
IBM WebSphere eXtreme Scale Version 7.1.1

Product Overview
February 6, 2012

���

This edition applies to version 7, release 1, modification 1 of WebSphere eXtreme Scale and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About the Product Overview ix

Chapter 1. Product overview 1
WebSphere eXtreme Scale overview. 1
What’s new in Version 7.1.1 4
Release notes 5
Hardware and software requirements 6
Directory conventions 7
WebSphere eXtreme Scale technical overview . . . 9
Caching overview 10

Caching architecture: Maps, containers, clients,
and catalogs 10
Zones 15
Evictors 19
OSGi framework overview 22

Cache integration overview 23
JPA level 2 (L2) cache plug-in 23
HTTP session management 30
Dynamic cache provider 32

Database integration: Write-behind, in-line, and side
caching 43

Sparse and complete cache 44
Side cache 45
In-line cache 45
Write-behind caching 48
Loaders. 50
Data pre-loading and warm-up 51
Database synchronization techniques 53
Data invalidation 54
Indexing 55
JPA Loaders 57

Serialization overview 59
Serialization using Java 61
ObjectTransformer plug-in 62
Serialization using the DataSerializer plug-ins . . 66

Scalability overview 66
Data grids, partitions, and shards 67
Partitioning 69
Placement and partitions 70
Single-partition and cross-data-grid transactions 73
Scaling in units or pods 79

Availability overview 81
High availability. 81

Replicas and shards 94
Transaction processing overview 103
Security overview 116
REST data services overview 118

Chapter 2. Planning. 121
Planning the topology 121

Local in-memory cache 121
Peer-replicated local cache 123
Embedded cache 125
Distributed cache 126
Database integration: Write-behind, in-line, and
side caching 128
Planning multiple data center topologies . . . 142

Interoperability with other WebSphere products 153

Chapter 3. Scenarios 155
Using an OSGi environment to develop and run
eXtreme Scale plug-ins 155

OSGi framework overview 155
Installing the Eclipse Equinox OSGi framework
with Eclipse Gemini for clients and servers . . 156
Running eXtreme Scale containers with
non-dynamic plug-ins in an OSGi environment . 160
Administering eXtreme Scale servers and
applications in an OSGi environment 161
Building and running eXtreme Scale dynamic
plug-ins for use in an OSGi environment . . . 162
Running eXtreme Scale containers with dynamic
plug-ins in an OSGi environment. 169

Chapter 4. Samples 179
Free trial 180
Sample properties files 181
Sample: xsadmin utility 181

Creating a configuration profile for the xsadmin
utility 184
xsadmin utility reference 185
Verbose option for the xsadmin utility 189

Notices 191

Trademarks 193

Index 195

© Copyright IBM Corp. 2009, 2012 iii

iv IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Figures

1. High-level topology 2
2. Catalog service 10
3. Container server 12
4. Partition 12
5. Shard 13
6. ObjectGrid 13
7. Map 13
8. Map sets 14
9. Possible topologies 15

10. Primaries and replicas in zones 16
11. JPA intra-domain topology 25
12. JPA embedded topology 26
13. JPA embedded, partitioned topology 27
14. JPA remote topology 29
15. HTTP session management topology with a

remote container configuration 31
16. ObjectGrid as a database buffer 43
17. ObjectGrid as a side cache 44
18. Side cache 45
19. In-line cache 46
20. Read-through caching 47
21. Write-through caching 47
22. Write-behind caching 48
23. Write-behind caching 49
24. Loader 50
25. Loader plug-in 52
26. Client loader 53
27. Periodic refresh 54
28. JPA Loader architecture 58
29. Catalog service domain 89
30. Communication path between a primary shard

and replica shards 95
31. Placement of an ObjectGrid map set with a

deployment policy of 3 partitions with a
minSyncReplicas value of 1, a
maxSyncReplicas value of 1, and a
maxAsyncReplicas value of 1 97

32. Example placement of an ObjectGrid map set
for the partition0 partition. The deployment
policy has a minSyncReplicas value of 1, a
maxSyncReplicas value of 2, and a
maxAsyncReplicas value of 1. 100

33. The container for the primary shard fails 101
34. The synchronous replica shard on ObjectGrid

container 2 becomes the primary shard . . . 101
35. Machine B contains the primary shard.

Depending on how automatic repair mode is
set and the availability of the containers, a
new synchronous replica shard might or
might not be placed on a machine. 102

36. Microsoft WCF Data Services 119
37. WebSphere eXtreme Scale REST data service 119
38. Local in-memory cache scenario 122
39. Peer-replicated cache with changes that are

propagated with JMS 123
40. Peer-replicated cache with changes that are

propagated with the high availability
manager 124

41. Embedded cache 125
42. Distributed cache 127
43. Near cache 127
44. ObjectGrid as a database buffer 129
45. ObjectGrid as a side cache 129
46. Side cache 130
47. In-line cache 131
48. Read-through caching. 132
49. Write-through caching 132
50. Write-behind caching 133
51. Write-behind caching 134
52. Loader 135
53. Loader plug-in 137
54. Client loader 138
55. Periodic refresh 139
56. Eclipse Equinox process for including all

configuration and metadata in an OSGi
bundle 172

57. Eclipse Equinox process for specify
configuration and metadata outside of an
OSGi bundle 173

© Copyright IBM Corp. 2009, 2012 v

vi IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Tables

1. Feature comparison 35
2. Seamless technology integration. 36
3. Programming interfaces 36
4. Failure discovery and recovery summary 83
5. Status value and response. 85
6. Commit sequence on the primary 86

7. Synchronous commit processing 87
8. Arbitration approaches 150
9. Available samples 179

10. Available articles by feature 180
11. Arguments for the xsadmin utility 185

© Copyright IBM Corp. 2009, 2012 vii

viii IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

About the Product Overview

The WebSphere® eXtreme Scale documentation set includes three volumes that
provide the information necessary to use, program for, and administer the
WebSphere eXtreme Scale product.

WebSphere eXtreme Scale library

The WebSphere eXtreme Scale library contains the following books:
v The Product Overview contains a high-level view of WebSphere eXtreme Scale

concepts, including use case scenarios, and tutorials.
v The Installation Guide describes how to install common topologies of WebSphere

eXtreme Scale.
v The Administration Guide contains the information necessary for system

administrators, including how to plan application deployments, plan for
capacity, install and configure the product, start and stop servers, monitor the
environment, and secure the environment.

v The Programming Guide contains information for application developers on how
to develop applications for WebSphere eXtreme Scale using the included API
information.

To download the books, go to the WebSphere eXtreme Scale library page.

You can also access the same information in this library in the WebSphere eXtreme
Scale Version 7.1.1 information center.

Using the books offline

All of the books in the WebSphere eXtreme Scale library contain links to the
information center, with the following root URL: http://publib.boulder.ibm.com/
infocenter/wxsinfo/v7r1m1. These links take you directly to related information.
However, if you are working offline and encounter one of these links, you can
search for the title of the link in the other books in the library. The API
documentation, glossary, and messages reference are not available in PDF books.

Who should use this book

This book is intended for anyone that is interested in learning about WebSphere
eXtreme Scale.

Getting updates to this book

You can get updates to this book by downloading the most recent version from the
WebSphere eXtreme Scale library page.

How to send your comments

Contact the documentation team. Did you find what you needed? Was it accurate
and complete? Send your comments about this documentation by e-mail to
wasdoc@us.ibm.com.

© Copyright IBM Corp. 2009, 2012 ix

http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/index.jsp
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
mailto:wasdoc@us.ibm.com?subject=WebSphere eXtreme Scale

x IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Chapter 1. Product overview
WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. The data
grid dynamically caches, partitions, replicates, and manages application data and
business logic across multiple servers. WebSphere eXtreme Scale performs
massive volumes of transaction processing with high efficiency and linear
scalability. With WebSphere eXtreme Scale, you can also get qualities of service
such as transactional integrity, high availability, and predictable response times.

WebSphere eXtreme Scale overview
WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. The data
grid dynamically caches, partitions, replicates, and manages application data and
business logic across multiple servers. WebSphere eXtreme Scale performs massive
volumes of transaction processing with high efficiency and linear scalability. With
WebSphere eXtreme Scale, you can also get qualities of service such as
transactional integrity, high availability, and predictable response times.

WebSphere eXtreme Scale can be used in different ways. You can use the product
as a very powerful cache, as an in-memory database processing space to manage
application state, or to build Extreme Transaction Processing (XTP) applications.
These XTP capabilities include an application infrastructure to support your most
demanding business-critical applications.

Elastic scalability

Elastic scalability is possible through the use of distributed object caching. With
elastic scalability, the data grid monitors and manages itself. The data grid can add
or remove servers from the topology, which increases or decreases memory,
network throughput, and processing capacity as needed. When a scale-out process
is initiated, capacity is added to the data grid while it is running without requiring
a restart. Conversely, a scale-in process immediately removes capacity. The data
grid is also self-healing by automatically recovering from failures.

WebSphere eXtreme Scale versus an in-memory database

WebSphere eXtreme Scale cannot be considered an actual in-memory database. An
in-memory database is too simple to handle some of the complexities that
WebSphere eXtreme Scale can manage. If an in-memory database has a server that
fails, it cannot repair the issue. A failure can be disastrous if your entire
environment is on that one server.

To tackle the problem of this type of failure, eXtreme Scale splits the given data set
into partitions, which are equivalent to constrained tree schemas. Constrained tree
schemas describe the relationship between entities. When you are using partitions,
the entity relationships must model a tree data structure. In this structure, the head
of the tree is the root entity and is the only entity that is partitioned. All other
children of the root entity are stored in the same partition as the root entity. Each
partition exists as a primary copy, or shard. A partition also contains replica shards
for backing up the data. An in-memory database cannot provide this function
because it is not structured and dynamic in this way. With an in-memory database,
you must implement the operations that WebSphere eXtreme Scale does
automatically. You can run SQL operations on in-memory databases, improving the

© Copyright IBM Corp. 2009, 2012 1

processing speed compared to databases that are not in memory. WebSphere
eXtreme Scale has its own query language instead of SQL support. This query
language is more elastic, enables partitioning of data, and provides dependable
failure recovery.

WebSphere eXtreme Scale with databases

With the write-behind cache feature, WebSphere eXtreme Scale can serve as a
front-end cache for a database. By using this front-end cache, throughput increases
while reducing database load and contention. WebSphere eXtreme Scale provides
predictable scaling in and scaling out at predictable processing cost.

The following image shows that in a distributed, coherent cache environment, the
eXtreme Scale clients send and receive data from the data grid. The data grid can
be automatically synchronized with a backend data store. The cache is coherent
because all of the clients see the same data in the cache. Each piece of data is
stored on exactly one writable server in the cache. Having one copy of each piece
of data prevents wasteful copies of records that might contain different versions of
the data. A coherent cache holds more data as more servers are added to the data
grid, and scales linearly as the data grid grows in size. The data can also be
optionally replicated for additional fault tolerance.

WebSphere eXtreme Scale has servers, called container servers, that provide its
in-memory data grid. These servers can run inside WebSphere Application Server,
or on simple Java Standard Edition (J2SE) Java virtual machines. More than one
container server can run on a single physical server. As a result, the in-memory
data grid can be large. The data grid is not limited by, and does not have an
impact on, the memory or address space of the application or the application
server. The memory can be the sum of the memory of several hundred, or
thousand, Java virtual machines, running on many different physical servers.

Application Clients Backend Data Store

Location Service Placement Service

Core Group Manager Administration

Catalog Service

Location Service Placement Service

Core Group Manager Administration

Catalog Service

Catalog Service

ObjectGrid

eXtreme Scale Grid

Figure 1. High-level topology

2 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

As an in-memory database processing space, WebSphere eXtreme Scale can be
backed by disk, database, or both.

While eXtreme Scale provides several Java APIs, many use cases require no user
programming, just configuration and deployment in your WebSphere
infrastructure.

Data grid overview

The simplest eXtreme Scale programming interface is the ObjectMap interface,
which is a simple map interface that includes: a map.put(key,value) method to put
a value in the cache, and a map.get(key) method to later retrieve the value.

The fundamental data grid paradigm is a key-value pair, where the data grid
stores values (Java objects), with an associated key (another Java object). The key is
later used to retrieve the value. In eXtreme Scale, a map consists of entries of such
key-value pairs.

WebSphere eXtreme Scale offers a number of data grid configurations, from a
single, simple local cache, to a large distributed cache, using multiple Java virtual
machines or servers.

In addition to storing simple Java objects, you can store objects with relationships.
You can use a query language that is like SQL, with SELECT ... FROM ... WHERE
statements to retrieve these objects. For example, an order object might have a
customer object and multiple item objects associated with it. WebSphere eXtreme
Scale supports one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

WebSphere eXtreme Scale also supports an EntityManager programming interface
for storing entities in the cache. This programming interface is like entities in Java
Enterprise Edition. Entity relationships can be automatically discovered from an
entity descriptor XML file or annotations in the Java classes. You can retrieve an
entity from the cache by primary key using the find method on the EntityManager
interface. Entities can be persisted to or removed from the data grid within a
transaction boundary.

Consider a distributed example where the key is a simple alphabetic name. The
cache might be split into four partitions by key: partition 1 for keys starting with
A-E, partition 2 for keys starting with F-L, and so on. For availability, a partition
has a primary shard and a replica shard. Changes to the cache data are made to
the primary shard, and replicated to the replica shard. You configure the number
of servers that contain the data grid data, and eXtreme Scale distributes the data
into shards over these server instances. For availability, replica shards are placed in
separate physical servers from primary shards.

WebSphere eXtreme Scale uses a catalog service to locate the primary shard for
each key. It handles moving shards among eXtreme Scale servers when the
physical servers fail and later recover. For example, if the server containing a
replica shard fails, eXtreme Scale allocates a new replica shard. If a server
containing a primary shard fails, the replica shard is promoted to be the primary
shard. As before, a new replica shard is constructed.

Chapter 1. Product overview 3

What’s new in Version 7.1.1
WebSphere eXtreme Scale includes many new features in Version 7.1.1. Use this
topic to learn about the latest product updates.

DataSerializer plug-ins

When clients and servers exchange information or when servers replicate data
from one server to another, data must be converted, or serialized, so that it can be
transmitted over the network. In previous releases, you used either the default Java
serialization or the ObjectTransformer plug-in to serialize data. In this release you
can use the DataSerializer plug-ins to efficiently describe your serialization format,
or byte array, to WebSphere eXtreme Scale so that the product can interact with the
byte array without requiring a specific object format. Learn more...

OSGi framework

Using the OSGi framework, you can expose your plug-ins as OSGi services so they
can be used by the eXtreme Scale run time. In addition, you can start eXtreme
Scale servers and clients in an OSGi container, which allows you to dynamically
add and update eXtreme Scale plug-ins to the runtime environment. Learn more...

Dynamic cache provider performance improvement

Invalidation processing within the WebSphere eXtreme Scale dynamic cache
provider has been improved. Invalidation requests are processed asynchronously
and in batch when the wait parameter of the invalidate(key, wait) method is set to
a value of false. This enhancement significantly improves performance. Learn
more...

Default placement behavior change

In previous releases, when a new container server started in the data grid,
placement of shards on that container server began immediately. This immediate
placement resulted in high processor utilization on the servers that contains the
new container servers. The default behavior has been changed to set a 15000 ms, or
15 second delay before placement occurs. You can change the placement interval
with the placementDeferralInterval server property. Learn more...

Intra-domain topology for Java Persistence API (JPA) level 2 (L2)
cache plug-in configurations

By configuring an intra-domain topology on your JPA L2 cache, a primary shard is
placed on every container server in the configuration. Each primary shard contains
the entire contents of the partition. By using this configuration, you can increase
performance because clients can locally access data, and any of the primary shards
can write to the data grid. Learn more...

xscmd utility

The xscmd utility is the new supported version of the xsadmin utility. The xsadmin
utility was included as an unsupported sample in previous releases. Learn more...

4 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsplacement.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsxscmd.html

Tool for generating log analysis reports

With the new xsloganalyzer tool, you can generate reports from your log files that
can help you analyze the performance of your environment and troubleshoot
issues. Learn more...

IBM eXtremeIO and IBM eXtremeMemory

By configuring eXtremeMemory, you can store objects in native memory instead of
on the Java heap. Configuring eXtremeMemory enables eXtremeIO, a new
transport mechanism. By moving objects off the Java heap, you can avoid garbage
collection pauses, leading to more constant performance and predicable response
times. Learn more...

WebSphere Application Server Version 8 support

WebSphere eXtreme Scale Version 7.1.1 can now be installed on WebSphere
Application Server and WebSphere Application Server Network Deployment
Version 8. Learn more...

Release notes
Links are provided to the product support Web site, to product documentation,
and to last minute updates, limitations, and known problems for the product.
v “Accessing last-minute updates, limitations, and known problems”
v “Accessing system and software requirements”
v “Accessing product documentation”
v “Accessing the product support Web site” on page 6
v “Contacting IBM Software Support” on page 6

Accessing last-minute updates, limitations, and known problems

The release notes are available on the product support site as technotes. To see a
list of all the technotes for WebSphere eXtreme Scale, go to the Support Web page.
Clicking the links provided here will result in a search of the Support Web page
for the relevant release notes, which will be returned as a list.
v 7.1.1+ To see a list of the release notes for Version 7.1.1, go to the Support Web

page.
v To see a list of the release notes for Version 7.1, go to the Support Web page.
v To see a list of the release notes for Version 7.0, go to the Support Web page.
v To see a list of the release notes for Version 6.1, go to the Release notes wiki

page.

Accessing system and software requirements

The hardware and software requirements are documented on the following pages:
v Detailed system requirements

Accessing product documentation

For the entire information set, go to the Library page.

Chapter 1. Product overview 5

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txslogvis.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsconfigxstransport.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsinstallwas.html
http://www-306.ibm.com/software/webservers/appserv/extend/support/
http://www.ibm.com/support/search.wss?tc=SSTVLU&q=v711xsrnotes
http://www.ibm.com/support/search.wss?tc=SSTVLU&q=v711xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v71xsrnotes
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v7xsrnotes
 http://www.ibm.com/developerworks/wikis/x/-YAF
 http://www.ibm.com/developerworks/wikis/x/-YAF
http://www-01.ibm.com/support/docview.wss?uid=swg27019121
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html

Accessing the product support Web site

To search for the latest technotes, downloads, fixes, and other support-related
information, go to the Support Portal.

Contacting IBM® Software Support

If you encounter a problem with the product, first try the following actions:
v Follow the steps described in the product documentation
v Look for related documentation in the online help
v Look up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods, contact IBM
Technical Support.

Hardware and software requirements
Browse an overview of hardware and operating system requirements. Although
you are not required to use a specific level of hardware or operating system for
WebSphere eXtreme Scale, formally supported hardware and software options are
available on the Systems Requirements page of the product support site. If a
conflict exists between the information center and the System Requirements page,
the information at the website takes precedence. Prerequisite information in the
information center is provided as a convenience only.

See the System Requirements page for the official set of hardware and software
requirements.

You are not required to install and deploy eXtreme Scale on a specific level of
operating system. Each Java Platform, Standard Edition (Java SE) and Java
Platform, Enterprise Edition (Java EE) installation requires different operating
system levels or fixes.

You can install and deploy the product in Java EE and Java SE environments. You
can also bundle the client component with Java EE applications directly without
integrating with WebSphere Application Server. WebSphere eXtreme Scale
supportsJava SE 5 or later and WebSphere Application Server Version 6.1 and later.

Hardware requirements

WebSphere eXtreme Scale does not require a specific level of hardware. The
hardware requirements are dependent on the supported hardware for the Java
Platform, Standard Edition installation that you use to run WebSphere eXtreme
Scale. If you are using eXtreme Scale with WebSphere Application Server or
another Java Platform, Enterprise Edition implementation, the hardware
requirements of these platforms are sufficient for WebSphere eXtreme Scale.

Operating system requirements
v Without the web console

eXtreme Scale does not require a specific operating system level. Each Java SE
and Java EE implementation requires different operating system levels or fixes
for problems that are discovered during the testing of the Java implementation.
The levels required by these implementations are sufficient for eXtreme Scale.

v With the web console

The following requirements apply for each operating system if using the console:

6 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_eXtreme_Scale
http://www.ibm.com/software/webservers/appserv/extremescale/sysreqs

– Linux: 32 bit or 64 bit JVM
– Linux PPC: 32 bit JVM only
– Windows: 32 bit JVM only
– AIX®: 32 bit JVM only

Web browser requirements

The web console supports the following Web browsers:
v Mozilla Firefox, version 3.5.x and later
v Mozilla Firefox, version 3.6.x and later
v Microsoft Internet Explorer, version 7 or 8

WebSphere Application Server requirements
v WebSphere Application Server Version 6.1.0.39 or later
v WebSphere Application Server Version 7.0.0.19 or later
v WebSphere Application Server Version 8.0.0.1 or later

See the Recommended fixes for WebSphere Application Server for more
information.

Other application server requirements

Other Java EE implementations can use the eXtreme Scale run time as a local
instance or as a client to eXtreme Scale servers. To implement Java SE, you must
use Version 5 or later.

Directory conventions
The following directory conventions are used throughout the documentation to
must reference special directories such as wxs_install_root and wxs_home. You
access these directories during several different scenarios, including during
installation and use of command-line tools.

wxs_install_root
The wxs_install_root directory is the root directory where WebSphere
eXtreme Scale product files are installed. The wxs_install_root directory can
be the directory in which the trial archive is extracted or the directory in which
the WebSphere eXtreme Scale product is installed.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer

wxs_home
The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples, and components. This directory is the same as the
wxs_install_root directory when the trial is extracted. For stand-alone
installations, the wxs_home directory is the ObjectGrid subdirectory within the
wxs_install_root directory. For installations that are integrated with

Chapter 1. Product overview 7

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004980

WebSphere Application Server, this directory is the optionalLibraries/
ObjectGrid directory within the wxs_install_root directory.
v Example when extracting the trial:

Example: /opt/IBM/WebSphere/eXtremeScale

v Example when WebSphere eXtreme Scale is installed to a stand-alone
directory:
Example: /opt/IBM/eXtremeScale/ObjectGrid

v Example when WebSphere eXtreme Scale is integrated with WebSphere
Application Server:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid

was_root
The was_root directory is the root directory of a WebSphere Application Server
installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home
The restservice_home directory is the directory in which the WebSphere
eXtreme Scale REST data service libraries and samples are located. This
directory is named restservice and is a subdirectory under the wxs_home
directory.
v Example for stand-alone deployments:

Example: /opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice

v Example for WebSphere Application Server integrated deployments:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/
restservice

tomcat_root
The tomcat_root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

Example: /opt/IBM/WebSphere/AppServerCE

java_home
The java_home is the root directory of a Java Runtime Environment (JRE)
installation.

Example: /opt/IBM/WebSphere/eXtremeScale/java

samples_home
The samples_home is the directory in which you extract the sample files that are
used for tutorials.

Example: /wxs-samples/

dvd_root
The dvd_root directory is the root directory of the DVD that contains the
product.

Example: dvd_root/docs/

equinox_root
The equinox_root directory is the root directory of the Eclipse Equinox OSGi
framework installation.

8 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Example:/opt/equinox

user_home
The user_home directory is the location where user files are stored, such as
security profiles.

Windows c:\Documents and Settings\user_name

UNIX /home/user_name

WebSphere eXtreme Scale technical overview
WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. It
dynamically caches, partitions, replicates, and manages application data and
business logic across multiple servers.

Because WebSphere eXtreme Scale is not an in-memory database, you must
consider specific configuration requirements. The first step to deploying a data grid
is to start a core group and catalog service, which acts as coordinator for all other
Java virtual machines that are participating in the data grid and manage
configuration information. WebSphere eXtreme Scale processes are started with
simple command script invocations from the command line.

The next step is to start WebSphere eXtreme Scale server processes for the data
grid to store and retrieve data. As servers are started, they automatically register
themselves with the core group and catalog service allowing them to cooperate in
providing data grid services. More servers increase both data grid capacity and
reliability.

A local data grid is a simple, single-instance grid where all the data is in the one
grid. To effectively use WebSphere eXtreme Scale as an in-memory database
processing space, you can configure and deploy a distributed data grid. The data
in the distributed grid is spread out over the various eXtreme Scale servers
containing it such that each server contains only some of the data, called a
partition.

A key distributed data grid configuration parameter is the number of partitions in
the grid. The grid data is partitioned into this number of subsets, each of which is
called a partition. The catalog service locates the partition for a given datum based
on its key. The number of partitions directly affects the capacity and scalability of
the data grid. A server cancontain one or more data grid partitions. Thus the
server's memory space limits the size of a partition. Conversely, increasing the
number of partitions increases the capacity of the data grid. The maximum
capacity of a data grid is the number of partitions times the usable memory size of
each server. A server can be a JVM, but you can define your eXtreme Scale server
to suit your deployment environment.

The data of a partition is stored in a shard. For availability, a data grid can be
configured with replicas, which can be synchronous or asynchronous. Changes to
the grid data are made to the primary shard, and replicated to the replica shards.
The total memory that is used or required by a data grid is thus the size of the
data grid times (1 (for the primary) + the number of replicas).

WebSphere eXtreme Scale distributes the shards of a data grid over the number of
servers comprising the grid. These servers may be on the same or different
physical servers. For availability, replica shards are placed in separate physical
servers from primary shards.

Chapter 1. Product overview 9

WebSphere eXtreme Scale monitors the status of its servers and moves shards
during shard or physical server failure and recovery. For example, if the server
containing a replica shard fails, WebSphere eXtreme Scale allocates a new replica
shard, and replicate data from the primary to the new replica. If a server that
contains a primary shard faisl, the replica shard is promoted to be the primary
shard, and, a new replica shard is constructed. If you start an additional server for
the data grid, the shards are balanced over all servers. This rebalancing is called
scale-out. Similarly, for scale-in, you might stop one of the servers to reduce the
resources that are used by a data grid. As a result, the shards are balanced over the
remaining servers.

Caching overview
WebSphere eXtreme Scale can operate as an in-memory database processing space,
which you can use to provide in-line caching for a database back-end or to serve
as a side-cache. In-line caching uses eXtreme Scale as the primary means for
interacting with the data. When eXtreme Scale is used as a side-cache, the
back-end is used in conjunction with the data grid. This section describes various
cache concepts and scenarios and discusses the available topologies for deploying a
data grid.

Caching architecture: Maps, containers, clients, and catalogs
With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the eXtreme
Scale server, and clients remotely connect to the server.

Distributed caches offer increased performance, availability and scalability and can
be configured using dynamic topologies, in which servers are automatically
balanced. You can also add additional servers without restarting your existing
eXtreme Scale servers. You can create either simple deployments or large,
terabyte-sized deployments in which thousands of servers are needed.

Catalog service
The catalog service controls placement of shards and discovers and monitors the
health of container servers in the data grid. The catalog service hosts logic that
should be idle and has little influence on scalability. It is built to service hundreds
of container servers that become available simultaneously, and run services to
manage the container servers.

The catalog server responsibilities consist of the following services:

Catalog Service

Location Service

Core Group Mgr

Placement Service

Administration

JVM

Figure 2. Catalog service

10 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Location service
The location service runs on the data grid members to provide locality to
clients and container servers. Container servers register with the location
service to register the hosted applications. Clients can then use the location
service to search for container servers to host applications.

Placement service
The catalog service manages the placement of shards across available
container servers. The placement service is responsible for maintaining
balance across physical resources and allocating individual shards to their
host container server. The placement service runs as a One of N elected
service in the cluster and in the data grid. This means that exactly one
instance of the placement service is running. If an instance fails, another
process is elected and takes over. For redundancy, the state of the catalog
service is replicated across all the servers that are hosting the catalog
service.

Core group manager
The core group manages peer grouping for availability monitoring,
organizes container servers into small groups of servers, and automatically
federates the groups of servers.

The catalog service uses the high availability manager (HA manager) to
group processes together for availability monitoring. Each grouping of the
processes is a core group. The core group manager dynamically groups the
processes together. These processes are kept small to allow for scalability.
Each core group elects a leader that is responsible for sending heartbeat
messages to the core group manager. These messages detect if an
individual member failed or is still available. The heartbeat mechanism is
also used to detect if all the members of a group failed, which causes the
communication with the leader to fail.

The core group manager is responsible for organizing containers into small
groups of servers that are loosely federated to make a data grid. When a
container server first contacts the catalog service, it waits to be assigned to
either a new or existing group. An eXtreme Scale deployment consists of
many such groups, and this grouping is a key scalability enabler. Each
group consists of Java virtual machines. An elected leader uses the
heartbeat mechanism to monitor the availability of the other groups. The
leader relays availability information to the catalog service to allow for
failure reaction by reallocation and route forwarding.

Administration
The catalog service is also the logical entry point for system administration.
The catalog service hosts a Managed Bean (MBean) and provides Java
Management Extensions (JMX) URLs for any of the servers that the catalog
service is managing.

For high availability, configure a catalog service domain. A catalog service domain
consists of multiple Java virtual machines, including a master JVM and a number
of backup Java virtual machines. For more information, see “High availability
catalog service” on page 88.

Container servers, partitions, and shards
The container server stores application data for the data grid. This data is generally
broken into parts, which are called partitions, which are hosted across multiple
container servers. Each container server in turn hosts a subset of the complete data.
A JVM might host one or more container servers and each container server can
host multiple shards.

Chapter 1. Product overview 11

Remember: Plan out the heap size for the container servers, which host all of your
data. Configure the heap settings accordingly.

Partitions host a subset of the data in the grid. WebSphere eXtreme Scale
automatically places multiple partitions in a single container server and spreads
the partitions out as more container servers become available.

Important: Choose the number of partitions carefully before final deployment
because the number of partitions cannot be changed dynamically. A hash
mechanism is used to locate partitions in the network and eXtreme Scale cannot
rehash the entire data set after it has been deployed. As a general rule, you can
overestimate the number of partitions

Shards are instances of partitions and have one of two roles: primary or replica.
The primary shard and its replicas make up the physical manifestation of the
partition. Every partition has several shards that each host all of the data contained
in that partition. One shard is the primary, and the others are replicas, which are
redundant copies of the data in the primary shard. A primary shard is the only
partition instance that allows transactions to write to the cache. A replica shard is a
"mirrored" instance of the partition. It receives updates synchronously or
asynchronously from the primary shard. The replica shard only allows transactions
to read from the cache. Replicas are never hosted in the same container server as
the primary and are not normally hosted on the same machine as the primary.

ObjectGrid Container

JVM

Shard Shard

Shard Shard

Figure 3. Container server

JVM

Partition 1

Partition 2

Server Container Server Container

JVM

Primary Shard

Primary Shard

Replica Shard

Replica Shard

Figure 4. Partition

12 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

To increase the availability of the data, or increase persistence guarantees, replicate
the data. However, replication adds cost to the transaction and trades performance
in return for availability. With eXtreme Scale, you can control the cost as both
synchronous and asynchronous replication is supported, as well as hybrid
replication models using both synchronous and asynchronous replication modes. A
synchronous replica shard receives updates as part of the transaction of the
primary shard to guarantee data consistency. A synchronous replica can double the
response time because the transaction has to commit on both the primary and the
synchronous replica before the transaction is complete. An asynchronous replica
shard receives updates after the transaction commits to limit impact on
performance, but introduces the possibility of data loss as the asynchronous replica
can be several transactions behind the primary.

Maps
A map is a container for key-value pairs, which allows an application to store a
value indexed by a key. Maps support indexes that can be added to index
attributes on the key or value. These indexes are automatically used by the query
runtime to determine the most efficient way to run a query.

A map set is a collection of maps with a common partitioning algorithm. The data
within the maps are replicated based on the policy defined on the map set. A map
set is only used for distributed topologies and is not needed for local topologies.

Map Map

Figure 5. Shard

ObjectGrid

Figure 6. ObjectGrid

Map

Key1

Key2

Value1

Value2

Figure 7. Map

Chapter 1. Product overview 13

A map set can have a schema associated with it. A schema is the metadata that
describes the relationships between each map when using homogeneous Object
types or entities.

WebSphere eXtreme Scale can store serializable Java objects in each of the maps
using the ObjectMap API. A schema can be defined over the maps to identify the
relationship between the objects in the maps where each map holds objects of a
single type. Defining a schema for maps is required to query the contents of the
map objects. WebSphere eXtreme Scale can have multiple map schemas defined.

WebSphere eXtreme Scale can also store entities using the EntityManager API. Each
entity is associated with a map. The schema for an entity map set is automatically
discovered using either an entity descriptor XML file or annotated Java classes.
Each entity has a set of key attributes and set of non-key attributes. An entity can
also have relationships to other entities. WebSphere eXtreme Scale supports one to
one, one to many, many to one and many to many relationships. Each entity is
physically mapped to a single map in the map set. Entities allow applications to
easily have complex object graphs that span multiple Maps. A distributed topology
can have multiple entity schemas.

For more information, see Caching objects and their relationships (EntityManager
API).

Clients
Clients connect to a catalog service, retrieve a description of the server topology,
and communicate directly to each server as needed. When the server topology
changes because new servers are added or existing servers have failed, the
dynamic catalog service routes the client to the appropriate server that is hosting
the data. Clients must examine the keys of application data to determine which
partition to route the request. Clients can read data from multiple partitions in a
single transaction. However, clients can update only a single partition in a
transaction. After the client updates some entries, the client transaction must use
that partition for updates.

The possible deployment combinations are included in the following list:
v A catalog service exists in its own grid of Java Virtual Machines. A single catalog

service can be used to manage multiple eXtreme Scale clients or servers.
v A container can be started in a JVM by itself or can be loaded into an arbitrary

JVM with other containers for different ObjectGrid instances.

Map Map

Map MapMap

MapSet

Key1

Key2

Value1

Value2

Key1

Key2

Value1

Value2

Key1

Key2

Value1

Value2

Key1

Key2

Value1

Value2

Key1

Key2

Value1

Value2

Figure 8. Map sets

14 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsemgrapi.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsemgrapi.html

v A client can exist in any JVM and communicate with one or more ObjectGrid
instances. A client can also exist in the same JVM as a container.

Zones
Zones give you control over shard placement. Zones are user-defined logical
groupings of physical servers. The following are examples of different types of
zones: different blade servers, chassis of blade servers, floors of a building,
buildings, or different geographical locations in a multiple data center
environment. Another use case is in a virtualized environment where many server
instances, each with a unique IP address, run on the same physical server.

Zones defined between data centers

The classic example and use case for zones is when you have two or more
geographically dispersed data centers. Dispersed data centers spread your data
grid over different locations for recovery from data center failure. For example, you
might want to ensure that you have a full set of asynchronous replica shards for
your data grid in a remote data center. With this strategy, you can recover from the
failure of the local data center transparently, with no loss of data. Data centers
themselves have high speed, low latency networks. However, communication
between one data center and another has higher latency. Synchronous replicas are
used in each data center where the low latency minimizes the impact of replication
on response times. Using asynchronous replication reduces impact on response
time. The geographic distance provides availability in case of local data center
failure.

In the following example, primary shards for the Chicago zone have replicas in the
London zone. Primary shards for the London zone have replicas in the Chicago
zone.

Catalog service

Java Virtual Machine (JVM)

Catalog service

Java Virtual Machine (JVM)

Client

Java Virtual Machine (JVM)

Client

Java Virtual Machine (JVM)
Client

Java Virtual Machine (JVM)

Client

Client

ClientClient

Java Virtual Machine (JVM)

Client

Client

Client

Server container

Java Virtual Machine (JVM) Java Virtual Machine (JVM)

Server container

Server container

Java Virtual Machine (JVM)

Server container

Java Virtual Machine (JVM)

Server container

Java Virtual Machine (JVM)

Server container

O
b

je
c
tG

ri
d

A

O
b

je
c
tG

ri
d

B

Figure 9. Possible topologies

Chapter 1. Product overview 15

Three configuration settings in eXtreme Scale control shard placement:
v Set the deployment file
v Group containers
v Specify rules

The following sections explain the different options, presented loosely from least to
most complicated.

Disable development mode

In your deployment XML file, set: developmentMode="false".

This simple step activates the first eXtreme Scale shard placement policy.

For more information about the XML file, see Deployment policy descriptor XML
file.

Policy 1: Shards for the same partition are placed in separate physical servers.

Consider a simple example of a data grid with one replica shard. With this policy,
the primary and replica shards for each partition are on different physical servers.
If a single physical server fails, no data is lost. The primary or replica shard for
each partition are on different physical servers that did not fail, or both are on
some other physical server that did not fail.

The high availability and simplicity of this policy make it the most efficient setting
for all production environments. In many cases, applying this policy is the only
step required for effectively controlling shard placement in your environment.

P0 AR4

P1 AR5

P2 AR9

P6 AR3

P7 AR10

P8 AR11

Chicago

P3 AR0

P4 AR2

P5 AR6

P9 AR1

P10 AR7

P11 AR8

London

Figure 10. Primaries and replicas in zones

16 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsdplcyref.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsdplcyref.html

In applying this policy, a physical server is defined by an IP address. Shards are
placed in container servers. Container servers have an IP address, for example, the
-listenerHost parameter on the startOgServer script. Multiple container servers
can have the same IP address.

Since a physical server has multiple IP addresses, consider the next step for more
control of your environment.

Define zones to group container servers

Container servers are assigned to zones with the -zone parameter on the
startOgServer script. In a WebSphere Application Server environment, zones are
defined through node groups with a specific name format: ReplicationZone<Zone>.
In this way, you choose the name and membership of your zones. For more
information, see Defining zones for container servers.

Policy 2: Shards for the same partition are placed in separate zones.

Consider extending the example of a data grid with one replica shard by
deploying it across two data centers. Define each data center as an independent
zone. Use a zone name of DC1 for the container servers in the first data center, and
DC2 for the container servers in the second data center. With this policy, the
primary and replica shards for each partition would be in different data centers. If
a data center fails, no data is lost. For each partition, either its primary or replica
shard is in the other data center.

With this policy, you can control shard placement by defining zones. You choose
your physical or logical boundary or grouping of interest. Then, choose a unique
zone name for each group, and start the container servers in each of your zones
with the name of the appropriate zone. Thus eXtreme Scale places shards so that
shards for the same partition are placed in separate zones.

Specify zone rules

The finest level of control over shard placement is achieved using zone rules. Zone
rules are specified in the zoneMetadata element of the eXtreme Scale deployment
policy descriptor XML. A zone rule defines a set of zones in which shards are
placed. A shardMapping element assigns a shard to a zone rule. The shard
attribute of the shardMapping element specifies the shard type:
v P specifies the primary shard
v S specifies synchronous replica shards
v A specifies asynchronous replica shards.

If more than one synchronous or asynchronous replica exist, then you must
provide shardMapping elements of the appropriate shard type. The
exclusivePlacement attribute of the zoneRule element determines the placement of
shards in the same partition in zones. The exclusivePlacement attribute values are:
v true (a shard cannot be placed in the same zone as another shard from the same

partition).

Remember: For the "true" case, you must have at least as many zones in the
rule as you have shards using it. Doing so ensures that each shard can be in its
own zone.

v false (shards from the same partition can be placed in the same zone.

The default setting is true.

Chapter 1. Product overview 17

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txszonedef.html

For more information, see Example: Zone definitions in the deployment policy
descriptor XML file.

Extended use cases

The following are various use cases for shard placement strategies:

Rolling upgrades

Consider a scenario in which you want to apply rolling upgrades to your physical
servers, including maintenance that requires restarting your deployment. In this
example, assume that you have a data grid spread across 20 physical servers,
defined with one synchronous replica. You want to shut down 10 of the physical
servers at a time for the maintenance.

When you shut down groups of 10 physical servers, no partition has both its
primary and replica shards on the servers you are shutting down. Otherwise, you
lose the data from that partition.

The easiest solution is to define a third zone. Instead of two zones of 10 physical
servers each, use three zones, two with seven physical servers, and one with six.
Spreading the data across more zones allows for better failover for availability.

Rather than defining another zone, the other approach is to add a replica.

Upgrading eXtreme Scale

When you are upgrading eXtreme Scale software in a rolling manner with data
grids that contain live data, consider the following issues. The catalog service
software version must be greater than or equal to the container server software
versions. Upgrade all the catalog servers first with a rolling strategy. Read more
about upgrading your deployment in the topicUpdating eXtreme Scale servers.

Changing data model

A related issue is how to change the data model or schema of objects that are
stored in the data grid without causing downtime. It would be disruptive to
change the data model by stopping the data grid and restarting with the updated
data model classes in the container server classpath, and reloading the data grid.
An alternative would be to start a new data grid with the new schema, copy the
data from the old data grid to the new data grid, then shut down the old data
grid.

Each of these processes are disruptive and result in downtime. To change the data
model without downtime, store the object in one of these formats:
v Use XML as the value
v Use a blob made with Google protobuf
v Use JavaScript Object Notation (JSON)

Write serializers to go from plain old Java object (POJO) to one of these formats
easily on the client side. Schema changes become easier.

Virtualization

Cloud computing and virtualization are popular emerging technologies. By default,
eXtreme Scale insures that two shards for the same partition are never placed on

18 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxszonedepl.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxszonedepl.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsupdateserv.html

the same IP address as described in Policy 1. When you are deploying on virtual
images, such as VMware, many server instances, each with a unique IP address,
can be run on the same physical server. To ensure that replicas can only be placed
on separate physical servers, you can use zones to solve the problem. Group your
physical servers into zones, and use zone placement rules to keep primary and
replica shards in separate zones.

Zones for wide-area networks

You might want to deploy a single eXtreme Scale data grid over multiple buildings
or data centers with slower network connections. Slower network connections lead
to lower bandwidth and higher latency connections. The possibility of network
partitions also increases in this mode due to network congestion and other factors.

To deal with these risks, the eXtreme Scale catalog service organizes container
servers into core groups that exchange heartbeats to detect container server failure.
These core groups do not span zones. A leader within each core group pushes
membership information to the catalog service. The catalog service verifies any
reported failures before responding to membership information by heartbeating the
container server in question. If the catalog service sees a false failure detection, the
catalog service takes no action. The core group partition heals quickly. The catalog
service also heartbeats core group leaders periodically at a slow rate to handle the
case of core group isolation.

Evictors
Evictors remove data from the data grid. You can either set a time-based evictor or
because evictors are associated with BackingMaps, use the BackingMap interface to
specify the pluggable evictor.

Evictor types

A default TTL evictor is created with every dynamic backing map. The evictor
removes entries based on a time to live concept.

None

Specifies that entries never expire and therefore are never removed from
the map.

Creation time

Specifies that entries are evicted depending on when they were created.

If you are using the Creation time CREATION_TIME ttlType, the evictor
evicts an entry when its time from creation equals its TimeToLive attribute
TTL value, which is set in milliseconds in your application configuration. If
you set the TTL TimeToLive attribute value to 10 seconds, the entry is
automatically evicted ten seconds after it was inserted.

It is important to take caution when setting this value for the Creation time
evictor typeCREATION_TIME ttlType. This evictor is best used when
reasonably high amounts of additions to the cache exist that are only used
for a set amount of time. With this strategy, anything that is created is
removed after the set amount of time.

The Creation time evictor type CREATION_TIME ttlType is useful in
scenarios such as refreshing stock quotes every 20 minutes or less. Suppose
a Web application obtains stock quotes, and getting the most recent quotes
is not critical. In this case, the stock quotes are cached in a gridan

Chapter 1. Product overview 19

ObjectGrid for 20 minutes. After 20 minutes, the grid an ObjectGrid map
entries expire and are evicted. Every twenty minutes or so, the grid an
ObjectGrid map uses the Loader plug-in to refreshes the data with data
from the database. The database is updated every 20 minutes with the
most recent stock quotes.

Last access time

Specifies that entries are evicted depending upon when they were last
accessed, whether they were read or updated.

Last update time

Specifies that entries are evicted depending upon when they were last
updated.

If you are using the Last access time LAST_ACCESS_TIME or the Last
update time evictor typeLAST_UPDATE_TIME ttlType attribute, set the
TTL value TimeToLive to a lower number than if you are using the
Creation time evictorCREATION_TIME ttlTypebecause the entries
TimeToLive attribute are reset every time it is accessed. In other words, if
the TimeToLive attribute is equal to 15 and an entry has existed for 14
seconds but then gets accessed, it does not expire again for another 15
seconds. If you set the TTL value TimeToLive to a relatively high number,
many entries might never be evicted. However, if you set the value to
something like 15 seconds, entries might be removed when they are not
often accessed.

The Last access timeLAST_ACCESS_TIME or Last update time evictor type
LAST_UPDATE_TIME ttlType is useful in scenarios such as holding
session data from a client, using a grid an ObjectGrid map. Session data
must be destroyed if the client does not use the session data for some
period of time. For example, the session data times out after 30 minutes of
no activity by the client. In this case, using an evictor type of Last access
time LAST_ACCESS_TIME or LAST_UPDATE_TIME Last update time
with the TTL valueTimeToLive attribute set to 30 minutes is appropriate
for this application.

You may also write your own evictors: For more information, see Writing a custom
evictor.

Pluggable evictor

The default TTL evictor uses an eviction policy that is based on time, and the
number of entries in the BackingMap has no affect on the expiration time of an
entry. You can use an optional pluggable evictor to evict entries based on the
number of entries that exist instead of based on time.

The following optional pluggable evictors provide some commonly used
algorithms for deciding which entries to evict when a BackingMap grows beyond
some size limit.
v The LRUEvictor evictor uses a least recently used (LRU) algorithm to decide

which entries to evict when the BackingMap exceeds a maximum number of
entries.

v The LFUEvictor evictor uses a least frequently used (LFU) algorithm to decide
which entries to evict when the BackingMap exceeds a maximum number of
entries.

20 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsevicwrite.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsevicwrite.html

The BackingMap informs an evictor as entries are created, modified, or removed in
a transaction. The BackingMap keeps track of these entries and chooses when to
evict one or more entries from the BackingMap instance.

A BackingMap instance has no configuration information for a maximum size.
Instead, evictor properties are set to control the evictor behavior. Both the
LRUEvictor and the LFUEvictor have a maximum size property that is used to
cause the evictor to begin to evict entries after the maximum size is exceeded. Like
the TTL evictor, the LRU and LFU evictors might not immediately evict an entry
when the maximum number of entries is reached to minimize impact on
performance.

If the LRU or LFU eviction algorithm is not adequate for a particular application,
you can write your own evictors to create your eviction strategy.

Memory-based eviction

Important: Memory-based eviction is only supported on Java Platform, Enterprise
Edition Version 5 or later.

All built-in evictors support memory-based eviction that can be enabled on the
BackingMap interface by setting the evictionTriggers attribute of BackingMap to
MEMORY_USAGE_THRESHOLD. For more information about how to set the
evictionTriggers attribute on BackingMap, see BackingMap interface and
ObjectGrid descriptor XML file.

Memory-based eviction is based on heap usage threshold. When memory-based
eviction is enabled on BackingMap and the BackingMap has any built-in evictor,
the usage threshold is set to a default percentage of total memory if the threshold
has not been previously set.

When you are using memory-based eviction, you should configure the garbage
collection threshold to the same value as their target heap utilization. For example,
if the memory-based eviction threshold is set at 50 percent and the garbage
collection threshold is at the default 70 percent level, then the heap utilization can
go as high as 70 percent. This heap utilization increase occurs because
memory-based eviction is only triggered after a garbage collection cycle.

To change the default usage threshold percentage, set the
memoryThresholdPercentage property on container and server property file for
eXtreme Scale server process. To set the target usage threshold on a client process,
you can use the MemoryPoolMXBean.

The memory-based eviction algorithm used by WebSphere eXtreme Scale is
sensitive to the behavior of the garbage collection algorithm in use. The best
algorithm for memory-based eviction is the IBM default throughput collector.
Generation garbage collection algorithms can cause undesired behavior, and so you
should not use these algorithms with memory-based eviction.

To change the usage threshold percentage, set the memoryThresholdPercentage
property on the container and server property files for eXtreme Scale server
processes.

During runtime, if the memory usage exceeds the target usage threshold,
memory-based evictors start evicting entries and try to keep memory usage below
the target usage threshold. However, no guarantee exists that the eviction speed is

Chapter 1. Product overview 21

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsprgback.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsogref.html

fast enough to avoid a potential out of memory error if the system runtime
continues to quickly consume memory.

OSGi framework overview
OSGi defines a dynamic module system for Java. The OSGi service platform has a
layered architecture, and is designed to run on various standard Java profiles. You
can start WebSphere eXtreme Scale servers and clients in an OSGi container.

Benefits of running applications in the OSGi container

WebSphere eXtreme Scale OSGi support allows you to deploy the product in the
Eclipse Equinox OSGi framework. Previously, if you wanted to update the plug-ins
used by eXtreme Scale, you had to restart the Java virtual machine (JVM) to apply
the new versions of the plug-ins. With the dynamic update capability that the
OSGi framework provides, now you can update the plug-in classes without
restarting the JVM. These plug-ins are exported by user bundles as services.
WebSphere eXtreme Scale accesses the service or services by looking them up the
OSGi registry.

eXtreme Scale containers can be configured to start more easily and dynamically
using either the OSGi configuration admin service or with OSGi Blueprint. If you
want to deploy a new data grid with its placement strategy, you can do so by
creating an OSGi configuration or by deploying a bundle with eXtreme Scale
descriptor XML files. With OSGi support, application bundles containing eXtreme
Scale configuration data can be installed, started, stopped, updated, and
uninstalled without restarting the whole system. With this capability, you can
upgrade the application without disrupting the data grid.

Plug-in beans and services can be configured with custom shard scopes, allowing
sophisticated integration options with other services running in the data grid. Each
plug-in can use OSGi Blueprint rankings to verify that every instance of the
plug-in is activated is at the correct version. An OSGi-managed bean (MBean) and
xscmd utility are provided, which allow you to query the eXtreme Scale plug-in
OSGi services and their rankings.

This capability allows administrators to quickly recognize potential configuration
and administration errors and upgrade the plug-in service rankings in use by
eXtreme Scale .

OSGi bundles

To interact with and deploy plug-ins in the OSGi framework, you must use
bundles. In the OSGi service platform, a bundle is a Java archive (JAR) file that
contains Java code, resources, and a manifest that describes the bundle and its
dependencies. The bundle is the unit of deployment for an application. The
eXtreme Scale product supports the following bundle types:

Server bundle
The server bundle is the objectgrid.jar file and is installed with the
eXtreme Scale stand-alone server installation and is required for running
eXtreme Scale servers and can also be used for running eXtreme Scale
clients, or local, in-memory caches. The bundle ID for the objectgrid.jar
file is com.ibm.websphere.xs.server_<version>, where the version is in the
format: <Version>.<Release>.<Modification>. For example, the server
bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.server_7.1.1.

22 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Client bundle
The client bundle is the ogclient.jar file and is installed with the eXtreme
Scale stand-alone and client installations and is used to run eXtreme Scale
clients or local, in-memory caches. The bundle ID for the ogclient.jar file
is com.ibm.websphere.xs.client_version, where the version is in the format:
<Version>.<Release>.<Modification>. For example, the client bundle for
eXtreme Scale version 7.1.1 is com.ibm.websphere.xs.client_7.1.1.

Limitations

You cannot restart the eXtreme Scale bundle because you cannot restart the object
request broker (ORB). To restart the eXtreme Scale server, you must restart the
OSGi framework.

Cache integration overview
The crucial element that gives WebSphere eXtreme Scale the capability to perform
with such versatility and reliability is its application of caching concepts to
optimize the persistence and recollection of data in virtually any deployment
environment.

JPA level 2 (L2) cache plug-in
WebSphere eXtreme Scale includes level 2 (L2) cache plug-ins for both OpenJPA
and Hibernate Java Persistence API (JPA) providers. When you use one of these
plug-ins, your application uses the JPA API. A data grid is introduced between the
application and the database, improving response times.

Using eXtreme Scale as an L2 cache provider increases performance when you are
reading and querying data and reduces load to the database. WebSphere eXtreme
Scale has advantages over built-in cache implementations because the cache is
automatically replicated between all processes. When one client caches a value, all
other clients are able to use the cached value that is locally in-memory.

You can configure the topology and properties for the L2 cache provider in the
persistence.xml file. For more information about configuring these properties, see
JPA cache configuration properties.

Tip: The JPA L2 cache plug-in requires an application that uses the JPA APIs. If
you want to use WebSphere eXtreme Scale APIs to access a JPA data source, use
the JPA loader. For more information, see “JPA Loaders” on page 57.

JPA L2 cache topology considerations

The following factors affect which type of topology to configure:
1. How much data do you expect to be cached?

v If the data can fit into a single JVM heap, use the “Embedded topology” on
page 25 or “Intra-domain topology” on page 24.

v If the data cannot fit into a single JVM heap, use the “Embedded, partitioned
topology” on page 26, or “Remote topology” on page 28

2. What is the expected read-to-write ratio?

The read-to-write ratio affects the performance of the L2 cache. Each topology
handles read and write operations differently.
v “Embedded topology” on page 25: local read, remote write
v “Intra-domain topology” on page 24: local read, local write

Chapter 1. Product overview 23

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsjpacache.html

v “Embedded, partitioned topology” on page 26: Partitioned: remote read,
remote write

v “Remote topology” on page 28: remote read, remote write.

Applications that are mostly read-only should use embedded and intra-domain
topologies when possible. Applications that do more writing should use
intra-domain topologies.

3. What is percentage of data is queried versus found by a key?

When enabled, query operations make use of the JPA query cache. Enable the
JPA query cache for applications with high read to write ratios only, for
example when you are approaching 99% read operations. If you use JPA query
cache, you must use the “Embedded topology” on page 25 or “Intra-domain
topology.”
The find-by-key operation fetches a target entity if the target entity does not
have any relationship. If the target entity has relationships with the EAGER
fetch type, these relationships are fetched along with the target entity. In JPA
data cache, fetching these relationships causes a few cache hits to get all the
relationship data.

4. What is the tolerated staleness level of the data?

In a system with few JVMs, data replication latency exists for write operations.
The goal of the cache is to maintain an ultimate synchronized data view across
all JVMs. When you are using the intra-domain topology, a data replication
delay exists for write operations. Applications using this topology must be able
to tolerate stale reads and simultaneous writes that might overwrite data.

7.1.1+
Intra-domain topology

With an intra-domain topology, primary shards are placed on every container
server in the topology. These primary shards contain the full set of data for the
partition. Any of these primary shards can also complete cache write operations.
This configuration eliminates the bottleneck in the embedded topology where all
the cache write operations must go through a single primary shard.

In an intra-domain topology, no replica shards are created, even if you have
defined replicas in your configuration files. Each redundant primary shard contains
a full copy of the data, so each primary shard can also be considered as a replica
shard. This configuration uses a single partition, similar to the embedded topology.

24 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Related JPA cache configuration properties for the intra-domain topology:
ObjectGridName=objectgrid_name,ObjectGridType=EMBEDDED,PlacementScope=CONTAINER_SCOPE,PlacementScopeTopology=HUB | RING

Advantages:
v Cache reads and updates are local.
v Simple to configure.

Limitations:
v This topology is best suited for when the container servers can contain the entire

set of partition data.
v Replica shards, even if they are configured, are never placed because every

container server hosts a primary shard. However, all the primary shards are
replicating with the other primary shards, so these primary shards become
replicas of each other.

Embedded topology

Tip: Consider using an intra-domain topology for the best performance.

An embedded topology creates a container server within the process space of each
application. OpenJPA and Hibernate read the in-memory copy of the cache directly
and write to all of the other copies. You can improve the write performance by
using asynchronous replication. This default topology performs best when the
amount of cached data is small enough to fit in a single process. With an
embedded topology, create a single partition for the data.

Database

A
p

p
lic

a
ti
o

n
P

ro
c
e

s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p

p
lic

a
ti
o

n
P

ro
c
e

s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

ObjectGrid Server
Primary P1 (Read/Write)

ObjectGrid Server
Primary P1 (Read/Write)

Figure 11. JPA intra-domain topology

Chapter 1. Product overview 25

Related JPA cache configuration properties for the embedded topology:
ObjectGridName=objectgrid_name,ObjectGridType=EMBEDDED,MaxNumberOfReplicas=num_replicas,ReplicaMode=SYNC | ASYNC | NONE

Advantages:
v All cache reads are fast, local accesses.
v Simple to configure.

Limitations:
v Amount of data is limited to the size of the process.
v All cache updates are sent through one primary shard, which creates a

bottleneck.

Embedded, partitioned topology

Tip: Consider using an intra-domain topology for the best performance.

CAUTION:
Do not use the JPA query cache with an embedded partitioned topology. The
query cache stores query results that are a collection of entity keys. The query
cache fetches all entity data from the data cache. Because the data cache is
divided up between multiple processes, these additional calls can negate the
benefits of the L2 cache.

When the cached data is too large to fit in a single process, you can use the
embedded, partitioned topology. This topology divides the data over multiple
processes. The data is divided between the primary shards, so each primary shard
contains a subset of the data. You can still use this option when database latency is
high.

Database

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

ObjectGrid Server
Primary (Read/Write)

ObjectGrid Server
Replica (Read Only)

Figure 12. JPA embedded topology

26 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Related JPA cache configuration properties for the embedded, partitioned topology:
ObjectGridName=objectgrid_name,ObjectGridType=EMBEDDED_PARTITION,ReplicaMode=SYNC | ASYNC | NONE,
NumberOfPartitions=num_partitions,ReplicaReadEnabled=TRUE | FALSE

Advantages:
v Stores large amounts of data.
v Simple to configure
v Cache updates are spread over multiple processes.

Limitation:
v Most cache reads and updates are remote.

For example, to cache 10 GB of data with a maximum of 1 GB per JVM, 10 Java
virtual machines are required. The number of partitions must therefore be set to 10
or more. Ideally, the number of partitions must be set to a prime number where
each shard stores a reasonable amount of memory. Usually, the numberOfPartitions
setting is equal to the number of Java virtual machines. With this setting, each JVM
stores one partition. If you enable replication, you must increase the number of
Java virtual machines in the system. Otherwise, each JVM also stores one replica
partition, which consumes as much memory as a primary partition.

Read about sizing memory and partition count calculation in the Administration
Guide to maximize the performance of your chosen configuration.

For example, in a system with four Java virtual machines, and the
numberOfPartitions setting value of 4, each JVM hosts a primary partition. A read
operation has a 25 percent chance of fetching data from a locally available
partition, which is much faster compared to getting data from a remote JVM. If a
read operation, such as running a query, needs to fetch a collection of data that
involves 4 partitions evenly, 75 percent of the calls are remote and 25 percent of
the calls are local. If the ReplicaMode setting is set to either SYNC or ASYNC and the

Database

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

ObjectGrid Server
Primary 0 (Read/Write)

ObjectGrid Server
Primary 1 (Read/Write)

Figure 13. JPA embedded, partitioned topology

Chapter 1. Product overview 27

ReplicaReadEnabled setting is set to true, then four replica partitions are created
and spread across four Java virtual machines. Each JVM hosts one primary
partition and one replica partition. The chance that the read operation runs locally
increases to 50 percent. The read operation that fetches a collection of data that
involves four partitions evenly has 50 percent remote calls and 50 percent local
calls. Local calls are much faster than remote calls. Whenever remote calls occur,
the performance drops.

Remote topology

CAUTION:
Do not use the JPA query cache with a remote topology. The query cache stores
query results that are a collection of entity keys. The query cache fetches all
entity data from the data cache. Because the data cache is remote, these
additional calls can negate the benefits of the L2 cache.

Tip: Consider using an intra-domain topology for the best performance.

A remote topology stores all of the cached data in one or more separate processes,
reducing memory use of the application processes. You can take advantage of
distributing your data over separate processes by deploying a partitioned,
replicated eXtreme Scale data grid. As opposed to the embedded and embedded
partitioned configurations described in the previous sections, if you want to
manage the remote data grid, you must do so independent of the application and
JPA provider.

28 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Related JPA cache configuration properties for the remote topology:
ObjectGridName=objectgrid_name,ObjectGridType=REMOTE

The REMOTE ObjectGrid type does not require any property settings because the
ObjectGrid and deployment policy is defined separately from the JPA application.
The JPA cache plug-in remotely connects to an existing remote ObjectGrid.

Because all interaction with the ObjectGrid is remote, this topology has the slowest
performance among all ObjectGrid types.

Advantages:
v Stores large amounts of data.
v Application process is free of cached data.
v Cache updates are spread over multiple processes.
v Flexible configuration options.

Limitation:
v All cache reads and updates are remote.

Database

ObjectGrid

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

OpenJPA or Hibernate

Application

ObjectGrid Client

Figure 14. JPA remote topology

Chapter 1. Product overview 29

HTTP session management
The session replication manager that is shipped with WebSphere eXtreme Scale can
work with the default session manager in the application server. Session data is
replicated from one process to another process to support user session data high
availability.

Features

The session manager has been designed so that it can run in any Java Platform,
Enterprise Edition Version 5 or later container. Because the session manager does
not have any dependencies on WebSphere APIs, it can support various versions of
WebSphere Application Server, as well as vendor application server environments.

The HTTP session manager provides session replication capabilities for an
associated application. The session replication manager works with the session
manager for the web container. Together, the session manager and web container
create HTTP sessions and manage the life cycles of HTTP sessions that are
associated with the application. These life cycle management activities include: the
invalidation of sessions based on a timeout or an explicit servlet or JavaServer
Pages (JSP) call and the invocation of session listeners that are associated with the
session or the web application. The session manager persists its sessions in a fully
replicated, clustered and partitioned data grid. The use of the WebSphere eXtreme
Scale session manager enables the session manager to provide HTTP session
failover support when application servers are shut down or end unexpectedly. The
session manager can also work in environments that do not support affinity, when
affinity is not enforced by a load balancer tier that sprays requests to the
application server tier.

Usage scenarios

The session manager can be used in the following scenarios:
v In environments that use application servers at different versions of WebSphere

Application Server, such as in a migration scenario.
v In deployments that use application servers from different vendors. For example,

an application that is being developed on open source application servers and
that is hosted on WebSphere Application Server. Another example is an
application that is being promoted from staging to production. Seamless
migration of these application server versions is possible while all HTTP
sessions are live and being serviced.

v In environments that require the user to persist sessions with higher quality of
service (QoS) levels. Session availability is better guaranteed during server
failover than default WebSphere Application Server QoS levels.

v In an environment where session affinity cannot be guaranteed, or environments
in which affinity is maintained by a vendor load balancer. With a vendor load
balancer, the affinity mechanism must be customized to that load balancer.

v In any environment to offload the processing required for session management
and storage to an external Java process.

v In multiple cells to enable session failover between cells.
v In multiple data centers or multiple zones.

How the session manager works

The session replication manager uses a session listener to listen on the changes of
session data. The session replication manager persists the session data into an

30 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

ObjectGrid instance either locally or remotely. You can add the session listener and
servlet filter to every web module in your application with tooling that ships with
WebSphere eXtreme Scale. You can also manually add these listeners and filters to
the web deployment descriptor of your application.

This session replication manager works with each vendor web container session
manager to replicate session data across Java virtual machines. When the original
server dies, users can retrieve session data from other servers.

Deployment topologies

The session manager can be configured using two different dynamic deployment
scenarios:

Embedded, network attached eXtreme Scale container servers
In this scenario, the eXtreme Scale servers are collocated in the same
processes as the servlets. The session manager can communicate directly to
the local ObjectGrid instance, avoiding costly network delays. This scenario
is preferable when running with affinity and performance is critical.

ObjecGrid tier with persistent
HTTP Session data

Application Server tier servicing
HTTP requests and persisting
HTTP Sessions to ObjectGrid

HTTP
Requests
Sprayer

Client
Browser

ObjectGrid

Figure 15. HTTP session management topology with a remote container configuration

Chapter 1. Product overview 31

Remote, network attached eXtreme Scale container servers
In this scenario, the eXtreme Scale servers run in external processes from
the process in which the servlets run. The session manager communicates
with a remote eXtreme Scale server grid. This scenario is preferable when
the web container tier does not have the memory to store the session data.
The session data is offloaded to a separate tier, which results in lower
memory usage on the web container tier. Higher latency occurs because the
data is in a remote location.

Generic embedded container startup

eXtreme Scale automatically starts an embedded ObjectGrid container inside any
application-server process when the web container initializes the session listener or
servlet filter, if the objectGridType property is set to EMBEDDED. See Servlet context
initialization parameters for details.

You are not required to package an ObjectGrid.xml file and
objectGridDeployment.xml file into your web application WAR or EAR file. The
default ObjectGrid.xml and objectGridDeployment.xml files are packaged in the
product JAR file. Dynamic maps are created for various web application contexts
by default. Static eXtreme Scale maps continue to be supported.

This approach for starting embedded ObjectGrid containers applies to any type of
application server. The approaches involving a WebSphere Application Server
component or WebSphere Application Server Community Edition GBean are
deprecated.

Dynamic cache provider
The Dynamic Cache API is available to Java EE applications that are deployed in
WebSphere Application Server. The dynamic cache provider can be leveraged to
cache business data, generated HTML, or to synchronize the cached data in the cell
by using the data replication service (DRS).

Overview

Previously, the only service provider for the Dynamic Cache API was the default
dynamic cache engine built into WebSphere Application Server. Customers can use
the dynamic cache service provider interface in WebSphere Application Server to
plug eXtreme Scale into dynamic cache. By setting up this capability, you can
enable applications written with the Dynamic Cache API or applications using
container-level caching (such as servlets) to leverage the features and performance
capabilities of WebSphere eXtreme Scale.

32 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsservparam.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsservparam.html

New Customers WebSphere Products Existing Customers

Command Caching
Command Framework

API

Servlet Caching
Cache Policy XML
XML rules engine

Web Services Caching
JAX-RPC Client Caching

POJO Caching
DistributedMap

DistributedNIOMap

Dynamic Cache APIs and Frameworks

Cache Provider SPI

External Cache Adapter Support
Edge Side Include Caching

Cache Configuration
(Admin console & wsadmin)

Cache Monitoring & Administration
(Mbean, APIs and Cache Monitor

application)

WebSphere Application Server Default
Dynamic Cache Provider

Replicate everywhere (best effort)

Private cache

Disk cache

WebSphere eXtreme Scale
Dynamic Cache Provider

Replicate everywhere
(guaranteed or asynchronous)

Highly available and scalable, partitioned,
in-memory cache

Highly available and scalable, partitioned,
remote cache

You can install and configure the dynamic cache provider as described in
Configuring the dynamic cache provider for WebSphere eXtreme Scale.

Deciding how to leverage WebSphere eXtreme Scale

The available features in WebSphere eXtreme Scale significantly increase the
distributed capabilities of the Dynamic Cache API beyond what is offered by the
default dynamic cache engine and data replication service. With eXtreme Scale, you
can create caches that are truly distributed between multiple servers, rather than
just replicated and synchronized between the servers. Also, eXtreme Scale caches
are transactional and highly available, ensuring that each server sees the same
contents for the dynamic cache service. WebSphere eXtreme Scale offers a higher
quality of service for cache replication than DRS.

However, these advantages do not mean that the eXtreme Scale dynamic cache
provider is the right choice for every application. Use the decision trees and
feature comparison matrix below to determine what technology fits your
application best.

Chapter 1. Product overview 33

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsdyncache.html

Decision tree for migrating existing dynamic cache applications

Existing dynamic
cache application

Does the
application use
dynamic cache

replication?

Does the
application require

the
NOT_SHARED

replication mode?

YES

Does the
application use the
SHARED_PUSH
replication mode?

NO

Does the
application use
disk caching?

NO

NO

YES

Will the disk cache
fit in a partitioned

grid as determined
by the procedure
described in the

capacity planning
guide?

YES

Will at least 50
percent of the

cache be on disk?

YES

Use the default
dynamic cache

provider

Use the eXtreme
Scale dynamic
cache provider

YES

YES

NO

NO

NO

34 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Decision tree for choosing a cache provider for new applications

New Application

Does the
application need to

replicate cache
data between
processes?

Is the cache data
large enough to fit
in the memory of a

single process?

YES

Use eXtreme
Scale APIs

NO

Will the application
be deployed in a

Application Server
cluster?

Will the cache data
fit in a partitioned
grid as described

in the capacity
planning guide?

Is BEST EFFORT
a high enough

quality of service
for cache data

replication?

YESNO

Can at least 50
percent of the

cache data fit in
a single process?

Will cache data
need to be

replicated across
core groups?

YESYES

YES

Use the eXtreme
Scale dynamic
cache provider

YESNO

NO

NO

NO

Use the default
dynamic cache

provider

YES

NO

YES

NO

Is the purpose of
this cache servlet,

JSP, or Web
Services caching?

Feature comparison

Table 1. Feature comparison

Cache features Default provider
eXtreme Scale

provider eXtreme Scale API

Local, in-memory
caching

x x x

Distributed caching Embedded Embedded,
embedded-

partitioned and
remote-partitioned

Multiple

Linearly scalable x x

Reliable replication
(synchronous)

ORB ORB

Disk overflow x

Eviction LRU/TTL/heap-
based

LRU/TTL (per
partition)

Multiple

Invalidation x x x

Relationships Dependency IDs,
templates

Dependency IDs,
templates

x

Non-key lookups Query and index

Back-end integration Loaders

Transactional Implicit x

Chapter 1. Product overview 35

Table 1. Feature comparison (continued)

Cache features Default provider
eXtreme Scale

provider eXtreme Scale API

Key-based storage x x x

Events and listeners x x x

WebSphere
Application Server
integration

Single cell only Multiple cell Cell independent

Java Standard Edition
support

x x

Monitoring and
statistics

x x x

Security x x x

Table 2. Seamless technology integration

Cache features Default provider
eXtreme Scale

provider eXtreme Scale API

WebSphere
Application Server
servlet/JSP results
caching

V5.1+ V6.1.0.25+

WebSphere
Application Server
Web Services
(JAX-RPC) result
caching

V5.1+ V6.1.0.25+

HTTP session
caching

x

Cache provider for
OpenJPA and
Hibernate

x

Database
synchronization
using OpenJPA and
Hibernate

x

Table 3. Programming interfaces

Cache features Default provider
eXtreme Scale

provider eXtreme Scale API

Command-based API Command
framework API

Command
framework API

DataGrid API

Map-based API DistributedMap API DistributedMap API ObjectMap API

EntityManager API x

For a more detailed description on how eXtreme Scale distributed caches work, see
the deployment configuration information in the Administration Guide.

Note: An eXtreme Scale distributed cache can only store entries where the key and
the value both implement the java.io.Serializable interface.

36 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Topology types

A dynamic cache service created with the eXtreme Scale provider can be deployed
in any of three available topologies, allowing you to tailor the cache specifically to
performance, resource, and administrative needs. These topologies are embedded,
embedded partitioned, and remote.

Embedded topology

The embedded topology is similar to the default dynamic cache and DRS provider.
Distributed cache instances created with the embedded topology keep a full copy
of the cache within each eXtreme Scale process that accesses the dynamic cache
service, allowing all read operations to occur locally. All write operations go
through a single-server process, in which the transactional locks are managed,
before being replicated to the rest of the servers. Consequently, this topology is
better for workloads where cache-read operations greatly outnumber cache-write
operations.

With the embedded topology, new or updated cache entries are not immediately
visible on every single server process. A cache entry will not be visible, even to the
server that generated it, until it propagates through the asynchronous replication
services of WebSphere eXtreme Scale. These services operate as fast as the
hardware will allow, but there is still a small delay. The embedded topology is
shown in the following image:

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

ObjectGrid Server
Primary (Read/Write)

ObjectGrid Server
Replica (Read Only)

Embedded partitioned topology

For workloads where cache-writes occur as often as or more frequently than reads,
the embedded partitioned or remote topologies are recommended. The embedded
partitioned topology keeps all of the cache data within the WebSphere Application
Server processes that access the cache. However, each process only stores a portion
of the cache data. All reads and writes for the data located on this “partition” go
through the process, meaning that most requests to the cache will be fulfilled with
a remote procedure call. This results in a higher latency for read operations than
the embedded topology, but the capacity of the distributed cache to handle read
and write operations will scale linearly with the number of WebSphere Application
Server processes accessing the cache. Also, with this topology, the maximum size of
the cache is not bound by the size of a single WebSphere process. Because each
process only holds a portion of the cache, the maximum cache size becomes the

Chapter 1. Product overview 37

aggregate size of all the processes, minus the overhead of the process. The
embedded partitioned topology is shown in the following image:

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

ObjectGrid Server
Primary 0 (Read/Write)

Replica 1 (no read)

ObjectGrid Server
Primary 1 (Read/Write)

Replica 0 (no read)

For example, assume you have a grid of server processes with 256 megabytes of
free heap each to host a dynamic cache service. The default dynamic cache
provider and the eXtreme Scale provider using the embedded topology would
both be limited to an in-memory cache size of 256 megabytes minus overhead. See
the Capacity Planning and High Availability section later in this document. The
eXtreme Scale provider using the embedded partitioned topology would be limited
to a cache size of one gigabyte minus overhead. In this manner, the WebSphere
eXtreme Scale provider makes it possible to have an in-memory dynamic cache
services that are larger than the size of a single server process. The default
dynamic cache provider relies on the use of a disk cache to allow cache instances
to grow beyond the size of a single process. In many situations, the WebSphere
eXtreme Scale provider can eliminate the need for a disk cache and the expensive
disk storage systems needed to make them perform.

Remote topology

The remote topology can also be used to eliminate the need for a disk cache. The
only difference between the remote and embedded partitioned topologies is that all
of the cache data is stored outside of WebSphere Application Server processes
when you are using the remote topology. WebSphere eXtreme Scale supports
standalone container processes for cache data. These container processes have a
lower overhead than a WebSphere Application Server process and are also not
limited to using a particular Java Virtual Machine (JVM). For example, the data for
a dynamic cache service being accessed by a 32-bit WebSphere Application Server
process could be located in an eXtreme Scale container process running on a 64-bit
JVM. This allows users to leverage the increased memory capacity of 64-bit
processes for caching, without incurring the additional overhead of 64-bit for
application server processes. The remote topology is shown in the following image:

38 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

A
p
p
lic

a
ti
o
n

P
ro

c
e
s
s

DynaCache

Application

XS Dynacache Provider

ObjectGrid

Data compression

Another performance feature offered by the WebSphere eXtreme Scale dynamic
cache provider that can help users manage cache overhead is compression. The
default dynamic cache provider does not allow for compression of cached data in
memory. With the eXtreme Scale provider, this becomes possible. Cache
compression using the deflate algorithm can be enabled on any of the three
distributed topologies. Enabling compression will increase the overhead for read
and write operations, but will drastically increase cache density for applications
like servlet and JSP caching.

Local in-memory cache

The WebSphere eXtreme Scale dynamic cache provider can also be used to back
dynamic cache instances that have replication disabled. Like the default dynamic
cache provider, these caches can store non-serializable data. They can also offer
better performance than the default dynamic cache provider on large
multi-processor enterprise servers because the eXtreme Scale code path is designed
to maximize in-memory cache concurrency.

Dynamic cache engine and eXtreme Scale functional differences

In the case of local in-memory caches where replication is disabled, there should be
no appreciable functional difference between caches backed by the default dynamic
cache provider and WebSphere eXtreme Scale. Users should not notice a functional
difference between the two caches except that the WebSphere eXtreme Scale backed
caches do not support disk offload or statistics and operations related to the size of
the cache in memory.

Chapter 1. Product overview 39

In the case of caches where replication is enabled there will be no appreciable
difference in the results returned by most Dynamic Cache API calls, regardless of
whether the customer is using the default dynamic cache provider or the eXtreme
Scale dynamic cache provider. For some operations you cannot emulate the
behavior of the dynamic cache engine using eXtreme Scale.

Dynamic cache statistics

Dynamic cache statistics are reported via the CacheMonitor application or the
dynamic cache MBean. When using the eXtreme Scale dynamic cache provider,
statistics will still be reported through these interfaces, but the context of the
statistical values will be different.

If a dynamic cache instance is shared between three servers named A, B, and C,
then the dynamic cache statistics object only returns statistics for the copy of the
cache on the server where the call was made. If the statistics are retrieved on
server A, they only reflect the activity on server A.

With eXtreme Scale, there is only a single distributed cache shared among all the
servers, so it is not possible to track most statistics on a server-by-server basis like
the default dynamic cache provider does. A list of the statistics reported by the
Cache Statistics API and what they represent when you are using the WebSphere
eXtreme Scale dynamic cache provider follows. Like the default provider, these
statistics are not synchronized and therefore can vary up to 10% for concurrent
workloads.
v Cache Hits : Cache hits are tracked per server. If traffic on Server A generates 10

cache hits and traffic on Server B generates 20 cache hits, the cache statistics will
report 10 cache hits on Server A and 20 cache hits on Server B.

v Cache Misses: Cache misses are tracked per server just like cache hits.
v Memory Cache Entries: This statistic reports the number of cache entries in the

distributed cache. Every server that accesses the cache will report the same value
for this statistic, and that value will be the total number of cache entries in
memory over all the servers.

v Memory Cache Size in MB: This metric is supported only for caches using the
remote, embedded, or embedded_partitioned topologies. It reports the number
of megabytes of Java heap space consumed by the cache, across the entire grid.
This statistic reports heap usage only for the primary partitions; you must take
replicas into account. Because the default setting for the remote and
embedded_partitioned topologies is one asynchronous replica, double this
number to get the true memory consumption of the cache.

v Cache Removes: This statistic reports the total number of entries removed from
the cache by any method, and is an aggregate value for the whole distributed
cache. If traffic on Server A generates 10 invalidations and traffic on Server B
generates 20 invalidations, then the value on both servers will be 30.

v Cache Least Recently Used (LRU) Removes: This statistic is aggregate, like
cache removes. It tracks the number of entries that were removed to keep the
cache under its maximum size.

v Timeout Invalidations: This is also an aggregate statistic, and it tracks the
number of entries that were removed because they timed out.

v Explicit Invalidations : Also an aggregate statistic, this tracks the number of
entries that were removed with direct invalidation by key, dependency ID or
template.

v Extended Stats : The eXtreme Scale dynamic cache provider exports the
following extended stat key strings.

40 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

– com.ibm.websphere.xs.dynacache.remote_hits: The total number of cache hits
tracked at the eXtreme Scale container. This is an aggregate statistic, and its
value in the extended stats map is a long.

– com.ibm.websphere.xs.dynacache.remote_misses: The total number of cache
misses tracked at the eXtreme Scale container. An aggregate statistic, its value
in the extended stats map is a long.

Reporting reset statistics

The dynamic cache provider allows you to reset cache statistics. With the default
provider the reset operation only clears the statistics on the affected server. The
eXtreme Scale dynamic cache provider tracks most of its statistical data on the
remote cache containers. This data is not cleared or changed when the statistics are
reset. Instead the default dynamic cache behavior is simulated on the client by
reporting the difference between the current value of a given statistic and the value
of that statistic the last time reset was called on that server.

For example, if traffic on Server A generates 10 cache removes, the statistics on
Server A and on Server B will report 10 removes. Now, if the statistics on Server B
are reset and traffic on Server A generates an additional 10 removes, the statistics
on Server A will report 20 removes and the stats on Server B will report 10
removes.

Dynamic cache events

The Dynamic Cache API allows users to register event listeners. When you are
using eXtreme Scale as the dynamic cache provider, the event listeners work as
expected for local in-memory caches.

For distributed caches, event behavior will depend on the topology being used. For
caches using the embedded topology, events will be generated on the server that
handles the write operations, also known as the primary shard. This means that
only one server will receive event notifications, but it will have all the event
notifications normally expected from the dynamic cache provider. Because
WebSphere eXtreme Scale chooses the primary shard at runtime, it is not possible
to ensure that a particular server process always receives these events.

Embedded partitioned caches will generate events on any server that hosts a
partition of the cache. So if a cache has 11 partitions and each server in an 11
server WebSphere Application Server Network Deployment grid hosts one of the
partitions, then each server will receive the dynamic cache events for the cache
entries that it hosts. No single server process would see all of the events unless all
11 partitions were hosted in that server process. As with the embedded topology, it
is not possible to ensure that a particular server process will receive a particular set
of events or any events at all.

Caches that use the remote topology do not support dynamic cache events.

MBean calls

The WebSphere eXtreme Scale dynamic cache provider does not support disk
caching. Any MBean calls relating to disk caching will not work.

Chapter 1. Product overview 41

Dynamic cache replication policy mapping

The WebSphere Application Server built-in dynamic cache provider supports
multiple cache replication policies. These policies can be configured globally or on
each cache entry. See the dynamic cache documentation for a description of these
replication policies.

The eXtreme Scale dynamic cache provider does not honor these policies directly.
The replication characteristics of a cache are determined by the configured eXtreme
Scale distributed topology type and apply to all values placed in that cache,
regardless of the replication policy set on the entry by the dynamic cache service.
The following is a list of all the replication policies supported by the dynamic
cache service and illustrates which eXtreme Scale topology provides similar
replication characteristics.

Note that the eXtreme Scale dynamic cache provider ignores DRS replication policy
settings on a cache or cache entry. Users must choose the topology that appropriate
to their replication needs.
v NOT_SHARED – currently none of the topologies provided by the eXtreme Scale

dynamic cache provider can approximate this policy. This means that all data
stored into the cache must have keys and values that implement
java.io.Serializable.

v SHARED_PUSH – The embedded topology approximates this replication policy.
When a cache entry is created it is replicated to all the servers. Servers only look
for cache entries locally. If an entry is not found locally, it is assumed to be
non-existent and the other servers are not queried for it.

v SHARED_PULL and SHARED_PUSH_PULL – The embedded partitioned and
remote topologies approximate this replication policy. The distributed state of
the cache is completely consistent between all the servers.

This information is provided mainly so you can make sure that the topology meets
your distributed consistency needs. For example, if the embedded topology is a
better choice for a your deployment and performance needs, but you require the
level of cache consistency provided by SHARED_PUSH_PULL, then consider using
embedded partitioned, even though the performance may be slightly lower.

Security

You can secure dynamic cache instances that are running in embedded or
embedded partitioned topologies with the security functionality built into
WebSphere Application Server. See the documentation on Securing application
servers in the WebSphere Application Server Information Center.

When a cache is running in remote topology, it is possible for a standalone
eXtreme Scale client to connect to the cache and affect the contents of the dynamic
cache instance. The eXtreme Scale dynamic cache provider has a low overhead
encryption feature that can prevent cache data from being read or changed by
non-WebSphere Application Server clients. To enable this feature, set the optional
parameter com.ibm.websphere.xs.dynacache.encryption_password to the same
value on every WebSphere Application Server instance that accesses the dynamic
cache provider. This will encrypt the value and user metadata for the CacheEntry
using 128-bit AES encryption. It is very important that the same value be set on all
servers. Servers will not be able to read data put into the cache by servers with a
different value for this parameter.

42 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tdyn_cachereplication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tdyn_cachereplication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6topsecuring.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welc6topsecuring.html

If the eXtreme Scale provider detects that different values are set for this variable
in the same cache, it generate a warning in the log of the eXtreme Scale container
process.

See the eXtreme Scale documentation on “Security overview” on page 116 if SSL or
client authentication is required.

Additional information
v Dynamic cache Redbook
v Dynamic cache documentation

– WebSphere Application Server 7.0
– WebSphere Application Server 6.1

v DRS documentation
– WebSphere Application Server 7.0
– WebSphere Application Server 6.1

Database integration: Write-behind, in-line, and side caching
WebSphere eXtreme Scale is used to front a traditional database and eliminate read
activity that is normally pushed to the database. A coherent cache can be used
with an application directly or indirectly using an object relational mapper. The
coherent cache can then offload the database or backend from reads. In a slightly
more complex scenario, such as transactional access to a data set where only some
of the data requires traditional persistence guarantees, filtering can be used to
offload even write transactions.

You can configure WebSphere eXtreme Scale to function as a highly flexible
in-memory database processing space. However, WebSphere eXtreme Scale is not
an object relational mapper (ORM). It does not know where the data in the data
grid came from. An application or an ORM can place data in an eXtreme Scale
server. It is the responsibility of the source of the data to make sure that it stays
consistent with the database where data originated. This means eXtreme Scale
cannot invalidate data that is pulled from a database automatically. The application
or mapper must provide this function and manage the data stored in eXtreme
Scale.

Database

ObjectGrid

Figure 16. ObjectGrid as a database buffer

Chapter 1. Product overview 43

http://www.redbooks.ibm.com/abstracts/SG247393.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html

Sparse and complete cache
WebSphere eXtreme Scale can be used as a sparse cache or a complete cache. A
sparse cache only keeps a subset of the total data, while a complete cache keeps all
of the data. and can be populated lazily, as the data is needed. Sparse caches are
normally accessed using keys (instead of indexes or queries) because the data is
only partially available.

Sparse cache

When a key is not present in a sparse cache, or the data is not available and a
cache miss occurs, the next tier is invoked. The data is fetched, from a database for
example, and is inserted into the data grid cache tier. If you are using a query or
index, only the currently loaded values are accessed and the requests are not
forwarded to the other tiers.

Complete cache

A complete cache contains all of the required data and can be accessed using
non-key attributes with indexes or queries. A complete cache is preloaded with
data from the database before the application tries to access the data. A complete
cache can function as a database replacement after data is loaded. Because all of
the data is available, queries and indexes can be used to find and aggregate data.

Database

ObjectGrid

Figure 17. ObjectGrid as a side cache

44 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Side cache
When WebSphere eXtreme Scale is used as a side cache, the back end is used with
the data grid.

Side cache

You can configure the product as a side cache for the data access layer of an
application. In this scenario, WebSphere eXtreme Scale is used to temporarily store
objects that would normally be retrieved from a back-end database. Applications
check to see if the data grid contains the data. If the data is in the data grid, the
data is returned to the caller. If the data does not exist, the data is retrieved from
the back-end database. The data is then inserted into the data grid so that the next
request can use the cached copy. The following diagram illustrates how WebSphere
eXtreme Scale can be used as a side-cache with an arbitrary data access layer such
as OpenJPA or Hibernate.

Side cache plug-ins for Hibernate and OpenJPA

Cache plug-ins for both OpenJPA and Hibernate are included inWebSphere
eXtreme Scale, so you can use the product as an automatic side-cache. Using
WebSphere eXtreme Scale as a cache provider increases performance when reading
and querying data and reduces load to the database. There are advantages
thatWebSphere eXtreme Scale has over built-in cache implementations because the
cache is automatically replicated between all processes. When one client caches a
value, all other clients can use the cached value.

In-line cache
You can configure in-line caching for a database back end or as a side cache for a
database. In-line caching uses eXtreme Scale as the primary means for interacting
with the data. When eXtreme Scale is used as an in-line cache, the application
interacts with the back end using a Loader plug-in.

In-line cache

When used as an in-line cache, WebSphere eXtreme Scale interacts with the back
end using a Loader plug-in. This scenario can simplify data access because
applications can access the eXtreme Scale APIs directly. Several different caching

Database

Data Access Layer
(OpenJPA or Hibernate)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 18. Side cache

Chapter 1. Product overview 45

scenarios are supported in eXtreme Scale to make sure the data in the cache and
the data in the back end are synchronized. The following diagram illustrates how
an in-line cache interacts with the application and back end.

The in-line caching option simplifies data access because it allows applications to
access the eXtreme Scale APIs directly. WebSphere eXtreme Scale supports several
in-line caching scenarios, as follows.
v Read-through
v Write-through
v Write-behind

Read-through caching scenario

A read-through cache is a sparse cache that lazily loads data entries by key as they
are requested. This is done without requiring the caller to know how the entries
are populated. If the data cannot be found in the eXtreme Scale cache, eXtreme
Scale will retrieve the missing data from the Loader plug-in, which loads the data
from the back-end database and inserts the data into the cache. Subsequent
requests for the same data key will be found in the cache until it is removed,
invalidated or evicted.

Database

Back End
(Loader)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 19. In-line cache

46 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Write-through caching scenario

In a write-through cache, every write to the cache synchronously writes to the
database using the Loader. This method provides consistency with the back end,
but decreases write performance since the database operation is synchronous. Since
the cache and database are both updated, subsequent reads for the same data will
be found in the cache, avoiding the database call. A write-through cache is often
used in conjunction with a read-through cache.

Write-behind caching scenario

Database synchronization can be improved by writing changes asynchronously.
This is known as a write-behind or write-back cache. Changes that would normally
be written synchronously to the loader are instead buffered in eXtreme Scale and
written to the database using a background thread. Write performance is

DatabaseLoader

Application

K1

Select v1

v1

K1 V1

K1 K1 V1

v1get (k1)

v1get (k1)

Figure 20. Read-through caching

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Figure 21. Write-through caching

Chapter 1. Product overview 47

significantly improved because the database operation is removed from the client
transaction and the database writes can be compressed.

Write-behind caching
You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 22. Write-behind caching

48 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.
When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the Configuring
JPA loaders information about configuring a JPA loader.

Benefits

Enabling write-behind support has the following benefits:
v Back end failure isolation: Write-behind caching provides an isolation layer

from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 23. Write-behind caching

Chapter 1. Product overview 49

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Loaders
With a Loader plug-in, a data grid map can behave as a memory cache for data
that is typically kept in a persistent store on either the same system or another
system. Typically, a database or file system is used as the persistent store. A remote
Java virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using eXtreme Scale. A loader has the logic for
reading and writing data to and from a persistent store.

Overview

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). The Loader is invoked when the cache is unable to satisfy a request for a
key, providing read-through capability and lazy-population of the cache. A loader
also allows updates to the database when cache values change. All changes within
a transaction are grouped together to allow the number of database interactions to
be minimized. A TransactionCallback plug-in is used in conjunction with the loader
to trigger the demarcation of the backend transaction. Using this plug-in is
important when multiple maps are included in a single transaction or when
transaction data is flushed to the cache without committing.

The loader can also use overqualified updates to avoid keeping database locks. By
storing a version attribute in the cache value, the loader can see the before and
after image of the value as it is updated in the cache. This value can then be used
when updating the database or back end to verify that the data has not been

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 24. Loader

50 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

updated. A Loader can also be configured to preload the data grid when it is
started. When partitioned, a Loader instance is associated with each partition. If
the "Company" Map has ten partitions, there are ten Loader instances, one per
primary partition. When the primary shard for the Map is activated, the
preloadMap method for the loader is invoked synchronously or asynchronously
which allows loading the map partition with data from the back-end to occur
automatically. When invoked synchronously, all client transactions are blocked,
preventing inconsistent access to the data grid. Alternatively, a client preloader can
be used to load the entire data grid.

Two built-in loaders can greatly simplify integration with relational database back
ends. The JPA loaders utilize the Object-Relational Mapping (ORM) capabilities of
both the OpenJPA and Hibernate implementations of the Java Persistence API (JPA)
specification. See “JPA Loaders” on page 57 for more information.

If you are using loaders in a multiple data center configuration, you must consider
how revision data and cache consistency is maintained between the data grids. For
more information, see “Loader considerations in a multi-master topology” on page
147.

Loader configuration

To add a Loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map.
v A backing map can have only one loader.
v A client backing map (near cache) cannot have a loader.
v A loader definition can be applied to multiple backing maps, but each backing

map has its own loader instance.

Data pre-loading and warm-up
In many scenarios that incorporate the use of a loader, you can prepare your data
grid by pre-loading it with data.

When used as a complete cache, the data grid must hold all of the data and must
be loaded before any clients can connect to it. When you are using a sparse cache,
you can warm up the cache with data so that clients can have immediate access to
data when they connect.

Two approaches exist for pre-loading data into the data grid: Using a Loader
plug-in or using a client loader, as described in the following sections.

Loader plug-in

The loader plug-in is associated with each map and is responsible for
synchronizing a single primary partition shard with the database. The preloadMap
method of the loader plug-in is invoked automatically when a shard is activated.
For example, if you have 100 partitions, 100 loader instances exist, each loading the
data for its partition. When run synchronously, all clients are blocked until the
preload has completed.

Chapter 1. Product overview 51

Client loader

A client loader is a pattern for using one or more clients to load the grid with data.
Using multiple clients to load grid data can be effective when the partition scheme
is not stored in the database. You can invoke client loaders manually or
automatically when the data grid starts. Client loaders can optionally use the
StateManager to set the state of the data grid to pre-load mode, so that clients are
not able to access the grid while it is pre-loading the data. WebSphere eXtreme
Scale includes a Java Persistence API (JPA)-based loader that you can use to
automatically load the data grid with either the OpenJPA or Hibernate JPA
providers. For more information about cache providers, see “JPA level 2 (L2) cache
plug-in” on page 23.

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 25. Loader plug-in

52 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Database synchronization techniques
When WebSphere eXtreme Scale is used as a cache, applications must be written to
tolerate stale data if the database can be updated independently from an eXtreme
Scale transaction. To serve as a synchronized in-memory database processing space,
eXtreme Scale provides several ways of keeping the cache updated.

Database synchronization techniques

Periodic refresh

The cache can be automatically invalidated or updated periodically using the Java
Persistence API (JPA) time-based database updater.The updater periodically queries
the database using a JPA provider for any updates or inserts that have occurred
since the previous update. Any changes identified are automatically invalidated or
updated when used with a sparse cache. If used with a complete cache, the entries
can be discovered and inserted into the cache. Entries are never removed from the
cache.

Database

Partition 0

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 1

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 2

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

JPA Client Loader

ObjectGrid

JPA Provider

C
lie

n
t
P

ro
c
e
s
s

Figure 26. Client loader

Chapter 1. Product overview 53

Eviction

Sparse caches can utilize eviction policies to automatically remove data from the
cache without affecting the database. There are three built-in policies included in
eXtreme Scale: time-to-live, least-recently-used, and least-frequently-used. All three
policies can optionally evict data more aggressively as memory becomes
constrained by enabling the memory-based eviction option.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify
clients when the server cache has any changes. This can decrease the amount of
time the client can see stale data.

Programmatic invalidation

The eXtreme Scale APIs allow manual interaction of the near and server cache
using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

Data invalidation
To remove scale cache data, you can use an event-based or programmatic
invalidation mechanism.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify

DatabaseJPA Provider

select...

K1 V1

find (k1)

Read
Timer

v1

v1

insert (k1,v1)

Figure 27. Periodic refresh

54 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

clients when the server cache changes. This type of notification decreases the
amount of time the client can see stale data.

Event-based invalidation normally consists of the following three components.
v Event queue: An event queue stores the data change events. It could be a JMS

queue, a database, an in-memory FIFO queue, or any kind of manifest as long as
it can manage the data change events.

v Event publisher: An event publisher publishes the data change events to the
event queue. An event publisher is usually an application you create or an
eXtreme Scale plug-in implementation. The event publisher knows when the
data is changed or it changes the data itself. When a transaction commits, events
are generated for the changed data and the event publisher publishes these
events to the event queue.

v Event consumer: An event consumer consumes data change events. The event
consumer is usually an application to ensure the target grid data is updated
with the latest change from other grids. This event consumer interacts with the
event queue to get the latest data change and applies the data changes in the
target grid. The event consumers can use eXtreme Scale APIs to invalidate stale
data or update the grid with the latest data.

For example, JMSObjectGridEventListener has an option for a client-server model,
in which the event queue is a designated JMS destination. All server processes are
event publishers. When a transaction commits, the server gets the data changes
and publishes them to the designated JMS destination. All the client processes are
event consumers. They receive the data changes from the designated JMS
destination and apply the changes to the client's near cache.

See the topic on enabling the client invalidation mechanism in the Administration
Guide for more information.

Programmatic invalidation

The WebSphere eXtreme Scale APIs allow manual interaction of the near and
server cache using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

You can use programmatic invalidation with other techniques to determine when
to invalidate the data. For example, this invalidation method uses event-based
invalidation mechanisms to receive the data change events, and then uses APIs to
invalidate the stale data.

Indexing
Use the MapIndexPlugin plug-in to build an index or several indexes on a
BackingMap to support non-key data access.

Chapter 1. Product overview 55

Index types and configuration

The indexing feature is represented by the MapIndexPlugin plug-in or Index for
short. The Index is a BackingMap plug-in. A BackingMap can have multiple Index
plug-ins configured, as long as each one follows the Index configuration rules.

You can use the indexing feature to build one or more indexes on a BackingMap.
An index is built from an attribute or a list of attributes of an object in the
BackingMap. This feature provides a way for applications to find certain objects
more quickly. With the indexing feature, applications can find objects with a
specific value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you
must configure the index plug-in on the BackingMap before initializing the
ObjectGrid instance. You can do this configuration with XML or programmatic
configuration of the BackingMap. Static indexing starts building an index during
ObjectGrid initialization. The index is always synchronized with the BackingMap
and ready for use. After the static indexing process starts, the maintenance of the
index is part of the eXtreme Scale transaction management process. When
transactions commit changes, these changes also update the static index, and index
changes are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after
the initialization of the containing ObjectGrid instance. Applications have life cycle
control over the dynamic indexing process so that you can remove a dynamic
index when it is no longer needed. When an application creates a dynamic index,
the index might not be ready for immediate use because of the time it takes to
complete the index building process. Because the amount of time depends upon
the amount of data indexed, the DynamicIndexCallback interface is provided for
applications that want to receive notifications when certain indexing events occur.
These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application
index proxy object from the corresponding ObjectMap. Calling the getIndex
method on the ObjectMap and passing in the name of the index plug-in returns
the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as MapIndex, MapRangeIndex, or a customized
index interface. After obtaining the index proxy object, you can use methods
defined in the application index interface to find cached objects.

The steps to use indexing are summarized in the following list:
v Add either static or dynamic index plug-ins into the BackingMap.
v Obtain an application index proxy object by issuing the getIndex method of the

ObjectMap.
v Cast the index proxy object to an appropriate application index interface, such as

MapIndex, MapRangeIndex, or a customized index interface.
v Use methods that are defined in application index interface to find cached

objects.

The HashIndex class is the built-in index plug-in implementation that can support
both of the built-in application index interfaces: MapIndex and MapRangeIndex.
You also can create your own indexes. You can add HashIndex as either a static or
dynamic index into the BackingMap, obtain either MapIndex or MapRangeIndex
index proxy object, and use the index proxy object to find cached objects.

56 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Default index

If you want to iterate through the keys in a local map, you can use the default
index. This index does not require any configuration, but it must be used against
the shard, using an agent or an ObjectGrid instance retrieved from the
ShardEvents.shardActivated(ObjectGrid shard) method.

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of
time. No locks against data entries are obtained after the results return to the
application. Application has to be aware that data updates may occur on a
returned data set. For example, the application obtains the key of a cached object
by running the findAll method of MapIndex. This returned key object is associated
with a data entry in the cache. The application should be able to run the get
method on ObjectMap to find an object by providing the key object. If another
transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall
BackingMap performance. If indexing is not used properly, the performance of the
application might be compromised. Consider the following factors before using
this feature.
v The number of concurrent write transactions: Index processing can occur every

time a transaction writes data into a BackingMap. Performance degrades if many
transactions are writing data into the map concurrently when an application
attempts index query operations.

v The size of the result set that is returned by a query operation: As the size of
the resultset increases, the query performance declines. Performance tends to
degrade when the size of the result set is 15% or more of the BackingMap.

v The number of indexes built over the same BackingMap: Each index consumes
system resources. As the number of the indexes built over the BackingMap
increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal
cases are when the BackingMap has mostly read operations, the query result set is
of a small percentage of the BackingMap entries, and only few indexes are built
over the BackingMap.

JPA Loaders
The Java Persistence API (JPA) is a specification that allows mapping Java objects
to relational databases. JPA contains a full object-relational mapping (ORM)
specification using Java language metadata annotations, XML descriptors, or both
to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

You can use a Java Persistence API (JPA) loader plug-in implementation with
eXtreme Scale to interact with any database supported by your chosen loader. To
use JPA, you must have a supported JPA provider, such as OpenJPA or Hibernate,
JAR files, and a META-INF/persistence.xml file in your class path.

The JPALoader com.ibm.websphere.objectgrid.jpa.JPALoader and the
JPAEntityLoader com.ibm.websphere.objectgrid.jpa.JPAEntityLoader plug-ins are

Chapter 1. Product overview 57

two built-in JPA loader plug-ins that are used to synchronize the ObjectGrid maps
with a database. You must have a JPA implementation, such as Hibernate or
OpenJPA, to use this feature. The database can be any back end that is supported
by the chosen JPA provider.

You can use the JPALoader plug-in when you are storing data using the ObjectMap
API. Use the JPAEntityLoader plug-in when you are storing data using the
EntityManager API.

JPA loader architecture

The JPA Loader is used for eXtreme Scale maps that store plain old Java objects
(POJO).

When an ObjectMap.get(Object key) method is called, the eXtreme Scale run time
first checks whether the entry is contained in the ObjectMap layer. If not, the run
time delegates the request to the JPA Loader. Upon request of loading the key, the
JPALoader calls the JPA EntityManager.find(Object key) method to find the data
from the JPA layer. If the data is contained in the JPA entity manager, it is returned;
otherwise, the JPA provider interacts with the database to get the value.

When an update to ObjectMap occurs, for example, using the
ObjectMap.update(Object key, Object value) method, the eXtreme Scale run time
creates a LogElement for this update and sends it to the JPALoader. The JPALoader
calls the JPA EntityManager.merge(Object value) method to update the value to the
database.

For the JPAEntityLoader, the same four layers are involved. However, because the
JPAEntityLoader plug-in is used for maps that store eXtreme Scale entities,
relations among entities could complicate the usage scenario. An eXtreme Scale

Database

JPA Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

JPA Provider

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 28. JPA Loader architecture

58 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

entity is distinguished from JPA entity. For more information, see the information
about the JPAEntityLoader plug-in in the Programming Guide.

Methods

Loaders provide three main methods:
1. get: Returns a list of values that correspond to the list of keys that are passed in

by retrieving the data using JPA. The method uses JPA to find the entities in
the database. For the JPALoader plug-in, the returned list contains a list of JPA
entities directly from the find operation. For the JPAEntityLoader plug-in, the
returned list contains eXtreme Scale entity value tuples that are converted from
the JPA entities.

2. batchUpdate: Writes the data from ObjectGrid maps to the database.
Depending on different operation types (insert, update, or delete), the loader
uses the JPA persist, merge, and remove operations to update the data to the
database. For the JPALoader, the objects in the map are directly used as JPA
entities. For the JPAEntityLoader, the entity tuples in the map are converted
into objects which are used as JPA entities.

3. preloadMap: Preloads the map using the ClientLoader.load client loader
method. For partitioned maps, the preloadMap method is only called in one
partition. The partition is specified the preloadPartition property of the
JPALoader or JPAEntityLoader class. If the preloadPartition value is set to less
than zero, or greater than (total_number_of_partitions - 1), preload is disabled.

Both JPALoader and JPAEntityLoader plug-ins work with the JPATxCallback class
to coordinate the eXtreme Scale transactions and JPA transactions. JPATxCallback
must be configured in the ObjectGrid instance to use these two loaders.

Configuration and programming

If you are using JPA loaders in a multi-master environment, see “Loader
considerations in a multi-master topology” on page 147. For more information
about configuring JPA loaders, see the information about JPA loaders in the
Administration Guide. For more information about programming JPA loaders, see
theProgramming Guide.

Serialization overview
Data is always expressed, but not necessarily stored, as Java objects in the data
grid. WebSphere eXtreme Scale uses multiple Java processes to serialize the data,
by converting the Java object instances to bytes and back to objects again, as
needed, to move the data between client and server processes.

Data is serialized, meaning it is converted into a data stream for transmission over
a network, in the following situations:
v When clients communicate with servers, and those servers send information

back to the client
v When servers replicate data from one server to another

Alternatively, you might decide to forgo the serialization process through
WebSphere eXtreme Scale and store raw data as byte arrays. Byte arrays are much
cheaper to store in memory since the Java Virtual Machine (JVM) has fewer objects
to search for during garbage collection, and they can be deserialized only when

Chapter 1. Product overview 59

needed. Only use byte arrays if you do not need to access the objects using queries
or indexes. Since the data is stored as bytes, eXtreme Scale has no metadata for
describing attributes to query.

To serialize data in eXtreme Scale , you can use Java serialization, the
ObjectTransformer plug-in, or the DataSerializer plug-ins. To optimize serialization
with any of these options, you can use the COPY_TO_BYTES mode to improve
performance up to 70 percent because the data is serialized when transactions
commit, which means that serialization happens only once. The serialized data is
sent unchanged from the client to the server or from the server to replicated server.
By using the COPY_TO_BYTES mode, you can reduce the memory footprint that a
large graph of objects can consume.

Use the following figures to help you determine which type of serialization
method is most appropriate for your development needs. The first figure describes
the serialization methods that are available when you are running logic that
interacts with data objects directly in the grid shard. The last figure displays the
available options when you are not directly interacting with the grid shard.

YES

YES

YES

YES

YES

YES

YES NO

NO

NO

NO

NO

NO

NO

Do you need to store non-
JavaBeans objects in the grid,
such as XML or JSON objects?

Use COPY_TO_BYTES.
Use the DataSerializer plug-ins.

Are you storing large
gigabytes of data?

Does your configuration
support eXtremeMemory?

Use
eXtremeMemory

Use traditional
Heap-based
memory storage
(the default).

If the objects are POJOs,
will you be storing very
large quantities of data
(many GB)?

Does your configuration
support eXtremeMemory?

Do the data objects implement
the Serializable or Externalizable
interfaces, or can you alter the
object implementation?

Use Object-
Transformer

Do you require high
client/server and
replication performance?

Use Externalizable
interface

Use Serializable
interface

Use a non-COPY_TO_BYTES
copy mode (store the data in
native Java Object form in
memory) Use traditional
heap-based memory storage
(the default)

Use COPY_TO_BYTES.
Use the DataSerializer
plug-ins (key with byte
equality, and value)

Are you running any logic
that will interact with the
data objects directly in the
grid shard such as:
ObjectQuery, HashIndex,
agents, or shard listeners?

YES

Use traditional
Heap-based
memory storage
(the default).

Use
eXtremeMemory

Use traditional
Heap-based
memory storage
(the default).

60 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Are you running any logic
that will interact with the
data objects directly in the
grid shard such as:
ObjectQuery, HashIndex,
agents, or shard listeners?

YES

YES

YES

YES NO

NO

NO

NO

Are you storing large
gigabytes of data?

Does your configuration
support eXtremeMemory?

Use eXtremeMemory Use traditional
heap-based memory
storage (the default).

Use traditional
Heap-based memory
storage (the default).

Do the data objects implement
Serializable or Externalizable
interfaces, or can you alter the
object implementation?

Do you require high
client/server and
replication performance?

Use DataSerializer

Use Externalizable interface Use Serializable interface

Use COPY_TO_BYTES

Use DataSerializer

NO

To learn more about the supported forms of serialization in the eXtreme Scale
product, see the following topics:

Serialization using Java
Java serialization refers to either default serialization, which uses the Serializable
interface, or custom serialization, which uses both the Serializable and
Externalizable interfaces.

Default serialization

To use default serialization, implement the java.io.Serializable interface, which
includes the API that converts objects into bytes, which are later deserialized. Use
the java.io.ObjectOutputStream class to persist the object. Then, call the
ObjectOutputStream.writeObject() method to initiate serialization and flatten the
Java object.

Custom serialization

Some cases exist where objects must be modified to use custom serialization, such
as implementing the java.io.Externalizable interface or by implementing the
writeObject and readObject methods for classes implementing the
java.io.Serializable interface. Custom serialization techniques should be employed
when the objects are serialized using mechanisms other than the ObjectGrid API or
EntityManager API methods.

For example, when objects or entities are stored as instance data in a DataGrid API
agent or the agent returns objects or entities, those objects are not transformed
using an ObjectTransformer. The agent, will however, automatically use the

Chapter 1. Product overview 61

ObjectTransformer when using EntityMixin interface. See DataGrid agents and
entity based Maps for further details.

ObjectTransformer plug-in
With the ObjectTransformer plug-in, you can serialize, deserialize, and copy objects
in the cache for increased performance.

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

If you see performance issues with processor usage, add an ObjectTransformer
plug-in to each map. If you do not provide an ObjectTransformer plug-in, up to
60-70 percent of the total processor time is spent serializing and copying entries.

Purpose

With the ObjectTransformer plug-in, your applications can provide custom
methods for the following operations:
v Serialize or deserialize the key for an entry
v Serialize or deserialize the value for an entry
v Copy a key or value for an entry

If no ObjectTransformer plug-in is provided, you must be able to serialize the keys
and values because the ObjectGrid uses a serialize and deserialize sequence to
copy the objects. This method is expensive, so use an ObjectTransformer plug-in
when performance is critical. The copying occurs when an application looks up an
object in a transaction for the first time. You can avoid this copying by setting the
copy mode of the Map to NO_COPY or reduce the copying by setting the copy
mode to COPY_ON_READ. Optimize the copy operation when needed by the
application by providing a custom copy method on this plug-in. Such a plug-in
can reduce the copy overhead from 65−70 percent to 2/3 percent of total processor
time.

The default copyKey and copyValue method implementations first attempt to use
the clone method, if the method is provided. If no clone method implementation is
provided, the implementation defaults to serialization.

Object serialization is also used directly when the eXtreme Scale is running in
distributed mode. The LogSequence uses the ObjectTransformer plug-in to help
serialize keys and values before transmitting the changes to peers in the
ObjectGrid. You must take care when providing a custom serialization method
instead of using the built-in Java developer kit serialization. Object versioning is a
complex issue and you might encounter problems with version compatibility if
you do not ensure that your custom methods are designed for versioning.

The following list describes how the eXtreme Scale tries to serialize both keys and
values:
v If a custom ObjectTransformer plug-in is written and plugged in, eXtreme Scale

calls methods in the ObjectTransformer interface to serialize keys and values and
get copies of object keys and values.

v If a custom ObjectTransformer plug-in is not used, eXtreme Scale serializes and
deserializes values according to the default. If the default plug-in is used, each
object is implemented as externalizable or is implemented as serializable.

62 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

– If the object supports the Externalizable interface, the writeExternal method is
called. Objects that are implemented as externalizable lead to better
performance.

– If the object does not support the Externalizable interface and does implement
the Serializable interface, the object is saved using the ObjectOutputStream
method.

Using the ObjectTransformer interface

An ObjectTransformer object must implement the ObjectTransformer interface and
follow the common ObjectGrid plug-in conventions.

Two approaches, programmatic configuration and XML configuration, are used to
add an ObjectTransformer object into the BackingMap configuration as follows.

Programmatically plug in an ObjectTransformer object

The following code snippet creates the custom ObjectTransformer object and adds
it to a BackingMap:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
BackingMap backingMap = myGrid.getMap("myMap");
MyObjectTransformer myObjectTransformer = new MyObjectTransformer();
backingMap.setObjectTransformer(myObjectTransformer);

XML configuration approach to plug in an ObjectTransformer

Assume that the class name of the ObjectTransformer implementation is the
com.company.org.MyObjectTransformer class. This class implements the
ObjectTransformer interface. An ObjectTransformer implementation can be
configured using the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<backingMap name="myMap" pluginCollectionRef="myMap" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="myMap">

<bean id="ObjectTransformer" className="com.company.org.MyObjectTransformer" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

ObjectTransformer usage scenarios

You can use the ObjectTransformer plug-in in the following situations:
v Non-serializable object
v Serializable object but improve serialization performance
v Key or value copy

In the following example, ObjectGrid is used to store the Stock class:
/**
* Stock object for ObjectGrid demo
*
*
*/
public class Stock implements Cloneable {

String ticket;

Chapter 1. Product overview 63

double price;
String company;
String description;
int serialNumber;
long lastTransactionTime;
/**
* @return Returns the description.
*/
public String getDescription() {

return description;
}
/**
* @param description The description to set.
*/
public void setDescription(String description) {

this.description = description;
}
/**
* @return Returns the lastTransactionTime.
*/
public long getLastTransactionTime() {

return lastTransactionTime;
}
/**
* @param lastTransactionTime The lastTransactionTime to set.
*/
public void setLastTransactionTime(long lastTransactionTime) {

this.lastTransactionTime = lastTransactionTime;
}
/**
* @return Returns the price.
*/
public double getPrice() {

return price;
}
/**
* @param price The price to set.
*/
public void setPrice(double price) {

this.price = price;
}
/**
* @return Returns the serialNumber.
*/
public int getSerialNumber() {

return serialNumber;
}
/**
* @param serialNumber The serialNumber to set.
*/
public void setSerialNumber(int serialNumber) {

this.serialNumber = serialNumber;
}
/**
* @return Returns the ticket.
*/
public String getTicket() {

return ticket;
}
/**
* @param ticket The ticket to set.
*/
public void setTicket(String ticket) {

this.ticket = ticket;
}
/**
* @return Returns the company.
*/
public String getCompany() {

return company;
}
/**
* @param company The company to set.
*/
public void setCompany(String company) {

this.company = company;
}
//clone
public Object clone() throws CloneNotSupportedException

64 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

{
return super.clone();

}
}

You can write a custom object transformer class for the Stock class:
/**
* Custom implementation of ObjectGrid ObjectTransformer for stock object
*
*/
public class MyStockObjectTransformer implements ObjectTransformer {
/* (non−Javadoc)
* @see
* com.ibm.websphere.objectgrid.plugins.ObjectTransformer#serializeKey
* (java.lang.Object,
* java.io.ObjectOutputStream)
*/
public void serializeKey(Object key, ObjectOutputStream stream) throws IOException {

String ticket= (String) key;
stream.writeUTF(ticket);

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#serializeValue(java.lang.Object,
java.io.ObjectOutputStream)
*/
public void serializeValue(Object value, ObjectOutputStream stream) throws IOException {

Stock stock= (Stock) value;
stream.writeUTF(stock.getTicket());
stream.writeUTF(stock.getCompany());
stream.writeUTF(stock.getDescription());
stream.writeDouble(stock.getPrice());
stream.writeLong(stock.getLastTransactionTime());
stream.writeInt(stock.getSerialNumber());

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateKey(java.io.ObjectInputStream)
*/
public Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException {

String ticket=stream.readUTF();
return ticket;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateValue(java.io.ObjectInputStream)
*/

public Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException {
Stock stock=new Stock();
stock.setTicket(stream.readUTF());
stock.setCompany(stream.readUTF());
stock.setDescription(stream.readUTF());
stock.setPrice(stream.readDouble());
stock.setLastTransactionTime(stream.readLong());
stock.setSerialNumber(stream.readInt());
return stock;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyValue(java.lang.Object)
*/
public Object copyValue(Object value) {

Stock stock = (Stock) value;
try {

return stock.clone();
}
catch (CloneNotSupportedException e)
{

// display exception message }
}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyKey(java.lang.Object)
*/
public Object copyKey(Object key) {

String ticket=(String) key;
String ticketCopy= new String (ticket);
return ticketCopy;

}
}

Then, plug in this custom MyStockObjectTransformer class into the BackingMap:

Chapter 1. Product overview 65

ObjectGridManager ogf=ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogf.getObjectGrid("NYSE");
BackingMap bm = og.defineMap("NYSEStocks");
MyStockObjectTransformer ot = new MyStockObjectTransformer();
bm.setObjectTransformer(ot);

Serialization using the DataSerializer plug-ins
Use the DataSerializer plug-ins to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

Serialization methods such as Java serialization and the ObjectTransformer plug-in
allow data to be marshalled over the network. In addition, when you use these
serialization options with the COPY_TO_BYTES copy mode, moving data between
clients and servers becomes less expensive and performance is improved.
However, these options do not solve the following issues that can exist:
v Keys are not stored in bytes; they are still Java objects.
v Server-side code must still inflate the object; for example, query and index still

use reflection and must inflate the object. Additionally, agents, listeners, and
plug-ins still need the object form.

v Classes still need to be in the server classpath.
v Data is still in Java serialization form (ObjectOutputStream).

The DataSerializer plug-ins introduce an efficient way of solving these problems.
Specifically, the DataSerializer plug-in gives you a way to describe your
serialization format, or byte array, to WebSphere eXtreme Scale so that the product
can interrogate the byte array without requiring a specific object format. The public
DataSerializer plug-in classes and interfaces are in the package,
com.ibm.websphere.objectgrid.plugins.io. For more information, refer to the .

Important: Entity Java objects are not stored directly into the BackingMaps when
you use the EntityManager API. The EntityManager API converts the entity object
to Tuple objects. Entity maps are automatically associated with a highly optimized
ObjectTransformer. Whenever the ObjectMap API or EntityManager API is used to
interact with entity maps, the ObjectTransformer entity is invoked. Therefore, when
you use entities, no work is required for serialization because the product
automatically completes this process for you.

Scalability overview
WebSphere eXtreme Scale is scalable through the use of partitioned data, and can
scale to thousands of containers if required because each container is independent
from other containers.

WebSphere eXtreme Scale divides data sets into distinct partitions that can be
moved between processes or even between physical servers at run time. You can,
for example, start with a deployment of four servers and then expand to a
deployment with 10 servers as the demands on the cache grow. Just as you can
add more physical servers and processing units for vertical scalability, you can
extend the elastic scaling capability horizontally with partitioning. Horizontal
scaling is a major advantage to using WebSphere eXtreme Scale over an in-memory
database. In-memory databases can only scale vertically.

With WebSphere eXtreme Scale, you can also use a set of APIs to gain transactional
access this partitioned and distributed data. The choices you make for interacting
with the cache are as significant as the functions to manage the cache for
availability from a performance perspective.

66 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Note: Scalability is not available when containers communicate with one another.
The availability management, or core grouping, protocol is an O(N2) heartbeat and
view maintenance algorithm, but is mitigated by keeping the number of core
group members under 20. Only peer to peer replication between shards exists.

Distributed clients

The WebSphere eXtreme Scale client protocol supports very large numbers of
clients. The partitioning strategy offers assistance by assuming that all clients are
not always interested in all partitions because connections can be spread across
multiple containers. Clients are connected directly to the partitions so latency is
limited to one transferred connection.

Data grids, partitions, and shards
A data grid is divided into partitions. A partition holds an exclusive subset of the
data. A partition contains one or more shards: a primary shard and replica shards.
Replica shards are not necessary in a partition, but you can use replica shards to
provide high availability. Whether your deployment is an independent in-memory
data grid or an in-memory database processing space, data access in eXtreme Scale
relies heavily on shards.

The data for a partition is stored in a set of shards at run time. This set of shards
includes a primary shared and possibly one or more replica shards. A shard is the
smallest unit that eXtreme Scale can add or remove from a Java virtual machine.

Two placement strategies exist: fixed partition placement (default) and per
container placement. The following discussion focuses on the usage of the fixed
partition placement strategy.

Total number of shards

If your environment includes 10 partitions that hold 1 million objects with no
replicas, then 10 shards would exist that each store 100,000 objects. If you add a
replica to this scenario, then an extra shard exists in each partition. In this case, 20
shards exist: 10 primary shards and 10 replica shards. Each one of these shards
store 100,000 objects. Each partition consists of a primary shard and one or more
(N) replica shards. Determining the optimal shard count is critical. If you configure
few shards, data is not distributed evenly among the shards, resulting in out of
memory errors and processor overloading issues. You must have at least 10 shards
for each JVM as you scale. When you are initially deploying the data grid, you
would potentially use many partitions.

Number of shards per JVM scenarios

Scenario: small number of shards for each JVM

Data is added and removed from a JVM using shard units. Shards are never split
into pieces. If 10 GB of data existed, and 20 shards exist to hold this data, then
each shard holds 500 MB of data on average. If nine Java virtual machines host the
data grid, then on average each JVM has two shards. Because 20 is not evenly
divisible by 9, a few Java virtual machines have three shards, in the following
distribution:
v Seven Java virtual machines with two shards
v Two Java virtual machines with three shards

Chapter 1. Product overview 67

Because each shard holds 500 MB of data, the distribution of data is unequal. The
seven Java virtual machines with two shards each host 1 GB of data. The two Java
virtual machines with three shards have 50% more data, or 1.5 GB, which is a
much larger memory burden. Because the two Java virtual machines are hosting
three shards, they also receive 50% more requests for their data. As a result, having
few shards for each JVM causes imbalance. To increase the performance, you
increase the number of shards for each JVM.

Scenario: increased number of shards per JVM

In this scenario, consider a much larger number of shards. In this scenario, there
are 101 shards with nine Java virtual machines hosting 10 GB of data. In this case,
each shard holds 99 MB of data. The Java virtual machines have the following
distribution of shards:
v Seven Java virtual machines with 11 shards
v Two Java virtual machines with 12 shards

The two Java virtual machines with 12 shards now have just 99 MB more data
than the other shards, which is a 9% difference. This scenario is much more evenly
distributed than the 50% difference in the scenario with few shards. From a
processor use perspective, only 9% more work exists for the two Java virtual
machines with the 12 shards compared to the seven Java virtual machines that
have 11 shards. By increasing the number of shards in each JVM, the data and
processor use is distributed in a fair and even way.

When you are creating your system, use 10 shards for each JVM in its maximally
sized scenario, or when the system is running its maximum number of Java virtual
machines in your planning horizon.

Additional placement factors

The number of partitions, the placement strategy, and number and type of replicas
are set in the deployment policy. The number of shards that are placed depend on
the deployment policy that you define. The minSyncReplicas, developmentMode,
maxSyncReplicas, and maxAsyncReplicas attributes affect where partitions and
replicas are placed.

The following factors affect when shards can be placed:
v The xscmd -c suspendBalancing and xscmd -c resumeBalancing commands.
v 7.1.1+ The server properties file, which has the placementDeferralInterval

property that defines the number of milliseconds before shards are placed on the
container servers.

v The numInitialContainers attribute in the deployment policy.

If the maximum number of replicas are not placed during the initial startup,
additional replicas might be placed if you start additional servers later. When you
are planning the number of shards per JVM, the maximum number of primary and
replica shards is dependent on having enough JVMs started to support the
configured maximum number of replicas. A replica is never placed in the same
process as its primary. If a process is lost, both the primary and the replica are lost.
When the developmentMode attribute is set to false, the primary and replicas are
not placed on the same physical server.

68 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Partitioning
Use partitioning to scale out an application. You can define the number of
partitions in your deployment policy.

About partitioning

Partitioning is not like Redundant Array of Independent Disks (RAID) striping,
which slices each instance across all stripes. Each partition hosts the complete data
for individual entries. Partitioning is a very effective means for scaling, but is not
applicable to all applications. Applications that require transactional guarantees
across large sets of data do not scale and cannot be partitioned effectively.
WebSphere eXtreme Scale does not currently support two-phase commit across
partitions.

Important: Select the number of partitions carefully. The number of partitions that
are defined in the deployment policy directly affects the number of container
servers to which an application can scale. Each partition is made up of a primary
shard and the configured number of replica shards. The (Number_Partitions*(1 +
Number_Replicas)) formula is the number of containers that can be used to scale
out a single application.

Using partitions

A data grid can have up to thousands of partitions. A data grid can scale up to the
product of the number of partitions times the number of shards per partition. For
example, if you have 16 partitions and each partition has one primary and one
replica, or two shards, then you can potentially scale to 32 Java virtual machines.
In this case, one shard is defined for each JVM. You must choose a reasonable
number of partitions based on the expected number of Java virtual machines that
you are likely to use. Each shard increases processor and memory usage for the
system. The system is designed to scale out to handle this overhead in line with
how many server Java virtual machines are available.

Applications should not use thousands of partitions if the application runs on a
data grid of four container server Java virtual machines. The application should be
configured to have a reasonable number of shards for each container server JVM.
For example, an unreasonable configuration is 2000 partitions with two shards that
are running on four container Java virtual machines. This configuration results in
4000 shards that are placed on four container Java virtual machines or 1000 shards
per container JVM.

A better configuration would be under 10 shards for each expected container JVM.
This configuration still gives the possibility of allowing for elastic scaling that is
ten times the initial configuration while keeping a reasonable number of shards per
container JVM.

Consider this scaling example: you currently have six physical servers with two
container Java virtual machines per physical server. You expect to grow to 20
physical servers over the next three years. With 20 physical servers, you have 40
container server Java virtual machines, and choose 60 to be pessimistic. You want
four shards per container JVM. You have 60 potential containers, or a total of 240
shards. If you have a primary and replica per partition, then you want 120
partitions. This example gives you 240 divided by 12 container Java virtual
machines, or 20 shards per container JVM for the initial deployment with the
potential to scale out to 20 computers later.

Chapter 1. Product overview 69

ObjectMap and partitioning

With the default FIXED_PARTITION placement strategy, maps are split across
partitions and keys hash to different partitions. The client does not need to know
to which partition the keys belong. If a mapSet has multiple maps, the maps
should be committed in separate transactions.

Entities and partitioning

Entity manager entities have an optimization that helps clients that are working
with entities on a server. The entity schema on the server for the map set can
specify a single root entity. The client must access all entities through the root
entity. The entity manager can then find related entities from that root in the same
partition without requiring the related maps to have a common key. The root
entity establishes affinity with a single partition. This partition is used for all entity
fetches within the transaction after affinity is established. This affinity can save
memory because the related maps do not require a common key. The root entity
must be specified with a modified entity annotation as shown in the following
example:
@Entity(schemaRoot=true)

Use the entity to find the root of the object graph. The object graph defines the
relationships between one or more entities. Each linked entity must resolve to the
same partition. All child entities are assumed to be in the same partition as the
root. The child entities in the object graph are only accessible from a client from
the root entity. Root entities are always required in partitioned environments when
using an eXtreme Scale client to communicate to the server. Only one root entity
type can be defined per client. Root entities are not required when using Extreme
Transaction Processing (XTP) style ObjectGrids, because all communication to the
partition is accomplished through direct, local access and not through the client
and server mechanism.

Placement and partitions
You have two placement strategies available for WebSphere eXtreme Scale: fixed
partition and per-container. The choice of placement strategy affects how your
deployment configuration places partitions over the remote data grid.

Fixed partition placement

You can set the placement strategy in the deployment policy XML file. The default
placement strategy is fixed-partition placement, enabled with the FIXED_PARTITION
setting. The number of primary shards that are placed across the available
containers is equal to the number of partitions that you have configured with the
numberOfPartitions attribute. If you have configured replicas, the minimum total
number of shards placed is defined by the following formula: ((1 primary shard +
minimum synchronous shards) * partitions defined). The maximum total number
of shards placed is defined by the following formula: ((1 primary shard +
maximum synchronous shards + maximum asynchronous shards) * partitions).
Your WebSphere eXtreme Scale deployment spreads these shards over the available
containers. The keys of each map are hashed into assigned partitions based on the
total partitions you have defined. They keys hash to the same partition even if the
partition moves because of failover or server changes.

For example, if the numberPartitions value is 6 and the minSync value is 1 for
MapSet1, the total shards for that map set is 12 because each of the 6 partitions

70 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

requires a synchronous replica. If three containers are started, WebSphere eXtreme
Scale places four shards per container for MapSet1.

Per-container placement

The alternate placement strategy is per-container placement, which is enabled with
the PER_CONTAINER setting for the placementStrategy attribute in the map set
element in the deployment XML file. With this strategy, the number of primary
shards placed on each new container is equal to the number of partitions, P, that
you have configured. The WebSphere eXtreme Scale deployment environment
places P replicas of each partition for each remaining container. The
numInitialContainers setting is ignored when you are using per-container
placement. The partitions get larger as the containers grow. The keys for maps are
not fixed to a certain partition in this strategy. The client routes to a partition and
uses a random primary. If a client wants to reconnect to the same session that it
used to find a key again, it must use a session handle.

For more information, see the topic on using a SessionHandle for routing in the
Programming Guide.

For failover or stopped servers, the WebSphere eXtreme Scale environment moves
the primary shards in the per-container placement strategy if they still contain
data. If the shards are empty, they are discarded. In the per-container strategy, old
primary shards are not kept because new primary shards are placed for every
container.

WebSphere eXtreme Scale allows per-container placement as an alternative to what
could be termed the "typical" placement strategy, a fixed-partition approach with
the key of a Map hashed to one of those partitions. In a per-container case (which
you set with PER_CONTAINER), your deployment places the partitions on the set
of online container servers and automatically scales them out or in as containers
are added or removed from the server data grid. A data grid with the
fixed-partition approach works well for key-based grids, where the application
uses a key object to locate data in the grid. The following discusses the alternative.

Example of a per-container data grid

PER_CONTAINER data grids are different. You specify that the data grid uses the
PER_CONTAINER placement strategy with the placementStrategy attribute in your
deployment XML file. Instead of configuring how many partitions total you want
in the data grid, you specify how many partitions you want per container that you
start.

For example, if you set five partitions per container, five new anonymous partition
primaries are created when you start that container server, and the necessary
replicas are created on the other deployed container servers.

The following is a potential sequence in a per-container environment as the data
grid grows.
1. Start container C0 hosting 5 primaries (P0 - P4).

v C0 hosts: P0, P1, P2, P3, P4.
2. Start container C1 hosting 5 more primaries (P5 - P9). Replicas are balanced on

the containers.
v C0 hosts: P0, P1, P2, P3, P4, R5, R6, R7, R8, R9.
v C1 hosts: P5, P6, P7, P8, P9, R0, R1, R2, R3, R4.

Chapter 1. Product overview 71

3. Start container C2 hosting 5 more primaries (P10 - P14). Replicas are balanced
further.
v C0 hosts: P0, P1, P2, P3, P4, R7, R8, R9, R10, R11, R12.
v C1 hosts: P5, P6, P7, P8, P9, R2, R3, R4, R13, R14.
v C2 hosts: P10, P11, P12, P13, P14, R5, R6, R0, R1.

The pattern continues as more containers are started, creating five new primary
partitions each time and rebalancing replicas on the available containers in the data
grid.

Note: WebSphere eXtreme Scale does not move primary shards when using the
PER_CONTAINER strategy, only replicas.

Remember that the partition numbers are arbitrary and have nothing to do with
keys, so you cannot use key-based routing. If a container stops then the partition
IDs created for that container are no longer used, so there is a gap in the partition
IDs. In the example, there would no longer be partitions P5 - P9 if the container C2
failed, leaving only P0 - P4 and P10 - P14, so key-based hashing is impossible.

Using numbers like five or even more likely 10 for how many partitions per
container works best if you consider the consequences of a container failure. To
spread the load of hosting shards evenly across the data grid, you need more than
just one partition for each container. If you had a single partition per container,
then when a container fails, only one container (the one hosting the corresponding
replica shard) must bear the full load of the lost primary. In this case, the load is
immediately doubled for the container. However, if you have five partitions per
container, then five containers pick up the load of the lost container, lowering
impact on each by 80 percent. Using multiple partitions per container generally
lowers the potential impact on each container substantially. More directly, consider
a case in which a container spikes unexpectedly–the replication load of that
container is spread over 5 containers rather than only one.

Using the per-container policy

Several scenarios make the per-container strategy an ideal configuration, such as
with HTTP session replication or application session state. In such a case, an HTTP
router assigns a session to a servlet container. The servlet container needs to create
an HTTP session and chooses one of the 5 local partition primaries for the session.
The "ID" of the partition chosen is then stored in a cookie. The servlet container
now has local access to the session state which means zero latency access to the
data for this request as long as you maintain session affinity. And eXtreme Scale
replicates any changes to the partition.

In practice, remember the repercussions of a case in which you have multiple
partitions per container (say 5 again). Of course, with each new container started,
you have 5 more partition primaries and 5 more replicas. Over time, more
partitions should be created and they should not move or be destroyed. But this is
not how the containers would actually behave. When a container starts, it hosts 5
primary shards, which can be called "home" primaries, existing on the respective
containers that created them. If the container fails, the replicas become primaries
and eXtreme Scale creates 5 more replicas to maintain high availability (unless you
disabled auto repair). The new primaries are in a different container than the one
that created them, which can be called "foreign" primaries. The application should
never place new state or sessions in a foreign primary. Eventually, the foreign

72 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

primary has no entries and eXtreme Scale automatically deletes it and its
associated replicas. The foreign primaries' purpose is to allow existing sessions to
still be available (but not new sessions).

A client can still interact with a data grid that does not rely on keys. The client just
begins a transaction and stores data in the data grid independent of any keys. It
asks the Session for a SessionHandle object, a serializable handle allowing the
client to interact with the same partition when necessary. For more information see
the topic on using a SessionHandle for routing in the Programming Guide.
WebSphere eXtreme Scale chooses a partition for the client from the list of home
partition primaries. It does not return a foreign primary partition. The
SessionHandle can be serialized in an HTTP cookie, for example, and later convert
the cookie back into a SessionHandle. Then the WebSphere eXtreme Scale APIs can
obtain a Session bound to the same partition again, using the SessionHandle.

Note: You cannot use agents to interact with a PER_CONTAINER data grid.

Advantages

The previous description is different from a normal FIXED_PARTITION or hash
data grid because the per-container client stores data in a place in the grid, gets a
handle to it and uses the handle to access it again. There is no application-supplied
key as there is in the fixed-partition case.

Your deployment does not make a new partition for each Session. So in a
per-container deployment, the keys used to store data in the partition must be
unique within that partition. For example, you may have your client generate a
unique SessionID and then use it as the key to find information in Maps in that
partition. Multiple client sessions then interact with the same partition so the
application needs to use unique keys to store session data in each given partition.

The previous examples used 5 partitions, but the numberOfPartitions parameter in
the objectgrid XML file can be used to specify the partitions as required. Instead of
per data grid, the setting is per container. (The number of replicas is specified in
the same way as with the fixed-partition policy.)

The per-container policy can also be used with multiple zones. If possible, eXtreme
Scale returns a SessionHandle to a partition whose primary is located in the same
zone as that client. The client can specify the zone as a parameter to the container
or by using an API. The client zone ID can be set using serverproperties or
clientproperties.

The PER_CONTAINER strategy for a data grid suits applications storing
conversational type state rather than database-oriented data. The key to access the
data would be a conversation ID and is not related to a specific database record. It
provides higher performance (because the partition primaries can be collocated
with the servlets for example) and easier configuration (without having to calculate
partitions and containers).

Single-partition and cross-data-grid transactions
The major distinction between WebSphere eXtreme Scale and traditional data
storage solutions like relational databases or in-memory databases is the use of
partitioning, which allows the cache to scale linearly. The important types of
transactions to consider are single-partition and every-partition (cross-data-grid)
transactions.

Chapter 1. Product overview 73

In general, interactions with the cache can be categorized as single-partition
transactions or cross-data-grid transactions, as discussed in the following section.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches
that are hosted by WebSphere eXtreme Scale. When a transaction is limited to a
single partition, then by default it is limited to a single Java virtual machine, and
therefore a single server computer. A server can complete M number of these
transactions per second, and if you have N computers, you can complete M*N
transactions per second. If your business increases and you need to perform twice
as many of these transactions per second, you can double N by buying more
computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions
also maximize the availability of the cache. Each transaction only depends on one
computer. Any of the other (N-1) computers can fail without affecting the success
or response time of the transaction. So if you are running 100 computers and one
of them fails, only 1 percent of the transactions in flight at the moment that server
failed are rolled back. After the server fails, WebSphere eXtreme Scale relocates the
partitions that are hosted by the failed server to the other 99 computers. During
this brief period, before the operation completes, the other 99 computers can still
complete transactions. Only the transactions that would involve the partitions that
are being relocated are blocked. After the failover process is complete, the cache
can continue running, fully operational, at 99 percent of its original throughput
capacity. After the failed server is replaced and returned to the data grid, the cache
returns to 100 percent throughput capacity.

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions
are the opposite of single-partition transactions. Cross-data-grid transactions access
every partition and therefore every computer in the configuration. Each computer
in the data grid is asked to look up some data and then return the result. The
transaction cannot complete until every computer has responded, and therefore the
throughput of the entire data grid is limited by the slowest computer. Adding
computers does not make the slowest computer faster and therefore does not
improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the
previous example, if you are running 100 servers and one server fails, then 100
percent of the transactions that are in progress at the moment that server failed are
rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate the
partitions that are hosted by that server to the other 99 computers. During this
time, before the failover process completes, the data grid cannot process any of
these transactions. After the failover process is complete, the cache can continue
running, but at reduced capacity. If each computer in the data grid serviced 10
partitions, then 10 of the remaining 99 computers receive at least one extra
partition as part of the failover process. Adding an extra partition increases the
workload of that computer by at least 10 percent. Because the throughput of the
data grid is limited to the throughput of the slowest computer in a cross-data-grid
transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for
scaling out with a distributed, highly available, object cache like WebSphere

74 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

eXtreme Scale. Maximizing the performance of these kinds of systems requires the
use of techniques that are different from traditional relational methodologies, but
you can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere
eXtreme Scale include two categories: foundational principles and implementation
tips. Foundational principles are core ideas that need to be captured in the design
of the data itself. An application that does not observe these principles is unlikely
to scale well, even for its mainline transactions. Implementation tips are applied
for problematic transactions in an otherwise well-designed application that
observes the general principles for scalable data models.

Foundational principles

Some of the important means of optimizing scalability are basic concepts or
principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale
is that they are designed to spread data across a large number of
computers. If the goal is to make most or all transactions complete on a
single partition, then the data model design needs to ensure that all the
data the transaction might need is located in the partition. Most of the
time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two very
important transactions for a message board are showing all the posts from
a given user and all the posts on a given topic. First consider how these
transactions would work with a normalized data model that contains a
user record, a topic record, and a post record that contains the actual text.
If posts are partitioned with user records, then displaying the topic
becomes a cross-grid transaction, and vice versa. Topics and users cannot
be partitioned together because they have a many-to-many relationship.

The best way to make this message board scale is to duplicate the posts,
storing one copy with the topic record and one copy with the user record.
Then, displaying the posts from a user is a single-partition transaction,
displaying the posts on a topic is a single-partition transaction, and
updating or deleting a post is a two-partition transaction. All three of these
transactions will scale linearly as the number of computers in the data grid
increases.

Scalability rather than resources

The biggest obstacle to overcome when considering denormalized data
models is the impact that these models have on resources. Keeping two,
three, or more copies of some data can seem to use too many resources to
be practical. When you are confronted with this scenario, remember the
following facts: Hardware resources get cheaper every year. Second, and
more importantly, WebSphere eXtreme Scale eliminates most hidden costs
associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as
megabytes and processors. Data stores that work with normalized
relational data generally need to be located on the same computer. This
required collocation means that a single larger enterprise computer needs

Chapter 1. Product overview 75

to be purchased rather than several smaller computers. With enterprise
hardware, it is not uncommon for one computer to be capable of
completing one million transactions per second to cost much more than the
combined cost of 10 computers capable of doing 100,000 transactions per
second each.

A business cost in adding resources also exists. A growing business
eventually runs out of capacity. When you run out of capacity, you either
need to shut down while moving to a bigger, faster computer, or create a
second production environment to which you can switch. Either way,
additional costs will come in the form of lost business or maintaining
almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut
down to add capacity. If your business projects that you need 10 percent
more capacity for the coming year, then increase the number of computers
in the data grid by 10 percent. You can increase this percentage without
application downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a
format that is directly consumable by the business logic. Breaking the data
down into a more primitive form is costly. The transformation needs to be
done when the data is written and when the data is read. With relational
databases this transformation is done out of necessity, because the data is
ultimately persisted to disk quite frequently, but with WebSphere eXtreme
Scale, you do not need to perform these transformations. For the most part
data is stored in memory and can therefore be stored in the exact form that
the application needs.

Observing this simple rule helps denormalize your data in accordance with
the first principle. The most common type of transformation for business
data is the JOIN operations that are necessary to turn normalized data into
a result set that fits the needs of the application. Storing the data in the
correct format implicitly avoids performing these JOIN operations and
produces a denormalized data model.

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not
scale well. For example, do not have a transaction that asks for a list of all
items sorted by value. This transaction might work at first when the total
number of items is 1000, but when the total number of items reaches 10
million, the transaction returns all 10 million items. If you run this
transaction, the two most likely outcomes are the transaction timing out, or
the client encountering an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20
items can be returned. This logic alteration keeps the size of the transaction
manageable no matter how many items are in the cache.

Define schema

The main advantage of normalizing data is that the database system can
take care of data consistency behind the scenes. When data is
denormalized for scalability, this automatic data consistency management
no longer exists. You must implement a data model that can work in the
application layer or as a plug-in to the distributed data grid to guarantee
data consistency.

76 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Consider the message board example. If a transaction removes a post from
a topic, then the duplicate post on the user record needs to be removed.
Without a data model, it is possible a developer would write the
application code to remove the post from the topic and forget to remove
the post from the user record. However, if the developer were using a data
model instead of interacting with the cache directly, the removePost
method on the data model could pull the user ID from the post, look up
the user record, and remove the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition
that detects the change to the topic and automatically adjusts the user
record. A listener might be beneficial because the adjustment to the user
record could happen locally if the partition happens to have the user
record, or even if the user record is on a different partition, the transaction
takes place between servers instead of between the client and server. The
network connection between servers is likely to be faster than the network
connection between the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid will not
scale if a single record is being used a disproportionate number of times
compared to the rest of the records. The performance of the data grid will
be limited by the performance of the computer that holds the given record.

In these situations, try to break the record up so it is managed per
partition. For example consider a transaction that returns the total number
of entries in the distributed cache. Instead of having every insert and
remove operation access a single record that increments, have a listener on
each partition track the insert and remove operations. With this listener
tracking, insert and remove can become single-partition operations.

Reading the counter will become a cross-data-grid operation, but for the
most part, it was already as inefficient as a cross-data-grid operation
because its performance was tied to the performance of the computer
hosting the record.

Implementation tips

You can also consider the following tips to achieve the best scalability.

Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are
partitioned based on the customer ID number. This partitioning method is
the logical choice because nearly every business operation performed with
the customer record uses the customer ID number. However, an important
transaction that does not use the customer ID number is the login
transaction. It is more common to have user names or e-mail addresses for
login instead of customer ID numbers.

The simple approach to the login scenario is to use a cross-data-grid
transaction to find the customer record. As explained previously, this
approach does not scale.

The next option might be to partition on user name or e-mail. This option
is not practical because all the customer ID based operations become
cross-data-grid transactions. Also, the customers on your site might want

Chapter 1. Product overview 77

to change their user name or e-mail address. Products like WebSphere
eXtreme Scale need the value that is used to partition the data to remain
constant.

The correct solution is to use a reverse lookup index. With WebSphere
eXtreme Scale, a cache can be created in the same distributed grid as the
cache that holds all the user records. This cache is highly available,
partitioned and scalable. This cache can be used to map a user name or
e-mail address to a customer ID. This cache turns login into a two partition
operation instead of a cross-grid operation. This scenario is not as good as
a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to
produce because these operations usually require reading a large number
of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then
store the result in the cache. This practice makes read operations both
faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number.
A user could have all, none or any combination of these numbers defined.
If the data were normalized then a user table and a telephone number
table would exist. The telephone numbers for a given user could be found
using a JOIN operation between the two tables.

De-normalizing this record does not require data duplication, because most
users do not share telephone numbers. Instead, empty slots in the user
record must be allowed. Instead of having a telephone number table, add
three attributes to each user record, one for each telephone number type.
This addition of attributes eliminates the JOIN operation and makes a
telephone number lookup for a user a single-partition operation.

Placement of many-to-many relationships

Consider an application that tracks products and the stores in which the
products are sold. A single product is sold in many stores, and a single
store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores, with each store
selling thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of
keeping a list of products inside each store entity (arrangement B). Looking
at some of the transactions this application would have to perform
illustrates why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the
inventory of a store locks the product entity. If the data grid holds 10000
products, only 1/10000 of the grid needs to be locked to perform the
update. With arrangement B, the data grid only contains 50 stores, so 1/50
of the grid must be locked to complete the update. So even though both of
these could be considered single-partition operations, arrangement A scales
out more efficiently.

Now, considering reads with arrangement A, looking up the stores at
which a product is sold is a single-partition transaction that scales and is
fast because the transaction only transmits a small amount of data. With

78 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

arrangement B, this transaction becomes an cross-data-grid transaction
because each store entity must be accessed to see if the product is sold at
that store, which reveals an enormous performance advantage for
arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data
processing. If a data grid has 5 computers and a cross-data-grid transaction
is dispatched that sorts through about 100,000 records on each computer,
then that transaction sorts through 500,000 records. If the slowest computer
in the data grid can perform 10 of these transactions per second, then the
data grid is capable of sorting through 5,000,000 records per second. If the
data in the grid doubles, then each computer must sort through 200,000
records, and each transaction sorts through 1,000,000 records. This data
increase decreases the throughput of the slowest computer to 5 transactions
per second, thereby reducing the throughput of the data grid to 5
transactions per second. Still, the data grid sorts through 5,000,000 records
per second.

In this scenario, doubling the number of computer allows each computer
to return to its previous load of sorting through 100,000 records, allowing
the slowest computer to process 10 of these transactions per second. The
throughput of the data grid stays the same at 10 requests per second, but
now each transaction processes 1,000,000 records, so the grid has doubled
its capacity in terms of processing records to 10,000,000 per second.

Applications such as a search engine that need to scale both in terms of
data processing to accommodate the increasing size of the Internet and
throughput to accommodate growth in the number of users, you must
create multiple data grids, with a round robin of the requests between the
grids. If you need to scale up the throughput, add computers and add
another data grid to service requests. If data processing needs to be scaled
up, add more computers and keep the number of data grids constant.

Scaling in units or pods
Although you can deploy a data grid over thousands of Java virtual machines, you
might consider splitting the data grid into units or pods to increase the reliability
and ease of testing of your configuration. A pod is a group of servers that is
running the same set of applications.

Deploying a large single data grid

Testing has verified that eXtreme Scale can scale out to over 1000 JVMs. Such
testing encourages building applications to deploy single data grids on large
numbers of boxes. Although it is possible to do this, it is not recommended, for
several reasons:
1. Budget concerns: Your environment cannot realistically test a 1000-server data

grid. However, it can test a much smaller data grid considering budget reasons,
so you do not need to buy twice the hardware, especially for such a large
number of servers.

2. Different application versions: Requiring a large number of boxes for each
testing thread is not practical. The risk is that you are not testing the same
factors as you would in a production environment.

3. Data loss: Running a database on a single hard drive is unreliable. Any
problem with the hard drive causes you to lose data. Running a growing
application on a single data grid is similar. You will likely have bugs in your

Chapter 1. Product overview 79

environment and in your applications. So placing all of the data on a single
large system will often lead to a loss of large amounts of data.

Splitting the data grid

Splitting the application data grid into pods (units) is a more reliable option. A pod
is a group of servers that are running a homogenous application stack. Pods can be
of any size, but ideally they should consist of about 20 physical servers. Instead of
having 500 physical servers in a single data grid, you can have 25 pods of 20
physical servers. A single version of an application stack should run on a given
pod, but different pods can have their own versions of an application stack.

Generally, an application stack considers levels of the following components.
v Operating system
v Hardware
v JVM
v WebSphere eXtreme Scale version
v Application
v Other necessary components

A pod is a conveniently sized deployment unit for testing. Instead of having
hundreds of servers for testing, it is more practical to have 20 servers. In this case,
you are still testing the same configuration as you would have in production.
Production uses grids with a maximum size of 20 servers, constituting a pod. You
can stress-test a single pod and determine its capacity, number of users, amount of
data, and transaction throughput. This makes planning easier and follows the
standard of having predictable scaling at predictable cost.

Setting up a pod-based environment

In different cases, the pod does not necessarily have to have 20 servers. The
purpose of the pod size is for practical testing. The size of a pod should be small
enough that if a pod encounters problems in production, the fraction of
transactions affected is tolerable.

Ideally, any bug impacts a single pod. A bug would only have an impact on four
percent of the application transactions rather than 100 percent. In addition,
upgrades are easier because they can be rolled out one pod at a time. As a result, if
an upgrade to a pod creates problems, the user can switch that pod back to the
prior level. Upgrades include any changes to the application, the application stack,
or system updates. As much as possible, upgrades should only change a single
element of the stack at a time to make problem diagnosis more precise.

To implement an environment with pods, you need a routing layer above the pods
that is forwards and backwards compatible if pods get software upgrades. Also,
you should create a directory that includes information about which pod has what
data. You can use another eXtreme Scale data grid for this with a database behind
it, preferably using the write-behind scenario.) This yields a two-tier solution. Tier
1 is the directory and is used to locate which pod handles a specific transaction.
Tier 2 is composed of the pods themselves. When tier 1 identifies a pod, the setup
routes each transaction to the correct server in the pod, which is usually the server
holding the partition for the data used by the transaction. Optionally, you can also
use a near cache on tier 1 to lower the impact associated with looking up the
correct pod.

80 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Using pods is slightly more complex than having a single data grid, but the
operational, testing, and reliability improvements make it a crucial part of
scalability testing.

Availability overview

High availability
With high availability, WebSphere eXtreme Scale provides reliable data redundancy
and detection of failures.

WebSphere eXtreme Scale self-organizes data grids of Java virtual machines into a
loosely federated tree. The catalog service at the root and core groups holding
containers are at the leaves of the tree. See “Caching architecture: Maps, containers,
clients, and catalogs” on page 10 for more information.

Each core group is automatically created by the catalog service into groups of
about 20 servers. The core group members provide health monitoring for other
members of the group. Also, each core group elects a member to be the leader for
communicating group information to the catalog service. Limiting the core group
size allows for good health monitoring and a highly scalable environment.

Note: In a WebSphere Application Server environment, in which core group size
can be altered, eXtreme Scale does not support more than 50 members per core
group.

Heart beating
1. Sockets are kept open between Java virtual machines, and if a socket closes

unexpectedly, this unexpected closure is detected as a failure of the peer Java
virtual machine. This detection catches failure cases such as the Java virtual
machine exiting very quickly. Such detection also allows recovery from these
types of failures typically in less than a second.

2. Other types of failures include: an operating system panic, physical server
failure, or network failure. These failures are discovered through heart beating.

Heartbeats are sent periodically between pairs of processes: When a fixed number
of heartbeats are missed, a failure is assumed. This approach detects failures in
N*M seconds. N is the number of missed heart beats and M is the heartbeat
interval. Directly specifying M and N is not supported. A slider mechanism is used
to allow a range of tested M and N combinations to be used.

Failures

There are several ways that a process can fail. The process could fail because some
resource limit was reached, such as maximum heap size, or some process control
logic terminated a process. The operating system could fail, causing all of the
processes running on the system to be lost. Hardware can fail, though less
frequently, like the network interface card (NIC), causing the operating system to
be disconnected from the network. Many more points of failure can occur, causing
the process to be unavailable. In this context, all of these failures can be
categorized into one of two types: process failure and loss of connectivity.

Chapter 1. Product overview 81

Process failure

WebSphere eXtreme Scale reacts to process failures quickly. When a process fails,
the operating system is responsible for cleaning up any left over resources that the
process was using. This cleanup includes port allocation and connectivity. When a
process fails, a signal is sent over the connections that were being used by that
process to close each connection. With these signals, a process failure can be
instantly detected by any other process that is connected to the failed process.

Loss of connectivity

Loss of connectivity occurs when the operating system becomes disconnected. As a
result, the operating system cannot send signals to other processes. There are
several reasons that loss of connectivity can occur, but they can be split into two
categories: host failure and islanding.

Host failure

If the machine is unplugged from the power outlet, then it is gone instantly.

Islanding

This scenario presents the most complicated failure condition for software to
handle correctly because the process is presumed to be unavailable, though it is
not. Essentially, a server or other process appears to the system to have failed
while it is actually running properly.

Container failures

Container failures are generally discovered by peer containers through the core
group mechanism. When a container or set of containers fails, the catalog service
migrates the shards that were hosted on that container or containers. The catalog
service looks for a synchronous replica first before migrating to an asynchronous
replica. After the primary shards are migrated to new host containers, the catalog
service looks for new host containers for the replicas that are now missing.

Note: Container islanding - The catalog service migrates shards off containers
when the container is discovered to be unavailable. If those containers then become
available, the catalog service considers the containers eligible for placement just
like in the normal startup flow.

Container failure detection latency

Failures can be categorized into soft and hard failures. Soft failures are typically
caused when a process fails. Such failures are detected by the operating system,
which can recover used resources, such as network sockets, quickly. Typical failure
detection for soft failures is less than one second. Hard failures might take up to
200 seconds to detect with the default heart beat tuning. Such failures include:
physical machine crashes, network cable disconnects, or operating system failures.
The run time relies on heart beating to detect hard failures which can be
configured.

Catalog service failure

Because the catalog service grid is an eXtreme Scale grid, it also uses the core
grouping mechanism in the same way as the container failure process. The primary

82 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

difference is that the catalog service domain uses a peer election process for
defining the primary shard instead of the catalog service algorithm that is used for
the containers.

The placement service and the core grouping service are One of N services. A One
of N service runs in one member of the high availability group. The location
service and administration run in all of the members of the high availability group.
The placement service and core grouping service are singletons because they are
responsible for laying out the system. The location service and administration are
read-only services and exist everywhere to provide scalability.

The catalog service uses replication to make itself fault tolerant. If a catalog service
process fails, then the service restarts to restore the system to the wanted level of
availability. If all of the processes that are hosting the catalog service fail, the data
grid has a loss of critical data. This failure results in a required restart of all the
container servers. Because the catalog service can run on many processes, this
failure is an unlikely event. However, if you are running all of the processes on a
single box, within a single blade chassis, or from a single network switch, a failure
is more likely to occur. Try to remove common failure modes from boxes that are
hosting the catalog service to reduce the possibility of failure.

Multiple container failures

A replica is never placed in the same process as its primary because if the process
is lost, it would result in a loss of both the primary and the replica. In a
development environment on a single machine, you might want to have two
containers and replicate between them. You can define the development mode
attribute in the deployment policy to configure a replica to be placed on the same
machine as a primary. However, in production, using a single machine is not
sufficient because loss of that host results in the loss of both container servers. To
change between development mode on a single machine and a production mode
with multiple machines, disable development mode in the deployment policy
configuration file.

Table 4. Failure discovery and recovery summary

Loss type Discovery (detection) mechanism Recovery method

Process loss I/O Restart

Server loss Heartbeat Restart

Network outage Heartbeat Reestablish network and
connection

Server-side hang Heartbeat Stop and restart server

Server busy Heartbeat Wait until server is available

Replication for availability
Replication provides fault tolerance and increases performance for a distributed
eXtreme Scale topology. Replication is enabled by associating backing maps with a
map set.

About map sets

A map set is a collection of maps that are categorized by a partition-key. This
partition-key is derived from the key on the individual map by taking its hash
modulo the number of partitions. If one group of maps within the map set has
partition-key X, those maps are stored in a corresponding partition X in the data

Chapter 1. Product overview 83

grid. If another group has partition-key Y, all of the maps are stored in partition Y,
and so on. The data within the maps is replicated based on the policy defined on
the map set. Replication occurs on distributed topologies.

Map sets are assigned the number of partitions and a replication policy. The map
set replication configuration identifies the number of synchronous and
asynchronous replica shards for the map set must in addition to the primary shard.
For example, if one synchronous and one asynchronous replica exist, all of the
BackingMaps that are assigned to the map set each have a replica shard distributed
automatically within the set of available container server s for the data grid. The
replication configuration can also enable clients to read data from synchronously
replicated servers. This can spread the load for read requests over additional
servers in the eXtreme Scale. Replication has a programming model impact only
when preloading the backing maps.

Map preloading

Maps can be associated with Loaders. A loader is used to fetch objects when they
cannot be found in the map (a cache miss) and also to write changes to a back-end
when a transaction commits. Loaders can also be used for preloading data into a
map. The preloadMap method of the Loader interface is called on each map when
its corresponding partition in the map set becomes a primary. The preloadMap
method is not called on replicas. It attempts to load all the intended referenced
data from the back-end into the map using the provided session. The relevant map
is identified by the BackingMap argument that is passed to the preloadMap
method.
void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

Preloading in partitioned map set

Maps can be partitioned into N partitions. Maps can therefore be striped across
multiple servers, with each entry identified by a key that is stored only on one of
those servers. Very large maps can be held in an eXtreme Scale because the
application is no longer limited by the heap size of a single JVM to hold all the
entries of a Map. Applications that want to preload with the preloadMap method
of the Loader interface must identify the subset of the data that it preloads. A fixed
number of partitions always exists. You can determine this number by using the
following code example:
int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();
int myPartition = backingMap.getPartitionId();

This code example shows that an application can identify the subset of the data to
preload from the database. Applications must always use these methods even
when the map is not initially partitioned. These methods allow flexibility: If the
map is later partitioned by the administrators, then the loader continues to work
correctly.

The application must issue queries to retrieve the myPartition subset from the
backend. If a database is used, then it might be easier to have a column with the
partition identifier for a given record unless there is some natural query that
allows the data in the table to partition easily.

Performance

The preload implementation copies data from the back-end into the map by storing
multiple objects in the map in a single transaction. The optimal number of records

84 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

to store per transaction depends on several factors, including complexity and size.
For example, after the transaction includes blocks of more than 100 entries, the
performance benefit decreases as you increase the number of entries. To determine
the optimal number, begin with 100 entries and then increase the number until the
performance benefit decreases to none. Larger transactions result in better
replication performance. Remember, only the primary runs the preload code. The
preloaded data is replicated from the primary to any replicas that are online.

Preloading map sets

If the application uses a map set with multiple maps then each map has its own
loader. Each loader has a preload method. Each map is loaded serially by the
eXtreme Scale. It might be more efficient to preload all the maps by designating a
single map as the preloading map. This process is an application convention. For
example, two maps, department and employee, might use the department Loader
to preload both the department and the employee maps. This procedure ensures
that, transactionally, if an application wants a department then the employees for
that department are in the cache. When the department Loader preloads a
department from the back-end, it also fetches the employees for that department.
The department object and its associated employee objects are then added to the
map using a single transaction.

Recoverable preloading

Some customers have very large data sets that need caching. Preloading this data
can be very time consuming. Sometimes, the preloading must complete before the
application can go online. You can benefit from making preloading recoverable.
Suppose there are a million records to preload. The primary is preloading them
and fails at the 800,000th record. Normally, the replica chosen to be the new
primary clears any replicated state and starts from the beginning. eXtreme Scale
can use a ReplicaPreloadController interface. The loader for the application would
also need to implement the ReplicaPreloadController interface. This example adds
a single method to the Loader: Status checkPreloadStatus(Session session,
BackingMap bmap);. This method is called by the eXtreme Scale run time before the
preload method of the Loader interface is normally called. The eXtreme Scale tests
the result of this method (Status) to determine its behavior whenever a replica is
promoted to a primary.

Table 5. Status value and response

Returned status value eXtreme Scale response

Status.PRELOADED_ALREADY eXtreme Scale does not call the preload method at all because this status
value indicates that the map is fully preloaded.

Status.FULL_PRELOAD_NEEDED eXtreme Scale clears the map and calls the preload method normally.

Status.PARTIAL_PRELOAD_NEEDED eXtreme Scale leaves the map as-is and calls preload. This strategy allows the
application loader to continue preloading from that point onwards.

Clearly, while a primary is preloading the map, it must leave some state in a map
in the map set that is being replicated so that the replica determines what status to
return. You can use an extra map named, for example, RecoveryMap. This
RecoveryMap must be part of the same map set that is being preloaded to ensure
that the map is replicated consistently with the data being preloaded. A suggested
implementation follows.

As the preload commits each block of records, the process also updates a counter
or value in the RecoveryMap as part of that transaction. The preloaded data and

Chapter 1. Product overview 85

the RecoveryMap data are replicated atomically to the replicas. When the replica is
promoted to primary, it can now check the RecoveryMap to see what has
happened.

The RecoveryMap can hold a single entry with the state key. If no object exists for
this key then you need a full preload (checkPreloadStatus returns
FULL_PRELOAD_NEEDED). If an object exists for this state key and the value is
COMPLETE, the preload completes, and the checkPreloadStatus method returns
PRELOADED_ALREADY. Otherwise, the value object indicates where the preload
restarts and the checkPreloadStatus method returns: PARTIAL_PRELOAD_NEEDED. The
loader can store the recovery point in an instance variable for the loader so that
when preload is called, the loader knows the starting point. The RecoveryMap can
also hold an entry per map if each map is preloaded independently.

Handling recovery in synchronous replication mode with a Loader

The eXtreme Scale run time is designed not to lose committed data when the
primary fails. The following section shows the algorithms used. These algorithms
apply only when a replication group uses synchronous replication. A loader is
optional.

The eXtreme Scale run time can be configured to replicate all changes from a
primary to the replicas synchronously. When a synchronous replica is placed, it
receives a copy of the existing data on the primary shard. During this time, the
primary continues to receive transactions and copies them to the replica
asynchronously. The replica is not considered to be online at this time.

After the replica catches up the primary, the replica enters peer mode and
synchronous replication begins. Every transaction committed on the primary is
sent to the synchronous replicas and the primary waits for a response from each
replica. A synchronous commit sequence with a Loader on the primary looks like
the following set of steps:

Table 6. Commit sequence on the primary

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes to replicas and wait for
acknowledgment

same

Commit to the loader through the
TransactionCallback plug-in

Plug-in commit called, but does
nothing

Release locks for entries same

Notice that the changes are sent to the replica before they are committed to the
loader. To determine when the changes are committed on the replica, revise this
sequence: At initialize time, initialize the tx lists on the primary as below.
CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing, use the following sequence:

86 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Table 7. Synchronous commit processing

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes with a committed transaction, roll back
transaction to replica, and wait for acknowledgment

same

Clear list of committed transactions and rolled back
transactions

same

Commit the loader through the TransactionCallBack plug-in TransactionCallBack plug-in
commit is still called, but
typically does not do
anything

If commit succeeds, add the transaction to the committed
transactions, otherwise add to the rolled back transactions

no-op

Release locks for entries same

For replica processing, use the following sequence:
1. Receive changes
2. Commit all received transactions in the committed transaction list
3. Roll back all received transactions in the rolled back transaction list
4. Start a transaction or session
5. Apply changes to the transaction or session
6. Save the transaction or session to the pending list
7. Send back reply

Notice that on the replica, no loader interactions occur while the replica is in
replica mode. The primary must push all changes through the Loader. The replica
does not push any changes. A side effect of this algorithm is that the replica
always has the transactions, but they are not committed until the next primary
transaction sends the commit status of those transactions. The transactions are then
committed or rolled back on the replica. Until then, the transactions are not
committed. You can add a timer on the primary that sends the transaction outcome
after a small period (a few seconds). This timer limits, but does not eliminate, any
staleness to that time window. This staleness is only a problem when using replica
read mode. Otherwise, the staleness does not have an impact on the application.

When the primary fails, it is likely that a few transactions were committed or
rolled back on the primary, but the message never made it to the replica with these
outcomes. When a replica is promoted to the new primary, one of the first actions
is to handle this condition. Each pending transaction is reprocessed against the
new primary's set of maps. If there is a Loader, then each transaction is given to
the Loader. These transactions are applied in strict first in first out (FIFO) order. If
a transaction fails, it is ignored. If three transactions are pending, A, B, and C, then
A might commit, B might rollback, and C might also commit. No one transaction
has any impact on the others. Assume that they are independent.

A loader might want to use slightly different logic when it is in failover recovery
mode versus normal mode. The loader can easily know when it is in failover
recovery mode by implementing the ReplicaPreloadController interface. The
checkPreloadStatus method is only called when failover recovery completes.

Chapter 1. Product overview 87

Therefore, if the apply method of the Loader interface is called before the
checkPreloadStatus method, then it is a recovery transaction. After the
checkPreloadStatus method is called, the failover recovery is complete.

Load balancing across replicas

The eXtreme Scale, unless configured otherwise, sends all read and write requests
to the primary server for a given replication group. The primary must service all
requests from clients. You might want to allow read requests to be sent to replicas
of the primary. Sending read requests to the replicas allows the load of the read
requests to be shared by multiple Java Virtual Machines (JVM). However, using
replicas for read requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches,
the primary should see a relatively high get request rate from clients as a result.
Likewise, in pessimistic locking mode, no local cache exists, so all requests are sent
to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read
requests to the replica does not have a large impact on performance. The frequency
of get requests from clients with caches that are full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty
cache are forwarded to the primary. The client cache gets data over time, causing
the request load to drop. If many clients start concurrently, then the load might be
significant and replica read might be an appropriate performance choice.

Client-side replication

With eXtreme Scale, you can replicate a server map to one or more clients by using
asynchronous replication. A client can request a local read-only copy of a server
side map by using the ClientReplicableMap.enableClientReplication method.
void enableClientReplication(Mode mode, int[] partitions,
ReplicationMapListener listener) throws ObjectGridException;

The first parameter is the replication mode. This mode can be a continuous
replication or a snapshot replication. The second parameter is an array of partition
IDs that represent the partitions from which to replicate the data. If the value is
null or an empty array, the data is replicated from all the partitions. The last
parameter is a listener to receive client replication events. See ClientReplicableMap
and ReplicationMapListener in the API documentation for details.

After the replication is enabled, then the server starts to replicate the map to the
client. The client is eventually only a few transactions behind the server at any
point in time.

High availability catalog service
A catalog service domain is the data grid of catalog servers you are using, which
retain topology information for all of the container servers in your eXtreme Scale
environment. The catalog service controls balancing and routing for all clients.

For more information about catalog servers, see “Catalog service” on page 10.

88 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

When multiple catalog servers start, one of the servers is elected as the master
catalog server that accepts Internet Inter-ORB Protocol (IIOP) heartbeats and
handles system data changes in response to any catalog service or container
changes.

When clients contact any one of the catalog servers, the routing table for the
catalog service domain is propagated to the clients through the Common Object
Request Broker Architecture (CORBA) service context.

Configure at least three catalog servers in the catalog service domain. Catalog
servers must be installed on separate nodes or separate installation images from
your container servers to ensure that you can seamlessly upgrade your servers at a
later date. If your configuration has zones, you can configure one catalog server
per zone.

When a container server contacts one of the catalog servers, the routing table for
the catalog service domain is also propagated to the catalog server and container
server through the CORBA service context. Furthermore, if the contacted catalog
server is not currently the master catalog server, the request is automatically
rerouted to the current master catalog server and the routing table for the catalog
server is updated.

Note: A catalog service domain and the container server data grid are very
different. The catalog service domain is for high availability of your system data.
The container server data grid is for your data high availability, scalability, and
workload management. Therefore, two different routing tables exist: the routing
table for the catalog service domain and the routing table for the container server
data grid shards.

Catalog server quorums
When the quorum mechanism is enabled, all the catalog servers in the quorum
must be available for placement operations to occur in the data grid.
v “Important terms”
v “Heartbeats and failure detection” on page 90
v “Quorum behavior” on page 91

– “Container behavior during quorum loss” on page 93
v “Client behavior during quorum loss” on page 93

Important terms
v Heartbeat: A signal that is sent between servers to convey that they are running.
v Quorum: A group of catalog servers that communicate and conduct placement

operations in the data grid. This group consists of all of the catalog servers in
the data grid, unless you manually override the quorum mechanism with
administrative actions.

Figure 29. Catalog service domain

Chapter 1. Product overview 89

v Brownout: A temporary loss of connectivity between one or more servers.
v Blackout: A permanent loss of connectivity between one or more servers.
v Data center: A geographically located group of servers that are generally

connected with a local area network (LAN).
v Zone: A zone is a configuration option that is used to group servers together

that share some physical characteristic. Examples of zones for a group of servers
include: a data center, an area network, a building, or a floor of a building.

Heartbeats and failure detection

Container servers and core groups

The catalog service places container servers into core groups of a limited size. A
core group tries to detect the failure of its members. A single member of a core
group is elected to be the core group leader. The core group leader periodically
tells the catalog service that the core group is alive and reports any membership
changes to the catalog service. A membership change can be a JVM failing or a
newly added JVM that joins the core group.

If a JVM socket is closed, that JVM is regarded as being no longer available. Each
core group member also heart beats over these sockets at a rate determined by
configuration. If a JVM does not respond to these heartbeats within a configured
maximum time period, then the JVM is considered to be no longer available, which
triggers a failure detection.

If the catalog service marks a container JVM as failed and the container server is
later reported as being available, the container JVM is told to shut down the
WebSphere eXtreme Scale container servers. A JVM in this state is not visible in
xscmd utility command queries. Messages in the logs of the container JVM indicate
that the container JVM has failed. You must manually restart these JVMs.

If the core group leader cannot contact any member, it continues to retry contacting
the member.

The complete failure of all members of a core group is also a possibility. If the
entire core group has failed, it is the responsibility of the catalog service to detect
this loss.

Catalog service domain heart-beating

The catalog service domain looks like a private core group with a static
membership and a quorum mechanism. It detects failures the same way as a
normal core group. However, the behavior is modified to include quorum logic.
The catalog service also uses a less aggressive heart-beating configuration.

Failure detection

WebSphere eXtreme Scale detects when processes terminate through abnormal
socket closure events. The catalog service is notified immediately when a process
terminates.

For more information about configuring heart-beating, see Tuning the heartbeat
interval setting for failover detectionthe information about configuring failover
detection in the Administration Guide.

90 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsfailover.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsfailover.html

Quorum behavior

Normally, the members of the catalog service have full connectivity. The catalog
service domain is a static set of JVMs. WebSphere eXtreme Scale expects all
members of the catalog service to be online. When all the members are online, the
catalog service has quorum. The catalog service responds to container events only
while the catalog service has quorum.

Reasons for quorum loss

WebSphere eXtreme Scale expects to lose quorum for the following scenarios:
v A catalog service JVM member fails
v Network brown out occurs
v Data center loss occurs

WebSphere eXtreme Scale does not lose quorum in the following scenario:
v Stopping a catalog server instance with the stopOgServer command or any other

administrative actions. The system knows that the server instance has stopped,
which is different from a JVM failure or brownout.

If the catalog service loses a quorum, it waits for quorum to be reestablished.
While the catalog service does not have a quorum, it ignores events from container
servers. Container servers continue to try any requests that are rejected by the
catalog server during this time. Heart-beating is suspended until a quorum is
reestablished.

Quorum loss from JVM failure

A catalog server that fails causes quorum to be lost. If a JVM fails, you must
override quorum as fast as possible. The failed catalog service cannot rejoin the
data grid until quorum has been overridden.

Quorum loss from network brownout

WebSphere eXtreme Scale is designed to expect the possibility of brownouts. A
brownout is when a temporary loss of connectivity occurs between data centers.
Brown outs are usually transient and clear within seconds or minutes. While
WebSphere eXtreme Scale tries to maintain normal operation during the brownout
period, a brownout is regarded as a single failure event. The failure is expected to
be fixed and then normal operation resumes with no actions necessary.

A long duration brown out can be classified as a blackout only through user
intervention. Overriding quorum on one side of the brownout is required in order
for the event to be classified as a blackout.

Catalog service JVM cycling

If a catalog server is stopped by using the stopOgServer command, then the
quorum drops to one less server. The remaining servers still have quorum.
Restarting the catalog server sets quorum back to the previous number.

Consequences of lost quorum

If a container JVM was to fail while quorum is lost, recovery does not occur until
the brownout recovers. In a blackout scenario, the recovery does not occur until

Chapter 1. Product overview 91

you run the override quorum command. Quorum loss and a container failure as
are considered a double failure, which is a rare event. Because of the double
failure, applications might lose write access to data that was stored on the failed
JVM. When quorum is restored, the normal recovery occurs.

Similarly, if you attempt to start a container during a quorum loss event, the
container does not start.

Full client connectivity is allowed during quorum loss. If no container failures or
connectivity issues happen during the quorum loss event then clients can still fully
interact with the container servers.

If a brownout occurs, then some clients might not have access to primary or replica
copies of the data until the brownout clears.

New clients can be started because a catalog service JVM must exist in each data
center. Therefore, at least one catalog server can be reached by a client even during
a brownout event.

Quorum recovery

If quorum is lost for any reason, when quorum is reestablished, a recovery
protocol is run. When the quorum loss event occurs, all liveness checking for core
groups is suspended and failure reports are also ignored. After quorum is back,
then the catalog service checks all the core groups to immediately determine their
membership. Any shards previously hosted on container JVMs reported as failed
are recovered. If primary shards were lost, then surviving replicas are promoted to
being primary shards. If replica shards were lost then additional replicas shards are
created on the survivors.

Overriding quorum

Override quorum only when a data center failure has occurred. Quorum loss due
to a catalog service JVM failure or a network brownout recovers automatically after
the catalog service JVM is restarted or the network brownout ends.

Administrators are the only ones with knowledge of a data center failure.
WebSphere eXtreme Scale treats a brownout and a blackout similarly. You must
inform the WebSphere eXtreme Scale environment of such failures with the xscmd
-c overrideQuorum command. This command tells the catalog service to assume
that quorum is achieved with the current membership, and full recovery takes
place. When issuing an override quorum command, you are guaranteeing that the
JVMs in the failed data center have truly failed and do not have a chance of
recovering.

The following list considers some scenarios for overriding quorum. In this
scenario, you have three catalog servers: A, B, and C.
v Brown out: The C catalog server is isolated temporarily. The catalog service

loses quorum and waits for the brownout to complete. After the brownout is
over, the C catalog server rejoins the catalog service domain and quorum is
reestablished. Your application sees no problems during this time.

v Temporary failure: During a temporary failure, the C catalog server fails and the
catalog service loses quorum. You must override quorum. After quorum is

92 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

reestablished, you can restart the C catalog server. The C catalog server joins the
catalog service domain again when it restarts. Your application sees no problems
during this time.

v Data center failure: You verify that the data center has failed and that it has
been isolated on the network. Then you issue the xscmd -c overrideQuorum
command. The surviving two data centers run a full recovery by replacing
shards that were hosted in the failed data center. The catalog service is now
running with a full quorum of the A and B catalog servers. The application
might see delays or exceptions during the interval between the start of the
blackout and when quorum is overridden. After quorum is overridden, the data
grid recovers and normal operation is resumed.

v Data center recovery: The surviving data centers are already running with
quorum overridden. When the data center that contains the C catalog server is
restarted, all JVMs in the data center must be restarted. Then the C catalog
server joins the existing catalog service domain again and the quorum setting
reverts to the normal situation with no user intervention.

v Data center failure and brownout: The data center that contains the C catalog
server fails. Quorum is overridden and recovered on the remaining data centers.
If a brownout between the A and B catalog servers occurs, the normal brownout
recovery rules apply. After the brownout clears, quorum is reestablished and
necessary recovery from the quorum loss occurs.

Container behavior during quorum loss

Containers host one or more shards. Shards are either primaries or replicas for a
specific partition. The catalog service assigns shards to a container and the
container server uses that assignment until new instructions arrive from the catalog
service. For example, a primary shard continues to try communication with its
replica shards during network brownouts, until the catalog service provides further
instructions to the primary shard.

Synchronous replica behavior

The primary shard can accept new transactions while the connection is broken if
the number of replicas online are at least at the minsync property value for the
map set. If any new transactions are processed on the primary shard while the link
to the synchronous replica is broken, the replica is and resynchronized with the
current state of the primary when the link is reestablished.

Do not configure synchronous replication between data centers or over a
WAN-style link.

Asynchronous replica behavior

While the connection is broken, the primary shard can accept new transactions.
The primary shard buffers the changes up to a limit. If the connection with the
replica is reestablished before that limit is reached then the replica is updated with
the buffered changes. If the limit is reached, then the primary destroys the buffered
list and when the replica reattaches then it is cleared and resynchronized.

Client behavior during quorum loss

Clients are always able to connect to the catalog server to bootstrap to the data
grid whether the catalog service domain has quorum or not. The client tries to
connect to any catalog server instance to obtain a route table and then interact with

Chapter 1. Product overview 93

the data grid. Network connectivity might prevent the client from interacting with
some partitions due to network setup. The client might connect to local replicas for
remote data if it has been configured to do so. Clients cannot update data if the
primary partition for that data is not available.

Replicas and shards
With eXtreme Scale, an in-memory database or shard can be replicated from one
Java virtual machine (JVM) to another. A shard represents a partition that is placed
on a container. Multiple shards that represent different partitions can exist on a
single container. Each partition has an instance that is a primary shard and a
configurable number of replica shards. The replica shards are either synchronous
or asynchronous. The types and placement of replica shards are determined by
eXtreme Scale using a deployment policy, which specifies the minimum and
maximum number of synchronous and asynchronous shards.

Shard types

Replication uses three types of shards:
v Primary
v Synchronous replica
v Asynchronous replica

The primary shard receives all insert, update and remove operations. The primary
shard adds and removes replicas, replicates data to the replicas, and manages
commits and rollbacks of transactions.

Synchronous replicas maintain the same state as the primary. When a primary
replicates data to a synchronous replica, the transaction is not committed until it
commits on the synchronous replica.

Asynchronous replicas might or might not be at the same state as the primary.
When a primary replicates data to an asynchronous replica, the primary does not
wait for the asynchronous replica to commit.

94 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Minimum synchronous replica shards

When a primary prepares to commit data, it checks how many synchronous replica
shards voted to commit the transaction. If the transaction processes normally on
the replica, it votes to commit. If something went wrong on the synchronous
replica, it votes not to commit. Before a primary commits, the number of
synchronous replica shards that are voting to commit must meet the
minSyncReplica setting from the deployment policy. When the number of
synchronous replica shards that are voting to commit is too low, the primary does
not commit the transaction and an error results. This action ensures that the
required number of synchronous replicas are available with the correct data.
Synchronous replicas that encountered errors reregister to fix their state. For more
information about reregistering, see Replica shard recovery.

The primary throws a ReplicationVotedToRollbackTransactionException error if too
few synchronous replicas voted to commit.

Replication and Loaders

Normally, a primary shard writes changes synchronously through the Loader to a
database. The Loader and database are always in sync. When the primary fails
over to a replica shard, the database and Loader might not be in synch. For
example:
v The primary can send the transaction to the replica and then fail before

committing to the database.

JVM

Primary
Shard
Partition 0

Machine A

ObjectGrid Container 1

JVM

Machine B

ObjectGrid Container 2

Synchronous
Replica Shard
Partition 0

JVM

Machine C

ObjectGrid Container 3

Asynchronous
Replica Shard
Partition 0

Transaction

Figure 30. Communication path between a primary shard and replica shards

Chapter 1. Product overview 95

v The primary can commit to the database and then fail before sending to the
replica.

Either approach leads to either the replica being one transaction in front of or
behind the database. This situation is not acceptable. eXtreme Scale uses a special
protocol and a contract with the Loader implementation to solve this issue without
two phase commit. The protocol follows:

Primary side

v Send the transaction along with the previous transaction outcomes.
v Write to the database and try to commit the transaction.
v If the database commits, then commit on eXtreme Scale. If the database does not

commit, then roll back the transaction.
v Record the outcome.

Replica side

v Receive a transaction and buffer it.
v For all outcomes, send with the transaction, commit any buffered transactions

and discard any rolled back transactions.

Replica side on failover

v For all buffered transactions, provide the transactions to the Loader and the
Loader attempts to commit the transactions.

v The Loader needs to be written to make each transaction is idempotent.
v If the transaction is already in the database, then the Loader performs no

operation.
v If the transaction is not in the database, then the Loader applies the transaction.
v After all transactions are processed, then the new primary can begin to serve

requests.

This protocol ensures that the database is at the same level as the new primary
state.

Shard placement
The catalog service is responsible for placing shards. Each ObjectGrid has a
number of partitions, each of which has a primary shard and an optional set of
replica shards. The catalog service allocates the shards by balancing them so that
they are evenly distributed over the available container servers. Replica and
primary shards for the same partition are never placed on the same container
server or the same IP address, unless the configuration is in development mode.

If a new container server starts, then eXtreme Scale retrieves shards from relatively
overloaded container servers to the new empty container server. This movement of
shards enables horizontal scaling.

Scaling out

Scaling out means that when extra container servers are added to a data grid,
eXtreme Scale tries to move existing shards, primaries or replicas, from the old set
of container servers to the new set. This movement expands the data grid to take
advantage of the processor, network and memory of the newly added container
servers. The movement also balances the data grid and tries to ensure that each
JVM in the data grid hosts the same amount of data. As the data grid expands,

96 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

each server hosts a smaller subset of the total grid. eXtreme Scale assumes that
data is distributed evenly among the partitions. This expansion enables scaling out.

Scaling in

Scaling in means that if a JVM fails, then eXtreme Scale tries to repair the damage.
If the failed JVM had a replica, then eXtreme Scale replaces the lost replica by
creating a new replica on a surviving JVM. If the failed JVM had a primary, then
eXtreme Scale finds the best replica on the survivors and promotes the replica to
be the new primary. eXtreme Scale then replaces the promoted replica with a new
replica that is created on the remaining servers. To maintain scalability, eXtreme
Scale preserves the replica count for partitions as servers fail.

Reading from replicas
You can configure map sets such that a client is permitted to read from a replica
rather than being restricted to primary shards only.

It can often be advantageous to allow replicas to serve as more than simply
potential primaries in the case of failures. For example, map sets can be configured
to allow read operations to be routed to replicas by setting the replicaReadEnabled
option on the MapSet to true. The default setting is false.

For more information on the MapSet element, see the topic on the deployment
policy descriptor XML file in the Administration Guide.

ObjectGrid Container 1

JVM

Primary
Shard
Partition 0

Machine A

Synchronous
Replica Shard
Partition 1

Asynchronous
Replica Shard
Partition 2

ObjectGrid Container 2

JVM

Primary
Shard
Partition 1

Machine B

Synchronous
Replica Shard
Partition 2

Asynchronous
Replica Shard
Partition 0

ObjectGrid Container 3

JVM

Primary
Shard
Partition 2

Machine C

Synchronous
Replica Shard
Partition 0

Asynchronous
Replica Shard
Partition 1

Figure 31. Placement of an ObjectGrid map set with a deployment policy of 3 partitions with a minSyncReplicas value
of 1, a maxSyncReplicas value of 1, and a maxAsyncReplicas value of 1

Chapter 1. Product overview 97

Enabling reading of replicas can improve performance by spreading read requests
to more Java™ virtual machines. If the option is not enabled, all read requests such
as the ObjectMap.get or the Query.getResultIterator methods are routed to the
primary. When replicaReadEnabled is set to true, some get requests might return
stale data, so an application using this option must be able to tolerate this
possibility. However, a cache miss will not occur. If the data is not on the replica,
the get request is redirected to the primary and tried again.

The replicaReadEnabled option can be used with both synchronous and
asynchronous replication.

Load balancing across replicas
Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

The eXtreme Scale, unless configured otherwise, sends all read and write requests
to the primary server for a given replication group. The primary must service all
requests from clients. You might want to allow read requests to be sent to replicas
of the primary. Sending read requests to the replicas allows the load of the read
requests to be shared by multiple Java Virtual Machines (JVM). However, using
replicas for read requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data
that is changing all the time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches,
the primary should see a relatively high get request rate from clients as a result.
Likewise, in pessimistic locking mode, no local cache exists, so all requests are sent
to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read
requests to the replica does not have a big impact on performance. The frequency
of get requests from clients with caches that are full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty
cache are forwarded to the primary. The client cache gets data over time, causing
the request load to drop. If a large number of clients start concurrently, then the
load might be significant and replica read might be an appropriate performance
choice.

Shard life cycles
Shards go through different states and events to support replication. The life cycle
of a shard includes coming online, run time, shut down, fail over and error
handling. Shards can be promoted from a replica shard to a primary shard to
handle server state changes.

Life cycle events

When primary and replica shards are placed and started, they go through a series
of events to bring themselves online and into listening mode.

Primary shard

The catalog service places a primary shard for a partition. The catalog service also
does the work of balancing primary shard locations and initiating failover for
primary shards.

98 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

When a shard becomes a primary shard, it receives a list of replicas from the
catalog service. The new primary shard creates a replica group and registers all the
replicas.

When the primary is ready, an open for business message displays in the
SystemOut.log file for the container on which it is running. The open message, or
the CWOBJ1511I message, lists the map name, map set name, and partition
number of the primary shard that started.
CWOBJ1511I: mapName:mapSetName:partitionNumber (primary) is open for business.

See “Shard placement” on page 96 for more information on how the catalog service
places shards.

Replica shard

Replica shards are mainly controlled by the primary shard unless the replica shard
detects a problem. During a normal life cycle, the primary shard places, registers,
and de-registers a replica shard.

When the primary shard initializes a replica shard, a message displays the log that
describes where the replica runs to indicate that the replica shard is available. The
open message, or the CWOBJ1511I message, lists the map name, map set name,
and partition number of the replica shard. This message follows:
CWOBJ1511I: mapName:mapSetName:partitionNumber (synchronous replica) is open for business.

or
CWOBJ1511I: mapName:mapSetName:partitionNumber (asynchronous replica) is open for business.

Asynchronous replica shard: An asynchronous replica shard polls the primary for
data. The replica automatically will adjust the poll timing if it does not receive
data from the primary, which indicates that it is caught up with the primary. It also
will adjust if it receives an error that might indicate that the primary has failed, or
if there is a network problem.

When the asynchronous replica starts replicating, it prints the following message to
the SystemOut.log file for the replica. This message might print more than one
time per CWOBJ1511 message. It will print again if the replica connects to a
different primary or if template maps are added.
CWOBJ1543I: The asynchronous replica objectGridName:mapsetName:partitionNumber started or
continued replicating from the primary. Replicating for maps: [mapName]

Synchronous replica shard: When the synchronous replica shard first starts, it is
not yet in peer mode. When a replica shard is in peer mode, it receives data from
the primary as data comes into the primary. Before entering peer mode, the replica
shard needs a copy of all of the existing data on the primary shard.

The synchronous replica copies data from the primary shard similar to an
asynchronous replica by polling for data. When it copies the existing data from the
primary, it switches to peer mode and begins to receive data as the primary
receives the data.

When a replica shard reaches peer mode, it prints a message to the SystemOut.log
file for the replica. The time refers to the amount of time that it took the replica
shard to get all of its initial data from the primary shard. The time might display
as zero or very low if the primary shard does not have any existing data to

Chapter 1. Product overview 99

replicate. This message may print more than one time per CWOBJ1511 message. It
will print again if the replica connects to a different primary or if template maps
are added.
CWOBJ1526I: Replica objectGridName:mapsetName:partitionNumber:mapName entering peer
mode after X seconds.

When the synchronous replica shard is in peer mode, the primary shard must
replicate transactions to all peer mode synchronous replicas. The synchronous
replica shard data remains at the same level as the primary shard data. If a
minimum number of synchronous replicas or minSync is set in the deployment
policy, that number of synchronous replicas must vote to commit before the
transaction can successfully commit on the primary.

Recovery events

Replication is designed to recover from failure and error events. If a primary shard
fails, another replica takes over. If errors are on the replica shards, the replica shard
attempts to recover. The catalog service controls the placement and transactions of
new primary shards or new replica shards.

Replica shard becomes a primary shard

A replica shard becomes a primary shard for two reasons. Either the primary shard
stopped or failed, or a balance decision was made to move the previous primary
shard to a new location.

The catalog service selects a new primary shard from the existing synchronous
replica shards. If a primary move needs to take place and there are no replicas, a
temporary replica will be placed to complete the transition. The new primary
shard registers all of the existing replicas and accepts transactions as the new
primary shard. If the existing replica shards have the correct level of data, the
current data is preserved as the replica shards register with the new primary
shard. Asynchronous replicas will poll against the new primary.

JVM

Primary
Shard
Partition 0

Machine A

ObjectGrid Container 1

JVM

Machine B

ObjectGrid Container 2

Synchronous
Replica Shard
Partition 0

JVM

Machine C

ObjectGrid Container 3

Synchronous
Replica Shard
Partition 0

JVM

Machine D

ObjectGrid Container 4

Asynchronous
Replica Shard
Partition 0

Figure 32. Example placement of an ObjectGrid map set for the partition0 partition. The deployment policy has a
minSyncReplicas value of 1, a maxSyncReplicas value of 2, and a maxAsyncReplicas value of 1.

100 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

JVM

Primary
Shard
Partition 0

Machine A

ObjectGrid Container 1

JVM

Machine B

ObjectGrid Container 2

Synchronous
Replica Shard
Partition 0

JVM

Machine C

ObjectGrid Container 3

Synchronous
Replica Shard
Partition 0

JVM

Machine D

ObjectGrid Container 4

Asynchronous
Replica Shard
Partition 0

X
Figure 33. The container for the primary shard fails

JVM

Primary
Shard
Partition 0

Machine A

ObjectGrid Container 1

JVM

Machine B

ObjectGrid Container 2

Synchronous
Replica Shard
Partition 0

JVM

Machine C

ObjectGrid Container 3

Synchronous
Replica Shard
Partition 0

JVM

Machine D

ObjectGrid Container 4

Asynchronous
Replica Shard
Partition 0

X Primary
Shard
Partition 0

Figure 34. The synchronous replica shard on ObjectGrid container 2 becomes the primary shard

Chapter 1. Product overview 101

Replica shard recovery

A synchronous replica shard is controlled by the primary shard. However, if a
replica shard detects a problem, it can trigger a reregister event to correct the state
of the data. The replica clears the current data and gets a fresh copy from the
primary.

When a replica shard initiates a reregister event, the replica prints a log message.
CWOBJ1524I: Replica listener
objectGridName:mapSetName:partition must re-register with the primary.
Reason: Exception listed

If a transaction causes an error on a replica shard during processing, then the
replica shard is in an unknown state. The transaction successfully processed on the
primary shard, but something went wrong on the replica. To correct this situation,
the replica initiates a reregister event. With a new copy of data from the primary,
the replica shard can continue. If the same problem reoccurs, the replica shard does
not continuously reregister. See “Failure events” for more details.

Failure events

A replica can stop replicating data if it encounters error situations for which the
replica cannot recover.

Too many register attempts

If a replica triggers a reregister multiple times without successfully committing
data, the replica stops. Stopping prevents a replica from entering an endless
reregister loop. By default, a replica shard tries to reregister three times in a row
before stopping.

If a replica shard reregisters too many times, it prints the following message to the
log.

CWOBJ1537E: objectGridName:mapSetName:partition exceeded the maximum number
of times to reregister (timesAllowed) without successful transactions..

Machine A

JVM

Machine B

ObjectGrid Container 2

Primary Shard
Partition 0

JVM

Machine C

ObjectGrid Container 3

Synchronous
Replica Shard
Partition 0

JVM

Machine D

ObjectGrid Container 4

Asynchronous
Replica Shard
Partition 0

Figure 35. Machine B contains the primary shard. Depending on how automatic repair mode is set and the availability
of the containers, a new synchronous replica shard might or might not be placed on a machine.

102 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

If the replica is unable to recover by reregistering, a pervasive problem might exist
with the transactions that are relative to the replica shard. A possible problem
could be missing resources on the classpath if an error occurs while inflating the
keys or values from the transaction.

Failure while entering peer mode

If a replica attempts to enter peer mode and experiences an error processing the
bulk existing data from the primary (the checkpoint data), the replica shuts down.
Shutting down prevents a replica from starting with incorrect initial data. Because
it receives the same data from the primary if it reregisters, the replica does not
retry.

If a replica shard fails to enter peer mode, it prints the following message to the
log:

CWOBJ1527W Replica objectGridName:mapSetName:partition:mapName failed to enter peer mode after numSeconds seconds.

An additional message displays in the log that explains why the replica failed to
enter peer mode.

Recovery after re-register or peer mode failure

If a replica fails to re-register or enter peer mode, the replica is in an inactive state
until a new placement event occurs. A new placement event might be a new server
starting or stopping. You can also start a placement event by using the
triggerPlacement method on the PlacementServiceMBean Mbean.

Map sets for replication
Replication is enabled by associating BackingMaps with a map set.

A map set is a collection of maps that are categorized by partition-key. This
partition-key is derived from the individual map's key by taking its hash modulo
the number of partitions. If one group of maps within the map set has
partition-key X, those maps will be stored in a corresponding partition X in the
data grid. If another group has partition-key Y, all of the maps will be stored in
partition Y, and so on. Also, the data within the maps is replicated based on the
policy defined on the map set, which is only used for distributed eXtreme Scale
topologies (unnecessary for local instances).

See “Partitioning” on page 69 for more details.

Map sets are assigned what number of partitions they will have and a replication
policy. The map set replication configuration simply identifies the number of
synchronous and asynchronous replica shards a map set should have in addition
to the primary shard. For example, if there is to be 1 synchronous and 1
asynchronous replica, all of the BackingMaps assigned to the map set will each
have a replica shard distributed automatically within the set of available containers
for the eXtreme Scale. The replication configuration can also enable clients to read
data from synchronously replicated servers. This can spread the load for read
requests over additional servers in the eXtreme Scale. Replication only has a
programming model impact when preloading the BackingMaps.

Transaction processing overview
WebSphere eXtreme Scale uses transactions as its mechanism for interaction with
data.

Chapter 1. Product overview 103

To interact with data, the thread in your application needs its own session. When
the application wants to use the ObjectGrid on a thread, call one of the
ObjectGrid.getSession methods to obtain a session. With the session, the
application can work with data that is stored in the ObjectGrid maps.

When an application uses a Session object, the session must be in the context of a
transaction. A transaction begins and commits or begins and rolls back using the
begin, commit, and rollback methods on the Session object. Applications can also
work in auto-commit mode, in which the Session automatically begins and
commits a transaction whenever an operation is performed on the map.
Auto-commit mode cannot group multiple operations into a single transaction, so
it is the slower option if you are creating a batch of multiple operations into a
single transaction. However, for transactions that contain only one operation,
auto-commit is the faster option.

7.1.1+ When your application is finished with the Session, use the optional
Session.close() method to close the session. Closing the Session releases it from the
heap and allows subsequent calls to the getSession() method to be reused,
improving performance.

Transactions
Transactions have many advantages for data storage and manipulation. You can
use transactions to protect the data grid from concurrent changes, to apply
multiple changes as a concurrent unit, to replicate data and to implement a life
cycle for locks on changes.

When a transaction starts, WebSphere eXtreme Scale allocates a special difference
map to hold the current changes or copies of key and value pairs that the
transaction uses. Typically, when a key and value pair is accessed, the value is
copied before the application receives the value. The difference map tracks all
changes for operations such as insert, update, get, remove, and so on. Keys are not
copied because they are assumed to be immutable. If an ObjectTransformer object
is specified, then this object is used for copying the value. If the transaction is
using optimistic locking, then before images of the values are also tracked for
comparison when the transaction commits.

If a transaction is rolled back, then the difference map information is discarded,
and locks on entries are released. When a transaction commits, the changes are
applied to the maps and locks are released. If optimistic locking is being used, then
eXtreme Scale compares the before image versions of the values with the values
that are in the map. These values must match for the transaction to commit. This
comparison enables a multiple version locking scheme, but at a cost of two copies
being made when the transaction accesses the entry. All values are copied again
and the new copy is stored in the map. WebSphere eXtreme Scale performs this
copy to protect itself against the application changing the application reference to
the value after a commit.

You can avoid using several copies of the information. The application can save a
copy by using pessimistic locking instead of optimistic locking as the cost of
limiting concurrency. The copy of the value at commit time can also be avoided if
the application agrees not to change a value after a commit.

104 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Advantages of transactions

Use transactions for the following reasons:

By using transactions, you can:
v Roll back changes if an exception occurs or business logic needs to undo state

changes.
v To apply multiple changes as an atomic unit at commit time.
v Hold and release locks on data to apply multiple changes as an atomic unit at

commit time.
v Protect a thread from concurrent changes.
v Implement a life cycle for locks on changes.
v Produce an atomic unit of replication.

Transaction size

Larger transactions are more efficient, especially for replication. However, larger
transactions can adversely impact concurrency because the locks on entries are
held for a longer period of time. If you use larger transactions, you can increase
replication performance. This performance increase is important when you are
pre-loading a Map. Experiment with different batch sizes to determine what works
best for your scenario.

Larger transactions also help with loaders. If a loader is being used that can
perform SQL batching, then significant performance gains are possible depending
on the transaction and significant load reductions on the database side. This
performance gain depends on the Loader implementation.

Automatic commit mode

If no transaction is actively started, then when an application interacts with an
ObjectMap object, an automatic begin and commit operation is done on behalf of
the application. This automatic begin and commit operation works, but prevents
rollback and locking from working effectively. Synchronous replication speed is
impacted because of the very small transaction size. If you are using an entity
manager application, then do not use automatic commit mode because objects that
are looked up with the EntityManager.find method immediately become
unmanaged on the method return and become unusable.

External transaction coordinators

Typically, transactions begin with the session.begin method and end with the
session.commit method. However, when eXtreme Scale is embedded, the
transactions might be started and ended by an external transaction coordinator. If
you are using an external transaction coordinator, you do not need to call the
session.begin method and end with the session.commit method. If you are using
WebSphere Application Server, you can use the WebSphereTranscationCallback
plug-in.

CopyMode attribute
You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects in the ObjectGrid descriptor XML file.

You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects. The copy mode has the following values:

Chapter 1. Product overview 105

v COPY_ON_READ_AND_COMMIT
v COPY_ON_READ
v NO_COPY
v COPY_ON_WRITE
v COPY_TO_BYTES
v COPY_TO_BYTES_RAW

The COPY_ON_READ_AND_COMMIT value is the default. The COPY_ON_READ
value copies on the initial data retrieved, but does not copy at commit time. This
mode is safe if the application does not modify a value after committing a
transaction. The NO_COPY value does not copy data, which is only safe for
read-only data. If the data never changes then you do not need to copy it for
isolation reasons.

Be careful when you use the NO_COPY attribute value with maps that can be
updated. WebSphere eXtreme Scale uses the copy on first touch to allow the
transaction rollback. The application only changed the copy, and as a result,
eXtreme Scale discards the copy. If the NO_COPY attribute value is used, and the
application modifies the committed value, completing a rollback is not possible.
Modifying the committed value leads to problems with indexes, replication, and so
on because the indexes and replicas update when the transaction commits. If you
modify committed data and then roll back the transaction, which does not actually
roll back at all, then the indexes are not updated and replication does not take
place. Other threads can see the uncommitted changes immediately, even if they
have locks. Use the NO_COPY attribute value for read-only maps or for
applications that complete the appropriate copy before modifying the value. If you
use the NO_COPY attribute value and call IBM support with a data integrity
problem, you are asked to reproduce the problem with the copy mode set to
COPY_ON_READ_AND_COMMIT.

The COPY_TO_BYTES value stores values in the map in a serialized form. At read
time, eXtreme Scale inflates the value from a serialized form and at commit time it
stores the value to a serialized form. With this method, a copy occurs at both read
and commit time.

The default copy mode for a map can be configured on the BackingMap object.
You can also change the copy mode on maps before you start a transaction by
using the ObjectMap.setCopyMode method.

An example of a backing map snippet from an objectgrid.xml file that shows how
to set the copy mode for a given backing map follows. This example assumes that
you are using cc as the objectgrid/config namespace.
<cc:backingMap name="RuntimeLifespan" copyMode="NO_COPY"/>

Lock manager
When you configure a locking strategy, a lock manager is created for the backing
map to maintain cache entry consistency.

Lock manager configuration

When either a PESSIMISTIC or an OPTIMISTIC lock strategy is used, a lock
manager is created for the BackingMap. The lock manager uses a hash map to
track entries that are locked by one or more transactions. If many map entries exist
in the hash map, more lock buckets can result in better performance. The risk of
Java synchronization collisions is lower as the number of buckets grows. More lock

106 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

buckets also lead to more concurrency. The previous examples show how an
application can set the number of lock buckets to use for a given BackingMap
instance.

To avoid a java.lang.IllegalStateException exception, the setNumberOfLockBuckets
method must be called before calling the initialize or getSession methods on the
ObjectGrid instance. The setNumberOfLockBuckets method parameter is a Java
primitive integer that specifies the number of lock buckets to use. Using a prime
number can allow for a uniform distribution of map entries over the lock buckets.
A good starting point for best performance is to set the number of lock buckets to
about 10 percent of the expected number of BackingMap entries.

Locking strategies
Locking strategies include pessimistic, optimistic and none. To choose a locking
strategy, you must consider issues such as the percentage of each type of
operations you have, whether or not you use a loader and so on.

Locks are bound by transactions. You can specify the following locking settings:
v No locking: Running without the locking setting is the fastest. If you are using

read-only data, then you might not need locking.
v Pessimistic locking: Acquires locks on entries, then and holds the locks until

commit time. This locking strategy provides good consistency at the expense of
throughput.

v Optimistic locking: Takes a before image of every record that the transaction
touches and compares the image to the current entry values when the
transaction commits. If the entry values change, then the transaction rolls back.
No locks are held until commit time. This locking strategy provides better
concurrency than the pessimistic strategy, at the risk of the transaction rolling
back and the memory cost of making the extra copy of the entry.

Set the locking strategy on the BackingMap. You cannot change the locking
strategy for each transaction. An example XML snippet that shows how to set the
locking mode on a map using the XML file follows, assuming cc is the namespace
for the objectgrid/config namespace:
<cc:backingMap name="RuntimeLifespan" lockStrategy="PESSIMISTIC" />

Pessimistic locking

Use the pessimistic locking strategy for read and write maps when other locking
strategies are not possible. When an ObjectGrid map is configured to use the
pessimistic locking strategy, a pessimistic transaction lock for a map entry is
obtained when a transaction first gets the entry from the BackingMap. The
pessimistic lock is held until the application completes the transaction. Typically,
the pessimistic locking strategy is used in the following situations:
v When the BackingMap is configured with or without a loader and versioning

information is not available.
v When the BackingMap is used directly by an application that needs help from

the eXtreme Scale for concurrency control.
v When versioning information is available, but update transactions frequently

collide on the backing entries, resulting in optimistic update failures.

Because the pessimistic locking strategy has the greatest impact on performance
and scalability, this strategy should only be used for read and write maps when
other locking strategies are not viable. For example, these situations might include
when optimistic update failures occur frequently, or when recovery from optimistic

Chapter 1. Product overview 107

failure is difficult for an application to handle.

Optimistic locking

The optimistic locking strategy assumes that no two transactions might attempt to
update the same map entry while running concurrently. Because of this belief, the
lock mode does not need to be held for the life cycle of the transaction because it
is unlikely that more than one transaction might update the map entry
concurrently. The optimistic locking strategy is typically used in the following
situations:
v When a BackingMap is configured with or without a loader and versioning

information is available.
v When a BackingMap has mostly transactions that perform read operations.

Insert, update, or remove operations on map entries do not occur often on the
BackingMap.

v When a BackingMap is inserted, updated, or removed more frequently than it is
read, but transactions rarely collide on the same map entry.

Like the pessimistic locking strategy, the methods on the ObjectMap interface
determine how eXtreme Scale automatically attempts to acquire a lock mode for
the map entry that is being accessed. However, the following differences between
the pessimistic and optimistic strategies exist:
v Like the pessimistic locking strategy, an S lock mode is acquired by the get and

getAll methods when the method is invoked. However, with optimistic locking,
the S lock mode is not held until the transaction is completed. Instead, the S lock
mode is released before the method returns to the application. The purpose of
acquiring the lock mode is so that eXtreme Scale can ensure that only committed
data from other transactions is visible to the current transaction. After eXtreme
Scale has verified that the data is committed, the S lock mode is released. At
commit time, an optimistic versioning check is performed to ensure that no
other transaction has changed the map entry after the current transaction
released its S lock mode. If an entry is not fetched from the map before it is
updated, invalidated, or deleted, the eXtreme Scale run time implicitly fetches
the entry from the map. This implicit get operation is performed to get the
current value at the time the entry was requested to be modified.

v Unlike pessimistic locking strategy, the getForUpdate and getAllForUpdate
methods are handled exactly like the get and getAll methods when the
optimistic locking strategy is used. That is, an S lock mode is acquired at the
start of the method and the S lock mode is released before returning to the
application.

All other ObjectMap methods are handled exactly like they are handled for the
pessimistic locking strategy. That is, when the commit method is invoked, an X
lock mode is obtained for any map entry that is inserted, updated, removed,
touched, or invalidated and the X lock mode is held until the transaction
completes commit processing.

The optimistic locking strategy assumes that no concurrently running transactions
attempt to update the same map entry. Because of this assumption, the lock mode
does not need to be held for the life of the transaction because it is unlikely that
more than one transaction might update the map entry concurrently. However,
because a lock mode was not held, another concurrent transaction might
potentially update the map entry after the current transaction has released its S
lock mode.

108 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

To handle this possibility, eXtreme Scale gets an X lock at commit time and
performs an optimistic versioning check to verify that no other transaction has
changed the map entry after the current transaction read the map entry from the
BackingMap. If another transaction changes the map entry, the version check fails
and an OptimisticCollisionException exception occurs. This exception forces the
current transaction to be rolled back and the application must try the entire
transaction again. The optimistic locking strategy is very useful when a map is
mostly read and it is unlikely that updates for the same map entry might occur.

No locking

When a BackingMap is configured to use no locking strategy, no transaction locks
for a map entry are obtained.

Using no locking strategy is useful when an application is a persistence manager
such as an Enterprise JavaBeans (EJB) container or when an application uses
Hibernate to obtain persistent data. In this scenario, the BackingMap is configured
without a loader and the persistence manager uses the BackingMap as a data
cache. In this scenario, the persistence manager provides concurrency control
between transactions that are accessing the same Map entries.

WebSphere eXtreme Scale does not need to obtain any transaction locks for the
purpose of concurrency control. This situation assumes that the persistence
manager does not release its transaction locks before updating the ObjectGrid map
with committed changes. If the persistence manager releases its locks, then a
pessimistic or optimistic lock strategy must be used. For example, suppose that the
persistence manager of an EJB container is updating an ObjectGrid map with data
that was committed in the EJB container-managed transaction. If the update of the
ObjectGrid map occurs before the persistence manager transaction locks are
released, then you can use the no lock strategy. If the ObjectGrid map update
occurs after the persistence manager transaction locks are released, then you must
use either the optimistic or pessimistic lock strategy.

Another scenario where no locking strategy can be used is when the application
uses a BackingMap directly and a Loader is configured for the map. In this
scenario, the loader uses the concurrency control support that is provided by a
relational database management system (RDBMS) by using either Java database
connectivity (JDBC) or Hibernate to access data in a relational database. The loader
implementation can use either an optimistic or pessimistic approach. A loader that
uses an optimistic locking or versioning approach helps to achieve the greatest
amount of concurrency and performance. For more information about
implementing an optimistic locking approach, see the OptimisticCallback section in
the information about loader considerations in the Administration Guide. If you are
using a loader that uses pessimistic locking support of an underlying backend, you
might want to use the forUpdate parameter that is passed on the get method of
the Loader interface. Set this parameter to true if the getForUpdate method of the
ObjectMap interface was used by the application to get the data. The loader can
use this parameter to determine whether to request an upgradeable lock on the
row that is being read. For example, DB2® obtains an upgradeable lock when an
SQL select statement contains a FOR UPDATE clause. This approach offers the same
deadlock prevention that is described in “Pessimistic locking” on page 107.

For more information, see the topic on handling locks in the Programming Guide or
map entry locking in the Administration Guide.

Chapter 1. Product overview 109

Distributing transactions
Use Java Message Service (JMS) for distributed transaction changes between
different tiers or in environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in
environments on mixed platforms. For example, some applications that use
eXtreme Scale might be deployed on IBM WebSphere Application Server
Community Edition, Apache Geronimo, or Apache Tomcat, whereas other
applications might run on WebSphere Application Server Version 6.x. JMS is ideal
for distributed changes between eXtreme Scale peers in these different
environments. The high availability manager message transport is very fast, but
can only distribute changes to Java virtual machines that are in a single core
group. JMS is slower, but allows larger and more diverse sets of application clients
to share an ObjectGrid. JMS is ideal when sharing data in an ObjectGrid between a
fat Swing client and an application deployed on WebSphere Extended Deployment.

The built-in Client Invalidation Mechanism and Peer-to-Peer Replication are
examples of JMS-based transactional changes distribution. See the information
about configuring peer-to-peer replication with JMS in the Administration Guide for
more information.

Implementing JMS

JMS is implemented for distributing transaction changes by using a Java object that
behaves as an ObjectGridEventListener. This object can propagate the state in the
following four ways:
1. Invalidate: Any entry that is evicted, updated or deleted is removed on all peer

Java virtual machines when they receive the message.
2. Invalidate conditional: The entry is evicted only if the local version is the same

or older than the version on the publisher.
3. Push: Any entry that was evicted, updated, deleted or inserted is added or

overwritten on all peer Java virtual machines when they receive the JMS
message.

4. Push conditional: The entry is only updated or added on the receive side if the
local entry is less recent than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the
transactionEnd event. When eXtreme Scale invokes this method, the plug-in
attempts to convert the LogSequence list for each map that is touched by the
transaction to a JMS message and then publish it. The plug-in can be configured to
publish changes for all maps or a subset of maps. LogSequence objects are
processed for the maps that have publishing enabled. The
LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for
each map to a stream. After all LogSequences are serialized to the stream, then a
JMS ObjectMessage is created and published to a well-known topic.

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages
that are published to the well known topic. When a message arrives, it passes the
message contents to the LogSequenceTransformer class where it is converted to a
set of LogSequence objects. Then, a no-write-through transaction is started. Each
LogSequence object is provided to the Session.processLogSequence method, which

110 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

updates the local Maps with the changes. The processLogSequence method
understands the distribution mode. The transaction is committed and the local
cache now reflects the changes. For more information about using JMS to distribute
transaction changes, see the information about distributing changes between peer
Java Virtual Machines in the Administration Guide.

Single-partition and cross-data-grid transactions
The major distinction between WebSphere eXtreme Scale and traditional data
storage solutions like relational databases or in-memory databases is the use of
partitioning, which allows the cache to scale linearly. The important types of
transactions to consider are single-partition and every-partition (cross-data-grid)
transactions.

In general, interactions with the cache can be categorized as single-partition
transactions or cross-data-grid transactions, as discussed in the following section.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches
that are hosted by WebSphere eXtreme Scale. When a transaction is limited to a
single partition, then by default it is limited to a single Java virtual machine, and
therefore a single server computer. A server can complete M number of these
transactions per second, and if you have N computers, you can complete M*N
transactions per second. If your business increases and you need to perform twice
as many of these transactions per second, you can double N by buying more
computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions
also maximize the availability of the cache. Each transaction only depends on one
computer. Any of the other (N-1) computers can fail without affecting the success
or response time of the transaction. So if you are running 100 computers and one
of them fails, only 1 percent of the transactions in flight at the moment that server
failed are rolled back. After the server fails, WebSphere eXtreme Scale relocates the
partitions that are hosted by the failed server to the other 99 computers. During
this brief period, before the operation completes, the other 99 computers can still
complete transactions. Only the transactions that would involve the partitions that
are being relocated are blocked. After the failover process is complete, the cache
can continue running, fully operational, at 99 percent of its original throughput
capacity. After the failed server is replaced and returned to the data grid, the cache
returns to 100 percent throughput capacity.

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions
are the opposite of single-partition transactions. Cross-data-grid transactions access
every partition and therefore every computer in the configuration. Each computer
in the data grid is asked to look up some data and then return the result. The
transaction cannot complete until every computer has responded, and therefore the
throughput of the entire data grid is limited by the slowest computer. Adding
computers does not make the slowest computer faster and therefore does not
improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the
previous example, if you are running 100 servers and one server fails, then 100
percent of the transactions that are in progress at the moment that server failed are

Chapter 1. Product overview 111

rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate the
partitions that are hosted by that server to the other 99 computers. During this
time, before the failover process completes, the data grid cannot process any of
these transactions. After the failover process is complete, the cache can continue
running, but at reduced capacity. If each computer in the data grid serviced 10
partitions, then 10 of the remaining 99 computers receive at least one extra
partition as part of the failover process. Adding an extra partition increases the
workload of that computer by at least 10 percent. Because the throughput of the
data grid is limited to the throughput of the slowest computer in a cross-data-grid
transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for
scaling out with a distributed, highly available, object cache like WebSphere
eXtreme Scale. Maximizing the performance of these kinds of systems requires the
use of techniques that are different from traditional relational methodologies, but
you can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere
eXtreme Scale include two categories: foundational principles and implementation
tips. Foundational principles are core ideas that need to be captured in the design
of the data itself. An application that does not observe these principles is unlikely
to scale well, even for its mainline transactions. Implementation tips are applied
for problematic transactions in an otherwise well-designed application that
observes the general principles for scalable data models.

Foundational principles

Some of the important means of optimizing scalability are basic concepts or
principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale
is that they are designed to spread data across a large number of
computers. If the goal is to make most or all transactions complete on a
single partition, then the data model design needs to ensure that all the
data the transaction might need is located in the partition. Most of the
time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two very
important transactions for a message board are showing all the posts from
a given user and all the posts on a given topic. First consider how these
transactions would work with a normalized data model that contains a
user record, a topic record, and a post record that contains the actual text.
If posts are partitioned with user records, then displaying the topic
becomes a cross-grid transaction, and vice versa. Topics and users cannot
be partitioned together because they have a many-to-many relationship.

The best way to make this message board scale is to duplicate the posts,
storing one copy with the topic record and one copy with the user record.
Then, displaying the posts from a user is a single-partition transaction,
displaying the posts on a topic is a single-partition transaction, and
updating or deleting a post is a two-partition transaction. All three of these
transactions will scale linearly as the number of computers in the data grid
increases.

112 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Scalability rather than resources

The biggest obstacle to overcome when considering denormalized data
models is the impact that these models have on resources. Keeping two,
three, or more copies of some data can seem to use too many resources to
be practical. When you are confronted with this scenario, remember the
following facts: Hardware resources get cheaper every year. Second, and
more importantly, WebSphere eXtreme Scale eliminates most hidden costs
associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as
megabytes and processors. Data stores that work with normalized
relational data generally need to be located on the same computer. This
required collocation means that a single larger enterprise computer needs
to be purchased rather than several smaller computers. With enterprise
hardware, it is not uncommon for one computer to be capable of
completing one million transactions per second to cost much more than the
combined cost of 10 computers capable of doing 100,000 transactions per
second each.

A business cost in adding resources also exists. A growing business
eventually runs out of capacity. When you run out of capacity, you either
need to shut down while moving to a bigger, faster computer, or create a
second production environment to which you can switch. Either way,
additional costs will come in the form of lost business or maintaining
almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut
down to add capacity. If your business projects that you need 10 percent
more capacity for the coming year, then increase the number of computers
in the data grid by 10 percent. You can increase this percentage without
application downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a
format that is directly consumable by the business logic. Breaking the data
down into a more primitive form is costly. The transformation needs to be
done when the data is written and when the data is read. With relational
databases this transformation is done out of necessity, because the data is
ultimately persisted to disk quite frequently, but with WebSphere eXtreme
Scale, you do not need to perform these transformations. For the most part
data is stored in memory and can therefore be stored in the exact form that
the application needs.

Observing this simple rule helps denormalize your data in accordance with
the first principle. The most common type of transformation for business
data is the JOIN operations that are necessary to turn normalized data into
a result set that fits the needs of the application. Storing the data in the
correct format implicitly avoids performing these JOIN operations and
produces a denormalized data model.

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not
scale well. For example, do not have a transaction that asks for a list of all
items sorted by value. This transaction might work at first when the total
number of items is 1000, but when the total number of items reaches 10
million, the transaction returns all 10 million items. If you run this

Chapter 1. Product overview 113

transaction, the two most likely outcomes are the transaction timing out, or
the client encountering an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20
items can be returned. This logic alteration keeps the size of the transaction
manageable no matter how many items are in the cache.

Define schema

The main advantage of normalizing data is that the database system can
take care of data consistency behind the scenes. When data is
denormalized for scalability, this automatic data consistency management
no longer exists. You must implement a data model that can work in the
application layer or as a plug-in to the distributed data grid to guarantee
data consistency.

Consider the message board example. If a transaction removes a post from
a topic, then the duplicate post on the user record needs to be removed.
Without a data model, it is possible a developer would write the
application code to remove the post from the topic and forget to remove
the post from the user record. However, if the developer were using a data
model instead of interacting with the cache directly, the removePost
method on the data model could pull the user ID from the post, look up
the user record, and remove the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition
that detects the change to the topic and automatically adjusts the user
record. A listener might be beneficial because the adjustment to the user
record could happen locally if the partition happens to have the user
record, or even if the user record is on a different partition, the transaction
takes place between servers instead of between the client and server. The
network connection between servers is likely to be faster than the network
connection between the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid will not
scale if a single record is being used a disproportionate number of times
compared to the rest of the records. The performance of the data grid will
be limited by the performance of the computer that holds the given record.

In these situations, try to break the record up so it is managed per
partition. For example consider a transaction that returns the total number
of entries in the distributed cache. Instead of having every insert and
remove operation access a single record that increments, have a listener on
each partition track the insert and remove operations. With this listener
tracking, insert and remove can become single-partition operations.

Reading the counter will become a cross-data-grid operation, but for the
most part, it was already as inefficient as a cross-data-grid operation
because its performance was tied to the performance of the computer
hosting the record.

Implementation tips

You can also consider the following tips to achieve the best scalability.

Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are
partitioned based on the customer ID number. This partitioning method is

114 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

the logical choice because nearly every business operation performed with
the customer record uses the customer ID number. However, an important
transaction that does not use the customer ID number is the login
transaction. It is more common to have user names or e-mail addresses for
login instead of customer ID numbers.

The simple approach to the login scenario is to use a cross-data-grid
transaction to find the customer record. As explained previously, this
approach does not scale.

The next option might be to partition on user name or e-mail. This option
is not practical because all the customer ID based operations become
cross-data-grid transactions. Also, the customers on your site might want
to change their user name or e-mail address. Products like WebSphere
eXtreme Scale need the value that is used to partition the data to remain
constant.

The correct solution is to use a reverse lookup index. With WebSphere
eXtreme Scale, a cache can be created in the same distributed grid as the
cache that holds all the user records. This cache is highly available,
partitioned and scalable. This cache can be used to map a user name or
e-mail address to a customer ID. This cache turns login into a two partition
operation instead of a cross-grid operation. This scenario is not as good as
a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to
produce because these operations usually require reading a large number
of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then
store the result in the cache. This practice makes read operations both
faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number.
A user could have all, none or any combination of these numbers defined.
If the data were normalized then a user table and a telephone number
table would exist. The telephone numbers for a given user could be found
using a JOIN operation between the two tables.

De-normalizing this record does not require data duplication, because most
users do not share telephone numbers. Instead, empty slots in the user
record must be allowed. Instead of having a telephone number table, add
three attributes to each user record, one for each telephone number type.
This addition of attributes eliminates the JOIN operation and makes a
telephone number lookup for a user a single-partition operation.

Placement of many-to-many relationships

Consider an application that tracks products and the stores in which the
products are sold. A single product is sold in many stores, and a single
store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores, with each store
selling thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of
keeping a list of products inside each store entity (arrangement B). Looking

Chapter 1. Product overview 115

at some of the transactions this application would have to perform
illustrates why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the
inventory of a store locks the product entity. If the data grid holds 10000
products, only 1/10000 of the grid needs to be locked to perform the
update. With arrangement B, the data grid only contains 50 stores, so 1/50
of the grid must be locked to complete the update. So even though both of
these could be considered single-partition operations, arrangement A scales
out more efficiently.

Now, considering reads with arrangement A, looking up the stores at
which a product is sold is a single-partition transaction that scales and is
fast because the transaction only transmits a small amount of data. With
arrangement B, this transaction becomes an cross-data-grid transaction
because each store entity must be accessed to see if the product is sold at
that store, which reveals an enormous performance advantage for
arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data
processing. If a data grid has 5 computers and a cross-data-grid transaction
is dispatched that sorts through about 100,000 records on each computer,
then that transaction sorts through 500,000 records. If the slowest computer
in the data grid can perform 10 of these transactions per second, then the
data grid is capable of sorting through 5,000,000 records per second. If the
data in the grid doubles, then each computer must sort through 200,000
records, and each transaction sorts through 1,000,000 records. This data
increase decreases the throughput of the slowest computer to 5 transactions
per second, thereby reducing the throughput of the data grid to 5
transactions per second. Still, the data grid sorts through 5,000,000 records
per second.

In this scenario, doubling the number of computer allows each computer
to return to its previous load of sorting through 100,000 records, allowing
the slowest computer to process 10 of these transactions per second. The
throughput of the data grid stays the same at 10 requests per second, but
now each transaction processes 1,000,000 records, so the grid has doubled
its capacity in terms of processing records to 10,000,000 per second.

Applications such as a search engine that need to scale both in terms of
data processing to accommodate the increasing size of the Internet and
throughput to accommodate growth in the number of users, you must
create multiple data grids, with a round robin of the requests between the
grids. If you need to scale up the throughput, add computers and add
another data grid to service requests. If data processing needs to be scaled
up, add more computers and keep the number of data grids constant.

Security overview
WebSphere eXtreme Scale can secure data access, including allowing for integration
with external security providers.

Note: In an existing non-cached data store such as a database, you likely have
built-in security features that you might not need to actively configure or enable.
However, after you have cached your data with eXtreme Scale, you must consider
the important resulting situation that your backend security features are no longer
in effect. You can configureeXtreme Scale security on necessary levels so that your

116 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

new cached architecture for your data is also secured.
A brief summary of eXtreme Scale security features follows. For more detailed
information about configuring security see the Administration Guide and the
Programming Guide.

Distributed security basics

Distributed eXtreme Scale security is based on three key concepts:

Trustable authentication
The ability to determine the identity of the requester. WebSphere eXtreme
Scale supports both client-to-server and server-to-server authentication.

Authorization
The ability to give permissions to grant access rights to the requester.
WebSphere eXtreme Scale supports different authorizations for various
operations.

Secure transport
The safe transmission of data over a network. WebSphere eXtreme Scale
supports the Transport Layer Security/Secure Sockets Layer (TLS/SSL)
protocols.

Authentication

WebSphere eXtreme Scale supports a distributed client server framework. A client
server security infrastructure is in place to secure access to eXtreme Scale servers.
For example, when authentication is required by the eXtreme Scale server, an
eXtreme Scale client must provide credentials to authenticate to the server. These
credentials can be a user name and password pair, a client certificate, a Kerberos
ticket, or data that is presented in a format that is agreed upon by client and
server.

Authorization

WebSphere eXtreme Scale authorizations are based on subjects and permissions.
You can use the Java Authentication and Authorization Services (JAAS) to
authorize the access, or you can plug in a custom approach, such as Tivoli® Access
Manager (TAM), to handle the authorizations. The following authorizations can be
given to a client or group:

Map authorization
Perform insert, read, update, evict, or delete operations on Maps.

ObjectGrid authorization
Perform object or entity queries and stream queries on ObjectGrid objects.

DataGrid agent authorization
Allow DataGrid agents to be deployed to an ObjectGrid.

Server side map authorization
Replicate a server map to client side or create a dynamic index to the
server map.

Administration authorization
Perform administration tasks.

Chapter 1. Product overview 117

Transport security

To secure the client server communication, WebSphere eXtreme Scale supports
TLS/SSL. These protocols provide transport layer security with authenticity,
integrity, and confidentiality for a secure connection between an eXtreme Scale
client and server.

Grid security

In a secure environment, a server must be able to check the authenticity of another
server. WebSphere eXtreme Scale uses a shared secret key string mechanism for
this purpose. This secret key mechanism is similar to a shared password. All the
eXtreme Scale servers agree on a shared secret string. When a server joins the data
grid, the server is challenged to present the secret string. If the secret string of the
joining server matches the one in the master server, then the joining server can join
the grid. Otherwise, the join request is rejected.

Sending a clear text secret is not secure. The eXtreme Scale security infrastructure
provides a SecureTokenManager plug-in to allow the server to secure this secret
before sending it. You can choose how you implement the secure operation.
WebSphere eXtreme Scale provides an implementation, in which the secure
operation is implemented to encrypt and sign the secret.

Java Management Extensions (JMX) security in a dynamic
deployment topology

JMX MBean security is supported in all versions of eXtreme Scale. Clients of
catalog server MBeans and container server MBeans can be authenticated, and
access to MBean operations can be enforced.

Local eXtreme Scale security

Local eXtreme Scale security is different from the distributed eXtreme Scale model
because the application directly instantiates and uses an ObjectGrid instance. Your
application and eXtreme Scale instances are in the same Java virtual machine
(JVM). Because no client-server concept exists in this model, authentication is not
supported. Your applications must manage their own authentication, and then pass
the authenticated Subject object to the eXtreme Scale. However, the authorization
mechanism that is used for the local eXtreme Scale programming model is the
same as what is used for the client-server model.

Configuration and programming

For more information about configuring and programming for security, see
Security integration with external providers and Security API.

REST data services overview
The WebSphere eXtreme Scale REST data service is a Java HTTP service that is
compatible with Microsoft WCF Data Services (formally ADO.NET Data Services)
and implements the Open Data Protocol (OData). Microsoft WCF Data Services is
compatible with this specification when using Visual Studio 2008 SP1 and the .NET
Framework 3.5 SP1.

118 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssecdeplenv.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsecapi.html

Compatibility requirements

The REST data service allows any HTTP client to access a data grid. The REST
data service is compatible with the WCF Data Services support supplied with the
Microsoft .NET Framework 3.5 SP1. RESTful applications can be developed with
the rich tooling provided by Microsoft Visual Studio 2008 SP1. The figure provides
an overview of how WCF Data Services interacts with clients and databases.

WebSphere eXtreme Scale includes a function-rich API set for Java clients. As
shown in the following figure, the REST data service is a gateway between HTTP
clients and the WebSphere eXtreme Scale data grid, communicating with the grid
through an WebSphere eXtreme Scale client. The REST data service is a Java
servlet, which allows flexible deployments for common Java Platform, Enterprise
Edition (JEE) platforms, such as WebSphere Application Server. The REST data
service communicates with the WebSphere eXtreme Scale data grid using the
WebSphere eXtreme Scale Java APIs. It allows WCF Data Services clients or any
other client that can communicate with HTTP and XML.

Refer to the Configuring REST data services, or use the following links to learn
more about WCF Data Services.
v Microsoft WCF Data Services Developer Center
v ADO.NET Data Services overview on MSDN
v Whitepaper: Using ADO.NET Data Services
v Atom Publish Protocol: Data Services URI and Payload Extensions

.NET/WCF

More...

OData

HTTP Clients

AJAX

PHP

Database

REST Service

WCF DS

Figure 36. Microsoft WCF Data Services

Grid.NET/WCF

More...

OData

HTTP Clients

AJAX

PHP

Database

REST Service

WebSphere eXtreme Scale

Figure 37. WebSphere eXtreme Scale REST data service

Chapter 1. Product overview 119

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsreststart.html
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx

v Conceptual Schema Definition File Format
v Entity Data Model for Data Services Packaging Format
v Open Data Protocol
v Open Data Protocol FAQ

Features

This version of the eXtreme Scale REST data service supports the following
features:
v Automatic modeling of eXtreme Scale EntityManager API entities as WCF Data

Services entities, which includes the following support:
– Java data type to Entity Data Model type conversion
– Entity association support
– Schema root and key association support, which is required for partitioned

data grids

See Entity model for more information.
v Atom Publish Protocol (AtomPub or APP) XML and JavaScript Object Notation

(JSON) data payload format.
v Create, Read, Update and Delete (CRUD) operations using the respective HTTP

request methods: POST, GET, PUT and DELETE. In addition, the Microsoft
extension: MERGE is supported.

v Simple queries, using filters
v Batch retrieval and change set requests
v Partitioned data grid support for high availability
v Interoperability with eXtreme Scale EntityManager API clients
v Support for standard JEE Web servers
v Optimistic concurrency
v User authorization and authentication between the REST data service and the

eXtreme Scale data grid

Known problems and limitations
v Tunneled requests are not supported.

120 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://www.odata.org/
http://msdn.microsoft.com/en-us/library/dd541474(PROT.10).aspx
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsrestconf.html
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx

Chapter 2. Planning
Before you install WebSphere eXtreme Scale and deploy your data grid
applications, you must decide on your caching topology, complete capacity
planning, review the hardware and software requirements, networking and
tuning settings, and so on. You can also use the operational checklist to ensure
that your environment is ready to have an application deployed.

For a discussion of the best practices that you can use when you are designing
your WebSphere eXtreme Scale applications, read the following article on
developerWorks®: Principles and best practices for building high performing and
highly resilient WebSphere eXtreme Scale applications.

Planning the topology
With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching. The architecture can have varied
relationships with your databases. You can also configure the topology to span
multiple data centers.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the container
servers, and clients remotely connect to the server.

In-memory environments

When you deploy in a local, in-memory environment, WebSphere eXtreme Scale
runs within a single Java virtual machine and is not replicated. To configure a local
environment you can use an ObjectGrid XML file or the ObjectGrid APIs.

Distributed environments

When you deploy in a distributed environment, WebSphere eXtreme Scale runs
across a set of Java virtual machines, increasing the performance, availability and
scalability. With this configuration, you can use data replication and partitioning.
You can also add additional servers without restarting your existing eXtreme Scale
servers. As with a local environment, an ObjectGrid XML file, or an equivalent
programmatic configuration, is needed in a distributed environment. You must also
provide a deployment policy XML file with configuration details

You can create either simple deployments or large, terabyte-sized deployments in
which thousands of servers are needed.

Local in-memory cache
In the simplest case, WebSphere eXtreme Scale can be used as a local
(non-distributed) in-memory data grid cache. The local case can especially benefit
high-concurrency applications where multiple threads need to access and modify
transient data. The data kept in a local data grid can be indexed and retrieved
using queries. Queries help you to work with large in memory data sets. The
support provided with the Java virtual machine (JVM), although it is ready to use,
has a limited data structure.

© Copyright IBM Corp. 2009, 2012 121

http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html

The local in-memory cache topology for WebSphere eXtreme Scale is used to
provide consistent, transactional access to temporary data within a single Java
virtual machine.

Advantages
v Simple setup: An ObjectGrid can be created programmatically or declaratively

with the ObjectGrid deployment descriptor XML file or with other frameworks
such as Spring.

v Fast: Each BackingMap can be independently tuned for optimal memory
utilization and concurrency.

v Ideal for single-Java virtual machine topologies with small dataset or for caching
frequently accessed data.

v Transactional. BackingMap updates can be grouped into a single unit of work
and can be integrated as a last participant in 2-phase transactions such as Java
Transaction Architecture (JTA) transactions.

Disadvantages
v Not fault tolerant.
v The data is not replicated. In-memory caches are best for read-only reference

data.
v Not scalable. The amount of memory required by the database might overwhelm

the Java virtual machine.
v Problems occur when adding Java virtual machines:

– Data cannot easily be partitioned
– Must manually replicate state between Java virtual machines or each cache

instance could have different versions of the same data.
– Invalidation is expensive.
– Each cache must be warmed up independently. The warm-up is the period of

loading a set of data so that the cache gets populated with valid data.

When to use

The local, in-memory cache deployment topology should only be used when the
amount of data to be cached is small (can fit into a single Java virtual machine)
and is relatively stable. Stale data must be tolerated with this approach. Using
evictors to keep most frequently or recently used data in the cache can help keep
the cache size low and increase relevance of the data.

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 38. Local in-memory cache scenario

122 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Peer-replicated local cache
You must ensure the cache is synchronized if multiple processes with independent
cache instances exist. To ensure that the cache instances are synchronized, enable a
peer-replicated cache with Java Message Service (JMS).

WebSphere eXtreme Scale includes two plug-ins that automatically propagate
transaction changes between peer ObjectGrid instances. The
JMSObjectGridEventListener plug-in automatically propagates eXtreme Scale
changes using JMS.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability (HA) manager to propagate the changes to each peer cache
instance.

JMS

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 39. Peer-replicated cache with changes that are propagated with JMS

Chapter 2. Planning 123

Advantages
v The data is more valid because the data is updated more often.
v With the TranPropListener plug-in, like the local environment, the eXtreme Scale

can be created programmatically or declaratively with the eXtreme Scale
deployment descriptor XML file or with other frameworks such as Spring.
Integration with the high availability manager is done automatically.

v Each BackingMap can be independently tuned for optimal memory utilization
and concurrency.

v BackingMap updates can be grouped into a single unit of work and can be
integrated as a last participant in 2-phase transactions such as Java Transaction
Architecture (JTA) transactions.

v Ideal for few-JVM topologies with a reasonably small dataset or for caching
frequently accessed data.

v Changes to the eXtreme Scale are replicated to all peer eXtreme Scale instances.
The changes are consistent as long as a durable subscription is used.

Disadvantages
v Configuration and maintenance for the JMSObjectGridEventListener can be

complex. eXtreme Scale can be created programmatically or declaratively with
the eXtreme Scale deployment descriptor XML file or with other frameworks
such as Spring.

v Not scalable: The amount of memory required by the database may overwhelm
the JVM.

v Functions improperly when adding Java virtual machines:
– Data cannot easily be partitioned
– Invalidation is expensive.
– Each cache must be warmed-up independently

When to use

Use deployment topology only when the amount of data to be cached is small, can
fit into a single JVM, and is relatively stable.

HA Manager

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 40. Peer-replicated cache with changes that are propagated with the high availability manager

124 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Embedded cache
WebSphere eXtreme Scale grids can run within existing processes as embedded
eXtreme Scale servers or you can manage them as external processes.

Embedded grids are useful when you are running in an application server, such as
WebSphere Application Server. You can start eXtreme Scale servers that are not
embedded by using command line scripts and run in a Java process.

Advantages

v Simplified administration since there are less processes to manage.
v Simplified application deployment since the grid is using the client application

classloader.
v Supports partitioning and high availability.

Disadvantages

v Increased the memory footprint in client process since all of the data is
collocated in the process.

v Increase CPU utilization for servicing client requests.
v More difficult to handle application upgrades since clients are using the same

application Java archive files as the servers.
v Less flexible. Scaling of clients and grid servers cannot increase at the same rate.

When servers are externally defined, you can have more flexibility in managing
the number of processes.

When to use

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 41. Embedded cache

Chapter 2. Planning 125

Use embedded grids when there is plenty of memory free in the client process for
grid data and potential failover data.

For more information, see the topic on enabling the client invalidation mechanism
in the Administration Guide.

Distributed cache
WebSphere eXtreme Scale is most often used as a shared cache, to provide
transactional access to data to multiple components where a traditional database
would otherwise be used. The shared cache eliminates the need configure a
database.

Coherency of the cache

The cache is coherent because all of the clients see the same data in the cache. Each
piece of data is stored on exactly one server in the cache, preventing wasteful
copies of records that could potentially contain different versions of the data. A
coherent cache can also hold more data as more servers are added to the data grid,
and scales linearly as the grid grows in size. Because clients access data from this
data grid with remote procedural calls, it can also be known as a remote cache, or
far cache. Through data partitioning, each process holds a unique subset of the
total data set. Larger data grids can both hold more data and service more requests
for that data. Coherency also eliminates the need to push invalidation data around
the data grid because no stale data exists. The coherent cache only holds the latest
copy of each piece of data.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability component (HA Manager) of WebSphere Application Server to
propagate the changes to each peer ObjectGrid cache instance.

126 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Near cache

Clients can optionally have a local, in-line cache when eXtreme Scale is used in a
distributed topology. This optional cache is called a near cache, an independent
ObjectGrid on each client, serving as a cache for the remote, server-side cache. The
near cache is enabled by default when locking is configured as optimistic or none
and cannot be used when configured as pessimistic.

A near cache is very fast because it provides in-memory access to a subset of the
entire cached data set that is stored remotely in the eXtreme Scale servers. The near
cache is not partitioned and contains data from any of the remote eXtreme Scale
partitions.WebSphere eXtreme Scale can have up to three cache tiers as follows.
1. The transaction tier cache contains all changes for a single transaction. The

transaction cache contains a working copy of the data until the transaction is
committed. When a client transaction requests data from an ObjectMap, the
transaction is checked first

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 42. Distributed cache

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

ObjectGrid

Thread

Application

Figure 43. Near cache

Chapter 2. Planning 127

2. The near cache in the client tier contains a subset of the data from the server
tier. When the transaction tier does not have the data, the data is fetched from
the client tier, if available and inserted into the transaction cache

3. The data grid in the server tier contains the majority of the data and is shared
among all clients. The server tier can be partitioned, which allows a large
amount of data to be cached. When the client near cache does not have the
data, it is fetched from the server tier and inserted into the client cache. The
server tier can also have a Loader plug-in. When the grid does not have the
requested data, the Loader is invoked and the resulting data is inserted from
the backend data store into the grid.

To disable the near cache, set the numberOfBuckets attribute to 0 in the client
override eXtreme Scale descriptor configuration. See the topic on map entry
locking for details on eXtreme Scale lock strategies. The near cache can also be
configured to have a separate eviction policy and different plug-ins using a client
override eXtreme Scale descriptor configuration.

Advantage

v Fast response time because all access to the data is local. Looking for the data in
the near cache first saves a trip to the grid of servers, thus making even the
remote data locally accessible.

Disadvantages

v Increases duration of stale data because the near cache at each tier may be out of
synch with the current data in the data grid.

v Relies on an evictor to invalidate data to avoid running out of memory.

When to use

Use when response time is important and stale data can be tolerated.

Database integration: Write-behind, in-line, and side caching
WebSphere eXtreme Scale is used to front a traditional database and eliminate read
activity that is normally pushed to the database. A coherent cache can be used
with an application directly or indirectly using an object relational mapper. The
coherent cache can then offload the database or backend from reads. In a slightly
more complex scenario, such as transactional access to a data set where only some
of the data requires traditional persistence guarantees, filtering can be used to
offload even write transactions.

You can configure WebSphere eXtreme Scale to function as a highly flexible
in-memory database processing space. However, WebSphere eXtreme Scale is not
an object relational mapper (ORM). It does not know where the data in the data
grid came from. An application or an ORM can place data in an eXtreme Scale
server. It is the responsibility of the source of the data to make sure that it stays
consistent with the database where data originated. This means eXtreme Scale
cannot invalidate data that is pulled from a database automatically. The application
or mapper must provide this function and manage the data stored in eXtreme
Scale.

128 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Sparse and complete cache
WebSphere eXtreme Scale can be used as a sparse cache or a complete cache. A
sparse cache only keeps a subset of the total data, while a complete cache keeps all
of the data. and can be populated lazily, as the data is needed. Sparse caches are
normally accessed using keys (instead of indexes or queries) because the data is
only partially available.

Database

ObjectGrid

Figure 44. ObjectGrid as a database buffer

Database

ObjectGrid

Figure 45. ObjectGrid as a side cache

Chapter 2. Planning 129

Sparse cache

When a key is not present in a sparse cache, or the data is not available and a
cache miss occurs, the next tier is invoked. The data is fetched, from a database for
example, and is inserted into the data grid cache tier. If you are using a query or
index, only the currently loaded values are accessed and the requests are not
forwarded to the other tiers.

Complete cache

A complete cache contains all of the required data and can be accessed using
non-key attributes with indexes or queries. A complete cache is preloaded with
data from the database before the application tries to access the data. A complete
cache can function as a database replacement after data is loaded. Because all of
the data is available, queries and indexes can be used to find and aggregate data.

Side cache
When WebSphere eXtreme Scale is used as a side cache, the back end is used with
the data grid.

Side cache

You can configure the product as a side cache for the data access layer of an
application. In this scenario, WebSphere eXtreme Scale is used to temporarily store
objects that would normally be retrieved from a back-end database. Applications
check to see if the data grid contains the data. If the data is in the data grid, the
data is returned to the caller. If the data does not exist, the data is retrieved from
the back-end database. The data is then inserted into the data grid so that the next
request can use the cached copy. The following diagram illustrates how WebSphere
eXtreme Scale can be used as a side-cache with an arbitrary data access layer such
as OpenJPA or Hibernate.

Side cache plug-ins for Hibernate and OpenJPA

Cache plug-ins for both OpenJPA and Hibernate are included inWebSphere
eXtreme Scale, so you can use the product as an automatic side-cache. Using
WebSphere eXtreme Scale as a cache provider increases performance when reading
and querying data and reduces load to the database. There are advantages

Database

Data Access Layer
(OpenJPA or Hibernate)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 46. Side cache

130 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

thatWebSphere eXtreme Scale has over built-in cache implementations because the
cache is automatically replicated between all processes. When one client caches a
value, all other clients can use the cached value.

In-line cache
You can configure in-line caching for a database back end or as a side cache for a
database. In-line caching uses eXtreme Scale as the primary means for interacting
with the data. When eXtreme Scale is used as an in-line cache, the application
interacts with the back end using a Loader plug-in.

In-line cache

When used as an in-line cache, WebSphere eXtreme Scale interacts with the back
end using a Loader plug-in. This scenario can simplify data access because
applications can access the eXtreme Scale APIs directly. Several different caching
scenarios are supported in eXtreme Scale to make sure the data in the cache and
the data in the back end are synchronized. The following diagram illustrates how
an in-line cache interacts with the application and back end.

The in-line caching option simplifies data access because it allows applications to
access the eXtreme Scale APIs directly. WebSphere eXtreme Scale supports several
in-line caching scenarios, as follows.
v Read-through
v Write-through
v Write-behind

Read-through caching scenario

A read-through cache is a sparse cache that lazily loads data entries by key as they
are requested. This is done without requiring the caller to know how the entries
are populated. If the data cannot be found in the eXtreme Scale cache, eXtreme
Scale will retrieve the missing data from the Loader plug-in, which loads the data

Database

Back End
(Loader)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 47. In-line cache

Chapter 2. Planning 131

from the back-end database and inserts the data into the cache. Subsequent
requests for the same data key will be found in the cache until it is removed,
invalidated or evicted.

Write-through caching scenario

In a write-through cache, every write to the cache synchronously writes to the
database using the Loader. This method provides consistency with the back end,
but decreases write performance since the database operation is synchronous. Since
the cache and database are both updated, subsequent reads for the same data will
be found in the cache, avoiding the database call. A write-through cache is often
used in conjunction with a read-through cache.

DatabaseLoader

Application

K1

Select v1

v1

K1 V1

K1 K1 V1

v1get (k1)

v1get (k1)

Figure 48. Read-through caching

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Figure 49. Write-through caching

132 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Write-behind caching scenario

Database synchronization can be improved by writing changes asynchronously.
This is known as a write-behind or write-back cache. Changes that would normally
be written synchronously to the loader are instead buffered in eXtreme Scale and
written to the database using a background thread. Write performance is
significantly improved because the database operation is removed from the client
transaction and the database writes can be compressed.

Write-behind caching
You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 50. Write-behind caching

Chapter 2. Planning 133

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.
When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the Configuring
JPA loaders information about configuring a JPA loader.

Benefits

Enabling write-behind support has the following benefits:
v Back end failure isolation: Write-behind caching provides an isolation layer

from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 51. Write-behind caching

134 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Loaders
With a Loader plug-in, a data grid map can behave as a memory cache for data
that is typically kept in a persistent store on either the same system or another
system. Typically, a database or file system is used as the persistent store. A remote
Java virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using eXtreme Scale. A loader has the logic for
reading and writing data to and from a persistent store.

Overview

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). The Loader is invoked when the cache is unable to satisfy a request for a
key, providing read-through capability and lazy-population of the cache. A loader
also allows updates to the database when cache values change. All changes within
a transaction are grouped together to allow the number of database interactions to
be minimized. A TransactionCallback plug-in is used in conjunction with the loader
to trigger the demarcation of the backend transaction. Using this plug-in is
important when multiple maps are included in a single transaction or when
transaction data is flushed to the cache without committing.

The loader can also use overqualified updates to avoid keeping database locks. By
storing a version attribute in the cache value, the loader can see the before and
after image of the value as it is updated in the cache. This value can then be used
when updating the database or back end to verify that the data has not been
updated. A Loader can also be configured to preload the data grid when it is

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 52. Loader

Chapter 2. Planning 135

started. When partitioned, a Loader instance is associated with each partition. If
the "Company" Map has ten partitions, there are ten Loader instances, one per
primary partition. When the primary shard for the Map is activated, the
preloadMap method for the loader is invoked synchronously or asynchronously
which allows loading the map partition with data from the back-end to occur
automatically. When invoked synchronously, all client transactions are blocked,
preventing inconsistent access to the data grid. Alternatively, a client preloader can
be used to load the entire data grid.

Two built-in loaders can greatly simplify integration with relational database back
ends. The JPA loaders utilize the Object-Relational Mapping (ORM) capabilities of
both the OpenJPA and Hibernate implementations of the Java Persistence API (JPA)
specification. See “JPA Loaders” on page 57 for more information.

If you are using loaders in a multiple data center configuration, you must consider
how revision data and cache consistency is maintained between the data grids. For
more information, see “Loader considerations in a multi-master topology” on page
147.

Loader configuration

To add a Loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map.
v A backing map can have only one loader.
v A client backing map (near cache) cannot have a loader.
v A loader definition can be applied to multiple backing maps, but each backing

map has its own loader instance.

Data pre-loading and warm-up
In many scenarios that incorporate the use of a loader, you can prepare your data
grid by pre-loading it with data.

When used as a complete cache, the data grid must hold all of the data and must
be loaded before any clients can connect to it. When you are using a sparse cache,
you can warm up the cache with data so that clients can have immediate access to
data when they connect.

Two approaches exist for pre-loading data into the data grid: Using a Loader
plug-in or using a client loader, as described in the following sections.

Loader plug-in

The loader plug-in is associated with each map and is responsible for
synchronizing a single primary partition shard with the database. The preloadMap
method of the loader plug-in is invoked automatically when a shard is activated.
For example, if you have 100 partitions, 100 loader instances exist, each loading the
data for its partition. When run synchronously, all clients are blocked until the
preload has completed.

136 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Client loader

A client loader is a pattern for using one or more clients to load the grid with data.
Using multiple clients to load grid data can be effective when the partition scheme
is not stored in the database. You can invoke client loaders manually or
automatically when the data grid starts. Client loaders can optionally use the
StateManager to set the state of the data grid to pre-load mode, so that clients are
not able to access the grid while it is pre-loading the data. WebSphere eXtreme
Scale includes a Java Persistence API (JPA)-based loader that you can use to
automatically load the data grid with either the OpenJPA or Hibernate JPA
providers. For more information about cache providers, see “JPA level 2 (L2) cache
plug-in” on page 23.

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 53. Loader plug-in

Chapter 2. Planning 137

Database synchronization techniques
When WebSphere eXtreme Scale is used as a cache, applications must be written to
tolerate stale data if the database can be updated independently from an eXtreme
Scale transaction. To serve as a synchronized in-memory database processing space,
eXtreme Scale provides several ways of keeping the cache updated.

Database synchronization techniques

Periodic refresh

The cache can be automatically invalidated or updated periodically using the Java
Persistence API (JPA) time-based database updater.The updater periodically queries
the database using a JPA provider for any updates or inserts that have occurred
since the previous update. Any changes identified are automatically invalidated or
updated when used with a sparse cache. If used with a complete cache, the entries
can be discovered and inserted into the cache. Entries are never removed from the
cache.

Database

Partition 0

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 1

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 2

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

JPA Client Loader

ObjectGrid

JPA Provider

C
lie

n
t
P

ro
c
e
s
s

Figure 54. Client loader

138 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Eviction

Sparse caches can utilize eviction policies to automatically remove data from the
cache without affecting the database. There are three built-in policies included in
eXtreme Scale: time-to-live, least-recently-used, and least-frequently-used. All three
policies can optionally evict data more aggressively as memory becomes
constrained by enabling the memory-based eviction option.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify
clients when the server cache has any changes. This can decrease the amount of
time the client can see stale data.

Programmatic invalidation

The eXtreme Scale APIs allow manual interaction of the near and server cache
using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

Data invalidation
To remove scale cache data, you can use an event-based or programmatic
invalidation mechanism.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify

DatabaseJPA Provider

select...

K1 V1

find (k1)

Read
Timer

v1

v1

insert (k1,v1)

Figure 55. Periodic refresh

Chapter 2. Planning 139

clients when the server cache changes. This type of notification decreases the
amount of time the client can see stale data.

Event-based invalidation normally consists of the following three components.
v Event queue: An event queue stores the data change events. It could be a JMS

queue, a database, an in-memory FIFO queue, or any kind of manifest as long as
it can manage the data change events.

v Event publisher: An event publisher publishes the data change events to the
event queue. An event publisher is usually an application you create or an
eXtreme Scale plug-in implementation. The event publisher knows when the
data is changed or it changes the data itself. When a transaction commits, events
are generated for the changed data and the event publisher publishes these
events to the event queue.

v Event consumer: An event consumer consumes data change events. The event
consumer is usually an application to ensure the target grid data is updated
with the latest change from other grids. This event consumer interacts with the
event queue to get the latest data change and applies the data changes in the
target grid. The event consumers can use eXtreme Scale APIs to invalidate stale
data or update the grid with the latest data.

For example, JMSObjectGridEventListener has an option for a client-server model,
in which the event queue is a designated JMS destination. All server processes are
event publishers. When a transaction commits, the server gets the data changes
and publishes them to the designated JMS destination. All the client processes are
event consumers. They receive the data changes from the designated JMS
destination and apply the changes to the client's near cache.

See the topic on enabling the client invalidation mechanism in the Administration
Guide for more information.

Programmatic invalidation

The WebSphere eXtreme Scale APIs allow manual interaction of the near and
server cache using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

You can use programmatic invalidation with other techniques to determine when
to invalidate the data. For example, this invalidation method uses event-based
invalidation mechanisms to receive the data change events, and then uses APIs to
invalidate the stale data.

Indexing
Use the MapIndexPlugin plug-in to build an index or several indexes on a
BackingMap to support non-key data access.

140 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Index types and configuration

The indexing feature is represented by the MapIndexPlugin plug-in or Index for
short. The Index is a BackingMap plug-in. A BackingMap can have multiple Index
plug-ins configured, as long as each one follows the Index configuration rules.

You can use the indexing feature to build one or more indexes on a BackingMap.
An index is built from an attribute or a list of attributes of an object in the
BackingMap. This feature provides a way for applications to find certain objects
more quickly. With the indexing feature, applications can find objects with a
specific value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you
must configure the index plug-in on the BackingMap before initializing the
ObjectGrid instance. You can do this configuration with XML or programmatic
configuration of the BackingMap. Static indexing starts building an index during
ObjectGrid initialization. The index is always synchronized with the BackingMap
and ready for use. After the static indexing process starts, the maintenance of the
index is part of the eXtreme Scale transaction management process. When
transactions commit changes, these changes also update the static index, and index
changes are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after
the initialization of the containing ObjectGrid instance. Applications have life cycle
control over the dynamic indexing process so that you can remove a dynamic
index when it is no longer needed. When an application creates a dynamic index,
the index might not be ready for immediate use because of the time it takes to
complete the index building process. Because the amount of time depends upon
the amount of data indexed, the DynamicIndexCallback interface is provided for
applications that want to receive notifications when certain indexing events occur.
These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application
index proxy object from the corresponding ObjectMap. Calling the getIndex
method on the ObjectMap and passing in the name of the index plug-in returns
the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as MapIndex, MapRangeIndex, or a customized
index interface. After obtaining the index proxy object, you can use methods
defined in the application index interface to find cached objects.

The steps to use indexing are summarized in the following list:
v Add either static or dynamic index plug-ins into the BackingMap.
v Obtain an application index proxy object by issuing the getIndex method of the

ObjectMap.
v Cast the index proxy object to an appropriate application index interface, such as

MapIndex, MapRangeIndex, or a customized index interface.
v Use methods that are defined in application index interface to find cached

objects.

The HashIndex class is the built-in index plug-in implementation that can support
both of the built-in application index interfaces: MapIndex and MapRangeIndex.
You also can create your own indexes. You can add HashIndex as either a static or
dynamic index into the BackingMap, obtain either MapIndex or MapRangeIndex
index proxy object, and use the index proxy object to find cached objects.

Chapter 2. Planning 141

Default index

If you want to iterate through the keys in a local map, you can use the default
index. This index does not require any configuration, but it must be used against
the shard, using an agent or an ObjectGrid instance retrieved from the
ShardEvents.shardActivated(ObjectGrid shard) method.

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of
time. No locks against data entries are obtained after the results return to the
application. Application has to be aware that data updates may occur on a
returned data set. For example, the application obtains the key of a cached object
by running the findAll method of MapIndex. This returned key object is associated
with a data entry in the cache. The application should be able to run the get
method on ObjectMap to find an object by providing the key object. If another
transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall
BackingMap performance. If indexing is not used properly, the performance of the
application might be compromised. Consider the following factors before using
this feature.
v The number of concurrent write transactions: Index processing can occur every

time a transaction writes data into a BackingMap. Performance degrades if many
transactions are writing data into the map concurrently when an application
attempts index query operations.

v The size of the result set that is returned by a query operation: As the size of
the resultset increases, the query performance declines. Performance tends to
degrade when the size of the result set is 15% or more of the BackingMap.

v The number of indexes built over the same BackingMap: Each index consumes
system resources. As the number of the indexes built over the BackingMap
increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal
cases are when the BackingMap has mostly read operations, the query result set is
of a small percentage of the BackingMap entries, and only few indexes are built
over the BackingMap.

Planning multiple data center topologies
Using multi-master asynchronous replication, two or more data grids can become
exact copies of each other. Each data grid is hosted in an independent catalog
service domain, with its own catalog service, container servers, and a unique
name. With multi-master asynchronous replication, you can use links to connect a
collection of catalog service domains. The catalog service domains are then
synchronized using replication over the links. You can construct almost any
topology through the definition of links between the catalog service domains.

Topologies for multimaster replication
You have several different options when choosing the topology for your
deployment that incorporates multimaster replication.

142 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Links connecting catalog service domains

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. With a link, two catalog service
domains can communicate data changes. For example, the simplest topology is a
pair of catalog service domains with a single link between them. The catalog
service domains are named alphabetically: A, B, C, and so on, from the left. A link
can cross a wide area network (WAN), spanning large distances. Even if the link is
interrupted, you can still change data in either catalog service domain. The
topology reconciles changes when the link reconnects the catalog service domains.
Links automatically try to reconnect if the network connection is interrupted.

A B

After you set up the links, the product first tries to make every catalog service
domain identical. Then, eXtreme Scale tries to maintain the identical conditions as
changes occur in any catalog service domain. The goal is for each catalog service
domain to be an exact mirror of every other catalog service domain connected by
the links. The replication links between the catalog service domains help ensure
that any changes made in one catalog service domain are copied to the other
catalog service domains.

Line topologies

Although it is such a simple deployment, a line topology demonstrates some
qualities of the links. First, it is not necessary for a catalog service domain to be
connected directly to every other catalog service domain to receive changes. The
catalog service domain B pulls changes from catalog service domain A. The catalog
service domain C receives changes from catalog service domain A through catalog
service domain B, which connects catalog service domains A and C. Similarly,
catalog service domain D receives changes from the other catalog service domains
through catalog service domain C. This ability spreads the load of distributing
changes away from the source of the changes.

A B C D

Notice that if catalog service domain C fails, the following actions would occur:
1. catalog service domain D would be orphaned until catalog service domain C

was restarted
2. catalog service domain C would synchronize itself with catalog service domain

B, which is a copy of catalog service domain A
3. catalog service domain D would use catalog service domain C to synchronize

itself with changes on catalog service domain A and B. These changes initially
occurred while catalog service domain D was orphaned (while catalog service
domain C was down).

Chapter 2. Planning 143

Ultimately, catalog service domains A, B, C, and D would all become identical to
one other again.

Ring topologies

Ring topologies are an example of a more resilient topology. When a catalog
service domain or a single link fails, the surviving catalog service domains can still
obtain changes. The catalog service domains travel around the ring, away from the
failure. Each catalog service domain has at most two links to other catalog service
domains, no matter how large the ring topology. The latency to propagate changes
can be large. Changes from a particular catalog service domain might need to
travel through several links before all the catalog service domains have the
changes. A line topology has the same characteristic.

You can also deploy a more sophisticated ring topology, with a root catalog service
domain at the center of the ring. The root catalog service domain functions as the
central point of reconciliation. The other catalog service domains act as remote
points of reconciliation for changes occurring in the root catalog service domain.
The root catalog service domain can arbitrate changes among the catalog service
domains. If a ring topology contains more than one ring around a root catalog
service domain, the catalog service domain can only arbitrate changes among the
innermost ring. However, the results of the arbitration spread throughout the
catalog service domains in the other rings.

Hub-and-spoke topologies

With a hub-and-spoke topology, changes travel through a hub catalog service
domain. Because the hub is the only intermediate catalog service domain that is
specified, hub-and-spoke topologies have lower latency. The hub catalog service
domain is connected to every spoke catalog service domain through a link. The
hub distributes changes among the catalog service domains. The hub acts as a
point of reconciliation for collisions. In an environment with a high update rate,

144 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

the hub might require run on more hardware than the spokes to remain
synchronized. WebSphere eXtreme Scale is designed to scale linearly, meaning you
can make the hub larger, as needed, without difficulty. However, if the hub fails,
then changes are not distributed until the hub restarts. Any changes on the spoke
catalog service domains will be distributed after the hub is reconnected.

A

B

C

HubD

You can also use a strategy with fully replicated clients, a topology variation which
uses a pair of servers that are running as a hub. Every client creates a
self-contained single container data grid with a catalog in the client JVM. A client
uses its data grid to connect to the hub catalog. This connection causes the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration catalog service domain,
distributing changes to all connected clients. The fully replicated clients topology
provides a reliable L2 cache for an object relational mapper, such as OpenJPA.
Changes are distributed quickly among client JVMs through the hub. If the cache
size can be contained within the available heap space, the topology is a reliable
architecture for this style of L2.

Use multiple partitions to scale the hub catalog service domain on multiple JVMs,
if necessary. Because all of the data still must fit in a single client JVM, multiple
partitions increase the capacity of the hub to distribute and arbitrate changes.
However, having multiple partitions does not change the capacity of a single
catalog service domain.

Tree topologies

You can also use an acyclic directed tree. An acyclic tree has no cycles or loops,
and a directed setup limits links to existing only between parents and children.

Chapter 2. Planning 145

This configuration is useful for topologies that have many catalog service domains.
In these topologies, it is not practical to have a central hub that is connected to
every possible spoke. This type of topology can also be useful when you must add
child catalog service domains without updating the root catalog service domain.

A tree topology can still have a central point of reconciliation in the root catalog
service domain. The second level can still function as a remote point of
reconciliation for changes occurring in the catalog service domain beneath them.
The root catalog service domain can arbitrate changes between the catalog service
domains on the second level only. You can also use N-ary trees, each of which
have N children at each level. Each catalog service domain connects out to n links.

Fully replicated clients

This topology variation involves a pair of servers that are running as a hub. Every
client creates a self-contained single container data grid with a catalog in the client
JVM. A client uses its data grid to connect to the hub catalog, causing the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration catalog service domain,
distributing changes to all connected clients. The fully replicated clients topology
provides a good L2 cache for an object relational mapper, such as OpenJPA.
Changes are distributed quickly among client JVMs through the hub. As long as
the cache size can be contained within the available heap space of the clients, this
topology is a good architecture for this style of L2.

Use multiple partitions to scale the hub catalog service domain on multiple JVMs,
if necessary. Because all of the data still must fit in a single client JVM, using
multiple partitions increases the capacity of the hub to distribute and arbitrate
changes, but it does not change the capacity of a single catalog service domain.

Configuration considerations for multi-master topologies
Consider the following issues when you are deciding whether and how to use
multi-master replication topologies.
v Map set requirements

146 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Map sets must have the following characteristics to replicate changes across
catalog service domain links:
– The ObjectGrid name and map set name within a catalog service domain

must match the ObjectGrid name and map set name of other catalog service
domains. For example, ObjectGrid "og1" and map set "ms1" must be
configured in catalog service domain A and catalog service domain B to
replicate the data in the map set between the catalog service domains.

– Is a FIXED_PARTITION data grid. PER_CONTAINER data grids cannot be
replicated.

– Has the same number of partitions in each catalog service domain. The map
set might or might not have the same number and types of replicas.

– Has the same data types being replicated in each catalog service domain.
– Contains the same maps and dynamic map templates in each catalog service

domain.
– Does not use entity manager. A map set containing an entity map is not

replicated across catalog service domains.
– Does not use write-behind caching support. A map set containing a map that

is configured with write-behind support is not replicated across catalog
service domains.

Any map sets with the preceding characteristics begin to replicate after the
catalog service domains in the topology have been started.

v Class loaders with multiple catalog service domains

Catalog service domains must have access to all classes that are used as keys
and values. Any dependencies must be reflected in all class paths for data grid
container Java virtual machines (JVM) for all domains. If a CollisionArbiter
plug-in retrieves the value for a cache entry, then the classes for the values must
be present for the domain that is starting the arbiter.

Loader considerations in a multi-master topology
When you are using loaders in a multi-master topology, you must consider the
possible collision and revision information maintenance challenges. The data grid
maintains revision information about the items in the data grid so that collisions
can be detected when other primary shards in the configuration write entries to the
data grid. When entries are added from a loader, this revision information is not
included and the entry takes on a new revision. Because the revision of the entry
seems to be a new insert, a false collision could occur if another primary shard also
changes this state or pulls the same information in from a loader.

Replication changes invoke the get method on the loader with a list of the keys
that are not already in the data grid but are going to be changed during the
replication transaction. When the replication occurs, these entries are collision
entries. When the collisions are arbitrated and the revision is applied then a batch
update is called on the loader to apply the changes to the database. All of the
maps that were changed in the revision window are updated in the same
transaction.

Preload conundrum

Consider a two data center topology with data center A and data center B. Both
data centers have independent databases, but only data center A is has a data grid
that is running. When you establish a link between the data centers for a
multi-master configuration, the data grids in data center A begin pushing data to
the new data grids in data center B, causing a collision with every entry. Another

Chapter 2. Planning 147

major issue that occurs is with any data that is in the database in data center B but
not in the database in data center A. These rows are not populated and arbitrated,
resulting in inconsistencies that are not resolved.

Solution to the preload conundrum

Because data that resides only in the database cannot have revisions, you must
always fully preload the data grid from the local database before establishing the
multi-master link. Then, both data grids can revision and arbitrate the data,
eventually reaching a consistent state.

Sparse cache conundrum

With a sparse cache, the application first attempts to find data in the data grid. If
the data is not in the data grid, the data is searched for in the database using the
loader. Entries are evicted from the data grid periodically to maintain a small cache
size.

This cache type can be problematic in a multi-master configuration scenario
because the entries within the data grid have revisioning metadata that help detect
when collisions occur and which side has made changes. When links between the
data centers are not working, one data center can update an entry and then
eventually update the database and invalidate the entry in the data grid. When the
link recovers, the data centers attempt to synchronize revisions with each
other. However, because the database was updated and the data grid entry was
invalidated, the change is lost from the perspective of the data center that went
down. As a result, the two sides of the data grid are out of synch and are not
consistent.

Solution to the sparse cache conundrum

Hub and spoke topology:

You can run the loader only in the hub of a hub and spoke topology, maintaining
consistency of the data while scaling out the data grid. However, if you are
considering this deployment, note that the loaders can allow the data grid to be
partially loaded, meaning that an evictor has been configured. If the spokes of
your configuration are sparse caches but have no loader, then any cache misses
have no way to retrieve data from the database. Because of this restriction, you
should use a fully populated cache topology with a hub and spoke configuration.

Invalidations and eviction

Invalidation creates inconsistency between the data grid and the database. Data
can be removed from the data grid either programmatically or with eviction. When
you develop your application, you must be aware that revision handling does not
replicate changes that are invalidated, resulting in inconsistencies between primary
shards.

Invalidation events are not cache state changes and do not result in replication.
Any configured evictors run independently from other evictors in the
configuration. For example, you might have one evictor configured for a memory
threshold in one catalog service domain, but a different type of less aggressive
evictor in your other linked catalog service domain. When data grid entries are
removed due to the memory threshold policy, the entries in the other catalog
service domain are not affected.

148 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Database updates and data grid invalidation

Problems occur when you update the database directly in the background while
calling the invalidation on the data grid for the updated entries in a multi-master
configuration. This problem occurs because the data grid cannot replicate the
change to the other primary shards until some type of cache access moves the
entry into the data grid.

Multiple writers to a single logical database

When you are using a single database with multiple primary shards that are
connected through a loader, transactional conflicts result. Your loader
implementation must specially handle these types of scenarios.

Mirroring data using multi-master replication

You can configure independent databases that are connected to independent
catalog service domains. In this configuration, the loader can push changes from
one data center to the other data center.

Design considerations for multi-master replication
When implementing multi-master replication, you must consider aspects in your
design such as: arbitration, linking, and performance.

Arbitration considerations in topology design

Change collisions might occur if the same records can be changed simultaneously
in two places. Set up each catalog service domain to have about the same amount
of processor, memory, network resources. You might observe that catalog service
domains performing change collision handling (arbitration) use more resources
than other catalog service domains. Collisions are detected automatically. They are
handled with one of two mechanisms:
v Default collision arbiter: The default protocol is to use the changes from the

lexically lowest named catalog service domain. For example, if catalog service
domain A and B generate a conflict for a record, then the change from catalog
service domain B is ignored. Catalog service domain A keeps its version and the
record in catalog service domain B is changed to match the record from catalog
service domain A. This behavior applies as well for applications where users or
sessions are normally bound or have affinity with one of the data grids.

v Custom collision arbiter: Applications can provide a custom arbiter. When a
catalog service domain detects a collision, it starts the arbiter. For information
about developing a useful custom arbiter, see Developing custom arbiters for
multi-master replication.

For topologies in which collisions are possible, consider implementing a
hub-and-spoke topology or a tree topology. These two topologies are conducive to
avoiding constant collisions, which can happen in the following scenarios:
1. Multiple catalog service domains experience a collision
2. Each catalog service domain handles the collision locally, producing revisions
3. The revisions collide, resulting in revisions of revisions

To avoid collisions, choose a specific catalog service domain, called an arbitration
catalog service domain as the collision arbiter for a subset of catalog service domains.
For example, a hub-and-spoke topology might use the hub as the collision handler.
The spoke collision handler ignores any collisions that are detected by the spoke

Chapter 2. Planning 149

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsmultimasterprog.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsmultimasterprog.html

catalog service domains. The hub catalog service domain creates revisions,
preventing unexpected collision revisions. The catalog service domain that is
assigned to handle collisions must link to all of the domains for which it is
responsible for handling collisions. In a tree topology, any internal parent domains
handle collisions for their immediate children. In contrast, if you use a ring
topology, you cannot designate one catalog service domain in the ring as the
arbiter.

The following table summarizes the arbitration approaches that are most
compatible with various topologies.

Table 8. Arbitration approaches. This table states whether application arbitration is
compatible with various technologies.

Topology
Application
Arbitration? Notes

A line of two catalog
service domains

Yes Choose one catalog service domain as the
arbiter.

A line of three catalog
service domains

Yes The middle catalog service domain must be
the arbiter. Think of the middle catalog
service domain as the hub in a simple
hub-and-spoke topology.

A line of more than three
catalog service domains

No Application arbitration is not supported.

A hub with N spokes Yes Hub with links to all spokes must be the
arbitration catalog service domain.

A ring of N catalog
service domains

No Application arbitration is not supported.

An acyclic, directed tree
(n-ary tree)

Yes All root nodes must rate their direct
descendants only.

Linking considerations in topology design

Ideally, a topology includes the minimum number of links while optimizing
trade-offs among change latency, fault tolerance, and performance characteristics.
v Change latency

Change latency is determined by the number of intermediate catalog service
domains a change must go through before arriving at a specific catalog service
domain.
A topology has the best change latency when it eliminates intermediate catalog
service domains by linking every catalog service domain to every other catalog
service domain. However, a catalog service domain must perform replication
work in proportion to its number of links. For large topologies, the sheer
number of links to be defined can cause an administrative burden.
The speed at which a change is copied to other catalog service domains depends
on additional factors, such as:
– Processor and network bandwidth on the source catalog service domain
– The number of intermediate catalog service domains and links between the

source and target catalog service domain
– The processor and network resources available to the source, target, and

intermediate catalog service domains
v Fault tolerance

150 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Fault tolerance is determined by how many paths exist between two catalog
service domains for change replication.
If you have only one link between a given pair of catalog service domains, a link
failure disallows propagation of changes. Similarly, changes are not propagated
between catalog service domains if any of the intermediate domains experiences
link failure. Your topology could have a single link from one catalog service
domain to another such that the link passes through intermediate domains. If so,
then changes are not propagated if any of the intermediate catalog service
domains is down.
Consider the line topology with four catalog service domains A, B, C, and D:

A B C D

If any of these conditions hold, Domain D does not see any changes from A:
– Domain A is up and B is down
– Domains A and B are up and C is down
– The link between A and B is down
– The link between B and C is down
– The link between C and D is down

In contrast, with a ring topology, each catalog service domain can receive
changes from either direction.

For example, if a given catalog service in your ring topology is down, then the
two adjacent domains can still pull changes directly from each other.
All changes are propagated through the hub. Thus, as opposed to the line and
ring topologies, the hub-and-spoke design is susceptible to break drown if the
hub fails.

Chapter 2. Planning 151

A

B

C

HubD

A single catalog service domain is resilient to a certain amount of service loss.
However, larger failures such as wide network outages or loss of links between
physical data centers can disrupt any of your catalog service domains.

v Linking and performance

The number of links defined on a catalog service domain affects performance.
More links use more resources and replication performance can drop as a result.
The ability to retrieve changes for a domain A through other domains effectively
offloads domain A from replicating its transactions everywhere. The change
distribution load on a domain is limited by the number of links it uses, not how
many domains are in the topology. This load property provides scalability, so the
domains in the topology can share the burden of change distribution.
A catalog service domain can retrieve changes indirectly through other catalog
service domains. Consider a line topology with five catalog service domains.
A <=> B <=> C <=> D <=> E

– A pulls changes from B, C, D, and E through B
– B pulls changes from A and C directly, and changes from D and E through C
– C pulls changes from B and D directly, and changes from A through B and E

through D
– D pulls changes from C and E directly, and changes from A and B through C
– E pulls changes from D directly, and changes from A, B, and C through D
The distribution load on catalog service domains A and E is lowest, because they
each have a link only to a single catalog service domain. Domains B, C, and D
each have a link to two domains. Thus, the distribution load on domains B, C,
and D is double the load on domains A and E. The workload depends on the
number of links in each domain, not on the overall number of domains in the
topology. Thus, the described distribution of loads would remain constant, even
if the line contained 1000 domains.

152 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Multi-master replication performance considerations

Take the following limitations into account when using multi-master replication
topologies:
v Change distribution tuning, as discussed in the previous section.
v Replication link performance WebSphere eXtreme Scale creates a single TCP/IP

socket between any pair of JVMs. All traffic between the JVMs occurs through
the single socket, including traffic from multi-master replication. Catalog service
domains are hosted on at least n container JVMs, providing at least n TCP links
to peer catalog service domains. Thus, the catalog service domains with larger
numbers of containers have higher replication performance levels. More
containers require more processor and network resources.

v TCP sliding window tuning and RFC 1323 RFC 1323 support on both ends of a
link yields more data for a round trip. This support results in higher throughput,
expanding the capacity of the window by a factor of about 16,000.
Recall that TCP sockets use a sliding window mechanism to control the flow of
bulk data. This mechanism typically limits the socket to 64 KB for a round-trip
interval. If the round-trip interval is 100 ms, then the bandwidth is limited to
640 KB/second without additional tuning. Fully using the bandwidth available
on a link might require tuning that is specific to an operating system. Most
operating systems include tuning parameters, including RFC 1323 options, to
enhance throughput over high-latency links.
Several factors can affect replication performance:
– The speed at which eXtreme Scale retrieves changes.
– The speed at which eXtreme Scale can service retrieve replication requests.
– The sliding window capacity.
– With network buffer tuning on both sides of a link, eXtreme Scale retrieves

changes over the socket efficiently.
v Object Serialization All data must be serializable. If a catalog service domain is

not using COPY_TO_BYTES, then the catalog service domain must use Java
serialization or ObjectTransformers to optimize serialization performance.

v Compression WebSphere eXtreme Scale compresses all data sent between
catalog service domains by default. Disabling compression is not currently
available.

v Memory tuning The memory usage for a multi-master replication topology is
largely independent of the number of catalog service domains in the topology.
Multi-master replication adds a fixed amount of processing per Map entry to
handle versioning. Each container also tracks a fixed amount of data for each
catalog service domain in the topology. A topology with two catalog service
domains uses approximately the same memory as a topology with 50 catalog
service domains. WebSphere eXtreme Scale does not use replay logs or similar
queues in its implementation. Thus, there is no recovery structure ready in the
case that a replication link is unavailable for a substantial period and later
restarts.

Interoperability with other WebSphere products
You can integrate WebSphere eXtreme Scale with other server products, such as
WebSphere Application Server and WebSphere Application Server Community
Edition.

Chapter 2. Planning 153

http://www.ietf.org/rfc/rfc1323.txt

WebSphere Application Server

You can integrate WebSphere Application Server into various aspects of your
WebSphere eXtreme Scale configuration. You can deploy data grid applications and
use WebSphere Application Server to host container and catalog servers. You can
also use WebSphere Application Server security in your WebSphere eXtreme Scale
environment.

WebSphere Portal

You can persist HTTP sessions from WebSphere Portal into a data grid in
WebSphere eXtreme Scale.

WebSphere Application Server Community Edition

WebSphere Application Server Community Edition can share session state, but not
in an efficient, scalable manner. WebSphere eXtreme Scale provides a high
performance, distributed persistence layer that can be used to replicate state, but
does not readily integrate with any application server outside of WebSphere
Application Server. You can integrate these two products to provide a scalable
session management solution.

WebSphere Real Time

With support for WebSphere Real Time, the industry-leading real-time Java
offering, WebSphere eXtreme Scale enables Extreme Transaction Processing (XTP)
applications to have more consistent and predictable response times.

154 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Chapter 3. Scenarios
Scenarios include real-world information to build a complete picture. Complete a
scenario to understand new concepts or to accomplish common WebSphere
eXtreme Scale tasks.

Using an OSGi environment to develop and run eXtreme Scale
plug-ins

Use these scenarios to complete common tasks in an OSGi environment. For
example, the OSGi framework is ideal for starting servers and clients in an OSGi
container, which allows you to dynamically add and update WebSphere eXtreme
Scale plug-ins to the runtime environment.

The following scenarios are about building and running dynamic plug-ins, which
allows you to dynamically install, start, stop, modify, and uninstall plug-ins. You
might also complete another likely scenario, which allows you to use the OSGi
framework without dynamic capabilities. You can still package your applications as
bundles, which are defined by and communicated through services. These
service-based bundles offer multiple benefits, which include more efficient
development and deployment capabilities.

Scenario goals

After completing the lessons in this module you will know how to complete the
tasks:
v Build eXtreme Scale dynamic plug-ins to use in an OSGi environment.
v Run eXtreme Scale containers in an OSGi environment without dynamic

capabilities.

Prerequisites

Read the “OSGi framework overview” on page 22 topic to learn more about OSGi
support and the benefits that it can offer.

OSGi framework overview
OSGi defines a dynamic module system for Java. The OSGi service platform has a
layered architecture, and is designed to run on various standard Java profiles. You
can start WebSphere eXtreme Scale servers and clients in an OSGi container.

Benefits of running applications in the OSGi container

WebSphere eXtreme Scale OSGi support allows you to deploy the product in the
Eclipse Equinox OSGi framework. Previously, if you wanted to update the plug-ins
used by eXtreme Scale, you had to restart the Java virtual machine (JVM) to apply
the new versions of the plug-ins. With the dynamic update capability that the
OSGi framework provides, now you can update the plug-in classes without
restarting the JVM. These plug-ins are exported by user bundles as services.
WebSphere eXtreme Scale accesses the service or services by looking them up the
OSGi registry.

© Copyright IBM Corp. 2009, 2012 155

eXtreme Scale containers can be configured to start more easily and dynamically
using either the OSGi configuration admin service or with OSGi Blueprint. If you
want to deploy a new data grid with its placement strategy, you can do so by
creating an OSGi configuration or by deploying a bundle with eXtreme Scale
descriptor XML files. With OSGi support, application bundles containing eXtreme
Scale configuration data can be installed, started, stopped, updated, and
uninstalled without restarting the whole system. With this capability, you can
upgrade the application without disrupting the data grid.

Plug-in beans and services can be configured with custom shard scopes, allowing
sophisticated integration options with other services running in the data grid. Each
plug-in can use OSGi Blueprint rankings to verify that every instance of the
plug-in is activated is at the correct version. An OSGi-managed bean (MBean) and
xscmd utility are provided, which allow you to query the eXtreme Scale plug-in
OSGi services and their rankings.

This capability allows administrators to quickly recognize potential configuration
and administration errors and upgrade the plug-in service rankings in use by
eXtreme Scale .

OSGi bundles

To interact with and deploy plug-ins in the OSGi framework, you must use
bundles. In the OSGi service platform, a bundle is a Java archive (JAR) file that
contains Java code, resources, and a manifest that describes the bundle and its
dependencies. The bundle is the unit of deployment for an application. The
eXtreme Scale product supports the following bundle types:

Server bundle
The server bundle is the objectgrid.jar file and is installed with the
eXtreme Scale stand-alone server installation and is required for running
eXtreme Scale servers and can also be used for running eXtreme Scale
clients, or local, in-memory caches. The bundle ID for the objectgrid.jar
file is com.ibm.websphere.xs.server_<version>, where the version is in the
format: <Version>.<Release>.<Modification>. For example, the server
bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.server_7.1.1.

Client bundle
The client bundle is the ogclient.jar file and is installed with the eXtreme
Scale stand-alone and client installations and is used to run eXtreme Scale
clients or local, in-memory caches. The bundle ID for the ogclient.jar file
is com.ibm.websphere.xs.client_version, where the version is in the format:
<Version>.<Release>.<Modification>. For example, the client bundle for
eXtreme Scale version 7.1.1 is com.ibm.websphere.xs.client_7.1.1.

Limitations

You cannot restart the eXtreme Scale bundle because you cannot restart the object
request broker (ORB). To restart the eXtreme Scale server, you must restart the
OSGi framework.

Installing the Eclipse Equinox OSGi framework with Eclipse
Gemini for clients and servers

If you want to deploy WebSphere eXtreme Scale in the OSGi framework, then you
must set up the Eclipse Equinox Environment.

156 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

About this task

The task requires that you download and install the Blueprint framework, which
allows you to later configure JavaBeans and expose them as services. The use of
services is important because you can expose plug-ins as OSGi services so they can
be used by the eXtreme Scale run time environment. The product supports two
blueprint containers within the Eclipse Equinox core OSGi framework: Eclipse
Gemini and Apache Aries. Use this procedure to set up the Eclipse Gemini
container.

Procedure
1. Download Eclipse Equinox SDK Version 3.6.1 or later from the Eclipse

website. Create a directory for the Equinox framework, for example:
/opt/equinox. These instructions refer to this directory as equinox_root.
Extract the compressed file in the equinox_root directory.

2. Download the gemini-blueprint incubation 1.0.0 compressed file from the
Eclipse website. Extract the file contents into a temporary directory, and copy
the following extracted files to the equinox_root/plugins directory:
dist/gemini-blueprint-core-1.0.0.jar
dist/gemini-blueprint-extender-1.0.0.jar
dist/gemini-blueprint-io-1.0.0.jar

Attention: Depending on the location where you download the compressed
Blueprint file, the extracted files might have the extension, RELEASE.jar, much
like the Spring framework JAR files in the next step. You must verify that the
file names match the file references in the config.ini file.

3. Download the Spring Framework Version 3.0.5 from the following
SpringSource web page: http://www.springsource.com/download/
community. Extract it into a temporary directory, and copy the following
extracted files to the equinox_root/plugins directory:
org.springframework.aop-3.0.5.RELEASE.jar
org.springframework.asm-3.0.5.RELEASE.jar
org.springframework.beans-3.0.5.RELEASE.jar
org.springframework.context-3.0.5.RELEASE.jar
org.springframework.core-3.0.5.RELEASE.jar
org.springframework.expression-3.0.5.RELEASE.jar

4. Download the AOP Alliance Java archive (JAR) file from the SpringSource
web page. Copy the com.springsource.org.aopalliance-1.0.0.jar to the
equinox_root/plugins directory.

5. Download the Apache commons logging 1.1.1 JAR file from the SpringSource
web page. Copy the com.springsource.org.apache.commons.logging-
1.1.1.jar file to the equinox_root/plugins directory.

6. Download the Luminis OSGi Configuration Admin command-line client. Use
this bundle to manage OSGi administrative configurations. You can download
the JAR file from the following web page: https://opensource.luminis.net/
wiki/display/SITE/OSGi+Configuration+Admin+command+line+client. Copy
the net.luminis.cmc-0.2.5.jar to the equinox_root/plugins directory.

7. Download the Apache Felix file installation Version 3.0.2 bundle from the
following web page: http://felix.apache.org/site/index.html. Copy the
org.apache.felix.fileinstall-3.0.2.jar file to the equinox_root/plugins
directory.

8. Create a configuration directory inside equinox_root/plugins directory; for
example:
mkdir equinox_root/plugins/configuration

Chapter 3. Scenarios 157

http://download.eclipse.org/equinox/drops/R-3.6.1-201009090800/index.php
http://download.eclipse.org/equinox/drops/R-3.6.1-201009090800/index.php
http://www.eclipse.org/downloads/download.php?file=/blueprint/gemini-blueprint-1.0.0.RELEASE.zip
http://www.springsource.com/download/community
http://www.springsource.com/download/community
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
https://opensource.luminis.net/wiki/display/SITE/OSGi+Configuration+Admin+command+line+client
https://opensource.luminis.net/wiki/display/SITE/OSGi+Configuration+Admin+command+line+client
http://felix.apache.org/site/index.html

9. Create the following config.ini file in the equinox_root/plugins/
configuration directory, replacing equinox_root with the absolute path to your
equinox_root directory and removing all trailing spaces after the backslash on
each line. You must include a blank line at the end of the file; for example:
osgi.noShutdown=true
osgi.java.profile.bootdelegation=none
org.osgi.framework.bootdelegation=none
eclipse.ignoreApp=true
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
com.springsource.org.apache.commons.logging-1.1.1.jar@1:start, \
com.springsource.org.aopalliance-1.0.0.jar@1:start, \
org.springframework.aop-3.0.5.RELEASE.jar@1:start, \
org.springframework.asm-3.0.5.RELEASE.jar@1:start, \
org.springframework.beans-3.0.5.RELEASE.jar@1:start, \
org.springframework.context-3.0.5.RELEASE.jar@1:start, \
org.springframework.core-3.0.5.RELEASE.jar@1:start, \
org.springframework.expression-3.0.5.RELEASE.jar@1:start, \
org.apache.felix.fileinstall-3.0.2.jar@1:start, \
net.luminis.cmc-0.2.5.jar@1:start, \
gemini-blueprint-core-1.0.0.jar@1:start, \
gemini-blueprint-extender-1.0.0.jar@1:start, \
gemini-blueprint-io-1.0.0.jar@1:start

If you have already set up the environment, you can clean up the Equinox
plug-in repository by removing the following directory: equinox_root\
plugins\configuration\org.eclipse.osgi.

10. Run the following commands to start equinox console.
If you are running a different version of Equinox, then your JAR file name is
different from the one in the following example:
java -jar plugins\org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

Installing eXtreme Scale bundles
WebSphere eXtreme Scale includes bundles that can be installed into an Eclipse
Equinox OSGi framework. These bundles are required to start eXtreme Scale
servers or use eXtreme Scale clients in OSGi. You can install the eXtreme Scale
bundles using the Equinox console or using the config.ini configuration file.

Before you begin

This task assumes that you have installed the following products:
v Eclipse Equinox OSGi framework
v eXtreme Scale stand-alone client or server

About this task

eXtreme Scale includes two bundles. Only one of the following bundles is required
in an OSGi framework:

objectgrid.jar
The server bundle is the objectgrid.jar file and is installed with the
eXtreme Scale stand-alone server installation and is required for running
eXtreme Scale servers and can also be used for running eXtreme Scale
clients, or local, in-memory caches. The bundle ID for the objectgrid.jar
file is com.ibm.websphere.xs.server_<version>, where the version is in the
format: <Version>.<Release>.<Modification>. For example, the server
bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.server_7.1.1.

ogclient.jar
The ogclient.jar bundle is installed with the eXtreme Scale stand-alone
and client installations and is used to run eXtreme Scale clients or local,
in-memory caches. The bundle ID for ogclient.jar file is

158 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

com.ibm.websphere.xs.client_<version>, where the version is in the format:
<Version>_<Release>_<Modification. For example, the client bundle for
eXtreme Scale Version 7.1.1 is com.ibm.websphere.xs.client_7.1.1.

For more information about developing eXtreme Scale plug-ins, see the System
APIs and Plug-ins topic.

Install the eXtreme Scale client or server bundle into the Eclipse Equinox OSGi
framework using the Equinox console:
Procedure

1. Start the Eclipse Equinox framework with the console enabled; for example:
java_home/bin/java -jar <equinox_root>/plugins/
org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

2. Install the eXtreme Scale client or server bundle in the Equinox console:
osgi> install file:///<path to bundle>

3. Equinox displays the bundle ID for the newly installed bundle:
Bundle id is 25

4. Start the bundle in the Equinox console, where <id> is the bundle ID assigned
when the bundle was installed:
osgi> start <id>

5. Retrieve the service status in the Equinox console to verify that the bundle has
started; for example:
osgi> ss

When the bundle starts successfully, the bundle displays the ACTIVE state; for
example:
25 ACTIVE com.ibm.websphere.xs.server_7.1.1

Install the eXtreme Scale client or server bundle into the Eclipse Equinox OSGi
framework using the config.ini file:
Procedure

1. Copy the eXtreme Scale client or server (objectgrid.jar or ogclient.jar) bundle
from the <wxs_install_root>/ObjectGrid/lib to the Eclipse Equinox plug-ins
directory; for example: <equinox_root>/plugins

2. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to
the osgi.bundles property; for example:
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
objectgrid.jar@1:start

Important: Verify that a blank line exists after the last bundle name. Each
bundle is separated by a comma.

3. Start the Eclipse Equinox framework with the console enabled; for example:
java_home/bin/java -jar <equinox_root>/plugins/
org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

4. Retrieve the service status in the Equinox console to verify that the bundle has
started:
osgi> ss

When the bundle starts successfully, the bundle displays the ACTIVE state; for
example:

Chapter 3. Scenarios 159

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html

25 ACTIVE com.ibm.websphere.xs.server_7.1.1

Results

The eXtreme Scale server or client bundle is installed and started in your Eclipse
Equinox OSGi framework.

Running eXtreme Scale containers with non-dynamic plug-ins
in an OSGi environment

If you do not need to use the dynamic capability of an OSGi environment, you can
still take advantage of tighter coupling, declarative packaging, and service
dependencies that the OSGi framework offers.

Before you begin
1. Develop your application using WebSphere eXtreme Scale APIs and plug-ins.
2. Package the application in one or more OSGi bundles with the appropriate

import or export dependencies that are declared in one or more bundle
manifests. Ensure that all classes or packages that are required for the plug-ins,
agents, data objects, and so on, are exported.

About this task

With dynamic plug-ins, you can upgrade your plug-ins without stopping the grid.
To use this capability, the original and new plug-ins must be compatible. If you do
not need to update plug-ins, or can afford to stop the grid to upgrade them, then
you may not need the complexity of dynamic plug-ins. However, there are still
good reasons to run your eXtreme Scale application in an OSGi environment.
These reasons include the tighter coupling, declarative package, service
dependencies, and so on.

One concern with hosting the grid or client in an OSGi environment without using
dynamic plug-ins (more specifically, without declaring the plug-ins using OSGi
services) is how the eXtreme Scale bundle loads the plug-in classes. The eXtreme
Scale bundle relies on OSGi services to load plug-in classes, which allows the
bundle to invoke object methods on classes in other bundles without directly
importing the packages of those classes.

When the plug-ins are not made available via OSGi services, the eXtreme Scale
bundle must be able to load the plug-in classes directly. Rather than modifying the
manifest of the eXtreme Scale bundle to import user classes and packages, create a
bundle fragment that adds the necessary package imports. The fragment can also
import the classes needed for other non-plug-in user classes, such as data objects
and agent classes.

Procedure
1. Create an OSGi fragment that uses the eXtreme Scale bundle (client or server,

depending on the intended deployment environment) as its host. The fragment
declares dependencies (Import-Package) on all of the packages that one or more
plug-ins must load. For example, if you are installing a serializer plug-in whose
classes reside in the com.mycompany.myapp.serializers package and depends
on classes in the com.mycompany.myapp.common package, then your fragment
META-INF/MANIFEST.MF file resembles the following example:
Bundle-ManifestVersion: 2
Bundle-Name: Plug-in fragment for XS serializers
Bundle-SymbolicName: com.mycompany.myapp.myfragment; singleton:=true

160 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Bundle-Version: 1.0.0
Fragment-Host: com.ibm.websphere.xs.server; bundle-version=7.1.1
Manifest-Version: 1.0
Import-Package: com.mycompany.myapp.serializers,
com.mycompany.myapp.common
...

This manifest must be packaged in a fragment JAR file, which in this example
is com.mycompany.myapp.myfragment_1.0.0.jar.

2. Deploy both the newly created fragment, the eXtreme Scale bundle, and
application bundles to your OSGi environment. Now, start the bundles.

Results

You can now test and run your application in the OSGi environment without using
OSGi services to load user classes, such as plug-ins and agents.

Administering eXtreme Scale servers and applications in an
OSGi environment

Use this topic to install the WebSphere eXtreme Scale server bundle, an optional
fragment that allows loading of your application bundles and non-dynamic user
classes, such as plug-ins, agents, data objects, and so on.

Before you begin
1. Install and start a supported OSGi framework. Currently Equinox is the only

supported OSGi implementation. If your application uses Blueprint, make sure
to install and start a supported Blueprint implementation. Apache Aries and
Eclipse Gemini are both supported.

2. Open the OSGi console.

Procedure
1. Install the eXtreme Scale server bundle. You must know the file URL of the

bundle Java archive (JAR) file. For example:
osgi> install file:///home/user1/myOsgiEnv/plugins/objectgrid.jar
Bundle id is 41

osgi>

The eXtreme Scale bundle is now installed, but not yet resolved.
2. If the eXtreme Scale server must load user classes directly, rather than using

dynamic plug-ins exposed via OSGi services, then you must also install a
user-developed fragment that either provides those classes or imports them. If
you are using dynamic plug-ins and not using agents, you can skip this step.
Here is an example of how to install a custom fragment:
osgi> install file:///home/user1/myOsgiEnv/plugins/myFragment.jar
Bundle id is 42

osgi> ss

Framework is launched.

id State Bundle
...
41 INSTALLED com.ibm.websphere.xs.server_7.1.1
42 INSTALLED com.mycompany.myfragment_1.0.0

osgi>

Chapter 3. Scenarios 161

Now the eXtreme Scale server bundle and the custom fragment that attaches to
the bundle are both installed.

3. Start the eXtreme Scale server bundle; for example:
osgi> start 41

osgi> ss

Framework is launched.

id State Bundle
...
41 ACTIVE com.ibm.websphere.xs.server_7.1.1

Fragments=42
42 RESOLVED com.mycompany.myfragment_1.0.0

Master=41

osgi>

4. Now install and start all user application bundles using the same previously
mentioned commands. To start a grid on this server, the server and container
definition must be declared using Blueprint, or the application must start the
server and container programmatically from a bundle activator or some other
mechanism.

Results

The eXtreme Scale server bundle and application are deployed, started, and ready
to accept work.

Building and running eXtreme Scale dynamic plug-ins for use
in an OSGi environment

All eXtreme Scale plug-ins can be configured for an OSGi environment. The
primary benefit of dynamic plug-ins is that they allow you to upgrade them
without shutting down the grid. This allows you to evolve an application without
restarting the grid container processes.

About this task

WebSphere eXtreme Scale OSGi support allows you to deploy the product in an
OSGi framework, such as Eclipse Equinox. Previously, if you wanted to update the
plug-ins used by eXtreme Scale, you had to restart the Java virtual machine (JVM)
to apply the new versions of the plug-ins. With the dynamic plug-in support
provided by eXtreme Scale and the ability to update bundles that the OSGi
framework provides, you can now update the plug-in classes without restarting
the JVM. These plug-ins are exported by bundles as services. WebSphere eXtreme
Scale accesses the service by looking up the OSGi registry. In the OSGi service
platform, a bundle is a Java archive (JAR) file that contains Java code, resources,
and a manifest that describes the bundle and its dependencies. The bundle is the
unit of deployment for an application.

Procedure
1. Build eXtreme Scale dynamic plug-ins.
2. Configure eXtreme Scale plug-ins with OSGi Blueprint.
3. Install and starting OSGi-enabled plug-ins.

162 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Building eXtreme Scale dynamic plug-ins
WebSphere eXtreme Scale includes ObjectGrid and BackingMap plug-ins. These
plug-ins are implemented in Java and are configured using the ObjectGrid
descriptor XML file. To create a dynamic plug-in that can be dynamically
upgraded, they need to be aware of ObjectGrid and BackingMap life cycle events
because they might need to complete some actions during an update. Enhancing a
plug-in bundle with life cycle callback methods, event listeners, or both allows the
plug-in to complete those actions at the appropriate times.

Before you begin

This topic assumes that you have built the appropriate plug-in. For more
information about developing eXtreme Scale plug-ins, see the System APIs and
plug-ins topic.

About this task

All eXtreme Scale plug-ins apply to either a BackingMap or ObjectGrid instance.
Many plug-ins also interact with other plug-ins. For example, a Loader and
TransactionCallback plug-in work together to properly interact with a database
transaction and the various database JDBC calls. Some plug-ins might also need to
cache configuration data from other plug-ins to improve performance.

The BackingMapLifecycleListener and ObjectGridLifecycleListener plug-ins provide
life cycle operations for the respective BackingMap and ObjectGrid instances. This
process allows plug-ins to be notified when the parent BackingMap or ObjectGrid
and their respective plug-ins might be changed. BackingMap plug-ins implement
the BackingMapLifecyleListener interface, and ObjectGrid plug-ins implement the
ObjectGridLifecycleListener interface. These plug-ins are automatically invoked
when the life cycle of the parent BackingMap or ObjectGrid changes. For more
information about life cycle plug-ins, see the Managing plug-in life cycles topic.

You can expect to enhance bundles using the life cycle methods or event listeners
in the following common tasks:
v Starting and stopping resources, such as threads or messaging subscribers.
v Specifying that a notification occur when peer plug-ins have been updated,

allowing direct access to the plug-in and detecting any changes.

Whenever you access another plug-in directly, access that plug-in through the
OSGi container to ensure that all parts of the system reference the correct plug-in.
If, for example, some component in the application directly references, or caches,
an instance of a plug-in, it will maintain its reference to that version of the plug-in,
even after that plug-in has been dynamically updated. This behavior can cause
application-related problems as well as memory leaks. Therefore, write code that
depends on dynamic plug-ins that obtain its reference using OSGi, getService()
semantics. If the application must cache one or more plug-ins, it listens for life
cycle events using ObjectGridLifecycleListener and BackingMapLifecycleListener
interfaces. The application must also be able to refresh its cache when necessary, in
a thread safe manner.

All eXtreme Scale plug-ins used with OSGi must also implement the respective
BackingMapPlugin or ObjectGridPlugin interfaces. New plug-ins such as the
MapSerializerPlugin interface enforce this practice. These interfaces provide the
eXtreme Scale runtime environment and OSGi a consistent interface for injecting
state into the plug-in and controlling its life cycle.

Chapter 3. Scenarios 163

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsmanplugs.html

Use this task to specify that a notification occurs when peer plug-ins are updated,
you might create a listener factory that produces a listener instance.

Procedure
v Update the ObjectGrid plug-in class to implement the ObjectGridPlugin

interface. This interface includes methods that allow eXtreme Scale to initialize,
set the ObjectGrid instance and destroy the plug-in. See the following code
example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridPlugin;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin {

private ObjectGrid og = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setObjectGrid(ObjectGrid grid) {
this.og = grid;

}

public ObjectGrid getObjectGrid() {
return this.og;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the ObjectGrid plug-in class to implement the
ObjectGridLifecycleListener interface. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener;

import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener.LifecycleEvent;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin, ObjectGridLifecycleListener{
public void objectGridStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a Loader or MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

case QUIESCE:
if (event.isWritable()) {

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();
}
break;

164 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

case OFFLINE:
shutdownShardComponents();
break;

}
}
...

}

v Update a BackingMap plug-in. Update the BackingMap plug-in class to
implement the BackingMap plu-in interface. This interface includes methods that
allow eXtreme Scale to initialize, set the BackingMap instance, and destroy the
plug-in. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.BackingMapPlugin;
...

public class MyLoader implements Loader, BackingMapPlugin {

private BackingMap bmap = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setBackingMap(BackingMap map) {
this.bmap = map;

}

public BackingMap getBackingMap() {
return this.bmap;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the BackingMap plug-in class to implement the
BackingMapLifecycleListener interface. See the following code example:
package com.mycompany;

import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener;
import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener.LifecycleEvent;
...

public class MyLoader implements Loader, ObjectGridPlugin, ObjectGridLifecycleListener{
...
public void backingMapStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

case QUIESCE:
if (event.isWritable()) {

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();

Chapter 3. Scenarios 165

}
break;

case OFFLINE:
shutdownShardComponents();
break;

}
}
...

}

Results

By implementing the ObjectGridPlugin or BackingMapPlugin interface, eXtreme
Scale can control the life cycle of your plug-in at the right times.

By implementing the ObjectGridLifecycleListener or BackingMapLifecycleListener
interface, the plug-in is automatically registered as a listener of the associated
ObjectGrid or BackingMap life cycle events. The INITIALIZING event is used to
signal that all of the ObjectGrid and BackingMap plug-ins have been initialized
and are available for lookup and use. The ONLINE event is used to signal that the
ObjectGrid is online and ready to start processing events.

Configuring eXtreme Scale plug-ins with OSGi Blueprint
All eXtreme Scale ObjectGrid and BackingMap plug-ins can be defined as OSGi
beans and services using the OSGi Blueprint Service available with Eclipse Gemini
or Apache Aries.

Before you begin

Before you can configure your plug-ins as OSGi services, you must first package
your plug-ins in an OSGi bundle, and understand the fundamental principles of
the required plug-ins. The bundle must import the WebSphere eXtreme Scale
server or client packages and other dependent packages required by the plug-ins,
or create a bundle dependency on the eXtreme Scale server or client bundles This
topic describes how to configure the Blueprint XML to create plug-in beans and
expose them as OSGi services for eXtreme Scale to use.

About this task

Beans and services are defined in a Blueprint XML file, and the Blueprint container
discovers, creates, and wires the beans together and exposes them as services. The
process makes the beans available to other OSGi bundles, including the eXtreme
Scale server and client bundles.

When creating custom plug-in services for use with eXtreme Scale, the bundle that
is to host the plug-ins, must be configured to use Blueprint. In addition, a
Blueprint XML file must be created and stored within the bundle. Read about
building OSGi applications with the Blueprint Container specification for a general
understanding of the specification.

Procedure
1. Create a Blueprint XML file. You can name the file anything. However, you

must include the blueprint namespace:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
...
</blueprint>

2. Create bean definitions in the Blueprint XML file for each eXtreme Scale
plug-in.

166 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/

Beans are defined using the <bean> element and can be wired to other bean
references and can include initialization parameters.

Important: When defining a bean, you must use the correct scope. Blueprint
supports the singleton and prototype scopes. eXtreme Scale also supports a
custom shard scope.
Define most eXtreme Scale plug-ins as prototype or shard-scoped beans, since
all of the beans must be unique for each ObjectGrid shard or BackingMap
instance it is associated with. Shard-scoped beans can be useful when using the
beans in other contexts to allow retrieving the correct instance.
To define a prototype-scoped bean, use the scope="prototype" attribute on the
bean:
<bean id="myPluginBean" class="com.mycompany.MyBean" scope="prototype">
...
</bean>

To define a shard-scoped bean, you must add the objectgrid namespace to the
XML schema, and use the scope="objectgrid:shard" attribute on the bean:
<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"

xsi:schemaLocation="http://www.ibm.com/schema/objectgrid
http://www.ibm.com/schema/objectgrid/objectgrid.xsd">

<bean id="myPluginBean" class="com.mycompany.MyBean"
scope="objectgrid:shard">
...
</bean>

...

3. Create PluginServiceFactory bean definitions for each plug-in bean. All eXtreme
Scale beans must have a PluginServiceFactory bean defined so that the correct
bean scope can be applied. eXtreme Scale includes a BlueprintServiceFactory
that you can use. It includes two properties that must be set. You must set the
blueprintContainer property to the blueprintContainer reference, and the
beanId property must be set to the bean identifier name. When eXtreme Scale
looks up the service to instantiate the appropriate beans, the server looks up
the bean component instance using the Blueprint container.
bean id="myPluginBeanFactory"

class="com.ibm.websphere.objectgrid.plugins.osgi.BluePrintServiceFactory">
<property name="blueprintContainer" ref="blueprintContainer" />
<property name="beanId" value="myPluginBean" />

</bean>

4. Create a service manager for each PluginServiceFactory bean. Each service
manager exposes the PluginServiceFactory bean, using the <service> element.
The service element identifies the name to expose to OSGi, the reference to the
PluginServiceFactory bean, the interface to expose, and the ranking of the
service. eXtreme Scale uses the service manager ranking to perform service
upgrades when the eXtreme Scale grid is active. If the ranking is not specified,
the OSGi framework assumes a ranking of 0. Read about updating service
rankings for more information.
Blueprint includes several options for configuring service managers. To define a
simple service manager for a PluginServiceFactory bean, create a <service>
element for each PluginServiceFactory bean:

Chapter 3. Scenarios 167

<service ref="myPluginBeanFactory"
interface="com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory"
ranking="1">

</service>

5. Store the Blueprint XML file in the plug-ins bundle. The Blueprint XML file
must be stored in the OSGI-INF/blueprint directory for the Blueprint container
to be discovered.
To store the Blueprint XML file in a different directory, you must specify the
following Bundle-Blueprint manifest header:
Bundle-Blueprint: OSGI-INF/blueprint.xml

Results

The eXtreme Scale plug-ins are now configured to be exposed in an OSGi
Blueprint container, In addition, the ObjectGrid descriptor XML file is configured
to reference the plug-ins using the OSGi Blueprint service.

Installing and starting OSGi-enabled plug-ins
In this task, you install the dynamic plug-in bundle into the OSGi framework.
Then, you start the plug-in.

Before you begin

This topic assumes that the following tasks have been completed:
v The eXtreme Scale server or client bundle has been installed into the Eclipse

Equinox OSGi framework. See “Installing eXtreme Scale bundles” on page 158.
v One or more dynamic BackingMap or ObjectGrid plug-ins have been

implemented. See “Building eXtreme Scale dynamic plug-ins” on page 163.
v The dynamic plug-ins have been packaged as OSGi services in OSGi bundles.

About this task

This task describes how to install the bundle using the Eclipse Equinox console.
The bundle can be installed using several different methods, including modifying
the config.ini configuration file. Products that embed Eclipse Equinox include
alternative methods for managing bundles. For more information on how to add
bundles in the config.ini file in Eclipse Equinox, see the Eclipse runtime options.

OSGi allows bundles to be started that have duplicate services. WebSphere
eXtreme Scale uses the latest service ranking. When starting multiple OSGi
frameworks in an eXtreme Scale data grid, you must make sure that the correct
service rankings are started on each server. Failure to do so causes the grid to be
started with a mixture of different versions.

To see which versions are in-use by the data grid, use the xscmd utility to check
the current and available rankings. For more information about available service
rankings see Updating OSGi services for eXtreme Scale plug-ins with xscmd.

Procedure

Install the plug-in bundle into the Eclipse Equinox OSGi framework using the
OSGi console.
1. Start the Eclipse Equinox framework with the console enabled; for example:

<java_home>/bin/java -jar <equinox_root>/plugins/org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

2. Install the plug-in bundle in the Equinox console.

168 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/misc/runtime-options.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html

osgi> install file:///<path to bundle>

Equinox displays the bundle ID for the newly installed bundle:
Bundle id is 17

3. Enter the following line to start the bundle in the Equinox console, where <id>
is the bundle ID assigned when the bundle was installed:
osgi> install <id>

4. Retrieve the service status in the Equinox console to verify that the bundle has
started:
osgi> ss

When the bundle has started successfully, the bundle displays the ACTIVE
state; for example:
17 ACTIVE com.mycompany.plugin.bundle_VRM

Install the plug-in bundle into the Eclipse Equonix OSGi framework using the
config.ini file.
5. Copy the plug-in bundle into the Eclipse Equinox plug-ins directory; for

example:
<equinox_root>/plugins

6. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to
the osgi.bundles property; for example:
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
com.mycompany.plugin.bundle_VRM.jar@1:start

Important: Verify there is a blank line after the last bundle name. Each bundle
is separated by a comma.

7. Start the Eclipse Equinox framework with the console enabled; for example:
<java_home>/bin/java -jar <equinox_root>/plugins/org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

8. Retrieve the service status in the Equinox console to verify that the bundle has
started; for example:
osgi> ss

When the bundle has started successfully, the bundle displays the ACTIVE
state; for example:
17 ACTIVE com.mycompany.plugin.bundle_VRM

Results

The plug-in bundle is now installed and started. The eXtreme Scale container or
client can now be started. For more information on developing eXtreme Scale
plug-ins, see the System APIs and Plug-ins topic.

Running eXtreme Scale containers with dynamic plug-ins in
an OSGi environment

If your application is hosted in the Eclipse Equinox OSGi framework with Eclipse
Gemini or Apache Aries, then you can use this task to help you install and
configure your WebSphere eXtreme Scale application in OSGi.

Chapter 3. Scenarios 169

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html

Before you begin

Before you start this task, be sure to complete the following tasks:
v Install the Eclipse Equinox OSGi framework with Eclipse Gemini
v Build and run eXtreme Scale dynamic plug-ins for use in an OSGi environment

About this task

With dynamic plug-ins, you can dynamically upgrade the plug-in while the grid is
still active. This allows you to update an application without restarting the grid
container processes. For more information about developingeXtreme Scale plug-ins,
see System APIs and Plug-ins.

Procedure
1. Configure OSGi-enabled plug-ins using the ObjectGrid descriptor XML file.
2. Start eXtreme Scale container servers using the Eclipse Equinox OSGi

framework.
3. Administer OSGi services for eXtreme Scale plug-ins with the xscmd utility.
4. Configure servers with OSGi Blueprint.

Configuring OSGi-enabled plug-ins using the ObjectGrid
descriptor XML file
In this task, you add existing OSGi services to a descriptor XML file so that
WebSphere eXtreme Scale containers can recognize and load the OSGi-enabled
plug-ins correctly.

Before you begin

To configure your plug-ins, be sure to:
v Create your package, and enable dynamic plug-ins for OSGi deployment.
v Have the names of the OSGi services that represent your plug-ins available.

About this task

You have created an OSGi service to wrap your plug-in. Now, these services must
be defined in the objectgrid.xml file so that eXtreme Scale containers can load and
configure the plug-in or plug-ins successfully.

Procedure
1. Any grid-specific plug-ins, such as TransactionCallback, must be specified

under the objectGrid element. See the following example from the
objectgrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="MyGrid" txTimeout="60">

<bean id="myTranCallback" osgiService="myTranCallbackFactory"/>
...

</objectGrid>

170 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxssystemplugins.html

...
</objectGrids>
...

/objectGridConfig>

Important: The osgiService attribute value must match the ref attribute value
that is specified in the blueprint XML file, where the service was defined for
myTranCallback PluginServiceFactory.

2. Any map-specific plug-ins, such as loaders or serializers, for example, must be
specified in the backingMapPluginCollections element and referenced from the
backingMap element. See the following example from the objectgrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>

objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="MyGrid" txTimeout="60">
<backingMap name="MyMap1" lockStrategy="PESSIMISTIC"

copyMode="COPY_TO_BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRef1"/>

<backingMap name="MyMap2" lockStrategy="PESSIMISTIC"
copyMode="COPY_TO_BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRef2"/>

...
</objectGrid>
...

</objectGrids>
...
<backingMapPluginCollections>

<backingMapPluginCollection id="myPluginCollectionRef1">
<bean id="MapSerializerPlugin" osgiService="mySerializerFactory"/>

</backingMapPluginCollection>
<backingMapPluginCollection id="myPluginCollectionRef2">

<bean id="MapSerializerPlugin" osgiService="myOtherSerializerFactory"/>
<bean id="Loader" osgiService="myLoader"/>

</backingMapPluginCollection>
...

</backingMapPluginCollections>
...

</objectGridConfig>

Results

The objectgrid.xml file in this example tells eXtreme Scale to create a grid called
MyGrid with two maps, MyMap1 and MyMap2. The MyMap1 map uses the serializer
wrapped by the OSGi service, mySerializerFactory. The MyMap2 map uses a
serializer from the OSGi service, myOtherSerializerFactory, and a loader from the
OSGi service, myLoader.

Starting eXtreme Scale servers using the Eclipse Equinox OSGi
framework
WebSphere eXtreme Scale container servers can be started in an Eclipse Equinox
OSGi framework using several methods.

Before you begin

Before you can start an eXtreme Scale container, you must have completed the
following tasks:
1. The WebSphere eXtreme Scale server bundle must be installed into Eclipse

Equinox.
2. Your application must be packaged as an OSGi bundle.
3. Your WebSphere eXtreme Scale plug-ins (if any) must be packaged as an OSGi

bundle. They can be bundled in the same bundle as your application or as
separate bundles.

Chapter 3. Scenarios 171

About this task

This task describes how to start an eXtreme Scale container server in an Eclipse
Equinox OSGi framework. You can use any of the following methods to start
container servers using the Eclipse Equinox implementation:
v OSGi Blueprint service

You can include all configuration and metadata in an OSGi bundle. See the
following image to understand the Eclipse Equinox process for this method:

v OSGi Configuration Admin service
You can specify configuration and metadata outside of an OSGi bundle. See the
following image to understand the Eclipse Equinox process for this method:

Eclipse Equinox OSGi Framework Process

Bundle:
com.mycompany.container

1.0.0

Blueprint XML

ObjectGrid XML

Deployment XML

Bundle:
com.ibm.websphere.xs.server

eXtreme Scale Server

eXtreme ScaleS Container

Figure 56. Eclipse Equinox process for including all configuration and metadata in an OSGi bundle

172 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

v Programmatically
Supports customized configuration solutions.

In each case, an eXtreme Scale server singleton is configured and one or more
containers are configured.

The eXtreme Scale server bundle, objectgrid.jar, includes all of the required
libraries to start and run an eXtreme Scale grid container in an OSGi framework.
The server runtime environment communicates with user-supplied plug-ins and
data objects using the OSGi service manager.

Important: After an eXtreme Scale server bundle is started and the eXtreme Scale
server is initialized, it cannot be restarted . The Eclipse Equinox process must be
restarted to restart an eXtreme Scale server.

You can use eXtreme Scale support for Spring namespace to configure eXtreme
Scale container servers in a Blueprint XML file. When the server and container
XML elements are added to the Blueprint XML file, the eXtreme Scale namespace
handler automatically starts a container server using the parameters that are
defined in the Blueprint XML file when the bundle is started. The handle stops the
container when the bundle is stopped.

To configure eXtreme Scale container servers with Blueprint XML, complete the
following steps:

Procedure
v Start an eXtreme Scale container server using OSGi blueprint.

1. Create a container bundle.
2. Install the container bundle into the Eclipse Equinox OSGi framework. See

“Installing and starting OSGi-enabled plug-ins” on page 168.

eXtreme Scale Container

Configuration Administration Service

ManagedService PID
com.ibm.websphere.xs.server

ManagedServiceFactory PID
com.ibm.websphere.xs.container

Server PropertiesBundle:
com.ibm.websphere.xs.server

ObjectGrid XML

Deployment XML

eXtreme Scale Server

Eclipse Equinox OSGi Framework Process

Figure 57. Eclipse Equinox process for specify configuration and metadata outside of an OSGi bundle

Chapter 3. Scenarios 173

3. Start the container bundle.
v Start an eXtreme Scale container server using OSGi configuration admin.

1. Configure the server and container using config admin.
2. When the eXtreme Scale server bundle is started, or the persistent identifiers

are created with config admin, the server and container automatically start.
v Start an eXtreme Scale container server using the ServerFactory API. See the

server API documentation.
1. Create an OSGi bundle activator class, and use the eXtreme Scale

ServerFactory API to start a server.

Administering OSGi-enabled services using the xscmd utility
You can use the xscmd utility to complete administrator tasks, such as viewing
services and their rankings that are being used by each container, and updating the
runtime environment to use new versions of the bundles.

About this task

With the Eclipse Equinox OSGi framework, you can install multiple versions of the
same bundle, and you can update those bundles during run time. WebSphere
eXtreme Scale is a distributed environment that runs the container servers in many
OSGi framework instances.

Administrators are responsible for manually copying, installing, and starting
bundles into the OSGi framework. eXtreme Scale includes an OSGi
ServiceTrackerCustomizer to track any services that have been identified as
eXtreme Scale plug-ins in the ObjectGrid descriptor XML file. Use the xscmd utility
to validate which version of the plug-in is used, which versions are available to be
used, and to perform bundle upgrades.

eXtreme Scale uses the service ranking number to identify the version of each
service. When two or more services are loaded with the same reference, eXtreme
Scale automatically uses the service with the highest ranking.

Procedure
v Run the osgiCurrent command, and verify that each eXtreme Scale server is

using the correct plug-in service ranking.
Since eXtreme Scale automatically chooses the service reference with the highest
ranking, it is possible that the data grid may start with multiple rankings of a
plug-in service.
If the command detects a mismatch of rankings or if it is unable to find a
service, a non-zero error level is set. If the command completed successfully then
the error level is set to 0.
The following example shows the output of the osgiCurrent command when
two plug-ins are installed in the same grid on four servers. The loaderPlugin
plug-in is using ranking 1, and the txCallbackPlugin is using ranking 2.
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
loaderPlugin 1 MyGrid MapSetA server1
loaderPlugin 1 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA server1
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

174 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsconfigcontainerservers.html

The following example shows the output of the osgiCurrent command when
server2 was started with a newer ranking of the loaderPlugin:
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
loaderPlugin 1 MyGrid MapSetA server1
loaderPlugin 2 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA server1
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

v Run the osgiAll command to verify that the plug-in services have been correctly
started on each eXtreme Scale container server.
When bundles start that contain services that an ObjectGrid configuration is
referencing, the eXtreme Scale runtime environment automatically tracks the
plug-in, but does not immediately use it. The osgiAll command shows which
plug-ins are available for each server.
When run without any parameters, all services are shown for all grids and
servers. Additional filters, including the -serviceName <service_name> filter can
be specified to limit the output to a single service or a subset of the data grid.
The following example shows the output of the osgiAll command when two
plug-ins are started on two servers. The loaderPlugin has both rankings 1 and 2
started and the txCallbackPlugin has ranking 1 started. The summary message at
the end of the output confirms that both servers see the same service rankings:
Server: server1

OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - All servers have the same service rankings.

The following example shows the output of the osgiAll command when the
bundle that includes the loaderPlugin with ranking 1 is stopped on server1. The
summary message at the bottom of the output confirms that server1 is now
missing the loaderPlugin with ranking 1:
Server: server1

OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 2
txCallbackPlugin 1

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - The following servers are missing service rankings:
Server OSGi Service Name Missing Rankings
------ ----------------- ----------------
server1 loaderPlugin 1

The following example shows the output if the service name is specified with
the -sn argument, but the service does not exist:

Chapter 3. Scenarios 175

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
invalidPlugin No service found

Server: server1
OSGi Service Name Available Rankings
----------------- ------------------
invalidPlugin No service found

Summary - All servers have the same service rankings.

v Run the osgiCheck command to check sets of plug-in services and rankings to
see if they are available.
The osgiCheck command accepts one or more sets of service rankings in the
form: -serviceRankings <service name>;<ranking>[,<serviceName>;<ranking>]

When the rankings are all available, the method returns with an error level of 0.
If one or more rankings are not available, a non-zero error level is set. A table of
all of the servers that do not include the specified service rankings is displayed.
Additional filters can be used to limit the service check to a subset of the
available servers in the eXtreme Scale domain.
For example, if the specified ranking or service is absent, the following message
is displayed:
Server OSGi Service Unavailable Rankings
------ ------------ --------------------
server1 loaderPlugin 3
server2 loaderPlugin 3

v Run the osgiUpdate command to update the ranking of one or more plug-ins for
all servers in a single ObjectGrid and MapSet in a single operation.
The command accepts one or more sets of service rankings in the form:
-serviceRankings <service name>;<ranking>[,<serviceName>;<ranking>] -g
<grid name> -ms <mapset name>

With this command, you can complete the following operations:
– Verify that the specified services are available for updating on each of the

servers.
– Change the state of the grid to offline using the StateManager interface. See

Managing ObjectGrid availability for more information. This process quiesces
the grid and waits until any running transactions have completed and
prevents any new transactions from starting. This process also signals any
ObjectGridLifecycleListener and BackingMapLifecycleListener plug-ins to
discontinue any transactional activity. See Plug-ins for providing event
listeners for information about event listener plug-ins.

– Update each eXtreme Scale container running in an OSGi framework to use
the new service versions.

– Changes the state of the grid to online, allowing transactions to continue.
The update process is idempotent so that if a client fails to complete any one
task, it results in the operation being rolled back. If a client is unable to perform
the rollback or is interrupted during the update process, the same command can
be issued again, and it continues at the appropriate step.
If the client is unable to continue, and the process is restarted from another
client, use the -force option to allow the client to perform the update. The
osgiUpdate command prevents multiple clients from updating the same map set
concurrently. For more details about the osgiUpdate command, see Updating
OSGi services for eXtreme Scale plug-ins with xscmd.

176 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txssetavail.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxseventlist.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxseventlist.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html

Configuring servers with OSGi Blueprint
You can configure WebSphere eXtreme Scale container servers using an OSGi
blueprint XML file, allowing simplified packaging and development of
self-contained server bundles.

Before you begin

This topic assumes that the following tasks have been completed:
v The Eclipse Equinox OSGi framework has been installed and started with either

the Eclipse Gemini or Apache Aries blueprint container.
v The eXtreme Scale server bundle has been installed and started.
v The eXtreme Scale dynamic plug-ins bundle has been created.
v The eXtreme Scale ObjectGrid descriptor XML file and deployment policy XML

file have been created.

About this task

This task describes how to configure an eXtreme Scale server with a container
using a blueprint XML file. The result of the procedure is a container bundle.
When the container bundle is started, the eXtreme Scale server bundle will track
the bundle, parse the server XML and start a server and container.

A container bundle can optionally be combined with the application and eXtreme
Scale plug-ins when dynamic plug-in updates are not required or the plug-ins do
not support dynamic updating.

Procedure
1. Create a Blueprint XML file with the objectgrid namespace included. You can

name the file anything. However, it must include the blueprint namespace:
<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="http://www.ibm.com/schema/objectgrid

http://www.ibm.com/schema/objectgrid/objectgrid.xsd">
...
</blueprint>

2. Add the XML definition for the eXtreme Scale server with the appropriate
server properties. See the Spring descriptor XML file for details on all available
configuration properties. See the following example of the XML definition:
objectgrid:server

id="xsServer"
tracespec="ObjectGridOSGi=all=enabled"
tracefile="logs/osgi/wxsserver/trace.log"
jmxport="1199"
listenerPort="2909">
<objectgrid:catalog host="catserver1.mycompany.com" port="2809" />
<objectgrid:catalog host="catserver2.mycompany.com" port="2809" />

</objectgrid:server>

3. Add the XML definition for the eXtreme Scale container with the reference to
the server definition and the ObjectGrid descriptor XML and ObjectGrid
deployment XML files embedded in the bundle; for example:
<objectgrid:container id="container"

objectgridxml="/META-INF/objectGrid.xml"
deploymentxml="/META-INF/objectGridDeployment.xml"
server="xsServer" />

Chapter 3. Scenarios 177

4. Store the Blueprint XML file in the container bundle. The Blueprint XML must
be stored in the OSGI-INF/blueprint directory for the Blueprint container to be
found.
To store the Blueprint XML in a different directory, you must specify the
Bundle-Blueprint manifest header; for example:
Bundle-Blueprint: OSGI-INF/blueprint.xml

5. Package the files into a single bundle JAR file. See the following example of a
bundle directory hierarchy:
MyBundle.jar

/META-INF/manifest.mf
/META-INF/objectGrid.xml
/META-INF/objectGridDeployment.xml
/OSGI-INF/blueprint/blueprint.xml

Results

An eXtreme Scale container bundle is now created and can be installed in Eclipse
Equinox. When the container bundle is started, the eXtreme Scale server runtime
environment in the eXtreme Scale server bundle, will automatically start the
singleton eXtreme Scale server using the parameters defined in the bundle, and
starts a container server. The bundle can be stopped and started, which results in
the container stopping and starting. The server is a singleton and does not stop
when the bundle is started the first time.

178 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Chapter 4. Samples
Several WebSphere eXtreme Scale tutorials, examples, and samples are available.

Examples

The following topics illustrate key WebSphere eXtreme Scale features.
v DataGrid API example
v Configuring local deployments

Community samples

The following samples from the WebSphere eXtreme Scale Samples Gallery
illustrate how to use WebSphere eXtreme Scale in various environments to exhibit
different features of the product.

Table 9. Available samples

Sample Description

Asynchronous Service Framework The Asynchronous Service framework
provides a scalable and fault-tolerant
processing fabric for asynchronous
processing of messages. For more
information, including how to download the
sample, see the Samples Gallery:
Asynchronous Service Framework sample .

Binary JSON (BSON) serializer This sample demonstrates how to write an
eXtreme Scale serializer and configure it to
be used with eXtreme Scale. The serializer
included with this sample uses Binary JSON
(BSON) to describe and serialize objects. For
more information, including how to
download the sample, see the Samples
Gallery: BSON serializer sample.

Client authentication security This sample describes how to configure
authentication requiring the client to provide
valid credentials before the server gives any
grid access. For more information, including
how to download the sample, see the
Samples Gallery: Client authentication
security .

Creating dynamic maps This sample demonstrates how to create
maps after your grid has already been
initialized. For eXtreme Scale 7.0 and higher,
you can use templates to retrieve maps. For
more information, including how to
download the sample, see the Samples
Gallery: Creating dynamic maps after grid
initialization .

© Copyright IBM Corp. 2009, 2012 179

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/cxsdgapiex.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txslclconfig.html
http://www.ibm.com/developerworks/wikis/display/extremescale/Samples+Gallery
http://www.ibm.com/developerworks/wikis/display/extremescale/Asynchronous+Service+Framework+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Asynchronous+Service+Framework+sample
http://www.ibm.com/developerworks/wikis/x/DwAFCw
http://www.ibm.com/developerworks/wikis/x/DwAFCw
http://www.ibm.com/developerworks/wikis/display/extremescale/Client+authentication+security
http://www.ibm.com/developerworks/wikis/display/extremescale/Client+authentication+security
http://www.ibm.com/developerworks/wikis/display/extremescale/Creating+dynamic+maps+after+grid+initialization
http://www.ibm.com/developerworks/wikis/display/extremescale/Creating+dynamic+maps+after+grid+initialization
http://www.ibm.com/developerworks/wikis/display/extremescale/Creating+dynamic+maps+after+grid+initialization

Table 9. Available samples (continued)

Sample Description

Google protocol buffer serializer This sample demonstrates how to write an
eXtreme Scale serializer and configure it to
run with eXtreme Scale. The serializer
included with this sample uses the Google
protocol buffers to describe and serialize
objects. For more information, including
how to download the sample, see the
Samples Gallery: Google protocol buffer
serializer sample.

Multi-master replication The Multi-Master Replication Getting Started
sample is provided for a quick introduction
to multi-master (AP) replication. For more
information, including how to download the
sample, see the Samples Gallery:
Multi-master Replication sample.

Queries with Entity Manager API This sample demonstrates how to use
queries in a distributed partitioned map
with the EntityManager API. For more
information, including how to download the
sample, see the Samples Gallery: Running
Queries in a partitioned grid using Entity
Manager API .

Parallel queries with a ReduceGridAgent
implementation

This sample demonstrates how to use the
Data Grid API to run a query over every
partition in the grid. For more information,
including how to download the sample, see
the Samples Gallery: Running Queries in
Parallel using a ReduceGridAgent .

Articles with tutorials and examples

Table 10. Available articles by feature

Article Features

Building grid-ready applications ObjectMap API, EntityManager API, Query,
Agents, Java SE and EE, Statistics,
Partitioning, Administration/Operations,
Eclipse

Scalable grid-style computing and data
processing

EntityManager API, Agents

Building a scalable, resilient,
high-performance database alternative

ObjectMap API, Replication, Partitioning,
Administration/Operations, Eclipse

Enhancing xsadmin for WebSphere eXtreme
Scale

Administration

Redbook: User's Guide All topics

Free trial
To get started using WebSphere eXtreme Scale, download a free trial version. You
can develop innovative, high-performance applications by extending the data
caching concept using advanced features.

180 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://www.ibm.com/developerworks/wikis/x/DgAFCw
http://www.ibm.com/developerworks/wikis/x/DgAFCw
http://www.ibm.com/developerworks/wikis/display/extremescale/Multi-master+Replication+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Multi-master+Replication+sample
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+a+partitioned+grid+using+Entity+Manager+API
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+a+partitioned+grid+using+Entity+Manager+API
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+a+partitioned+grid+using+Entity+Manager+API
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+Parallel+using+a+ReduceGridAgent
http://www.ibm.com/developerworks/wikis/display/extremescale/Running+Queries+in+Parallel+using+a+ReduceGridAgent
http://www.ibm.com/developerworks/edu/wes-dw-wes-objectgrid.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_marshall/0712_marshall.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_marshall/0712_marshall.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_chambers/0711_chambers.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_chambers/0711_chambers.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.redbooks.ibm.com/abstracts/sg247683.html

Trial download

You can download a free trial version of WebSphere eXtreme Scale, from
Download eXtreme Scale trial.

After downloading and unzipping the trial version of eXtreme Scale, navigate to
the gettingstarted directory, and read the GETTINGSTARTED_README.txt file. This
tutorial gets you started using eXtreme Scale, create a data grid on several servers,
and run some simple applications to store and retrieve data in a grid. Before
deploying eXtreme Scale in a production environment, there are several options to
consider, including the number of servers to use, the amount of storage on each
server, and synchronous or asynchronous replication.

Sample properties files
Server properties files contain settings for running your catalog servers and
container servers. You can specify a server properties file for either a stand-alone
or WebSphere Application Server configuration. Client property files contain
settings for your client.

You can use the following sample properties files that are in the
wxs_install_root\properties directory to create your properties file:
v sampleServer.properties

v sampleClient.properties

Sample: xsadmin utility
With the xsadmin utility, you can format and display textual information about
your WebSphere eXtreme Scale topology. The sample utility provides a method for
parsing and discovering current deployment data, and can be used as a foundation
for writing custom utilities.

Before you begin
v 7.1.1+ The xsadmin utility is provided as a sample of how you can create

custom utilities for your deployment. The xscmd utility is provided as a
supported utility for monitoring and administering your environment. For more
information, see Administering with the xscmd utility.

v For the xsadmin utility to display results, you must have created your data grid
topology. Your catalog servers and container servers must be started. See
Starting and stopping stand-alone servers for more information.

v Verify that the JAVA_HOME environment variable is set to use the runtime
environment that installed with the product. If you are using the trial version of
the product, you must set the JAVA_HOME environment variable.

About this task

The xsadmin sample utility uses an implementation of Managed Beans (MBeans).
This sample monitoring application enables rapidly integrated monitoring
capabilities that you can extend by using the interfaces in the
com.ibm.websphere.objectgrid.management package. You can look at the source
code of the xsadmin sample application in the wxs_home/samples/xsadmin.jar file
in a stand-alone installation, or in the wxs_home/xsadmin.jar file in a WebSphere
Application Server installation.

Chapter 4. Samples 181

http://www.ibm.com/developerworks/downloads/ws/wsdg/learn.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txsxscmd.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txssastartstop.html

You can use the xsadmin sample utility to view the current layout and specific state
of the data grid, such as map content. In this example, the layout of the data grid
in this task consists of a single ObjectGridA data grid with one MapA map that
belongs to the MapSetA map set. This example demonstrates how you can display
all active containers within a data grid and print filtered metrics regarding the map
size of the MapA map. To see all possible command options, run the xsadmin utility
without any arguments or with the -help option.

Procedure
1. Go to the bin directory.

cd wxs_home/bin

2. Run the xsadmin utility.
v To display the online help, run the following command:

UNIX

xsadmin.sh

Windows

xsadmin.bat

You must pass in only one of the listed options for the utility to work. If no
-g or -m option is specified, the xsadmin utility prints out information for
every grid in the topology.

v To enable statistics for all of the servers, run the following command:

UNIX

xsadmin.sh -g ObjectGridA -setstatsspec ALL=enabled

Windows

xsadmin.bat -g ObjectGridA -setstatsspec ALL=enabled

v To display all online containers for a grid, run the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -containers

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -containers

All container information is displayed. An example of the output follows:
Connecting to Catalog service at localhost:1099

*** Show all online containers for grid - ObjectGridA & mapset - MapSetA

Host: 192.168.0.186
Container: server1_C-0, Server:server1, Zone:DefaultZone
Partition Shard Type

0 Primary

Num containers matching = 1
Total known containers = 1
Total known hosts = 1

182 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Attention: To obtain this information when Transport Layer
Security/Secure Sockets Layer (TLS/SSL) is enabled, you must start the
catalog and container servers with the JMX service port set. To set the JMX
service port, you can either use the -JMXServicePort option on the
startOgServer script or you can call the setJMXServicePort method on the
ServerProperties interface.

v To connect to the catalog service and display information about MapA, run
the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA

The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at localhost:1099

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name Partition Map Size Used Bytes (B) Shard Type
MapA 0 0 0 Primary

v To connect to the catalog service using a specific JMX port and display
information about the MapA map, run the following command: UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

The xsadmin sample utility connects to the MBean server that is running on a
catalog server. A catalog server can run as a stand-alone process, WebSphere
Application Server process, or embedded within a custom application
process. Use the -ch option to specify the catalog service host name, and the
-p option to specify the catalog service naming port.
The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at CatalogMachine:6645

*****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

v To connect to a catalog service hosted in a WebSphere Application Server
process, perform the following steps:
The -dmgr option is required when connecting to a catalog service hosted by
any WebSphere Application Server process or cluster of processes. Use the
-ch option to specify the host name if not localhost, and the -p option to
override the catalog service bootstrap port, which uses the process
BOOTSTRAP_ADDRESS. The -p option is only needed if the
BOOTSTRAP_ADDRESS is not set to the default of 9809.

Note: The stand-alone version of WebSphere eXtreme Scale cannot be used
to connect to a catalog service hosted by a WebSphere Application Server

Chapter 4. Samples 183

process. Use the xsadmin that is script included in the was_root/bin directory,
which is available when the installing WebSphere eXtreme Scale on
WebSphere Application Server or WebSphere Application Server Network
Deployment.
a. Navigate to the WebSphere Application Server bin directory:

cd was_root/bin

b. Launch the xsadmin utility using the following command:

UNIX

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr

Windows

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr

The size of the specified map is displayed.
Connecting to Catalog service at localhost:9809

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for server1 ***
Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

v To display the configured and runtime placement of your configuration, run
one of the following commands:
xsadmin -placementStatus
xsadmin -placementStatus -g myOG -m myMapSet
xsadmin -placementStatus -m myMapSet
xsadmin -placementStatus -g myOG

You can scope the command to display placement information for the entire
configuration, a single data grid, a single map set, or a combination of a data
grid and map set. An example of the output follows:
***********Printing Placement Status for Grid - Grid, MapSet - mapSet**************

<objectGrid name="Grid" mapSetName="mapSet">
<configuration>
<attribute name="placementStrategy" value="FIXED_PARTITIONS"/>
<attribute name="numInitialContainers" value="3"/>
<attribute name="minSyncReplicas" value="0"/>
<attribute name="developmentMode" value="true"/>

</configuration>
<runtime>
<attribute name="numContainers" value="3"/>
<attribute name="numMachines" value="1"/>
<attribute name="numOutstandingWorkItems" value="0"/>

</runtime>
</objectGrid>

Creating a configuration profile for the xsadmin utility
You can save your frequently specified parameters for the xsadmin utility in a
properties file. As a result, the xsadmin utility calls are shorter.

Before you begin

Create a basic deployment of WebSphere eXtreme Scale that includes at least one
catalog server and at least one container server. For more information, see
startOgServer script.

About this task

See “xsadmin utility reference” on page 185 for a list of the properties that you can
put in a configuration profile for the xsadmin utility. If you specify both a

184 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxsstartcmd.html

properties file and a corresponding parameter as a command line argument, the
command line argument overrides the properties file value.

Procedure
1. Create a configuration profile properties file. This properties file should contain

any global properties that you want to use in all your xsadmin command
invocations.
Save the properties file with any name you choose. For example, you might
place the file in the following path: /opt/ibm/WebSphere/wxs71/ObjectGrid/
security/<my.properties>.
Replace <my.properties> the name of your file. For example, you might set the
following properties in your file:
v XSADMIN_TRUST_TYPE=jks

v XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/
key.jks

v XSADMIN_USERNAME=ogadmin

2. Run the xsadmin utility with the properties file that you created. Use the
-profile parameter to indicate the location of your properties file. You can also
use the -v parameter to display verbose output.
./xsadmin.sh -l -v -password xsadmin -ssl -trustPass ogpass -profile
/opt/ibm/WebSphere/wxs71/ObjectGrid/security/<my.properties>

xsadmin utility reference
You can pass arguments to the xsadmin utility with two different methods: with a
command-line argument, or with a properties file.

xsadmin arguments

You can define a properties file for the xsadmin utility with Version 7.1 Fix 1 or
later. By creating a properties file, you can save some of the frequently used
arguments, such as the user name. The properties that you can add to a properties
file are in the following table. If you specify both a property in a properties file
and the equivalent command-line argument, the command-line argument value
overrides the properties file value.

For more information about defining a properties file for the xsadmin utility, see
“Creating a configuration profile for the xsadmin utility” on page 184.

Table 11. Arguments for the xsadmin utility

Command Line Argument
Equivalent Property Name in
Properties File Description and valid values

-bp n/a Indicates the listener port.

Default:2809

-ch n/a Indicates the JMX host name for the catalog server.

Default:localhost

-clear n/a Clears the specified map.

Allows the following filters: -fm

-containers n/a For each data grid and map set, displays a list of container servers.

Allows the following filters: -fnp

-continuous n/a Specify this flag if you want continuous map size results to monitor the data grid.
When you run this command with the -mapsizes argument, the map size is
displayed every 20 seconds.

Chapter 4. Samples 185

Table 11. Arguments for the xsadmin utility (continued)

Command Line Argument
Equivalent Property Name in
Properties File Description and valid values

-coregroups n/a Displays all core groups for the catalog server. This argument is used for advanced
diagnostics.

-dismissLink
<catalog_service_domain>

n/a Removes a link between 2 catalog service domains. Provide the name of the foreign
catalog service domain to which you previously connected with the -establishLink
argument.

-dmgr n/a Indicates if you are connecting to a WebSphere Application Server hosted catalog
service.

Default:false

-empties n/a Specify this flag if you want to show empty containers in the output.

-establishLink
<foreign_domain_name>
<host1:port1,host2:port2...>

n/a Connects the catalog service domain to a foreign catalog service domain. Use the
following format: -establishLink <foreign_domain_name>
<host1:port1,host2:port2...>. foreign_domain_name is the name of the foreign
catalog service domain, and host1:port1,host2:port2... is a comma-separated list of
catalog server host names and Object Request Broker (ORB) ports that are running
in this catalog service domain.

-fc n/a Filters for only this container.

If you are filtering container servers in a WebSphere Application Server Network
Deployment environment, use the following format:

<cell_name>/<node_name>/<serverName_containerSuffix>

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

-fh n/a Filters for only this host.

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec,-routetable

-fm n/a Filters only for this map.

Use with the following arguments: -clear, -mapsizes

-fnp n/a Filters servers that have no primary shards.

Use with the following arguments: -containers

-fp n/a Filters for only this partition.

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec,-routetable

-fs n/a Filters for only this server.

If you are filtering application servers in a WebSphere Application Server Network
Deployment environment, use the following format:

<cell_name>/<node_name>/<server_name>

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

-fst n/a Filters for only this shard type. Specify P for primary shards only, A for
asynchronous replica shards only, and S for synchronous replica shards only.

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec

-fz n/a Filters for only this zone.

Use with the following arguments: -mapsizes, -teardown,-revisions,-
getTraceSpec,-setTraceSpec,-getStatsSpec,-setStatsSpec,-routetable

-force n/a Forces the action that is in the command, disabling any preemptive prompts. This
argument is useful for running batched commands.

-g n/a Specifies the ObjectGrid name.

-getstatsspec n/a Displays the current statistics specification. You can set the statistics specification
with the -setstatsspec argument.

Allows the following filters: -fst -fc -fz -fs -fh -fp

186 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Table 11. Arguments for the xsadmin utility (continued)

Command Line Argument
Equivalent Property Name in
Properties File Description and valid values

-getTraceSpec n/a Displays the current trace specification. You can set the trace specification with the
-settracespec argument.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-h n/a Displays the help for the xsadmin utility, which includes a list of arguments.

-hosts n/a Displays all of the hosts in the configuration.

-jmxUrl XSADMIN_JMX_URL Specifies the address of a JMX API connector server in the following format:
service:jmx:protocol:sap. The protocol and sap variable definitions follow:

protocol Specifies the transport protocol to be used to connect to the connector
server.

sap Specifies the address at which the connector server is found.
For more information about the format of the JMX service URL, see Class
JMXServiceURL (Java 2 Platform SE 5.0).

-l n/a Displays all known data grids and map sets.

-m n/a Specifies the name of the map set.

-mapsizes n/a Displays the size of each map on the catalog server to verify that key distribution is
uniform over the shards.

Allows the following filters: -fm -fst -fc -fz -fs -fh -fp

-mbeanservers n/a Displays a list of all MBean server end points.

-overridequorum n/a Overrides the quorum setting so that container server events are not ignored during
a data center failure scenario.

-password XSADMIN_PASSWORD Specifies the password to log in to the xsadmin utility. Do not specify the password
in your properties file if you want your password to remain secure.

-p n/a Indicates the JMX port for the catalog server host.

Default: 1099 or 9809 for a WebSphere Application Server host, 1099 for stand-alone
configurations.

-placementStatus n/a Displays the configured placement and runtime placement of your configuration.
You can scope the output to a combination of data grids and map sets, or for the
entire configuration:

v Entire configuration:

-placementStatus

v For a specific data grid:

-placementStatus -g my_grid

v For a specific map set:

-placementStatus -m my_mapset

v For a specific data grid and map set:

-placementStatus -g my_grid
-m my_mapset

-primaries n/a Displays a list of the primary shards.

-profile n/a Specifies a fully qualified path to the properties file for the xsadmin utility.

-quorumstatus n/a Displays the status of quorum for the catalog service.

-releaseShard
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Used in conjunction with the -reserveShard argument. The -releaseShard
argument must be invoked after a shard has been reserved and placed. . The
-releaseShard argument invokes the ContainerMBean.release() method.

-reserved n/a Used with the -containers argument to display only shards that have been
reserved with the -reserveShard argument.

-reserveShard
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Moves a primary shard to the specified container server. The
ContainerMBean.reserve() method is invoked by this argument.

Chapter 4. Samples 187

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

Table 11. Arguments for the xsadmin utility (continued)

Command Line Argument
Equivalent Property Name in
Properties File Description and valid values

-resumeBalancing
<objectgrid_name>
<map_set_name>

n/a Attempts to balance requests and allow future rebalancing attempts to the specified
ObjectGrid and map set.

-revisions n/a Displays revision identifiers for a catalog service domain including: each data grid,
partition number, partition type (primary or replica), catalog service domain,
lifetime ID, and number of data revisions for each specific shard. You can use his
argument to determine if an asynchronous replica or linked domain is caught up.
This argument invokes the ObjectGridMBean.getKnownRevisions() method.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-routetable n/a Displays the current state of the data grid from a client server perspective. The
route table is the information that an ObjectGrid client server uses to communicate
with the data grid. Use the route table as a diagnostic aid when you are trying to
identify connection problems or TargetNotAvailable exceptions.

Required arguments: In a stand-alone environment, you must specify the -bp and
-p parameters with this argument if you are not using the default values for the
bootstrap listener port and JMX port for the catalog server host.

Allows the following filters: -fz -fh -fp

-settracespec <trace_string> n/a Enables trace on servers during run time. See the following example:

-setTraceSpec "ObjectGridReplication=all=enabled"

See Collecting trace and Trace options for more information about the trace strings
that you can specify.

Allows the following filters: -fst -fc -fz -fs -fh -fp

-swapShardWithPrimary
<container_server_name>
<objectgrid_name>
<map_set_name>
<partition_name>

n/a Swaps the specified replica shard from the specified container server with the
primary shard. By running this command, you can manually balance primary
shards when needed.

-setstatsspec <stats_spec> n/a Enables statistics gathering. This argument invokes the
DynamicServerMBean.setStatsSpec and DynamicServerMBean.getStatsSpec methods.
See Class StatsSpec for more information about the statistics modules you can
monitor.

Allows the following filters: -fm -fst -fc -fz -fs -fh -fp

-suspendBalancing
<objectgrid_name>
<map_set_name>

n/a Prevents future attempts to balance the specified ObjectGrid and map set.

-ssl n/a Indicates that Secure Sockets Layer (SSL) is enabled.

-teardown n/a Stops a list or group of catalog and container servers.

Allows the following filters: -fst -fc -fz -fs -fh -fp

Format to provide a list of servers:
server_name_1,server_name_2 ...

To stop all servers in a zone, include the -fz argument:
–fz <zone_name>

To stop all servers on a host, include the -fh argument:
–fh <host_name>

-triggerPlacement n/a Forces shard placement to run, ignoring the configured numInitialContainers value
in the deployment XML file. You can use this argument when you are performing
maintenance on your servers to allow shard placement to continue running, even
though the numInitialContainers value is lower than the configured value.

-trustPass XSADMIN_TRUST_PASS Specifies the password for the specified truststore.

-trustPath XSADMIN_TRUST_PATH Specifies a path to the truststore file.

Example: etc/test/security/server.public

-trustType XSADMIN_TRUST_TYPE Specifies the type of truststore.

Valid values: JKS, JCEK, PKCS12, and so on.

188 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/txstrcetrble.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1m1/topic/com.ibm.websphere.extremescale.doc/rxstraceoptions.html

Table 11. Arguments for the xsadmin utility (continued)

Command Line Argument
Equivalent Property Name in
Properties File Description and valid values

-unassigned n/a Displays a list of shards that cannot be placed on the data grid. Shards cannot be
placed when the placement service has a constraint that is preventing placement.

-username XSADMIN_USERNAME Specifies the user name to log in to the xsadmin utility.

-v n/a Enables the verbose command-line action. Use this flag if you are using
environment variables, a properties file, or both to specify certain command-line
arguments, and want to view their values. See “Verbose option for the xsadmin
utility” for more information.

-xml n/a Prints the unfiltered output from the
PlacementServiceMBean.listObjectGridPlacement() method. The other xsadmin
arguments filter the output of this method and organize the data into a more
consumable format.

Verbose option for the xsadmin utility
You can use the xsadmin verbose option to troubleshoot problems. Run the xsadmin
-v command to list all configured parameters. The verbose option displays all
values in all scopes, including command line arguments, properties file arguments,
and environment-specified arguments. The Effective arguments section includes
the settings that are being used in the environment if you have specified the same
property using multiple scopes.

Verbose option example

xsadmin command arguments:

The following text is an example of output when using the verbose option from
the command line after you run the following command with a properties value
specified:
./xsadmin -l -v -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties

Properties file arguments:

The contents of the /opt/ibm/WebSphere/wxs71/ObjectGrid/security/
my.properties properties file follow:
XSADMIN_TRUST_PASS=ogpass
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_USERNAME=ogadmin
XSADMIN_PASSWORD=ogpass

Command results:

In the following output from the preceding xsadmin command, the text that is in
bold italics indicates properties and values that are specified both on the
command line and in the properties file. In the Effective command line arguments
section, you can see that the command line specified arguments override the
values in the properties file.
Command line specified arguments

XSADMIN_USERNAME=xsadmin
XSADMIN_PASSWORD=xsadmin
XSADMIN_TRUST_PATH=<unspecified>
XSADMIN_TRUST_TYPE=<unspecified>
XSADMIN_TRUST_PASS=ogpass
XSADMIN_PROFILE=/opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties

Chapter 4. Samples 189

XSADMIN_JMX_URL=<unspecified>

Properties file specified arguments

XSADMIN_USERNAME=ogadmin
XSADMIN_PASSWORD=ogpass
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PASS=ogproppass
XSADMIN_JMX_URL=<unspecified>

Environment-specified arguments

XSADMIN_USERNAME=<unspecified>
XSADMIN_PASSWORD=<unspecified>
XSADMIN_TRUST_PATH=<unspecified>
XSADMIN_TRUST_TYPE=<unspecified>
XSADMIN_TRUST_PASS=<unspecified>
XSADMIN_JMX_URL=<unspecified>

Effective arguments

XSADMIN_USERNAME=xsadmin
XSADMIN_PASSWORD=xsadmin
XSADMIN_TRUST_PATH=/opt/ibm/WebSphere/wxs71/ObjectGrid/bin/security/key.jks
XSADMIN_TRUST_TYPE=jks
XSADMIN_TRUST_PASS=ogpass
XSADMIN_PROFILE=/opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties
XSADMIN_JMX_URL=<unspecified>
SSL authentication enabled: true

Connecting to Catalog service at localhost:1099
*** Show all ’objectGrid:mapset’ names
Grid Name MapSet Name
accounting defaultMapSet

Attention: The XSADMIN_PROFILE property, although it displays in the verbose
output, is not a valid key that you can specify in a properties file. The value of this
property in the verbose output indicates the property value that is being used, as
indicated in the -profile command line argument.

Output without the verbose option

An example of the same command output without the verbose option enabled
follows:
./xsadmin -l -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/ObjectGrid/security/my.properties

Connecting to Catalog service at localhost:1099
*** Show all ’objectGrid:mapset’ names
Grid Name MapSet Name
accounting defaultMapSet

190 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594 USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2009, 2012 191

192 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Trademarks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v CICS®

v Cloudscape
v DB2
v Domino®

v IBM
v Lotus®

v RACF®

v Redbooks®

v Tivoli
v WebSphere
v z/OS®

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

LINUX is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2009, 2012 193

194 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

Index

A
AP 142
APIs

DataSerializer 66
architecture

clients 14
container servers 12
maps 13
overview 10
partitions 12
shards 12
topologies 121

availability
connectivity 81
failure 81
map set replication 103
overview 81
replication 83

availability partition (AP) 142

B
backing maps

lock strategy 106
benefits

write-behind caching 48, 133

C
cache 181

distributed 126
embedded 125
local 122
overview 10
technical overview 9

cache integration
overview 23

catalog service
overview 10

catalog service domains 88
coherent cache 43, 128
complete cache 44, 130
container servers

high availability 88
overview 12
per-container placement 70

D
data grids 67
database

data preloading 51, 136
data preparation 51, 136
database synchronization

techniques 53, 138
read-through cache 45, 131
side cache 45, 130
sparse and complete cache 44, 130
synchronization 53, 138

database (continued)
write-behind cache 48, 133
write-through cache 45, 131

directory conventions 7
distributed cache 126
distributing changes

using Java message service 110
dynamic cache

overview 32
dynamic cache provider

introduction 32

E
Eclipse Equinox

environment setup 157
embedded cache 125
event-based validation 54, 139
evictors

overview 19
eXtreme Scale overview 1

free trial 181
Extreme Transaction Processing 1

free trial 181

F
free trial 181

H
HTTP session manager

overview 30

I
in-line cache 45, 130
indexes

data quality 56, 141
performance 56, 141

integrating with other servers 154

J
Java Persistence API (JPA)

cache plug-in
introduction 23

cache topology
embedded 23
embedded partitioned 23
remote 23

L
load balancing

map sets 103
replicas 98
replication 83

loaders
database 50, 135
Java Persistence API (JPA)

overview 57
local cache

peer replication 123
locking

optimistic 107
pessimistic 107
strategies for 107

M
map preloading

load balancing 98
map sets 103
replication 83

marshalling
overview 59

multi-master data grid replication
planning 142

multi-master replication
configuration planning 146
design planning 149
planning 142
planning for loaders 147

multimaster replication
topologies 143

N
new features 4

O
OSGi

Eclipse Equinox environment 157
overview 22, 155

OSGi container
Apache Aries Blueprint

configuration 166
overview

product overview 1
technical overview 9

P
partitions

fixed placement 70
introduction 69
overview 67
transactions 74, 111
with entities 69

performance
load balancing 98
map set replication 103
replication 83

placement
overview 67

© Copyright IBM Corp. 2009, 2012 195

placement (continued)
strategies 70

planning 121
plug-ins

DataSerializer 66
ObjectTransformer 62

properties
samples 181

Q
quorums

overview 89

R
release notes 5
replicas

reading data 97
replication

loaders 94
memory cost 94
shard types 94

requirements
hardware 6
software 6

REST data service
overview 119
planning 119

S
sample code 179
samples 179
scalability

overview 66
with units or pods 79

scenarios 155
security

authentication 116
authorization 116
secure transport 116

serialization 59
Java 61
overview 66

session manager interoperability
with WebSphere products 154

sessions 30
shards

allocation 96
failure 98
life cycle 98
placement 67
primary 96
recovery 98
replica 96

side cache
database integration 45, 130

sparse cache 44, 130
support 5

T
topologies

clients 14

topologies (continued)
container servers 12
maps 13
overview 10
plan 121

transactions
copyMode 105
cross-grid 74, 111
overview 104
processing overview 104
single-partition 74, 111

troubleshooting
release notes 5

W
write-behind

database integration 48, 133

X
xsadmin utility

commands 185
configuration profile 184
monitoring 181
verbose output 189

Z
zones

overview 15

196 IBM WebSphere eXtreme Scale Version 7.1.1: Product Overview February 6, 2012

����

Printed in USA

	Contents
	Figures
	Tables
	About the Product Overview
	Chapter 1. Product overview
	WebSphere eXtreme Scale overview
	What’s new in Version 7.1.1
	Release notes
	Hardware and software requirements
	Directory conventions
	WebSphere eXtreme Scale technical overview
	Caching overview
	Caching architecture: Maps, containers, clients, and catalogs
	Catalog service
	Container servers, partitions, and shards
	Maps
	Clients

	Zones
	Evictors
	OSGi framework overview

	Cache integration overview
	JPA level 2 (L2) cache plug-in
	HTTP session management
	Dynamic cache provider

	Database integration: Write-behind, in-line, and side caching
	Sparse and complete cache
	Side cache
	In-line cache
	Write-behind caching
	Loaders
	Data pre-loading and warm-up
	Database synchronization techniques
	Data invalidation
	Indexing
	JPA Loaders

	Serialization overview
	Serialization using Java
	ObjectTransformer plug-in
	Serialization using the DataSerializer plug-ins

	Scalability overview
	Data grids, partitions, and shards
	Partitioning
	Placement and partitions
	Single-partition and cross-data-grid transactions
	Scaling in units or pods

	Availability overview
	High availability
	Replication for availability
	High availability catalog service
	Catalog server quorums

	Replicas and shards
	Shard placement
	Reading from replicas
	Load balancing across replicas
	Shard life cycles
	Map sets for replication

	Transaction processing overview
	Transactions
	CopyMode attribute
	Lock manager
	Locking strategies
	Distributing transactions
	Single-partition and cross-data-grid transactions

	Security overview
	REST data services overview

	Chapter 2. Planning
	Planning the topology
	Local in-memory cache
	Peer-replicated local cache
	Embedded cache
	Distributed cache
	Database integration: Write-behind, in-line, and side caching
	Sparse and complete cache
	Side cache
	In-line cache
	Write-behind caching
	Loaders
	Data pre-loading and warm-up
	Database synchronization techniques
	Data invalidation
	Indexing

	Planning multiple data center topologies
	Topologies for multimaster replication
	Configuration considerations for multi-master topologies
	Loader considerations in a multi-master topology
	Design considerations for multi-master replication

	Interoperability with other WebSphere products

	Chapter 3. Scenarios
	Using an OSGi environment to develop and run eXtreme Scale plug-ins
	OSGi framework overview
	Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers
	Installing eXtreme Scale bundles

	Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment
	Administering eXtreme Scale servers and applications in an OSGi environment
	Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
	Building eXtreme Scale dynamic plug-ins
	Configuring eXtreme Scale plug-ins with OSGi Blueprint
	Installing and starting OSGi-enabled plug-ins

	Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
	Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
	Starting eXtreme Scale servers using the Eclipse Equinox OSGi framework
	Administering OSGi-enabled services using the xscmd utility
	Configuring servers with OSGi Blueprint

	Chapter 4. Samples
	Free trial
	Sample properties files
	Sample: xsadmin utility
	Creating a configuration profile for the xsadmin utility
	xsadmin utility reference
	Verbose option for the xsadmin utility

	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	W
	X
	Z

