in your configuration.

Security integration with WebSphere Application Server
When WebSphere eXtreme Scale is deployed in a WebSphere Application Server
environment, you can simplify the authentication flow and transport layer security
configuration from WebSphere Application Server.

Simplified authentication flow

When eXtreme Scale clients and servers are running in WebSphere Application
Server and in the same security domain, you can use the WebSphere Application
Server security infrastructure to propagate the client authentication credentials to
the eXtreme Scale server. For example, if a servlet acts as an eXtreme Scale client to
connect to an eXtreme Scale server in the same security domain, and the servlet is
already authenticated, it is possible to propagate the authentication token from the
client (servlet) to the server, and then use the WebSphere Application Server
security infrastructure to convert the authentication token back to the client
credentials.

Chapter 9. Securing the deployment environment 427

In the previous diagram, the application servers are in the same security domain.
One application server hosts the web application, which is also an eXtreme Scale
client. The other application server hosts the container server. The deployment
manager or node agent Java virtual machine (JVM) hosts the catalog service. The
arrows in the diagram indicate how the authentication process flows:
1. An enterprise application user uses a Web browser to log in to the first

application server with a user name and password.
2. The first application server sends the client user name and password to the

WebSphere Application Server security infrastructure to authenticate with the
user registry. For example, this user registry might be an LDAP server. As a
result, the security information is stored in the application server thread.

3. The JavaServer Pages (JSP) file acts as an eXtreme Scale client to retrieve the
security information from the server thread. The JSP file calls the WebSphere

Client
Browser

Application server JVM

Application module

WebSphere
Application Server

security infrastructure

Application server JVM

Application module

Servlet

Deployment manager / Node

agent/ Application server

JVM

eXtreme Scale

Client

Object Grid container

Catalog service

1

2 3

4

4

5

5

Common security domain

WebSphere
Application Server

security infrastructure

WebSphere
Application Server

security infrastructure

Figure 31. Authentication flow for servers within the same security domain

428 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Application Server security infrastructure to get the security tokens that
represent the enterprise application user.

4. The eXtreme Scale client, or JSP file, sends the security tokens with the request
to the container server and catalog service that is hosted in the other JVMs. The
catalog server and container server use the WebSphere Application Server
security tokens as an eXtreme Scale client credential.

5. The catalog and container servers send the security tokens to the WebSphere
Application Server security infrastructure to convert the security tokens into
user security information. This user security information is represented by a
Subject object, which contains the principals, public credentials, and private
credentials. This conversion can occur because the application servers that are
hosting the eXtreme Scale client, catalog server, and container server are
sharing the same WebSphere Application Server Lightweight Third-Party
Authentication (LTPA) tokens.

Authentication integration

Distributed security integration with WebSphere Application Server:

For the distributed model, use the following classes:
v

com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredentialGenerator
v com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator
v com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredential

For examples on how to use these classes, see “Tutorial: Integrate WebSphere
eXtreme Scale security with WebSphere Application Server” on page 381.

On the server side, use the WSTokenAuthentication authenticator to authenticate
the WSTokenCredential object.

Local security integration with WebSphere Application Server:

For the local ObjectGrid model, use the following classes:
v com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectSourceImpl
v com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectValidationImpl

For more information about these classes, see the information about local security
in the Programming Guide. You can configure the WSSubjectSourceImpl class as the
SubjectSource plug-in, and the WSSubjectValidationImpl class as the
SubjectValidation plug-in.

Transport layer security support in WebSphere Application
Server

When an eXtreme Scale client, container server, or catalog server is running in a
WebSphere Application Server process, eXtreme Scale transport security is
managed by the WebSphere Application Server CSIV2 transport settings. For the
eXtreme Scale client or container server, you should not use eXtreme Scale client or
server properties to configure the SSL settings. All the SSL settings should be
specified in the WebSphere Application Server configuration.

However, the catalog server is a little different. The catalog server has its own
proprietary transport paths which cannot managed by the WebSphere Application

Chapter 9. Securing the deployment environment 429

Server CSIV2 transport settings. Therefore, the SSL properties still need to be
configured in the server properties file for the catalog server. See “Tutorial:
Integrate WebSphere eXtreme Scale security with WebSphere Application Server”
on page 381 for more information.

Enabling local security
WebSphere eXtreme Scale provides several security endpoints to integrate custom
mechanisms. In the local programming model, the main security function is
authorization, and has no authentication support. You must authenticate
independently from the already existing WebSphere Application Server
authentication. However, you can use the provided plug-ins to obtain and validate
Subject objects.

About this task

You can enable local security with the ObjectGrid XML descriptor file or
programmatically.

Procedure
v Enable local security with the ObjectGrid XML descriptor XML file.

The secure-objectgrid-definition.xml file that is used in the ObjectGridSample
enterprise application sample is shown in the following example. Set the
securityEnabled attribute to true to enable security.
<objectGrids>

<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">

...
</objectGrids>

v Enable local security programmatically.
To create an ObjectGrid using the ObjectGrid.setSecurityEnabled method, call the
following method on the ObjectGrid interface:
/**
* Enable the ObjectGrid security
*/
void setSecurityEnabled();

What to do next

Start the container and catalog servers with security enabled.

Starting and stopping secure servers
Security is enabled by specifying security-specific configurations when you start
and stop servers.

Starting secure servers in a stand-alone environment
To start secure stand-alone servers, you pass the proper configuration files by
specifying parameters on the startOgServer command.

Before you begin

7.1.0.3+ If you are using an external client security provider for authentication or
authorization, define the CLIENT_AUTH_LIB environment variable. Open a
command-line or terminal window and run the command that is appropriate for
your operating system:

v Windows

430 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

set CLIENT_AUTH_LIB=<path_to_security_JAR_or_classes>

v UNIX

set CLIENT_AUTH_LIB=<path_to_security_JAR_or_classes>
export CLIENT_AUTH_LIB

When the startOgServer and stopOgServer commands run, this variable is
appended to the classpath.

Procedure
v Start secure container servers.

Starting a secure container server requires the following security configuration
file:
– Server property file: The server property file configures the security

properties specific to the server. Refer to the “Server properties file” on page
199 for more details.

Specify the location of this configuration file by providing the following
argument to the startOgServer script:

-serverProps
Specifies the location of the server property file, which contains the
server-specific security properties. The file name specified for this
property is in plain file path format, such as ../security/
server.properties.

v Start secure catalog servers.
To start a secure catalog service, you must have the following configuration files:
– Security descriptor XML file: The security descriptor XML file describes the

security properties common to all servers, including catalog servers and
container servers. One property example is the authenticator configuration
which represents the user registry and authentication mechanism.

– Server property file: The server property file configures the security
properties that are specific to the server.

Specify the location of these configuration files by providing the following
arguments to the startOgServer script:

-clusterSecurityFile and -clusterSecurityUrl
These arguments specify the location of the Security descriptor XML file.
Use the -clusterSecurityFile parameter to specify a local file, or the
-clusterSecurityUrl parameter to specify the URL of the
objectGridSecurity.xml file.

-serverProps
Specifies the location of the server property file, which contains the
server-specific security properties. The file name specified for this
property is in plain file path format, such as c:/tmp/og/
catalogserver.props.

Stopping secure servers
Stopping a secure catalog servers or container servers requires one security
configuration file.

Procedure

Stop a secure catalog server or container server.
Stopping a secure server requires the following security configuration file:

Chapter 9. Securing the deployment environment 431

v Client property file: The client property file can be used to configure the client
security properties. The client security properties are required for a client to
connect to a secure server. Refer to the “Client properties file” on page 245 for
more details.

Specify the location of these configuration files by providing the following
argument to the stopOgServer script:

-clientSecurityFile
Specifies the path to the client properties file that defines security
properties for the client. The file name that you specify for this property is
in plain file path format, such as ../security/
objectGridClient.properties.

Example
stopOgServer.bat|sh cs1 -catalogServiceEndPoints
cs1:MyServer1.company.com:6601:6602,
cs2:MyServer2.company.com:6601:6602,
cs3:MyServer3.company.com:6601:6602
-clientSecurityFile ../security/objectGridClient.properties

Starting secure servers in WebSphere Application Server
To start secure servers in WebSphere Application Server, you must specify the
security configuration files in the generic Java Virtual Machine (JVM) arguments.

Procedure
v Start a secure catalog service in WebSphere Application Server.

A catalog server contains two different levels of security information:
– -Dobjectgrid.cluster.security.xml.url: Specifies the location of the

objectGridSecurity.xml file, which describes the security properties common
to all servers, including catalog servers and container servers. An example of
the defined security properties is the authenticator configuration, which
represents the user registry and authentication mechanism. The file name
specified for this property should be in an URL format, such as
file:///tmp/og/objectGridSecurity.xml.

– -Dobjectgrid.server.props: Specifies the server property file that contains
the server-specific security properties. The file name specified for this
property is in plain file path format, such as c:/tmp/og/catalogserver.props.

1. In the WebSphere Application Server administrative console, click System
administration. Click the process on which the catalog server is deployed,
such as the deployment manager.

2. Click Java and process management > Process definition > Java Virtual
Machine.

3. Type the properties in the Generic JVM arguments field. An example of the
values you might add follows:
-Dobjectgrid.cluster.security.xml.url=file:///tmp/og/objectGridSecurity.xml
-Dobjectgrid.server.props=/tmp/og/catalog.server.props

4. Click OK and save your changes.
v Start a secure container server in WebSphere Application Server.

A container server, when connecting to the catalog server, inherits the security
configuration that is in in the objectGridSecurity.xml file, such as the
authenticator configuration or login session timeout settings. You must also
define server-specific security properties for specific container servers in the
-Dobjectgrid.server.props property.

432 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The file name specified for this property is just in plain file path format, such as
c:/tmp/og/server.props.
Follow the same steps as above to add the security property to the generic JVM
arguments.
1. Open the Java virtual machine page for the server. In the WebSphere

Application Server administrative console, click Servers > Application
servers > server_name > Java and process management > Process definition
> Java Virtual Machine

2. Type the property in the Generic JVM arguments filed. An example of the
values you might add follows:
-Dobjectgrid.server.props=/opt/wxs/security/server2.props

3. Click OK and save your changes.

Data grid authentication
You can use the secure token manager plug-in to enable server-to-server
authentication, which requires you to implement the SecureTokenManager
interface.

The generateToken(Object) method takes an object protect, and then generates a
token that cannot be understood by others. The verifyTokens(byte[]) method does
the reverse process: it converts the token back to the original object.

A simple SecureTokenManager implementation uses a simple encoding algorithm,
such as a XOR algorithm, to encode the object in serialized form and then use
corresponding decoding algorithm to decode the token. This implementation is not
secure and is easy to break.

WebSphere eXtreme Scale default implementation

WebSphere eXtreme Scale provides an immediately available implementation for
this interface. This default implementation uses a key pair to sign and verify the
signature, and uses a secret key to encrypt the content. Every server has a JCKES
type keystore to store the key pair, a private key and public key, and a secret key.
The keystore has to be the JCKES type to store secret keys. These keys are used to
encrypt and sign or verify the secret string on the sending end. Also, the token is
associated with an expiration time. On the receiving end, the data is verified,
decrypted, and compared to the receiver secret string. Secure Sockets Layer (SSL)
communication protocols are not required between a pair of servers for
authentication because the private keys and public keys serve the same purpose.
However, if server communication is not encrypted, the data can be stolen by
looking at the communication. Because the token expires soon, the replay attack
threat is minimized. This possibility is significantly decreased if all servers are
deployed behind a firewall.

The disadvantage of this approach is that the WebSphere eXtreme Scale
administrators have to generate keys and transport them to all servers, which can
cause security breach during transportation.

Data grid security
Data grid security ensures that a joining server has the right credentials, so a
malicious server cannot join the data grid. Data grid security uses a shared secret
string mechanism.

Chapter 9. Securing the deployment environment 433

All WebSphere eXtreme Scale servers, including catalog servers, agree on a shared
secret string. When a server joins the data grid, it is challenged to present the
secret string. If the secret string of the joining server matches the string in the
president server or catalog server, the joining server is accepted. If the string does
not match, the join request is rejected.

Sending a clear text secret is not secure. The WebSphere eXtreme Scale security
infrastructure provides a secure token manager plug-in to allow the server to
secure this secret before sending. You must decide how to implement the secure
operation. WebSphere eXtreme Scale provides an out-of-the-box implementation, in
which the secure operation is implemented to encrypt and sign the secret.

The secret string is set in the server.properties file. See “Server properties file”
on page 199 for more information about the authenticationSecret property.

SecureTokenManager plug-in

A secure token manager plug-in is represented by the
com.ibm.websphere.objectgrid.security.plugins.SecureTokenManager interface.

For more information about the SecureTokenManager plug-in, see
SecureTokenManager API documentation.

The generateToken(Object) method takes an object, and then generates a token that
cannot be understood by others. The verifyTokens(byte[]) method does the reverse
process: the method converts the token back to the original object.

A simple SecureTokenManager implementation uses a simple encoding algorithm,
such as an exclusive or (XOR) algorithm, to encode the object in serialized form
and then use the corresponding decoding algorithm to decode the token. This
implementation is not secure.

WebSphere eXtreme Scale provides an immediately available implementation for
this interface.

The default implementation uses a key pair to sign and verify the signature, and
uses a secret key to encrypt the content. Every server has a JCKES type keystore to
store the key pair, a private key and public key, and a secret key. The keystore has
to be the JCKES type to store secret keys.

These keys are used to encrypt and sign or verify the secret string on the sending
end. Also, the token is associated with an expiration time. On the receiving end,
the data is verified, decrypted, and compared to the receiver secret string. Secure
Sockets Layer (SSL) communication protocols are not required between a pair of
servers for authentication because the private keys and public keys serve the same
purpose. However, if server communication is not encrypted, the data can be
stolen by looking at the communication. Because the token expires soon, the replay
attack threat is minimized. This possibility is significantly decreased if all servers
are deployed behind a firewall.

The disadvantage of this approach is that the WebSphere eXtreme Scale
administrators have to generate keys and transport them to all servers, which can
cause security breach during transportation.

434 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Sample scripts to create default secure token manager
properties

As noted in the previous section, you can create a keystore that contains a key pair
to sign and verify the signature and a secret key to encrypt the content.

For example, you can use the JDK 6 keytool command to create the keys as
follows:
keytool -genkeypair -alias keypair1 -keystore key1.jck -storetype JCEKS -keyalg
rsa -dname "CN=sample.ibm.com, OU=WebSphere eXtreme Scale" -storepass key111 -keypass
keypair1 -validity 10000

keytool -genseckey -alias seckey1 -keystore key1.jck -storetype JCEKS -keyalg
DES -storepass key111 -keypass seckey1 -validity 1000

These two commands create a key pair "keypair1" and a secret key "seckey1". You
can then configure the following in the server property file:
secureTokenKeyStore=key1.jck
secureTokenKeyStorePassword=key111
secureTokenKeyStoreType=JCEKS
secureTokenKeyPairAlias=keypair1
secureTokenKeyPairPassword=keypair1
secureTokenSecretKeyAlias=seckey1
secureTokenSecretKeyPassword=seckey1
secureTokenCipherAlgorithm=DES
secureTokenSignAlgorithm=RSA

Configuration

See Server properties for more information about the properties that you use to
configure the secure token manager.

Application client authentication
Application client authentication consists of enabling client-server security and
credential authentication, and configuring an authenticator and a system credential
generator.

Enabling client-server security

You must enable security on both the client and server to successfully authenticate
with the ObjectGrid.

Enable client security

WebSphere eXtreme Scale provides a client property sample file, the
sampleClient.properties file, in the was_root/optionalLibraries/ObjectGrid/
properties directory for a WebSphere Extended Deployment installation, or the
/ObjectGrid/properties directory in a mixed-server installation. You can modify
this template file with appropriate values. Set the securityEnabled property in the
objectgridClient.properties file to true. The securityEnabled property indicates
if security is enabled. When a client connects to a server, the value on the client
and server side must be set both true or both false. For example, if the connected
server security is enabled, the property value must be set to true on the client side
for the client to connect to the server.

The com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration
interface represents the security.ogclient.props file. You can use the
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory

Chapter 9. Securing the deployment environment 435

public API to create an instance of this interface with default values, or you can
create an instance by passing the ObjectGrid client security property file. The
security.ogclient.props file contains other properties. See the
ClientSecurityConfiguration API Documentation and
ClientSecurityConfigurationFactory API Documentation for more details.

Enabling server security

To enable the security on the server side, you can set the securityEnabled property
in the security.xml file to true. Use a security descriptor XML file to specify the
data grid security configuration to isolate the grid-wide security configuration from
the non-security configuration.

Enabling credential authentication

After the eXtreme Scale client retrieves the Credential object using the
CredentialGenerator object, the Credential object is sent along with the client
request to the eXtreme Scale server. The server authenticates the Credential object
before processing the request. If the Credential object is authenticated successfully,
a Subject object is returned to represent this Credential object. This Subject object is
then used for authorizing the request.

Set the credentialAuthentication property on the client and server properties files
to enable the credential authentication. For more information, see “Client
properties file” on page 245 and “Server properties file” on page 199.

The following table provides which authentication mechanism to use under
different settings.

Table 29. Credential authentication under client and server settings

Client credential authentication Server credential authentication Result

No Never Disabled

No Supported Disabled

No Required Error case

Supported Never Disabled

Supported Supported Enabled

Supported Required Enabled

Required Never Error case

Required Supported Enabled

Required Required Enabled

Configuring an authenticator

The eXtreme Scale server uses the Authenticator plug-in to authenticate the
Credential object. An implementation of the Authenticator interface gets the
Credential object and then authenticates it to a user registry, for example, a
Lightweight Directory Access Protocol (LDAP) server, and so on. eXtreme Scale
does not provide a registry configuration. Connecting to a user registry and
authenticating to it must be implemented in this plug-in.

For example, one Authenticator implementation extracts the user ID and password
from the credential, uses them to connect and validate to an LDAP server, and

436 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

creates a Subject object as a result of the authentication. The implementation can
use Java Authentication and Authorization Service (JAAS) login modules. A Subject
object is returned as a result of authentication.

You can configure the authenticator in the security descriptor XML file, as shown
in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/security ../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true"
loginSessionExpirationTime="300">

<authenticator className ="com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator">
</authenticator>

</security>

</securityConfig>

Use the -clusterSecurityFile option when starting a secure server to set the
security XML file. See the Java SE security tutorial in the Product Overview for more
information.

Configuring a system credential generator

The system credential generator is used to represent a factory for the system
credential. A system credential is similar to an administrator credential. You can
configure the SystemCredentialGenerator element in the catalog security XML, as
shown in the following example:
<systemCredentialGenerator className ="com.ibm.websphere.objectgrid.security.plugins.
builtins.UserPasswordCredentialGenerator">

<property name="properties" type="java.lang.String" value="manager manager1"
description="username password" />

</systemCredentialGenerator>

For demonstration purposes, the user name and password are stored in clear text.
Do not store the user name and password in clear text in a production
environment.

WebSphere eXtreme Scale provides a default system credential generator, which
uses the server credentials. If you do not explicitly specify the system credential
generator, this default system credential generator is used.

Application client authorization
Application client authorization consists of ObjectGrid permission classes,
authorization mechanisms, a permission checking period, and access by creator
only authorization.

For eXtreme Scale, authorization is based on the Subject object and permissions.
The product supports two kinds of authorization mechanisms: Java Authentication
and Authorization Service (JAAS) and custom authorization.

ObjectGrid permission classes

Authorization is based on permissions. There are four different types of permission
classes as follows.

Chapter 9. Securing the deployment environment 437

v The MapPermission class represents permissions to access the data in ObjectGrid
maps.

v The ObjectGridPermission class represents permissions to access ObjectGrid.
v The ServerMapPermission class represents permissions to access ObjectGrid

maps on the server side from a client.
v The AgentPermission class represents permissions to start an agent on the server

side.

For more information on APIs and associated permissions, see the topic on client
authorization programming in the Programming Guide.

Permission checking period

eXtreme Scale supports caching the map permission checking results for
performance reasons. Without this mechanism, when a method that is listed in the
listed in list of methods that for your particular permission class is called, the
runtime calls the configured authorization mechanism to authorize access. With
this permission checking period set, the authorization mechanism is called
periodically based on the permission checking period. For a list of methods for
each permission class, see the topic on client authorization programming in the
Programming Guide.

The permission authorization information is based on the Subject object. When a
client tries to access the methods, the eXtreme Scale runtime looks up the cache
based on the Subject object. If the object cannot be found in the cache, the runtime
checks the permissions granted for this Subject object, and then stores the
permissions in a cache.

The permission checking period must be defined before the ObjectGrid is
initialized. The permission checking period can be configured in two ways:

You can use the ObjectGrid XML file to define an ObjectGrid and set the
permission check period. In the following example, the permission check period is
set to 45 seconds:
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS"
permissionCheckPeriod="45">
<bean id="bean id="TransactionCallback"

className="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />
...
</objectGrids>

If you want to create an ObjectGrid with APIs, call the following method to set the
permission checking period. This method can be called only before the ObjectGrid
instance is initialized. This method applies only to the local eXtreme Scale
programming model when you instantiate the ObjectGrid instance directly.
/**
* This method takes a single parameter indicating how often you
* want to check the permission used to allow a client access. If the
* parameter is 0 then every single get/put/update/remove/evict call
* asks the authorization mechanism, either JAAS authorization or custom
* authorization, to check if the current subject has permission. This might be
* prohibitively expensive from a performance point of view depending on
* the authorization implementation, but if you need to have ever call check the
* authorization mechanism, then set the parameter to 0.
* Alternatively, if the parameter is > 0 then it indicates the number
* of seconds to cache a set of permissions before returning to
* the authorization mechanism to refresh them. This value provides much
* better performance, but if the back-end
* permissions are changed during this time then the ObjectGrid can
* allow or prevent access even though the back-end security
* provider was modified.

438 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

*
* @param period the permission check period in seconds.
*/
void setPermissionCheckPeriod(int period);

Access by creator only authorization

Access by creator only authorization ensures that only the user (represented by the
Principal objects associated with it) who inserts the entry into the ObjectGrid map
can access (read, update, invalidate and remove) that entry.

The existing ObjectGrid map authorization model is based on the access type but
not data entries. In other words, a user has a particular type of access, such as
read, write, insert, delete, or invalidate, to either all the data in the map or none of
the data. However, eXtreme Scale does not authorize users for individual data
entry. This feature offers a new way to authorize users to data entries.

In a scenario where different users access different sets of data, this model can be
useful. When the user loads data from the persistent store into the ObjectGrid
maps, the access can be authorized by the persistent store. In this case, there is no
need to do another authorization in the ObjectGrid map layer. You need only
ensure that the person who loads the data into the map can access it by enabling
the access by creator only feature.

Creator only mode attribute values:

disabled
The access by creator only feature is disabled.

complement
The access by creator only feature is enabled to complement the map
authorization. In other words, both map authorization and access by
creator only feature takes effect. Therefore, you can further limit the
operations to the data. For example, the creator cannot invalidate the data.

supersede
The access by creator only feature is enabled to supersede the map
authorization. In other words, the access by creator only feature supersedes
the map authorization; no map authorization occurs.

You can configure the access by creator only mode in two ways:

By XML file:

You can use the ObjectGrid XML file to define an ObjectGrid and set the access by
creator only mode to either disabled, complement, or supersede, as shown in the
following example:
<objectGrids>

<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
accessByCreatorOnlyMode="supersede"
<bean id="TransactionCallback"

classname="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />
...

</objectGrids>

Programmatically:

If you want to create an ObjectGrid programmatically, you can call the following
method to set the access by creator only mode. Calling this method applies only to
the local eXtreme Scale programming model when you directly instantiate the
ObjectGrid instance:

Chapter 9. Securing the deployment environment 439

/**
* Set the "access by creator only" mode.
* Enabling "access by creator only" mode ensures that only the user (represented
* by the Principals associated with it), who inserts the record into the map,
* can access (read, update, invalidate, and remove) the record.
* The "access by creator only" mode can be disabled, or can complement the
* ObjectGrid authorization model, or it can supersede the ObjectGrid
* authorization model. The default value is disabled:
* {@link SecurityConstants#ACCESS_BY_CREATOR_ONLY_DISABLED}.
* @see SecurityConstants#ACCESS_BY_CREATOR_ONLY_DISABLED
* @see SecurityConstants#ACCESS_BY_CREATOR_ONLY_COMPLEMENT
* @see SecurityConstants#ACCESS_BY_CREATOR_ONLY_SUPERSEDE
*
* @param accessByCreatorOnlyMode the access by creator mode.
*
* @since WAS XD 6.1 FIX3
*/
void setAccessByCreatorOnlyMode(int accessByCreatorOnlyMode);

To further illustrate, consider a scenario in which an ObjectGrid map account is in
a banking grid, and Manager1 and Employee1 are the two users. The eXtreme
Scale authorization policy grants all access permissions to Manager1, but only read
access permission to Employee1. The JAAS policy for the ObjectGrid map
authorization is shown the following example:
grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"

Principal com.acme.PrincipalImpl "Manager1" {
permission com.ibm.websphere.objectgrid.security.MapPermission

"banking.account", "all"
};
grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"

Principal com.acme.PrincipalImpl "Employee1" {
permission com.ibm.websphere.objectgrid.security.MapPermission

"banking.account", "read, insert"
};

Consider how the access by creator only feature affects authorization:
v disabled If the access by creator only feature is disabled, the map authorization

is no different. The user "Manager1" can access all the data in the "account" map.
The user "Employee1" can read and insert all the data in the map but cannot
update, invalidate, remove any data in the map.

v complement If the access by creator only feature is enabled with "complement"
option, both the map authorization and access by creator only authorization will
take effect. The user "Manager1" can access the data in the "account" map, but
only if the user alone loaded them into the map. The user "Employee1" can read
the data in the "account" map, but only if that user alone loaded them into the
map. (However, this user cannot update, invalidate, or remove any data in the
map.)

v supersede If the access by creator only feature is enabled with "supersede"
option, the map authorization will not be enforced. The access by creator only
authorization will be the only authorization policy. The user "Manager1" has the
same privilege as in the "complement" mode: this user can access the data in the
"account" map only if the same user loaded the data into the map. However, the
user "Employee1" now has full access to the data in the "account" map if this
user loaded them into the map. In other words, the authorization policy defined
in the Java Authentication and Authorization Service (JAAS) policy will then not
be enforced.

Transport layer security and secure sockets layer
WebSphere eXtreme Scale supports both TCP/IP and Transport Layer
Security/Secure Sockets Layer (TLS/SSL) for secure communication between
clients and servers.

440 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Enable TLS/SSL in both directions

TLS/SSL is sometimes enabled in one direction. For example, the server public
certificate is imported in the client truststore, but not the client public certificate is
not imported to the server truststore. However, WebSphere eXtreme Scale
extensively uses data grid agents. A characteristic of a data grid agent is when the
server sends responds back to the client, it creates a new connection. The eXtreme
Scale server then acts as a client. Therefore, you must import the client public
certificate into the server truststore.

Enable transport security for Sun JDK

WebSphere eXtreme Scale requires IBM Java Secure Sockets Extension (IBMJSSE) or
the IBM Java Secure Sockets Extension 2 (IBMJSSE2). The IBMJSSE and IBMJSSE2
providers contain a reference implementation supporting SSL and Transport Layer
Security (TLS) protocols and an application programming interface (API)
framework.

The Sun JDK does not ship the IBM JSSE and IBM JSSE2 providers, therefore
transport security cannot be enabled with a Sun JDK. In order to make this work, a
Sun JDK shipped with WebSphere Application Server is required. The WebSphere
Application Server shipped Sun JDK contains the IBM JSSE and IBM JSSE2
providers.

See “Configuring a custom Object Request Broker” on page 241 for information
about using a non-IBM JDK for WebSphere eXtreme Scale. If -Djava.endorsed.dirs
is configured, it points to both the objectgridRoot/lib/endorsed and the
JRE/lib/endorsed directories. The directory objectgridRoot/lib/endorsed is
required so the IBM ORB is used, and the directory JRE/lib/endorsed is required
to load the IBM JSSE and IBM JSSE2 providers.

Work with step 4 of the security tutorial in the Product Overview for information
about how to configure your required SSL properties, to create keystores and
truststores, and to start secure servers in WebSphere eXtreme Scale.

Configuring secure transport types
Transport layer security (TLS) provides secure communication between the client
and server. The communication mechanism that is used depends on the value of
the transportType parameter that is specified in the client and server configuration
files.

About this task

When Secure Sockets Layer (SSL) is used, the SSL configuration parameters must
be provided on both the client and server side. In a Java SE environment, the SSL
configuration is configured in the client or server property files. If the client or
server is in WebSphere Application Server, then you can use the existing
WebSphere Application Server CSIV2 transport settings for your container servers
and clients. See “Security integration with WebSphere Application Server” on page
427 for more information.

Chapter 9. Securing the deployment environment 441

Table 30. Transport protocol to use under client transport and server transport settings.

If the transportType settings are different between the client and server, the resulting protocol can vary or result in an
error.
Client transportType property Server transportType property Resulting protocol

TCP/IP TCP/IP TCP/IP

TCP/IP SSL-supported TCP/IP

TCP/IP SSL-required Error

SSL-supported TCP/IP TCP/IP

SSL-supported SSL-supported SSL (if SSL fails, then TCP/IP)

SSL-supported SSL-required SSL

SSL-required TCP/IP Error

SSL-required SSL-supported SSL

SSL-required SSL-required SSL

Procedure
1. To set the transportType property in the client security configuration, see

“Client properties file” on page 245.
2. To set the transportType property in the container and catalog server security

configuration, see “Server properties file” on page 199.

Configuring Secure Sockets Layer (SSL) parameters for
clients or servers

How you configure SSL parameters varies between clients and servers.

About this task

TLS/SSL is sometimes enabled in one direction. For example, the server public
certificate is imported in the client truststore, but not the client public certificate is
not imported to the server truststore. However, WebSphere eXtreme Scale
extensively uses data grid agents. A characteristic of a data grid agent is when the
server sends responds back to the client, it creates a new connection. The eXtreme
Scale server then acts as a client. Therefore, you must import the client public
certificate into the server truststore.

Procedure
v Configure client SSL parameters.

Use one of the following options to configure SSL parameters on the client:
– Create a com.ibm.websphere.objectgrid.security.config.SSLConfiguration object

by using the com.ibm.websphere.objectgrid.security.config.
ClientSecurityConfigurationFactory factory class.

– Configure the parameters in the client.properties file. You can then either
set the property file as a JVM client property or you can use the WebSphere
eXtreme Scale APIs. Pass the properties file into the
ClientSecurityConfigurationFactory.getClientSecurityConfiguration(String)
method for the client and use the returned object as a parameter to the
ObjectGridManager.connect(String, ClientSecurityConfiguration, URL)
method.

v Configure server SSL parameters. SSL parameters are configured for servers
using the server.properties file. To start a container or catalog server with a
specific property file, use the -serverProps parameter on the startOgServer

442 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

script. For more information about the SSL parameters you can set for eXtreme
Scale servers, see “Security server properties” on page 202.

Java Management Extensions (JMX) security
You can secure managed beans (MBean) invocations in a distributed environment.

For more information on the MBeans available, see “Administering
programmatically with Managed Beans (MBeans)” on page 374.

In the distributed deployment topology, MBeans are directly hosted in the catalog
servers and container servers. In general, JMX security in a distributed topology
follows the JMX security specification as specified in the Java Management
Extensions (JMX) Specification. It consists of the following three parts:
1. Authentication - The remote client needs to be authenticated in the connector

server.
2. Access control - MBean access control limits who can access the MBean

information and who can perform the MBean operations.
3. Secure transport - The transport between the JMX client and server can be

secured utilizing TLS/SSL.

Authentication

JMX provides methods for the connector servers to authenticate the remote clients.
For the RMI connector, authentication is completed by supplying an object that
implements the JMXAuthenticator interface when the connector server is created.
So eXtreme Scale implements this JMXAuthenticator interface to utilize the
ObjectGrid Authenticator plug-in to authenticate the remote clients. See the
security tutorial in the Product Overview for details on how eXtreme Scale
authenticates a client.

The JMX client follows the JMX APIs to provide credentials to connect to the
connector server. The JMX framework passes the credential to the connector server,
and then calls the JMXAuthenticator implementation for authentication. As
described previously, the JMXAuthenticator implementation then delegates the
authentication to the ObjectGrid Authenticator implementation.

Review the following example that describes how to connect to a connector server
with a credential:
javax.management.remote.JMXServiceURL jmxUrl = new JMXServiceURL(

"service:jmx:rmi:///jndi/rmi://localhost:1099/objectgrid/MBeanServer");

environment.put(JMXConnector.CREDENTIALS, new UserPasswordCredential("admin", "xxxxxx"));

// Create the JMXCconnectorServer
JMXConnector cntor = JMXConnectorFactory.newJMXConnector(jmxUrl, null);

// Connect and invoke an operation on the remote MBeanServer
cntor.connect(environment);

In the preceding example, a UserPasswordCredential object is provided with the
user ID set to admin and the password set to xxxxx. This UserPasswordCredential
object is set in the environment map, which is used in the
JMXConnector.connect(Map) method. This UserPasswordCredential object is then
passed to the server by the JMX framework, and finally passed to the ObjectGrid
authentication framework for authentication.

The client programming model strictly follows the JMX specification.

Chapter 9. Securing the deployment environment 443

Access control

A JMX MBean server might have access to sensitive information and might be able
to perform sensitive operations. JMX provides necessary access control that
identifies which clients can access that information and who can perform those
operations. The access control is built on the standard Java security model by
defining permissions that control access to the MBean server and its operations.

For JMX operation access control or authorization, eXtreme Scale relies on the
JAAS support provided by the JMX implementation. At any given point in the
execution of a program, there is a current set of permissions that a thread of
execution holds. When such a thread calls a JMX specification operation, these are
known as the held permissions. When a JMX operation is performed, a security
check is done to check whether the needed permission is implied by the held
permission.

The MBean policy definition follows the Java policy format. For example, the
following policy grants all signers and all code bases with the right to retrieve the
server JMX address for the PlacementServiceMBean, but with restriction to the
com.ibm.websphere.objectgrid domain.
grant {

permission javax.management.MBeanPermission
"com.ibm.websphere.objectgrid.management.PlacementServiceMBean#retrieveServerJMXAddress

[com.ibm.websphere.objectgrid:*,type=PlacementService]",
"invoke";

}

You can use the following policy example to complete authorization based on
remote client identity. The policy grants the same MBean permission as shown in
the preceding example, except only to users with X500Principal name as
CN=Administrator,OU=software,O=IBM,L=Rochester,ST=MN,C=US.
grant principal javax.security.auth.x500.X500Principal "CN=Administrator,OU=software,O=IBM,

L=Rochester,ST=MN,C=US" {permission javax.management.MBeanPermission
"com.ibm.websphere.objectgrid.management.PlacementServiceMBean#retrieveServerJMXAddress

[com.ibm.websphere.objectgrid:*,type=PlacementService]",
"invoke";

}

Java policies are checked only if the security manager is turned on. Start catalog
servers and container servers with the -Djava.security.manager JVM argument to
enforce the MBean operation access control.

Secure transport

The transport between the JMX client and server can be secured utilizing TLS/SSL.
If the transportType of catalog server or container server is set to SSL_Required or
SSL_Supported, then you have to use SSL to connect to the JMX server.

To use SSL, you need to configure the truststore, truststore type, and truststore
password on the MBean client using -D system properties:
1. -Djavax.net.ssl.trustStore=TRUST_STORE_LOCATION
2. -Djavax.net.ssl.trustStorePassword=TRUST_STORE_PASSWORD
3. -Djavax.net.ssl.trustStoreType=TRUST_STORE_TYPE

If you use com.ibm.websphere.ssl.protocol.SSLSocketFactory as your SSL socket
factory in your java_home/jre/lib/security/java.security file, then use the
following properties:
1. -Dcom.ibm.ssl.trustStore=TRUST_STORE_LOCATION

444 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

2. -Dcom.ibm.ssl.trustStorePassword=TRUST_STORE_PASSWORD
3. -Dcom.ibm.ssl.trustStoreType=TRUST_STORE_TYPE

To obtain this information when Transport Layer Security/Secure Sockets Layer
(TLS/SSL) is enabled, you must start the catalog and container servers with the
JMX service port set. To set the JMX service port, you can either use the
-JMXServicePort option on the startOgServer script or you can call the
setJMXServicePort method on the ServerProperties interface.

To enable JMX secure transport for the container server, you must set the JMX
service port. Setting the JMX service port is required when you are using Transport
Layer Security/Secure Sockets Layer (TLS/SSL) and you want to display container
server information from the catalog server. For example, the port is required when
you are using the -mapsizes option in the xsadmin tool. Use one of the following
methods to set the JMX service port:
v Use the -JMXServicePort option on the startOgServer script.
v If you are using an embedded server, call the setJMXServicePort method in the

ServerProperties interface to set the JMX service port.

You must use a different port number for each JVM in your configuration. If you
want to use JMX/RMI, explicitly specify the -JMXServicePort option and port
number, even if you want to use the default port value.

Security integration with external providers
To protect your data, the product can integrate with several security providers.

WebSphere eXtreme Scale can integrate with an external security implementation.
This external implementation must provide authentication and authorization
services for WebSphere eXtreme Scale. WebSphere eXtreme Scale has plug-in points
to integrate with a security implementation.WebSphere eXtreme Scale has been
successfully integrated with the following components:
v Lightweight Directory Access Protocol (LDAP)
v Kerberos
v ObjectGrid security
v Tivoli Access Manager
v Java Authentication and Authorization Service (JAAS)

eXtreme Scale uses the security provider for the following tasks:
v Authenticating clients to servers.
v Authorizing clients to access certain eXtreme Scale artifacts or to specify what

can be done with eXtreme Scale artifacts.

eXtreme Scale has the following types of authorizations:

Map authorization
Clients or groups can be authorized to perform insert, read, update, evict
or delete operations on maps.

ObjectGrid authorization
Clients or groups can be authorized to perform object or entity queries on
objectGrids.

Chapter 9. Securing the deployment environment 445

DataGrid agent authorization
Clients or groups can be authorized to allow DataGrid agents to be
deployed to an ObjectGrid.

Server-side map authorization
Clients or groups can be authorized to replicate a server map to client side
or create a dynamic index to the server map.

Administration authorization
Clients or groups can be authorized to perform administration tasks.

Note: If you had security already enabled for your back end , remember that these
security settings are no longer sufficient to protect your data. Security settings from
your database or other datastore does not in any way transfer to your cache. You
must separately protect the data that is now cached using the eXtreme Scale
security mechanism, including authentication, authorization, and transport level
security.

Restriction: Do not use a Development Kit or Runtime Environment at Version 1.6
and above when you are also using SSL Transport Layer security with a
stand-alone configuration of WebSphere eXtreme Scale Version 7.1 or 7.0. Version
1.6 and later does not support the WebSphere eXtreme Scale Version 7.1 application
programming interfaces. Use Version 1.5 or earlier for configurations requiring SSL
Transport security for stand-alone eXtreme Scale installations. This restriction is
only applicable when you are using SSL security in a stand-alone eXtreme Scale
configuration. Version 1.6 and later is supported for non-SSL transport
configurations.

Securing the REST data service
Secure multiple aspects of the REST data service. Access to the eXtreme Scale REST
data service can be secured through authentication and authorization. Access can
also be controlled by service-scoped configuration rules, known as access rules.
Transport security is the third consideration.

startOgServer
About this task

Access to the eXtreme Scale REST data service can be secured through
authentication and authorization. Authentication and authorization is accomplished
by integrating with eXtreme Scale security.

Access can also be controlled by service-scoped configuration rules, known as
access rules Two types of access rules exist, service operation rights which control
the CRUD operations that are allowed by the service and entity access rights
which control the CRUD operations that are allowed for a particular entity type.

Transport security is provided by the hosting container configuration for
connections between the web client and the REST service. And transport security is
provided by eXtreme Scale client configuration (for REST service to eXtreme Scale
data grid connections).

Procedure
v Control authentication and authorization.

446 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Access to the eXtreme Scale REST data service can be secured through
authentication and authorization. Authentication and authorization are
accomplished by integrating with eXtreme Scale security.
The eXtreme Scale REST data service uses eXtreme Scale security, for
authentication and authorization, to control which users can access the service
and the operations a user is allowed to perform through the service. The
eXtreme Scale REST data service uses either a configured global credential, with
user and password, or a credential derived from an HTTP BASIC challenge that
is sent with each transaction to the eXtreme Scale data grid where authentication
and authorization is performed.
1. Configure eXtreme Scale client authentication and authorization on the grid

See “Security integration with external providers” on page 445 for details
about how to configure eXtreme Scale client authentication and
authorization.

2. Configure the eXtreme Scale client, which is used by the REST service, for
security.
The eXtreme Scale REST data service invokes the eXtreme Scale client library
when communicating with the eXtreme Scale grid. Therefore, the eXtreme
Scale client must be configured for eXtreme Scale security.
eXtreme Scale client authentication is enabled via properties in objectgrid
client properties file. At a minimum, the following attributes must be enabled
when using client security with the REST service:
securityEnabled=true
credentialAuthentication=Supported [-or-] Required
credentialGeneratorProps=user:pass [-or-] {xor encoded user:pass}

Remember: The user and password specified in the
credentialGeneratorProps property must map to an ID in the authentication
registry and have sufficient ObjectGrid policy rights to connect to and create
ObjectGrids.
A sample objectgrid client policy file is located in restservice_home/security/
security.ogclient.properties. See also “Client properties file” on page 245.

3. Configure the eXtreme Scale REST data service for security.
The eXtreme Scale REST data service configuration properties file needs to
contain the following entries to integrate with eXtreme Scale security:
ogClientPropertyFile=file_name

The ogClientPropertyFile is the location of the propery file that contains
ObjectGrid client properties mentioned in the preceding step. The REST
service uses this file to initialize the eXtreme Scale client to talk to the grid
when security is enabled.
loginType=basic [-or-] none

The loginType property configures the REST service for the login type. If a
value of none is specified, the “global” user id and password defined by the
credentialGeneratorProps will be sent to the grid for each transaction. If a
value of basic is specified, the REST service will present an HTTP BASIC
challenge to the client asking for credentials that it will send in each
transaction when communicating with the grid.
For more information about the ogClientPropertyFile and loginType
properties, refer to “REST data service properties file” on page 327.

v Apply access rules.
Access can also be controlled by service scoped configuration rules, known as
access rules Two types of access rules exist, service operation rights which

Chapter 9. Securing the deployment environment 447

control the CRUD operations that are allowed by the service and entity access
rights which control the CRUD operations that are allowed for a particular
entity type.
The eXtreme Scale REST data service optionally allows access rules that can be
configured to restrict access to the service and entities in the service. These
access rules are specified in the REST service access rights property file. The
name of this file is specified in the REST data service properties file by the
wxsRestAccessRightsFile property. For more information about this property, see
“REST data service properties file” on page 327. This file is a typical Java
property file with key and value pairs. Two types of access rules exist, service
operation rights which control the CRUD operations that are allowed by the
service and entity access rights which control the CRUD operations that are
allowed for a particular entity type.
1. Configure service operation rights.

Service Operations rights specify access rights that apply to all the
ObjectGrids exposed via the REST service or to all entities of an individual
ObjectGrid as specified.
Use the following syntax.
serviceOperationRights=service_operation_right
serviceOperationRights.grid_name -OR- *=service_operation_right

where
– serviceOperationRights can be one of the following [NONE,

READSINGLE, READMULTIPLE, ALLREAD, ALL]
– serviceOperationRights.grid_name -OR- * implies that the access right

applies to all the ObjectGrids, else name of a specific ObjectGrid can be
provided.

For example:
serviceOperationsRights=ALL
serviceOperationsRights.*=NONE
serviceOperationsRights.EMPLOYEEGRID=READSINGLE

The first example specifies that all service operations are allowed for all the
ObjectGrids exposed by this REST Service. The second example is similar to
the first example as it also applies to all the ObjectGrids exposed by the
REST service, however it specifies the access right as NONE, which means
none of the service operations are allowed on the ObjectGrids. The last
example specifies how to control the service operations for a specific grid,
here only Reads which results in a single record are allowed for all entities of
the EMPLOYEEGRID.
The default assumed by the REST service is serviceOperationsRights=ALL
which means that all operations are allowed for all the ObjectGrids exposed
by this service. This is different from the Microsoft implementation, for
which the default is NONE, so no operations are allowed on the REST Service.

Important: The service operations rights are evaluated in the order they are
specified in this file, so the last specified right will override the rights
preceding it.

2. Configure entity access rights.
Entity set rights specify access rights that apply to specific ObjectGrid entities
exposed via the REST service. These rights provide a way to impose tighter
and more finer-grained access control on individual ObjectGrid entities than
compared to Service Operation rights.
Use the following syntax.

448 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

entitySetRights.grid_name.entity_name=entity_set_right

where
– entity_set_right can be one of the following rights.

Table 31. Entity access rights. Supported values.

Access right Description

NONE Denies all rights to access data

READSINGLE Allows to read single data items

READMULTIPLE Allows reading sets of data

ALLREAD Allows reading single or multiple sets of data

WRITEAPPEND Allows creating new data items in data sets

WRITEREPLACE Allows replacing data

WRITEDELETE Allows deleting data items from data sets

WRITEMERGE Allows merging data

ALLWRITE Allows to write (i.e. create, replace, merge or delete) data

ALL Allows creating, reading, updating, and deleting data

– entity_name is the name of a specific ObjectGrid within the REST service.
– grid_name is the name of a specific entity within the specified ObjectGrid.

Note: If both service operation rights and entity set rights are specified for a
respective ObjectGrid and its entities, then the more restrictive of those rights
will be enforced, as illustrated in the following examples. Note also that the
entity set rights are evaluated in the order they are specified in the file. The
last specified right will override the rights preceding it.
Example 1: If serviceOperationsRights.NorthwindGrid=READSINGLE and
entitySetRights.NorthwindGrid.Customer=ALL are specified. READSINGLE
will be enforced for the Customer entity.
Example 2: If serviceOperationsRights.NorthwindGrid=ALLREAD is
specified and entitySetRights.NorthwindGrid.Customer=ALLWRITE is
specified then only Reads will be allowed for all entities of NorthwindGrid.
However for Customer its entity set rights will prevent any Reads (since it
specified ALLWRITE) and hence effectively the Customer entity will have
access right as NONE.

v Secure transports.
Transport security is provided by the hosting container configuration for
connections between the web client and REST service. Transport security is
provided by the eXtreme Scale client configuration for connections between the
REST service and the eXtreme Scale grid.
1. Secure the connection from the client and REST service. Transport security

for this connection is provided by the hosting container environment, not in
eXtreme Scale.

2. Secure the connection from the REST service and the eXtreme Scale grid.
Transport security for this connection is configured in eXtreme Scale. See
“Transport layer security and secure sockets layer” on page 440.

Chapter 9. Securing the deployment environment 449

Security descriptor XML file
Use a security descriptor XML file to configure an eXtreme Scale deployment
topology with security enabled. You can use the elements in this file to configure
different aspects of security.

securityConfig element

The securityConfig element is the top-level element of the ObjectGrid security
XML file. This element sets up the namespace of the file and the schema location.
The schema is defined in the objectGridSecurity.xsd file.
v Number of occurrences: One
v Child elements: security

security element

Use the security element to define an ObjectGrid security.
v Number of occurrences: One
v Child elements: authenticator, adminAuthorization, and

systemCredentialGenerator

Attributes

securityEnabled
Enables security for the grid when set to true. The default value is false. If the
value is set to false, grid-wide security is disabled. For more information, see
“Data grid security” on page 433. (Optional)

singleSignOnEnabled
Enables a client to connect to any server after it has authenticated with one of
the servers when the value is set to true. Otherwise, a client must authenticate
with each server before the client can connect. The default value is false.
(Optional)

loginSessionExpirationTime
Specifies the amount of time in seconds before the login session expires. If the
login session expires, the client must authenticate again. (Optional)

adminAuthorizationEnabled
Enables administrative authorization. If the value is set to true, all of the
administrative tasks need authorization. The authorization mechanism that is
used is specified by the value of the adminAuthorizationMechanism attribute.
The default value is false. (Optional)

adminAuthorizationMechanism
Indicates which authorization mechanism to use. WebSphere eXtreme Scale
supports two authorization mechanisms, Java Authentication and
Authorization Service (JAAS) and custom authorization. The JAAS
authorization mechanism uses the standard JAAS policy-based approach. To
specify JAAS as the authorization mechanism, set the value to
AUTHORIZATION_MECHANISM_JAAS. The custom authorization
mechanism uses a user-plugged-in AdminAuthorization implementation. To
specify a custom authorization mechanism, set the value to
AUTHORIZATION_MECHANISM_CUSTOM. For more information on how
these two mechanisms are used, see “Application client authorization” on page
437. (Optional)

450 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The following security.xml file is a sample configuration to enable the data grid
security.
security.xml

<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/security ../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true" singleSignOnEnabled="true"
loginSessionExpirationTime="20"
adminAuthorizationEnabled="true"
adminAuthorizationMechanism="AUTHORIZATION_MECHANISM_JAAS" >

<authenticator className ="com.ibm.websphere.objectgrid.security.plugins.
builtins.WSTokenAuthenticator">
</authenticator>

<systemCredentialGenerator className ="com.ibm.websphere.objectgrid.security.
plugins.builtins.WSTokenCredentialGenerator">

<property name="properties" type="java.lang.String" value="runAs"
description="Using runAs subject" />
</systemCredentialGenerator>

</security>
</securityConfig>

authenticator element

Authenticates clients to eXtreme Scale servers in the data grid. The class that is
specified by the className attribute must implement the
com.ibm.websphere.objectgrid.security.plugins.Authenticator interface. The
authenticator can use properties to call methods on the class that is specified by
the className attribute. See property element for more information on using
properties.

In the previous security.xml file example, the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator class
is specified as the authenticator. This class implements the
com.ibm.websphere.objectgrid.security.plugins.Authenticator interface.
v Number of occurrences: zero or one
v Child element: property

Attributes

className
Specifies a class that implements the
com.ibm.websphere.objectgrid.security.plugins.Authenticator interface. Use this
class to authenticate clients to the servers in the eXtreme Scale grid. (Required)

adminAuthorization element

Use the adminAuthorization element to set up administrative access to the data
grid.
v Number of occurrences: zero or one
v Child element: property

Attributes

className
Specifies a class that implements the
com.ibm.websphere.objectgrid.security.plugins.AdminAuthorization interface.
(Required)

Chapter 9. Securing the deployment environment 451

systemCredentialGenerator element

Use a systemCredentialGenerator element to set up a system credential generator.
This element only applies to a dynamic environment. In the dynamic configuration
model, the dynamic container server connects to the catalog server as an eXtreme
Scale client and the catalog server can connect to the eXtreme Scale container
server as a client too. This system credential generator is used to represent a
factory for the system credential.
v Number of occurrences: zero or one
v Child element: property

Attributes

className
Specifies a class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface.
(Required)

See the previous security.xml file for an example of how to use a
systemCredentialGenerator class. In this example, the system credential generator
is a com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator class, which retrieves the RunAs Subject object from
the thread.

property element

Calls set methods on the authenticator and adminAuthorization classes. The name
of the property corresponds to a set method on the className attribute of the
authenticator or adminAuthorization element.
v Number of occurrences: zero or more
v Child element: property

Attributes

name
Specifies the name of the property. The value that is assigned to this attribute
must correspond to a set method on the class that is provided as the
className attribute on the containing bean. For example, if the className
attribute of the bean is set to com.ibm.MyPlugin, and the name of the property
that is provided is size, then the com.ibm.MyPlugin class must have a setSize
method. (Required)

type
Specifies the type of the property. The type of the parameter is passed to the
set method that is identified by the name attribute. The valid values are the
Java primitives, their java.lang counterparts, and java.lang.String. The name
and type attributes must correspond to a method signature on the className
attribute of the bean. For example, if the name is size and the type is int, then
a setSize(int) method must exist on the class that is specified as the className
attribute for the bean. (Required)

value
Specifies the value of the property. This value is converted to the type that is
specified by the type attribute, and is then used as a parameter in the call to
the set method that is identified by the name and type attributes. The value of
this attribute is not validated in any way. The plug-in implementor must verify
that the value passed in is valid. (Required)

452 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

description
Provides a description of the property. (Optional)

See “objectGridSecurity.xsd file” for more information.

objectGridSecurity.xsd file
Use the following ObjectGrid security XML schema to enable security.

See the “Security descriptor XML file” on page 450 for descriptions of the elements
and attributes defined in the objectGridSecurity.xsd file.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:cc="http://ibm.com/ws/objectgrid/config/security"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ibm.com/ws/objectgrid/config/security"
elementFormDefault="qualified">

<xsd:element name="securityConfig">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="security" type="cc:security" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="security">
<xsd:sequence>
<xsd:element name="authenticator" type="cc:bean" minOccurs="0"
maxOccurs="1" />
<xsd:element name="adminAuthorization" type="cc:bean" minOccurs="0"
maxOccurs="1" />
<xsd:element name="systemCredentialGenerator" type="cc:bean" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:attribute name="securityEnabled" type="xsd:boolean" use="optional" />
<xsd:attribute name="singleSignOnEnabled" type="xsd:boolean" use="optional"/>
<xsd:attribute name="loginSessionExpirationTime" type="xsd:int" use="optional"/>
<xsd:attribute name="adminAuthorizationMechanism" type="cc:adminAuthorizationMechanism"
use="optional"/>
<xsd:attribute name="adminAuthorizationEnabled" type="xsd:boolean" use="optional" />
</xsd:complexType>

<xsd:complexType name="bean">
<xsd:sequence>
<xsd:element name="property" type="cc:property" maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="className" type="xsd:string" use="required" />
</xsd:complexType>

<xsd:complexType name="property">
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />
<xsd:attribute name="type" type="cc:propertyType" use="required" />
<xsd:attribute name="description" type="xsd:string" use="optional" />
</xsd:complexType>

<xsd:simpleType name="propertyType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="java.lang.Boolean" />
<xsd:enumeration value="boolean" />
<xsd:enumeration value="java.lang.String" />
<xsd:enumeration value="java.lang.Integer" />
<xsd:enumeration value="int" />
<xsd:enumeration value="java.lang.Double" />
<xsd:enumeration value="double" />
<xsd:enumeration value="java.lang.Byte" />
<xsd:enumeration value="byte" />
<xsd:enumeration value="java.lang.Short" />
<xsd:enumeration value="short" />
<xsd:enumeration value="java.lang.Long" />
<xsd:enumeration value="long" />
<xsd:enumeration value="java.lang.Float" />
<xsd:enumeration value="float" />
<xsd:enumeration value="java.lang.Character" />
<xsd:enumeration value="char" />

Chapter 9. Securing the deployment environment 453

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="adminAuthorizationMechanism">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTHORIZATION_MECHANISM_JAAS" />
<xsd:enumeration value="AUTHORIZATION_MECHANISM_CUSTOM" />
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

454 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 10. Monitoring the deployment environment

You can use the included monitoring console, APIs, MBeans, logs, and utilities to
monitor the performance of your application environment.

Statistics overview
Statistics in WebSphere eXtreme Scale are built on an internal statistics tree. The
StatsAccessor API, Performance Monitoring Infrastructure (PMI) modules, and
MBean API are built from the internal tree.

The following figure shows the general setup of statistics for WebSphere eXtreme
Scale.

Each of these APIs offer a view into the statistics tree, but are used for different
reasons:
v Statistics API: The Statistics API allows developers direct access to statistics for

flexible and customizable statistics integration solutions, such as custom MBeans
or logging.

v MBean API: The MBean API is a specification-based mechanism for monitoring.
The MBean API uses the Statistics API and runs local to the server Java Virtual
Machine (JVM). The API and MBean structures are designed to readily integrate
with other vendor utilities. Use the MBean API when you are running a
distributed object grid.

v WebSphere Application Server Performance Monitoring Infrastructure (PMI)
modules: Use PMI if you are running WebSphere eXtreme Scale within
WebSphere Application Server. These modules provide a view of the internal
statistics tree.

Statistics API

Much like a tree map, there is a corresponding path and key used to retrieve a
specific module, or in this case granularity or aggregation level. For example,
assume there is always an arbitrary root node in the tree and that statistics are
being gathered for a map named "payroll," belonging to an ObjectGrid named
"accounting." For example, to access the module for a map's aggregation level or
granularity, you could pass in a String[] of the paths. In this case that would
equate to String[] {root, "accounting", "payroll"}, as each String would represent the

Application

WebSphere
PMI

Statistics Data

StatsAccessor
API

Mbean API

Figure 32. Statistics overview

© Copyright IBM Corp. 2009, 2011 455

node's path. The advantage of this structure is that a user can specify the array to
any node in the path and get the aggregation level for that node. So passing in
String[] {root, "accounting"} would give you map statistics, but for the entire grid
of "accounting." This leaves the user with both the ability to specify types of
statistics to monitor, and at whatever level of aggregation is required for the
application.

WebSphere Application Server PMI modules

WebSphere eXtreme Scale includes statistics modules for use with the WebSphere
Application Server PMI. When a WebSphere Application Server profile is
augmented with WebSphere eXtreme Scale, the augment scripts automatically
integrate the WebSphere eXtreme Scale modules into the WebSphere Application
Server configuration files. With PMI, you can enable and disable statistics modules,
automatically aggregate statistics at various granularity, and even graph the data
using the built-in Tivoli Performance Viewer. See “Monitoring with WebSphere
Application Server PMI” on page 481 for more information.

Vendor product integration with Managed Beans (MBean)

The eXtreme Scale APIs and Managed Beans are designed to allow for easy
integration with third party monitoring applications. JConsole or MC4J are some
examples of lightweight Java Management Extensions (JMX) consoles that can be
used to analyze information about an eXtreme Scale topology. You can also use the
programmatic APIs to write adapter implementations to snapshot or track eXtreme
Scale performance. WebSphere eXtreme Scale includes a sample monitoring
application that allows out-of-the box monitoring capabilities, and can be used as a
template for writing more advanced custom monitoring utilities.

456 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

See “Monitoring with the xsadmin utility” on page 470 for more information. For
more information about integrating with specific vendor applications, see the
following topics:
v Monitoring eXtreme Scale with IBM Tivoli Monitoring agent
v “Monitoring eXtreme Scale with Hyperic HQ” on page 503
v “Monitoring eXtreme Scale applications with CA Wily Introscope” on page 500

Monitoring with the web console
With the web console, you can chart current and historical statistics. This console
provides some preconfigured charts for high-level overviews, and has a custom
reports page that you can use to build charts from the available statistics. You can
use the charting capabilities in the monitoring console of WebSphere eXtreme Scale
to view the overall performance of the data grids in your environment.

Starting and logging on to the web console
Start the console server by running the startConsoleServer command and logging
on to the server with the default user ID and password.

Before you begin
v System requirements

– Use a AIX, Linux, or Windows system to run the web console.

Application

StatsAccessor
API

Statistics

ObjectGrid Client JVM WebSphere Deployment
Manager

WebSphere PMI
API

TPV

Embedded
Application

ObjectGrid Container JVM

wsadmin Client

WebSphere PMI
Modules

(WAS Process Only)

Statistics
Data

Mbean API

StatsAccessor
API

JMX

Figure 33. MBean overview

Chapter 10. Monitoring your environment 457

– Install a stand-alone WebSphere eXtreme Scale server on the system that is
hosting the console server. See “Installing stand-alone WebSphere eXtreme
Scale or WebSphere eXtreme Scale Client” on page 18 for more information.

– The console server system must be able to connect to your catalog service.
The catalog service also must be able to connect back to the web console
server.

v Web browser requirements

Use one of the following browsers with the web console:
– Mozilla Firefox, version 3.5.x and later
– Mozilla Firefox, version 3.6.x and later
– Microsoft Internet Explorer, version 7 or 8

Procedure
1. Start the console server. The startConsoleServer.bat|sh script for starting the

console server is in the wxs_install_root/ObjectGrid/bin directory of your
installation.

2. Log on to the console.
a. From your web browser, go to https://your.console.host:7443, replacing

your.console.host with the host name of the server onto which you
installed the console.

b. Log on to the console.
v User ID: admin

v Password: admin

The console welcome page is displayed.
3. Edit the console configuration. Click Settings > Configuration to review the

console configuration. The console configuration includes information such as:
v Trace string for the WebSphere eXtreme Scale client, such as *=all=disabled

v The Administrator name and password
v The Administrator email address

What to do next

Connect your catalog servers to the web console to start tracking statistics. See
“Connecting the web console to catalog servers” for more information.

Connecting the web console to catalog servers
To start viewing statistics in the web console, you must first connect to catalog
servers that you want to monitor. Additional steps are required if your catalog
servers have security enabled.

Before you begin
v The web console server must be running. See “Starting and logging on to the

web console” on page 457 for more information.
v You must have at least one catalog server running to which you want to

connect. See “Starting a stand-alone catalog service” on page 351 for more
information.

458 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Procedure
1. If your catalog servers have Secure Sockets Layer (SSL) enabled, you must

configure a keystore, truststore, and client properties file. You enable SSL for a
catalog server by setting the transportType attribute to SSL-Required in the
“Server properties file” on page 199.
a. Configure a keystore and truststore, and then exchange, or cross-import the

public certificates. For example, you might copy the truststore and keystore
to a location on the server that is running the web console.

b. Edit the client properties file on the web console server to include the
properties for SSL configuration. For example, you might edit the
wxs_install_root/ObjectGridProperties/sampleclient.properties file. The
following properties are required for outbound SSL connections from the
web console:
#--
SSL Configuration
#
- contextProvider (IBMJSSE2, IBMJSSE, IBMJSSEFIPS, etc.)
- protocol (SSL, SSLv2, SSLv3, TLS, TLSv1, etc.)
- keyStoreType (JKS, JCEK, PKCS12, etc.)
- trustStoreType (JKS, JCEK, PKCS12, etc.)
- keyStore (fully qualified path to key store file)
- trustStore (fully qualified path to trust store file)
- alias (string specifying ssl certificate alias to use from keyStore)
- keyStorePassword (string specifying password to the key store - encoded or not)
- trustStorePassword (string specifying password to the trust store - encoded or not)
#
Uncomment these properties to set the SSL configuration.
#--
#alias=clientprivate
#contextProvider=IBMJSSE
#protocol=SSL
#keyStoreType=JKS
#keyStore=etc/test/security/client.private
#keyStorePassword={xor}PDM2OjErLyg\=
#trustStoreType=JKS
#trustStore=etc/test/security/server.public
#trustStorePassword={xor}Lyo9MzY8

Important: Windows If you are using Windows, you must escape any
backslash (\) characters in the path. For example, if you want to use the
path C:\opt\ibm, enter C:\\opt\\ibm in the properties file.

2. Establish and maintain connections to catalog servers that you want to monitor.
Repeat the following steps to add each catalog server to the configuration.
a. Click Settings > eXtreme Scale Catalog Servers.
b. Add a new catalog server.

1) Click the add icon () to register an existing catalog server.
2) Provide information, such as the host name and listener port. See

“Planning for network ports” on page 232 for more information about
port configuration and defaults.

3) Click OK.
4) Verify that the catalog server has been added to the navigation tree.

3. Group the catalog servers that you created into a catalog service domain. You
must create a catalog service domain when security is enabled in your catalog
servers because security settings are configured in the catalog service domain.
a. Click Settings > eXtreme Scale Domains page.
b. Add a new catalog service domain.

1) Click the add icon () to register a catalog service domain. Enter
a name for the catalog service domain.

Chapter 10. Monitoring your environment 459

2) After you create the catalog service domain, you can edit the properties.
The catalog service domain properties follow:

Name Indicates the host name of the domain, as assigned by the
administrator.

Catalog servers
Lists one or more catalog servers that belong to the selected
domain. You can add the catalog servers that you created in the
previous step.

Generator class
Specifies the name of the class that implements the
CredentialGenerator interface. This class is used to get
credentials for clients.

Generator properties
Specifies the properties for the CredentialGenerator
implementation class. The properties are set to the object with
the setProperties(String) method. The credentialGeneratorprops
value is used only if the value of the credentialGeneratorClass
property is not null.

Fix 1+ eXtreme Scale client properties path
Specifies the path to the client properties file that you edited to
include SSL properties in a previous step. For example, you
might indicate the c:\ObjectGridProperties\
sampleclient.properties file. If you want to stop the console
from trying to use SSL connections, you can delete the value in
this field. After you set the path, the console uses an unsecured
connection.

3) Click OK.
4) Verify that the domain has been added to the navigation tree.

To view information about an existing catalog service domain, click the name of
the catalog service domain in the navigation tree on the Settings > eXtreme
Scale Domains page.

4. View the connection status. The Current domain field indicates the name of the
catalog service domain that is currently being used to display information in
the web console. The connection status displays next to the name of the catalog
service domain.

Viewing statistics with the web console
You can monitor statistics and other performance information with the web
console.

Before you begin

Before you can view statistics with the web console, you must complete the
following tasks:
1. Start the web console server. See “Starting and logging on to the web console”

on page 457 for more information.
2. Connect your catalog servers to the web console server. See “Connecting the

web console to catalog servers” on page 458 for more information.
3. Run active data grids and applications within the servers that are managed by

your catalog service domain.

460 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

About this task

After you create your data grids and configure your applications to use the data
grids, allow some time to pass for the statistics to become available. For example,
with a dynamic cache data grid, statistics are not available until a WebSphere
Application Server that is running a dynamic cache connects to the dynamic cache.
In general, wait up to one minute after a major configuration change to see the
changes in your statistics.

Tip: To view more specific information about any data point in a chart, you can
move the mouse pointer over the data point.

Procedure
v To view the current server statistics, click Monitor > Server Overview.
v To view the performance of all of your data grids, click Monitor > Data grid

domain overview.
v To view individual data grids, click Monitor > Data grid overview >

data_grid_name. This page shows a summary that includes the number of cache
entries, the average transaction time, and average throughput.

v To view further details about a specific data grid, click Monitor > Data grid
details. A tree displays with all of the data grids in your configuration. You can
drill down into a specific data grid to view the maps that are a part of that data
grid. You can either click a data grid name or a map for further information.

v To choose which statistics you would like your custom report to contain, click
Monitor > Custom reports.
Use this view to construct detailed data charts of the various statistics. Use the
tree to explore the available data grids and servers and their associated statistics.
A menu opens when you click or press enter on a node that references data that
can be charted. Create a new chart containing the statistics, or add the statistics
into an existing chart with compatible statistics. See “Monitoring with custom
reports” on page 466 for more information.

Web console statistics
Depending on the view you are using in the web console, you can view different
statistics about your configuration. These statistics include the used memory, the
top used data grids, and the number of cache entries.
v “Data grid domain overview”
v “Data grid overview” on page 462
v “Data grid details” on page 462
v “Server overview” on page 463
v “Custom reports: Catalog service domain statistics” on page 463

– “Custom reports: Container server statistics” on page 463
– “Custom reports: Data grid statistics” on page 465
– “Custom reports: Map statistics” on page 465

Data grid domain overview

Data grid domain overview statistics are displayed on the Monitor > Data Grid
Domain Overview page. Click one of the following tabs for more information
about the data grid domain:

Used Capacity tab
In the Current Data Grid Used Capacity Distribution chart, a picture of

Chapter 10. Monitoring your environment 461

the Total Pool, and the Largest Used Capacity Consumers are displayed.
Only the top 25 data grids are displayed. In the Used Capacity Over Time
chart, the number of bytes that are consumed by the data grid is displayed.

Average Throughput tab
The 5 Most Active Data Grids by Average Transaction Time in
Milliseconds chart contains a list of the top five data caches, organized by
the average transaction time. The Average Throughput Over time chart
displays the average, maximum, and minimum throughput within the last
hour, day, and week.

Average Transaction Time tab
The 5 Slowest Data Grids chart displays data about the slowest data grids.
The Average Transaction Time Over Time chart displays the average ,
maximum, and minimum transaction time within the last hour, day, and
week.

Data grid overview

To view statistics for an individual data grid, click Monitor > Data Grid Overview
> data_grid_name.

Current summary over last 30 seconds
Displays the current, number of cache entries, average transaction time,
average throughput, and cache hit rate for the selected data grid.

Used Capacity tab
The Current summary over last 30 seconds chart displays the number of
cache entries and used capacity in bytes over a specified time range.

Cache Usage tab
The Cache Usage chart helps to visualize the number of successful queries
to the cache, and displays cache attempts, cache hits, and the cache hit rate
over a specified time range.

Average Throughput tab
The Average Throughput vs. Average Transaction Time chat displays the
transaction time and throughput over a specified time range.

Data grid details

Data grid statistics are displayed on the Monitor > Data Grid Details page. You
can look at data for a selected grid and the maps that are within that grid.

Grid statistics:

Current summary over last 30 seconds
Displays the current used capacity, number of cache entries, average
throughput, and average transaction time for the selected data grid.

Current eXtreme Scale Object Grid Map Used Capacity Distribution
View a total pool, which includes the capacity by zone and the total
capacity in each zone. Only the top 25 ObjectGrid maps are displayed. You
can also view the largest used capacity consumers by each map.

Current Zone Used Capacity Distribution
View a total pool, which includes the total pool and the top used capacity
consumers in the zone of the selected data grid. You can also view the
largest used capacity consumers by each zone.

Map statistics:

462 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Current summary over last 30 seconds
Displays the current used capacity, number of cache entries, average
throughput, and average transaction time for the selected map.

Current Partition Used Capacity Distribution
View a partition, which includes the total pool and the top used capacity
consumers. Only the top 25 partitions are displayed. You can also view the
largest used capacity consumers by each partition.

Server overview

Server statistics are displayed on the Monitor > Server Overview page.

Current Server Used Memory Distribution
This chart is composed of two views. Total Pool displays the current
amount of used (real) memory in the server run time. Largest Used
memory Consumers breaks down the used memory by server; however
only the top 25 servers that are using the most memory are displayed.

Total Memory Over Time
Displays the real memory usage in the server run time.

Used Memory Over Time
Displays the amount of used memory in the server run time.

Custom reports: Catalog service domain statistics

You can view catalog service domain statistics by creating a custom report. Click
Monitor > Custom Reports.

Average Transaction Time (ms)
Displays the average time required to complete a transaction in this
domain.

Average Transaction Throughput (trans/sec)
Displays the average number of transactions per second in this domain.

Maximum Transaction Time (ms)
Displays the time spent by the most time-consuming transaction in this
domain.

Minimum Transaction Time (ms)
Displays the time spent by the least time-consuming transaction in this
domain.

Total Transaction Time (ms)
Displays total time spent on transactions in this domain, since the time the
domain was initialized.

Custom reports: Container server statistics

You can view container server statistics by creating a custom report. Click Monitor
> Custom Reports.

Average Transaction Time (ms)
Displays the average time required to complete a transaction for this
catalog server.

Average Transaction Throughput (trans/sec)
Displays the average number of transactions per second for this catalog
server.

Chapter 10. Monitoring your environment 463

Maximum Transaction Time (ms)
Displays the time spent by the most time-consuming transaction for this
catalog server.

Minimum Transaction Time (ms)
Displays the time spent by the least time-consuming transaction for this
catalog server.

Total Transaction Time (ms)
Displays total time spent on transactions for this catalog server, since the
time for this catalog server was initialized.

Total Entries in Cache
Displays the current number of objects cached in the grids overseen by this
catalog server.

Hit rate (percentage)
Displays the hit rate (hit ratio) for the selected data grid. A high hit rate is
desirable. The hit rate indicates how well the grid is helping to avoid
accessing the persistent store.

Used Bytes
Displays memory consumption by this map. The used bytes statistics are
accurate only when you are using simple objects or the COPY_TO_BYTES
copy mode.

Minimum Used Bytes
Displays the low point in memory consumption by this catalog service and
its maps. The used bytes statistics are accurate only when you are using
simple objects or the COPY_TO_BYTES copy mode.

Maximum Used Bytes
Displays the high point in memory consumption by this catalog service
and its maps. The used bytes statistics are accurate only when you are
using simple objects or the COPY_TO_BYTES copy mode.

Total Number of Hits
Displays the total number of times the requested data was found in the
map, avoiding the need to access persistent store.

Total Number of Gets
Displays the total number of times the map had to access the persistent
store to obtain data.

Free Heap (MB)
Displays the actual amount of heap available to the JVM being used by the
catalog server.

Total Heap
Displays the amount of heap available to the JVM being used by this
catalog server.

Number of Available Processors
Displays the number of processors that are available to this catalog service
and its maps. For the highest stability, run your servers at 60% processor
loading and JVM heaps at 60% heap loading. Spikes can then drive the
processor usage to 80–90%, but do not regularly run your servers higher
than these levels

Maximum Heap Size (MB)
Displays the maximum amount of heap available to the JVM being used by
this catalog server.

464 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Used Memory
Displays the used memory in the JVM being used by this catalog server.

Custom reports: Data grid statistics

You can view data grid statistics by creating a custom report. Click Monitor >
Custom Reports.

Average Transaction Time (ms)
Displays the average time required to complete transactions involving this
grid.

Average Transaction Throughput (trans/sec)
Displays the average number of transactions per second completed by this
grid.

Maximum Transaction Time (ms)
Displays the time spent by the most time-consuming transaction completed
by this grid.

Minimum Transaction time (ms)
Displays the time spent by the least time-consuming transaction completed
by this grid.

Total Transaction Time (ms)
Displays the total amount of transaction processing time for this grid.

Custom reports: Map statistics

You can view map statistics by creating a custom report. Click Monitor > Custom
Reports.

Total Entries in Cache
Displays the current number of objects cached in this map.

Hit Rate (percentage)
Displays the hit rate (hit ratio) for the selected map. A high hit rate is
desirable. The hit rate indicates how well the map is helping to avoid
accessing the persistent store.

Used Bytes
Displays memory consumption by this map. The used bytes statistics are
accurate only when you are using simple objects or the COPY_TO_BYTES
copy mode.

Minimum Used Bytes
Displays the minimum consumption (in Bytes) for this map. The used
bytes statistics are accurate only when you are using simple objects or the
COPY_TO_BYTES copy mode.

Maximum Used Bytes
Displays the maximum consumption (in Bytes) for this map. The used
bytes statistics are accurate only when you are using simple objects or the
COPY_TO_BYTES copy mode.

Total Number of Hits
Displays the total number of times the requested data was found in the
map, avoiding the need to access persistent store.

Total Number of Gets
Displays the total number of times the map had to access the persistent
store to obtain data.

Chapter 10. Monitoring your environment 465

Free Heap (MB)
Displays the current amount of heap available to this map, in the JVM
being used by the catalog server.

Total Heap (MB)
Displays the total amount of heap available to this map, in the JVM being
used by the catalog server. For the highest stability, run your servers at
60% processor loading and JVM heaps at 60% heap loading. Spikes can
then drive the processor usage to 80–90%, but do not regularly run your
servers higher than these levels

Number of Available Processors
Displays the number of processors available to this map. For the highest
stability, run your servers at 60% processor loading and JVM heaps at 60%
heap loading. Spikes can then drive the processor usage to 80–90%, but do
not regularly run your servers higher than these levels

Maximum Heap Size (MB)
Displays the maximum amount of heap available to this map, in the JVM
being used by the catalog server.

Used Memory (MB)
Displays the used amount of memory in this map.

Monitoring with custom reports
You can build custom reports to save various charts that contain statistics about
the catalog service domains, data grids, and container servers in your environment.
You can save the custom reports and load them to view again later.

Before you begin

Before you can view statistics with the web console, you must complete the
following tasks:
1. Start the web console server. See “Starting and logging on to the web console”

on page 457 for more information.
2. Connect your catalog servers to the web console server. See “Connecting the

web console to catalog servers” on page 458 for more information.
3. Run active data grids and applications within the servers that are managed by

your catalog service domain.

Procedure
v Create a custom report.

1. Click Monitor > Custom Reports. A list of the eXtreme Scale domains that
you have defined are listed in a tree format. You can expand each of these
domains to display the available statistics that you can add to the custom
report.

2. Add charts with the statistics you want to track. Available statistics are

indicated by the chart icon (). Click one of the statistics that you want
to track. Choose Add to new chart or Add to existing chart. Depending on
your selection, the selected statistic either displays in a new chart tab or in
the selected existing chart. You can only add a metric to an existing chart if
the metrics already on the chart and the new metric use the same units.

v Save a custom report. Saving the custom report saves the statistics in all of the
tabs you have created. To save the report, click Save.

466 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

v Load a custom report. Click Load and choose the saved custom report that you
want to view.

Monitoring with the statistics API
The Statistics API is the direct interface to the internal statistics tree. Statistics are
disabled by default, but can be enabled by setting a StatsSpec interface. A StatsSpec
interface defines how WebSphere eXtreme Scale should monitor statistics.

About this task

You can use the local StatsAccessor API to query data and access statistics on any
ObjectGrid instance that is in the same Java virtual machine (JVM) as the running
code. For more information about the specific interfaces, see the API
documentation. Use the following steps to enable monitoring of the internal
statistics tree.

Procedure
1. Retrieve the StatsAccessor object. The StatsAccessor interface follows the

singleton pattern. So, apart from problems related to the classloader, one
StatsAccessor instance should exist for each JVM. This class serves as the main
interface for all local statistics operations. The following code is an example of
how to retrieve the accessor class. Call this operation before any other
ObjectGrid calls.
public class LocalClient
{

public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

}

}

2. Set the data grid StatsSpec interface. Set this JVM to collect all statistics at the
ObjectGrid level only. You must ensure that an application enables all statistics
that might be needed before you begin any transactions. The following example
sets the StatsSpec interface using both a static constant field and using a spec
String. Using a static constant field is simpler because the field has already
defined the specification. However, by using a spec String, you can enable any
combination of statistics that are required.
public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

// Set the spec via the spec String
StatsSpec spec = new StatsSpec("og.all=enabled");
accessor.setStatsSpec(spec);

}

3. Send transactions to the grid to force data to be collected for monitoring. To
collect useful data for statistics, you must send transactions to the data grid.

Chapter 10. Monitoring your environment 467

The following code excerpt inserts a record into MapA, which is in
ObjectGridA. Because the statistics are at the ObjectGrid level, any map within
the ObjectGrid yields the same results.
public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

ObjectGridManager manager =
ObjectGridmanagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");
Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

}

4. Query a StatsFact by using the StatsAccessor API. Every statistics path is
associated with a StatsFact interface. The StatsFact interface is a generic
placeholder that is used to organize and contain a StatsModule object. Before
you can access the actual statistics module, the StatsFact object must be
retrieved.
public static void main(String[] args)
{

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

ObjectGridManager manager =
ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");
Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

// Retrieve StatsFact

StatsFact fact = accessor.getStatsFact(new String[] {"EmployeeGrid"},
StatsModule.MODULE_TYPE_OBJECT_GRID);

}

5. Interact with the StatsModule object. The StatsModule object is contained
within the StatsFact interface. You can obtain a reference to the module by
using the StatsFact interface. Since the StatsFact interface is a generic interface,
you must cast the returned module to the expected StatsModule type. Because
this task collects eXtreme Scale statistics, the returned StatsModule object is cast
to an OGStatsModule type. After the module is cast, you have access to all of
the available statistics.

468 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

ObjectGridManager manager =
ObjectGridmanagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");
Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

// Retrieve StatsFact
StatsFact fact = accessor.getStatsFact(new String[] {"EmployeeGrid"},

StatsModule.MODULE_TYPE_OBJECT_GRID);

// Retrieve module and time
OGStatsModule module = (OGStatsModule)fact.getStatsModule();
ActiveTimeStatistic timeStat =

module.getTransactionTime("Default", true);
double time = timeStat.getMeanTime();

}

Statistics modules
WebSphere eXtreme Scale uses an internal statistics model to track and filter data,
which is the underlying structure that all data views use to gather snapshots of
statistics. You can use several methods to retrieve the information from the
statistics modules.

Overview

Statistics in WebSphere eXtreme Scale are tracked and contained within
StatsModules components. Within the statistics model, several types of statistics
modules exist:

OGStatsModule
Provides statistics for an ObjectGrid instance, including transaction
response times.

MapStatsModule
Provides statistics for a single map, including the number of entries and hit
rate.

QueryStatsModule
Provides statistics for queries, including plan creation and run times.

AgentStatsModule
Provides statistics for DataGrid API agents, including serialization times
and run times.

HashIndexStatsModule
Provides statistics for HashIndex query and maintenance run times.

SessionStatsModule
Provides statistics for the HTTP session manager plug-in.

Chapter 10. Monitoring your environment 469

For details about the statistics modules, see the com.ibm.websphere.objectgrid.stats
package in the API documentation.

Statistics in a local environment

The model is organized like an n-ary tree (a tree structure with the same degree for
all nodes) comprised of all of the StatsModule types mentioned in the previous list.
Because of this organization structure, every node in the tree is represented by the
StatsFact interface. The StatsFact interface can represent an individual module or a
group of modules for aggregation purposes. For example, if several leaf nodes in
the tree represent particular MapStatsModule objects, the parent StatsFact node to
these nodes contains aggregated statistics for all of the children modules. After you
fetch a StatsFact object, you can then use interface to retrieve the corresponding
StatsModule.

Much like a tree map, you use a corresponding path or key to retrieve a specific
StatsFact. The path is a String[] value that consists of every node that is along the
path to the requested fact. For example, you created an ObjectGrid called
ObjectGridA, which contains two Maps: MapA and MapB. The path to the
StatsModule for MapA would look like [ObjectGridA, MapA]. The path to the
aggregated statistics for both maps would be: [ObjectGridA].

Statistics in a distributed environment

In a distributed environment, the statistics modules are retrieved using a different
path. Because a server can contain multiple partitions, the statistics tree needs to
track the partition to which each module belongs. As a result, the path to look up
a particular StatsFact object is different. Using the previous example, but adding in
that the maps exist within partition 1, the path is [1, ObjectGridA, MapA] for
retrieving that StatsFact object for MapA.

Monitoring with the xsadmin utility
With the xsadmin utility, you can format and display textual information about
your WebSphere eXtreme Scale topology. The sample utility provides a method for
parsing and discovering current deployment data, and can be used as a foundation
for writing custom utilities.

xsadmin
Before you begin

For the xsadmin utility to display results, you must have created your data grid
topology. Your catalog servers and container servers must be started. See “Starting
and stopping stand-alone servers” on page 351 for more information.

About this task

The xsadmin sample utility uses an implementation of Managed Beans (MBeans).
This sample monitoring application that enables out-of-the box monitoring
capabilities that you can extend by using the interfaces in the
com.ibm.websphere.objectgrid.management package. You can look at the source
code of the xsadmin sample application in the wxs_home/samples/xsadmin.jar file
in a stand-alone installation, or in the wxs_home/xsadmin.jar file in a WebSphere
Application Server installation.

470 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

You can use the xsadmin sample utility to view the current layout and specific state
of the data grid, such as map content. In this example, the layout of the data grid
in this task consists of a single ObjectGridA data grid with one MapA map that
belongs to the MapSetA map set. This example demonstrates how you can display
all active containers within a data grid and print out filtered metrics regarding the
map size of the MapA map. To see all possible command options, run the xsadmin
utility without any arguments or with the -help option.

Procedure
1. On the command line, set the JAVA_HOME environment variable.

v UNIX export JAVA_HOME=javaHome

v Windows set JAVA_HOME=javaHome

2. Go to the bin directory.
cd wxs_home/bin

3. Run the xsadmin utility.
v To display the online help, run the following command:

UNIX

xsadmin.sh

Windows

xsadmin.bat

Take note on the required arguments section of the help message, because
you must pass in only one of the listed options for the utility to work. If no
-g or -m option is specified, the xsadmin utility prints out information for
every grid in the topology.

v To enable statistics for all of the servers, run the following command:

UNIX

xsadmin.sh -g ObjectGridA -setstatsspec ALL=enabled

Windows

xsadmin.bat -g ObjectGridA -setstatsspec ALL=enabled

v To display all online containers for a grid, run the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -containers

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -containers

All container information is displayed. An example of the output follows:
Connecting to Catalog service at localhost:1099

*** Show all online containers for grid - ObjectGridA & mapset - MapSetA

Host: 192.168.0.186
Container: server1_C-0, Server:server1, Zone:DefaultZone
Partition Shard Type

0 Primary

Num containers matching = 1
Total known containers = 1
Total known hosts = 1

Chapter 10. Monitoring your environment 471

Attention: To obtain this information when Transport Layer
Security/Secure Sockets Layer (TLS/SSL) is enabled, you must start the
catalog and container servers with the JMX service port set. To set the JMX
service port, you can either use the -JMXServicePort option on the
startOgServer script or you can call the setJMXServicePort method on the
ServerProperties interface.

v To connect to the catalog service and display information about MapA, run
the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA

The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at localhost:1099

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name Partition Map Size Used Bytes (B) Shard Type
MapA 0 0 0 Primary

v To connect to the catalog service using a specific JMX port and display

information about the MapA map, run the following command: UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

The xsadmin sample utility connects to the MBean server that is running on a
catalog server. A catalog server can run as a stand-alone process, WebSphere
Application Server process, or embedded within a custom application
process. Use the -ch option to specify the catalog service host name, and the
-p option to specify the catalog service naming port.
The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at CatalogMachine:6645

*****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

v To connect to a catalog service hosted in a WebSphere Application Server
process, perform the following steps:

The -dmgr option is required when connecting to a catalog service hosted by
any WebSphere Application Server process or cluster of processes. Use the
-ch option to specify the host name if not localhost, and the -p option to
override the catalog service bootstrap port, which uses the process
BOOTSTRAP_ADDRESS. The -p option is only needed if the
BOOTSTRAP_ADDRESS is not set to the default of 9809.

Note: The standalone version of WebSphere eXtreme Scale cannot be used to
connect to a catalog service hosted by a WebSphere Application Server

472 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

process. Use the xsadmin that is script included in the was_root/bin directory,
which is available when the installing WebSphere eXtreme Scale on
WebSphere Application Server or WebSphere Application Server Network
Deployment.
a. Navigate to the WebSphere Application Server bin directory:

cd was_root/bin

b. Launch the xsadmin utility using the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr

The size of the specified map is displayed.
Connecting to Catalog service at localhost:9809

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

v 7.1.0.2+ To display the configured and runtime placement of your
configuration, run one of the following commands:
xsadmin -placementStatus
xsadmin -placementStatus -g myOG -m myMapSet
xsadmin -placementStatus -m myMapSet
xsadmin -placementStatus -g myOG

You can scope the command to display placement information for the entire
configuration, a single data grid, a single map set, or a combination of a data
grid and map set. An example of the output follows:
***********Printing Placement Status for Grid - Grid, MapSet - mapSet**************

<objectGrid name="Grid" mapSetName="mapSet">
<configuration>
<attribute name="placementStrategy" value="FIXED_PARTITIONS"/>
<attribute name="numInitialContainers" value="3"/>
<attribute name="minSyncReplicas" value="0"/>
<attribute name="developmentMode" value="true"/>

</configuration>
<runtime>
<attribute name="numContainers" value="3"/>
<attribute name="numMachines" value="1"/>
<attribute name="numOutstandingWorkItems" value="0"/>

</runtime>
</objectGrid>

Creating a configuration profile for the xsadmin utility
You can save your frequently specified parameters for the xsadmin utility in a
properties file. As a result, the xsadmin utility calls are shorter.

Before you begin

Fix 1+ You can define a properties file for the xsadmin utility with Version
7.1 Fix 1 or later.

Create a basic deployment of WebSphere eXtreme Scale that includes at least one
catalog server and at least one container server. For more information, see
“startOgServer script” on page 356.

Chapter 10. Monitoring your environment 473

About this task

See “xsadmin utility reference” for a list of the properties that you can put in a
configuration profile for the xsadmin utility. If you specify both a properties file
and a corresponding parameter as a command line argument, the command line
argument overrides the properties file value.

Procedure
1. Create a configuration profile properties file. This properties file should contain

any global properties that you want to use in all your xsadmin command
invocations.
Save the properties file with any name you choose. For example, you might
place the file in the following path: /opt/ibm/WebSphere/wxs71/ObjectGrid/
security/<my.properties>.
Replace <my.properties> the name of your file. For example, you might set the
following properties in your file:
v XSADMIN_TRUST_TYPE=jks

v XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/
key.jks

v XSADMIN_USERNAME=ogadmin

2. Run the xsadmin utility with the properties file that you created. Use the
-profile parameter to indicate the location of your properties file. You can also
use the -v parameter to display verbose output.
./xsadmin.sh -l -v -password xsadmin -ssl -trustPass ogpass -profile
/opt/ibm/WebSphere/wxs71/ObjectGrid/security/<my.properties>

xsadmin utility reference
You can pass arguments to the xsadmin utility with two different methods: with a
command-line argument, or with a properties file.

xsadmin
xsadmin arguments

Fix 1+ You can define a properties file for the xsadmin utility with Version
7.1 Fix 1 or later. By creating a properties file, you can save some of the frequently
used arguments, such as the user name. The properties that you can add to a
properties file are in the following table. If you specify both a property in a
properties file and the equivalent command-line argument, the command-line
argument value overrides the properties file value.

For more information about defining a properties file for the xsadmin utility, see
“Creating a configuration profile for the xsadmin utility” on page 473.

Table 32. Arguments for the xsadmin utility

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

-ch n/a Indicates the JMX host name for the catalog server.

Default:localhost

-clear n/a Clears the specified map.

Allows the following filters: -fm

474 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 32. Arguments for the xsadmin utility (continued)

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

-containers n/a For each data grid and map set, displays a list of container servers.

Allows the following filters: -fnp

-continuous n/a Specify this flag if you want continuous map size results to monitor
the data grid. When you run this command with the -mapsizes
argument, the map size is displayed every 20 seconds.

-coregroups n/a Displays all core groups for the catalog server. This argument is used
for advanced diagnostics.

-dismissLink
<catalog_service_domain>

n/a Removes a link between 2 catalog service domains. Provide the name
of the foreign catalog service domain to which you previously
connected with the -establishLink argument.

-dmgr n/a Indicates if you are connecting to a WebSphere Application Server
hosted catalog service.

Default:false

-empties n/a Specify this flag if you want to show empty containers in the output.

-establishLink
<foreign_domain_name>
<host1:port1,host2:port2...>

n/a Connects the catalog service domain to a foreign catalog service
domain. Use the following format: -establishLink
<foreign_domain_name> <host1:port1,host2:port2...>.
foreign_domain_name is the name of the foreign catalog service domain,
and host1:port1,host2:port2... is a comma-separated list of catalog server
host names and Object Request Broker (ORB) ports that are running
in this catalog service domain.

-fc n/a Filters for only this container.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

-fh n/a Filters for only this host.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-
setStatsSpec,-routetable

-fm n/a Filters only for this map.

Use with the following arguments: -clear, -mapsizes

-fnp n/a Filters servers that have no primary shards.

Use with the following arguments: -containers

-fp n/a Filters for only this partition.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-
setStatsSpec,-routetable

-fs n/a Filters for only this server.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

Chapter 10. Monitoring your environment 475

Table 32. Arguments for the xsadmin utility (continued)

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

-fst n/a Filters for only this shard type. Specify P for primary shards only, A
for asynchronous replica shards only, and S for synchronous replica
shards only.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

-fz n/a Filters for only this zone.

Use with the following arguments: -mapsizes, -teardown,-
revisions,-getTraceSpec,-setTraceSpec,-getStatsSpec,-
setStatsSpec,-routetable

-force n/a Forces the action that is in the command, disabling any preemptive
prompts. This argument is useful for running batched commands.

-g n/a Specifies the ObjectGrid name.

-getstatsspec n/a Displays the current statistics specification. You can set the statistics
specification with the -setstatsspec argument.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-getTraceSpec n/a Displays the current trace specification. You can set the trace
specification with the -settracespec argument.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-h n/a Displays the help for the xsadmin utility, which includes a list of
arguments.

-hosts n/a Displays all of the hosts in the configuration.

-jmxUrl XSADMIN_JMX_URL Specifies the address of a JMX API connector server in the following
format: service:jmx:protocol:sap. The protocol and sap variable
definitions follow:

protocol Specifies the transport protocol to be used to connect to the
connector server.

sap Specifies the address at which the connector server is found.
For more information about the format of the JMX service URL, see
Class JMXServiceURL (Java 2 Platform SE 5.0).

-l n/a Displays all known data grids and map sets.

-m n/a Specifies the name of the map set.

-mapsizes n/a Displays the size of each map on the catalog server to verify that key
distribution is uniform over the shards.

Allows the following filters: -fm -fst -fc -fz -fs -fh -fp

-mbeanservers n/a Displays a list of all MBean server end points.

-overridequorum n/a Overrides the quorum setting so that container server events are not
ignored during a data center failure scenario.

-password XSADMIN_PASSWORD Specifies the password to log in to the xsadmin utility. Do not specify
the password in your properties file if you want your password to
remain secure.

-p n/a Indicates the JMX port for the catalog server host.

Default: 1099 or 9809 for a WebSphere Application Server host, 1099
for stand-alone configurations.

476 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

Table 32. Arguments for the xsadmin utility (continued)

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

7.1.0.2+
-placementStatus

n/a Displays the configured placement and runtime placement of your
configuration. You can scope the output to a combination of data
grids and map sets, or for the entire configuration:

v Entire configuration:

-placementStatus

v For a specific data grid:

-placementStatus -g my_grid

v For a specific map set:

-placementStatus -m my_mapset

v For a specific data grid and map set:

-placementStatus -g my_grid
-m my_mapset

-primaries n/a Displays a list of the primary shards.

-profile n/a Specifies a fully qualified path to the properties file for the xsadmin
utility.

-quorumstatus n/a Displays the status of quorum for the catalog service.

-releaseShard
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Used in conjunction with the -reserveShard argument. The
-releaseShard argument must be invoked after a shard has been
reserved and placed. . The -releaseShard argument invokes the
ContainerMBean.release() method.

-reserved n/a Used with the -containers argument to display only shards that have
been reserved with the -reserveShard argument.

-reserveShard
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Moves a primary shard to the specified container server. The
ContainerMBean.reserve() method is invoked by this argument.

7.1.0.3+
-resumeBalancing
<objectgrid_name>
<map_set_name>

n/a Attempts to balance requests and allow future rebalancing attempts to
the specified ObjectGrid and map set.

-revisions n/a Displays revision identifiers for a catalog service domain including:
each data grid, partition number, partition type (primary or replica),
catalog service domain, lifetime ID, and number of data revisions for
each specific shard. You can use his argument to determine if an
asynchronous replica or linked domain is caught up. This argument
invokes the ObjectGridMBean.getKnownRevisions() method.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-routetable n/a Displays the current state of the data grid from a client server
perspective. The route table is the information that an ObjectGrid
client server uses to communicate with the data grid. Use the route
table as a diagnostic aid when you are trying to identify connection
problems or TargetNotAvailable exceptions.

Allows the following filters: -fz -fh -fp

Chapter 10. Monitoring your environment 477

Table 32. Arguments for the xsadmin utility (continued)

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

-settracespec
<trace_string>

n/a Enables trace on servers during run time. See the following example:

-setTraceSpec "ObjectGridReplication=all=enabled"

See “Collecting trace” on page 530 and “Trace options” on page 531
for more information about the trace strings that you can specify.

Allows the following filters: -fst -fc -fz -fs -fh -fp

7.1.0.3+
-swapShardWithPrimary
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Swaps the specified replica shard from the specified container server
with the primary shard. By running this command, you can manually
balance primary shards when needed.

-setstatsspec
<stats_spec>

n/a Enables statistics gathering. This argument invokes the
DynamicServerMBean.setStatsSpec and
DynamicServerMBean.getStatsSpec methods. See Class StatsSpec for
more information about the statistics modules you can monitor.

Allows the following filters: -fm -fst -fc -fz -fs -fh -fp

7.1.0.3+
-suspendBalancing
<objectgrid_name>
<map_set_name>

n/a Prevents future attempts to balance the specified ObjectGrid and map
set.

-ssl n/a Indicates that Secure Sockets Layer (SSL) is enabled.

-teardown n/a Stops a list or group of catalog and container servers.

Allows the following filters: -fst -fc -fz -fs -fh -fp

Format to provide a list of servers:
server_name_1,server_name_2 ...

To stop all servers in a zone, include the -fz argument:
–fz <zone_name>

To stop all servers on a host, include the -fh argument:
–fh <host_name>

-triggerPlacement n/a Forces shard placement to run, ignoring the configured
numInitialContainers value in the deployment XML file. You can use
this argument when you are performing maintenance on your servers
to allow shard placement to continue running, even though the
numInitialContainers value is lower than the configured value.

-trustPass XSADMIN_TRUST_PASSSpecifies the password for the specified truststore.

-trustPath XSADMIN_TRUST_PATHSpecifies a path to the truststore file.

Example: etc/test/security/server.public

-trustType XSADMIN_TRUST_TYPESpecifies the type of truststore.

Valid values: JKS, JCEK, PKCS12, and so on.

478 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Table 32. Arguments for the xsadmin utility (continued)

Command Line
Argument

Equivalent Property
Name in Properties
File Description and valid values

-unassigned n/a Displays a list of shards that cannot be placed on the data grid.
Shards cannot be placed when the placement service has a constraint
that is preventing placement.

-username XSADMIN_USERNAME Specifies the user name to log in to the xsadmin utility.

-v n/a Enables the verbose command-line action. Use this flag if you are
using environment variables, a properties file, or both to specify
certain command-line arguments, and want to view their values. See
“Verbose option for the xsadmin utility” for more information.

-xml n/a Prints the unfiltered output from the
PlacementServiceMBean.listObjectGridPlacement() method. The other
xsadmin arguments filter the output of this method and organize the
data into a more consumable format.

Verbose option for the xsadmin utility
You can use the xsadmin verbose option to troubleshoot problems. Run the xsadmin
-v command to list all configured parameters. The verbose option displays all
values in all scopes, including command line arguments, properties file arguments,
and environment-specified arguments. The Effective arguments section includes
the settings that are being used in the environment if you have specified the same
property using multiple scopes.

xsadmin
Verbose option example

Fix 1+ You use the verbose option for the xsadmin utility with Version 7.1
Fix 1 or later.

xsadmin command arguments:

The following text is an example of output when using the verbose option from
the command line after you run the following command with a properties value
specified:
./xsadmin -l -v -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties

Properties file arguments:

The contents of the /opt/ibm/WebSphere/wxs71/ObjectGrid/security/
my.properties properties file follow:
XSADMIN_TRUST_PASS=ogpass
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_USERNAME=ogadmin
XSADMIN_PASSWORD=ogpass

Command results:

In the following output from the preceding xsadmin command, the text that is in
bold italics indicates properties and values that are specified both on the

Chapter 10. Monitoring your environment 479

command line and in the properties file. In the Effective command line arguments
section, you can see that the command line specified arguments override the
values in the properties file.
Command line specified arguments

XSADMIN_USERNAME=xsadmin
XSADMIN_PASSWORD=xsadmin
XSADMIN_TRUST_PATH=<unspecified>
XSADMIN_TRUST_TYPE=<unspecified>
XSADMIN_TRUST_PASS=ogpass
XSADMIN_PROFILE=/opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties
XSADMIN_JMX_URL=<unspecified>

Properties file specified arguments

XSADMIN_USERNAME=ogadmin
XSADMIN_PASSWORD=ogpass
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PASS=ogproppass
XSADMIN_JMX_URL=<unspecified>

Environment-specified arguments

XSADMIN_USERNAME=<unspecified>
XSADMIN_PASSWORD=<unspecified>
XSADMIN_TRUST_PATH=<unspecified>
XSADMIN_TRUST_TYPE=<unspecified>
XSADMIN_TRUST_PASS=<unspecified>
XSADMIN_JMX_URL=<unspecified>

Effective arguments

XSADMIN_USERNAME=xsadmin
XSADMIN_PASSWORD=xsadmin
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PASS=ogpass
XSADMIN_PROFILE=/opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties
XSADMIN_JMX_URL=<unspecified>
SSL authentication enabled: true

Connecting to Catalog service at localhost:1099
*** Show all ’objectGrid:mapset’ names
Grid Name MapSet Name
accounting defaultMapSet

Attention: The XSADMIN_PROFILE property, although it displays in the verbose
output, is not a valid key that you can specify in a properties file. The value of this
property in the verbose output indicates the property value that is being used, as
indicated in the -profile command line argument.

Output without the verbose option

An example of the same command output without the verbose option enabled
follows:
./xsadmin -l -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties

Connecting to Catalog service at localhost:1099
*** Show all ’objectGrid:mapset’ names
Grid Name MapSet Name
accounting defaultMapSet

480 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Monitoring with WebSphere Application Server PMI
WebSphere eXtreme Scale supports Performance Monitoring Infrastructure (PMI)
when running in a WebSphere Application Server or WebSphere Extended
Deployment application server. PMI collects performance data on runtime
applications and provides interfaces that support external applications to monitor
performance data. You can use the administrative console or the wsadmin tool to
access monitoring data.

Before you begin

You can use PMI to monitor your environment when you are using WebSphere
eXtreme Scale combined with WebSphere Application Server.

About this task

WebSphere eXtreme Scale uses the custom PMI feature of WebSphere Application
Server to add its own PMI instrumentation. With this approach, you can enable
and disable WebSphere eXtreme Scale PMI with the administrative console or with
Java Management Extensions (JMX) interfaces in the wsadmin tool. In addition,
you can access WebSphere eXtreme Scale statistics with the standard PMI and JMX
interfaces that are used by monitoring tools, including the Tivoli Performance
Viewer.

Procedure
1. Enable eXtreme Scale PMI. You must enable PMI to view the PMI statistics. See

“Enabling PMI” for more information.
2. Retrieve eXtreme Scale PMI statistics. View the performance of your eXtreme

Scale applications with the Tivoli Performance Viewer. See “Retrieving PMI
statistics” on page 483 for more information.

What to do next

For more information about the wsadmin tool, see “Accessing Managed Beans
(MBeans) using the wsadmin tool” on page 375.

Enabling PMI
You can use WebSphere Application Server Performance Monitoring Infrastructure
(PMI) to enable or disable statistics at any level. For example, you can choose to
enable the map hit rate statistic for a particular map, but not the number of entry
statistic or the loader batch update time statistic. You can enable PMI in the
administrative console or with scripting.

Before you begin

Your application server must be started and have an eXtreme Scale-enabled
application installed. To enable PMI with scripting, you also must be able to log in
and use the wsadmin tool. For more information about the wsadmin tool, see the
wsadmin tool topic in the WebSphere Application Server information center.

About this task

Use WebSphere Application Server PMI to provide a granular mechanism with
which you can enable or disable statistics at any level. For example, you can
choose to enable the map hit rate statistic for a particular map, but not the number

Chapter 10. Monitoring your environment 481

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/rxml_commandline.html

of entry or the loader batch update time statistics. This section shows how to use
the administrative console and wsadmin scripts to enable ObjectGrid PMI.

Procedure
v Enable PMI in the administrative console.

1. In the administrative console, click Monitoring and Tuning > Performance
Monitoring Infrastructure > server_name.

2. Verify that Enable Performance Monitoring Infrastructure (PMI) is selected.
This setting is enabled by default. If the setting is not enabled, select the
check box, then restart the server.

3. Click Custom. In the configuration tree, select the ObjectGrid and ObjectGrid
Maps module. Enable the statistics for each module.

The transaction type category for ObjectGrid statistics is created at runtime. You
can see only the subcategories of the ObjectGrid and Map statistics on the
Runtime tab.

v Enable PMI with scripting.

1. Open a command line prompt. Navigate to the was_root/bin directory. Type
wsadmin to start the wsadmin command line tool.

2. Modify the eXtreme Scale PMI runtime configuration. Verify that PMI is
enabled for the server using the following commands:
wsadmin>set s1 [$AdminConfig getid /Cell:CELL_NAME/Node:NODE_NAME/

Server:APPLICATION_SERVER_NAME/]
wsadmin>set pmi [$AdminConfig list PMIService $s1]
wsadmin>$AdminConfig show $pmi.

If PMI is not enabled, run the following commands to enable PMI:
wsadmin>$AdminConfig modify $pmi {{enable true}}
wsadmin>$AdminConfig save

If you need to enable PMI, restart the server.
3. Set variables for changing the statistic set to a custom set using the following

commands:
wsadmin>set perfName [$AdminControl completeObjectName type=Perf,
process=APPLICATION_SERVER_NAME,*]
wsadmin>set perfOName [$AdminControl makeObjectName $perfName]
wsadmin>set params [java::new {java.lang.Object[]} 1]
wsadmin>$params set 0 [java::new java.lang.String custom]
wsadmin>set sigs [java::new {java.lang.String[]} 1]
wsadmin>$sigs set 0 java.lang.String

4. Set statistic set to custom using the following command:
wsadmin>$AdminControl invoke_jmx $perfOName setStatisticSet $params $sigs

5. Set variables to enable the objectGridModule PMI statistic using the
following commands:
wsadmin>set params [java::new {java.lang.Object[]} 2]
wsadmin>$params set 0 [java::new java.lang.String objectGridModule=1]
wsadmin>$params set 1 [java::new java.lang.Boolean false]
wsadmin>set sigs [java::new {java.lang.String[]} 2]
wsadmin>$sigs set 0 java.lang.String
wsadmin>$sigs set 1 java.lang.Boolean

6. Set the statistics string using the following command:

482 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

wsadmin>set params2 [java::new {java.lang.Object[]} 2]
wsadmin>$params2 set 0 [java::new java.lang.String mapModule=*]
wsadmin>$params2 set 1 [java::new java.lang.Boolean false]
wsadmin>set sigs2 [java::new {java.lang.String[]} 2]
wsadmin>$sigs2 set 0 java.lang.String
wsadmin>$sigs2 set 1 java.lang.Boolean

7. Set the statistics string using the following command:
wsadmin>$AdminControl invoke_jmx $perfOName setCustomSetString $params2 $sigs2

These steps enable eXtreme Scale runtime PMI, but do not modify the PMI
configuration. If you restart the application server, the PMI settings are lost
except for the main PMI enablement.

Example

You can perform the following steps to enable PMI statistics for the sample
application:
1. Launch the application using the http://host:port/ObjectGridSample Web

address, where host and port are the host name and HTTP port number of the
server where the sample is installed.

2. In the sample application, click ObjectGridCreationServlet, and then click action
buttons 1, 2, 3, 4, and 5 to generate actions to the ObjectGrid and maps. Do not
close this servlet page right now.

3. In the administrative console, click Monitoring and Tuning > Performance
Monitoring Infrastructure > server_name Click the Runtime tab.

4. Click the Custom radio button.
5. Expand the ObjectGrid Maps module in the runtime tree, then click the

clusterObjectGrid link. Under the ObjectGrid Maps group, there is an
ObjectGrid instance called clusterObjectGrid, and under the clusterObjectGrid
group four maps exist: counters, employees, offices, and sites. In the
ObjectGrids instance, there is the clusterObjectGrid instance, and under that
instance is a transaction type called DEFAULT.

6. You can enable the statistics of interest to you. For example, you can enable
number of map entries for employees map, and transaction response time for
the DEFAULT transaction type.

What to do next

After PMI is enabled, you can view PMI statistics with the administrative console
or through scripting.

Retrieving PMI statistics
By retrieving PMI statistics, you can see the performance of your eXtreme Scale
applications.

Before you begin
v Enable PMI statistics tracking for your environment. See “Enabling PMI” on

page 481 for more information.
v The paths in this task are assuming you are retrieving statistics for the sample

application, but you can use these statistics for any other application with
similar steps.

v If you are using the administrative console to retrieve statistics, you must be
able to log in to the administrative console. If you are using scripting, you must
be able to log in to wsadmin.

Chapter 10. Monitoring your environment 483

About this task

You can retrieve PMI statistics to view in Tivoli Performance Viewer by completing
steps in the administrative console or with scripting.
v Administrative console steps
v Scripting steps

For more information about the statistics that can be retrieved, see “PMI modules”
on page 485.

Procedure
v Retrieve PMI statistics in the administrative console.

1. In the administrative console, click Monitoring and tuning > Performance
viewer > Current activity

2. Select the server that you want to monitor using Tivoli Performance Viewer,
then enable the monitoring.

3. Click the server to view the Performance viewer page.
4. Expand the configuration tree. Click ObjectGrid Maps > clusterObjectGrid

select employees. Expand ObjectGrids > clusterObjectGrid and select
DEFAULT.

5. In the ObjectGrid sample application, go to the ObjectGridCreationServlet
servlet , click button 1, then populate maps. You can view the statistics in the
viewer.

v Retrieve PMI statistics with scripting.
1. On a command line prompt, navigate to the was_root/bin directory. Type

wsadmin to start the wsadmin tool.
2. Set variables for the environment using the following commands:

wsadmin>set perfName [$AdminControl completeObjectName type=Perf,*]
wsadmin>set perfOName [$AdminControl makeObjectName $perfName]
wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,
name=APPLICATION_SERVER_NAME,*]

3. Set variables to get mapModule statistics using the following commands:
wsadmin>set params [java::new {java.lang.Object[]} 3]
wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]
wsadmin>$params set 1 [java::new java.lang.String mapModule]
wsadmin>$params set 2 [java::new java.lang.Boolean true]
wsadmin>set sigs [java::new {java.lang.String[]} 3]
wsadmin>$sigs set 0 javax.management.ObjectName
wsadmin>$sigs set 1 java.lang.String
wsadmin>$sigs set 2 java.lang.Boolean

4. Get mapModule statistics using the following command:
wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

5. Set variables to get objectGridModule statistics using the following
commands:
wsadmin>set params2 [java::new {java.lang.Object[]} 3]
wsadmin>$params2 set 0 [$AdminControl makeObjectName $mySrvName]
wsadmin>$params2 set 1 [java::new java.lang.String objectGridModule]
wsadmin>$params2 set 2 [java::new java.lang.Boolean true]
wsadmin>set sigs2 [java::new {java.lang.String[]} 3]
wsadmin>$sigs2 set 0 javax.management.ObjectName
wsadmin>$sigs2 set 1 java.lang.String
wsadmin>$sigs2 set 2 java.lang.Boolean

6. Get objectGridModule statistics using the following command:
wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params2 $sigs2

484 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Results

You can view statistics in the Tivoli Performance Viewer.

PMI modules
You can monitor the performance of your applications with the performance
monitoring infrastructure (PMI) modules.

objectGridModule

The objectGridModule contains a time statistic: transaction response time. A
transaction is defined as the duration between the Session.begin method call and
the Session.commit method call. This duration is tracked as the transaction
response time. The root element of the objectGridModule, "root", serves as the
entry point to the WebSphere eXtreme Scale statistics. This root element has
ObjectGrids as its child elements, which have transaction types as their child
elements. The response time statistic is associated with each transaction type.

The following diagram shows an example of the ObjectGridModule structure. In
this example, two ObjectGrid instances exist in the system: ObjectGrid A and
ObjectGrid B. The ObjectGrid A instance has two types of transactions: A and
default. The ObjectGrid B instance has only the default transaction type.

Root

<objectgrid_name>
StatsGroup-
aggregates for all
transaction types

<transaction_type>
StatsModule-
no grouping

Response Time

StatsGroup Root-
aggregates for all
descendant nodes

The Interface for a Group
is still a StatsModule. The
aggregation is transparent

Figure 34. ObjectGridModule module structure

Chapter 10. Monitoring your environment 485

Transaction types are defined by application developers because they know what
types of transactions their applications use. The transaction type is set using the
following Session.setTransactionType(String) method:
/**
* Sets the transaction type for future transactions.
*
* After this method is called, all of the future transactions have the
* same type until another transaction type is set. If no transaction
* type is set, the default TRANSACTION_TYPE_DEFAULT transaction type
* is used.
*
* Transaction types are used mainly for statistical data tracking purpose.
* Users can predefine types of transactions that run in an
* application. The idea is to categorize transactions with the same characteristics
* to one category (type), so one transaction response time statistic can be
* used to track each transaction type.
*
* This tracking is useful when your application has different types of
* transactions.
* Among them, some types of transactions, such as update transactions, process
* longer than other transactions, such as read−only transactions. By using the
* transaction type, different transactions are tracked by different statistics,
* so the statistics can be more useful.
*
* @param tranType the transaction type for future transactions.
*/
void setTransactionType(String tranType);

The following example sets transaction type to updatePrice:
// Set the transaction type to updatePrice
// The time between session.begin() and session.commit() will be
// tracked in the time statistic for "updatePrice".
session.setTransactionType("updatePrice");
session.begin();
map.update(stockId, new Integer(100));
session.commit();

The first line indicates that the subsequent transaction type is updatePrice. An
updatePrice statistic exists under the ObjectGrid instance that corresponds to the
session in the example. Using Java Management Extensions (JMX) interfaces, you

Root Group

ObjectGrid A ObjectGrid B

Response
Time

Response
Time

Transaction Type
Default

Transaction Type A
Transaction Type

Default

Response
Time

Figure 35. ObjectGridModule module structure example

486 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

can get the transaction response time for updatePrice transactions. You can also get
the aggregated statistic for all types of transactions on the specified ObjectGrid
instance.

mapModule

The mapModule contains three statistics that are related to eXtreme Scale maps:
v Map hit rate - BoundedRangeStatistic: Tracks the hit rate of a map. Hit rate is a

float value between 0 and 100 inclusively, which represents the percentage of
map hits in relation to map get operations.

v Number of entries-CountStatistic: Tracks the number of entries in the map.
v Loader batch update response time-TimeStatistic: Tracks the response time that

is used for the loader batch-update operation.

The root element of the mapModule, "root", serves as the entry point to the
ObjectGrid Map statistics. This root element has ObjectGrids as its child elements,
which have maps as their child elements. Every map instance has the three listed
statistics. The mapModule structure is shown in the following diagram:

The following diagram shows an example of the mapModule structure:

StatsGroup Root-
aggregates for all
descendant nodes

Root

<objectgrid_name>
StatsGroup-

maps
aggregates for
all

<map_name>
StatsModule-
no grouping

Hit
Rate

Number of
Entries

Batch
Update

Figure 36. mapModule structure

Figure 37. mapModule module structure example

Chapter 10. Monitoring your environment 487

Root Group

ObjectGrid A ObjectGrid B

Hit Rate

Number of
Entries

Batch Update

Hit Rate

Number of
Entries

Batch Update

Map A Map B Map A

Hit Rate

Number of
Entries

Batch Update

hashIndexModule

The hashIndexModule contains the following statistics that are related to Map-level
indexes:
v Find Count-CountStatistic: The number of invocations for the index find

operation.
v Collision Count-CountStatistic: The number of collisions for the find operation.
v Failure Count-CountStatistic: The number of failures for the find operation.
v Result Count-CountStatistic: The number of keys returned from the find

operation.
v BatchUpdate Count-CountStatistic: The number of batch updates against this

index. When the corresponding map is changed in any manner, the index will
have its doBatchUpdate() method called. This statistic will tell you how
frequently your index is changing or being updated.

v Find Operation Duration Time-TimeStatistic: The amount of time the find
operation takes to complete

The root element of the hashIndexModule, "root", serves as the entry point to the
HashIndex statistics. This root element has ObjectGrids as its child elements,
ObjectGrids have maps as their child elements, which finally have HashIndexes as
their child elements and leaf nodes of the tree. Every HashIndex instance has the
three listed statistics. The hashIndexModule structure is shown in the following
diagram:

488 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

The following diagram shows an example of the hashIndexModule structure:

agentManagerModule

The agentManagerModule contains statistics that are related to map-level agents:
v Reduce Time: TimeStatistic - The amount of time for the agent to finish the

reduce operation.
v Total Duration Time: TimeStatistic - The total amount of time for the agent to

complete all operations.

<objectgrid_name>

StatsGroup-
aggregates for all
index’s in the
specified grid

<map_name>

StatsGroup-

map

aggregates for all
index’s in the
specified

<index_name>
StatsModule-
no grouping

Root

StatsGroup Root-
aggregates for all
descendant nodes

Find
Count

Collision
Count

Failure
Count

Result
Count

Batch
Update
Count

Duration
Time

Figure 38. hashIndexModule module structure

Root Group

ObjectGrid A ObjectGrid B

Individual
Stats

Customers Map Inventory Map Accounts Map

Customer Last
Name Index

Customer
Location Index

Account Opening-
Date Index

Individual
Stats

Individual
Stats

Figure 39. hashIndexModule module structure example

Chapter 10. Monitoring your environment 489

v Agent Serialization Time: TimeStatistic - The amount of time to serialize the
agent.

v Agent Inflation Time: TimeStatistic - The amount of time it takes to inflate the
agent on the server.

v Result Serialization Time: TimeStatistic - The amount of time to serialize the
results from the agent.

v Result Inflation Time: TimeStatistic - The amount of time to inflate the results
from the agent.

v Failure Count: CountStatistic - The number of times that the agent failed.
v Invocation Count: CountStatistic - The number of times the AgentManager has

been invoked.
v Partition Count: CountStatistic - The number of partitions to which the agent is

sent.

The root element of the agentManagerModule, "root", serves as the entry point to
the AgentManager statistics. This root element has ObjectGrids as its child
elements, ObjectGrids have maps as their child elements, which finally have
AgentManager instances as their child elements and leaf nodes of the tree. Every
AgentManager instance has statistics.

<objectgrid_name>

StatsGroup-
aggregates for all
agents run against
the specified grid

<map_name>

StatsGroup-
aggregates for all
agents run against
the specified map

<agent_class_name>
StatsModule-
no grouping

Root

StatsGroupRoot-
aggregates for all
descendant nodes

Total
Duration

Time

Agent
Serialization

Time

Agent
Inflation

Time

Result
Serialization

Time

Result
Inflation

Time

Reduce
Time

Failure
Count

Invocation
Count

Partition
Count

Figure 40. agentManagerModule structure

490 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

queryModule

The queryModule contains statistics that are related to eXtreme Scale queries:
v Plan Creation Time: TimeStatistic - The amount of time to create the query plan.
v Execution Time: TimeStatistic - The amount of time to run the query.
v Execution Count: CountStatistic - The number of times the query has been run.
v Result Count: CountStatistic - The count for each the result set of each query

run.
v FailureCount: CountStatistic - The number of times the query has failed.

The root element of the queryModule, "root", serves as the entry point to the
Query Statistics. This root element has ObjectGrids as its child elements, which
have Query objects as their child elements and leaf nodes of the tree. Every Query
instance has the three listed statistics.

Root Group

ObjectGrid A ObjectGrid B

Individual
Stats

Customers Map Inventory Map Accounts Map

Customer
Deletion Agent

Find Customer
Agent

Double Acount
Balance Agent

Individual
Stats

Individual
Stats

Figure 41. agentManagerModule structure example

Chapter 10. Monitoring your environment 491

Accessing Managed Beans (MBeans) using the wsadmin tool
You can use the wsadmin utility provided in WebSphere Application Server to
access managed bean (MBean) information.

Procedure

Run the wsadmin tool from the bin directory in your WebSphere Application
Server installation. The following example retrieves a view of the current shard
placement in a dynamic eXtreme Scale. You can run the wsadmin tool from any
installation where eXtreme Scale is running. You do not have to run the wsadmin
tool on the catalog service.
$ wsadmin.sh -lang jython
wsadmin>placementService = AdminControl.queryNames
("com.ibm.websphere.objectgrid:*,type=PlacementService")
wsadmin>print AdminControl.invoke(placementService,
"listObjectGridPlacement","library ms1")

<objectGrid name="library" mapSetName="ms1">
<container name="container-0" zoneName="DefaultDomain"

Root

<objectgrid_name>
StatsGroup-
aggregates for all
grid-specific queries

<query_string>
StatsModule-
no grouping

StatsGroup Root-
aggregates for all
descendant nodes

Creation
Time

Execution
Time

Execution
Count

Result
Count

Failure
Count

Figure 42. queryModule structure

Root Group

ObjectGrid A ObjectGrid B

Individual
Stats

Individual
Stats

Query A Query B Query C

Individual
Stats

Figure 43. QueryStats.jpg queryModule structure example

492 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

hostName="host1.company.org" serverName="server1">
<shard type="Primary" partitionName="0"/>
<shard type="SynchronousReplica" partitionName="1"/>

</container>
<container name="container-1" zoneName="DefaultDomain"
hostName="host2.company.org" serverName="server2">

<shard type="SynchronousReplica" partitionName="0"/>
<shard type="Primary" partitionName="1"/>

</container>
<container name="UNASSIGNED" zoneName="_ibm_SYSTEM"
hostName="UNASSIGNED" serverName="UNNAMED">

<shard type="SynchronousReplica" partitionName="0"/>
<shard type="AsynchronousReplica" partitionName="0"/>

</container>
</objectGrid>

Monitoring with managed beans (MBeans)
You can used managed beans (MBeans) to track statistics in your environment.

Before you begin

For the attributes to be recorded, you must enable statistics. You can enable
statistics in one of the following ways:
v With the server properties file:

You can enable statistics in the server properties file with a key-value entry of
statsSpec=<StatsSpec>. Some examples of possible settings follow:
– To enable all statistics, use statsSpec=all=enabled

– To enable only ObjectGrid statistics, use statsSpec=og.all=enabled. To see a
description of all possible statistics specifications, see the StatsSpec API in the
API documentation.

For more information about the server properties file, see “Server properties file”
on page 199.

v With a managed bean:

You can enable statistics using the StatsSpec attribute on the ObjectGrid MBean.
For more information, see the StatsSpec API in the API documentation.

v Programmatically:

You can also enable statistics programmatically with the StatsAccessor interface,
which is retrieved with the StatsAccessorFactory class. Use this interface in a
client environment or when you need to monitor a data grid that is running in
the current process.

Procedure
v Access MBean statistics using the wsadmin tool.

For more information, see “Accessing Managed Beans (MBeans) using the
wsadmin tool” on page 375.

v Access MBean statistics programmatically.

For more information, see “Accessing Managed Beans (MBeans)
programmatically” on page 375.

Example

For an example of how to use managed beans, see “Monitoring with the xsadmin
utility” on page 470.

Chapter 10. Monitoring your environment 493

Monitoring with vendor tools
WebSphere eXtreme Scale can be monitored using several popular enterprise
monitoring solutions. Plug-in agents are included for IBM Tivoli Monitoring and
Hyperic HQ, which monitor WebSphere eXtreme Scale using publicly accessible
management beans. CA Wily Introscope uses Java method instrumentation to
capture statistics.

Monitoring with the IBM Tivoli Enterprise Monitoring Agent for
WebSphere eXtreme Scale

The IBM Tivoli Enterprise Monitoring Agent is a feature-rich monitoring solution
that you can use to monitor databases, operating systems and servers in
distributed and host environments. WebSphere eXtreme Scale includes a
customized agent that you can use to introspect eXtreme Scale management beans.
This solution works effectively for both stand-alone eXtreme Scale and WebSphere
Application Server deployments.

Before you begin
v Install WebSphere eXtreme Scale Version 7.0.0 or later.

Also, statistics must be enabled in order to collect statistical data from
WebSphere eXtreme Scale servers. Various options for enabling statistics are
described in “Monitoring with managed beans (MBeans)” on page 493 and
“Monitoring with the xsadmin utility” on page 470

v Install IBM Tivoli Monitoring Version 6.2.1 with fix pack 2 or later.
v Install the Tivoli OS agent on each server or host on which eXtreme Scale

servers run.
v Install the WebSphere eXtreme Scale agent, which you can download for free

from the IBM Open Process Automation Library (OPAL) site.

Complete the following steps to install and configure the Tivoli Monitoring Agent:

Procedure
1. Install the Tivoli Monitoring Agent for WebSphere eXtreme Scale.

Download the Tivoli installation image and extract its files to a temporary
directory.

2. Install eXtreme Scale application support files.
Install eXtreme Scale application support on each of the following deployments.
v Tivoli Enterprise Portal Server (TEPS)
v Enterprise Desktop client (TEPD)
v Tivoli Enterprise Monitoring Server (TEMS)
a. From the temporary directory that you created, start a new command

window and run the appropriate executable file for your platform. The
installation script automatically detects your Tivoli deployment type (TEMS,
TEPD, or TEPS). You can install any type on a single host or on multiple
hosts; and all of the three deployment types require the installation of the
eXtreme Scale agent application support files.

b. In the Installer window, verify that the selections for the Tivoli Components
deployed are correct. Click Next.

c. If you are prompted, submit your hostname and administrative credentials.
Click Next.

d. Select the Monitoring Agent for WebSphere eXtreme Scale. Click Next.

494 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www-01.ibm.com/software/brandcatalog/portal/opal

e. You are notified of what installation actions are to be performed. Click
Next, and you can see the progress of the installation until completion.

After completing the procedure, all application support files required by
WebSphere eXtreme Scale agent are installed.

3. Install the agent on each of the eXtreme Scale nodes.
You install a Tivoli OS agent on each of the computers. You do not need to
configure or start this agent. Use the same installation image from the previous
step to run the platform specific executable file.
As a guideline, you need to install only one agent per host. Each agent is
capable of supporting many instances of eXtreme Scale servers. For best
performance, use one agent instance for monitoring about 50 eXtreme Scale
servers.
a. From the installation wizard welcome screen, click Next to open the screen

to specify installation path information.
b. For the Tivoli Monitoring installation directory field, enter or browse to

C:\IBM\ITM (or /opt/IBM/ITM). Then for the Location for installable media
field, verify that the displayed value is correct and click Next.

c. Select the components you want to add, such as Perform a local install of
the solution and click Next.

d. Select the applications for which to add support for by selecting the
application, such as Monitoring Agent for WebSphere eXtreme Scale, and
click Next.

e. You can see the progress until application support is added successfully.

Note: Repeat these steps on each of the eXtreme Scale nodes. You can also use
silent installation. See the IBM Tivoli Monitoring Information Center for more
information about silent installation.

4. Configure the WebSphere eXtreme Scale agent.
Each of the agents installed need to be configured to monitor any catalog
server, eXtreme Scale server, or both.
The steps to configure Windows and UNIX platforms are different.
Configuration for the Windows platform is completed with the Manage Tivoli
Monitoring Services user interface. Configuration for UNIX platforms is
command-line based.

Windows Use the following steps to initially configure the agent on Windows
a. From the Manage Tivoli Enterprise Monitoring Services window, click

Start > All Programs > IBM Tivoli Monitoring > Manage Tivoli
Monitoring Services.

b. Right click on Monitoring Agent for WebSphere eXtreme Scale and select
Configure using default, which opens a window to create a unique
instance of the agent.

c. Choose a unique name: for example, instance1, and click Next.
v If you plan to monitor stand-alone eXtreme Scale servers, complete the

following steps:
a. Update the Java parameters, ensure that the Java Home value is correct.

JVM arguments can be left empty. Click Next.
b. Select the type of MBean server connection type, Use JSR-160-Complaint

Server for stand-alone eXtreme Scale servers. Click Next.

Chapter 10. Monitoring your environment 495

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.itm.doc_6.2.1/welcome.htm

c. If security is enabled, update User ID and Password values. Leave the
JMX service URL value as is. You override this value later. Leave the
JMX Class Path Information field as it is. Click Next.

To configure the servers for the agent on Windows, complete the following
steps:
a. Set up subnode instances of eXtreme Scale servers in the WebSphere

eXtreme Scale Grid Servers pane. If no container servers exist on your
computer, click Next to proceed to the catalog service pane.

b. If multiple eXtreme Scale container servers exist on your computer,
configure the agent to monitor each one server.

c. You can add as many eXtreme Scale servers as you require, if their names
and ports are unique, by clicking New. (When an eXtreme Scale server is
started, a JMXPort value must be specified.)

d. After you configure the container servers, click Next, which brings you to
the WebSphere eXtreme Scale Catalog Servers pane.

e. If you have no catalog servers, click OK. If you have catalog servers, add
a new configuration for each server, as you did with the container
servers. Again, choose a unique name, preferably the same name that is
used when starting the catalog service. Click OK to finish.

v If you plan to monitor servers for the agent on eXtreme Scale servers that are
embedded within a WebSphere Application Server process, complete the
following steps:
a. Update the Java parameters, ensure that the Java Home value is correct.

JVM arguments can be left empty. Click Next.
b. Select the MBean server connection type. Select the WebSphere

Application Server version that is appropriate for your environment.
Click Next.

c. Ensure that the WebSphere Application Server information in the panel is
correct. Click Next.

d. Add only one subnode definition. Give the subnode definition a name,
but do not update the port definition. Within WebSphere Application
Server environment, data can be collected from all the application server
that are managed by the node agent that is running on the computer.
Click Next.

e. If there no catalog servers exist in the environment, click OK. If you have
catalog servers, add a new configuration for each catalog server, similarly
to the container servers. Choose a unique name for the catalog service,
preferably the same name that you use when starting the catalog service.
Click OK to finish.

Note: The container servers do not need to be collocated with the catalog
service.
Now that the agent and servers are configured and ready, on the next window,
right click on instance1 to start the agent.

UNIX To configure the agent on the UNIX platform on the command line,
complete the following steps:
An example follows for stand-alone servers that uses a JSR160 Compliant
connection type. The example shows three eXtreme Scale containers on the
single host (rhea00b02) and the JMX listener addresses are 15000,15001 and
15002 respectively. There are no catalog servers.

496 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Output from the configuration utility displays in monospace italics, while the
user response is in monospace bold. (If no user response was required, the
default was selected by pressing the enter key.)

rhea00b02 # ./itmcmd config -A xt
Agent configuration started...
Enter instance name (default is:): inst1
Edit "Monitoring Agent for WebSphere eXtreme Scale" settings? [1=Yes, 2=No] (default is: 1):
Edit ’Java’ settings? [1=Yes, 2=No] (default is: 1):
Java home (default is: C:\Program Files\IBM\Java50): /opt/OG61/java
Java trace level [1=Error, 2=Warning, 3=Information, 4=Minimum Debug, 5=Medium Debug, 6=Maximum Debug,

7=All] (default is: 1):
JVM arguments (default is:):
Edit ’Connection’ settings? [1=Yes, 2=No] (default is: 1):
MBean server connection type [1=JSR-160-Compliant Server, 2=WebSphere Application Server version 6.0,
3=WebSphere Application Server version 6.1, 4=WebSphere Application Server version 7.0] (default is: 1): 1
Edit ’JSR-160-Compliant Server’ settings? [1=Yes, 2=No] (default is: 1):
JMX user ID (default is:):
Enter JMX password (default is:):
Re-type : JMX password (default is:):
JMX service URL (default is: service:jmx:rmi:///jndi/rmi://localhost:port/objectgrid/MBeanServer):
--
JMX Class Path Information
JMX base paths (default is:):
JMX class path (default is:):
JMX JAR directories (default is:):
Edit ’WebSphere eXtreme Scale Catalog Service’ settings? [1=Yes, 2=No] (default is: 1): 2
Edit ’WebSphere eXtreme Scale Grid Servers’ settings? [1=Yes, 2=No] (default is: 1): 1
No ’WebSphere eXtreme Scale Grid Servers’ settings available?
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 1
WebSphere eXtreme Scale Grid Servers (default is:): rhea00b02_c0
JMX service URL (default is: service:jmx:rmi:///jndi/rmi://localhost:<port>/objectgrid/MBeanServer):
service:jmx:rmi:///jndi/rmi://localhost:15000/objectgrid/MBeanServer

’WebSphere eXtreme Scale Grid Servers’ settings: WebSphere eXtreme Scale Grid Servers=ogx
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 1
WebSphere eXtreme Scale Grid Servers (default is:): rhea00b02_c1
JMX service URL (default is: service:jmx:rmi:///jndi/rmi://localhost:<port>/objectgrid/MBeanServer):
service:jmx:rmi:///jndi/rmi://localhost:15001/objectgrid/MBeanServer

’WebSphere eXtreme Scale Grid Servers’ settings: WebSphere eXtreme Scale Grid Servers= rhea00b02_c1
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 1
WebSphere eXtreme Scale Grid Servers (default is:): rhea00b02_c2
JMX service URL (default is: service:jmx:rmi:///jndi/rmi://localhost:<port>/objectgrid/MBeanServer):
service:jmx:rmi:///jndi/rmi://localhost:15002/objectgrid/MBeanServer

’WebSphere eXtreme Scale Grid Servers’ settings: WebSphere eXtreme Scale Grid Servers= rhea00b02_c2
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 5

Will this agent connect to a TEMS? [1=YES, 2=NO] (Default is: 1):
TEMS Host Name (Default is: rhea00b00):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

Now choose the next protocol number from one of these:
- ip
- sna
- ip.spipe
- 0 for none

Network Protocol 2 (Default is: 0):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [1=YES, 2=NO] (Default is: 2):
Enter Optional Primary Network Name or 0 for "none" (Default is: 0):
Agent configuration completed...

The previous example creates an agent instance called “inst1”, and updates the
Java Home settings. The eXtreme Scale container servers are configured, but the
catalog service is not configured.

Note: The previous procedure creates a text file of the following format in the
directory: <ITM_install>/config/<host>_xt_<instance name>.cfg.
Example: rhea00b02_xt_inst1.cfg

Chapter 10. Monitoring your environment 497

It is best to edit this file with your choice of plain text editor. An example of
the content of such the file follows:

INSTANCE=inst2 [SECTION=KQZ_JAVA [{ JAVA_HOME=/opt/OG61/java } { JAVA_TRACE_LEVEL=ERROR }]
SECTION=KQZ_JMX_CONNECTION_SECTION [{ KQZ_JMX_CONNECTION_PROPERTY=KQZ_JMX_JSR160_JSR160 }]
SECTION=KQZ_JMX_JSR160_JSR160 [{ KQZ_JMX_JSR160_JSR160_CLASS_PATH_TITLE= }
{ KQZ_JMX_JSR160_JSR160_SERVICE_URL=service:jmx:rmi:///jndi/rmi://localho
st:port/objectgrid/MBeanServer } { KQZ_JMX_JSR160_JSR160_CLASS_PATH_SEPARATOR= }]
SECTION=OGS:rhea00b02_c1 [{ KQZ_JMX_JSR160_JSR160_SERVICE_URL=service:jmx:
rmi:///jndi/rmi://localhost:15001/objectgrid/MBeanServer }]
SECTION=OGS:rhea00b02_c0 [{ KQZ_JMX_JSR160_JSR160_SERVICE_URL=service:jmx:
rmi:///jndi/rmi://localhost:15002/objectgrid/MBeanServer }]
SECTION=OGS:rhea00b02_c2 [{ KQZ_JMX_JSR160_JSR160_SERVICE_URL=service:jmx:
rmi:///jndi/rmi://localhost:15002/objectgrid/MBeanServer }]]

An example that shows a configuration on a WebSphere Application Server
deployment follows:

rhea00b02 # ./itmcmd config -A xt
Agent configuration started...
Enter instance name (default is:): inst1
Edit "Monitoring Agent for WebSphere eXtreme Scale" settings? [1=Yes, 2=No] (default is: 1): 1
Edit ’Java’ settings? [1=Yes, 2=No] (default is: 1): 1
Java home (default is: C:\Program Files\IBM\Java50): /opt/WAS61/java
Java trace level [1=Error, 2=Warning, 3=Information, 4=Minimum Debug, 5=Medium Debug, 6=Maximum Debug,

7=All] (default is: 1):
JVM arguments (default is:):
Edit ’Connection’ settings? [1=Yes, 2=No] (default is: 1):
MBean server connection type [1=JSR-160-Compliant Server, 2=WebSphere Application Server version 6.0,
3=WebSphere Application Server version 6.1, 4=WebSphere Application Server version 7.0] (default is: 1): 4
Edit ’WebSphere Application Server version 7.0’ settings? [1=Yes, 2=No] (default is: 1):WAS user ID (default is:):
Enter WAS password (default is:):
Re-type : WAS password (default is:):
WAS host name (default is: localhost): rhea00b02
WAS port (default is: 2809):
WAS connector protocol [1=rmi, 2=soap] (default is: 1):
WAS profile name (default is:): default
--
WAS Class Path Information
WAS base paths (default is: C:\Program Files\IBM\WebSphere\AppServer;/opt/IBM/WebSphere/AppServer): /opt/WAS61
WAS class path (default is: runtimes/com.ibm.ws.admin.client_6.1.0.jar;runtimes/com.ibm.ws.ejb.thinclient_7.0.0.jar):
WAS JAR directories (default is: lib;plugins):
Edit ’WebSphere eXtreme Scale Grid Servers’ settings? [1=Yes, 2=No] (default is: 1):
No ’WebSphere eXtreme Scale Grid Servers’ settings available?
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 1
WebSphere eXtreme Scale Grid Servers (default is:): rhea00b02
JMX service URL (default is: service:jmx:rmi:///jndi/rmi://localhost:<port>/objectgrid/MBeanServer):

’WebSphere eXtreme Scale Grid Servers’ settings: WebSphere eXtreme Scale Grid Servers=rhea00b02
Edit ’WebSphere eXtreme Scale Grid Servers’ settings, [1=Add, 2=Edit, 3=Del, 4=Next, 5=Exit] (default is: 4): 5
Edit ’WebSphere eXtreme Scale Catalog Service’ settings? [1=Yes, 2=No] (default is: 1): 2
Will this agent connect to a TEMS? [1=YES, 2=NO] (Default is: 1):
TEMS Host Name (Default is: rhea00b02):

Network Protocol [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

Now choose the next protocol number from one of these:
- ip
- sna
- ip.spipe
- 0 for none

Network Protocol 2 (Default is: 0):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):

Configure connection for a secondary TEMS? [1=YES, 2=NO] (Default is: 2):
Enter Optional Primary Network Name or 0 for "none" (Default is: 0):
Agent configuration completed...
rhea00b02 #

For WebSphere Application Server deployments, you do not need to create
multiple sub nodes. The eXtreme Scale agent connects to the node agent to
gather all the information from application servers for which it is responsible.
SECTION=CAT signifies a catalog service line whereas SECTION=OGS signifies an
eXtreme Scale server configuration line.

498 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

5. Configure the JMX port for all eXtreme Scalecontainer servers.
When eXtreme Scale container servers are started, without specifying the
-JMXServicePort argument, an MBean server is assigned a dynamic port. The
agent needs to know in advance with which JMX port to communicate. The
agent does not work with dynamic ports.
When you start the servers, you must specify the -JMXServicePort
<port_number> argument when you start the eXtreme Scale server using the
startOgServer.sh | .bat command. Running this command ensures that the
JMX server within the process listens to a static pre-defined port.
For the previous examples in a UNIX installation, two eXtreme Scale servers
need to be started with ports set:
a. "-JMXServicePort" "15000" (for rhea00b02_c0)
b. "-JMXServicePort" "15001" (for rhea00b02_c1)
a. Start the eXtreme Scale agent.

Assuming the inst1 instance was created, as in the previous example, issue
the following commands.
1) cd <ITM_install>/bin

2) itmcmd agent –o inst1 start xt

b. Stop the eXtreme Scale agent.
Assuming “inst1” was the instance created, as in the previous example,
issue the following commands.
1) cd <ITM_install>/bin

2) itmcmd agent –o inst1 stop xt

6. Enable Statistics for all eXtreme Scale container servers.
The agent uses the eXtreme Scale statistics MBeans to record statistics. The
eXtreme Scale statistics specification must be enabled using one of the
following methods.
v Configure server properties to enable all statistics when the container servers

are started: all=enabled.
v Use the xsadmin sample utility to enable statistics for all active containers

using the -setstatsspec all=enabled parameters.

Results

After all servers are configured and started, MBeans data is displayed on the IBM
Tivoli Portal console. Predefined workspaces show graphs and data metrics at each
node level.

The following workspaces are defined: eXtreme Scale Grid Servers node for all
nodes monitored.
v eXtreme Scale Transactions View
v eXtreme Scale Primary Shard View
v eXtreme Scale Memory View
v eXtreme Scale ObjectMap View

You can also configure your own workspace. For more information, see the
information about customizing workspaces in the IBM Tivoli Monitoring
Information Center.

Chapter 10. Monitoring your environment 499

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.itm.doc_6.2.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.itm.doc_6.2.1/welcome.htm

Monitoring eXtreme Scale applications with CA Wily
Introscope

CA Wily Introscope is a third-party management product that you can use to
detect and diagnose performance problems in enterprise application environments.
eXtreme Scale includes details on configuring CA Wily Introscope to introspect
select portions of the eXtreme Scale run time to quickly view and validate eXtreme
Scale applications. CA Wily Introscope works effectively for both stand-alone and
WebSphere Application Server deployments.

Overview

To monitor eXtreme Scale applications with CA Wily Introscope, you must put
settings into the ProbeBuilderDirective (PBD) files that give you access to the
monitoring information for eXtreme Scale.

Attention: The instrumentation points for Introscope might change with each fix
pack or release. When you install a new fix pack or release, check the
documentation for any changes in the instrumentation points.

You can configure CA Wily Introscope ProbeBuilderDirective (PBD) files to monitor
your eXtreme Scale applications. CA Wily Introscope is an application management
product with which you can proactively detect, triage and diagnose performance
problems in your complex, composite and Web application environments.

PBD file settings for monitoring the catalog service

You can use one or more of the following settings in your PBD file to monitor the
catalog service.
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

changeDefinedCompleted
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

viewChangeCompleted
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

viewAboutToChange
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeat
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatCluster
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatCurrentLeader
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatDeadServer
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatNewLeader
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatNewServer
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.catalog.placement.

PlacementServiceImpl
importRouteInfo BlamePointTracerDifferentMethods

"OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.catalog.placement.

500 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

PlacementServiceImpl heartbeat
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.catalog.placement.

PlacementServiceImpl joinPlacementGroup
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"

TraceOneMethodOfClass:
com.ibm.ws.objectgrid.catalog.placement.PlacementServiceImpl

classifyServer
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.catalog.placement.

BalanceGridEventListener shardActivated
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.catalog.placement.

BalanceGridEventListener shardDeactivate
BlamePointTracerDifferentMethods "OGcatalog|{classname}|{method}"

Classes for monitoring the catalog service

HAControllerImpl
The HAControllerImpl class handles core group life cycle and feedback
events. You can monitor this class to get an indication of the core group
structure and changes.

ServerAgent
The ServerAgent class is responsible for communicating core group events
with the catalog service. You can monitor the various heartbeat calls to
spot major events.

PlacementServiceImpl
The PlacementServiceImpl class coordinates the containers. You can use the
methods on this class to monitor server join and placement events.

BalanceGridEventListener
The BalanceGridEventListener class controls the catalog leadership. You
can monitor this class to get an indication of which catalog service is
currently acting as the leader.

PBD file settings for monitoring the containers

You can use one or more of the following settings in your PBD file to monitor the
containers.
TraceOneMethodOfClass: com.ibm.ws.objectgrid.ShardImpl processMessage
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.plugins.

CommittedLogSequenceListenerProxy applyCommitted
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.plugins.

CommittedLogSequenceListenerProxy sendApplyCommitted
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.map.BaseMap evictMapEntries
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.checkpoint.

CheckpointMapImpl$CheckpointIterator activateListener
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

changeDefinedCompleted
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

viewChangeCompleted
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.hamanager.HAControllerImpl

viewAboutToChange
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

batchProcess

Chapter 10. Monitoring your environment 501

BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeat
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatCluster
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatCurrentLeader
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatDeadServer
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatNewLeader
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.container.ServerAgent

heartbeatNewServer
BlamePointTracerDifferentMethods "OGcontainer|{classname}|{method}"

Classes for monitoring the containers

ShardImpl
The ShardImpl class has the processMessage method. The processMessage
method is the method for client requests. With this method, you can get
server side response time and request counts. By watching the counts
across all the servers and monitoring heap utilization, you can determine if
the grid is balanced.

CheckpointIterator
The CheckpointIterator class has the activateListener method call which
puts primaries into peer mode. When the primaries are put into peer
mode, the replica is up to date with the primary after the method
completes. When a replica is regenerating from a full primary, this
operation can take an extended period of time. The system is not fully
recovered until this operation completes, so you can use this class to
monitor the progress of the operation.

CommittedLogSequenceListenerProxy
The CommittedLogSequenceListenerProxy class has two methods of
interest. The applyCommitted method runs for every transaction and the
sendApplyCommitted runs as the replica is pulling information. The ratio
of how often these two methods run can give you some indication of how
well the replica is able to keep up with the primary.

PBD file settings for monitoring the clients

You can use one or more of the following settings in your PBD file to monitor the
clients.
TraceOneMethodOfClass: com.ibm.ws.objectgrid.client.ORBClientCoreMessageHandler
sendMessage
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.corba.cluster.ClusterStore

bootstrap
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.corba.cluster.ClusterStore

epochChangeBootstrap
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.map.BaseMap evictMapEntries
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.cluster.orb.routing.

SelectionServiceImpl routeFailed
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"

502 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

TraceOneMethodOfClass: com.ibm.ws.objectgrid.cluster.orb.routing.
SelectionServiceImpl routeFailed

BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.SessionImpl getMap
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TraceOneMethodOfClass: com.ibm.ws.objectgrid.ObjectGridImpl getSession
BlamePointTracerDifferentMethods "OGclient|{classname}|{method}"
TurnOn: ObjectMap
SetFlag: ObjectMap
IdentifyClassAs: com.ibm.ws.objectgrid.ObjectMapImpl ObjectMap
TraceComplexMethodsifFlagged: ObjectMap BlamePointTracerDifferentMethods
"OGclient|{classname}|{method}"

Classes for monitoring the clients

ORBClientCoreMessageHandler
The ORBClientCoreMessageHandler class is responsible for sending
application requests to the containers. You can monitor the sendMessage
method for client response time and number of requests.

ClusterStore
The ClusterStore class holds the routing information on the client side.

BaseMap
The BaseMap class has the evictMapEntries method that is called when the
evictor wants to remove entries from the map.

SelectionServiceImpl
The SelectionServiceImpl class makes the routing decisions. If the client is
making failover decisions, you can use this class to see the actions that are
completed from the decisions.

ObjectGridImpl
The ObjectGridImpl class has the getSession method that you can monitor
to see the number of requests to this method.

Monitoring eXtreme Scale with Hyperic HQ
Hyperic HQ is a third-party monitoring solution that is available freely as an open
source solution or as an enterprise product. WebSphere eXtreme Scale includes a
plug-in that allows Hyperic HQ agents to discover eXtreme Scale container servers
and to report and aggregate statistics using eXtreme Scale management beans. You
can use Hyperic HQ to monitor stand-alone eXtreme Scale deployments.

Before you begin
v This set of instructions is for Hyperic Version 4.0. If you have a newer version of

Hyperic, see the Hyperic documentation for information such as the path names
and how to start agents and servers.

v Download the Hyperic server and agent installations. One server installation
must be running. To detect all of the eXtreme Scale servers, a Hyperic agent
must be running on each machine on which an eXtreme Scale server is running.
See the Hyperic website for download information and documentation support.

v You must have access to the objectgrid-plugin.xml and hqplugin.jar files.
These files are in the wxs_install_root/hyperic/etc directory.

About this task

By integrating eXtreme Scale with Hyperic HQ monitoring software, you can
graphically monitor and display metrics about the performance of your
environment. You set up this integration by using a plug-in implementation on
each agent.

Chapter 10. Monitoring your environment 503

http://support.hyperic.com/display/DOC/HQ+Documentation
http://www.hyperic.com/

Procedure
1. Start your eXtreme Scale servers. The Hyperic plug-in looks at the local

processes to attach to the Java virtual machines that are running eXtreme Scale.
To properly attach to the Java virtual machines, each server must be started
with the -jmxServicePort option. For information about starting servers with
the -jmxServicePort option, see “startOgServer script” on page 356.

2. Put the extremescale-plugin.xml file and the wxshyperic.jar file in the
appropriate server and agent plug-in directories in your Hyperic configuration.
To integrate with Hyperic, both the agent and server installations must have
access to the plug-in and Java archive (JAR) files. Although the server can
dynamically swap configurations, you should complete the integration before
you start any of the agents.
a. Place the extremescale-plugin.xml file in the server plugin directory, which

is at the following location:
hyperic_home/server_home/hq-engine/server/default/deploy/hq.ear/hq-plugins

b. Place the extremescale-plugin.xml file in the agent plugin directory, which
is at the following location:
agent_home/bundles/gent-4.0.2-939/pdk/plugins

c. Put the wshyperic.jar file in the agent lib directory, which is at the
following location
agent_home/bundles/gent-4.0.2-939/pdk/lib

3. Configure the agent. The agent.properties file serves as a configuration point
for the agent runtime. This property is in the agent_home/conf directory. The
following keys are optional, but of importance to the eXtreme Scale plug-in:
v

autoinventory.defaultScan.interval.millis=<time_in_milliseconds>

Sets the interval in milliseconds between Agent discoveries.
v

log4j.logger.org.hyperic.hq.plugin.extremescale.XSServerDetector=DEBUG

: Enables verbose debug statements from the eXtreme Scale plug-in.
v username=<username>: Sets the Java Management Extensions (JMX) user name

if security is enabled.
v password=<password>: Sets the JMX password if security is enabled.
v sslEnabled=<true|false>: Tells the plug-in whether or not to use Secure

Sockets Layer (SSL). The value is false by default.
v trustPath=<path>: Sets the trust path for the SSL connection.
v trustType=<type>: Sets the trust type for the SSL connection.
v trustPass=<password>: Sets the trust password for the SSL connection.

4. Start the agent discovery. The Hyperic agents send discoveries and metrics
information to the server. Use the server to customize data views and group
logical inventory objects to generate useful information. After the server is
available, you must run the launch script or start the Windows service for the
agent:

v Linux agent_home/bin/hq-agent.sh start

v Windows Start the agent with the Windows service.

After you start the agents, the servers are detected and groups are configured.
You can log into the server console and choose which resources to add to the
inventory database for the server. The server console is at the following URL by
default: http://<server_host_name>:7080/

504 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

5. Statistics must be enabled for Hyperic to collect statistical data.
Use the SetStatsSpec control action on the Hyperic console for eXtreme Scale.
Navigate to the resource, then use the Control Action drop-down list on the
Control tabbed page to specify a SetStatsSpec setting with ALL=enabled in the
Control Arguments text box.
Catalog servers are not detected by the filter set in the Hyperic console. See the
information about the statsSpec property in “Server properties file” on page
199, which enable statistics as soon as the containers start. Various options for
enabling statistics are described in “Monitoring with managed beans (MBeans)”
on page 493 and “Monitoring with the xsadmin utility” on page 470

6. Monitor servers with the Hyperic console. After the servers are added to the
inventory model, their services are no longer needed.
v Dashboard view: When you viewed the resource detection events, you

logged into the main dashboard view. The dashboard view is a generic view
that acts as a message center that you can customize. You can export graphs
or inventory objects to this main dashboard.

v Resources view: You can query and view the entire inventory model from
this page. After the services have been added, you can see every eXtreme
Scale server properly labeled and listed together under the servers section.
You can click on the individual servers to see the basic metrics.

7. View the entire server inventory on the Resource View page. On this page, you
can then select multiple ObjectGrid servers and group them together. After you
group a set of resources, their common metrics can be graphed to show
overlays and differences among group members. To display an overlay, select
the metrics on the display of your Server Group. The metric then displays in
the charting area. To display an overlay for all group members, click the
underlined metric name. You can export any of the charts, node views, and
comparative overlays to the main dashboard with the Tools menu.

Monitoring eXtreme Scale information in DB2
When the JPALoader or JPAEntityLoader is used with DB2® as the back-end
database, eXtreme Scale-specific information can be passed to DB2. You can view
this information by a performance monitor tool such as DB2 Performance Expert to
monitor the eXtreme Scale applications that are accessing the database.

Before you begin

See “Collecting trace” on page 530 for more information about the different
methods for setting trace that you can use.

About this task

When the loader is configured to use DB2 as the back-end database, the following
eXtreme Scale information can be passed to DB2 for monitoring purposes:
v User: Specifies the name of the user that authenticates to eXtreme Scale. When

basic authentication is not used, the principals from the authentication are used.
v Workstation Name: Specifies the host name, IP of the eXtreme Scale container

server.
v Application Name: Specifies the name of the ObjectGrid, Persistence Unit name

(if set).
v Accounting Information: Specifies the thread ID, transaction type, transaction

id, and the connection string.

Chapter 10. Monitoring your environment 505

Read about the DB2 Performance Expert to learn how to monitor database access.

Procedure
v To enable all eXtreme Scale client information, set the following trace strings:

ObjectGridClientInfo*=event=enabled

v To enable all but user information, use one of the following settings:
–

ObjectGridClientInfo*=event=enabled,ObjectGridClientInfoUser=event=disabled

or
–

ObjectGridClientInfo=event=enabled

Results

After you turn on the trace function, data displays in the performance monitor tool
such as DB2 Performance Expert.

Example

In the following example, user bob is authenticated as an eXtreme Scale user. The
application is accessing the mygrid data grid using the DB2Hibernate persistence
unit. The container server is named XS_Server1. The resulting information follows:
v User=bob

v Workstation Name=XS_Server1,192.168.1.101

v Application Name=mygrid,DB2Hibernate

v Accounting Information=1, DEFAULT,FE7954BD-0126-4000-E000-
2298094151DB,com.ibm.db2.jcc.t4.b@71787178

In the following example, user bob is authenticated using a WebSphere Application
Server token. The application is accessing the mygrid data grid using the
DB2OpenJPA persistence unit name. The container server is named XS_Server2. The
resulting information follows:
v User

=acme.principal.UserPrincipal[Bob],acme.principal.
GroupPrincipal[admin]

v Workstation Name=XS_Server2,192.168.1.102

v Application Name=mygrid,DB2OpenJPA

v Accounting Information=188,DEFAULT,FE72BC63-0126-4000-E000-
851C092A4E33,com.ibm.ws.rsadapter.jdbc.WSJccSQLJConnection@2b432b43

506 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/idm/v2r1/topic/com.ibm.pe.nav.doc/topics/helpindex_pe_sdf.html

Chapter 11. Tuning and performance

You can tune settings in your environment to increase the overall performance of
your WebSphere eXtreme Scale installation.

Operational checklist
Use the operational checklist to prepare your environment for deploying
WebSphere eXtreme Scale.

Table 33. Operational checklist
Checklist item For more information

If you are using AIX, tune the following operating system settings:

TCP_KEEPINTVL
The TCP_KEEPINTVL setting is part of a socket keep-alive
protocol that enables detection of network outage. The
property specifies the interval between packets that are sent to
validate the connection. When you are using WebSphere
eXtreme Scale, set the value to 10. To check the current
setting, run the following command:

no –o tcp_keepintvl

To change the current setting, run the following command:

no –o tcp_keepintvl=10

The TCP_KEEPINTVL setting is in half seconds.

TCP_KEEPINIT
The TCP_KEEPINIT setting is part of a socket keep-alive
protocol that enables detection of network outage. The
property specifies the initial timeout value for TCP
connection. When you are using WebSphere eXtreme Scale, set
the value to 40. To check the current setting, run the following
commands:

no –o tcp_keepinit

To change the current setting, run the following command:

no –o tcp_keepinit=40

The TCP_KEEPINIT setting is in half seconds.

v For AIX tuning information, see Tuning AIX systems.

Update the orb.properties file to modify the transport behavior of the
grid. The orb.properties file is in the java/jre/lib directory.

“ORB properties” on page 237

© Copyright IBM Corp. 2009, 2011 507

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tprf_tuneaix.html

Table 33. Operational checklist (continued)
Checklist item For more information

Use parameters in the startOgServer script. In particular, use the
following parameters:

v Set heap settings with the -jvmArgs parameter.

v Set application class path and properties with the -jvmArgs parameter.

v Set -jvmArgs parameters for configuring agent monitoring.

Port settings
WebSphere eXtreme Scale has to open ports for
communications for some transports. These ports are all
dynamically defined. However, if a firewall is in use between
containers then you must specify the ports. Use the following
information about the ports:

Listener port
You can use the -listenerPort argument to specify the port
that is used for communication between processes.

Core group port
You can use the -haManagerPort argument to specify the port
that is used for failure detection. This argument is the same as
peerPort. Note that core groups do not need to communicate
across zones, so you might not need to set this port if the
firewall is open to all the members of a single zone.

JMX service port
You can use the -JMXServicePort argument to specify the port
that the JMX service should use.

SSL port Passing -Dcom.ibm.CSI.SSLPort=1234 as a -jvmArgs argument
sets the SSL port to 1234. The SSL port is the secure port peer
to the listener port.

Client port
Used in the catalog service only. You can specify this value
with the -catalogServiceEndPoints argument. The format of
the value of this parameter is in the format:
serverName:hostName:clientPort:peerPort

“startOgServer script” on page 356

Verify that security settings are configured correctly:

v Transport (SSL)

v Application (Authentication and Authorization)

To verify your security settings, you can try to use a malicious client to
connect to your configuration. For example, when the SSL-Required
setting is configured, a client that has a TCP_IP setting with or a client
with the wrong trust store should not be able to connect to the server.
When authentication is required, a client with no credential, such as a
user ID and password, should not be able to connect to the sever. When
authorization is enforced, a client with no access authorization should not
be granted the access to the server resources.

“Security integration with external providers” on page 445

Choose how you are going to monitor your environment.

v xsAdmin tool:

– The JMX ports of the catalog servers need to be visible to the
xsAdmin tool. The container server ports also need to be accessible
for some commands that gather information from the containers.

v
7.1+ Monitoring console:

With the monitoring console, you can chart current and historical
statistics.

v Vendor monitoring tools:

– Tivoli Enterprise Monitoring Agent

– CA Wily Introscope

– Hyperic HQ

v “Monitoring with the xsadmin utility” on page 470

v “Java Management Extensions (JMX) security” on page 443

v
7.1+ “Monitoring with the web console” on page 457

v “Monitoring with the IBM Tivoli Enterprise Monitoring Agent for
WebSphere eXtreme Scale” on page 494

v “Monitoring eXtreme Scale with Hyperic HQ” on page 503

v “Monitoring eXtreme Scale applications with CA Wily Introscope” on
page 500

508 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Operating systems and network tuning
Network tuning can reduce Transmission Control Protocol (TCP) stack delay by
changing connection settings and can improve throughput by changing TCP
buffers.

Operating systems

A Windows system needs the least tuning while a Solaris system needs the most
tuning. The following information pertains to each system specified, and might
improve WebSphere eXtreme Scale performance. You should tune according to
your network and application load.

Windows
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
Tcpip\Parameters
MaxFreeTcbs = dword:00011940
MaxHashTableSize = dword:00010000
MaxUserPort = dword:0000fffe
TcpTimedWaitDelay = dword:0000001e

Solaris
ndd -set /dev/tcp tcp_time_wait_interval 60000
fndd -set /dev/tcp tcp_keepalive_interval 15000
ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500
ndd -set /dev/tcp tcp_conn_req_max_q 16384
ndd -set /dev/tcp tcp_conn_req_max_q0 16384
ndd -set /dev/tcp tcp_xmit_hiwat 400000
ndd -set /dev/tcp tcp_recv_hiwat 400000
ndd -set /dev/tcp tcp_cwnd_max 2097152
ndd -set /dev/tcp tcp_ip_abort_interval 20000
ndd -set /dev/tcp tcp_rexmit_interval_initial 4000
ndd -set /dev/tcp tcp_rexmit_interval_max 10000
ndd -set /dev/tcp tcp_rexmit_interval_min 3000
ndd -set /dev/tcp tcp_max_buf 4194304

AIX
/usr/sbin/no -o tcp_sendspace=65536
/usr/sbin/no -o tcp_recvspace=65536
/usr/sbin/no -o udp_sendspace=65536
/usr/sbin/no -o udp_recvspace=65536
/usr/sbin/no -o somaxconn=10000
/usr/sbin/no -o tcp_nodelayack=1
/usr/sbin/no –o tcp_keepinit=40
/usr/sbin/no –o tcp_keepintvl=10

LINUX
sysctl -w net.ipv4.tcp_timestamps=0
sysctl -w net.ipv4.tcp_tw_reuse=1
sysctl -w net.ipv4.tcp_tw_recycle=1
sysctl -w net.ipv4.tcp_fin_timeout=30
sysctl -w net.ipv4.tcp_keepalive_time=1800
sysctl -w net.ipv4.tcp_rmem="4096 87380 8388608"
sysctl -w net.ipv4.tcp_wmem="4096 87380 8388608"
sysctl -w net.ipv4.tcp_max_syn_backlog=4096

HP-UX
ndd -set /dev/tcp tcp_ip_abort_cinterval 20000

Planning for network ports
WebSphere eXtreme Scale is a distributed cache that requires opening ports to
communicate with the Object Request Broker (ORB) and Transmission Control
Protocol (TCP) stack among Java virtual machines. Plan and control your ports,
especially in an environment that has a firewall, and when you are using a catalog
service and containers on multiple ports.

Chapter 11. Tuning and performance 509

Important: When you are specifying port numbers, avoid setting ports that are in
the ephemeral range for your operating system. If you use a port that is in the
ephemeral range, port conflicts could occur.

Catalog service domain

A catalog service domain requires the following ports to be defined:

peerPort
Specifies the port for the high availability (HA) manager to communicate
between peer catalog servers over a TCP stack. In WebSphere Application
Server, this setting is inherited by the high availability manager port
configuration.

clientPort
Specifies the port for catalog servers to access catalog service data. In
WebSphere Application Server, this port is set through the catalog service
domain configuration.

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB. In WebSphere Application Server, the
listenerPort is inherited by the BOOTSTRAP_ADDRESS port configuration.

Default: 2809

Container servers

The WebSphere eXtreme Scale container servers also require several ports to
operate. By default, the eXtreme Scale container server generates its HA manager
port and ORB listener port automatically with dynamic ports. For an environment
that has a firewall, it is advantageous for you to plan and control ports. For
container servers to start with specific ports, you can use the following options in
the startOgServer command.

haManagerPort
Specifies the peer port. (Required for WebSphere Application Server
environments only.)

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB.

Default: 2809

Proper planning of port control is essential when hundreds of Java virtual
machines are started in a server. If a port conflict exists, container servers do not
start.

Clients

WebSphere eXtreme Scale clients can receive callbacks from servers when you are
using the DataGrid API or several other commands. Use the listenerPort
property in the client properties file to specify the port in which the client listens
for callbacks from the server.

haManagerPort
Specifies the peer port. (Required for WebSphere Application Server
environments only.)

510 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

jvmArgs (optional)
Specifies a list of Java virtual machine (JVM) arguments. When security is
enabled, you must use the following argument to configure the Secure Socket
Layer (SSL) port: -jvmArgs Dcom.ibm.CSI.SSLPort=<sslPort>

listenerPort
Defines the ORB listener port for containers and clients to communicate with
the catalog service through the ORB.

Default: 2809

Ports in WebSphere Application Server
v The listenerPort value is inherited from the BOOTSTRAP_ADDRESS value for each

WebSphere Application Server application server.
v The haManagerPort and peerPort values inherited from the DCS_UNICAST_ADDRESS

value for each WebSphere Application Server application server.

You can define a catalog service domain in the administrative console as described
in “Creating catalog service domains in WebSphere Application Server” on page
206.

You can view the ports for a particular server by clicking one of the following
paths in the administrative console:
v WebSphere Application Server Network Deployment Version 6.1: Servers >

Application Servers > server_name > Ports > end_point_name.
v WebSphere Application Server Network Deployment Version 7.0: Servers >

Server Types > WebSphere Application Servers > server_name > Ports >
port_name

ORB properties
Object Request Broker (ORB) properties modify the transport behavior of the data
grid. These properties can be set with an orb.properties file, as settings in the
WebSphere Application Server administrative console, or as custom properties on
the ORB in the WebSphere Application Server administrative console.

orb.properties

The orb.properties file is in the java/jre/lib directory. When you modify the
orb.properties file in a WebSphere Application Server java/jre/lib directory, the
ORB properties are updated on the node agent and any other Java virtual
machines (JVM) that are using the Java runtime environment (JRE). If you do not
want this behavior, use custom properties or the ORB settings WebSphere
Application Server administrative console.

Default WebSphere Application Server settings

WebSphere Application Server has some properties defined on the ORB by default.
These settings are on the application server container services and the deployment
manger. These default settings override any settings that you create in the
orb.properties file. For each described property, see the Where to specify section
to determine the location to define the suggested value.

Chapter 11. Tuning and performance 511

File descriptor settings

For UNIX and Linux systems, a limit exists for the number of open files that are
allowed per process. The operating system specifies the number of open files
permitted. If this value is set too low, a memory allocation error occurs on AIX,
and too many files opened are logged.

In the UNIX system terminal window, set this value higher than the default system
value. For large SMP machines with clones, set to unlimited.

For AIX configurations set this value to -1 (unlimited) with the command: ulimit
-n -1.

For Solaris configurations set this value to 16384 with the command: ulimit -n
16384.

To display the current value use the command: ulimit –a.

Baseline settings

The following settings are a good baseline but not necessarily the best settings for
every environment. Understand the settings to help make a good decision on what
values are appropriate in your environment.
com.ibm.CORBA.RequestTimeout=30
com.ibm.CORBA.ConnectTimeout=10
com.ibm.CORBA.FragmentTimeout=30
com.ibm.CORBA.LocateRequestTimeout=10
com.ibm.CORBA.ThreadPool.MinimumSize=256
com.ibm.CORBA.ThreadPool.MaximumSize=256
com.ibm.CORBA.ThreadPool.IsGrowable=false
com.ibm.CORBA.ConnectionMultiplicity=1
com.ibm.CORBA.MinOpenConnections=1024
com.ibm.CORBA.MaxOpenConnections=1024
com.ibm.CORBA.ServerSocketQueueDepth=1024
com.ibm.CORBA.FragmentSize=0
com.ibm.CORBA.iiop.NoLocalCopies=true
com.ibm.CORBA.NoLocalInterceptors=true

Property descriptions

Timeout Settings

The following settings relate to the amount of time that the ORB waits before
giving up on request operations. Use these settings to prevent excess threads from
being created in an abnormal situation.

Request timeout

Property name: com.ibm.CORBA.RequestTimeout

Valid value: Integer value for number of seconds.

Suggested value: 30

Where to specify: WebSphere Application Server administrative console

Description: Indicates how many seconds any request waits for a response
before giving up. This property influences the amount of time a client
takes to fail over if a network outage failure occurs. If you set this property
too low, requests might time out inadvertently. Carefully consider the value
of this property to prevent inadvertent timeouts.

512 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Connect timeout

Property name: com.ibm.CORBA.ConnectTimeout

Valid value: Integer value for number of seconds.

Suggested value: 10

Where to specify: orb.properties file

Description: Indicates how many seconds a socket connection attempt
waits before giving up. This property, like the request timeout, can
influence the time a client takes to fail over if a network outage failure
occurs. In general, set this property to a smaller value than the request
timeout value because the amount of time to establish connections is
relatively constant.

Fragment timeout

Property name: com.ibm.CORBA.FragmentTimeout

Valid value: Integer value for number of seconds.

Suggested value: 30

Where to specify: orb.properties file

Description: Indicates how many seconds a fragment request waits before
giving up. This property is similar to the request timeout property.

Thread Pool Settings

These properties constrain the thread pool size to a specific number of threads. The
threads are used by the ORB to spin off the server requests after they are received
on the socket. Setting these property values too low results in an increased socket
queue depth and possibly timeouts.

Connection multiplicity

Property name: com.ibm.CORBA.ConnectionMultiplicity

Valid value: Integer value for the number of connections between the
client and server. The default value is 1. Setting a larger value sets
multiplexing across multiple connections.

Suggested value: 1

Where to specify: orb.properties fileDescription: Enables the ORB to use
multiple connections to any server. In theory, setting this value promotes
parallelism over the connections. In practice, performance does not benefit
from setting the connection multiplicity. Do not set this parameter.

Open connections

Property names: com.ibm.CORBA.MinOpenConnections,
com.ibm.CORBA.MaxOpenConnections

Valid value: An integer value for the number of connections.

Suggested value: 1024

Where to specify: WebSphere Application Server administrative
consoleDescription: Specifies a minimum and maximum number of open
connections. The ORB keeps a cache of connections that have been
established with clients. These connections are purged when this value is
passed. Purging connections might cause poor behavior in the data grid.

Chapter 11. Tuning and performance 513

Is Growable

Property name: com.ibm.CORBA.ThreadPool.IsGrowable

Valid value: Boolean; set to true or false.

Suggested value: false

Where to specify: orb.properties fileDescription: If set to true, the thread
pool that the ORB uses for incoming requests can grow beyond what the
pool supports. If the pool size is exceeded, new threads are created to
handle the request but the threads are not pooled. Prevent thread pool
growth by setting the value to false.

Server socket queue depth

Property name: com.ibm.CORBA.ServerSocketQueueDepth

Valid value: An integer value for the number of connections.

Suggested value: 1024

Where to specify: orb.properties fileDescription: Specifies the length of
the queue for incoming connections from clients. The ORB queues
incoming connections from clients. If the queue is full, then connections are
refused. Refusing connections might cause poor behavior in the data grid.

Fragment size

Property name: com.ibm.CORBA.FragmentSize

Valid value: An integer number that specifies the number of bytes. The
default is 1024.

Suggested value: 0

Where to specify: orb.properties fileDescription: Specifies the maximum
packet size that the ORB uses when sending a request. If a request is larger
than the fragment size limit, then that request is divided into request
fragments that are each sent separately and reassembled on the server.
Fragmenting requests is helpful on unreliable networks where packets
might need to be resent. However, if the network is reliable, dividing the
requests into fragments might cause unnecessary processing.

No local copies

Property name: com.ibm.CORBA.iiop.NoLocalCopies

Valid value: Boolean; set to true or false.

Suggested value: true

Where to specify: WebSphere Application Server administrative console,
Pass by reference setting. Description: Specifies whether the ORB passes
by reference. The ORB uses pass by value invocation by default. Pass by
value invocation causes extra garbage and serialization costs to the path
when an interface is started locally. By setting this value to true, the ORB
uses a pass by reference method that is more efficient than pass by value
invocation.

No Local Interceptors

Property name: com.ibm.CORBA.NoLocalInterceptors

Valid value: Boolean; set to true or false.

Suggested value: true

514 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Where to specify: orb.properties file Description: Specifies whether the
ORB starts request interceptors even when making local requests
(intra-process). The interceptors that WebSphere eXtreme Scale uses are for
security and route handling are not required if the request is handled
within the process. Interceptors that go between processes are only
required for Remote Procedure Call (RPC) operations. By setting the no
local interceptors, you can avoid the extra processing that using local
interceptors introduces.

Attention: If you are usingWebSphere eXtreme Scale security, set the
com.ibm.CORBA.NoLocalInterceptors property value to false. The security
infrastructure uses interceptors for authentication.

JVM tuning for WebSphere eXtreme Scale
You must take into account several specific aspects of Java virtual machine (JVM)
tuning for WebSphere eXtreme Scale best performance. In most cases, few or no
special JVM settings are required. If many objects are being stored in the data grid,
adjust the heap size to an appropriate level to avoid running out of memory.

Tested platforms

Performance testing occurred primarily on AIX (32 way), Linux (four way), and
Windows (eight way) computers. With high-end AIX computers, you can test
heavily multi-threaded scenarios to identify and fix contention points.

Garbage collection

WebSphere eXtreme Scale creates temporary objects that are associated with each
transaction, such as request and response, and log sequence. Because these objects
affect garbage collection efficiency, tuning garbage collection is critical.

For the IBM virtual machine for Java, use the optavgpause collector for high
update rate scenarios (100% of transactions modify entries). The gencon collector
works much better than the optavgpause collector for scenarios where data is
updated relatively infrequently (10% of the time or less). Experiment with both
collectors to see what works best in your scenario. Run with verbose garbage
collection turned on to check the percentage of the time that is being spent
collecting garbage. Scenarios have occurred where 80% of the time is spent in
garbage collection until tuning fixed the problem.

All modern JVMs today use parallel garbage collection algorithms, which means
that using more cores can reduce pauses in garbage collection. A physical server
with eight cores has a faster garbage collection than a physical with four cores.

When the application must manage a large amount of data for each partition, then
garbage collection might be a factor. A read mostly scenario performs even with
large heaps (20 GB or more) if a generational collector is used. However, after the
tenure heap fills, a pause proportional to the live heap size and the number of
processors on the computer occurs. This pause can be large on smaller computers
with large heaps.

Attention: If you are using a Sun JVM, adjustments to the default garbage
collection and tuning policy might be necessary.

Chapter 11. Tuning and performance 515

WebSphere eXtreme Scale supports WebSphere Real Time Java. With WebSphere
Real Time Java, the transaction processing response for WebSphere eXtreme Scale is
more consistent and predictable. As a result, the impact of garbage collection and
thread scheduling is greatly minimized. The impact is reduced to the degree that
the standard deviation of response time is less than 10% of regular Java.

See “Using WebSphere Real Time” on page 519 for more information.

For more information about configuring garbage collection, see Tuning the IBM
virtual machine for Java.

JVM performance

WebSphere eXtreme Scale can run on different versions of Java Platform, Standard
Edition. WebSphere eXtreme Scale supports Java SE Version 1.4.2 and above. For
improved developer productivity and performance, use Java SE 5 or later to take
advantage of annotations and improved garbage collection. WebSphere eXtreme
Scale works on 32 bit or 64 bit Java virtual machines.

WebSphere eXtreme Scale is tested with a subset of the available virtual machines,
however, the supported list is not exclusive. You can run WebSphere eXtreme Scale
on any vendor JVM at Version 1.4.2 or later. However, if a problem occurs with a
vendor JVM, you must contact the JVM vendor for support. If possible, use the
JVM from the WebSphere run time on any platform that WebSphere Application
Server supports.

For most of the scenarios in which WebSphere eXtreme Scale is used, Java SE
Version 6 of the JVM performs better than Edition 5 or 1.4. Java Platform, Standard
Edition Version 1.4 performs poorly especially for scenarios that use the gencon
collector. In general, use the latest available version of Java Platform, Standard
Edition for the best performance.

Heap size

The recommendation is 1 to 2 GB heaps with a JVM per four cores. The optimum
heap size number depends on the following factors:
v Number of live objects in the heap.
v Complexity of live objects in the heap.
v Number of available cores for the JVM.

For example, an application that stores 10 K byte arrays can run a much larger
heap than an application that uses complex graphs of POJOs.

Thread count

The thread count depends on a few factors. A limit exists for how many threads a
single shard can manage. A shard is an instance of a partition, and can be a
primary or a replica. With more shards for each JVM, you have more threads with
each additional shard providing more concurrent paths to the data. Each shard is
as concurrent as possible although there is a limit to the concurrency.

Object Request Broker (ORB) requirements

The IBM SDK includes an IBM ORB implementation that has been tested with
WebSphere Application Server and WebSphere eXtreme Scale. To ease the support

516 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tunejvm_v61.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tunejvm_v61.html

process, use an IBM-provided JVM. Other JVM implementations use a different
ORB. The IBM ORB is only supplied with IBM-provided Java virtual machines.
WebSphere eXtreme Scale requires a working ORB to operate. You can use
WebSphere eXtreme Scale with ORBs from other vendors. However, if you have a
problem with a vendor ORB, you must contact the ORB vendor for support. The
IBM ORB implementation is compatible with third partyJava virtual machines and
can be substituted if needed.

orb.properties tuning

In the lab, the following file was used on data grids of up to 1500 JVMs. The
orb.properties file is in the lib folder of the runtime environment.
IBM JDK properties for ORB
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton

WS Interceptors
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.objectgrid.corba.ObjectGridInitializer

WS ORB & Plugins properties
com.ibm.CORBA.ForceTunnel=never
com.ibm.CORBA.RequestTimeout=10
com.ibm.CORBA.ConnectTimeout=10

Needed when lots of JVMs connect to the catalog at the same time
com.ibm.CORBA.ServerSocketQueueDepth=2048

Clients and the catalog server can have sockets open to all JVMs
com.ibm.CORBA.MaxOpenConnections=1016

Thread Pool for handling incoming requests, 200 threads here
com.ibm.CORBA.ThreadPool.IsGrowable=false
com.ibm.CORBA.ThreadPool.MaximumSize=200
com.ibm.CORBA.ThreadPool.MinimumSize=200
com.ibm.CORBA.ThreadPool.InactivityTimeout=180000

No splitting up large requests/responses in to smaller chunks
com.ibm.CORBA.FragmentSize=0

Configuring the heartbeat interval setting for failover detection
You can configure the amount of time between system checks for failed servers
with the heartbeat interval setting.

About this task

Configuring failover varies depending on the type of environment you are using. If
you are using a stand-alone environment, you can configure failover with the
command line. If you are using a WebSphere Application Server Network
Deployment environment, you must configure failover in the WebSphere
Application Server Network Deployment administrative console.

Procedure
v Configure failover for stand-alone environments.

You can configure heartbeat intervals on the command line by using the
-heartbeat parameter in the startOgServer script file. Set this parameter to one
of the following values:

Table 34. Heartbeat intervals

Value Action Description

0 Typical (default) Failovers are typically detected within 30 seconds.

-1 Aggressive Failovers are typically detected within 5 seconds.

1 Relaxed Failovers are typically detected within 180 seconds.

Chapter 11. Tuning and performance 517

An aggressive heartbeat interval can be useful when the processes and network
are stable. If the network or processes are not optimally configured, heartbeats
might be missed, which can result in a false failure detection.

v Configure failover for WebSphere Application Server environments.
You can configure WebSphere Application Server Network Deployment Version
6.0.2 and later to allow WebSphere eXtreme Scale to fail over very quickly. The
default failover time for hard failures is approximately 200 seconds. A hard
failure is a physical computer or server crash, network cable disconnection or
operating system error. Failures because of process crashes or soft failures
typically fail over in less than one second. Failure detection for soft failures
occurs when the network sockets from the dead process are closed automatically
by the operating system for the server hosting the process.
Core group heartbeat configuration

WebSphere eXtreme Scale running in a WebSphere Application Server process
inherits the failover characteristics from the core group settings of the
application server. The following sections describe how to configure the core
group heartbeat settings for different versions of WebSphere Application Server
Network Deployment:
– Update the core group settings for WebSphere Application Server Network

Deployment Version 6.x and 7.x:

Specify the heartbeat interval in seconds on WebSphere Application Server
versions from Version 6.0 through Version 6.1.0.12 or in milliseconds starting
with Version 6.1.0.13. You must also specify the number of missed heartbeats.
This value indicates how many heartbeats can be missed before a peer Java
virtual machine (JVM) is considered as failed. The hard failure detection time
is approximately the product of the heartbeat interval and the number of
missed heartbeats.
These properties are specified using custom properties on the core group
using the WebSphere administrative console. See Core group custom
properties for configuration details. These properties must be specified for all
core groups used by the application:
- The heartbeat interval is specified using either the

IBM_CS_FD_PERIOD_SEC custom property for seconds or the
IBM_CS_FD_PERIOD_MILLIS custom property for milliseconds (requires
Version 6.1.0.13 or later).

- The number of missed heartbeats is specified using the
IBM_CS_FD_CONSECUTIVE_MISSED custom property.

The default value for the IBM_CS_FD_PERIOD_SEC property is 20 and for
the IBM_CS_FD_CONSECUTIVE_MISSED property is 10. If the
IBM_CS_FD_PERIOD_MILLIS property is specified, then it overrides any of
the set IBM_CS_FD_PERIOD_SEC custom properties. The values of these
properties are positive integer values.
Use the following settings to achieve a 1500 ms failure detection time for
WebSphere Application Server Network Deployment Version 6.x servers:
- Set IBM_CS_FD_PERIOD_MILLIS = 750 (WebSphere Application Server

Network Deployment V6.1.0.13 and later)
- Set IBM_CS_FD_CONSECUTIVE_MISSED = 2

– Update the core group settings for WebSphere Application Server Network
Deployment Version 7.0

WebSphere Application Server Network Deployment Version 7.0 provides two
core group settings that can be adjusted to increase or decrease failover
detection:

518 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_cg_custprop.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_cg_custprop.html

- Heartbeat transmission period. The default is 30000 milliseconds.
- Heartbeat timeout period. The default is 180000 milliseconds.
For more details on how change these settings, see the WebSphere
Application Server Network Deployment Information center: Discovery and
failure detection settings.
Use the following settings to achieve a 1500 ms failure detection time for
WebSphere Application Server Network Deployment Version 7 servers:
- Set the heartbeat transmission period to 750 milliseconds.
- Set the heartbeat timeout period to 1500 milliseconds.

What to do next

When these settings are modified to provide short failover times, there are some
system-tuning issues to be aware of. First, Java is not a real-time environment. It is
possible for threads to be delayed if the JVM is experiencing long garbage
collection times. Threads might also be delayed if the machine hosting the JVM is
heavily loaded (due to the JVM itself or other processes running on the machine).
If threads are delayed, heartbeats might not be sent on time. In the worst case,
they might be delayed by the required failover time. If threads are delayed, false
failure detections occur. The system must be tuned and sized to ensure that false
failure detections do not happen in production. Adequate load testing is the best
way to ensure this.

Note: The current version of eXtreme Scale supports WebSphere Real Time.

Using WebSphere Real Time
Using WebSphere eXtreme Scale with WebSphere Real Time increases consistency
and predictability at a cost of performance throughput in comparison to the default
garbage collection policy employed in the standard IBM Java™ SE Runtime
Environment (JRE). The cost versus benefit proposition can vary. WebSphere
eXtreme Scale creates many temporary objects that are associated with each
transaction. These temporary objects deal with requests, responses, log sequences,
and sessions. Without WebSphere Real Time, transaction response time can go up
to hundreds of milliseconds. However, using WebSphere Real Time with
WebSphere eXtreme Scale can increase the efficiency of garbage collection and
reduce response time to 10% of the stand-alone configuration response time.

WebSphere Real Time in a stand-alone environment
You can use WebSphere Real Time with WebSphere eXtreme Scale. By enabling
WebSphere Real Time, you can get more predictable garbage collection along with
a stable, consistent response time and throughput of transactions in a stand-alone
eXtreme Scale environment.

Advantages of WebSphere Real Time

WebSphere eXtreme Scale creates many temporary objects that are associated with
each transaction. These temporary objects deal with requests, responses, log
sequences, and sessions. Without WebSphere Real Time, transaction response time
can go up to hundreds of milliseconds. However, using WebSphere Real Time with
WebSphere eXtreme Scale can increase the efficiency of garbage collection and
reduce response time to 10% of the stand-alone configuration response time.

Chapter 11. Tuning and performance 519

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_ha_discov_fail.html

Enabling WebSphere Real Time

Install WebSphere Real Time and stand-alone WebSphere eXtreme Scale onto the
computers on which you plan to run eXtreme Scale. Set the JAVA_HOME
environment variable to point to a standard Java SE Runtime Environment (JRE).

Set the JAVA_HOME environment variable to point to the installed WebSphere
Real Time. Then enable WebSphere Real Time as follows.
1. Edit the stand-alone installation objectgridRoot/bin/setupCmdLine.sh | .bat

file by removing the comment from the following line.
WXS_REAL_TIME_JAVA="-Xrealtime -Xgcpolicy:metronome
-Xgc:targetUtilization=80"

2. Save the file.

Now you have enabled WebSphere Real Time. If you want to disable WebSphere
Real Time, you can add the comment back to the same line.

Best practices

WebSphere Real Time allows eXtreme Scale transactions to have a more predictable
response time. Results show that the deviation of an eXtreme Scale transaction's
response time improves significantly with WebSphere Real Time compared to
standard Java with its default garbage collector. Enabling WebSphere Real Time
with eXtreme Scale is optimal if your application's stability and response time are
essential.

The best practices described in this section explain how to make WebSphere
eXtreme Scale more efficient through tuning and code practices depending on your
expected load.
v Set right level of processor usage for your application and garbage collector.

WebSphere Real Time provides capacity to control the processor usage so that
garbage collection impact on your application is controlled and minimized. Use
the -Xgc:targetUtilization=NN parameter to specify NN percentage of the
processor that is used by your application in every 20 seconds. The default for
WebSphere eXtreme Scale is 80%, but you can modify the script in
objectgridRoot/bin/setupCmdLine.sh file to set different number such as 70,
which provides more processor capacity to the garbage collector. Deploy enough
servers to maintain processor load under 80% for your applications.

v Set a larger size of heap memory.
WebSphere Real Time uses more memory than regular Java, so plan your
WebSphere eXtreme Scale with a large heap memory and set the heap size when
you start catalog servers and containers with the –jvmArgs –XmxNNNM parameterin
the ogStartServer command. For example, to you might use –jvmArgs –Xmx500M
parameter to start catalog servers, and use appropriate memory size to start
containers. You can set the memory size to 60-70% of your expected data size
per JVM. If you do not set this value, a OutOfMemoryError error could result.
Optionally, you also can use the –jvmArgs –Xgc:noSynchronousGCOnOOM
parameterto prevent nondeterministic behavior when the JVM runs out of
memory.

v Adjust threads for garbage collection.
WebSphere eXtreme Scale creates a lot of temporary objects associated with each
transaction and Remote Procedure Call (RPC) threads. Garbage collection has
performance benefits if your computer has enough processor cycles. The default
number of threads is 1. You can change the number of threads with the

520 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

–Xgcthreads n argument. The suggested value of this argument is the number of
cores that are available with consideration of the number of Java virtual
machines per computer.

v Adjust the performance for short-running applications with WebSphere eXtreme
Scale.
WebSphere Real Time is tuned for long running applications. Usually you need
to run WebSphere eXtreme Scale continuous transactions for two hours to get
reliable performance data. You can use the –Xquickstart parameter to make
your short-running applications perform better. This parameter tells just-in-time
(JIT) compiler to use lower level of optimization.

v Minimize WebSphere eXtreme Scale client queue and WebSphere eXtreme Scale
client relay.
The main advantage of using WebSphere eXtreme Scale with WebSphere Real
Time is to have highly reliable transaction response time, which usually has
several times of order magnitude improvements on the deviation of transaction
response time. Any queued client requests and client request relay through other
software impacts the response time that is beyond the control of WebSphere Real
Time and WebSphere eXtreme Scale. You should change your threads and
sockets parameters to maintain steady and smooth load without any significant
delay and decrease your queue depth.

v Write WebSphere eXtreme Scale applications to use WebSphere Real Time
threading.
Without modifying your application, you can get highly reliable WebSphere
eXtreme Scale transaction response time with several order magnitude
improvements on the deviation of response time. You can further exploit
threading advantage of your transactional applications from regular Java thread
to RealtimeThread which provides better control on thread priority and
scheduling control.
Your application currently includes the following code.
public class WXSCacheAppImpl extends Thread implements WXSCacheAppIF

You can optionally replace this code with the following.
public class WXSCacheAppImpl extends RealtimeThread implements
WXSCacheAppIF

WebSphere Real Time in WebSphere Application Server
You can use WebSphere® Real Time with eXtreme Scale in a WebSphere
Application Server Network Deployment environment version 7.0. By enabling
WebSphere Real Time, you can get more predictable garbage collection along with
a stable, consistent response time and throughput of transactions.

Advantages

Using WebSphere eXtreme Scale with WebSphere Real Time increases consistency
and predictability at a cost of performance throughput in comparison to the default
garbage collection policy employed in the standard IBM Java™ SE Runtime
Environment (JRE). The cost versus benefit proposition can vary based on several
criteria. The following are some of the major criteria:
v Server capabilities - Available memory, CPU speed and size, network speed and

use
v Server loads – Sustained CPU load, peak CPU load
v Java configuration – Heap sizes, target use, garbage-collection threads

Chapter 11. Tuning and performance 521

v WebSphere eXtreme Scale copy mode configuration – byte array vs. POJO
storage

v Application specifics – Thread usage, response requirements and tolerance,
object size, and so on.

In addition to this metronome garbage collection policy available in WebSphere
Real Time, there are optional garbage collection policies available in standard IBM
Java™ SE Runtime Environment (JRE). These policies, optthruput (default), gencon,
optavgpause and subpool are specifically designed to solve differing application
requirements and environments. For more information on these policies, see “JVM
tuning for WebSphere eXtreme Scale” on page 515. Depending upon application
and environment requirements, resources and restrictions, prototyping one or more
of these garbage collection policies can ensure that you meet your requirements
and determine an optimal policy.

Capabilities with WebSphere Application Server Network
Deployment
1. The following are some supported versions.

v WebSphere Application Server Network Deployment version 7.0.0.5 and
above.

v WebSphere Real Time V2 SR2 for Linux and above. See IBM WebSphere Real
Time V2 for Linux for more information.

v WebSphere eXtreme Scale version 7.0.0.0 and above.
v Linux 32 and 64 bit operating systems.

2. WebSphere eXtreme Scale servers cannot be collocated with a WebSphere
Application Server DMgr.

3. Real Time does not support DMgr.
4. Real Time does not support WebSphere Node Agents.

Enabling WebSphere Real Time

Install WebSphere Real Time and WebSphere eXtreme Scale onto the computers on
which you plan to run eXtreme Scale. Update the WebSphere Real Time Java to
SR2.

You can specify the JVM settings for each server through the WebSphere
Application Server version 7.0 console as follows.

Choose Servers > Server types > WebSphere application servers > <required
installed server>

On the resulting page, choose "Process definition."

On the next page, click Java Virtual Machine at the top of the column on the right.
(Here you can set heap sizes, garbage collection and other flags for each server.)

Set the following flags in the "Generic JVM arguments" field:
-Xrealtime -Xgcpolicy:metronome -Xnocompressedrefs -Xgc:targetUtilization=80

Apply and save changes.

To use Real Time in WebSphere Application Server 7.0 to with eXtreme Scale
servers including the JVM flags above, you must create a JAVA_HOME
environment variable.

522 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp?topic=/com.ibm.rt.doc.20/realtime/introduction.html
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp?topic=/com.ibm.rt.doc.20/realtime/introduction.html

Set JAVA_HOME as follows.
1. Expand "Environment".
2. Select "WebSphere variables".
3. Ensure that "All scopes" is checked under “Show scope".
4. Select the required server from the drop-down list. (Do not select DMgr or

node agent servers.)
5. If the JAVA_HOME environment variable is not listed, select "New," and specify

JAVA_HOME for the variable name. In the "Value" field, enter the fully
qualified path name to Real Time.

6. Apply and then save your changes.

Best practices

For a set of best practices see the best practices section in “Using WebSphere Real
Time” on page 519. There are some important modifications to note in this list of
best practices for a stand-alone WebSphere eXtreme Scale environment when
deploying into a WebSphere Application Server Network Deployment
environment.

You must place any additional JVM command line parameters in the same location
as the garbage collection policy parameters specified in the previous section.

An acceptable initial target for sustained processor loads is 50% with short
duration peek loads hitting up to 75%. Beyond this, you must add additional
capacity before you see measurable degradation in predictability and consistency.
You can increase performance slightly if you can tolerate longer response times.
Exceeding an 80% threshold often leads to significant degradation in consistency
and predictability.

Tuning the dynamic cache provider
The WebSphere eXtreme Scale dynamic cache provider supports the following
configuration parameters for performance tuning.

About this task
v com.ibm.websphere.xs.dynacache.ignore_value_in_change_event: When you

register a change event listener with the dynamic cache provider and generate a
ChangeEvent instance, there is overhead associated with deserializing the cache
entry so the value can be put inside the ChangeEvent. Setting this optional
parameter on the cache instance to true skips the deserialization of the cache
entry when generating ChangeEvents. The value returned will either be null in
the case of a remove operation or a byte array containing the serialized form of
the object. InvalidationEvent instances carry a similar performance penalty,
which you can avoid by setting
com.ibm.ws.cache.CacheConfig.ignoreValueInInvalidationEvent to true.

v com.ibm.websphere.xs.dynacache.enable_compression: By default, the eXtreme
Scale dynamic cache provider compresses the cache entries in memory to
increase cache density. which can save a significant amount of memory for
applications like servlet caching. If you know that most of your cache data will
be not be compressible, consider setting this value to false.

Chapter 11. Tuning and performance 523

Tuning the cache sizing agent for accurate memory consumption
estimates

Beginning with Version 7.1, WebSphere eXtreme Scale supports sizing the memory
consumption of BackingMaps in distributed data grids. Memory consumption
sizing is not supported for local data grid instances. The value that is reported by
WebSphere eXtreme Scale for a given map is very close to the value that is
reported by heap dump analysis. If map object is complex, the sizings might be
less accurate. The CWOBJ4543 message is displayed in the log for any cache entry
object that cannot be accurately sized because it is overly complex. You can get a
more accurate measurement by avoiding unnecessary map complexity.

Procedure
v Enable the sizing agent.

If you are using a Java 5 or higher Java virtual machine (JVM), use the sizing
agent. With the sizing agent, WebSphere eXtreme Scale can obtain additional
information from the JVM to improve its estimates. The agent can be loaded by
adding the following argument to the JVM command line:
-javaagent:WXS lib directory/wxssizeagent.jar

For an embedded topology, add the argument to the command line of the
WebSphere Application Server process.
For a distributed topology, add the argument to command line of the eXtreme
Scale processes (containers) and the WebSphere Application Server process.
When loaded correctly, the following message is written to the SystemOut.log
file.
CWOBJ4541I: Enhanced BackingMap memory sizing is enabled.

v Prefer Java data types over custom data types, where possible.
WebSphere eXtreme Scale can accurately size the memory cost of the following
types:
– java.lang.String and arrays where String is the component class (String[])
– All primitive wrapper types (Byte, Short, Character, Boolean, Long, Double,

Float, Integer) and arrays where primitive wrappers are the component type
(for example, Integer[], Character[])

– java.math.BigDecimal and java.math.BigInteger, and arrays where these two
classes are the component type (BigInteger[] and BigDecimal[])

– Temporal types (java.util.Date, java.sql.Date, java.util.Time,
java.sql.Timestamp)

– java.util.Calendar and java.util.GregorianCalendar
v Avoid object internment, when possible.

When an object is inserted into a map, WebSphere eXtreme Scale assumes that it
holds the only reference to the object and all the objects to which the object
directly refers. If you insert 1000 custom Objects into a map, and each one has a
reference to the same string instance, then WebSphere eXtreme Scale sizes that
string instance 1000 times, overestimating the actual size of the map on the
heap. However, WebSphere eXtreme Scale correctly compensates for the
following common internment scenarios:
– References to Java 5 Enums
– References to Classes that follow the Typesafe Enum Pattern. Classes

following this pattern only have only private constructors defined, have at
least one private static final field of its own type, and if they implement
Serializable, the class implements the readResolve() method.

524 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

– Java 5 Primitive wrapper internment. For example, using Integer.valueOf(1)
instead of new Integer(1)

If you must use internment, use one of the preceding techniques to get more
accurate estimates.

v Use custom types thoughtfully.
When using custom types, prefer primitive data types for fields vs Object types.
Also, prefer the Object types listed in entry 2 over your own custom
implementations.
When using custom types, keep the Object tree to one level. When inserting a
custom Object into a map, WebSphere eXtreme Scale will only calculate the cost
of the inserted Object, which includes any primitive fields, and all the Objects it
directly references. WebSphere eXtreme Scale will not follow references further
down into the Object tree. If you insert an Object into the map, and WebSphere
eXtreme Scale detects references that were not followed during the sizing
process, a message coded CWOBJ4543 that includes the name of the Class that
could not be fully sized results. When this error occurs, treat the size statistics
on the map as trend data, rather than relying on the size statistics as an accurate
total.

v Use the CopyMode.COPY_TO_BYTES copy mode if possible.
Use the CopyMode.COPY_TO_BYTES copy mode to remove any uncertainty
from sizing the value Objects being inserted into the map, even when an Object
tree has too many levels to be sized normally (resulting in the CWOBJ4543
message).

Cache memory consumption sizing
Beginning with the 7.1 release, WebSphere eXtreme Scale can accurately estimate
the Java heap memory usage of a given BackingMap in bytes. Leverage this
capability to help correctly size your Java virtual machine heap settings and
eviction policies. The behavior of this feature varies with the complexity of the
Objects being placed in the backing map and how the map is configured.
Currently, this feature is supported only for distributed data grids. Local data grid
instances do not support used bytes sizing.

Heap consumption considerations

eXtreme Scale stores all of its data inside the heap space of the JVM processes that
make up the data grid. For a given map, the heap space it consumes can be broken
down into the following components:
v The size all the key objects currently in the map
v The size of all the value objects currently in the map
v The size of all the EvictorData objects that are in use by the Evictor plug-ins on

the map
v The overhead of the underlying data structure

The number of used bytes that is reported by the sizing statistics is the sum of
these four components. These values are calculated on a per entry basis on the
insert, update, and remove map operations, meaning that eXtreme Scale always
has a current value for the number of bytes that a given backing map is
consuming.

When data grids are partitioned, each partition contains a piece of the backing
map. Because the sizing statistics are calculated at the lowest level of the eXtreme

Chapter 11. Tuning and performance 525

Scale code, each partition of a backing map tracks its own size. You can use the
eXtreme Scale Statistics APIs to track the cumulative size of the map, as well as the
size of its individual partitions.

In general, use the sizing data as a measure of the trends of data over time, not as
an accurate measurement of the heap space that is being used by the map. For
example, if the reported size of a map doubles from 5 MB to 10 MB, then view the
memory consumption of the map as having doubled. The actual measurement of
10 MB might be inaccurate for a number of reasons. If you take the reasons into
account and follow the best practices, then the accuracy of the size measurements
approaches that of post-processing a Java heap dump.

The main issue with accuracy is that the Java Memory Model is not restrictive
enough to allow for memory measurements that are certain to be accurate. The
fundamental problem is that an object can be live on the heap due to multiple
references. For example, if the same 5 KB object instance is inserted into three
separate maps, then any of those three maps prevent the object from being garbage
collected. In this situation, any of the following measurements would be justifiable:
v The size of each map is increased by 5 KB.
v The size of the first map the Object is placed into is increased by 5 KB.
v The other two maps are not increased in size. The size of each map is increased

by a fraction of the size of the object.

This ambiguity is why these measurements should be considered trend data,
unless you have removed the ambiguity through design choices, best practices, and
understanding of the implementation choices that can provide more accurate
statistics.

eXtreme Scale assumes that a given map holds the only long-lived reference to the
key and value Objects that it contains. If the same 5 KB object is put into three
maps, then the size of each map is increased by 5 KB. The increase usually is not a
problem, because the feature is supported only for distributed data grids. If you
insert the same Object into three different maps on a remote client, each map
receives its own copy of the Object. The default transactional COPY MODE
settings also usually guarantee that each map has its own copy of a given Object.

Object interning

Object interning can cause a challenge with estimating heap memory usage. When
you implement object interning, your application code purposely ensures that all
references to a given object value actually point to the same object instance on the
heap, and therefore the same location in memory. An example of this might be the
following class:
public class ShippingOrder implements Serializeable,Cloneable{

public static final STATE_NEW = “new”;
public static final STATE_PROCESSING = “processing”;
public static final STATE_SHIPPED = “shipped”;

private String state;
private int orderNumber;

private int customerNumber;

public Object clone(){
ShippingOrder toReturn = new ShippingOrder();
toReturn.state = this.state;
toReturn.orderNumber = this.orderNumber;

526 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

toReturn.customerNumber = this.customerNumber;
return toReturn;

}

private void readResolve(){
if (this.state.equalsIgnoreCase(“new”)

this.state = STATE_NEW;
else if (this.state.equalsIgnoreCase(“processing”)

this.state = STATE_PROCESSING;
else if (this.state.equalsIgnoreCase(“shipped”)

this.state = STATE_SHIPPED:
}

}

Object interning causes overestimation by the sizing statistics because eXtreme
Scale assumes that the objects are using different memory locations. If a million
ShippingOrder objects exist, the sizing statistics display the cost of a million
Strings holding the state information. In reality, only three Strings exist that are
static class members. The memory cost for the static class members never should
be added to any eXtreme Scale map. However, this situation cannot be detected at
runtime. There are dozens of ways that similar object interning can be
implemented, which is why it is so hard to detect. It is not practical for eXtreme
Scale to protect against all possible implementations. However, eXtreme Scale does
protect against the most commonly used types of object interning. To optimize
memory usage with Object interning, implement interning only on custom objects
that fall into the following two categories to enhance the accuracy of the memory
consumption statistics:
v eXtreme Scale automatically adjusts for Java 5 enums and the Typesafe Enum

pattern, as described at Java 2 Platform Standard Edition 5.0 Overview: Enums.
v eXtreme Scale automatically accounts for the automatic interning of primitive

wrapper types, such as Integer. Automatic interning for primitive wrapper types
was introduced in Java 5 through the use of static valueOf methods.

Memory consumption statistics

Use one of the following methods to access the memory consumption statistics.

Statistics API

Use the MapStatsModule.getUsedBytes() method, which provides statistics
for a single map, including the number of entries and hit rate.

For details, see “Statistics modules” on page 469.

Managed Beans (MBeans)

Use the MapUsedBytes managed MBean statistic. You can use several
different types of Java Management Extensions (JMX) MBeans to
administer and monitor deployments. Each MBean refers to a specific
entity, such as a map, eXtreme Scale, server, replication group, or
replication group member.

For details, see “Administering programmatically with Managed Beans
(MBeans)” on page 374.

Performance monitoring infrastructure (PMI) modules

You can monitor the performance of your applications with the PMI
modules. Specifically, use the map PMI module for containers embedded in
WebSphere Application Server.

For details, see “PMI modules” on page 485.

Chapter 11. Tuning and performance 527

http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

7.1+ WebSphere eXtreme Scale console

With the console, you can view the memory consumption statistics. See
“Monitoring with the web console” on page 457.

All of these methods access the same underlying measurement of the memory
consumption of a given BaseMap instance. The WebSphere eXtreme Scale runtime
attempts with a best effort to calculate the number of bytes of heap memory that is
consumed by the key and value objects that are stored in the map, as well as the
overhead of the map itself. You can see how much heap memory each map is
consuming across the whole distributed data grid.

In most cases the value reported by WebSphere eXtreme Scale for a given map is
very close to the value reported by heap dump analysis. WebSphere eXtreme Scale
accurately sizes its own overhead, but cannot account for every possible object that
might be put into a map. Following the best practices described in “Tuning the
cache sizing agent for accurate memory consumption estimates” on page 524 can
enhance the accuracy of the size in bytes measurements provided by WebSphere
eXtreme Scale.

528 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Chapter 12. Troubleshooting

In addition to the logs and trace, messages, and release notes discussed in this
section, you can use monitoring tools to figure out issues such as the location of
data in the environment, the availability of servers in the data grid, and so on. If
you are running in a WebSphere Application Server environment, you can use
Performance Monitoring Infrastructure (PMI). If you are running in a stand-alone
environment, you can use a vendor monitoring tool, such as CA Wily Introscope or
Hyperic HQ. You can also use and customize the xsAdmin sample utility to
display textual information about your environment.

Enabling logging
You can use logs to monitor and troubleshoot your environment.

About this task

Logs are saved different locations and formats depending on your configuration.

Procedure
v Enable logs in a stand-alone environment.

With stand-alone catalog servers, the logs are in the location where you run the
startOgServer command. For container servers, you can use the default location
or set a custom log location:
– Default log location: The logs are in the directory where the server command

was run. If you start the servers in the wxs_home/bin directory, the logs and
trace files are in the logs/<server_name> directories in the bin directory.

– Custom log location: To specify an alternate location for container server
logs, create a properties file, such as server.properties, with the following
contents:
workingDirectory=<directory>
traceSpec=
systemStreamToFileEnabled=true

The workingDirectory property is the root directory for the logs and optional
trace file. WebSphere eXtreme Scale creates a directory with the name of the
container server with a SystemOut.log file, a SystemErr.log file, and a trace
file. To use a properties file during container startup, use the -serverProps
option and provide the server properties file location.

v Enable logs in WebSphere Application Server.

See WebSphere Application Server: Enabling and disabling logging for more
information.

v Retrieve FFDC files.

FFDC files are for IBM support to aid in debug. These files might be requested
by IBM support if a problem occurs. These files are in a directory labeled, ffdc,
and contain files that resemble the following:
server2_exception.log
server2_20802080_07.03.05_10.52.18_0.txt

What to do next

View the log files in their specified locations. Common messages to look for in the
SystemOut.log file are start confirmation messages, such as the following example:

© Copyright IBM Corp. 2009, 2011 529

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=tprf_enablelog

CWOBJ1001I: ObjectGrid Server catalogServer01 is ready to process requests.

For more information about a specific message in the log files, see “Messages” on
page 540.

Collecting trace
You can use trace to monitor and troubleshoot your environment. You must
provide trace for a server when you work with IBM support.

About this task

Collecting trace can help you monitor and fix problems in your deployment of
WebSphere eXtreme Scale. How you collect trace depends on your configuration.
See “Trace options” on page 531 for a list of the different trace specifications you
can collect.

Procedure
v Collect trace within a WebSphere Application Server environment.

If your catalog and container servers are in a WebSphere Application Server
environment, see WebSphere Application Server: Working with trace for more
information.

v Collect trace with the stand-alone catalog or container server start command.

You can set trace on a catalog service or container server by using the
-traceSpec and -traceFile parameters with the startOgServer command. For
example:
startOgServer.sh catalogServer -traceSpec ObjectGridPlacement=all=enabled -traceFile /home/user1/logs/trace.log

The -traceFile parameter is optional. If you do not set a -traceFile location,
the trace file goes to the same location as the system out log files.For more
information about these parameters, see “startOgServer script” on page 356.

v Collect trace on the stand-alone catalog or container server with a properties
file.

To collect trace from a properties file, create a file, such as a server.properties
file, with the following contents:
workingDirectory=<directory>
traceSpec=<trace_specification>
systemStreamToFileEnabled=true

The workingDirectory property is the root directory for the logs and optional
trace file. If the workingDirectory value is not set, the default working directory
is the location used to start the servers, such as wxs_home/bin. To use a
properties file during server startup, use the -serverProps parameter with the
startOgServer command and provide the server properties file location.For more
information about the server properties file and how to use the file, see “Server
properties file” on page 199.

v Collect trace on a stand-alone client.

You can start trace collection on a stand-alone client by adding system properties
to the startup script for the client application. In the following example, trace
settings are specified for the com.ibm.samples.MyClientProgram application:
java -DtraceSettingsFile=MyTraceSettings.properties
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager
-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

530 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=ttrb_trcover

See WebSphere Application Server: Enabling trace on client and stand-alone
applications for more information.

v Collect trace with the ObjectGridManager interface.

You can also set trace during run time on an ObjectGridManager interface.
Setting trace on an ObjectGridManager interface can be used to get trace on an
eXtreme Scale client while it connects to an eXtreme Scale and commits
transactions. To set trace on an ObjectGridManager interface, supply a trace
specification and a trace log.
ObjectGridManager manager = ObjectGridManagerFactory.getObjectGridManager();
...
manager.setTraceEnabled(true);
manager.setTraceFileName("logs/myClient.log");
manager.setTraceSpecification("ObjectGridReplication=all=enabled");

For more information about the ObjectGridManager interface, see the
information about interacting with the ObjectGrid using the ObjectGridManager
interface in the Programming Guide.

v Collect trace on container servers with the xsadmin utility.

To collect trace with the xsadmin utility, use the setTraceSpec option. Use the
xsadmin utility to collect trace on a stand-alone environment during run time
instead of during startup. You can collect trace on all servers and catalog
services or you can filter the servers based on the ObjectGrid name, and other
properties. For example, to collect ObjectGridReplication trace with access to the
catalog service server, run:
xsadmin.bat -setTraceSpec "ObjectGridReplication=all=enabled"

You can also disable trace by setting the trace specification to
*=all=disabled.For more information about the setTraceSpec option, see
“Monitoring with the xsadmin utility” on page 470.

Results

Trace files are written to the specified location.

Trace options
You can enable trace to provide information about your environment to IBM
support.

About trace

WebSphere eXtreme Scale trace is divided into several different components. You
can specify the level of trace to use. Common levels of trace include: all, debug,
entryExit, and event.

An example trace string follows:
ObjectGridComponent=level=enabled

You can concatenate trace strings. Use the * (asterisk) symbol to specify a wildcard
value, such as ObjectGrid*=all=enabled. If you need to provide a trace to IBM
support, a specific trace string is requested. For example, if a problem with
replication occurs, the ObjectGridReplication=debug=enabled trace string might be
requested.

Chapter 12. Troubleshooting 531

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal

Trace specification

ObjectGrid
General core cache engine.

ObjectGridCatalogServer
General catalog service.

ObjectGridChannel
Static deployment topology communications.

7.1+ ObjectGridClientInfo
DB2 client information.

7.1+ ObjectGridClientInfoUser
DB2 user information.

ObjectgridCORBA
Dynamic deployment topology communications.

ObjectGridDataGrid
The AgentManager API.

ObjectGridDynaCache
The WebSphere eXtreme Scale dynamic cache provider.

ObjectGridEntityManager
The EntityManager API. Use with the Projector option.

ObjectGridEvictors
ObjectGrid built-in evictors.

ObjectGridJPA
Java Persistence API (JPA) loaders.

ObjectGridJPACache
JPA cache plug-ins.

ObjectGridLocking
ObjectGrid cache entry lock manager.

ObjectGridMBean
Management beans.

7.1+ ObjectGridMonitor
Historical monitoring infrastructure.

ObjectGridPlacement
Catalog server shard placement service.

ObjectGridQuery
ObjectGrid query.

ObjectGridReplication
Replication service.

ObjectGridRouting
Client/server routing details.

ObjectGridSecurity
Security trace.

ObjectGridStats
ObjectGrid statistics.

532 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

ObjectGridStreamQuery
The Stream Query API.

ObjectGridWriteBehind
ObjectGrid write behind.

Projector
The engine within the EntityManager API.

QueryEngine
The query engine for the Object Query API and EntityManager Query API.

QueryEnginePlan
Query plan diagnostics.

Troubleshooting installation
Use this information to troubleshoot issues with your installation.

Procedure

Problem: When you run the install command from a remote computer, such as
\\mymachine\downloads\, the following message displays: CMD.EXE was started
with the above path as the current directory. UNC paths are not supported.
Defaulting to Windows directory. As a result, the installation does not complete
correctly.
Solution: Map the remote computer to a network drive. For example, in Windows,
you can right-click My computer and choose Map Network Drive and include the
uniform naming conventions (UNC) path to the remote computer. You can then
run the install script from the network drive successfully, for example,
y:\mymachine\downloads\WXS\install.bat.

Troubleshooting client connectivity
There are several common problems specific to clients and client connectivity that
you can solve as described in the following sections.

Procedure

Problem: If you are using the EntityManager API or byte array maps with the
COPY_TO_BYTES copy mode, client data access methods result in various
serialization-related exceptions or a NullPointerException exception.
v The following error occurs when you are using the COPY_TO_BYTES copy

mode:
java.lang.NullPointerException

at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer2.inflateObject(BaseMap.java:5278)
at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer.inflateValue(BaseMap.java:5155)

v The following error occurs when you are using the EntityManager API:
java.lang.NullPointerException
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:323)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:343)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.getObjectGraph(GraphTraversalHelper.java:102)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.getFromMap(ServerCoreEventProcessor.java:709)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.processGetRequest(ServerCoreEventProcessor.java:323)

Cause: The EntityManager API and COPY_TO_BYTES copy mode use a metadata
repository that is embedded in the data grid. When clients connect, the data grid
stores the repository identifiers in the client and caches the identifiers for the
duration of the client connection. If you restart the data grid, you lose all metadata
and the regenerated identifiers do not match the cached identifiers on the client.

Chapter 12. Troubleshooting 533

Solution: If you are using the EntityManager API or the COPY_TO_BYTES copy
mode, disconnect and reconnect all of the clients if the ObjectGrid is stopped and
restarted. Disconnecting and reconnecting the clients refreshes the metadata
identifier cache. You can disconnect clients by using the
ObjectGridManager.disconnect method or the ObjectGrid.destroy method.

Troubleshooting loaders
Use this information to troubleshoot issues with your database loaders.

Procedure
v Problem: When you are using an OpenJPA loader with DB2 in WebSphere

Application Server, a closed cursor exception occurs.
The following exception is from DB2 in the
org.apache.openjpa.persistence.PersistenceException log file:
[jcc][t4][10120][10898][3.57.82] Invalid operation: result set is closed.

Solution: By default, the application server configures the resultSetHoldability
custom property with a value of 2 (CLOSE_CURSORS_AT_COMMIT). This
property causes DB2 to close its resultSet/cursor at transaction boundaries. To
remove the exception, change the value of the custom property to 1
(HOLD_CURSORS_OVER_COMMIT). Set the resultSetHoldability custom
property on the following path in the WebSphere Application Server cell:
Resources > JDBC provider > DB2 Universal JDBC Driver Provider >
DataSources > data_source_name > Custom properties > New.

v Problem DB2 displays an exception: The current transaction has been rolled
back because of a deadlock or timeout. Reason code "2".. SQLCODE=-911,
SQLSTATE=40001, DRIVER=3.50.152

This exception occurs because of a lock contention problem when you are
running with OpenJPA with DB2 in WebSphere Application Server. The default
isolation level for WebSphere Application Server is Repeatable Read (RR), which
obtains long-lived locks with DB2.Solution:

Set the isolation level to Read Committed to reduce the lock contention. Set the
webSphereDefaultIsolationLevel data source custom property to set the isolation
level to 2(TRANSACTION_READ_COMMITTED) on the following path in the
WebSphere Application Server cell: Resources > JDBC provider >
JDBC_provider > Data sources > data_source_name > Custom properties >
New. For more information about the webSphereDefaultIsolationLevel custom
property and transaction isolation levels, see Requirements for setting data
access isolation levels.

v Problem: When you are using the preload function of the JPALoader or
JPAEntityLoader, the following CWOBJ1511 message does not display for the
partition in a container server: CWOBJ1511I:
GRID_NAME:MAPSET_NAME:PARTITION_ID (primary) is open for business.
Instead, a TargetNotAvailableException exception occurs in the container server,
which activates the partition that is specified by the preloadPartition property.
Solution: Set the preloadMode attribute to true if you use a JPALoader or
JPAEntityLoader to preload data into the map. If the preloadPartition property
of the JPALoader and JPAEntityLoader is set to a value between 0 and
total_number_of_partitions - 1, then the JPALoader and JPAEntityLoader try
to preload the data from backend database into the map. The following snippet
of code illustrates how the preloadMode attribute is set to enable asynchronous
preload:

534 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=isolevel
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=isolevel

BackingMap bm = og.defineMap("map1");
bm.setPreloadMode(true);

You can also set the preloadMode attribute by using an XML file as illustrated in
the following example:
<backingMap name="map1" preloadMode="true" pluginCollectionRef="map1"
lockStrategy="OPTIMISTIC" />

Troubleshooting XML configuration
When you configure eXtreme Scale, you can encounter unexpected behavior with
your XML files. The following sections describe problems that can occur and
solutions.

Procedure
v Problem: Your deployment policy and ObjectGrid XML files must match.

The deployment policy and ObjectGrid XML files must match. If they do not
have matching ObjectGrid names and map names, errors occur.
If the backingMap list in an ObjectGrid XML file does not match the map
references list in a deployment policy XML file, an error occurs on the catalog
server.
For example, the following ObjectGrid XML file and deployment policy XML file
are used to start a container process. The deployment policy file has more map
references than are listed in the ObjectGrid XML file.
ObjectGrid.xml - incorrect example

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="accounting">

<backingMap name="payroll" readOnly="false" />
</objectGrid>

</objectGrids>
</objectGridConfig>

deploymentPolicy.xml - incorrect example

<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="accounting">
<mapSet name="mapSet1" numberOfPartitions="4" minSyncReplicas="1"

maxSyncReplicas="2" maxAsyncReplicas="1">
<map ref="payroll"/>
<map ref="ledger"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Messages: An error message occurs in the SystemOut.log file when the
deployment policy is incompatible with the ObjectGrid XML file. For the
preceding example, the following message occurs:
CWOBJ3179E: The map ledger reference in the mapSet mapSet1 of ObjectGrid accounting
deployment descriptor file does not reference a valid backing map from the ObjectGrid
XML.

If the deployment policy is missing map references to backingMaps that are
listed in the ObjectGrid XML file, an error message occurs in the SystemOut.log
file. For example:
CWOBJ3178E: The map ledger in ObjectGrid accounting referenced in the ObjectGrid XML
was not found in the deployment descriptor file.

Solution: Determine which file has the correct list and alter the relevant code
accordingly.

v Problem: Incorrect ObjectGrid names between XML files also causes and error.

Chapter 12. Troubleshooting 535

The name of the ObjectGrid is referenced in both the ObjectGrid XML file and
the deployment policy XML file.
Message: An ObjectGridException occurs with a caused by exception of
IncompatibleDeploymentPolicyException. An example follows.
Caused by:
com.ibm.websphere.objectgrid.IncompatibleDeploymentPolicyException: The
objectgridDeployment with objectGridName "accountin" does not have a
corresponding objectGrid in the ObjectGrid XML.
The ObjectGrid XML file is the master list of ObjectGrid names. If a deployment
policy has an ObjectGrid name that is not contained in the ObjectGrid XML file,
an error occurs.
Solution: Verify details such as the spelling of the ObjectGrid name. Remove
any extra names, or add missing ObjectGrid names, to the ObjectGrid XML or
deployment policy XML files. In the example message, the objectGridName is
misspelled as "accountin" instead of "accounting".

v Problem: Some of the attributes in the XML file can only be assigned certain
values. These attributes have acceptable values enumerated by the schema. The
following list provides some of the attributes:
– authorizationMechanism attribute on the objectGrid element
– copyMode attribute on the backingMap element
– lockStrategy attribute on the backingMap element
– ttlEvictorType attribute on the backingMap element
– type attribute on the property element
– initialState on the objectGrid element
– evictionTriggers on the backingMap element
If one of these attributes is assigned an invalid value, XML validation fails. In
the following example XML file, an incorrect value of INVALID_COPY_MODE
is used:
INVALID_COPY_MODE example
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="accounting">

<backingMap name="payroll" copyMode="INVALID_COPY_MODE"/>
<objectGrid/>

</objectGrids>
</objectGridConfig>

The following message appears in the log.
CWOBJ2403E: The XML file is invalid. A problem has been detected
with < null > at line 5. The error message is cvc-enumeration-valid:
Value ’INVALID_COPY_MODE’ is not facet-valid with respect to enumeration
’[COPY_ON_READ_AND_COMMIT, COPY_ON_READ, COPY_ON_WRITE, NO_COPY, COPY_TO_BYTES]’.
It must be a value from the enumeration.

v Problem: Missing or incorrect attributes or tags in an XML file causes errors,
such as the following example in which the ObjectGrid XML file is missing the
closing < /objectGrid > tag:
missing attributes - example XML

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="accounting">

<backingMap name="payroll" />

</objectGrids>
</objectGridConfig>

Message:

536 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

CWOBJ2403E: The XML file is invalid. A problem has been detected with
< null > at line 7. The error message is The end-tag for element type "objectGrid"
must end with a ’>’ delimiter.

An ObjectGridException about the invalid XML file occurs with the name of the
XML file.
Solution: Ensure that the necessary tags and attributes appear in your XML files
with correct format.

v Problem: If an XML file is formatted with incorrect or missing syntax, the
CWOBJ2403E appears in the log. For example, the following message is
displayed when a quotation is missing on one of the XML attributes
CWOBJ2403E: The XML file is invalid. A problem has been detected with
< null > at line 7. The error message is Open quote is expected for attribute
"maxSyncReplicas" associated with an element type "mapSet".

An ObjectGridException about the invalid XML file also occurs.
Solution: Various solutions can be used for a given XML syntax error. Consult
relevant documentation about XML script writing.

v Problem: Referencing a nonexistent plug-in collection causes an XML file to be
invalid. For example, when using XML to define BackingMap plug-ins, the
pluginCollectionRef attribute of the backingMap element must reference a
backingMapPluginCollection. The pluginCollectionRef attribute must match the
backingMapPluginCollection elements.
Message:

If the pluginCollectionRef attribute does not match any ID attributes of any of
the backingMapPluginConfiguration elements, the following message, or one
that is similar, is displayed in the log.
[7/14/05 14:02:01:971 CDT] 686c060e XmlErrorHandl E CWOBJ9002E:
This is an English only Error message: Invalid XML file. Line: 14; URI:
null; Message: Key ’pluginCollectionRef’ with
value ’bookPlugins’ not found for identity constraint of
element ’objectGridConfig’.

The following XML file is used to produce the error. Notice that the name of the
BackingMap book has its pluginCollectionRef attribute set to bookPlugins, and
the single backingMapPluginCollection has an ID of collection1.
referencing a non-existent attribute XML - example

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="bookstore">
<backingMap name="book" pluginCollectionRef="bookPlugin" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="collection1">
<bean id="Evictor"
className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Solution:

To fix the problem, ensure that the value of each pluginCollectionRef matches
the ID of one of the backingMapPluginCollection elements. Simply change the
name of pluginCollectionRef to collection1 to not receive this error. Alternatively,
change the ID of the existing backingMapPluginCollection to match the
pluginCollectionRef, or add an additional backingMapPluginCollection with an
ID that matches the pluginCollectionRef to correct the error.

v Problem: The IBM Software Development Kit (SDK) Version 1.4.2 contains an
implementation of some Java API for XML Processing (JAXP) function to use for

Chapter 12. Troubleshooting 537

XML validation against a schema. When using an SDK that does not contain this
implementation, attempts to validate might fail.
When you attempt to validate XML with an SDK that does not have the
necessary implementation, the log contains the following error:
XmlConfigBuild XML validation is enabled
SystemErr R com.ibm.websphere.objectgrid
SystemErr R at com.ibm.ws.objectgrid.ObjectGridManagerImpl.getObjectGridConfigurations
(ObjectGridManagerImpl.java:182)
SystemErr R at com.ibm.ws.objectgrid.ObjectGridManagerImpl.createObjectGrid(ObjectGridManagerImpl.java:309)
SystemErr R at com.ibm.ws.objectgrid.test.config.DocTest.main(DocTest.java:128)
SystemErr R Caused by: java.lang.IllegalArgumentException: No attributes are implemented
SystemErr R at org.apache.crimson.jaxp.DocumentBuilderFactoryImpl.setAttribute(DocumentBuilderFactoryImpl.java:93)
SystemErr R at com.ibm.ws.objectgrid.config.XmlConfigBuilder.<init>XmlConfigBuilder.java:133)
SystemErr R at com.ibm.websphere.objectgrid.ProcessConfigXML$2.runProcessConfigXML.java:99)...

The SDK that is used does not contain an implementation of JAXP function that
is necessary to validate XML files against a schema.
Solution: If you want to validate XML by using an SDK that does not contain
JAXP implementation, download Apache Xerces, and include its Java archive
(JAR) files in the classpath. To avoid this problem, after you download Xerces
and include the JAR files in the classpath, you can validate the XML file
successfully.

Troubleshooting security
Use this information to troubleshoot issues with your security configuration.

Procedure
v Problem: The client end of the connection requires Secure Sockets Layer (SSL),

with the transportType setting set to SSL-Required. However, the server end of
the connection does not support SSL, and has the transportType setting set to
TCP/IP. As a result, the following exception gets chained to another exception in
the log files:
java.net.ConnectException: connect: Address is invalid on local machine, or
port is not valid on remote machine

at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:389)
at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:250)
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:237)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:385)
at java.net.Socket.connect(Socket.java:540)
at

com.ibm.rmi.transport.TCPTransportConnection.createSocket(TCPTransportConnection.java:155)
at

com.ibm.rmi.transport.TCPTransportConnection.createSocket(TCPTransportConnection.java:167)

The address in this exception could be a catalog server, container server, or
client.
Solution: See “Configuring secure transport types” on page 441 for a table with
the valid security configurations between clients and servers.

v When agent is used, the client sends the agent call to the server, and server
sends the response back to the client to acknowledge the agent call. When the
agent finishes processing, the server will initiate a connect to send the agent
results. This makes the container server a client from connect point of view.
Therefore, if TLS/SSL is configured, make sure the client's public certificate is
imported in the server's trust store.

IBM Support Assistant for WebSphere eXtreme Scale
You can use the IBM Support Assistant to collect data, analyze symptoms, and
access product information.

538 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

IBM Support Assistant Lite

IBM Support Assistant Lite for WebSphere eXtreme Scale provides automatic data
collection and symptom analysis support for problem determination scenarios.

IBM Support Assistant Lite reduces the amount of time it takes to reproduce a
problem with the proper Reliability, Availability, and Serviceability tracing levels
set (trace levels are set automatically by the tool) to streamline problem
determination. If you need further assistance, IBM Support Assistant Lite also
reduces the effort required to send the appropriate log information to IBM
Support.

IBM Support Assistant Lite is included in each installation of WebSphere eXtreme
Scale Version 7.1.0

IBM Support Assistant

IBM® Support Assistant (ISA) provides quick access to product, education, and
support resources that can help you answer questions and resolve problems with
IBM software products on your own, without needing to contact IBM Support.
Different product-specific plug-ins let you customize IBM Support Assistant for the
particular products you have installed. IBM Support Assistant can also collect
system data, log files, and other information to help IBM Support determine the
cause of a particular problem.

IBM Support Assistant is a utility to be installed on your workstation, not directly
onto the WebSphere eXtreme Scale server system itself. The memory and resource
requirements for the Assistant could negatively affect the performance of the
WebSphere eXtreme Scale server system. The included portable diagnostic
components are designed for minimal impact to the normal operation of a server.

You can use IBM Support Assistant to help you in the following ways:
v To search through IBM and non-IBM knowledge and information sources across

multiple IBM products to answer a question or solve a problem
v To find additional information through product-specific Web resources; including

product and support home pages, customer news groups and forums, skills and
training resources and information about troubleshooting and commonly asked
questions

v To extend your ability to diagnose product-specific problems with targeted
diagnostic tools available in the Support Assistant

v To simplify collection of diagnostic data to help you and IBM resolve your
problems (collecting either general or product/symptom-specific data)

v To help in reporting of problem incidents to IBM Support through a customized
online interface, including the ability to attach the diagnostic data referenced
above or any other information to new or existing incidents

Finally, you can use the built-in Updater facility to obtain support for additional
software products and capabilities as they become available. To set up IBM
Support Assistant for use with WebSphere eXtreme Scale, first install IBM Support
Assistant using the files provided in the downloaded image from the IBM Support
Overview Web page at: http://www-947.ibm.com/support/entry/portal/
Overview/Software/Other_Software/IBM_Support_Assistant. Next, use IBM
Support Assistant to locate and install any product updates. You can also choose to
install plug-ins available for other IBM software in your environment. More
information and the latest version of the IBM Support Assistant are available from

Chapter 12. Troubleshooting 539

http://www-947.ibm.com/support/entry/portal/Overview/Software/Other_Software/IBM_Support_Assistant
http://www-947.ibm.com/support/entry/portal/Overview/Software/Other_Software/IBM_Support_Assistant

the IBM Support Assistant Web page at: http://www.ibm.com/software/support/
isa/.

Messages
When you encounter a message in a log or other parts of the product interface,
you can look up the message by its component prefix to find out more
information.

Finding messages

When you encounter a message in a log, copy the message number with its letter
prefix and number and search in the information center (for example, CWOBJ1526I).
When you search for the message, you can find an additional explanation of the
message and possible actions you can take to resolve the problem.

See the information center for an index of product messages.

Release notes
Links are provided to the product support Web site, to product documentation,
and to last minute updates, limitations, and known problems for the product.
v “Accessing last-minute updates, limitations, and known problems”
v “Accessing system and software requirements”
v “Accessing product documentation”
v “Accessing the product support Web site”
v “Contacting IBM Software Support” on page 541

Accessing last-minute updates, limitations, and known problems

The release notes are available on the product support site as technotes. To see a
list of all the technotes for WebSphere eXtreme Scale, go to the Support Web page.
Clicking the links provided here will result in a search of the Support Web page
for the relevant release notes, which will be returned as a list.

v 7.1+ To see a list of the release notes for Version 7.1, go to the Support Web
page.

v To see a list of the release notes for Version 7.0, go to the Support Web page.
v To see a list of the release notes for Version 6.1, go to the Release notes wiki

page.

Accessing system and software requirements

The hardware and software requirements are documented on the following pages:
v Detailed system requirements

Accessing product documentation

For the entire information set, go to the Library page.

Accessing the product support Web site

To search for the latest technotes, downloads, fixes, and other support-related
information, go to the Support page.

540 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://www-306.ibm.com/software/webservers/appserv/extend/support/
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v71xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v71xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v7xsrnotes
 http://www.ibm.com/developerworks/wikis/x/-YAF
 http://www.ibm.com/developerworks/wikis/x/-YAF
http://www.ibm.com/support/docview.wss?rs=3023&uid=swg27018828
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www-306.ibm.com/software/webservers/appserv/extend/support/

Contacting IBM Software Support

If you encounter a problem with the product, first try the following actions:
v Follow the steps described in the product documentation
v Look for related documentation in the online help
v Look up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods, contact IBM
Technical Support.

Chapter 12. Troubleshooting 541

542 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594 USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2009, 2011 543

544 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Trademarks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v CICS®

v Cloudscape
v DB2
v Domino®

v IBM
v Lotus®

v RACF®

v Redbooks®

v Tivoli
v WebSphere
v z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

LINUX is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2009, 2011 545

546 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

Index

A
administering 351

WebSphere Application Server 205
Administration API 364
API 367
architecture 78, 103

B
back-end 142
benefits 134, 137
best practices 519
build definition file

creating
CIP 31
IIP 34

C
cache

local 79
caching 133
caching support 134, 137
caching supportloaderloader

transaction 134, 137
capacity planning 9, 105
catalog server

configuring 198
starting 351
stopping 351

catalog service
best practices for 226
catalog service domain 363
configuring in WebSphere Application

Server 205
overview 95
starting

in a WebSphere Application Server
Environment 351

in an environment that is not
running WebSphere Application
Server 351

starting in WebSphere Application
Server 363

catalog service domain 96
administrative tasks 207
creating in WebSphere Application

Server 206
client 244
client authorization

creator only access 437
custom 437
JAAS 437
permissions

checking period 437
client invalidation 252
client properties file 245
client-server security

secure sockets layer (SSL) 441
TCP/IP 441

client-server security (continued)
transport layer security (TLS) 441

clients
configuring 247

command line 56
configuration 453
configuring 115, 116, 241
Configuring 244
configuring after install 46
container processes

starting 354
container server 103

configuring 198
configuring in WebSphere Application

Server 221
starting 351
stopping 351

container servers
configuring in WebSphere Application

Server 222
containers 96
CPU sizing 11, 107, 108
custom properties 237, 511
customization definitions

generating 59, 65
customized jobs

running 60, 66
uploading 60, 66

customizing 57, 63

D
data grid security

JSSE 434
token manager 434

DB2 505
deployment policy

configuring 174
deploymentPolicy.xsd file 197
descriptor XML 192
XML configuration 197

distributing changes
peer JVMs 147

dynamic cache
configuring 311

E
entities

relationships 256
entity

configuring 256
entity metadata

emd.xsd file 263
XML configuration 258, 263

event listener 150
evictors

configuring 116
plug-in 119
TTL evictor 117

extension files 58, 63
eXtreme Scale overview 73

F
failed updates 142
failover

configuring 190, 517
First steps console 46

G
grid authorization 433

H
HTTP session manager 288

configuring 288
configuring with XML 300
parameters for configuring 308
with WebSphere Virtual

Enterprise 306
HTTP sessions

splicer.properties file 297
Hyperic HQ 503

I
IBM Installation Factory

build definition file 30
IBM Support Assistant 539
IBM Tivoli Monitoring 494
IBM Update Installer for WebSphere

uninstalling
CIP 34

IBM Update Installer for WebSphere
Software 70

index
configuration 122
HashIndex 122

Installation Factory
CIP

maintenance 33
Installation Factory plug-in

build definition file
modify 36

installing
CIP 32
IIP 35

installing 241
customized installation package 37
IBM Installation Factory

CIP 30
IIP 30

maintenance 70
Network Deployment 26
silently 37, 55, 56
stand-alone 18
WebSphere Application Server 26

© Copyright IBM Corp. 2009, 2011 547

Introscope 500
invalidation 150

J
Java Authentication and Authorization

Service
JAAS 430

Java EE 76
Java message service 146
Java Persistence API 268
Java Persistence API (JPA) 266

cache plug-in
configuration 269
introduction 272

cache topology
embedded 269, 272, 276, 283
embedded partitioned 269, 272,

276, 283
Hibernate 276
OpenJPA 283
remote 269, 272, 276, 283

Hibernate plug-in
configuration 276

OpenJPA plug-in
configuration 283

Java SE 75
Java virtual machine 515
JDK 75
JMS 150
JMX securityaccess control

authentication 443
JAAS support 443
secure transport 443

jobs 57, 63
JVM 515

L
loader 142

preloading 128
loader transaction 142
loaders

JPA 266
locking

configuring programmatically 126
configuring with XML 126
no 126
optimistic 126
pessimistic 126

log element 147
log sequence 147

M
maintaining 373
managed bean 493
manageprofiles command 45, 48
MBean

accessing with wsadmin 375, 492
administering with 375
overview 493

MBeans
accessing programmatically 375
accessing with security enabled 443

messages 540

migrate 69
migrating 67
monitoring

agent 494
with CA Wily Introscope 500
with DB2 505
with Hyperic HQ 503
with Introscope 500
with PMI 481
with the statistics API 467
with vendor tools 494

monitoring console
statistic descriptions 461
viewing statistics with 460

multi-master data grid replication 85

N
network 509
Network Deployment 48
network ports 232, 510

O
Object Request Broker 241
Object Request Broker (ORB)

configuring 237
configuring stand-alone 241
orb.properties file 237, 511

ObjectGrid
XML configuration 170

ObjectGrid descriptor XML 153
objectGrid.xsd file 170
objectGridSecurity.xsd file 453
operating systems 509
operational checklist 112, 507

P
parallel transactions 11, 108
parameters 56
partition 103
peer 146
per partition 11, 107
performance 507
Performance Monitoring Infrastructure

enabling 481
modules 485
monitoring 455
monitoring with 481
retrieving statistics from 483

Performance Monitoring Infrastructure
(PMI) 115

placement
forcing 373

planning 73, 112, 232, 507, 509, 510
application deployment 73

PMI i
MBean 115

Portal 304
ports

configuring 232
profile

augmenting 45, 47
creating 45, 46

Profile Management Tool 57, 58, 59, 63,
65

Profile Management Tool plug-in 45, 46,
47

profiles
augment 48
create 48
non-root user 54

properties
server 199

R
real time 519
release notes 540
replication 146, 150
response file 55
response time 519
Rest data service

securing 446
REST data service

administering 339
configuring 327
properties file 327

S
security 453

authentication
creating an authenticator 435
LDAP 435
Tivoli access manager 435
WebSphere Application

Server 435
credential 435
integration 445
integration with WebSphere

Application Server 427
introduction 445
local 430
plug-ins 430
single sign-on (SSO) 435
XML configuration 450

Security 381
server properties 199
session management 293
session manager 288, 306
shard 103
silent installation 38
silently 61
SIP

session 300
session management 300

Spring 315
descriptor XML 315
extension beans 323
namespace 323
objectgrid.xsd file 321
XML configuration 321

stand-alone 241, 351, 446
start server

programmatically 364
starting

catalog server 356
container server 356

starting servers 351, 446

548 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

startOgServer
options 356

statistics
monitoring 455
with the statistics API 467

statistics API 115
stop server

programatically 364
stopOgServer 362
stopping servers 361
support 134, 137, 540
Support 539

T
time-based data updater 268
timeoutrequest retry 254
Tivoli 494
topology 78, 103
trace

options for configuring 531
transaction

callback 128
ID 128

troubleshooting 529
messages 540
release notes 540

tuning 232, 507, 509, 510, 515

U
uninstalling 61
upgrading 67

W
wasprofile command 45, 47
web console

connecting to catalog servers 458
creating custom reports in 466
monitoring with 457
overview 457
starting 457

WebSphere Application Server 47, 48, 70
WebSphere Customization Tools 57, 59,

63, 65
installing 58, 63

WebSphere Portal 304
Wily Introscope 500
write-behind 133, 134, 137, 142

failed updates
handling 143

wsadmin 207
wxssetup.response.txt file 38

X
XML 115
xsadmin

configuration profile 473
xsadmin utility

monitoring with 470, 474
verbose output for 479

Z
zones 181

monitoring with xsadmin utility 188

Index 549

550 IBM WebSphere eXtreme Scale Version 7.1: Administration Guide June 15, 2011

����

Printed in USA

	Contents
	About the Administration Guide
	Chapter 1. Running the getting started sample application
	Directory conventions

	Chapter 2. Capacity planning
	Sizing memory and partition count calculation
	Sizing CPU per partition for transactions
	Sizing CPUs for parallel transactions
	Dynamic cache capacity planning

	Chapter 3. Installing and deploying WebSphere eXtreme Scale
	Installing stand-alone WebSphere eXtreme Scale or WebSphere eXtreme Scale Client
	Runtime files for WebSphere eXtreme Scale stand-alone installation
	Running the getting started sample application

	Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client with WebSphere Application Server
	Runtime files for WebSphere eXtreme Scale integrated with WebSphere Application Server
	Using the Installation Factory plug-in to create and install customized packages
	Build definition file
	Creating a build definition file and generating a CIP
	Creating a build definition file and generating an IIP
	Silently installing a CIP or an IIP

	Creating and augmenting profiles for WebSphere eXtreme Scale
	Using the graphical user interface to create profiles
	Using the graphical user interface to augment profiles
	manageprofiles command
	Non-root profiles

	Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client silently
	Installation parameters

	Customizing WebSphere eXtreme Scale for z/OS
	Installing the WebSphere Customization Tools
	Generating customization definitions
	Uploading and running customized jobs

	Uninstalling WebSphere eXtreme Scale

	Chapter 4. Customizing WebSphere eXtreme Scale for z/OS
	Installing the WebSphere Customization Tools
	Generating customization definitions
	Uploading and running customized jobs

	Chapter 5. Upgrading and migrating WebSphere eXtreme Scale Version 7.1
	Updating eXtreme Scale servers
	Migrating to WebSphere eXtreme Scale Version 7.1
	Using the Update Installer to install maintenance packages
	Deprecated properties and APIs

	Chapter 6. Planning the WebSphere eXtreme Scale environment
	Planning overview
	Hardware and software requirements
	Java SE considerations
	Java EE considerations
	Directory conventions
	Caching topology: In-memory and distributed caching
	Local in-memory cache
	Peer-replicated local cache
	Distributed cache
	Embedded cache
	Multi-master data grid replication topologies
	Initial considerations for multi-master topologies
	Available topologies for multi-master replication
	Topology considerations for multi-master replication

	Catalog service
	High-availability catalog service
	Catalog server quorums

	Container servers, partitions, and shards
	Capacity planning
	Sizing memory and partition count calculation
	Sizing CPU per partition for transactions
	Sizing CPUs for parallel transactions
	Dynamic cache capacity planning

	Operational checklist

	Chapter 7. Configuring the deployment environment
	Configuration methods
	XML files for configuration

	Configuring data grids
	Configuring local deployments
	Configuring evictors
	TimeToLive (TTL) evictor
	Plug in a pluggable evictor

	Plug-ins for indexing data
	Configuring the HashIndex plug-in
	HashIndex plug-in attributes

	Configuring a locking strategy
	Configuring loaders
	Configuring write-behind loader support
	Write-behind caching
	Write-behind caching support
	Handling failed write-behind updates
	Example: Writing a write-behind dumper class

	Configuring peer-to-peer replication with JMS
	Distributing changes between peer JVMs
	JMS event listener

	ObjectGrid descriptor XML file
	objectGrid.xsd file

	Configuring deployment policies
	Configuring distributed deployments
	Controlling shard placement with zones
	Zones
	Zone-preferred routing
	Defining zones for container servers
	Example: Zone definitions in the deployment policy descriptor XML file
	Viewing zone information with the xsadmin utility

	Configuring the heartbeat interval setting for failover detection
	Deployment policy descriptor XML file
	deploymentPolicy.xsd file

	Configuring catalog and container servers
	Server properties file
	Configuring WebSphere eXtreme Scale with WebSphere Application Server
	Configuring the catalog service in WebSphere Application Server
	Configuring container servers in WebSphere Application Server

	Configuring the quorum mechanism
	Best practice: Clustering the catalog service
	Configuring multi-master replication topologies

	Configuring ports
	Planning for network ports
	Configuring ports in stand-alone mode
	Configuring ports in a WebSphere Application Server environment
	Servers with multiple network cards

	Configuring Object Request Brokers
	ORB properties
	Using the Object Request Broker with stand-alone WebSphere eXtreme Scale processes
	Configuring a custom Object Request Broker

	Configuring clients
	Client properties file
	Configuring clients with WebSphere eXtreme Scale
	Enabling the client invalidation mechanism
	Configuring request retry timeout values

	Configuring entities
	Relationship management
	Entity metadata descriptor XML file
	emd.xsd file

	Configuring cache integration
	Configuring JPA loaders
	Configuring a JPA time-based data updater
	JPA cache configuration properties
	JPA cache plug-in
	Hibernate cache plug-in configuration
	OpenJPA cache plug-in configuration

	Configuring HTTP session managers
	Configuring the HTTP session manager with WebSphere Application Server
	XML files for HTTP session manager configuration
	Configuring HTTP session manager with WebSphere Portal
	Configuring the HTTP session manager for various application servers
	Servlet context initialization parameters

	Configuring the dynamic cache provider for WebSphere eXtreme Scale

	Configuring Spring integration
	Spring descriptor XML file
	Spring objectgrid.xsd file
	Spring extension beans and namespace support
	Starting a container server with Spring

	Configuring the REST data service
	REST data service properties file
	Administering the REST data service
	Installing the REST data service
	Deploying the REST data service on WebSphere Application Server
	Deploying the REST data service on WebSphere Application Server Community Edition
	Deploying the REST data service on Apache Tomcat

	Chapter 8. Administering the deployment environment
	Starting and stopping stand-alone servers
	Starting stand-alone servers
	Starting a stand-alone catalog service
	Starting container processes
	startOgServer script

	Stopping stand-alone servers
	stopOgServer script
	Stopping servers gracefully with the xsadmin tool

	Starting and stopping servers in a WebSphere Application Server environment
	Using the embedded server API to start and stop servers
	Embedded server API

	Managing ObjectGrid availability
	Managing data center failures
	Forcing placement to occur
	Administering programmatically with Managed Beans (MBeans)
	Accessing Managed Beans (MBeans) using the wsadmin tool
	Accessing Managed Beans (MBeans) programmatically

	Chapter 9. Securing the deployment environment
	Tutorial: Integrate WebSphere eXtreme Scale security with WebSphere Application Server
	Introduction: Integrate WebSphere eXtreme Scale security with WebSphere Application Server using the WebSphere Application Se
	Module 1: Prepare WebSphere Application Server
	Lesson 1.1: Understand the topology and get the tutorial files
	Lesson 1.2: Configure the WebSphere Application Server environment

	Module 2: Configure WebSphere eXtreme Scale to use WebSphere Application Server Authentication plug-ins
	Lesson 2.1: Configure client server security
	Lesson 2.2: Configure catalog server security
	Lesson 2.3: Configure container server security
	Lesson 2.4: Install and run the sample

	Module 3: Configure transport security
	Lesson 3.1: Configure CSIv2 inbound and outbound transport
	Lesson 3.2: Add SSL properties to the catalog server properties file
	Lesson 3.3: Check the orb.properties file
	Lesson 3.4: Run the sample

	Module 4: Use Java Authentication and Authorization Service (JAAS) authorization in WebSphere Application Server
	Lesson 4.1: Enable WebSphere eXtreme Scale authorization
	Lesson 4.2: Enable user-based authorization
	Lesson 4.3: Configure group-based authorization

	Module 5: Use the xsadmin tool to monitor data grids and maps
	Lesson checkpoint

	Tutorial: Integrate WebSphere eXtreme Scale security in a mixed environment with an external authenticator
	Introduction: Security in a mixed environment
	Module 1: Prepare the mixed WebSphere Application Server and stand-alone environment
	Lesson 1.1: Understand the topology and get the tutorial files
	Lesson 1.2: Configure the WebSphere Application Server environment

	Module 2: Configure WebSphere eXtreme Scale authentication in a mixed environment
	Lesson 2.1: Configure WebSphere eXtreme Scale client security
	Lesson 2.2: Configure catalog server security
	Lesson 2.3: Configure container server security
	Lesson 2.4: Install and run the sample

	Module 3: Configure transport security
	Lesson 3.1: Configure CSIv2 inbound and outbound transport
	Lesson 3.2: Add SSL properties to the catalog server properties file
	Lesson 3.3: Check the orb.properties file
	Lesson 3.4: Run the sample

	Module 4: Use Java Authentication and Authorization Service (JAAS) authorization in WebSphere Application Server
	Lession 4.1: Enable WebSphere eXtreme Scale authorization
	Lesson 4.2: Enable user-based authorization

	Module 5: Use the xsadmin tool to monitor data grids and maps
	Lesson checkpoint

	Security integration with WebSphere Application Server
	Enabling local security
	Starting and stopping secure servers
	Starting secure servers in a stand-alone environment
	Stopping secure servers
	Starting secure servers in WebSphere Application Server

	Data grid authentication
	Data grid security
	Application client authentication
	Application client authorization
	Transport layer security and secure sockets layer
	Configuring secure transport types
	Configuring Secure Sockets Layer (SSL) parameters for clients or servers

	Java Management Extensions (JMX) security
	Security integration with external providers
	Securing the REST data service
	Security descriptor XML file
	objectGridSecurity.xsd file

	Chapter 10. Monitoring the deployment environment
	Statistics overview
	Monitoring with the web console
	Starting and logging on to the web console
	Connecting the web console to catalog servers
	Viewing statistics with the web console
	Web console statistics

	Monitoring with custom reports

	Monitoring with the statistics API
	Statistics modules

	Monitoring with the xsadmin utility
	Creating a configuration profile for the xsadmin utility
	xsadmin utility reference
	Verbose option for the xsadmin utility

	Monitoring with WebSphere Application Server PMI
	Enabling PMI
	Retrieving PMI statistics
	PMI modules
	Accessing Managed Beans (MBeans) using the wsadmin tool

	Monitoring with managed beans (MBeans)
	Monitoring with vendor tools
	Monitoring with the IBM Tivoli Enterprise Monitoring Agent for WebSphere eXtreme Scale
	Monitoring eXtreme Scale applications with CA Wily Introscope
	Monitoring eXtreme Scale with Hyperic HQ

	Monitoring eXtreme Scale information in DB2

	Chapter 11. Tuning and performance
	Operational checklist
	Operating systems and network tuning
	Planning for network ports
	ORB properties
	JVM tuning for WebSphere eXtreme Scale
	Configuring the heartbeat interval setting for failover detection
	Using WebSphere Real Time
	WebSphere Real Time in a stand-alone environment
	WebSphere Real Time in WebSphere Application Server

	Tuning the dynamic cache provider
	Tuning the cache sizing agent for accurate memory consumption estimates
	Cache memory consumption sizing

	Chapter 12. Troubleshooting
	Enabling logging
	Collecting trace
	Trace options

	Troubleshooting installation
	Troubleshooting client connectivity
	Troubleshooting loaders
	Troubleshooting XML configuration
	Troubleshooting security
	IBM Support Assistant for WebSphere eXtreme Scale
	Messages
	Release notes

	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

