WL L I8 Application Server Network Deployment for Distributed Platforms,
Version 7.0

Y

B,

| 7/ TS
= i LA

Scripting the application serving environment

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1343)

Compilation date: October 9, 2008

© Copyright International Business Machines Corporation 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments.
Changes to serve you more quickly
Chapter 1. Using scripting (wsadmin)

Chapter 2. Getting started with scripting
What is new for scripted administration (wsadmin) . . .
Overview and new features for scripting the application servmg enwronment .
Java Management Extensions (JMX). .o
WebSphere Application Server configuration model
Jacl
Jython
Using the wsadmm scrlptlng obJects
Help object for scripted administration .
Using the AdminApp object for scripted admmlstratlon
Using the AdminControl object for scripted administration .
Using the AdminConfig object for scripted administration .
Using the AdminTask object for scripted administration.
Starting the wsadmin scripting client
Restricting remote access using scripting.

Chapter 3. Using the script library to automate the application serving environment.

Automating server administration using the scripting library .
Server settings configuration scripts.
Server configuration scripts
Server query scripts .
Server administration scripts .
Automating administrative architecture setup usmg the scnptmg I|brary
Node administration scripts e
Node group configuration scripts
Cluster configuration scripts .
Cluster query scripts .
Cluster administration scripts.
Automating application configurations usmg the scnptmg I|brary
Application installation and uninstallation scripts.
Application query scripts
Application update scripts .
Application export scripts . .
Application deployment conflguratlon scrlpts .
Application administration scripts
Automating business-level application conf|gurat|ons usmg the scrlptlng I|brary
Business-level application configuration scripts . -
Automating data access resource configuration using the scrlptmg I|brary
J2C query scripts .
J2C configuration scripts
JDBC configuration scripts.
JDBC query scripts .
Automating messaging resource conflguratlons usmg the scnptmg I|brary
JMS configuration scripts .
JMS query scripts .
Automating authorization group conflguratlons usmg the scrlptlng I|brary
Authorization group configuration scripts

© Copyright IBM Corp. 2008

. Xi

. Xiii

—

Automating resource configurations using the scripting library.
Resource configuration scripts . .
Displaying script library help information with the wsadmln tool

Chapter 4. Administering applications using scripting .
Installing enterprise applications using scripting .

Setting up business-level applications using scripting .
Uninstalling enterprise applications with the wsadmin tool .
Deleting business-level applications using scripting

Pattern matching with the wsadmin tool .

Managing administrative console applications usmg scrlptlng
Managing JavaServer Faces implementations using scripting .
BLAManagement command group for the AdminTask object .
JSFCommands command group for the AdminTask object .
Application management command group for the AdminTask object

Chapter 5. Managing deployed applications using scrlptmg

Starting applications with scripting . . .

Starting business-level applications using scrrptrng

Stopping applications with scripting

Stopping business-level applications with scrlptlng

Updating installed applications with the wsadmin tool .

Managing assets with scripting . .

Managing composition units with scripting .

Listing the modules in an installed application with scrlptlng
Example: Listing the modules in an application server

Querying the application state using scripting .

Disabling application loading in deployed targets using scrlptrng

Configuring applications for session management using scripting

Configuring applications for session management in Web modules using scrlptlng .

Exporting applications using scripting.

Configuring a shared library using scripting

Configuring a shared library for an application using scrlptmg

Setting background applications using scripting . .

Modifying WAR class loader policies for applications using scrlptlng
Modifying class loader modes for applications using scripting .

Modifying the starting weight of applications using scripting

Configuring name space bindings using the wsadmin tool . .
WSScheduleCommands command group of the AdminTask object .
WSNotifierCommands command group for the AdminTask object
CoreGroupManagement command group for the AdminTask object.
CoreGroupBridgeManagement command group for the AdminTask object
CoreGroupPolicyManagement command group for the AdminTask object

Chapter 6. Configuring servers with scripting

Creating a server using scripting . .

Configuring the Java virtual machine using scrlptlng .

Configuring EJB containers using scripting.

Configuring the Performance Monitoring Infrastructure usrng scrrptrng

Limiting the growth of JVM log files using scripting .

ProxyManagement command group for the AdminTask obJect

Configuring an ORB service using scripting

Configuring processes using scripting .

Configuring the runtime transaction service using scrlptlng
Configuring the WS-Transaction specification level using the wsadmln tool

Setting port numbers to the serverindex.xml file using scripting .

iv Scripting the application serving environment

. 200
. 202
. 211

. 213
. 213
. 215
. 218
. 219
. 220
. 220
. 221
. 222
. 247
. 248

. 253
. 253
. 254
. 255
. 257
. 258
. 262
. 264
. 265
. 266
. 269
. 270
. 272
. 276
. 280
. 281
. 284
. 288
. 289
. 290
. 292
. 293
. 294
. 296
. 298
. 303
. 308

. 317
. 318
. 319
. 320
. 324
. 326
. 329
. 333
. 335
. 337
. 339
. 340

Disabling components using scripting.

Disabling the trace service using scripting .

Configuring servlet caching with scripting

Modifying variables using scripting.

Increasing the Java virtual machine heap size usmg scrlptlng
PortManagement command group for the AdminTask object
DRS command group for the AdminTask object . .
DynamicCache command group for the AdminTask object .
VariableConfiguration command group for the AdminTask object .

Chapter 7. Setting up intermediary services using scripting .

Regenerating the node plug-in configuration using scripting

Creating new virtual hosts using templates with scripting

Setting up the DataPower appliance manager using scripting . . .
Copying DataPower appliance domains between managed sets using scnptmg :
Updating firmware versions for DataPower appliances using scripting .
Administering managed domains, firmware, and settings versions using scrlptmg
dpManagerCommands command group for the AdminTask object . .

Chapter 8. Managing servers and nodes with scripting .
Administering jobs in a flexible management environment using scrlptlng
Registering nodes with the job manager using scripting . .

Grouping nodes in a flexible management environment using scrlptlng
Running administrative jobs using scripting .
Running administrative jobs across multiple nodes usmg scrlptlng .
Scheduling future administrative jobs using scripting .
Managing administrative jobs using scripting .
Administrative job types.
AdministrativeJobs command group for the AdmmTask object
ManagedNodeGroup command group for the AdminTask object .
ManagedNodeAgent command group for the AdminTask object .
JobManagerNode command group for the AdminTask object .
JobManagerUpkeep command group for the AdminTask object .

Managing environment configurations using properties files

Extracting properties files .

Validating properties files .

Applying properties files

Creating server, cluster, appllcanon or authorlzahon group objects usmg properhes flles .
Deleting server, cluster, application, or authorization group objects using properties files .

Creating and deleting configuration objects using properties files
Stopping a node using scripting.

Restarting node agent processes using the wsadmm tooI

Starting servers using scripting .

Stopping servers using scripting

Querying server state using scripting . .

Listing running applications on running servers usmg scnptmg

Starting listener ports using scripting .

Managing generic servers using scripting . . .

Setting development mode for server objects using scrlptlng

Disabling parallel startup using scripting.

Obtaining server version information with scr|pt|ng .
PropertiesBasedConfiguration command group for the AdmmTask object
NodeGroupCommands command group for the AdminTask object .
Utility command group of the AdminTask object .
ManagedObjectMetadata command group for the AdmmTask object
ServerManagement command group for the AdminTask object

. 346
. 347
. 348
. 350
. 351
. 351
. 353
. 354
. 355

. 359
. 359
. 361
. 362
. 365
. 368
. 371
. 373

. 405
. 405
. 406
. 407
. 408
. 410
.41
. 413
. 414
. 425
. 433
. 438
. 444
. 451
. 452
. 454
. 457
. 459
. 462
. 464
. 466
. 468
. 469
. 469
. 470
. 471
. 472
. 474
. 475
. 476
. 477
. 477
. 479
. 485
. 492
. 494
. 500

Contents

\'}

UnmanagedNodeCommands command group for the AdminTask object .
ConfigArchiveOperations command group for the AdminTask object

Chapter 9. Clustering servers with scripting .

Creating clusters using scripting

Modifying cluster member templates using scrlptlng

Creating cluster members using scripting . . .
Creating clusters without cluster members using scrlptmg .
Starting clusters using scripting .

Querying cluster state using scripting.

Stopping clusters using scripting

ClusterConfigCommands command group for the AdmlnTask object

Chapter 10. Configuring security with scripting.

Enabling and disabling security using scripting .

Enabling and disabling Java 2 security using scripting

Configuring multiple security domains using scripting .
Configuring security domains using scripting . .
Configuring local operating system user registries using scnptmg
Configuring custom user registries using scripting .
Configuring JAAS login modules using scripting .

Configuring Common Secure Interoperability authentlcatlon usmg scnptmg

Configuring trust association using scripting .

Mapping resources to security domains using scripting .

Removing resources from security domains using scripting.
Removing security domains using scripting .

Removing user registries using scripting

SecurityDomainCommands command group for the AdmmTask object

SecurityConfigurationCommands command group for the AdminTask object
SecurityRealmInfoCommands command group for the AdminTask object.

NamingAuthzCommands command group for the AdminTask object
Utility scripts .

Configuring the JACC prowder for T|voI| Access Manager usmg the Wsadmln utlllty

Securing communications using the wsadmin tool . .o
Creating an SSL configuration at the node scope using scnptmg
Automating SSL configurations using scripting
Updating default key store passwords using scripting .
Configuring certificate authority client objects using the wsadmm tooI
Administering certificate authority clients using the wsadmin tool.

Setting a certificate authority certificate as the default certificate using the wsadmm tooI
Creating certificate authority (CA) personal certificates using the wsadmin tool
Revoking certificate authority personal certificates using the wsadmin tool .

CAClientCommands command group for the AdminTask object .
Creating self-signed certificates using scripting .
keyManagerCommands command group for the AdmlnTask object
KeyStoreCommands command group for the AdminTask object .
SSLConfigCommands command group for the AdminTask object
SSLConfigGroupCommands group for the AdminTask object .
TrustManagerCommands command group for the AdminTask object .
KeySetCommands command group for the AdminTask object.
KeyReferenceCommands command group for the AdminTask object .
KeySetGroupCommands command group for the AdminTask object

DynamicSSLConfigSelections command group for the AdminTask object.
PersonalCertificateCommands command group for the AdminTask object
WSCertExpMonitorCommands command group for the AdminTask object
SignerCertificateCommands command group for the AdminTask object .

Scripting the application serving environment

. 527
. 530

. 539
. 539
. 540
. 541
. 543
. 543
. 545
. 545
. 546

. 553
. 554
. 555
. 557
. 558
. 559
. 561
. 563
. 564
. 566
. 567
. 568
. 568
. 569
. 570
. 577
. 617
. 623
. 628
. 633
. 635
. 635
. 638
. 641
. 641
. 643
. 645
. 647
. 649
. 650
. 654
. 656
. 659
. 668
. 678
. 682
. 685
. 691
. 695
. 698
. 700
. 716
. 721

CertificateRequestCommands command group of the AdminTask object .
Enabling authentication in the file transfer service using scripting

. 727
. 731

Propagating security policy of installed applications to a JACC provider usmg wsadmm scrlptmg

JACCUtilityCommands command group for the AdminTask object .
Configuring custom adapters for federated repositories using wsadmin
Disabling embedded Tivoli Access Manager client using wsadmin .
Configuring security auditing using scripting .

Configuring audit service providers using scripting .

Configuring audit event factories using scripting .

Configuring auditable events using scripting .

Enabling security auditing using scripting

Configuring security audit notifications using scnptmg

Encrypting security audit data using scripting .

Signing security audit data using scripting . .

AuditKeyStoreCommands command group for the AdmmTask object .

AuditEmitterCommands for the AdminTask object .

AuditSigningCommands command group for the AdmlnTask object

AuditEncryptionCommands command group for the AdminTask object

AuditEventFactoryCommands for the AdminTask object .

AuditFilterCommands command group for the AdminTask object.

AuditNotificationCommands command group for the AdminTask object

AuditPolicyCommands command group for the AdminTask object .

AuditEventFormatterCommands command group for the AdminTask object .

AuditReaderCommands command group for the AdminTask object .
SSLMigrationCommands command group for the AdminTask object
IdMgrConfig command group for the AdminTask object . .
IdMgrRepositoryConfig command group for the AdminTask object .
IdMgrRealmConfig command group for the AdminTask object. .
WIMManagementCommands command group for the AdminTask object .
DescriptivePropCommands command group for the AdminTask object
ManagementScopeCommands command group for the AdminTask object .
AuthorizationGroupCommands command group for the AdminTask object .
ChannelFrameworkManagement command group for the AdminTask object
SpnegoTAICommands group for the AdminTask object (deprecated)

The Kerberos configuration file . .

SPNEGO Web authentication conf|gurat|on commands .

SPNEGO Web authentication filter commands

Kerberos authentication commands

LTPA_LDAPSecurityOn and LTPA LDAPSecurltyOﬁ command usage

Chapter 11. Configuring data access with scripting .
Configuring a JDBC provider using scripting .
Configuring new data sources using scripting .
Configuring new connection pools using scripting .
Changing connection pool settings with the wsadmin tool
Example: Changing connection pool settings with the wsadmin tooI
Example: Accessing MBean connection factory and data sources using wsadmln
Configuring new data source custom properties using scripting . ..
Configuring new Java 2 Connector authentication data entries using scnptmg
Configuring new WAS40 data sources using scripting.
Configuring new WAS40 connection pools using scripting .
Configuring new WAS40 custom properties using scripting .
Configuring new J2C resource adapters using scripting .
Configuring custom properties for J2C resource adapters using scrlptlng
Configuring new J2C connection factories using scripting
Configuring new J2C activation specifications using scripting .

732

. 733

. 734
. 737
. 738
. 739
. 740
. 742
. 743
. 745
. 746
. 748
. 749
. 755
. 765
. 771
. 787
. 795

Contents

. 809
. 820
. 829
. 830
. 833
. 836
. 841
. 888
. 896
. 908
. 91
. 913
. 925
. 928
. 933
. 936
. 937
. 940
. 943

. 945
. 945
. 946
. 948
. 949
. 949
. 952
. 955
. 956
. 957
. 958
. 960
. 961
. 963
. 964
. 965

Vii

Configuring new J2C administrative objects using scripting.
Managing the message endpoint lifecycle using scripting

Testing data source connections using scripting .
JDBCProviderManagement command group for the AdmlnTask object

Chapter 12. Configuring messaging with scripting.

Configuring the message listener service using scripting.

Configuring new JMS providers using scripting .

Configuring new JMS destinations using scripting .

Configuring new JMS connections using scripting .

Configuring new WebSphere queue connection factories usmg scrlptlng
Configuring new WebSphere topic connection factories using scripting
Configuring new WebSphere queues using scripting . .o
Configuring new WebSphere topics using scripting.

Configuring a new connection factory for the WebSphere MQ messaglng prowder usmg scrlptlng
Configuring a new queue connection factory for the WebSphere MQ messaging provider using

scripting

Configuring a new top|c connectlon factor for the WebSphere MQ messaglng prowder usmg scrlptlng
Configuring a new queue for the WebSphere MQ messaging provider using scripting .
Configuring a new topic for the WebSphere MQ messaging provider using scripting

JCAManagement command group for the AdminTask object .

Chapter 13. Configuring mail, URLs, and resource environment entries with scripting .

Configuring new mail providers using scripting .

Configuring new mail sessions using scripting .

Configuring new protocols using scripting.

Configuring new custom properties using scripting .
Configuring new resource environment providers using scrlptlng .

Configuring custom properties for resource environment providers using scrlptlng :

Configuring new referenceables using scripting .o

Configuring new resource environment entries using scrlptlng .
Configuring custom properties for resource environment entries using scrlptlng
Configuring new URL providers using scripting . .

Configuring custom properties for URL providers using scrlptlng

Configuring new URLs using scripting .

Configuring custom properties for URLs using scrlptlng

Provider command group for the AdminTask object .

Chapter 14. Configuring Web services applications using scripting
Enabling WSDM with scripting . Coe e
Querying Web services with the wsadmln tooI

WebServicesAdmin command group for the AdmlnTask obJect

Configuring a Web service client deployed WSDL file name with the Wsadmm tooI

Configuring Web service client-preferred port mappings with the wsadmin tool .
Configuring Web service client port information with the wsadmin tool .
Configuring the scope of a Web service port with the wsadmin tool .
Publishing WSDL files using the wsadmin tool .
Configuring application and system policy sets for Web services usmg scrlptlng

Creating policy sets using the wsadmin tool .

Updating policy set attributes using the wsadmin tool

Adding and removing policies using the wsadmin tool .

Editing policy configurations using the wsadmin tool.

Enabling secure conversation using the wsadmin tool .

Managing WS-Security distributed cache configurations using the wsadmm tool

Configuring custom policies and bindings for security tokens using the wsadmin tool.

Creating policy set attachments using the wsadmin tool

viii Scripting the application serving environment

. 967
. 969
. 970
. 971

. 977
. 977
. 978
. 980
. 981
. 982
. 983
. 984
. 986

987

. 989
991

. 993
. 994
. 995

. 1003
. 1003
. 1004
. 1005
. 1006
. 1007
. 1008
. 1010
. 101
. 1012
. 1013
. 1014
. 1015
. 1016
. 1018

. 1021
. 1021
. 1022
. 1024
. 1030
. 1031
. 1033
. 1034
. 1035
. 1037
. 1039
. 1041
. 1043
. 1046
. 1048
. 1051
. 1053
. 1055

Managing policy set attachments using the wsadmin tool .
Configuring general, cell-wide bindings for policies using the wsadmln tool
Configuring Version 6.1 server-specific default bindings for policies using the Wsadmm tool
Configuring application-specific and system bindings using the wsadmin tool. .
Creating application-specific and trust service-specific bindings using the wsadmin tool .
Deleting application-specific bindings from your configuration using the wsadmin tool
Importing and exporting policy sets to client or server environments using scripting
Removing policy set bindings using the wsadmin tool
Removing policy set attachments using the wsadmin tool .
Deleting policy sets using the wsadmin tool .
Refreshing policy set configurations using scripting .
Policy configuration properties for all policies
WSSecurity policy and binding properties.
WSReliableMessaging policy and binding propertles
WSAddressing binding properties. .
SSLTransport policy and binding properties .
HTTPTransport policy and binding properties
JMSTransport policy and binding properties .
SecureConversation command group for the AdmlnTask object (Deprecated)
WSSCacheManagement command group for the AdminTask object .
PolicySetManagement command group for the AdminTask object .
WS-Policy commands for the AdminTask object

Configuring secure sessions between clients and services usmg the Wsadmm tooI
Querying the trust service using scripting .
Managing existing token providers with scripting . .
Adding and removing token provider custom properties usmg scrlptlng
Associating token providers with endpoint services (targets) using scripting
STSManagement command group for the AdminTask object .

Chapter 15. Using the Administration Thin Client. .

Compiling an application in a non-OSGi environment using scrrptmg .
Running the wsadmin tool remotely in a Java 2 Platform, Standard Edition envrronment
Auditing invocations of the wsadmin tool .

Chapter 16. Troubleshooting with scripting .

Tracing operations with the wsadmin tool . . .
Extracting properties files to troubleshoot your envrronment .
Configuring traces using scripting. . .
Turning traces on and off in servers processes usmg scnptlng
Dumping threads in server processes using scripting .
Setting up profile scripts to make tracing easier using scripting .
Enabling the Runtime Performance Advisor tool using scripting. .
AdministrationReports command group for the AdminTask object .

Chapter 17. Scripting and command line reference material
Wsadmin tool .
wsadmin tool performance tlps
Commands for the Help object.
Commands for the AdminConfig object.
Commands for the AdminControl object
Commands for the AdminApp object
Options for the AdminApp object install, mstalllnteractlve ed|t edltlnteractlve update and
updatelnteractive commands
Example: Obtaining option information for AdmlnApp object commands
Commands for the AdminTask object
Administrative command invocation syntax .

Contents

. 1058
. 1062

1066

. 1069
. 1073
. 1077
. 1079
. 1080
. 1083
. 1086
. 1088
. 1089
. 1089
. 1097
. 1099
. 1100
. 1102
. 1104
. 1106
. 1109
. 1113
. 1145
. 1153
. 1154
. 1155
. 1157
. 1160
. 1162

. 1175
. 1176
. 1176
1177

. 1179
. 1179
. 1180
. 1181
. 1182
. 1183
. 1183
. 1184
. 1185

. 1187
. 1187
. 1192
. 1193
. 1205
. 1232
. 1257

. 1276
. 1324
. 1324
. 1335

ix

Administrative properties for scripting .1336

com.ibm.ws.scripting.appendTrace .1337
com.ibm.ws.scripting.classpath .1337
com.ibm.ws.scripting.connectionType . . . I I 74
com.ibm.ws.scripting. crossDocumentValldanonEnabIed N KC X Y6
com.ibm.ws.scripting.defaultLtang. .1337
com.ibm.ws.scripting.echoparams . . . T KV 4
com.ibm.ws.scripting. emltWarnmgForCustomSecurltyPollcy T [V4
com.ibm.ws.scripting.host .1337
com.ibm.ws.scripting.ipchost .1337
com.ibm.ws.scripting.port. .1337
com.ibm.ws.scripting.profiles .1337
com.ibm.ws.scripting.traceFile .1338
com.ibm.ws.scripting.traceString .1338
com.ibm.ws.scripting.tempdir .1338
com.ibm.ws.scripting.validationLevel . 1338
com.ibm.ws.scripting.validationQutput . 1338
Appendix. Directory conventions .133%
Notices1348
Trademarks and servicemarks. .1345

X Scripting the application serving environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 Xi

xii Scripting the application serving environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

+ Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 xiii

xiv Scripting the application serving environment

Chapter 1. Using scripting (wsadmin)

The WebSphere® administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language.

About this task

The wsadmin tool is intended for production environments and unattended operations. You can use the
wsadmin tool to perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

« [Getting started with scripting| Provides an introduction to WebSphere Application Server scripting and
information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

. |Using the script library to automate the application serving environment| Provides a set of Jython script
procedures that automate the most common application server administration functions. For example,
you can use the script library to easily configure servers, applications, mail settings, resources, nodes,
business-level applications, clusters, authorization groups, and more. You can run each script procedure
individually, or combine several procedures to quickly develop new scripts.

[Deploying applications| Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java " archive files and Web archive files, the administrative console, remote Enterprise
Archive (EAR) files, file transfer applications, and so on.

|Managing deployed applications| Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

[Configuring serverd Provides instructions for configuring servers, such as creating a server, modifying
and restarting the server, configuring the Java virtual machine, disabling a component, disabling a
service, and so on.

[Configuring connections to Web servers| Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

+ [Managing servers]| Includes tasks that you use to manage servers. For example, stopping nodes,

starting and stopping servers, querying a server state, starting a listener port, and so on.

[Clustering servers| Includes topics about clusters, such as creating clusters, creating cluster members,

querying a cluster state, removing clusters, and so on.

« [Configuring security| Includes security tasks, for example, enabling and disabling administrative security,
enabling and disabling Java 2 security, and so on.

« [Configuring data access|Includes topics such as configuring a Java DataBase Connectivity (JDBC)

provider, defining a data source, configuring connection pools, and so on.

[Configuring messaging| Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

« [Configuring mail, URLs, and resource environment entrieg Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

[Troubleshooting| Provides information about how to troubleshoot using scripting. For example, tracing,
thread dumps, profiles, and so on.

« [Scripting reference material|Includes all of the reference material related to scripting. Topics include the
syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

© IBM Corporation 2004 1

2 Scripting the application serving environment

Chapter 2. Getting started with scripting

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application
Server.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin tool
supports a full range of product administrative activities.

The following figure illustrates the major components involved in a wsadmin scripting solution:

Java virtual machine

External tools <> > mBean
and programs Server

Figure 1: A WebSphere Application Server scripting solution

Resources

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you
use scripts:

* AdminControl: Use to run operational commands.

+ AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server
configurational elements.

* AdminApp: Use to administer applications.

* AdminTask: Use to run administrative commands.

* Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX

is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that
provides a simple and standard way to manage Java objects.

To perform a task using scripting, you must first perform the following steps:

1. Choose a scripting language. The wsadmin tool only supports [Jacll and |[Jython| scripting languages.
Jacl is the language specified by default. If you want to use the Jython scripting language, use the
-lang option or specify it in the wsadmin.properties file.

2. [Start the wsadmin scripting clienf interactively, as an individual command, in a script, or in a profile.

What to do next

Before you perform any task using scripting, make sure that you are familiar with the following concepts:
- [Java Management Extensions (JMX)|
[WebSphere Application Server configuration model

.
* [Jacl syntax or Jython syntax

« |Scripting objects|

© Copyright IBM Corp. 2008 3

Optionally, you can customize your scripting environment. For more information, see [Scripting environment]

properties;

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting
client, you are ready to perform tasks using scripting.

What is new for scripted administration (wsadmin)

This topic highlights what is new or changed, for users who are going to customize, administer, monitor,
and tune production server environments using the wsadmin tool.

[Deprecated, stabilized, and removed features describes features that are being replaced or removed in
this or future releases.

Improved administrative scripting features

Jython script library The Jython script library provides a set of procedures to
automate the most common application server
administration functions. For example, you can use the
script library to easily configure servers, applications, mail
settings, resources, nodes, business-level applications,
clusters, authorization groups, and more. You can run
each script procedure individually, or combine several
procedures to quickly develop new scripts.

For more information, see [Chapter 3, “Using the scripf
llibrary to automate the application serving environment,’|

|on page 83.|
Wildcard pattern usage for the AdminTask help and Use Java regular expression patterns and wildcard
AdminConfig list commands patterns with the AdminTask.help('—commands’) command

to query for command names and with AdminConfig.list,
AdminConfig.types and AdminConfig.listTemplates
functions to query for configuration object types.

For more information about using patterns with the
AdminTask object, see [‘Obtaining online help using|
|scripting” on page 60|

For more information about using patterns with the
AdminConfig object, see [Commands for the AdminConfig|
|object” on page 1205

Complex parameter type support Use primitive and complex Java™ data types for the
parameters of the AdminTask commands.

For more information, see [‘Data types for the AdminTask|
|object” on page 77|
AdminTask command support for configuring certificate Use the wsadmin tool to manage certificate authority (CA)
authority (CA) clients client configurations. Use the commands and parameters
in the CAClientCommands group to create, modify, query,
and remove connections to a third-party CA server.

For more information, see ['CAClientCommands command|
lgroup for the AdminTask object” on page 650

4 Scripting the application serving environment

AdminTask command support for configuring security
auditing

AdminTask command support for configuring multiple
security domains

AdminTask command support for configuring
business-level applications

AdminTask command support for configuring a flexible
management environment

AdminTask command support for managing configurations
using properties files

While security authentication and authorization ensures
that users must have access to view protected resources,
security auditing provides a mechanism to validate the
integrity of a security computing environment. Security
auditing collects and logs authentication, authorization,
system management, security, and audit policy events in
audit event records. You can analyze audit event records
to determine possible security breaches, threats, attacks,
and potential weaknesses in the security configuration of
your environment. Enable security auditing in your
environment.

For more information, see [‘Configuring security auditing
lusing scripting” on page 738

Create multiple security configurations and assign them to
different applications in WebSphere Application Server
processes. By creating multiple security domains, you can
configure different security attributes for both
administrative and user applications within a cell
environment. You can configure different applications to
use different security configurations by assigning the
servers or clusters or SIBuses that host these applications
to the security domains. Only users assigned to the
administrator role can configure multiple security domains.

For more information, see [‘Configuring multiple security|
|domains using scripting” on page 557
A business-level application is an administration model
that provides the entire definition of an application as it
makes sense to the business. A business-level application
is a WebSphere® configuration artifact, similar to a server
or cluster, that is stored in the product configuration
repository.

For more information, see [‘Setting up business-level
|applications using scripting” on page 215

Create a flexible management environment to locally or
remotely submit and manage administrative jobs. You can
use the job manager to manage applications, modify
configurations, and control the application server runtime.

For more information, see [‘Administering jobs in a flexible|
|[management environment using scripting” on page 405|
Manage your system configuration using properties files.
Use the commands in the PropertiesBasedConfiguration
group to copy configuration properties from one
environment to another, troubleshoot configuration issues,
and to apply one set of configuration properties across
multiple profiles, nodes, cells, servers, or applications.

For more information, see fPropertiesBasedConfiguration]
lcommand group for the AdminTask object” on page 479|

Chapter 2. Getting started with scripting 5

AdminTask command support for configuring the WebSphere® DataPower® appliance manager provides a

WebSphere® DataPower® appliance manager set of capabilities for managing sets of appliances.
DataPower appliance manager can be used to manage
appliances with a 3.6.0.4 or higher level of firmware. IBM®
WebSphere® DataPower SOA Appliances are
purpose-built, easy-to-deploy network devices that
simplify, help secure, and accelerate your XML and Web
services deployments.

For more information, see [‘Setting up the DataPower|
lappliance manager using scripting” on page 362
AdminTask command support for configuring proxy Use the commands and parameters in the
servers ProxyManagement group to configure proxy servers for
Web modules.

For more information, see [ProxyManagement command|
|group for the AdminTask object” on page 329

Overview and new features for scripting the application serving
environment

Use the links provided in this topic to learn about the administrative features.

[“What is new for scripted administration (wsadmin)” on page_4|

This topic provides an overview of new and changed features for administrative scripting and the
wsadmin tool.

[Introduction: Administrative scripting (wsadmin)|

This topic provides an introduction to administrative scripting and the wsadmin tool.

Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way of exposing Java
resources, for example, application servers, to a system management infrastructure. Using the JMX
framework, a provider can implement functions, such as listing the configuration settings, and editing the
settings. This framework also includes a notification layer that management applications can use to
monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server Version 6 implementation of JMX include:
» All processes that run the JMX agent.
* All run-time administration that is performed through JMX operations.

» Connectors that are used to connect a JMX agent to a remote JMX-enabled management application.
The following connectors are supported:

— SOAP JMX Connector

— JMX Remote application programming interface (JSR 160) Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector, (the JSR160RMI connector)

— Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-1IOP) JMX Connector
— Inter-Process Communications (IPC)

» Protocol adapters that provide a management view of the JMX agent through a given protocol.
Management applications that connect to a protocol adapter are usually specific to a given protocol.

* The ability to query and update the configuration settings of a run-time object.

6 Scripting the application serving environment

The ability to load, initialize, change, and monitor application components and resources during
run-time.

JMX architecture

The JMX architecture is structured into three layers:

Instrumentation layer - Dictates how resources can be wrapped within special Java beans, called
managed beans (MBeans).

Agent layer - Consists of the MBean server and agents, which provide a management infrastructure.
The services that are implemented include:

— Monitoring
— Event notification
— Timers

Management layer - Defines how external management applications can interact with the underlying
layers in terms of protocols, APIs, and so on. This layer uses an implementation of the distributed
services specification (JSR-077), which is not yet part of the Java 2 platform, Enterprise Edition (J2EE)
specification.

The layered architecture of JMX is summarized in the following figure:

I e T

| Connector | | Adapter |

\ 5 Agent Layer
MBean Server
Y Y
Agent Agent Agent Services
services services | (s MBeans)
v Java virtual machine ‘} Instrumentation Layer
Resource 1 Resource 2
MBean MBean

Manages Manages

Resource 2

Reﬁou rce 1 Managed Resources

Figure 1: JMX architecture

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall distributed administration topology
of a Network Deployment environment:

Chapter 2. Getting started with scripting

7

Clients, Multi-cell,

management, & other EMS
/ (Tivoli, BMC)
Deployment Manager

Node Agent
Configuration
\ Repository Service
To other
Nodes Master
files

To Other
Application Servers

Application Server / \

MBean
Server

Configuration
— Distribution Service

Configuration /

] files

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:
* Internal MBeans that are local to the Java virtual machine (JVM) register with the local MBean server.

» External MBeans have a local proxy to their MBean server. The proxy registers with the local MBean
server.

Using the MBean proxy the local MBean server can pass the message to an external MBean server
that is located on:

— A node agent that has an MBean proxy for all the servers within its node. The MBean proxies for
other nodes are not used.

— The deployment manager has MBean proxies for all the node agents in the cell.
JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which has different functions and
operations available. For example, an application server MBean can expose operations such as start and
stop. An application MBean can expose operations such as install and uninstall. Some JMX usage
scenarios that you can encounter include:

» External programs that are written to control the Network Deployment run time and its WebSphere
resources by programmatically accessing the JMX API.

» Third-party applications that include custom JMX MBeans as part of the deployed code, supporting the
JMX APl management of application components and resources.

The following example illustrates how to obtain the name of a particular MBean:

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,=]

Using Jython:

8 Scripting the application serving environment

am = AdminControl.queryNames('type=ApplicationManager,process=serverl,x"')

Each WebSphere Application Server runtime MBean can have attributes, operations, and notifications. The
complete documentation for each MBean that is supplied with WebSphere Application Server is available
in an HTML table that is installed in each copy of the WebSphere Application Server product. Under the
main installation directory for the product, there is the web directory. Under the web directory there is
another directory called mbeanDocs. In the mbeanDocs directory there are several HTML files; one HTML file
for each MBean supplied with WebSphere Application Server. There is also an index.html file that ties all
the individual MBean files together in a top-level navigation tree. Each MBean provides a summary of its
attributes, operations, and notifications.

JMX benefits

The use of JMX for management functions in WebSphere Application Server provides the following
benefits:

* Enables the management of Java applications without significant investment.
* Relies on a core-managed object server that acts as a management agent.

» Java applications can embed a managed object server and make some of its functionality available as
one or several MBeans that are registered with the object server.

* Provides a scalable management architecture.
* Every JMX agent service is an independent module that can be plugged into the management agent.

* The API is extensible, allowing new WebSphere Application Server and custom application features to
be easily added and exposed through this management interface.

* Integrates existing management solutions.

« Each process is self-sufficient when it comes to the management of its resources. No central point of
control exists. In principle, a JMX-enabled management client can be connected to any managed
process and interact with the MBeans that are hosted by that process.

* JMX provides a single, flat, domain-wide approach to system management. Separate processes interact
through MBean proxies that support a single management client to seamlessly navigate through a
network of managed processes.

» Defines the interfaces that are necessary for management only.
* Provides a standard API for exposing application and administrative resources to management tools.

WebSphere Application Server configuration model

Understanding the relationship between the different configuration objects is essential when creating
wsadmin scripts that perform configuration function.

Configuration data is stored in several different XML files which the server run time reads when it starts
and responds to the component settings stored there. The configuration data includes the settings for the
run time, such as, Java virtual machine (JVM) options, thread pool sizes, container settings, and port
numbers the server will use. Other configuration files define Java 2 Platform, Enterprise Edition (J2EE)
resources to which the server connects in order to obtain data that is needed by the application logic.
Security settings are stored in a separate document from the server and resource configuration.
Application-specific configuration, such as, deployment target lists, session configuration, and cache
settings, are stored in files under the root directory of each application. When viewing the XML data in the
configuration files, you can discern relationship between the configuration objects.

For more information on the WebSphere Application Server configuration objects view the HTML tables in
the installroot/web/configDocs directory. There are several subdirectories, one for each configuration
package in the model. The index.html file ties all of the individual configuration packages together in a
top-level navigation tree. Each configuration package lists the supported configuration classes and the
configuration class lists all of the supported properties. The properties with names that end with the at (@)

Chapter 2. Getting started with scripting 9

character imply that property is a reference to a different configuration object within the configuration data.
The properties with names that end with an asterisk (*) character imply that the property is a list of other
configuration objects.

Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.
The wsadmin tool uses Jacl V1.3.2.
Deprecation of the Jacl syntax in the wsadmin tool

Deprecation of a product feature does not mean that the feature is removed from the product immediately.
Deprecation is a process of announcing the intent to remove the feature at some future time. The
WebSphere Application Server deprecation procedure calls for a feature to remain in the product for two
full release cycles before the feature can be removed. For more information about deprecation of features,
see the Deprecated and removed features article in the Migrating, coexisting, and interoperating PDF.

The wsadmin administrative scripting program supports two scripting languages, Jacl and Jython. The
Version 6.1 release of WebSphere Application Server marked the start of the deprecation process for the
Jacl syntax that is associated with the wsadmin tool. The Jacl syntax for the wsadmin tool continues to
remain in the product and is supported for at least one major product release after Version 7.0. After that
time, the Jacl language support might be removed from the wsadmin tool.

The Jython syntax for the wsadmin tool is the strategic direction for WebSphere Application Server
administrative automation. WebSphere Application Server continues to provide enhanced administrative
functions and tooling that support product automation and the use of the Jython syntax. The following
Jython scripting-related enhancements are provided in WebSphere Application Server:

+ [Administrative console command assist|- A new feature of the WebSphere Application Server
administrative console that displays the wsadmin command that is equivalent to the action taken by the
user that interacts with the console. The output from the console command assist feature can be
transferred directly to the WebSphere Application Server Tool, which simplifies the development of
Jython scripts that are based on administrative console actions. You can also save the output after
using the console command assist feature in a plain text file for later use.

» Jacl-to-dython conversion utility - a program that converts Jacl syntax wsadmin scripts into equivalent
Jython syntax wsadmin scripts. Dozens of new wsadmin high-level commands that decouple the script
from the underlying administrative model through use of simple parameters and smart default logic.

All future enhancements in the area of WebSphere Application Server scripting will focus on use of the
Jython syntax. While Jacl will remain as a component that is shipped with WebSphere Application Server
for at least one additional full release, no new tooling or explicit enhancements will be created for the Jacl
syntax.

Basic syntax:

The basic syntax for a Jacl command is the following:
Command argl arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For example:

puts stdout {Hello, world!}
=> Hello, world!

In this example, the command is puts which takes two arguments, an 1/O stream identifier and a string.

The puts command writes the string to the I/O stream along with a trailing new line character. The
arguments are interpreted by the command. In the example, stdout is used to identify the standard output

10 Scripting the application serving environment

stream. The use of stdout as a name is a convention employed by the puts command and the other 1/0
commands. stderr identifies the standard error output, and stdin identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two arguments: the name of the
variable and the value. Variable names can be any length and are case sensitive. You do not have to
declare Jacl variables before you use them. The interpreter will create the variable when it is first assigned
a value. For example:

set a b

=> 5

set b $a
=>5

The second example assigns the value of variable a to variable b. The use of dollar sign ($) is indicates
variable substitution. You can delete a variable with the unset command, for example:

unset varNamel varName2 ...

You can pass any number of variables to the unset command. The unset command will give error if a
variable is not already defined. You can delete an entire array or just a single array element with the unset
command. Using the unset command on an array is a easy way to clear out a big data structure. The
existence of a variable can be tested with the info exists command. You may have to test for the
existence of the variable because the incr parameter requires that a variable exist first, for example:

if ![info exists foobar] {set foobar 0} else {incr foobar}
Command substitution:

The second form of substitution is command substitution. A nested command is delimited by square
brackets, []. The Jacl interpreter evaluates everything between the brackets and evaluates it as a
command. For example:

set Ten [string Tength foobar]
= 6

In this example, the nested command is the following: string Tength foobar. The string command
performs various operations on strings. In this case, the command asks for the length of the string foobar.
If there are several cases of command substitution within a single command, the interpreter processes
them from left bracket to right bracket. For example:

set number "1 2 3 4"

=>1234

set one [lindex $number 0]

= 1

set end [lindex $number end]

=> 4

set another {123 456 789}

=> 123 456 789

set stringLen [string length [lindex $another 1]]

=> 3

set TistLen [1length [lindex $another 1]

= 1

Math expressions:

The Jacl interpreter does not evaluate math expressions. Use the expr command to evaluate math
expressions. The implementation of the expr command takes all arguments, concatenates them into a
single string, and parses the string as a math expression. After the expr command computes the answer,
it his formatted into a string and returned. For example:

Chapter 2. Getting started with scripting 11

expr 7.2 / 3
=> 2.4

Backslash substitution:

The final type of substitution done by the Jacl interpreter is backslash substitution. Use this to quote
characters that have special meaning to the interpreter. For example, you can specify a literal dollar sign,
brace, or bracket by quoting it with a backslash. If you are using lots of backslashes, instead you can
group things with curly braces to turn off all interpretation of special characters. There are cases where
backslashes are required. For example:

set dollar "This is a string \$contain dollar char"
=> This is a string $contain dollar char

set x $dollar
=> This is a string $contain dollar char

set group {$ {} [1 { [} 1}
=${30{[}]

You can also use backslashes to continue long commands on multiple lines. A new line without the
backslash terminates a command. A backslashes that are the last character on a line convert into a space.
For example:

set totalLength [expr [string Tength "first string"] + \

[string Tlength "second string"]]
=> 25

Grouping with braces and double quotes:

Use double quotes and curly braces to group words together. Quotes allow substitutions to occur in the
group and curly braces prevent substitution. This rule applies to command, variable, and backslash
substitutions. For example:

set s Hello
=> Hello

puts stdout "The length of $s is [string Tength $s]."
=> The Tength of Hello is 5.

puts stdout {The length of $s is [string Tength §s].}
=> The Tength of $s is [string length §s].

In the second example, the Jacl interpreter performs variable and command substitution on the second
argument from the puts command. In the third command, substitutions are prevented so the string is
printed as it is.

Special care must also be taken with path descriptions because the Jacl language uses the backslash
character (\) as an escape character. To fix this, either replace each backslash with a forward slash, or use
double backslashes in distributed path statements. For example: C:/ or C:\\

Procedures and scope:

Jacl uses the proc command to define procedures. The basic syntax to define a procedure is the
following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case sensitive, and in fact it
can contain any characters. Procedure names and variable names do not conflict with each other. The

12 Scripting the application serving environment

second argument is a list of parameters to the procedures. The third argument is a command, or more
typically a group of commands that form the procedure body. Once defined, a Jacl procedure is used just
like any of the built-in commands. For example:

proc divide {x y} {

set result [expr $x/$y]
puts $result

1

Inside the script, this is how to call devide procedure:
divide 20 5

And it will give the result like below:
4

It is not really necessary to use the variable c¢ in this example. The procedure body could also written as:
return [expr sqrt($a * $a + $b * $b)]

The return command is optional in this example because the Jacl interpreter returns the value of the last
command in the body as the value of the procedure. So, the procedure body could be reduced to:

expr sqrt($a * $a + $b = $b)

The result of the procedure is the result returned by the last command in the body. The return command
can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure inside another
procedure, but it is visible everywhere. There is a different name space for variables and procedures
therefore you may have a procedure and a variable with the same name without a conflict. Each
procedure has a local scope for variables. Variables introduced in the procedures only exist for the
duration of the procedure call. After the procedure returns, those variables are undefined. If the same
variable name exists in an outer scope, it is unaffected by the use of that variable name inside a
procedure. Variables defined outside the procedure are not visible to a procedure, unless the global scope
commands are used.

» global command - Global scope is the top level scope. This scope is outside of any procedure. You
must make variables defined at the global scope accessible to the commands inside procedure by using
the global command. The syntax for the global command is the following:

global varNamel varName2 ...
Comments
Use the pound character (#) to make comments.
Command line arguments
The Jacl shells pass the command line arguments to the script as the value of the argv variable. The
number of command line arguments is given by argc variable. The name of the program, or script, is not

part of argv nor is it counted by argc. The argv variable is a list. Use the lindex command to extract items
from the argument list, for example:

set first [lindex $argv 0]
set second [lindex $argv 1]

Strings and pattern matching

String are the basic data item in the Jacl language. There are multiple commands that you can use to
manipulate strings. The general syntax of the string command is the following:

string operation stringvalue otherargs

Chapter 2. Getting started with scripting 13

The operation argument determines the action of the string. The second argument is a string value. There
may be additional arguments depending on the operation.

The following table includes a summary of the string command:

Command

Description

string compare str1 str2

Compares strings lexicographically. Returns 0 if equal, -1
if str1 sorts before str2, elsel.

string first str1 str2

Returns the index in str2 of the first occurrence of str1, or
-1 if str1 is not found.

string index string index

Returns the character at the specified index.

string last str1 str2

Returns the index in str2 of the last occurrence of str1, or
-1 if str1 is not found.

string length string

Returns the number of character in string.

string match pattern str

Returns 1 if str matches the pattern, else 0.

string range stri j

Returns the range of characters in str from i to j

string tolower string

Returns string in lower case.

string toupper string

Returns string in upper case.

string trim string ?chars?

Trims the characters in chars from both ends of string.
chars defaults to white space.

string trimleft string ?chars?

Trims the characters in chars from the beginning of string.
chars defaults to white space.

string trimright string ?chars?

Trims the characters in chars from the end of string.
chars defaults to white space.

string wordend str ix

Returns the index in str of the character after the word
containing the character at index ix.

string wordstart str ix

Returns the index in str of the first character in the word
containing the character at index ix.

The append command

The first argument of the append command is a variable name. It concatenates the remaining arguments
onto the current value of the named variable. For example:

set foo z
= 7

append foo a b c
=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The syntax is the
following:

regexp ?flags? pattern string ?match subl sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the return value will be 0.
The pattern does not have to match the whole string. If you need more control than this, you can anchor
the pattern to the beginning of the string by starting the pattern with ~, or to the end of the string by ending
the pattern with dollar sign, $. You can force the pattern to match the whole string by using both
characters. For example:

14 Scripting the application serving environment

set textl "This is the first string"
=> This is the first string

regexp "first string" $textl
= 1

regexp "second string" $textl
=> 0

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level data structures: lists
and arrays. Lists are implemented as strings and the structure is defined by the syntax of the string. The
syntax rules are the same as for commands. Commands are a particular instance of lists. Arrays are
variables that have an index. The index is a string value so you can think of arrays as maps from one
string (the index) to another string (the value of the array element).

Jacl lists

The lists of the Jacl language are strings with a special interpretation. In the Jacl language, a list has the
same structure as a command. A list is a string with list elements separated by white space. You can use
braces or quotes to group together words with white space into a single list element.

The following table includes commands that are related to lists:

Command

Description

list arg1 arg2

Creates a list out of all its arguments.

lindex list i Returns the i’'th element from list.
llength list Returns the number of elements in list.
Irange list i j Returns the ith through j'th elements from list.

lappend listVar arg arg ...

Appends elements to the value of listVar

linsert list index arg arg ...

Inserts elements into list before the element at position
index. Returns a new list.

Ireplace list i j arg arg ...

Replaces elements i through j of list with the args. Return
a new list.

Isearch mode list value

Returns the index of the element in list that matches the
value according to the mode, which is -exact, -glob, or
-regexp, -glob is the default. Return -1 if not found.

Isort switches list

Sorts elements of the list according to the switches:
-ascii, -integer, -real, -increasing, -decreasing, -command
command. Return a new list.

concat arg arg arg ...

Joins multiple lists together into one list.

join list joinString

Merges the elements of a list together by separating them
with joinString.

split string splitChars

Splits a string up into list elements, using the characters
in splitChars as boundaries between list elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a variable with a string-valued
index, so you can think of an array as a mapping from strings to strings. Internally an array is implemented
with a hash table. The cost of accessing each element is about the same. The index of an array is

Chapter 2. Getting started with scripting 15

delimited by parentheses. The index can have any string value, and it can be the result of variable or
command substitution. Array elements are defined with the set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set foo $arr(index)

For example:
set fruit(best) kiwi
=> kiwi

set fruit(worst) peach
=> peach

set fruit(ok) banana
=> banana

array get fruit
=> ok banana worst peach best kiwi

array exists fruit
=> 1

The following table includes array commands:

Command

Description

array exists arr

Returns 1 if arr is an array variable.

array get arr

Returns a list that alternates between an index and the
corresponding array value.

array names arr ?pattern?

Return the list of all indices defined for arr, or those that
match the string match pattern.

array set arr list

Initializes the array arr from list, which should have the
same form as the list returned by get.

array size arr

Returns the number of indices defined for arr.

array startsearch arr

Returns a search token for a search through arr.

array nextelement arr id

Returns the value of the next element in array in the
search identified by the token id. Returns an empty string
if no more elements remain in the search.

array anymore arr id

Returns 1 if more elements remain in the search.

array donesearch arr id

Ends the search identified by id.

Control flow commands

The following looping commands exist:

* while

» foreach

» for

The following are conditional commands:
o if

* switch

The following is an error handling command:
e catch

16 Scripting the application serving environment

The following commands fine-tune control flow:
* break

e continue

* return

s error

If Then Else

The if command is the basic conditional command. It says that if an expression is true, then run the
second line of code, otherwise run a different line of code. The second command body (the else clause) is
optional. The syntax of the command is the following:

if boolean then bodyl else body2

The then and else keywords are optional. For example:

if {$x == 0} {
puts stderr "Divide by zero!"
} else {

set slope [expr $y/$x]
}

Switch

Use the switch command to branch to one of many commands depending on the value of an expression.
You can choose based on pattern matching as well as simple comparisons. Any number of pattern-body
pairs can be specified. If multiple patterns match, only the code body of the first matching pattern is
evaluated. The general form of the command is the following:

switch flags value patl bodyl pat2 body?2

You can also group all the pattern-body pairs into one argument:
switch flags value {patl bodyl pat2 body2 ...}

There are four possible flags that determines how value is matched.

* -exact Matches the value exactly to one of the patterns.

* -glob Uses glob-style pattern matching.

» -regexp Uses regular expression pattern matching.

* -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value

foo {doFoo; incr count(foo)}
bar {doBar; return $count(foo)}
default {incr count(other)}

1

If the pattern that is associated with the last body is default, then the command body is started if no other
patterns match. The default keyword only works on the last pattern-body pair. If you use the default
pattern on an earlier body, it will be treated as a pattern to match the literal string default.

Foreach

The foreach command loops over a command body and assigns a loop variable to each of the values in a
list. The syntax is the following:

foreach loopVar valuelist commandBody

Chapter 2. Getting started with scripting 17

The first argument is the name of a variable. The command body runs one time for each element in the
loop with the loop variable having successive values in the list. For example:

set numbers {1 3 5 7 11 13}

foreach num $numbers {

puts $num

}

The result from the previous example will be the following output, assuming that only one server exists in
the environment. If there is more than one server, the information for all servers returns:

1

3

5

7

11

13

While

The while command takes two arguments; a test and a command body, for example:
while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if the expression is true
(non-zero). For example:

set i 0

while {§i < 5} {
puts "i is §i"
incr i}

The result from the previous example will be like the following output, assuming that there is only one
server. If there is more then one servers, it will print all of the servers:

is
is
is
is
is

—_ e e
PR O

For

The for command is similar to the C language for statement. It takes four arguments, for example:
for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression
which determines if the loop body will run. The third argument is a command that runs after the loop body:
For example:

set numbers {1 3 5 7 11 13}

for {set i 0} {$i < [11ength $numbers]} {incr i 1} {

puts "i is $i"

}

The result from previous example will be like the following output, assuming that there is only one server
in the environment. If there is more then one server, it will print all of the server names:

is 1

is 3

is b

is 7

is 11

is 13

P U O PR

18 Scripting the application serving environment

Break and continue

You can control loop execution with the break and continue commands. The break command causes an
immediate exit from a loop. The continue command causes the loop to continue with the next iteration.

Catch

An error will occur if you call a command with the wrong number of arguments or if the command detects
some error condition particular to its implementation. An uncaught error prevents a script from running.
Use the catch command trap such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a variable that will contain
the result of the command or an error message if the command raises an error. The catch command
returns a value of zero if no error was caught or a value of one if the command catches an error. For
example:

catch {expr 20 / 5} result

puts $result
==> syntax error in expression "text / 5"

Return

Use the return command to return a value before the end of the procedure body or if a contrast value
needs to be returned.

Namespaces

Jacl keeps track of named entities such as variables, in namespaces. The wsadmin tool also adds entries
to the global namespace for the scripting objects, such as, the AdminApp object

When you run a proc command, a local namespace is created and initialized with the names and the
values of the parameters in the proc command. Variables are held in the local namespace while you run
the proc command. When you stop the proc command, the local nhamespace is erased. The local
namespace of the proc command implements the semantics of the automatic variables in languages such
as C and Java.

While variables in the global namespace are visible to the top level code, they are not visible by default
from within a proc command. To make them visible, declare the variables globally using the global
command. For the variable names that you provide, the global command creates entries in the local
namespace that point to the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must declare it globally before
you can use it, for example:

proc { ... } {
global AdminConfig
... [$AdminConfig ...]

}
Calling scripts using another script

Use the source command to call a Jacl script from another Jacl script. For example:

Chapter 2. Getting started with scripting 19

Create a script called test1.jacl.

source c:/temp/script/testProcedure.jacl
printName Cathy Smith

Create a script called testProcedure.jacl.

proc printName {first last} {
puts "My name is $first §last"

Pass the following path as a script argument.
wsadmin -Tang jacl -f c:/temp/script/testl.jacl

You must use forward slashes (/) as your path separator. Backward slashes (\) will not work.
Redirection using the exec command

The following Jacl exec command for redirection does not work on Linux® platforms:
eval exec 1s -1 > /tmp/out

The exec command of the Jacl scripting language does not fully support redirection therefore it might
cause problems on some platforms.

Do not use redirection when using the exec command of the Jacl language. Instead, you can save the
exec command for redirection in a variable and write it to a file, for example:

open /tmp/out w puts $fileld $result close $fileld

In some cases, you can also perform a redirection using shell and a .sh command redirection, not a
redirection issued by Tcl.

Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

The wsadmin tool uses Jython V2.1. The following information is a basic summary of the Jython syntax. In
all sample code, the => notation at the beginning of a line represents command or function output.

Note: The product uses a Jython version that does not support Microsoft® Windows® 2003 or Windows
Vista operating systems.

Basic function

The function is either the name of a built-in function or a Jython function. For example, the following
functions return "Hello, World!" as the output:

print "Hello, World!"
=>Hello, World!

import sys
sys.stdout.write("Hello World!\n")
=>Hello, World!

In the example, print identifies the standard output stream. You can use the built-in module by running
import statements such as the previous example. The statement import runs the code in a module as part
of the importing and returns the module object. sys is a built-in module of the Python language. In the
Python language, modules are name spaces which are places where names are created. Names that
reside in modules are called attributes. Modules correspond to files and the Python language creates a
module object to contain all the names defined in the file. In other words, modules are name spaces.

20 Scripting the application serving environment

Variable

To assign objects to names, the target of an assignment should be on the left side of an equal sign (=)

and the object that you are assigning on the right side. The target on the left side can be a name or object
component, and the object on the right side can be an arbitrary expression that computes an object. The

following rules exist for assigning objects to names:
» Assignments create object references.

* Names are created when you assign them.

* You must assign a name before referencing it.

Variable name rules are similar to the rules for the C language, for example:
* An underscore character (_) or a letter plus any number of letters, digits or underscores

The following reserved words can not be used for variable names:

and assert break class continue
def del elif else except

exec finally for from global

if dimport in is Tlambda

not or pass print raise

return try while

For example:

a =5
print a
=>5

b= a
print b
=> 5

textl, text2, text3, textd = 'good', 'bad', 'pretty', 'ugly'
print text3
=> pretty

The second example assigns the value of variable a to variable b.

Types and operators

The following list contains a few of the built-in object types:
* Numbers. For example:
8, 3.133, 999L, 3+4j

numl = int(10)
print numl
=> 10

» Strings. For example:

'name', "name's",

print str(12345)
=> '12345'
» Lists. For example:
x = [1, [2, 'free'], 5]
y = [0, 1, 2, 3]
y.append(5)
print y
=> [0,]', 2’ 3, 5]

y.reverse()
print y

Chapter 2. Getting started with scripting

21

=> [5, 3, 2, 1, 0]

y.sort()
print y
=> [0, 1, 2, 3, 5]

print Tist("apple")

= [Ial, |p|, |pl, I'II, lel]
print 1ist((1,2,3,4,5))

= [1, 2, 3, 4, 5]

test = "This is a test"
test.index("test")
=> 10

test.index('s"')

=> 3
The following list contains a few of the operators:
e Xory

y is evaluated only if x is false. For example:

print 0 or 1
=> 1

e xandy
y is evaluated only if x is true. For example:

print 0 and 1
= 0

* X+Yy,X-Yy
Addition and concatenation, subtraction. For example:

print 6 + 7
=> 13

textl = 'Something'
text2 = ' else'
print textl + text2
=> Something else

listl = [0, 1, 2, 3]
list2 = [4, 5, 6, 7]
print Tistl + 1ist2
= [0, 1, 2, 3, 4, 5, 6, 7]

print 10 - 5
=> §

* XY, X/Y, X%y
Multiplication and repetition, division, remainder and format. For example:

print 5 * 6
=> 30

print 'test' * 3
=> test test test

print 30 / 6
=> §

print 32 % 6
= 2
X[, il x(...)
Indexing, slicing, function calls. For example:

22 Scripting the application serving environment

test = "This is a test"
print test[3]
=> g

print test[3:10]
=> s is a

print test[5:]
=> is a test

print test[:-4]
=> This is a print len(test)

=> 14
° < <=, >, >=, ==, <>, |=, isis not
Comparison operators, identity tests. For example:
L1 = [1, ('a', 3)]
L2 = [1, ('a', 2)]

L1 < L2, L1 == L2, L1 > L2, L1 <> L2, L1 != L2, L1 is L2, L1 is not L2
=> (0, 0,1, 1, 1,0, 1)

Backslash substitution
If a statement needs to span multiple lines, you can also add a back slash (\) at the end of the previous

line to indicate you are continuing on the next line. Do not use white space characters, specifically tabs or
spaces, after the back slash character. For example:

text = "This is a test of a long Tines" \
" continuing lines here."
print text

=> This is a test of a long Tines continuing Tines here.
Functions and scope

Jython uses the def statement to define functions. Functions related statements include:
e def, return

The def statement creates a function object and assigns it to a name. The return statement sends a
result object back to the caller. This is optional, and if it is not present, a function exits so that control
flow falls off the end of the function body.

e global

The global statement declares module-level variables that are to be assigned. By default, all names
assigned in a function are local to that function and exist only while the function runs. To assign a name
in the enclosing module, list functions in a global statement.

The basic syntax to define a function is the following:

def name (argl, arg2, ... ArgN)
statements
return value

where name is the name of the function being defined. It is followed by an open parenthesis, a close
parenthesis and a colon. The arguments inside parenthesis include a list of parameters to the procedures.
The next line after the colon is the body of the function. A group of commands that form the body of the
function. After you define a Jython function, it is used just like any of the built-in functions. For example:
def intersect(seql, seq2):

res = []

try:

for x in seql:
if x in seq2:

Chapter 2. Getting started with scripting 23

res.append(x)
except:
pass
return res

To call the function above, use the following command:

sl "SPAM"
s2 "SCAM"
intersect(sl, s2)
=> [S, A, M]

intersect([1,2,3], (1.4))
=> [1]

Comments
Make comments in the Jython language with the pound character (#).
Command line arguments

The Jython shells pass the command line arguments to the script as the value of the sys.argv. In wsadmin
Jython, the name of the program, or script, is not part of sys.argv. Unlike wsadmin Jython, Jython
standalone takes the script file as the first argument to the script. Since sys.argv is an array, use the index
command to extract items from the argument list. For example, test.py takes 3 arguments a, b, and c.

wsadmin -f test.py a b c

test.py content:

import sys

first = sys.argv[0]
second = sys.argv[1]
third = sys.argv[2]
arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if. The error handling
statement is try. Finally, there are some statements to fine-tune control flow: break, continue and pass.
The following is a list of syntax rules in Python:

» Statements run one after another until you say otherwise. Statements normally end at the end of the
line they appear on. When statements are too long to fit on a single line you can also add a back sash
(\) at the end of the prior line to indicate you are continuing on the next line.

* Block and statement boundaries are detected automatically. There are no braces, or begin or end
delimiter, around blocks of code. Instead, the Python language uses the indentation of statements under
a header in order to group the statements in a nested block. Block boundaries are detected by line
indentation. All statements indented the same distance to the right belong to the same block of code
until that block is ended by a line less indented.

» Compound statements = header; ', indented statements. All compound statements in the Python
language follow the same pattern: a header line terminated with a colon, followed by one or more
nested statements indented under the header. The indented statements are called a block.

» Spaces and comments are usually ignored. Spaces inside statements and expressions are almost
always ignored (except in string constants and indentation), so are comments.

If

The if statement selects actions to perform. The if statement may contain other statements, including
other if statements. The if statement can be followed by one or more optional elif statements and ends
with an optional else block.

24 Scripting the application serving environment

The general format of an if looks like the following:

if testl
statementsl

elif test2
statements?2

else
statements3

For example:
weather = 'sunny'
if weather == 'sunny':
print "Nice weather"
elif weather == 'raining':
print "Bad weather"
else:
print "Uncertain, don't plan anything"

While

The while statement consists of a header line with a test expression, a body of one or more indented
statements, and an optional else statement that runs if control exits the loop without running into a break
statement. The while statement repeatedly executes a block of indented statements as long as a test at
the top keeps evaluating a true value. The general format of an while looks like the following:
while testl

statementsl

else
statements?2

For example:

a=0; b=10

while a < b:
print a
a=a+1l

For

The for statement begins with a header line that specifies an assignment target or targets, along with an
object you want to step through. The header is followed by a block of indented statements which you want
to repeat.

The general format of a for statement looks like the following:

for target in object:
statements

else:
Statements

It assigns items in the sequence object to the target, one by one, and runs the loop body for each. The
loop body typically uses the assignment target to refer to the current item in the sequence as if it were a
cursor stepping through the sequence. For example:
sum = 0
for x in [1, 2, 3, 4]:

sum = sum + X

Break, continue, and pass

You can control loops with the break, continue and pass statements. The break statement jumps out of the
closest enclosing loop (past the entire loop statement). The continue statements jumps to the top of the
closest enclosing loop (to the header line of the loop), and the pass statement is an empty statement
placeholder.

Chapter 2. Getting started with scripting 25

Try

A statement will raise an error if it is called with the wrong number of arguments, or if it detects some error
condition particular to its implementation. An uncaught error aborts execution of a script. The try statement
is used to trap such errors. Python try statements come in two flavors, one that handles exceptions and
one that executes finalization code whether exceptions occur or not. The try, except, else statement
starts with a try header line followed by a block of indented statements, then one or more optional except
clauses that name exceptions to be caught, and an optional else clause at the end. The try, finally
statements starts with a try header line followed by a block of indented statements, then finally clause that
always runs on the way out whether an exception occurred while the try block was running or not.

The general format of the try, except, else function looks like the following:

try:
Sstatements
except name:
statements
except name, data:
statements
else
statements

For example:

try:
myfunction()
except:
import sys
print 'uncaught exception', sys.exc_info()

try:
myfilereader()
except EOFError:
break
else:
process next Tine here

The general format of a try and finally looks like the following:

try
statements

finally
statements

For example:
def divide(x, y):
return x / y

def tester(y):
try:
print divide(8, y)
finally:
print 'on the way out...'

Calling scripts using another script

Use the execfile command to call a Jython script from another Jython script. For example:
Create a script called test1.py that contains the following:
execfile('c:/temp/script/testFunctions.py')

print printName('Cathy', 'Smith')

Create a script called testFunctions.py that contains the following:

26 Scripting the application serving environment

def printName(first, Tast):
name = first + ' ' + last
return name

Then pass the following path as a script argument:
wsadmin -Tang jython -f 'c:/temp/script/testl.py’

You must use forward slashes (/) as your path separator. Backward slashes (\) will not work.

Using the wsadmin scripting objects

The wsadmin tool utilizes a set of management objects which allow you to execute commands and
command parameters to configure your environment. Use the AdminConfig, AdminControl, AdminApp,
AdminTask, and Help objects to perform administrative tasks.

About this task

Each of the management objects have commands that you can use to perform administrative tasks. To
use the scripting objects, specify the scripting object, a command, and command parameters. In the
following example, AdminConfig is the scripting object, attributes is the command, and
AppTlicationServer is the command parameter.

Using Jython:
print AdminConfig.attributes('ApplicationServer")

Using Jacl:
$AdminConfig attributes ApplicationServer

Administrative functions within the application server are divided into two categories: functions that work
with the configuration of application server installations, and functions that work with the currently running
objects on application server installations. Scripts work with both categories of objects. For example, an
application server is divided into two distinct entities. One entity represents the configuration of the server
that resides persistently in a repository on permanent storage.

» Use the AdminConfig object, the AdminTask object, and the AdminApp object to handle
configuration functionality.

The AdminConfig object, the AdminTask object, and the AdminApp object are used when you are
managing the configuration of the server that resides persistently in a repository on permanent storage.
Use these objects to create, query, change, or remove this configuration without starting an application
server process. To use the AdminTask object, you must be connected to a running server.

» Use the AdminControl object to manage running objects on application server installations.

The AdminControl object is used when managing the running instance of an application server by a
Java Management Extensions (JMX) MBean. This instance can have attributes that you can interrogate
and change, and operations that you can invoke. These operational actions that are taken against a
running application server do not have an effect on the persistent configuration of the server. The
attributes that support manipulation from an MBean differ from the attributes that the corresponding
configuration supports. The configuration can include many attributes that you cannot query or set from
the running object. The application server scripting support provides functions to locate configuration
objects and running objects. The objects in the configuration do not always represent objects that are
currently running. The AdminControl object manages running objects.

* Use the Help Object to obtain information about the AdminConfig, AdminApp, AdminControl, and
AdminTask objects, to obtain interface information about running MBeans, and to obtain help for
warnings and error messages.

Chapter 2. Getting started with scripting 27

Help object for scripted administration
The Help object provides general help, online information about running MBeans, and help on messages.

Use the Help object to obtain general help for the other objects supplied by the wsadmin tool for scripting:
the AdminApp, AdminConfig, AdminTask, and AdminControl objects. For example, using Jacl, $Help
AdminApp or using Jython, Help.Adminapp(), provides information about the AdminApp object and the
available commands.

The Help object also to provides interface information about MBeans running in the system. The
commands that you use to get online information about the running MBeans include: all, attributes,
classname, constructors, description, notification, operations.

You can also use the Help object to obtain information about messages using the message command.
The message command provides aid to understand the cause of a warning or error message and find a
solution for the problem. For example, you receive a WASX7115E error when running the AdminApp install
command to install an application, use the following example:

Using Jacl:
$Help message WASX7115E

Using Jython:
print Help.message('WASX7115E")

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary Tocation for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is important to understand
that in some cases the user action may not be able to provide corrective actions to cover all the possible
causes of an error. It is an aid to provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the|Commands for the Help object article
or you can also use the Help command, for example:

Using Jacl:
$Help help

Using Jython:
print Help.help()

Using the AdminApp object for scripted administration
Use the AdminApp object to manage applications.

Before you begin

This object communicates with the run time application management object in WebSphere Application
Server to make application inquires and changes, for example:

 Installing and uninstalling applications
 Listing applications
» Editing applications or modules

28 Scripting the application serving environment

Because applications are part of configuration data, any changes that you make to an application are kept
in the configuration session, similar to other configuration data. Be sure to save your application changes
so that the data transfers from the configuration session to the master repository.

About this task

With the application already installed, the AdminApp object can update application metadata, map virtual
hosts to Web modules, and map servers to modules. You must perform any other changes, such as
specifying a library for the application to use or setting session management configuration properties,
using the AdminConfig object.

You can run the commands for the AdminApp object in local mode. If a server is running, it is not
recommended that you run the scripting client in local mode because any configuration changes that are
made in local mode will not be reflected in the running server configuration and vice versa. If you save a
conflicting configuration, you could corrupt the configuration.

In a deployment manager environment, configuration updates are available only if a scripting client is
connected to a deployment manager. When connected to a node agent or a managed application server,
you will not be able to update the configuration because the configuration for these server processes are
copies of the master configuration which resides in the deployment manager. The copies are created on a
node machine when a configuration synchronization occurs between the deployment manager and the
node agent. Make configuration changes to the server processes by connecting a scripting client to a
deployment manager. For this reason, to change a configuration, do not run a scripting client in local mode
on a node machine. It is not a supported configuration.

To see a list of all available commands for the AdminApp object:
+ See the [Commands for the AdminApp object] article.
* You can also use the Help command, for example:

Using Jacl:

$AdminApp help

Using Jython:

print AdminApp.help()

Listing applications with the wsadmin tool
You can list installed applications using the wsadmin tool and scripting.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’|
article for more information.

* Query the configuration and create a list of installed applications, for example:
— Using Jacl:
$AdminApp list
— Using Jython:
print AdminApp.Tist()

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object that supports application object management
list is an AdminApp command

Example output:

Chapter 2. Getting started with scripting 29

DefaultApplication
SampTeApp
applserv2

— Using Jacl:

Query the configuration and create a list of installed applications on a given target scope, for example:

$AdminApp list WebSphere:cell=myCell,node=myNode,server=myServer

— Using Jython:

print AdminApp.list("WebSphere:cell=myCell,node=myNode,server=myServer")

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object that supports application object management
list is an AdminApp command

WebSphere:cell=myCell,node=myNode,server=myServer

is an optional target scope

Example output:

DefaultApplication
PTantsByWebSphere
SamplesGallery
ivtApp

query

Editing application configurations with the wsadmin tool
Use the wsadmin tool to configure application settings.

About this task

Note: If an application is running, changing an application setting causes the application to restart. On
stand-alone servers, the application restarts after you save the change. On multiple-server
products, the application restarts after you save the change and files synchronize on the node
where the application is installed. To control when synchronization occurs on multiple-server
products, deselect Synchronize changes with nodes on the Console preferences page.

1. [Launch the wsadmin scripting tool using the Jython scripting language.|

2. Edit the entire application or a single application module. Use one of the following commands:
* The following command uses the installed application and the command option information to edit

the application:

— Using Jacl:
$AdminApp edit appname {options}

— Using Jython list:
AdminApp.edit('appname', ['options'])

— Using Jython string:
AdminApp.edit('appname', '[options]')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object that supports application object management
edit is an AdminApp command

30 Scripting the application serving environment

appname is the name of application or application module to edit.
For the application module name, use the module name
returned from listModules command as the value.

{options} is a list of edit options and tasks similar to the ones for
the install command

» The following command changes the application information by prompting you through a series of
editing tasks:

— Using Jacl:
$AdminApp editInteractive appname
— Using Jython:
AdminApp.editinteractive('appname")

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object that supports application object management
editInteractive is an AdminApp command
appname is the name of application or application module to edit.

For the application module name, use the module name
returned from listModules command as the value.

3. Save the configuration changes.
4. In a network deployment environment only, synchronize the node.
Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.
» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:
AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Using the AdminControl object for scripted administration

The AdminControl scripting object is used for operational control. It communicates with MBeans that
represent live objects running a WebSphere server process.

Before you begin

It includes commands to query existing running objects and their attributes and invoke operation on the
running objects. In addition to the operational commands, the AdminControl object supports commands to
query information on the connected server, convenient commands for client tracing, reconnecting to a
server, and start and stop server for network deployment environment.

About this task
Many of the operational commands have two sets of signatures so that they can either invoke using string
based parameters or using Java Management Extension (JMX) objects as parameters. Depending on the

server process to which a scripting client is connected, the number and type of MBeans available varies.
When connected to an application server, only MBeans running in that application server are visible.

Chapter 2. Getting started with scripting 31

If a scripting client is connected to a deployment manager, then all MBeans in all server processes are
visible. If a scripting client is connected to a node agent, all MBeans in all server processes on that node
are accessible.

The following steps provide a general method to manage the cycle of an application:
 Install the application.

» Edit the application.

» Update the application.

* Uninstall the application.

To see a list of all available commands for the AdminControl object:
» See the [Commands for the AdminControl object] article.
* You can also use the Help command, for example:

Using Jacl:

$AdminControl help

Using Jython:

print AdminControl.help()

ObjectName, Attribute, and AttributeList classes

WebSphere Application Server scripting commands use the underlying Java Management Extensions
(JMX) classes, ObjectName, Attribute, and AttributeList, to manipulate object names, attributes and
attribute lists respectively.

The WebSphere Application Server ObjectName class uniquely identifies running objects. The ObjectName
class consists of the following elements:
* The domain name WebSphere.
» Several key properties, for example:
— type - Indicates the type of object that is accessible through the MBean, for example,
ApplicationServer, and EJBContainer.
— name - Represents the display name of the particular object, for example, MyServer.
— node - Represents the name of the node on which the object runs.
— process - Represents the name of the server process in which the object runs.
— mbeanIdentifier - Correlates the MBean instance with corresponding configuration data.

When ObjectName classes are represented by strings, they have the following pattern:
[domainName] : property=value[,property=value] *

For example, you can specify WebSphere:name="My Server”,type=ApplicationServer,node=nl,* to specify
an application server named My Server on node n1. (The asterisk (*) is a wildcard character, used so that
you do not have to specify the entire set of key properties.) The AdminControl commands that take strings
as parameters expect strings that look like this example when specifying running objects (MBeans). You
can obtain the object name for a running object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name and value with the
getName and the getValue methods that are available in the javax.management.Attribute class. You can
also extract a list of attributes.

Example: Collecting arguments for the AdminControl object
This example shows how to use multiple arguments with the AdminControl object.

Verify that the arguments parameter is a single string. Each individual argument in the string can contain
spaces. Collect each argument that contains spaces in some way.
* An example of how to obtain an MBean follows:

Using Jacl:

32 Scripting the application serving environment

set am [$AdminControl queryNames type=ApplicationManager,process=serverl,*]
Using Jython:
am = AdminControl.queryNames('type=ApplicationManager,process=serverl,*"')
» Multiple ways exist to collect arguments that contain spaces. Choose one of the following alternatives:

Using Jacl:

— $AdminControl invoke $am startApplication {"JavaMail Sample”}

— $AdminControl invoke $am startApplication {{JavaMail Sample}}

— $AdminControl invoke $am startApplication "\"JavaMail Sample\"”
Using Jython:

— AdminControl.invoke(am, ’startApplication’, ’[JavaMail Sample]’)
— AdminControl.invoke(am, ’startApplication’, ’\"JavaMail Sample\"’)

Example: Identifying running objects
Use the AdminControl object to interact with running MBeans.

In the WebSphere Application Server, MBeans represent running objects. You can interrogate the MBean
server to see the objects it contains.
* Use the queryNames command to see running MBean objects. For example:

Using Jacl:

$AdminControl queryNames *

Using Jython:

print AdminControl.queryNames('x")

This command returns a list of all MBean types. Depending on the server to which your scripting client

attaches, this list can contain MBeans that run on different servers:

— If the client attaches to a stand-alone WebSphere Application Server, the list contains MBeans that
run on that server.

— If the client attaches to a node agent, the list contains MBeans that run in the node agent and
MBeans that run on all application servers on that node.

— If the client attaches to a deployment manager, the list contains MBeans that run in the deployment
manager, all of the node agents communicating with that deployment manager, and all application
servers on the nodes served by those node agents.

* The list that the queryNames command returns is a string representation of JMX ObjectName objects. For
example:

WebSphere:cel1=MyCell,name=TraceService,mbeanldentifier=TraceService,
type=TraceService,node=MyNode,process=serverl

This example represents a TraceServer object that runs in server1 on MyNode.

» The single queryNames argument represents the ObjectName object for which you are searching. The
asterisk ("*") in the example means return all objects, but it is possible to be more specific. As shown in
the example, ObjectName has two parts: a domain, and a list of key properties. For MBeans created by
the WebSphere Application Server, the domain is WebSphere. If you do not specify a domain when you
invoke queryNames, the scripting client assumes the domain is WebSphere. This means that the first
example query above is equivalent to:

Using Jacl:

$AdminControl queryNames WebSphere:=*
Using Jython:

AdminControl.queryNames ('WebSphere:x")

* WebSphere Application Server includes the following key properties for the ObjectName object:
— name
— type
— cell
— node
— process

Chapter 2. Getting started with scripting 33

— mbeanldentifier

These key properties are common. There are other key properties that exist. You can use any of these
key properties to narrow the scope of the queryNames command. For example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode,*

Using Jython:

AdminControl.queryNames ('WebSphere:type=Server,node=myNode,*")

This example returns a list of all MBeans that represent server objects running the node myNode. The,
* at the end of the ObjectName object is a JMX wildcard designation. For example, if you enter the
following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Server,node=myNode")

you get an empty list back because the argument to queryNames is not a wildcard. There is no Server
MBean running that has exactly these key properties and no others.

» |If you want to see all the MBeans representing applications running on a particular node, invoke the
following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Application,node=myNode,*")

Specifying running objects using the wsadmin tool
Use scripting and the wsadmin tool to specify running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

About this task

Perform the following steps to specify running objects:

1. Obtain the configuration ID with one of the following ways:
* Obtain the object name with the completeObjectName command, for example:
— Using Jacl:
set var [$AdminControl completeObjectName template]
— Using Jython:

var = AdminControl.completeObjectName(template)

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName is an AdminControl command

34 Scripting the application serving environment

template is a string containing a segment of the object name to be

matched. The template has the same format as an object
name with the following pattern:

[domainName] :property=value[,property=value] *. See
[Object name, Attribute, Attribute list| for more information.

If there are several MBeans that match the template, the completeObjectName command only
retuns the first match. The matching MBean object name is then assigned to a variable.
To look for server1 MBean in mynode, use the following example:
— Using Jacl:

set serverl [$AdminControl completeObjectName node=mynode,type=Server,name=serverl,*]
— Using Jython:

serverl = AdminControl.completeObjectName('node=mynode,type=Server,name=serverl,x")
Obtain the object name with the queryNames command, for example:
— Using Jacl:

set var [$AdminControl queryNames template]
— Using Jython:

var = AdminControl.queryNames (template)

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application server process.

queryNames is an AdminControl command

template is a string containing a segment of the object name to be
matched. The template has the same format as an object
name with the following pattern:
[domainName] : property=value[,property=value] *

2. If there are more than one running objects returned from the queryNames command, the objects are

returned in a list syntax. One simple way to retrieve a single element from the list is to use the lindex
command in Jacl and split command in Jython. The following example retrieves the first running object
from the server list:

Using Jacl:

set allServers [$AdminControl queryNames type=Server,x]
set aServer [lindex $allServers 0]

Using Jython:
allServers = AdminControl.queryNames('type=Server,*")
get Tine separator

import java
lineSeparator = java.lang.System.getProperty('Tine.separator')

aServer = allServers.split(lineSeparator)[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified
configuration object, refer to the |Jacl syntax!

Chapter 2. Getting started with scripting 35

Results

You can now use the running object in with other AdminControl commands that require an object name as

a parameter.

Identifying attributes and operations for running objects with the wsadmin tool
You can use scripting to identify attributes and operations for running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]

on page 78| article for more information.

About this task

Use the attributes or operations commands of the Help object to find information on a running MBean in

the server.
1. [Specify a running object)

2. Use the attributes command to display the attributes of the running object:

» Using Jacl:
$Help attributes MBeanObjectName
* Using Jython:
Help.attributes(MBeanObjectName)

where:

$ is a Jacl operator for substituting a variable name with its
value

Help is the object that provides general help and information
for running MBeans in the connected server process

attributes is a Help command

MBeanObjectName is the string representation of the MBean object name
that is obtained in step 2

3. Use the operations command to find out the operations that are supported by the MBean:

* Using Jacl:
$Help operations MBeanObjectname

or

$Help operations MBeanObjectname operationName

* Using Jython:

Help.operations(MBeanObjectname)

or

Help.operations(MBeanObjectname, operationName)

where:
$ is a Jacl operator for substituting a variable name with its
value
Help is the object that provides general help and information

for running MBeans in the connected server process

operations

is a Help command

36 Scripting the application serving environment

MBeanObjectname is the string representation of the MBean object name
that is obtained in step number 2

operationName (optional) is the specified operation from which you want
to obtain detailed information

If you do not provide the operationName value, all the operations that are supported by the MBean
return with the signature for each operation. If you specify the operationName value, only the operation
that you specify returns and it contains details which include the input parameters and the return value.
To display the operations for the server MBean, use the following example:

» Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=serverl,x]
$Help operations $server

* Using Jython:

server = AdminControl.completeObjectName('type=Server,name=serverl,*")
print Help.operations(server)

To display detailed information about the stop operation, use the following example:
» Using Jacl:

$Help operations $server stop
* Using Jython:

print Help.operations(server, 'stop')

Performing operations on running objects using the wsadmin tool
You can use scripting to invoke operations on running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’|
on page 78| article for more information.

About this task

Perform the following steps to perform operations on running objects:
1. Obtain the object name of the running object. For example:
» Using Jacl:
$AdminControl completeObjectName name
* Using Jython:
AdminControl.completeObjectName (name)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used to find the
matching object name. For example:
type=Server,name=servl,*. It can be any valid
combination of domain and key properties. For example,
type, name, cell, node, process, etc.

2. Set the s1 variable to the running object, for example:
» Using Jacl:

Chapter 2. Getting started with scripting 37

set s1 [$AdminControl completeObjectName type=Server,name=serverl,x]

* Using Jython:

sl = AdminControl.completeObjectName('type=Server,name=serverl,*")

where:

set is a Jacl command

sl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

completeObjectName is an AdminControl command

type is the object name property key

Server is the name of the object

name is the object name property key

serverl is the name of the server where the operation is invoked

3. Invoke the operation. For example:

» Using Jacl:
$AdminControl invoke $s1 stop
* Using Jython:
AdminControl.invoke(sl, 'stop')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

invoke is an AdminControl command

sl is the ID of the server that is specified in step number 3

stop is an operation to invoke on the server

Example

The following example is for operations that require parameters:

Using Jacl:

set traceServ [$AdminControl completeObjectName type=TraceService,process=serverl,*]

$AdminControl invoke $traceServ appendTraceString "
Using Jython:

com.ibm.ws.management.*=all=enabled"

traceServ = AdminControl.completeObjectName('type=TraceService,process=serverl,x"')

AdminControl.invoke(traceServ, 'appendTraceString',

"com.ibm.ws.management.*=all=enabled")

Modifying attributes on running objects with the wsadmin tool
Use scripting and the wsadmin tool to modify attributes on running objects.

Before you begin

Before starting this task, the wsadmin tool must be ru
article for more information.

38 Scripting the application serving environment

nning. See the [‘Starting the wsadmin scripting client’]

About this task

Perform the following steps to modify attributes on running objects:
1. Obtain the name of the running object, for example:

» Using Jacl:
$AdminControl completeObjectName name
* Using Jython:
AdminControl.completeObjectName (name)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminControl is an object that enables the manipulation of MBeans that
run in @ WebSphere Application Server process
completeObjectName is an AdminControl command
name is a fragment of the object name that is used to find the
matching object name. For example:
type=TraceService,node=mynode,*. This value can be any
valid combination of domain and key properties, for
example, type, name, cell, node, process, and so on.
2. Set the ts1 variable to the running object, for example:
» Using Jacl:
set tsl [$AdminControl completeObjectName name]
* Using Jython:
tsl = AdminControl.completeObjectName (name)
where:
set is a Jacl command
tsl is a variable name
$ is a Jacl operator for substituting a variable name with its
value
AdminControl is an object that enables the manipulation of MBeans

running in a WebSphere Application Server process

completeObjectName

is an AdminControl command

name

is a fragment of the object name. It is used to find the
matching object name. For example:
type=TraceService,node=mynode,*. It can be any valid
combination of domain and key properties, for example,
type, name, cell, node, process, and so on.

3. Modify the running object, for example:
» Using Jacl:

$AdminControl setAttribute $tsl ringBufferSize 10

* Using Jython:

AdminControl.setAttribute(tsl, 'ringBufferSize', 10)

where:

is a Jacl operator for substituting a variable name with its
value

Chapter 2. Getting started with scripting 39

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

setAttribute is an AdminControl command

tsl evaluates to the ID of the server specified in step number
3

ringBufferSize is an attribute of modify objects

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:
» Using Jacl:

set tsl [$AdminControl completeObjectName type=TraceService,process=serverl,x]
$AdminControl setAttributes $tsl {{ringBufferSize 10} {traceSpecification com.ibm.*=all=disabled}}

* Using Jython list:

tsl = AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, [['ringBufferSize', 10], ['traceSpecification', 'com.ibm.*=all=disabled']])

* Using Jython string:

tsl =AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, '[[ringBufferSize 10] [traceSpecification com.ibm.*=all=disabled]]")

The new attribute values are returned to the command line.

Synchronizing nodes with the wsadmin tool
You can propagate node changes using scripting and the wsadmin tool.

Before you begin

There are two ways to complete this task. This topic uses the AdminControl object to synchronize nodes.
Alternatively, you can use the node administration scripts in the AdminNodeManagement script library to
synchronize a specific node, or to synchronize all active nodes.

About this task

A node synchronization is necessary in order to propagate configuration changes to the affected node or
nodes. By default, this situation occurs periodically, as long as the node can communicate with the
deployment manager. You can propagate changes explicitly by performing the following steps:

1. Set the variable for node synchronization.
» Using Jacl:
set Syncl [$AdminControl completeObjectName type=NodeSync,node=myNodeName ,*]
* Using Jython:
Syncl = AdminControl.completeObjectName('type=NodeSync,node=myNodeName ,*")

where:

set is a Jacl command

Syncl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

completeObjectName is an AdminControl command

40 Scripting the application serving environment

type=NodeSync,node=myNodeName is a fragment of the object name. The complete name is
returned by this command. This fragment is used to find
the matching object name which is the SyncNode object
for the myNodeName node, where myNodeName is the
name of the node that you use to synchronize
configuration changes. For example: type=Server,
name=servl. It can be any valid combination of domain
and key properties. For example, type, name, cell, node,
process, and so on.

Example output:

WebSphere:platform=common,cell=myNetwork,version=5.0,name=node
Sync,mbeanIdentifier=nodeSync,type=NodeSync,node=myBaseNode,
process=nodeagent

2. Synchronize the node by issuing the following command:
» Using Jacl:
$AdminControl invoke $Syncl sync
* Using Jython:
AdminControl.invoke(Syncl, 'sync')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans that
run in a WebSphere Application Server process

invoke is an AdminControl command

Syncl evaluates the ID of the server that is specified in step
number 1

sync is an attribute of modify command

Example output:
true

You receive an output value of true, if the synchronization completes.
Results

When the synchronization is complete, the files that are created in the config directory for the deployment
manager now exist on the mynode node in the following directory:

* c:/WebSphere/AppServer/config

Using the AdminConfig object for scripted administration
Use the AdminConfig object to manage the configuration information that is stored in the repository.

Before you begin

This object communicates with the WebSphere Application Server configuration service component to
make configuration inquires and changes. You can use it to query existing configuration objects, create
configuration objects, modify existing objects, remove configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private temporary area called a
workspace and are not copied to the master configuration repository until you run a save command. The
workspace is a temporary repository of configuration information that administrative clients including the

Chapter 2. Getting started with scripting 41

administrative console use. The workspace is kept in the wstemp subdirectory of your WebSphere
Application Server installation. The use of the workspace allows multiple clients to access the master
configuration. If the same update is made by more than one client, it is possible that updates made by a
scripting client will not save because there is a conflict. If this occurs, the updates will not be saved in the
configuration unless you change the default save policy with the setSaveMode command.

About this task

The AdminConfig commands are available in both connected and local modes. If a server is currently
running, it is not recommended that you run the scripting client in local mode because the configuration
changes made in the local mode is not reflected in the running server configuration and vice versa. In
connected mode, the availability of the AdminConfig commands depend on the type of server to which a
scripting client is connected in a Network Deployment installation.

The AdminConfig commands are available only if a scripting client is connected to a deployment manager.
When connected to a node agent or an application server, the AdminConfig commands will not be
available because the configuration for these server processes are copies of the master configuration that
resides in the deployment manager. The copies are created in a node machine when configuration
synchronization occurs between the deployment manager and the node agent. You should make
configuration changes to the server processes by connecting a scripting client to a deployment manager.
For this reason, to change a configuration, do not run a scripting client in local mode on a node machine.
It is not a supported configuration.

* The following steps provide a general method to update a configuration object:
1. Identify the configuration type and the corresponding attributes.
2. Query an existing configuration object to obtain a configuration ID to use.
3. Modify the existing configuration object or create a one.
4. Save the configuration.

+ See the [Commands for the AdminConfig object|article. You can also use the Help command, for
example:

Using Jacl:

$AdminConfig help
Using Jython:

print AdminConfig.help()

Creating configuration objects using the wsadmin tool
You can use scripting and the wsadmin tool to create configuration objects.

About this task

Perform this task if you want to create an object. To create new objects from the default template, use the
create command. Alternatively, you can create objects using an existing object as a template with the
createUsingTemplate command. You can only use the createUsingTemplate command for creation of a
server with APPLICATION_SERVER type. If you want to create a server with a type other than
APPLICATION_SERVER, use the createGenericServer or the createWebServer command.

1. [Launch the wsadmin scripting tool using the Jython scripting language.|
2. Use the AdminConfig object listTemplates command to list available templates:
» Using Jacl:
$AdminConfig listTemplates JDBCProvider
* Using Jython:
AdminConfig.listTemplates('JDBCProvider')

42 Scripting the application serving environment

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

3. Assign the ID string that identifies the existing object to which the new object is added. You can add
the new object under any valid object type. The following example uses a node as the valid object

type:
» Using Jacl:

set nl1 [$AdminConfig getid /Node:mynode/]
* Using Jython:

nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its
value

nl is a variable name

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node where the new object is
added

4. Specify the template that you want to use:
» Using Jacl:
set t1 [$AdminConfig listTemplates JDBCProvider "DB2 JDBC Provider (XA)"]
* Using Jython:
tl = AdminConfig.listTemplates('JDBCProvider', 'DB2 JDBC Provider (XA)')

where:

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its
value

tl is a variable name

AdminConfig is an object that represents the WebSphere Application
Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

DB2® JDBC Provider (XA) is the name of the template to use for the new object

If you supply a string after the name of a type, you get back a list of templates with display names that
contain the string you supplied. In this example, the AdminConfig listTemplates command returns the
JDBCProvider template whose name matches DB2 JDBC Provider (XA). This example assumes that
the variable that you specify here only holds one template configuration ID. If the environment contains

Chapter 2. Getting started with scripting 43

multiple templates with the same string, for example, DB2 JDBC Provider (XA), the variable will hold
the configuration IDs of all of the templates. Be sure to identify the specific template that you want to
use before you perform the next step, creating an object using a template.

5. Create the object with the following command:
» Using Jacl:
$AdminConfig createUsingTemplate JDBCProvider $nl {{name newdriver}} $t1
* Using Jython:
AdminConfig.createUsingTemplate('JDBCProvider', nl, [['name', 'newdriver']], t1)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

nl evaluates the ID of the host node that is specified in step
number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

tl evaluates the ID of the template that is specified in step
number 4

All create commands use a template unless there are no templates to use. If a default template exists,
the command creates the object.

6. Save the configuration changes.
7. In a network deployment environment only, synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Interpreting the output of the AdminConfig attributes command using scripting
Use scripting to interpret the output of the AdminConfig attributes command.

Before you begin

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting cIient”|
on page 78| article for more information.

About this task

The attributes command is a wsadmin tool on-line help feature. When you issue the attributes command,
the information that displays does not represent a particular configuration object. It represents information
about configuration object types, or object metadata. This article discusses how to interpret the attribute
type display.

« Simple attributes

44 Scripting the application serving environment

Using Jacl:

$AdminConfig attributes ExampleTypel
"attrl String"

Using Jython:

print AdminConfig.attributes('ExampleTypel")
attrl String

Types do not display as fully qualified names. For example, String is used for java.lang.String. There
are no ambiguous type names in the model. For example, x.y.ztype and a.b.ztype. Using only the
final portion of the name is possible, and it makes the output easier to read.

Multiple attributes
Using Jacl:

$AdminConfig attributes ExampleType2
"attrl String" "attr2 Boolean" "attr3 Integer"

Using Jython:

print AdminConfig.attributes('ExampleType2")
attrl String attr2 Boolean attr3 Integer

All input and output for the scripting client takes place with strings, but attr2 Boolean indicates that
true or false are appropriate values. The attr3 Integer indicates that string representations of
integers ("42") are needed. Some attributes have string values that can take only one of a small
number of predefined values. The wsadmin tool distinguishes these values in the output by the special
type name ENUM, for example:

Using Jacl:

$AdminConfig attributes ExampleType3
"attr4 ENUM(ALL, SOME, NONE)"

Using Jython:

print AdminConfig.attributes('ExampleType3")
attr4 ENUM(ALL, SOME, NONE)

where: attrd is an ENUM type. When you query or set the attribute, one of the values is ALL, SOME, or
NONE. The value A_FEW results in an error.

Nested attributes
Using Jacl:

$AdminConfig attributes ExampleType4
"attr5 String" "ex5 ExampleType5"

Using Jython:

print AdminConfig.attributes('ExampleType4")
attrb String ex5 ExampleTypeb

The ExampleTyped object has two attributes: a string, and an ExampleType5 object. If you do not know
what is contained in the ExampleType5 object, you can use another attributes command to find out.
The attributes command displays only the attributes that the type contains directly. It does not
recursively display the attributes of nested types.

Attributes that represent lists

The values of these attributes are object lists of different types. The * character distinguishes these
attributes, for example:

Using Jacl:

$AdminConfig attributes ExampleTypes
"ex6 ExampleType6*"

Using Jython:

print AdminConfig.attributes('ExampleType5")
ex6 ExampleTypeb*

In this example, objects of the ExampleTypeb type contain a single attribute, ex6. The value of this
attribute is a list of ExampleTypeb6 type objects.

Chapter 2. Getting started with scripting 45

* Reference attributes

An attribute value that references another object. You cannot change these references using modify
commands, but these references display because they are part of the complete representation of the
type. Distinguish reference attributes using the @ sign, for example:

Using Jacl:

$AdminConfig attributes ExampleType6
"attr7 Boolean" "ex7 ExampleType7@"

Using Jython:

print AdminConfig.attributes('ExampleType6")

attr7 Boolean ex7 ExampleType7@

ExampleTypeb objects contain references to ExampleType7 type objects.
* Generic attributes

These attributes have generic types. The values of these attributes are not necessarily this generic type.
These attributes can take values of several different specific types. When you use the AdminConfig
attributes command to display the attributes of this object, the various possibilities for specific types are
shown in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

Using Jython:

print AdminConfig.attributes('ExampleType8")

name String beast AnimalType(HorseType, FishType, ButterflyType)

In this example, the beast attribute represents an object of the generic AnimalType. This generic type is
associated with three specific subtypes. The wsadmin tool gives these subtypes in parentheses after the
name of the base type. In any particular instance of ExampleType8, the beast attribute can have a value
of HorseType, FishType, or ButterflyType. When you specify an attribute in this way, using a modify or
create command, specify the type of AnimalType. If you do not specify the AnimalType, a generic
AnimalType object is assumed (specifying the generic type is possible and legitimate). This is done by
specifying beast:HorseType instead of beast.

Specifying configuration objects using the wsadmin tool
Specify configuration objects with scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

About this task

To manage an existing configuration object, identify the configuration object and obtain a configuration 1D
of the object to use for subsequent manipulation.

1. Obtain the configuration ID in one of the following ways:
« Obtain the ID of the configuration object with the getid command, for example:
— Using Jacl:
set var [$AdminConfig getid /type:name/]
— Using Jython:
var = AdminConfig.getid('/type:name/")

where:

set is a Jacl command

var is a variable name

46 Scripting the application serving environment

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

/type:name/

is the hierarchical containment path of the configuration
object

type is the object type. The name of the object type that you
input here is the one that is based on the XML
configuration files and does not have to be the same
name that is displayed in the administrative console.
name is the optional name of the object

You can specify multiple /type:name/ value pairs in the string, for example, /type:name/type:name/
type:name/. If you specify the type in the containment path without the name, include the colon, for
example, /type:/. The containment path must be a path that contains the correct hierarchical order.
For example, if you specify /Server:serverl/Node:node/ as the containment path, you do not

receive a valid configuration ID because Node is a parent of Server and comes before Server in the

hierarchy.

This command returns all the configuration IDs that match the representation of the containment and

assigns them to a variable.

To look for all the server configuration IDs that reside in the mynode node, use the code in the

following example:
— Using Jacl:

set nodeServers [$AdminConfig getid /Node:mynode/Server:/]

— Using Jython:

nodeServers = AdminConfig.getid('/Node:mynode/Server:/")
To look for the server1 configuration ID that resides in mynode, use the code in the following

example:
— Using Jacl:

set serverl [$AdminConfig getid /Node:mynode/Server:serverl/]

— Using Jython:

serverl = AdminConfig.getid('/Node:mynode/Server:serverl/")
To look for all the server configuration IDs, use the code in the following example:

— Using Jacl:

set servers [$AdminConfig getid /Server:/]
— Using Jython:

servers = AdminConfig.getid('/Server:/")

« Obtain the ID of the configuration object with the list command, for example:

— Using Jacl:
set var [$AdminConfig list type]

or

set var [$AdminConfig list type scopeld]
— Using Jython:
var = AdminConfig.list('type")

or
var = AdminConfig.list('type', 'scopeld"')

Chapter 2. Getting started with scripting 47

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

list is an AdminConfig command

type is the object type. The name of the object type that you

input here is the one that is based on the XML
configuration files and does not have to be the same
name that is displayed in the administrative console.

scopeld is the configuration ID of a cell, a node, or a server object

This command returns a list of configuration object IDs of a given type. If you specify the scopeld
value, the list of objects is returned within the specified scope. The returned list is assigned to a
variable.

To look for all the server configuration IDs, use the following example:
— Using Jacl:
set servers [$§AdminConfig Tist Server]
— Using Jython:
servers = AdminConfig.list('Server')
To look for all the server configuration IDs in the mynode node, use the code in the following
example:
— Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]
set nodeServers [$AdminConfig Tist Server $scopeid]

— Using Jython:

scopeid = AdminConfig.getid('/Node:mynode/")
nodeServers = AdminConfig.list('Server', scopeid)

2. If more than one configuration ID is returned from the getid or the list command, the IDs are returned
in a list syntax. One way to retrieve a single element from the list is to use the lindex command. The
following example retrieves the first configuration ID from the server object list:

» Using Jacl:

set allServers [$AdminConfig getid /Server:/]
set aServer [lindex $allServers 0]

* Using Jython:
allServers = AdminConfig.getid('/Server:/')
get line separator
import java
lineSeparator = java.lang.System.getProperty('Tine.separator')

arrayAl1Servers = allServers.split(lineSeparator)
aServer = arrayAllServers[0]

For other ways to manipulate the list and perform pattern matching to look for a specified configuration
object, refer to the

Results

You can now use the configuration ID in any subsequent AdminConfig commands that require a
configuration ID as a parameter.

48 Scripting the application serving environment

Listing attributes of configuration objects using the wsadmin tool
You can use scripting to generate a list of attributes of configuration objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
on page 78| article for more information.

About this task

Perform the following steps to create a list of attributes of configuration objects:
1. List the attributes of a given configuration object type, using the attributes command, for example:
» Using Jacl:
$AdminConfig attributes type
* Using Jython:
AdminConfig.attributes('type')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
attributes is an AdminConfig command
type is an object type

This command returns a list of attributes and its data type.
To get a list of attributes for the JDBCProvider type, use the following example command:
» Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
AdminConfig.attributes('JDBCProvider")

2. List the required attributes of a given configuration object type, using the required command, for
example:

» Using Jacl:
$AdminConfig required type
* Using Jython:
AdminConfig.required('type')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
required is an AdminConfig command
type is an object type

This command returns a list of required attributes.
To get a list of required attributes for the JDBCProvider type, use the following example command:
» Using Jacl:

$AdminConfig required JDBCProvider

Chapter 2. Getting started with scripting 49

* Using Jython:
AdminConfig.required('JDBCProvider')

3. List attributes with defaults of a given configuration object type, using the defaults command, for
example:

* Using Jacl:
$AdminConfig defaults type
* Using Jython:
AdminConfig.defaults('type")

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
defaults is an AdminConfig command
type is an object type

This command returns a list of all the attributes, types, and defaults.

To get a list of attributes with the defaults displayed for the JDBCProvider type, use the following
example command:

* Using Jacl:
$AdminConfig defaults JDBCProvider
* Using Jython:
AdminConfig.defaults('JDBCProvider')

Modifying configuration objects with the wsadmin tool
You can modify configuration objects using scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

About this task

When using the modify command for the AdminConfig object, use the configuration object ID to modify
the attribute you want to change. If you use the parent object ID to modify the attribute, the command
resets all other attributes that are not specified to the default values. For example, you use the modify
command to change the monitoring policy settings through its parent object, the process definition object.
All attributes for the process definition object that were not modified with the command, such as the
pinginterval and pingTimeout attributes, are reset to their default values.

Perform the following steps to modify a configuration object:
1. Retrieve the configuration ID of the objects that you want to modify, for example:
» Using Jacl:
set jdbcProviderl [$AdminConfig getid /JDBCProvider:myJdbcProvider/]
* Using Jython:
jdbcProviderl = AdminConfig.getid('/JDBCProvider:myJdbcProvider/")

where:

set is a Jacl command

50 Scripting the application serving environment

jdbcProviderl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/

is the hierarchical containment path of the configuration
object

JDBCProvider

is the object type

mydJdbcProvider

is the optional name of the object

2. Show the current attribute values of the configuration object with the show command, for example:

» Using Jacl:

$AdminConfig show $jdbcProviderl

* Using Jython:
AdminConfig.show(jdbcProviderl)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

show is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is specified in
step number 1

3. Modify the attributes of the configuration object, for example:

* Using Jacl:

$AdminConfig modify $jdbcProviderl {{description "This is my new description"}}

* Using Jython list:

AdminConfig.modify(jdbcProviderl, [['description', "This is my new description"]])

* Using Jython string:

AdminConfig.modify(jdbcProviderl, '[[description "This is my new description"]]"')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

modi fy is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is specified in
step number 1

description is an attribute of server objects

This is my new description is the value of the description attribute

You can also modify several attributes at the same time. For example:

* Using Jacl:

{{namel vall} {name2 val2} {name3 val3}}

Chapter 2. Getting started with scripting 51

* Using Jython list:
[['namel', 'vall']l, ['name2', 'val2'], ['name3', 'val3']]
* Using Jython string:
'[[namel vall]l [name2 val2] [name3 val3]]'
4. List all of the attributes that can be modified:
» Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
print AdminConfig.attributes('JDBCProvider')
Example output:

$AdminConfig attributes JDBCProvider
"classpath String="

"description String"
"implementationClassName String"
"name String"

"nativepath String*"

"propertySet J2EEResourcePropertySet"
"providerType String"

"xa boolean"

5. Modify an attribute that has a type of list and collection. By default, if you try to modify an attribute that
has a type of list and collection, and the attribute has an existing value in the list, it will append the
new value to the existing values. An attribute that has a type of list and collection will have a star (*). In
the following example, the attribute classpath has an type of list and collection and the value is String.
If you want to replace the existing value, you must change the classpath to be an empty list before you
modify the new value. For example:

* Using Jacl:
$AdminConfig modify $jdbcProviderl {{classpath {}}}

$AdminConfig modify $jdbcProviderl [list [Tist classpath c:/temp/db2j.jar]]
* Using Jython list:
AdminConfig.modify(jdbcProviderl, [['description', [1]1])

AdminConfig.modify(jdbcProviderl, [['description', 'c:/temp/db2j.jar']]
* Using Jython string:
AdminConfig.modify(jdbcProviderl, '[]"')

AdminConfig.modify(jdbcProviderl, '[[description c:/temp/db2j.jar]]")
6. Save the configuration changes.
7. In a network deployment environment only, synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

* Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Removing configuration objects with the wsadmin tool
Use this task to delete a configuration object from the configuration repository. This action only affects the
configuration.

52 Scripting the application serving environment

About this task

If a running instance of a configuration object exists when you remove the configuration, the change has

no effect on the running instance.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|

2. Assign the ID string that identifies the server that you want to remove:

Using Jacl:

set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]

Using Jython:

sl = AdminConfig.getid('/Node:mynode/Server:myserver/")

where:

set is a Jacl command

sl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node from which the server is
removed

Server is an object type

myserver is the name of the server to remove

3. Remove the configuration object. For example:
» Using Jacl:
$AdminConfig remove $sl
* Using Jython:

AdminConfig.remove(sl)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
remove is an AdminConfig command
sl evaluates the ID of the server that is specified in step

number 2

4. Save the configuration changes.

5. In a network deployment environment only, synchronize the node.
Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate

the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following

example demonstrates:

AdminNodeManagement.syncActiveNodes ()

Chapter 2. Getting started with scripting 53

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")
Results

The application server configuration no longer contains a specific server object. Running servers are not
affected.

Removing the trust association interceptor class using scripting
Use the wsadmin tool to remove the trust association interceptor class.

Before you begin

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting client”|
on page 78| article for more information.

About this task
Use the following example as a Jacl script file and run it with the "-f" option:

Using Jacl:

set variableName "com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus"
set cellName $env(local.cell)

foreach taiEntry [$AdminConfig Tist TAInterceptor] {
set interceptorClass [lindex [$AdminConfig showAttribute $taiEntry interceptorClassName] 0]
if { [string compare $interceptorClass $variableName] == 0 } {
puts "found $interceptorClass"
puts "Removing the TAIntercepter class '$interceptorClass
set tai taiEntry
#set t [$AdminConfig getid /Cell:$cel1Name/TAInterceptor:/]
#$AdminConfig remove §t
$AdminConfig remove $taiEntry
puts "'$interceptorClass' is removed."
break

}
}

if { ![info exists tai] } {
puts "The class '$variableName' does not exist."
}

$AdminConfig save
Results

Example output:

[root@svtaix23] /tmp
==>/usr/6x/Ax/profiles/D*/bin/wsadmin.sh -f tai.jacl

WASX7209I: Connected to process "dmgr" on node svtaix23CellManager0l using SOAP connector;
The type of process is: DeploymentManager

found com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

Removing the TAIntercepter class 'com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus'
'com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus' is removed.

Changing the application server configuration using the wsadmin tool
You can use the wsadmin AdminConfig and AdminApp objects to make changes to the application server
configuration.

54 Scripting the application serving environment

About this task

The purpose of this article is to illustrate the relationship between the commands that are used to change
the configuration and the files that are used to hold configuration data. This discussion assumes that you
have a network deployment installation, but the concepts are very similar for a application server

installation.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|

For this task, connect the wsadmin scripting client to the deployment manager server in a network

deployment environment.
2. Set a variable for creating a server:
» Using Jacl:
set nl [$AdminConfig getid /Node:mynode/]
* Using Jython:
nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

nl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is the object type

mynode is the name of the object to modify

3. Create a server with the following command:
» Using Jacl:

set servl [$AdminConfig create Server $nl {{name myserv}}]

* Using Jython list:

servl = AdminConfig.create('Server', nl, [['name', 'myserv']])

* Using Jython string:

servl = AdminConfig.create('Server', nl, '[[name myserv]]"')

where:

set is a Jacl command

servl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

create is an AdminConfig command

Server is an AdminConfig object

nl evaluates to the ID of the host node that is specified in
step number 1

name is an attribute

myserv is the value of the name attribute

Chapter 2. Getting started with scripting 55

After this command completes, some new files can be seen in a workspace used by the deployment
manager server on behalf of this scripting client. A workspace is a temporary repository of configuration
information that administrative clients use. Any changes made to the configuration by an administrative
client are first made to this temporary workspace. For scripting, when a save command is invoked on
the AdminConfig object, these changes are transferred to the real configuration repository. Workspaces
are kept in the wstemp subdirectory of a WebSphere Application Server installation.

4. Make a configuration change to the server with the following command:
* Using Jacl:
$AdminConfig modify §servl {{stateManagement {{initialState STOP}}}}
e Using Jython list:
AdminConfig.modify(servl, [['stateManagement', [['initialState', 'STOP']1]1])
* Using Jython string:
AdminConfig.modify(servl, '[[stateManagement [[initialState STOP]]]]')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

modi fy is an AdminConfig command

servl evaluates to the ID of the host node that is specified in
step number 2

stateManagement is an attribute

initialState is a nested attribute within the stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command completes, one of the
files in the workspace is changed.

5. Save the configuration changes.
6. In a network deployment environment only, synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Modifying nested attributes with the wsadmin tool
You can modify nested attributes for a configuration object using scripting and the wsadmin tool.

About this task

The attributes for a WebSphere Application Server configuration object are often deeply nested. For
example, a JDBCProvider object has an attribute factory, which is a list of the J2EEResourceFactory type
objects. These objects can be DataSource objects that contain a connectionPool attribute with a
ConnectionPool type that contains a variety of primitive attributes.

1. [Invoke the AdminConfig object commands interactively, in a script, or use the wsadmin -c commandsl
from an operating system command prompt

2. Obtain the configuration ID of the object, for example:

56 Scripting the application serving environment

Using Jacl:

set t1 [$AdminConfig getid /DataSource:TechSamp/]
Using Jython:
t1=AdminConfig.getid('/DataSource:TechSamp/")

where:
set is a Jacl command
tl is a variable name
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
getid is an AdminConfig command
DataSource is the object type
TechSamp is the name of the object that will be modified
3. Modify one of the object parents and specify the location of the nested attribute within the parent, for
example:
Using Jacl:
$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}
Using Jython list:
AdminConfig.modify(tl, [["connectionPool", [["reapTime", 2003]1111)
Using Jython string:
AdminConfig.modify(tl, '[[connectionPool [[reapTime 2003]1]111")
where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
modify is an AdminConfig command
tl evaluates to the configuration ID of the datasource in step
number 2
connectionPool is an attribute
reapTime is a nested attribute within the connectionPool attribute
2003 is the value of the reapTime attribute
4. Save the configuration by issuing an AdminConfig save command. For example:

Using Jacl:
$AdminConfig save
Using Jython:
AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you made to your workspace
since your last save.

Chapter 2. Getting started with scripting 57

Example
An alternative way to modify nested attributes is to modify the nested attribute directly, for example:

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]
set pool [$AdminConfig showAttribute $techsamp connectionPool]
$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool,[['reapTime',2003]])

Using Jython string:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool,'[[reapTime 2003]]")

In this example, the first command gets the configuration id of the DataSource, and the second command
gets the connectionPool attribute. The third command sets the reapTime attribute on the ConnectionPool
object directly.

Saving configuration changes with the wsadmin tool
Use the wsadmin tool and scripting to save configuration changes to the master configuration repository.

About this task

The wsadmin tool uses the workspace to hold configuration changes. You must save your changes to
transfer the updates to the master configuration repository. If a scripting process ends and you have not
saved your changes, the changes are discarded.

Use the following commands to save the configuration changes:
1. Using Jacl:

$AdminConfig save
2. Using Jython:

AdminConfig.save()

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to save your changes before
they are discarded.

If you are using the -c option with the wsadmin tool, changes are automatically saved. On a Unix operating
system, if you invoke a command that includes a dollar sign character ($) using the wsadmin -c option, the
command line attempts to substitute a variable. To avoid this problem, escape the dollar sign character
with a backslash character (\). For example: wsadmin -c "\$AdminConfig save”.

If a scripting process ends and no save has been performed, any configuration changes made since the
last save are discarded. If there are multiple clients (scripts or browser clients) updating the configuration
at the same time, it is possible that the changes requested by a script may not be saved. If this happens,
you will receive an exception and you must make the updates again. If the save fails, the updates will not
be saved to the configuration. If it succeeds, all updates are saved. To avoid save failures, you can invoke

58 Scripting the application serving environment

the save command after every configuration update.
You can use the reset command of the AdminConfig object to undo changes that you made to your
configuration since your last save.

Using the AdminTask object for scripted administration

Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Before you begin

The administrative commands run simple and complex commands. They provide more user friendly and
task-oriented commands. The administrative commands are discovered dynamically when you start a
scripting client. The set of available administrative commands depends on the edition of WebSphere
Application Server that you installed. You can use the AdminTask object commands to access these
commands.

About this task

Administrative commands are grouped based on their function. You can use administrative command
groups to find related commands. For example, the administrative commands that are related to server
management are grouped into a server management command group. The administrative commands that
are related to the security management are grouped into a security management command group. An
administrative command can be associated with multiple command groups because it can be useful for
multiple areas of system management. Both administrative commands and administrative command
groups are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the batch and interactive
mode. When you use an administrative command in interactive mode, you go through a series of steps to
collect your input interactively. This process provides users a text-based wizard and a similar user
experience to the wizard in the administrative console. You can also use the help command to obtain help
for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands or running object
management commands but provide a way to access these commands and organize the inputs. The
administrative commands can be available in connected or local mode. The set of available administrative
commands is determined when you start a scripting client in connected or local mode. If a server is
running, it is not recommended that you run the scripting client in local mode because any configuration
changes made in local mode are not reflected in the running server configuration and vice versa. If you
save a conflicting configuration, you could corrupt the configuration.

In a deployment manager environment, configuration updates are available only if a scripting client is
connected to a deployment manager. When connected to a node agent or a managed application server,
you will not be able to update the configuration because the configuration for these server processes are
copies of the master configuration which resides in the deployment manager. The copies are created on a
node machine when a configuration synchronization occurs between the deployment manager and the
node agent. Make configuration changes to the server processes by connecting a scripting client to a
deployment manager. For this reason, to change a configuration, do not run a scripting client in local mode
on a node machine. It is not a supported configuration.

Use parameter name and parameter value pairs to specify the parameters of a step in any order. You do
not have to specify option parameters. This applies to all commands for the AdminTask object. For
example:

AdminTask.createCluster('[-clusterConfig [-clusterName clusterl -preferLocal true]]')

To determinethe names of the step parameters, use the following command:
AdminTask.help(’command_name’, ’step _name’), as the following example demonstrates::

Chapter 2. Getting started with scripting 59

AdminTask.help('createCluster', 'clusterConfig')

 Read [Invoking an administrative command in batch mode” on page 64| to use administrative commands
in batch mode.

 Read [Invoking an administrative command in interactive mode” on page 69 to use administrative
commands in interactive mode.

* Read I“Obtaining online help using scripting”| to learn how to use scripting for online help.

Obtaining online help using scripting
You can select from three levels of online help for administrative commands.

About this task

The top-level help provides general information for the AdminTask object and associated commands. The
second-level help provides information about all of the available administrative commands and command
groups. The third-level help provides specific help on a command group, a command, or a step. Command
group-specific help provides descriptions for the command group that you specify and the commands that
belong to the associated group. Command-specific help provides description for the specified command,
and associated parameters and steps. Step-specific help provides a description for the specified step and
the associated parameters. For command and step-specific help, required parameters are marked with an
asterisk (*) in the help output.

» To obtain general help, use the following examples:
Using Jacl:
$AdminTask help
Using Jython:
print AdminTask.help()
Example output:

WASX8001I: The AdminTask object enables the execution of available
admin commands. AdminTask commands operate in two modes:
the default mode is one which AdminTask communicates with the
WebSphere server to accomplish its task. A local mode is also
available in which no server communication takes place. The local
mode of operation is invoked by bringing up the scripting client
using the command line "-conntype NONE" option or setting the
"com.ibm.ws.scripting.connectiontype=NONE" property in
wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.
Use the following help commands to obtain a list of supported commands
and their parameters:

help -commands
list all the admin commands
help -commandGroups
list all the admin command groups
help commandName
display detailed information for
the specified command
help commandName stepName
display detailed information for
the specified step belonging to
the specified command
help commandGroupName
display detailed information for
the specified command group

There are various flavors to invoke an admin command:

commandName
invokes an admin command that does not require any argument.

60 Scripting the application serving environment

commandName targetObject
invokes an admin command with the specified target object
string, for example, the configuration object name of a
resource adapter. The expected target object varies with
the admin command invoked. Use help command to get
information on the target object of an admin command.

commandName options
invokes an admin command with the specified option
strings. This invocation syntax is used to invoke an
admin command that does not require a target object. It
is also used to enter interactive mode if "-interactive"
mode is included in the options string.

commandName targetObject options
invokes an admin command with the specified target
object and options strings. If "-interactive" is
included in the options string, then interactive mode
is entered. The target object and options strings vary
depending on the admin command invoked. Use help
command to get information on the target
object and options.

To list the available command groups, use the following examples:
Using Jacl:

$AdminTask help -commandGroups

Using Jython:

print AdminTask.help('-commandGroups')

Example output:

WASX8005I: Available admin command groups:

ClusterConfigCommands - Commands for configuring application
server clusters and cluster members.

JCAManagement - A group of admin commands that helps to configure
Java2 Connector Architecture(J2C) related resources.

To list the available commands, use the code in the following examples:
Using Jacl:

$AdminTask help -commands

Using Jython:

print AdminTask.help('-commands")

Example output:

WASX8004I: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope
createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.
created2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.
deleteClusterMember - Deletes a member from an application server cluster.
listConnectionFactoryInterfaces - 1ist all of the

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified
connection factory interface defined in the specified J2C resouce adapter
createJ2CAdminObject - Create a J2C administrative object.
1istAdminObjectInterfaces - List all the defined administrative object interfaces
on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

1istJ2CAdminObjects - List the J2C administrative objects that have a specified
administrative object interface defined in the specified J2C resource adapter.
createJ2CActivationSpec - Create a J2C activation specification.

Chapter 2. Getting started with scripting

61

listMessagelListenerTypes - 1ist all of the defined messagelListener

type on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that have a
specified message Tistener type defined in the specified J2C resource adapter.

» To obtain help about a command group, use the following examples:
Using Jacl:
$AdminTask help JCAManagement
Using Jython:
print AdminTask.help('JCAManagement')
Example output:
WASX80071: Detailed help for command group: JCAManagement

Description: A group of administrative commands that help to
configure Java 2 Connector Architecture (J2C)-related resources.

Commands:

createJ2CConnectionFactory - Create a J2C connection factory
listConnectionFactoryInterfaces - list all of the defined connection
factory interfaces on the specified J2C resource adapter.
listJ2CConnectionFactories - List J2C connection factories that have
a specified connection factory interface defined in the

specified J2C resouce adapter.

createJ2CAdminObject - Create a J2C administrative object.
1istAdminObjectInterfaces - List all the defined administrative
object interfaces on the specified J2C resource adapter.
1istJ2CAdminObjects - List the J2C administrative objects that have a
specified administrative object interface defined in the

specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.
listMessagelListenerTypes - 1ist all of the defined

message listener types on the specified J2C resource adapter.
listJ2CActivationSpecs - List the J2C activation specifications that
have a specified message listener type defined in the

specified J2C resource adapter.

copyResourceAdapter - copy the specified J2C resource

adapter to the specified scope.

» To obtain help about an administrative command, use the following examples:
Using Jacl:
$AdminTask help created2CConnectionFactory
Using Jython:
print AdminTask.help('createJ2CConnectionFactory')
Example output:
WASX80061: Detailed help for command: created2CConnectionFactory

Description: Create a J2C connection factory
*Target object: The parent J2C resource adapter of the created J2C connection factory.

Arguments:

xconnectionFactoryInterface - A connection factory interface that is defined in the deployment
description of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.

authDataAlias - the authentication data alias of the created J2C connection factory.

Steps:
None

62 Scripting the application serving environment

In the command-specific help output that is previously listed, an administrative command is divided into
three input areas: target object, arguments, and steps. Each area can require input depending on the
administrative command. If an area requires input, each input is described by its name and a
description; except for the target object area, which contains the description of the target object only.
When you use an administrative command in batch mode, you can use any input name that resides in
the argument area as the argument name.

If an input is required, an asterisk (*) is located before the name. If an area does not require an input, it
is marked None. The following example uses the help output for the createJ2CConnectionFactory
command:

— The target object area requires the configuration object name of a J2CResourceAdapter.

— In the arguments area, there are five inputs with three being required inputs. The argument names
are connectionFactorylnterface, name, jndiName, description, and authDataAlias. These names are
used as the parameter names in the option string to run an administrative command in batch mode,
for example:

-connectionFactoryInterface javax.resource.cci.ConnectionFactory -name newConnectionFactory
-jndiName CF/newConnectionFactory

See [‘Administrative command invocation syntax” on page 1335|for more information about specifying
argument options.

— No step is associated with this administrative command.
To obtain help on a command step, use the step-specific help.
Step-specific help provides the following data:

— A description for the command step.

— Information indicating if this step supports collection. A collection includes objects of the same type.
In a command step, a collection contains objects that have the same set of parameters.

— Information regarding each step parameter with its name and description. If a step parameter is
required, an asterisk (*) is located in front of the name.

The following example obtains help on a command step:
Using Jacl:

$AdminTask help createCluster clusterConfig

Using Jython:

print AdminTask.help('createCluster', 'clusterConfig')
Example output:

WASX8013I: Detailed help for step: clusterConfig

Description: Specifies the configuration of the new server cluster.

Collection: No

Arguments:
*clusterName - Name of server cluster.
preferLocal - Enables node-scoped routing optimization for the cluster.

This example indicates the following information about the clusterConfig step:

— This step does not support collection. Only one set of parameter values for the clusterName and
perferLocal parameters is supported.

— This step contains two input arguments with one argument that is indicated as required. The required
arguments is clusterName and the non-required parameter is preferLocal. The syntax to provide step
parameter values is different from the command argument values. You have to provide all argument
values of a step and provide them in the exact order as displayed in the step specific help. For any
optional argument that you do not want to specify a value, put double quotes ("") in place of a value.
If a command step is a collection type, for example, it can contain multiple objects where each object

Chapter 2. Getting started with scripting 63

has the same set of arguments, you can specify multiple objects with each object enclosed by its
own pair of braces. To run an administrative command in batch mode and to include this step in the
option string, use the following syntax:

Using Jacl:

-clusterConfig {{newCluster false}}

Using Jython:

-clusterConfig [[newCluster false]]

See |“Administrative command invocation syntax” on page 1335| for more information about specifying
parameter options.
» Use a wildcard character to search for help for a specific command. You can use a regular Java
expression pattern or a wildcard pattern to specify command name for AdminTask.help('—commands’)
and AdminConfig list, types and listTemplates functions.

— To use a regular Java expression pattern to search for the administrative command names that start
with create, specify:

print AdminTask.help("-commands", "create.*")

— To use a wildcard search pattern to search for the administrative command names that start with
create, specify:
print AdminTask.help("-commands", "create*")

— To use a Java expression pattern to search for the administrative command names that contain
SSLConfig, specify:
print AdminTask.help("-commands", ".*SSLConfig.*")

— To use a wildcard search pattern to search for the administrative command names that contain
SSLConfig, specify:
print AdminTask.help("-commands", "*SSLConfig*")

Invoking an administrative command in batch mode
Use this commands to invoke an administrative command in batch mode.

About this task

To invoke an administrative command in interactive mode, see [Invoking an administrative command in
interactive mode” on page 69

1. [Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command|
from an operating system command prompt |

2. Issue one of the following commands:

» If an administrative command does not have a target object and an argument, use the following
command:

Using Jacl:
$AdminTask commandName
Using Jython:

AdminTask.commandName ()

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object allowing administrative command
management
commandName is the name of the administrative command to invoke

64 Scripting the application serving environment

 If an administrative command includes a target object but does not include any arguments or steps,

use the following command:

Using Jacl:

$AdminTask commandName targetObject
Using Jython:
AdminTask.commandName (targetObject)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke
targetObject is the target object string for the invoked administrative
command. The expect target object varies with each
administrative command. View the online help for the
invoked administrative command to learn more about
what you should specify as the target object.
« If an administrative command includes an argument or a step but does not include a target object,
use the following command:
Using Jacl:
$AdminTask commandName options
Using Jython:
AdminTask.commandName (options)
where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke

Chapter 2. Getting started with scripting 65

options

is the option string for the invoked administrative
command. Depending on which administrative command
you are invoking, the administrative command can have
required or optional option values. The options string is
different for each administrative command. View the
online help for the invoked administrative command to
obtain more information about which options are
available. Arguments and steps listed on the online
administrative command help are specified as options in
the option string.

Each option consists of a dash followed immediately by
an option name, and then followed by an option value if
the option requires a value. If the invoked administrative
command includes target objects, arguments, or steps,
then the —interactive option is available to enter
interactive mode. For example, using the output of the
following online help for the listDataSource command:

WASX80061: Detailed help for command: exportServer

Description: export the configuration of a
server to a config archive.

Target object: None

Arguments:

*serverName - the name of a server

*nodeName - the name of a node. This parameter
becomes optional if the specified server name
is unique across the cell.

*archive - the fully qualified file path of

a config archive.

Steps:
None

Option names are specified with a dash before the
names. Three options are required for this administrative
command. The required options are -serverName,
-nodename, and -archive. In addition, the -interactive
option is available. Options are specified in the option
string, which is enclosed by a pair of braces ({}) in Jacl
and a pair of brackets ([]) in Jython.

» If an administrative command includes a target object, and arguments or steps:

Using Jacl:

$AdminTask commandName targetObject options
Using Jython:

AdminTask.commandName (targetObject, options)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke

66 Scripting the application serving environment

targetObject is the target object string for the invoked administrative
command. The expected target object varies with each
administrative command. View the online help for the
invoked administrative command to obtain information
about what to specify as a target object. For example,
using the output of the following online help for
createJ2CConnectionFactory:

WASX8006I: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection factory

*xTarget object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory
interface that is defined in the deployment
description of the parent J2C resource adapter.
*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias of
the created J2C connection factory.

Steps:
None

The target object is a configuration object name of a J2C
resource adapter.

Chapter 2. Getting started with scripting 67

options

is the option string for the invoked administrative
command. Depending on which administrative command
you are invoking, the administrative command can have
required or optional option values. The options string is
different for each administrative command. View the
online help for the invoked administrative command to
obtain more information about which options are
available. Arguments and steps that are listed on the
online administrative command help are specified as
options in the option string. Each option consists of a
dash followed immediately by an option name, and then
followed by an option value if the option requires a value.
If the invoked administrative command includes target
objects, arguments, or steps, then the —interactive option
is available to enter interactive mode. For example, using
the output of the following online help for listDataSource:

WASX8006I: Detailed help for command:
created2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory
interface that is defined in the deployment
description of the parent J2C resource adapter.
*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created J2C
connection factory.

authDataAlias - the authentication data alias of
the created J2C connection factory.

Steps:
None

Option names are specified with a dash before the
names. The required options for this administrative
command include: -connectionFactoryInterface, -name,
and -jndiName. The optional options include:
-description and -authDataAlias. In addition, you can
also use the -interactive option. Options are specified
in the option string, which is enclosed by a pair of braces
({}) in Jacl and a pair of brackets ([]) in Jython.

Example

» The following example invokes an administrative command with no target object, argument, or step:

Using Jacl:

$AdminTask 1istNodes
Using Jython:

print AdminTask.listNodes()
Example output:

myNode

» The following example invokes an administrative command with a target object string:

Using Jacl:

68 Scripting the application serving environment

set s1 [$AdminConfig getid /Server:serverl/]
$AdminTask showServerInfo $sl

Using Jython:

sl = AdminConfig.getid('/Server:serverl/")
print AdminTask.showServerInfo(sl)

Example output:

{cell myCell}

{serverType APPLICATION SERVER}
{com.ibm.websphere.baseProductVersion 6.0.0.0}
{node myNode}

{server serverl}

» The following example invokes an administrative command with an option string:
Using Jacl:
$AdminTask getNodeMajorVersion {-nodeName myNode}
Using Jython:
print AdminTask.getNodeMajorVersion('[-nodeName myNode]')
Example output:
6
* The following example invokes an administrative command with a target object and non-step option
strings:
Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-name myJ2CCF -jndiName j2c/cf -connectionFactoryInterface
Jjavax.resource.cci.ConnectionFactory}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-name myJ2CCF -jndiName j2c/cf -connectionFactorylInterface
javax.resource.cci.ConnectionFactory]")

Example output:
myJ2CCF (cells/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)
» The following example invokes an administrative command with a target object and a step option:

Using Jacl:
set serverCluster [$AdminConfig getid /ServerCluster:myCluster/]
$AdminTask createClusterMember $serverCluster {-memberConfig {{myNode myClusterMember "" "" false false}}}

Using Jython:

serverCluster = AdminConfig.getid('/ServerCluster:myCluster/')
AdminTask.createClusterMember(serverCluster, '[-memberConfig [[myNode myClusterMember "" "" false false]]]')

Example output:
myClusterMember(cells/myCell/nodes/myNode|cluster.xml#ClusterMember 3673839301876)

Invoking an administrative command in interactive mode
These steps demonstrate how to invoke an administrative command in interactive mode.

About this task

To invoke an administrative command in batch mode, see [“Invoking an administrative command in batch|
Imode” on page 64

1. |Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command|
from an operating system command prompt.|

2. Invoke an administrative command in interactive mode by issuing one of the following commands:

« Use the following command invocation to enter interactive mode without providing another input in
the command invocation:

Chapter 2. Getting started with scripting 69

Using Jacl:
$AdminTask commandName {-interactive}
Using Jython:

AdminTask.commandName (' [-interactive] ')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke

-interactive

is the interactive option

» Use the following command invocation to enter interactive mode using an administrative command
that takes a target object. You do not have to provide a target object to enter interactive mode.
Target objects provided in the command invocation will be applied to the command and displayed as
the current target object value during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive}

Using Jython:

AdminTask.commandName (targetObject, '[-interactive]')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke
targetObject is the target object string for the invoked administrative

command. The target object is different for each
administrative command. View the online help for the
invoked administrative command to learn more about
what to specify as a target object.

-interactive

is the interactive option

* Use the following command invocation to enter interactive mode for an administrative command that
takes options. You do not have to provide other options to enter interactive mode. Options provided
in the command invocation are applied to the command and the option values will be displayed as

the current values during interactive prompting.

Using Jacl:

$AdminTask commandName {-interactive commandOptions}

Using Jython:

AdminTask.commandName (' [-interactive commandOptions]"')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminTask is an object that supports administrative command
management
commandName is the name of the administrative command to invoke
-interactive is the interactive option

70 Scripting the application serving environment

commandOptions

is the command option that is available for the associated
administrative command. Available command options are
different for each administrative command. View the
online help for the invoked administrative command to
obtain more information about which options are
available. Arguments and steps that are listed on the
online administrative command help are specified as
command options. Each option consists of a dash
followed immediately by an option name, and then
followed by an option value if the option requires a value.
For example, using the output of the following online help
for the createJ2CConnectionFactory command:

WASX8006I: Detailed help for command:
createdJ2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C resource
adapter of the created J2C connection
factory.

Arguments:

*connectionFactoryInterface - A connection
factory interface that is

defined in the deployment description of

the parent J2C resource adapter.

*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created

J2C connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias
of the created J2C connection factory.

Steps:
None

In this example, five options are available:
» -connectionFactoryInterface

* -name

* -jndiName

» -description

» -authDataAlias

Each option requires a value. Three of the options are
required and are denoted with a star (*).

* Use the following command invocation to enter interactive mode for an administrative command that
has a target object and options. You do not have to specify a target object to enter interactive mode.
The values specified are applied to the command before the command data is displayed. As a
result, the values specified will be displayed as the current values during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive commandOptions}

Using Jython:

AdminTask.commandName (targetObject, '[-interactive commandOptions]")

Chapter 2. Getting started with scripting 71

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminTask is an object that supports administrative command
management

commandName is the name of the administrative command to invoke

targetObject is the target object string for the invoked administrative

command. The expect target object varies with each
admin command. Consult the online help on the invoked
administrative command to learn more about what to
specify as target object.

-interactive

is the interactive option

commandOptions

is the command option that is available for the associated
administrative command. Available command options are
different for each administrative command. View the
online help for the invoked administrative command to
obtain more information about which options are
available. Arguments and steps that are listed on the
online administrative command help are specified as
command options. Each option consists of a dash
followed immediately by an option name, and then
followed by an option value if the option requires a value.
For example, using the output of the following online help
for the createJ2CConnectionFactory command:

WASX8006I: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory
interface that is

defined in the deployment description of the
parent J2C resource adapter.

*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias
of the created J2C connection factory.

Steps:
None

In this example, five options are available:
» -connectionFactorylnterface

* -name

* -jndiName

» -description

» -authDataAlias

Each option requires a value. Three of the options are
required and are denoted with a star (*).

72 Scripting the application serving environment

Example

* The following example invokes an administrative command in interactive mode by specifying the
-interactive option:

Using Jacl:

$AdminTask created2CConnectionFactory {-interactive}
Using Jython:
AdminTask.createJ2CConnectionFactory('[-interactive]')
Example output:

Create a J2C connection factory

*The J2C resource adapter: "WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode|resources.xml#builtin_rra)"

A connection factory

interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory
*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C connection factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cells/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

» The following example invokes an administrative command using the —interactive option with a target
object that is specified in the command invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-interactive}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-interactive]')

Example output:
Create a J2C connection factory

*xThe J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):
javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cells/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

* The following example invokes an administrative command using the —interactive option where both the
target object and the additional command options are specified in the command invocation:

Chapter 2. Getting started with scripting 73

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-name myNewCF -interactive}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/"')
AdminTask.createJ2CConnectionFactory(ra, '[-name myNewCF -interactive]')

Example output:
Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cells/myCel1/nodes/myNode | resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory
*Name (name): [myNewCF]

*xThe JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myNewCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 3839439380269)
Administrative command interactive mode environment:

An administrative command can be run in interactive mode by providing the -interactive option in the
options string when invoking the command.

You can still provide other options, even when using the interactive option. The options values that are
specified are applied to the command before the command data is displayed. Whether or not other options
are specified, the wsadmin tool steps the user through the command to collect command information.

The general interactive flow sequence is:
1. Collect user inputs for target object and parameters

2. If the command does not include a step, the command execution menu displays to run or cancel the
command.

3. If the command includes a step, the menu to select the step displays. When all the required inputs are
entered, the menu includes command execution.

4. When a step is selected, if the step supports collection, then the menu to select an object in the
collection displays and you can exit the step. If you exit the step, repeat steps 1-3.

5. Collect user inputs for the selected step or for an object in the collection
6. Repeat steps 4 and 5 if from the collection step menu
7. Repeat steps 3-5 if from step selection menu

Depending on what input area is enabled by an administrative command, you can go through part or all of
the interactive flow sequence. If an administrative command is run in interactive mode, the syntax to run
the command except for the deletion of collection object in batch mode is generated and logged as a
WASX7278] message in both the interactive session and in the wsadmin trace file.

Collect user inputs for target object and parameters

The following interactive prompt is used to collect inputs for the Target object and Arguments input areas
that are displayed in the command-specific help:

74 Scripting the application serving environment

Command title
Command Description

xtarget object title [current or default value]:
*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

This screen is usually the first interactive screen that is displayed when an administrative command is
invoked interactively unless the invoked command does not contain any target object and non-step
command parameters. If a command does not have a target object, then the prompt for the target object is
skipped. The number of parameters depends on the number of arguments in the Argument area of the
command-specific help. If an input is required, then an asterisk (*) is placed in front of the title. The
parameter name is displayed for information and is the name that is used to set this parameter in batch
mode. If a parameter value is restricted to a set of values, then the valid choices are displayed. If current
or default value is available, it is displayed. You can accept the existing value by pressing the Enter key.
To add or change an existing value, enter a new value and click Enter.

Display command execution menu

If an administrative command does not contain a step, you are presented with the following menu after
collecting values for target object and parameters:

Command title

F (Finish)
C (Cancel)

Select [F, C]: F

The Finish option runs the command and the Cancel option cancels the command. The default selection is
F (Finish). This menu is the last menu that is displayed for a non-step command to exit interactive mode
by either canceling or running the command.

Display command step selection and execution menu

If an administrative command contains a step, the following menu is displayed after collecting values for
target object and parameters:
Command title
Command description
-> x1. stepl title (stepl name)
2. step2 title (step2 name)
%3, step3 title (step3 name)
(4. step4 title (step4 name))

n. stepn title (stepn name)

S (Select)

N (Next)

P (Previous)
F (Finish)

C (Cancel)

H (Help)

Select [S, N, P, F, C, H]: S

The number of steps that is displayed in the menu depends on the administrative command. The step
name is displayed for information and is the name that is used to set data in this step in batch mode. The
following notations are used to describe a step:

* A “>” before the step indicates the current step position.

Chapter 2. Getting started with scripting 75

* A “” before the step indicates a required step.

* A () enclosing the entire step indicates a disabled step. You cannot navigate to this step by using the
Next or Previous options.

Using the menu, you can navigate through steps sequentially by selecting Previous or Next. Select selects
the current step, Finish runs the command, Cancel cancels the command, and Help provides online help
for the command. Not all menu choices are available. Previous is not available if the current step is the
first step. Next is not available if the current step is the last step. Finish is not available if still steps are still
missing required inputs. The default selection is S (Select) if the current step is a valid step and steps are
missing required inputs. Default selection is F (Finish) if all the required input is provided for the steps.

For commands with steps, you can exit interactive mode on this menu by either canceling or running the
command.

Display collection step menu

A step might or might not support collection. A collection refers to objects of the same type. In an
administrative command, a collection contains objects that have the same set of parameters. If a step that
supports collection is selected, the wsadmin tool displays the following menu to add and select an object
in the collection:

Step title (step name)
| key paraml title (key paraml name), key param? title (key param2 name), ...

-> objectl key paraml value, key param2 value, ...
*| object2 key paraml value, key param2 value, ...

key paraml title, key param2 title, ... must be provided to specify a row in batch row.

S (Select Row)

N (Next)

P (Previous)

A (Add Row or Add Row Before)
D (Delete Row)

F (Finish)

H (Help)

Select [S, N, P, A, D, F, H]: F

The number of objects that display in the menu depends on the command step. Key parameters are
identified by the step to use to uniquely identify an object in a collection. Key parameter values are
displayed to identify an object to select. As with the command step selection menu, an arrow (->) is used
to indicate the current object position, and a asterisk (*) is used to indicate that required input is missing in
the object.

Use the menu to navigate through objects sequentially by selecting Previous or Next. Select Row selects
the current object, Add Row adds a new object, Add Row Before adds a new object before the current
object, Delete Row deletes the current object, Finish returns control back to the step selection and
execution menu, and Help provides on-line help for the step. Not all menu choices are available. Previous
is not available if there is no object in the collection or the first object is the current object. Next is not
available if there is no object in the collection or the last object is the current object. Select Row is
available only if there is a current object. Add Row is provided only if there is no object in the collection
and the step supports new object to be added. Add Row Before is provided if the step supports new object
to be added and there are existing objects in the collection. Delete Row is provided only if there is a
current object and the step supports an object to be deleted. Finish is not available if there are still objects
missing required inputs. Default selection is A (Add Row) when there is no object in the collection and the
step supports objects to be added. Default selection is S (Select Row) if there is a current object and there
are still objects missing required inputs. Default selection is F (Finish) if there is no required input missing
in any object.

76 Scripting the application serving environment

Collect user inputs for parameters of a collection object

After a collection object is selected, the parameter value for each parameter is prompted sequentially as
shown in the following example:

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

The number of parameters depends on the number of arguments in the Argument area of the command
step-specific help. The same asterisk (*) notation is used to denote a required parameter. If a parameter
value is restricted to a set of values, then the valid choices are displayed. If the current or default value is
available, it is displayed. For each writable parameter, you can accept the existing value by pressing Enter.
To add or change an existing value, enter a new value and press Enter. For a read-only parameter, the
parameter and its value are displayed. You will not be given the prompt to modify its value. After you go
through all of the parameters, the wsadmin tool returns to the collection step menu.

Collect user inputs for non-collection step

This step has two parts. The first part displays the current or default parameter values for the selected
step, as shown in the following example:

Step title (step name)

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

Select [C (Cancel), E (Edit)]: [E]

No prompting is included in this part. Instead, this part is more like a help function providing parameter
information on the selected step. The number of parameters depends on the number of arguments in the
argument area of the command step specific help. The asterisk (*) notation denotes a required parameter.
If a parameter value is restricted to a set of values, then the valid choices will be displayed. If the current
or default value is available, it is displayed. You can choose to cancel the step or continue to the next part
to provide parameter inputs. The default selection is Edit. Because it is possible that you are seeing
default values assigned to a new piece of data that is not yet set in the step, you can accept the default
selection to continue to the next part. Otherwise, if no data exists in the selected step, selecting Cancel
does not result in creating the data.

If you accept the default Edit selection, collect user inputs for parameters sequentially just like Collect
user inputs for parameters of a collection object.

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

For each writable parameter, you can accept the existing value by pressing Enter. To add or change an
existing value, enter a new value and then press Enter. For a read-only parameter, the parameter and its
value are displayed. You will not be given the prompt to modify the value of the parameter. As soon as you
step through all the parameters, the wsadmin tool will lead you back to the command step selection and
execution menu.

Data types for the AdminTask object
The parameters for the AdminTask object accept various data types for different commands. This topic
provides examples of valid data type syntax.

The following table lists the primitive and Java data types that the AdminTask object accepts for different
commands, including the following data types:

» String

Chapter 2. Getting started with scripting 77

* Boolean

» Character

* Integer

* Long

* Byte

e Short

* Float

* Double

« Javax.management.ObjectName
» Java.util.Properties

» String[]

* Integer(]

» Jaca.net.URL

» Javax.management.Attribute

» Javax.management.AttributeList
» Java.util.ArrayList

» Java.util.List

» Java.util.Hashtable

The following example command specifies various data types for parameter values that are commonly
used with the AdminTask object:

wsadmin>AdminTask.helloWorld('[-personName John -personalInfo [[cellPhone 123-456-7890] [workPhone 123-456-7892]
[homePhone 123-456-7891]] -pets [dog cat] -personID WebSphere:John(organization=ibm,country=usa,state=texas,city=austin)
—personAttrs [[gender male] [age 29] [citizership USA]] -hobbyList [swim tennis baseball]

-favorFoodTable [[juice orange] [fruit apple]] 1')

where:

Parameter Data type Example value

personName String John

personalinfo java.util.Properties [[cel1Phone 123-456-7890] [workPhone 123-456-7892] [homePhone 123-456-7891]]
pets String[] [dog cat]

personlD javax.management.ObjectName | WebSphere:John(organization=ibm,country=usa,state=texas,city=austin)
personAttrs javax.management.AttributeList | [[gender male] [age 29] [citizership USA]]

hobbyList java.util. ArrayList [swim tennis baseball]

favorFoodTable java.util.Hashtable [[juice orange] [fruit apple]]

Starting the wsadmin scripting client

You can use the wsadmin tool to configure and administer application servers, application deployment, and
server run-time operations.

About this task

The wsadmin tool provides the ability to automate configuration tasks for your environment by running
scripts. However, there are some limitations for using the wsadmin tool, including:

» The wsadmin tool only supports the Jython and Jacl scripting languages. The Version 6.1 release of
WebSphere Application Server represented the start of the deprecation process for the Jacl syntax that
is associated with the wsadmin tool. The Jacl syntax for the wsadmin tool continues to remain in the
product and is supported for at least two major product releases. After that time, the Jacl language
support might be removed from the wsadmin tool. The Jython syntax for the wsadmin tool is the

78 Scripting the application serving environment

strategic direction for WebSphere Application Server administrative automation. The application server
provides significantly enhanced administrative functions and tooling that support product automation and
the use of the Jython syntax.

The wsadmin tool manages the installation, configuration, deployment, and runtime operations for
application servers, deployment managers, administrative agents, and job managers that run the same
version or a higher version of the product. The wsadmin tool cannot connect to an application server,
deployment manager, administrative agent, or job manager that runs a product version which is older
than the version of the wsadmin tool. For example, a Version 6.x wsadmin client cannot connect to a
Version 5.x application server. However, a Version 5.x wsadmin client can connect to a Version 6.x
application server. This limitation exists because new functionality is added to the wsadmin tool in each
product release. You cannot use new command functionality on application servers running previous
product versions.

The wsadmin tool operates at the deployment manager node level in a mixed-cell environment. Do not
run wsadmin at the application server node level to ensure that all command functionality is available.

The wsadmin launcher supports several scripting objects, including the AdminConfig, AdminControl,
AdminApp, AdminTask, and Help objects. Scripts use these objects for application management,
configuration, operational control, and for communication with MBeans that run in product processes. You
must start the wsadmin scripting client before you perform any other task using scripting.

In a flexible management environment, you can connect the wsadmin tool to a base application server,
deployment manager, administrative agent, or job manager process. If you do not specify the port of the
base application server or the profile name assigned to the job manager, the wsadmin tool automatically
connects to the administrative agent.

1.

2.

Locate the command that starts the wsadmin scripting client.
Choose one of the following:

* Invoke the scripting process using a specific profile. The QShell command for invoking a scripting
process is located in the bin directory. The name of the QShell script is wsadmin. If you

use this option, you do not need to specify the -profileName profilename parameter.

* Invoke the scripting process using the default profile. The wsadmin Qshell command is located in
the [app_server_roofbin directory. If you do not want to connect to the default profile, you must
specify the -profileName profilename parameter to indicate the profile that you want to use.

In a flexible management environment, determine whether to connect to a base application server,
administrative agent, or job manager process.

» Connect to the administrative agent process.

Connect the wsadmin tool to the administrative agent to configure, manage, and administer servers.
If you do not specify connection options, the wsadmin tool automatically connects to the
administrative agent process. Use the following command to connect to the administrative agent:

wsadmin -Tang jython

» Connect to a base application server process.
Connect the wsadmin tool to a base application server to manage settings for a specific server of
interest. Use this connection type when connecting to a node that contains one server and is
registered with the administrative agent. Use the following command to connect to a base
application server:
wsadmin -conntype SOAP [-port 4213] -lang jython

« Connect to the job manager process.
Connect the wsadmin tool to the job manager to submit, monitor, and manage administrative jobs.
Use the following command to connect to the job manager:
wsadmin -profileName myJobManager -Tang jython

Review additional connection options for the wsadmin tool.

You can start the wsadmin scripting client in several different ways. To specify the method for running
scripts, perform one of the following wsadmin tool options:

Chapter 2. Getting started with scripting 79

Run scripting commands interactively

Run wsadmin with an option other than -f or -c or without an option. The wsadmin tool starts
and displays an interactive shell with a wsadmin prompt. From the wsadmin prompt, enter any
Jacl or Jython command. You can also invoke commands using the AdminControl, AdminApp,
AdminConfig, AdminTask, or Help wsadmin objects.To leave an interactive scripting session,
use the quit or exit commands. These commands do not take any arguments.

The following examples launch the wsadmin tool:

o NI Launch the wsadmin tool using Jython:
wsadmin.bat -Tlang jython

N Ax W HP-UX Launch the wsadmin tool using Jython
wsadmin.sh -lang jython

o W Launch the wsadmin tool using Jython when security is enabled:
wsadmin.bat -lang jython -user wsadmin -password wsadmin

N Ax) HP-UX Launch the wsadmin tool using Jython when

security is enabled:
wsadmin.sh -Tang jython -user wsadmin -password wsadmin
o WNIETW Launch the wsadmin tool using Jacl with no options:

wsadmin.bat -Tlang jacl

N Ax W HP-UX Launch the wsadmin tool using Jacl with no
options:
wsadmin.sh -lang jacl

Run scripting commands as individual commands

Run the wsadmin tool with the -c option.

| HP-UX |l Solaris | On a Unix operating system, if you invoke a
command that includes a dollar sign character ($) using the wsadmin -c option, the command
line attempts to substitute a variable. To avoid this problem, escape the dollar sign character
with a backslash character (\). For example: wsadmin -c "\$AdminApp install ...".

The following examples run commands individually:
« WM Run the list command for the AdminApp object using Jython:
wsadmin -c "$AdminApp 1ist"

N AX J HP-UX Run the list command for the AdminApp object
using Jython:
wsadmin.sh -Tang jython -c 'AdminApp.Tist()’

« WIIIETW Run the list command for the AdminApp object using Jacl:
wsadmin -Tang jython -c "AdminApp.list()"

N AX J HP-UX Run the list command for the AdminApp object
using Jacl:
wsadmin.sh -c "\$AdminApp list"

or
wsadmin.sh -c '$AdminApp list'

Run scripting commands in a script

Run the wsadmin tool with the -f option, and place the commands that you want to run into
the file.

80 Scripting the application serving environment

The following examples run scripts:

o WM Run the al.py script using Jython:
wsadmin -Tang jython -f al.py

N AX J HP-UX BETT Run the al.py script using Jython:
wsadmin.sh -Tang jython -f al.py

where the al.py file contains the following commands:
apps = AdminApp.Tist()
print apps

Run scripting commands in a profile script

A profile script is a script that runs before the main script, or before entering interactive mode.
You can use profile scripts to set up a scripting environment that is customized for the user or
the installation.

By default, the following profile script files might be configured for the
com.ibm.ws.scripting.profiles profiles property in the |app_server roof/properties/
wsadmin.properties file:

lapp_server root}bin/security
Procs.jacl
lapp server Toot)/bin/LTPA_LDAPSecy

rityProcs.jacl

By default, these files are in ASCII. If you use the profile.encoding option to run EBCDIC
encoded profile script files, change the encoding of the files to EBCDIC.

To run scripting commands in a profile script, run the wsadmin tool with the -profile option, and
include the commands that you want to run into the profile script.

To customize the script environment, specify one or more profile scripts to run.
Do not use parenthesis in node names when creating profiles.
The following examples run profile scripts:

o WIS Run the alprof.py script using Jython:
wsadmin.bat -lang jython -profile alprof.py

N AX N HP-UX BEEE Run the atprof.py script using Jython:
wsadmin.sh -Tang jython -profile alprof.py

where the alprof.py file contains the following commands:

apps = AdminApp.Tist()
print "Applications currently installed:\n " + apps

o WIIIETEW Run the al1prof.py script using Jacl:

wsadmin.bat -profile alprof.jacl

3 AX W HP-UX IEET Run the atprof.py script using Jacl:

wsadmin.sh -profile alprof.jacl
where the alprof.jacl file contains the following commands:
set apps [$AdminApp 1ist]
puts "Applications currently installed:\n$apps"
Results

The wsadmin returns the following output when it establishes a connection to the server processs:

Jthon example output:

Chapter 2. Getting started with scripting 81

WASX7209I: Connected to process serverl
on node myhost using SOAP connector;
The type of process is: UnManagedProcess
WASX70291: For help, enter: "$Help help"
wsadmin>

Jacl example output:

WASX7209I: Connected to process serverl
on node myhost using SOAP connector;
The type of process is: UnManagedProcess
WASX70291: For help, enter: "$Help help"
wsadmin>

Restricting remote access using scripting

You can use the wsadmin tool to restrict remote administration so that administrators only manage nodes
locally. This prevents the base node from opening remote ports for the administrator. Each administrative
connection must occur from the local workstation.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|
2. Restrict remote access.
Run the following set of commands for each server of interest to restrict remote access:

server=AdminConfig.getId('/Server:serverl/")
AdminTask.setAdminProtocolEnabled(server, '[-conntype SOAP —enable false]')
AdminTask.setAdminProtocolEnabled(server, '[-conntype RMI —enable false]')
AdminTask.setAdminProtocolEnabled(server, '[-conntype JSRI6ORMI —enabled false]')
AdminTask.setAdminProtocol (server,'[-conntype IPC -mode locall')

3. Restart each server.
Use the stopAllServers and startAllServers commands in the AdminServerManagement script library to
restart each server configured with local access only, as the following example demonstrates:

AdminServerManagement.stopAllServers ("myNode")
AdminServerManagement.startAl1Servers ("myNode")

82 Scripting the application serving environment

Chapter 3. Using the script library to automate the application
serving environment

The script library provides Jython script procedures to assist in automating your environment. Use the
sample scripts to manage applications, resources, servers, nodes, and clusters. You can also use the
script procedures as examples to learn the Jython syntax.

About this task

Note: The Jython script library provides a set of procedures to automate the most common application
server administration functions. For example, you can use the script library to easily configure
servers, applications, mail settings, resources, nodes, business-level applications, clusters,
authorization groups, and more. You can run each script procedure individually, or combine several
procedures to quickly develop new scripts.

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

* Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#
AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusteriithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server_roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server_roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Each script from the script library directory automatically loads when you launch the wsadmin tool. To
automatically load your own Jython scripts (*.py) when the wsadmin tool starts, create a new subdirectory,
and save existing automation scripts in the [app_server_roof/scriptLibraries directory. Each script library
name must be unique and cannot be duplicated.

Note: Do not edit the script procedures in the script library. To customize script library procedures, save
the modified scripts to a new subdirectory to avoid overwriting the library.

© Copyright IBM Corp. 2008 83

To automatically load Jython scripts (*.py) that are not located in the |app_server_roofscriptLibraries
directory when the wsadmin tool starts, set the wsadmin.script.libraries system property to the script
location. For example, if your script libraries are saved in the temp directory on a Windows operating
system, the following example sets the script path in the wsadmin command line tool:

bin>wsadmin -Tang jython -javaoption "-Dwsadmin.script.libraries=c:/myJythonScripts"

To load multiple directories, specify each directory in the system property separated by a semicolon (;), as
the following example demonstrates:

bin>wsadmin -lang jython -javaoption "-Dwsadmin.script.libraries=c:/myJythonScripts;c:/AdminScripts;c:/configScripts"

The script library provides automation scripts for the following application server administration functions:

+ [Manage application servers) You can use the AdminServerManagement scripts to configure
classloaders, Java virtual machine (JVM) settings, Enterprise JavaBean (EJB) containers, performance
monitoring, dynamic cache, and so on.

+ [Manage server and system architecture.| You can use the AdminServerManagement,
AdminNodeManagement, and AdminClusterManagement script libraries to manage clusters, nodes, and
node groups.

+ [Manage applications] You can use the AdminApplication scripts to install, uninstall, and update your
applications with various options.

+ [Manage data access resources.| You can use the AdminJDBC and AdminJ2C script libraries to manage
data sources and Java Database Connectivity (JDBC) providers, and to create and configure Java 2
Connector (J2C) resource adapters.

. |Manage messaging resources.| You can use the AdminJMS script library to configure and manage your
Java Messaging Service (JMS) configurations.

. |Manage mail resources.| You can use the AdminResources scripts in the script library to configure mail,
URL, and resource settings.

. |Managing authorization groups.l You can use the AdminAuthorizations scripts to configure authorization

groups.

[Monitor performance and troubleshoot configurations] You can use the AdminUtilities scripts to configure

trace, debugging, logs, and performance monitoring.

« |Get script library help using wsadmin| You can use the AdminLibHelp script library to list each available

script library, display information for specific script libraries, and to display information for specific script
procedures.

What to do next

Determine which scripts to use to automate your environment, or create custom scripts using assembly
tools.

Automating server administration using the scripting library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
server management scripts to configure servers, the server runtime environment, Web containers,
performance monitoring, and logs. You can also use the scripts to administer your servers.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

84 Scripting the application serving environment

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusteriithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The AdminServerManagement procedures in scripting library are located in the |app_server roof
scriptLibraries/servers/VV70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the |app_server_rooy
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminServerManagement.py scripts to perform multiple combinations of administration
functions. This topic provides one sample combination of procedures. Use the following steps to create an
application server, connect the application server to the AdminService interface, configure Java virtual
machine (JVM) settings, add the application server to a cluster, and propagate the changes to the node.

1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, job manager, or administrative agent
profile, or run the tool in local mode. If you launch the wsadmin tool, use the interactive mode
examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

bin>wsadmin -lang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
wsadmin -conntype none -lang jython
When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Create an application server.

Run the createApplicationServer script procedure from the AdminServerManagement script library, as
the following example demonstrates:

Chapter 3. Using the script library to automate the application serving environment 85

bin>wsadmin -Tang jython -c "AdminServerManagement.createApplicationServer("myNode", "myServer", "“default")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

3. Connect the application server of interest to the AdminService interface.

The AdminService interface is the server interface to the application server administration functions. To
connect the application server to the AdminService interface, run the configureAdminService script
procedure from the AdminServerManagement script library, specifying the node name, server name,
and connector type arguments, as the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminServerManagement.configureAdminService("myNode", "myServer", "IPC", "JSRI6ORMI")
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminServerManagement.configureAdminService("myNode", "myServer", "IPC", "JSRI6ORMI")

4. Configure the Java virtual machine (JVM).

As part of configuring an application server, you might define settings that enhance the way your
operating system uses of the JVM. The JVM is an interpretive computing engine responsible for
running the byte codes in a compiled Java program. The JVM translates the Java byte codes into the
native instructions of the host machine. The application server, being a Java process, requires a JVM
in order to run, and to support the Java applications running on it.

Run the configureJavaVirtualMachine script procedure from the AdminServerManagement script library,
specifying the node name, server name, whether to run the JVM in debug mode, and any debug
arguments to pass to the JVM process. You can optionally specify additional configuration attributes
with an attribute list. Use the following example to configure the JVM:

bin>wsadmin -lang jython -c "AdminServerManagement.configureJavaVirtualMachine("myNode", "myServer", “true", "mydebug", [["internalClassAccessMode", "RESTRICT"],

["disableJIT", "false"], ["verboseModeJNI", "false"]])"
You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminServerManagement.configureJavaVirtualMachine("myNode", "myServer", “true", "mydebug", [["internalClassAccessMode", "RESTRICT"],
["disableJIT", "false"], ["verboseModeJNI", "false"]])

5. Create a cluster, and add the application server as a cluster member.
Run the createClusterWithFirstMember script procedure from the AdminClusterManagement script
library, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "myServer")"
wsadmin>AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "“myNode", “"myServer")

6. Synchronize the node.
To propagate the configuration changes to the node, run the syncNode script procedure from the

AdminNodeManagement script library, and specify the node of interest, as the following example
demonstrates:

bin>wsadmin -Tang jython -c "AdminNodeManagement.syncNode ("myNode")
You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminNodeManagement .syncNode ("myNode")

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument

for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

86 Scripting the application serving environment

What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the [app_server_rooyscriptLibraries directory.

Server settings configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to configure class loaders, Java Virtual Machine (JVM) settings,
Enterprise JavaBean (EJB) containers, performance monitoring, dynamic cache, and so on. You can run
each script individually, or combine procedures to create custom automation scripts for your environment.

All server management script procedures are located in the |app_server_rooi/scriptLibraries/serversN?O
directory.

Use the following script procedures to administer your application server:
« [“configureAdminService” on page 88|

+ [“configureApplicationServerClassloader” on page 8§

« [“configureDynamicCache” on page 89|

+ [“configureEJBContainer” on page 89|

[“configureFileTransferService” on page 90|
[‘configureListenerPortForMessageListenerService” on page 90|

+ [“configureMessageListenerService” on page 91|
[‘configureStateManageable” on page 91|

Use the following script procedures to configure your application server runtime environment:
+ [‘configureCustomProperty” on page 92
[‘configureCustomService” on page 92|
[‘configureEndPointsHost” on page 93
[‘configureJavaVirtualMachine” on page 93

+ [“configureORBService” on page 94|
[‘configureProcessDefinition” on page 94|
[‘configureRuntimeTransactionService” on page 95|
[‘configureThreadPool” on page 95|

« [‘configureTransactionService” on page 96|
[‘setJVMProperties” on page 97|
[‘setTraceSpecification” on page 97|

Use the following script procedures to configure Web containers for your application server:
* [‘configureCookieForServer” on page 98|

. :“configureHTTPTransportForWebContainer” on page 98|

. :“configureSessionManagerForServer” on page 99|

. ‘“configureWebContainer” on page 99|

Use the following script procedures to configure logs and monitor performance for your application server:
* [‘configureJavaProcessLogs” on page 100|

. :“configurePerformanceMonitoringService” on page 101|

. ‘“configurePMIRequestMetrics" on page 101|

« [“configureServerLogs” on page 102|

Chapter 3. Using the script library to automate the application serving environment 87

« [“configureTraceService” on page 102

configureAdminService

This script configures settings for the AdminService interface. The AdminService interface is the
server-side interface to the application server administration functions.

To run the script, specify the node name, server name, local connection protocol, and remote connection
protocol, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
localAdminProtocol Specifies the type of connector to use to connect the AdminService interface to the
application server for local connection.
remoteAdminProtocol Specifies the type of connector to use to connect the AdminService interface to the
application server for remote connection.
otherAttributeList Optionally specifies additional attributes in the following format: [["enabled”, "true"],
["pTuginConfigService”, "(cells/timmieNode02Cel1/nodes/timmieNode01/servers/
serverl|server.xml#PluginConfigService 1183122130078)"]]
Syntax

AdminServerManagement.configureAdminService (nodeName ,

Example usage

AdminServerManagement.configureAdminService ("myNode",
[["enabled", "true"], ["pluginConfigService",

serverName, localAdminProtocol, remoteAdminProtocol, otherAttributelist)

"myServer", "IPC", "SOAP",

"(cells/timmieNode02Cell/nodes/timmieNode@1/servers/serverl|server.xml#PluginConfigService 1183122130078)"]])

configureApplicationServerClassloader

This script configures a class loader for the application server. Class loaders enable applications that are
deployed on the application server to access repositories of available classes and resources.

To run the script, specify the node name, server name, policy, mode, and library name arguments, as

defined in the following table:

Argument

Description

nodeName

Specifies the name of the node of interest.

serverName

Specifies the name of the server of interest.

policy

Specifies the application class loader policy as SINGLE or MULTIPLE. Specify the SINGLE value
to prevent the isolation applications, and to configure the application server to use a single
application class loader to load all of the EJB modules, shared libraries, and dependency
Java archive (JAR) files in the system. Specify the MULTIPLE value to isolate applications and
provide each application with its own class loader to load EJB modules, shared libraries, and
dependency JAR files.

mode

Specifies the class loader mode as PARENT_FIRST or APPLICATION_FIRST. The PARENT_FIRST
option causes the class loader to delegate the loading of classes to its parent class loader
before attempting to load the class from its local class path. The APPLICATION_FIRST option
causes the class loader to attempt to load classes from its local class path before delegating
the class loading to its parent. Using this policy, an application class loader can override and
provide its own version of a class that exists in the parent class loader.

libraryName

Specifies the name of the shared library of interest.

Syntax

AdminServerManagement.configureApplicationServerClassloader(nodeName, serverName, policy, mode, libraryName)

Example usage

AdminServerManagement.configureApplicationServerClassloader("myNode", "MULTIPLE", “PARENT_FIRST", "“myLibraryReference")

88 Scripting the application serving environment

configureDynamicCache

This script configures the dynamic cache service in your server configuration. The dynamic cache service

works within an application server JVM, intercepting calls to cacheable objects. For example, the dynamic
cache service intercepts calls through a servlet service method or a command execute method, and either
stores the output of the object to the cache or serves the content of the object from the dynamic cache.

To run the script, specify the node name, server name, default priority, cache size, external cache group
name, and external cache group type arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

defaultPriority Specifies the default priority for cache entries, determining how long an entry stays in a full

cache. Specify an integer between 1 and 255.

cacheSize Specifies a positive integer as the value for the maximum number of entries that the cache
holds. Enter a cache size value in this field that is between the range of 100 through 200000.

externalCacheGroupName The external cache group name needs to match the ExternalCache property as defined in
the servlet or JavaServer Pages (JSP) file cachespec.xml file. When external caching is
enabled, the cache matches pages with its Universal Resource Identifiers (URI) and pushes
matching pages to the external cache. The entries can then be served from the external
cache, instead of from the application server.

externalCacheGroupType Specifies the external cache group type.

otherAttributeList Optionally specifies additional configuration options for the dynamic cache service in the
following format: [["cacheProvider”, "myProvider”], ["diskCacheCleanupFrequency”, 2],
["flushToDiskOnStop”, "true”]]

Syntax

AdminServerManagement.configureDynamicCache (nodeName, serverName, defaultPriority,
cacheSize, externalCacheGroupName, externalCacheGroupType,
otherAttributelist)

Example usage

AdminServerManagement.configureDynamicCache ("myNode", "myServer", 2, 5000, "Esilnvalidator",
"SHARED", [["cacheProvider", "myProvider"], ["diskCacheCleanupFrequency", 2], ["flushToDiskOnStop","true"]])

configureEJBContainer

This script configures an Enterprise JavaBeans™ (EJB) container in your server configuration. An EJB
container provides a run-time environment for enterprise beans within the application server. The container
handles all aspects of an enterprise bean’s operation within the application server and acts as an

intermediary between the user-written business logic within the bean and the rest of the application server
environment.

To run the script, specify the node name, server name, passivation directory, and default datasource Java
Naming and Directory Interface (JNDI) name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

passivationDirectory Specifies the directory into which the container saves the persistent state of passivated

stateful session beans. This directory must already exist. It is not automatically created.

defaultDatasourceJNDIName Specifies the JNDI name of a data source to use if no data source is specified during
application deployment. This setting is not applicable for EJB 2.x-compliant
container-managed persistence beans.

Syntax

AdminServerManagement.configureEJBContainer(nodeName, serverName, passivationDir, defaultDatasourceJNDIName)

Chapter 3. Using the script library to automate the application serving environment 89

Example usage IRITIEETTEN

AdminServerManagement.configureEJBContainer("myNode", "myServer", "C:\temp\myDir", "jndil")

| Ax___J| Solaris _J Linu _J HP-UX

AdminServerManagement.configureEJBContainer("myNode", "myServer", “/temp/myDir", "jndil")

configureFileTransferService

This script configures the file transfer service for the application server. The file transfer service transfers
files from the deployment manager to individual remote nodes.

To run the script, specify the node name, server name, number of times to retry the file transfer, and the
time to wait before retrying the file transfer, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

retriesCount Specifies the number of times you want the file transfer service to retry sending or receiving a
file after a communication failure occurs. The default value is 3.

retryWaitTime Specifies the number of seconds that the file transfer service waits before it retries a failed
file transfer. The default value is 10.

otherAttributeList Optionally specifies additional attributes in the following format: [["enable”, "true”]]

Syntax

AdminServerManagement.configureFileTransferService(nodeName, serverName, retriesCount, retryWaitTime, otherAttributelist)

Example usage

AdminServerManagement.configureFileTransferService("myNode", "myServer", 5, 600, [["enable", "true"]])

configureListenerPortForMessageListenerService

This script configures the listener port for the message listener service in your server configuration. The
message listener service is an extension to the Java Messaging Service (JMS) functions of the JMS
provider. It provides a listener manager that controls and monitors one or more JMS listeners, which each
monitor a JMS destination on behalf of a deployed message-driven bean.

To run the script, specify the node name, server name, listener port name, connection factory JNDI name,
destination JNDI name, maximum number of messages, maximum number of retries, and the maximum
session arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

listenerPortName The name by which the listener port is known for administrative purposes.

connectionFactoryJNDIName

The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactoryl.

destinationJNDIName The JNDI name for the destination to be used by the listener port; for example, jms/destnl

maxMessages The maximum number of messages that the listener can process in one transaction. If the
queue is empty, the listener processes each message when it arrives. Each message is
processed within a separate transaction.

maxRetries The maximum number of times that the listener tries to deliver a message before the listener

is stopped, in the range 0 through 2147483647. The maximum number of times that the
listener tries to deliver a message to a message-driven bean instance before the listener is
stopped.

a0 Scripting the application serving environment

Argument Description

maxSession Specifies the maximum number of concurrent sessions that a listener can have with the JMS
server to process messages. Each session corresponds to a separate listener thread and
therefore controls the number of concurrently processed messages. Adjust this parameter
when the server does not fully use the available capacity of the machine and if you do not
need to process messages in a specific message order.

Syntax

AdminServerManagement.configureListenerPortForMessagelistener(nodeName, serverName, listenerPortName, connectionFactoryJNDIName,
destinationJNDIName, maxMessages, maxRetries, maxSession)

Example usage

AdminServerManagement.configureListenerPortForMessagelistener("myNode", "myServer", "myListenerPort", "connJNDI", "destJNDI", 5, 2, 3)

configureMessageListenerService

This script configures the message listener service in your server configuration. The message listener
service is an extension to the Java Messaging Service (JMS) functions of the JMS provider. It provides a
listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS
destination on behalf of a deployed message-driven bean.

To run the script, specify the node name, server name, maximum number of message listener retries,
listener recovery interval, pooling threshold, and pooling timeout attributes, as defined in the following
table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

maxListenerRetry Specifies the maximum number of times that a listener port managed by this service tries to

recover from a failure before giving up and stopping. When stopped the associated listener
port is changed to the stop state.

listenerRecoverylnterval Specifies the time in seconds between retry attempts by a listener port to recover from a
failure.

poolingThreshold Specifies the maximum number of unused connections in the pool. The default value is 10.

poolingTimeout Specifies the number of milliseconds after which a connection in the pool is destroyed if it has

not been used. An MQSimpleConnectionManager allocates connections on a
most-recently-used basis, and destroys connections on a least-recently-used basis. By
default, a connection is destroyed if it has not been used for five minutes.

otherAttributeList Optionally specifies additional message listener attributes in the following format:
[["description”, "test message listener”], ["isGrowable”, "true”], ["maximumSize”,
100], ["minimumSize”, 5]]

Syntax

AdminServerManagement.configureMessagelListenerService (nodeName, serverName, maxListenerRetry, listenerRecoverylnterval,
poolingThreshold, poolingTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureMessagelistenerService("myNode", "myServer", 5, 120, 20, 600000, "myProp", "myValue",
[["description”, "test message listener"], ["isGrowable", "true"], ["maximumSize", 100], ["minimumSize", 5]])

configureStateManageable

This script configures the initial state of the application server. The initial state refers to the desired state of
the component when the server process starts.

To run the script, specify the node name, server name, parent type, and initial state arguments, as defined
in the following table:

Chapter 3. Using the script library to automate the application serving environment 91

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the type of component to modify.

initialState Specifies the desired state of the component when the server process starts. Valid values are
START and STOP.

Syntax

AdminServerManagement.configureStateManageable(nodeName, serverName, parentType, initialState)

Example usage

AdminServerManagement.configureStateManageable("myNode", "myServer", "Server", "START")
configureCustomProperty

This script configures custom properties in your application server configuration. You can use custom
properties for configuring internal system properties which some components use, for example, to pass
information to a Web container.

To run the script, specify the node name, server name, parent type, property name, and property value
arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the type of component to configure.

propertyName Specifies the custom property to configure.

propertyValue Specifies the value of the custom property to configure.

otherAttributeList Optionally specifies additional attributes in the following format: [["commTraceEnabled”,
"true”], ["enable”, "true’]]

Syntax

AdminServerManagement.configureCustomProperty (nodeName, serverName, parentType, propertyName, propertyValue, otherAttributelist)

Example usage

AdminServerManagement.configureCustomProperty ("myNode", "myServer", "ThreadPool", "myPropl", "myPropValue",
[["description", "my property test"], ["required", "false"]])

configureCustomService

This script configures a custom service in your application server configuration. Each custom services
defines a class that is loaded and initialized whenever the server starts and shuts down. Each of these
classes must implement the com.ibm.websphere.runtime.CustomService interface. After you create a
custom service, use the administrative console to configure that custom service for your application
servers.

To run the script, specify the node name, server name, and preferred connector type, as defined in the
following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

classname Specifies the class name of the service implementation. This class must implement the
Custom Service interface.

displayname Specifies the name of the service.

92 Scripting the application serving environment

Argument Description

classpath Specifies the class path used to locate the classes and JAR files for this service.

otherAttributeList Optionally specifies additional attributes in the following format: [["description”, "test
custom service”], ["enable”, "true”]]

Syntax

AdminServerManagement.configureCustomService(nodeName, serverName, classname, displayname, classpath, otherAttributeList)

Example usage BRI

AdminServerManagement.configureCustomService("myNode", "myServer", "myClass", "myName", "C:\temp\boo.jar",
[["description", "test custom service"], ["enable", "true"]])

LAl HP-UX Solaris

AdminServerManagement.configureCustomService("myNode", "myServer", "myClass", "myName", "/temp/boo.jar",
[["description", "test custom service"], ["enable", "true"]])

configureEndPointsHost

This script configures the host name of the server endpoints. To run the script, specify the node name,
server name, and host name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
hostName Specifies the name of the host of interest.
Syntax

AdminServerManagement.configureEndPointsHost (nodeName, serverName, hostName)

Example usage

AdminServerManagement.configureEndPointsHost ("myNode", "AppServer01", "“myHostname")

configureJavaVirtualMachine

This script configures a Java virtual machine (JVM). The application server, being a Java process, requires
a JVM in order to run, and to support the Java applications running on it.

To run the script, specify the configuration ID of the JVM of interest, whether to enable debug mode, and
additional debug arguments, as defined in the following table:

Argument Description

JjavaVirtualMachineConfigID Specifies the configuration ID of the Java virtual machine you want to make changes.

debugMode Specifies whether to run the JVM in debug mode. The default is not to enable debug mode
support. If you set the debugMode argument to true, then you must specify debug
arguments.

debugArgs Specifies debug arguments to pass to the JVM code that starts the application server

process. If you enable debugging on multiple application servers on the same node, make
sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[["internalClassAccessMode”, "RESTRICT""], ["disabledIT”, "false"],
["verboseModeJNI”, "false"]]

Syntax

AdminServerManagement.configureJdavaVirtualMachine(javaVirtualMachineConfigID, debugMode, debugArgs, otherAttributelist)

Chapter 3. Using the script library to automate the application serving environment 93

Example usage

AdminServerManagement.configuredavaVirtualMachine

("(cells/WASOONetwork/nodes/ndnodel/servers/serverl|server.xml#JavaVirtualMachine 1208188803955)", "true",
"mydebug", [["internalClassAccessMode", "RESTRICT"], ["disableJIT", "false"], ["verboseModeJNI", "false"]])

configureORBService

This script configures an Object Request Broker (ORB) service in your server configuration. An Object
Request Broker (ORB) manages the interaction between clients and servers, using the Internet InterORB
Protocol (IIOP). It enables clients to make requests and receive responses from servers in a

network-distributed environment.

To run the script, specify the node name, server name, request timeout, request retry count, request retry
delay, maximum connection cache, minimum connection cache, and locate request timeout arguments, as

defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

requestTimeout Specifies the number of seconds to wait before timing out on a request message.

requestRetriesCount Specifies the number of times that the ORB attempts to send a request if a server fails.
Retrying sometimes enables recovery from transient network failures. This field is ignored on
the z/0OS® platform.

requestRetriesDelay Specifies the number of milliseconds between request retries. This field is ignored on the
z/OS platform.

connectionCacheMax Specifies the maximum number of entries that can occupy the ORB connection cache before
the ORB starts to remove inactive connections from the cache. This field is ignored on the
z/OS platform. It is possible that the number of active connections in the cache will
temporarily exceed this threshold value. If necessary, the ORB will continue to add
connections as long as resources are available.

connectionCacheMin Specifies the minimum number of entries in the ORB connection cache. This field is ignored
on the z/OS platform. The ORB will not remove inactive connections when the number of
entries is below this value.

locateRequestTimeout Specifies the number of seconds to wait before timing out on a LocateRequest message. This
field is ignored on the z/OS platform.

otherAttributeList Optionally specifies additional attributes in the following format: [["commTraceEnabled”,
"true"], ["enable”, "true"]]

Syntax

AdminServerManagement.configureORBService(nodeName, serverName, requestTimeout, requestRetriesCount, requestRetriesDelay,
connectionCacheMax, connectionCacheMin, TocateRequestTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureMessagelistenerService("myNode", "myServer", 5, 120, 20, 600000, 20, 300, [["commTraceEnabled", "true"], ["enable", "true"]])

configureProcessDefinition

This script configures the server process definition. Enhance the operation of an application server by
defining command-line information for starting or initializing the application server process. Process
definition settings define runtime properties such as the program to run, arguments to run the program,

and the working directory.

To run the script, specify the node name and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

otherParamList Specifies additional parameters for the process definition configuration in the following
format: [["executableName”, "valuel”], ["executableArguments”, "value2"],
["workingDirectory”, "value3"]]

94 Scripting the application serving environment

Syntax

AdminServerManagement.configureProcessDefintion(nodeName, serverName, otherParamlist)

Example usage

AdminServerManagement.configureProcessDefinition("myNode", "myServer",
[["executableName", "valuel"],["executableArguments”."value2"], ["workingDirectory”, "value3"]])

configureRuntimeTransactionService

This script configures the transaction service for your server configuration. The transaction service is a
server runtime component that coordinates updates to multiple resource managers to ensure atomic
updates of data. Transactions are started and ended by applications or the container in which the
applications are deployed.

To run the script, specify the node name, server name, total transaction lifetime timeout , and client
inactivity timeout arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

totalTranLifetime Timeout Specifies the default maximum time, in seconds, allowed for a transaction that is started on

this server before the transaction service initiates timeout completion. Any transaction that
does not begin completion processing before this timeout occurs is rolled back.

clientlnactivity Timeout Specifies the maximum duration, in seconds, between transactional requests from a remote
client. Any period of client inactivity that exceeds this timeout results in the transaction being
rolled back in this application server. If you set this value to 0, there is no timeout limit.
Syntax

AdminServerManagement.configureRuntimeTransactionService(nodeName, serverName, totalTranlifetimeTimeout, clientInactivityTimeout)

Example usage

AdminServerManagement.configureRuntimeTransactionService("myNode", "myServer", 600, 600)

configureThreadPool

This script configures thread pools in your server configuration. A thread pool enables components of the
server to reuse threads, which eliminates the need to create new threads at run time. Creating new
threads expends time and resources.

To run the script, specify the node name, server name, parent type, thread pool name, maximum size,
minimum size, and the amount of time before timeout occurs, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the maximum number of times that a listener port managed by this service tries to

recover from a failure before stopping. When stopped the associated listener port is changed
to the stop state.

threadPoolName Specifies the name of the thread pool of interest.

maximumSize Specifies the maximum number of threads to maintain in the default thread pool. If your
Tivoli® Performance Viewer shows the Percent Maxed metric to remain consistently in the
double digits, consider increasing the Maximum size. The Percent Maxed metric indicates the
amount of time that the configured threads are used.

Chapter 3. Using the script library to automate the application serving environment 95

Argument

Description

minimumSize

Specifies the minimum number of threads to allow in the pool. When an application server
starts, no threads are initially assigned to the thread pool. Threads are added to the thread
pool as the workload assigned to the application server requires them, until the number of
threads in the pool equals the number specified in the Minimum size field. After this point in
time, additional threads are added and removed as the workload changes. However the
number of threads in the pool never decreases below the number specified in the Minimum
size field, even if some of the threads are idle.

inactivity Timeout

Specifies the number of milliseconds of inactivity that should elapse before a thread is
reclaimed. A value of 0 indicates not to wait and a negative value (less than 0) means to wait
forever.

otherAttributeList

Specifies additional configuration attributes in the following format: [["description”,
"testing thread pool”], ["isGrowable”, "true”], ["name”, "myThreadPool"]]

Syntax

AdminServerManagement.configureThreadPool (nodeName, serverName, parentType, threadPoolName, maximumSize, minimumSize, inactivityTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureThreadPool

("myNode", "myServer", "myThreadPool", "ObjectRequestBroker", 20, 5, 6000,

nom

[["description”, "testing thread pool"], ["isGrowable", "true"], ["name","myThreadPool"]])

configureTransactionService

This script configures the transaction service for your application server. You can use transactions with
your applications to coordinate multiple updates to resources as atomic units (as indivisible units of work)
such that all or none of the updates are made permanent.

To run the script, specify the node name, server name, total transaction lifetime timeout, client inactivity
timeout, maximum transaction timeout, heuristic retry limit, heuristic retry wait, propogate or BMT
transaction lifetime timeout, and asynchronous response timeout arguments, as defined in the following

table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the server name of the of interest.

totalTranLifetime Timeout

Specifies the default maximum time, in seconds, allowed for a transaction that is started on
this server before the transaction service initiates timeout completion. Any transaction that
does not begin completion processing before this timeout occurs is rolled back. This timeout
is used only if the application component does not set its own transaction timeout.

Note: Only the total transaction lifetime timeout and the maximum transaction timeout have
grace periods. You can disable the grace periods using the
DISABLE_TRANSACTION_TIMEOUT_GRACE_PERIOD custom property.

clientinactivity Timeout

Specifies the maximum duration, in seconds, between transactional requests from a remote
client. Any period of client inactivity that exceeds this timeout results in the transaction being
rolled back in this application server. If you set this value to 0, there is no timeout limit.

maximumTransactionTimeout

Specifies the upper limit of the transaction timeout, in seconds, for transactions that run in
this server. This value should be greater than or equal to the total transaction timeout. This
timeout constrains the upper limit of all other transaction timeouts.

heuristicRetryLimit

Specifies the number of times that the application server retries a completion signal, such as
commit or rollback. Retries occur after a transient exception from a resource manager or
remote partner, or if the configured asynchronous response timeout expires before all Web
Services Atomic Transaction (WS-AT) partners have responded.

heuristicRetryWait

Specifies the number of seconds that the application server waits before retrying a completion
signal, such as commit or rollback, after a transient exception from a resource manager or
remote partner.

propogateOrBMT TranLifetime Timeout

Specifies the number of seconds that a transaction remains inactive before it is rolled back.

asyncResponseTimeout Specifies the amount of time, in seconds, that the server waits for an inbound Web Services
Atomic Transaction (WS-AT) protocol response before resending the previous WS-AT protocol
message.

otherAttributeList Optionally specifies additional attributes in the following format: [["LPSHeuristicCompletion”,

"ROLLBACK"], ["WSTransactionSpecificationLevel”, "WSTX_10"], ["enable”, "true"]]

96 Scripting the application serving environment

Syntax

AdminServerManagement.configureTransactionService(nodeName, serverName, totalTranLifetimeTimeout, clientInactivityTimeout,
maximumTransactionTimeout, heuristicRetrylimit, heuristicRetryWait,
propogateOrBMTTranLifetimeTimeout, asyncResponseTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureTransactionService("myNode", "myServer",

120, 60, 5, 2, 5, 300, 30,

[["LPSHeuristicCompletion", "ROLLBACK"], ["WSTransactionSpecificationLevel”, "WSTX_10"], ["enable", "true"]])

setJVMProperties

This script sets additional properties for your JVM configuration.

To run the script, specify the node name, server name, classpath, boot class path, initial heap size,
maximum heap size, whether to enable debug mode, and debug arguments, as defined in the following

table:
Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
classPath Optionally specifies the standard class path in which the Java virtual machine code looks for
classes.
bootClasspath Optionally specifies bootstrap classes and resources for JVM code. This option is only
available for JVM instructions that support bootstrap classes and resources.
initialHeapSize Optionally specifies the initial heap size available to the JVM code, in megabytes. Increasing
the minimum heap size can improve startup. The number of garbage collection occurrences
are reduced and a 10% gain in performance is realized. Increasing the size of the Java heap
improves throughput until the heap no longer resides in physical memory, in general. After
the heap begins swapping to disk, Java performance suffers drastically.
maxHeapSize Optionally specifies the maximum heap size available to the JVM code, in megabytes.
Increasing the heap size can improve startup. By increasing heap size, you can reduce the
number of garbage collection occurrences with a 10% gain in performance.
debugMode Optionally specifies whether to run the JVM in debug mode. The default is not to enable
debug mode support. If you set the debugMode argument to true, then you must specify
debug arguments.
debugArgs Optionally specifies debug arguments to pass to the JVM code that starts the application
server process. If you enable debugging on multiple application servers on the same node,
make sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.
Syntax

AdminServerManagement.setJVMProperties (nodeName, serverName, classPath, bootClasspath, initialHeapSize, maxHeapSize, debugMode, debugArgs)

Example usage BRI

AdminServerManagement.setJVMProperties("myNode", "myServer", “"c:\a.jar",

IIII, IIII’ IIII’ ||||’ IIII)

| Windows § Linux _ AX__§ HP-UX | Solaris |

AdminServerManagement.setJVMProperties("myNode", "myServer", "/a.jar", "", "", v, ne owv)

setTraceSpecification

This script sets the trace specification for your configuration.

To run the script, specify the node name, server name, and trace specification arguments, as defined in

the following table:

Argument

Description

nodeName

Specifies the name of the node of interest.

Chapter 3. Using the script library to automate the application serving environment 97

Argument Description

serverName Specifies the name of the server of interest.

traceSpecification Optionally specifies debug arguments to pass to the JVM code that starts the application
server process. If you enable debugging on multiple application servers on the same node,
make sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.

Syntax

AdminServerManagement.setJVMProperties (nodeName, serverName, traceSpecification)

Example usage

AdminServerManagement.setTraceSpecification("myNode", "myServer", "com.ibm.ws.management.x=all")

configureCookieForServer

This script configures cookies in your application server configuration. Configure cookies to track sessions.

To run the script, specify the node name, server name, cookie name, domain, maximum cookie age, and
whether to secure the cookie, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

cookieName Specifies a unique name for the session management cookie. The servlet specification
requires the name JSESSIONID. However, for flexibility this value can be configured.

domain Specifies the domain field of a session tracking cookie. This value controls whether or not a
browser sends a cookie to particular servers. For example, if you specify a particular domain,
session cookies are sent to hosts in that domain. The default domain is the server.

maximumAge Specifies the amount of time that the cookie lives on the client browser. Specify that the
cookie lives only as long as the current browser session, or to a maximum age. If you choose
the maximum age option, specify the age in seconds. This value corresponds to the Time to
Live (TTL) value described in the Cookie specification. Default is the current browser session
which is equivalent to setting the value to -1.

secure Specifies that the session cookies include the secure field. Enabling the feature restricts the
exchange of cookies to HTTPS sessions only.

otherAttributeList Optionally specifies additional attributes in the following format: [["path”,
"C:/temp/mycookie”]]

Syntax

AdminServerManagement.configureCookieForServer(nodeName, serverName, cookieName, domain, maximumAge, secure, otherAttributelist)

Example usage

AdminServerManagement.configureCookieForServer("myNode", "myServer", "myCookie", "uk.kingdom.com", -1, "true", [["path", "C:/temp/mycookie"]])

configureHTTPTransportForWebContainer

This script configures HTTP transports for a Web container. Transports provide request queues between
application server plug-ins for Web servers and Web containers in which the Web modules of applications
reside. When you request an application in a Web browser, the request is passed to the Web server, then
along the transport to the Web container.

To run the script, specify the node name, server name, whether to adjust the port, whether external, the
Secure Socket Layer (SSL) configuration to use, and whether to enable SSL, as defined in the following

table:
Argument Description
nodeName Specifies the name of the node of interest.

98 Scripting the application serving environment

Argument Description

serverName Specifies the name of the server of interest.

adjustPort Specifies whether to automatically adjust the port for the Web container of interest.

external Specifies whether to set the HTTP Transport for the Web container to external.

sslConfig Specifies the Secure Sockets Layer (SSL) settings type for connections between the
WebSphere Application Server plug-in and application server. The options include one or
more SSL settings defined in the Security Center; for example, DefaultSSLSettings,
ORBSSLSettings, or LDAPSSLSettings.

sslEnabled Specifies whether to protect connections between the WebSphere Application Server plug-in
and application server with Secure Sockets Layer (SSL). The default is not to use SSL.

Syntax

AdminServerManagement.configureHTTPTransportForWebContainer(nodeName, serverName, adjustPort, external, sslConfig, sslEnabled)

Example usage

AdminServerManagement.configureHTTPTransportForWebContainer("myNode", "myServer", "true", "true", "mySSLConfig", "true")

configureSessionManagerForServer

This script configures the session manager for the application server. Sessions allow applications running
in a Web container to keep track of individual users.

To run the script, specify the node name, server name, and session persistence mode, as defined in the

following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

sessionPersistenceMode

Specifies the session persistence mode. Valid values include DATABASE, DATA_REPLICATION,
and NONE.

otherAttributeList

Optionally specifies additional attributes in the following format: [["accessSessionOnTimeout”,
"true"], ["enabled”, "true"]]

Syntax

AdminServerManagement.configureSessionManagerForServer(nodeName, serverName, sessionPersistenceMode, otherAttributelist)

Example usage

AdminServerManagement.configureSessionManagerForServer("myNode", "myServer", "DATABASE", [["accessSessionOnTimeout", "true"], ["enabled", "true"]])

configureWebContainer

This script configures Web containers in your application server configuration. A Web container handles
requests for servlets, JavaServer Pages (JSP) files, and other types of files that include server-side code.
The Web container creates servlet instances, loads and unloads servlets, creates and manages request
and response objects, and performs other servlet management tasks.

To run the script, specify the node name, server name, default virtual host name, and whether to enable
servlet cache, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
webContainerName Specifies the name of the Web container of interest.

Chapter 3. Using the script library to automate the application serving environment 99

Argument Description

defaultVirtualHostName Specifies a virtual host that enables a single host machine to resemble multiple host
machines. Resources associated with one virtual host cannot share data with resources
associated with another virtual host, even if the virtual hosts share the same physical
machine. Valid values include:

default_host
The product provides a default virtual host with some common aliases such as the
machine IP address, short host name, and fully qualified host name. The alias
comprises the first part of the path for accessing a resource such as a servlet. For
example, it is Tocalhost:9080 in the request http://Tocalhost:9080/myServiet.

admin_host
This is another name for the application server; also known as server1 in the base
installation. This process supports the use of the administrative console.

proxy_host
The virtual host called proxy_host, includes default port definitions, port 80 and
443, which are typically initialized as part of the proxy server initialization. Use this
proxy host as appropriate with routing rules associated with the proxy server.

enableServletCaching Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry
is created containing not only the output, but also side effects of the invocation. These side
effects can include calls to other servlets or JavaServer Pages (JSP) files, as well as
metadata about the entry, including timeout and entry priority information.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet
fragment caching automatically enables servlet caching. Disabling servlet caching
automatically disables portlet fragment caching.

otherAttributeList Optionally specifies additional attributes in the following format:
[["allowAsyncRequestDispatching”, "true”], ["disablePooling”, "true"],
["sessionAffinityTimeout”, 20]]

Syntax

AdminServerManagement.configureWebContainer(nodeName, serverName, defaultVirtualHostName, enableServletCaching, otherAttributelist)

Example usage

AdminServerManagement.configurelWebContainer("myNode", "myServer", "myVH.uk.kingdom.com", true,
[["allowAsyncRequestDispatching”, "true"], ["disablePooling", "true"], ["sessionAffinityTimeout", 20]])

configureJavaProcessLogs

This script configures Java process logs for the application server. The system creates the JVM logs by
redirecting the System.out and System.err streams of the JVM to independent log files.

To run the script, specify the Java process definition of interest and root directory for the process logs, as
defined in the following table:

Argument Description

JjavaProcessDefConfiglD Specifies the configuration ID of the Java Process Definition of interest.

processLogRoot Specifies the root directory for the process logs.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[["stdinFilename”, "/temp/mystdin.log"]]

Syntax

AdminServerManagement.configureJavaProcessLogs (javaProcessDefConfigID, processLogRoot, otherAttributelist)

Example usage BTN

AdminServerManagement.configuredavaProcesslLogs
("(cells/WASOONetwork/nodes/ndnodel/servers/serverl|server.xml#JavaProcessDef 1184194176408)",
"C:\temp\myJavalog", [["stdinFilename", "c:\temp\mystdin.log"]])

L Ax_f HP-ux fl Solaris

100 Scripting the application serving environment

AdminServerManagement.configuredavaProcesslLogs
(" (cells/WASOONetwork/nodes/ndnodel/servers/serverl|server.xml#JavaProcessDef 1184194176408)",
"/temp/myJavalog", [["stdinFilename", "/temp/mystdin.log"]])

configurePerformanceMonitoringService

This script configures performance monitoring infrastructure (PMI) in your configuration. PMI enables the
server to collect performance data from various product components. PMI provides information about
average system resource usage statistics, with no correlation between the data across different
components.

To run the script, specify the node name, server name, whether to enable PMI, and the initial specification
level arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

enable Specifies whether the application server attempts to enable Performance Monitoring

Infrastructure (PMI). If an application server is started when the PMI is disabled, you have to
restart the server in order to enable it.

initialSpecLevel Specifies a pre-defined set of Performance Monitoring Infrastructure (PMI) statistics for all
components in the server.

None All statistics are disabled.

Basic Provides basic monitoring for application server resources and applications. This
includes Java Platform Enterprise Edition (Java EE) components, HTTP session
information, CPU usage information, and the top 38 statistics. This is the default
setting.

Extended
Provides extended monitoring, including the basic level of monitoring plus
workload monitor, performance advisor, and Tivoli resource models. Extended
provides key statistics from frequently used WebSphere Application Server
components.

All Enables all statistics.

Custom Provides fine-grained control with the ability to enable and disable individual
statistics.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[["statisticSet”, "test statistic set”], ["synchronizedUpdate”, "true’]]

Syntax

AdminServerManagement.configurePerformanceMonitoringService(nodeName, serverName, enable, initialSpecLevel, otherAttributelist)

Example usage

AdminServerManagement.configurePerformanceMonitoringService("myNode", "myServer", "true", "Basic",
[["statisticSet", "test statistic set"], ["synchronizedUpdate", "true"]])

configurePMIRequestMetrics

This script configures PMI request metrics in your configuration. Request metrics provide data about each
transaction, correlating this information across the various product components to provide an end-to-end
picture of the transaction. To run the script, specify whether to enable request metrics and the trace level,
as defined in the following table:

Argument Description

enable Specifies whether to turn on the request metrics feature. When disabled, the request metrics
function is disabled.

Chapter 3. Using the script library to automate the application serving environment 101

Argument Description

tracelLevel Specifies how much trace data to accumulate for a given transaction. Note that trace level
and components to be instrumented work together to control whether or not a request will be
instrumented.

NONE No instrumentation.

HOPS Generates instrumentation information on process boundaries only (for example,
a servlet request coming from a browser or a Web server and a JDBC request
going to a database).

PERFORMANCE_DEBUG
Generates the data at Hops level and the first level of the intra-process servlet
and Enterprise JavaBeans (EJB) call (for example, when an inbound servlet
forwards to a servlet and an inbound EJB calls another EJB). Other intra-process
calls like naming and service integration bus (SIB) are not enabled at this level.

DEBUG Provides detailed instrumentation data, including response times for all
intra-process calls. Requests to servlet filters will only be instrumented at this
level.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[["armType”, "TIVOLI_ARM"], ["enableARM", "true"]]

Syntax

AdminServerManagement.configurePMIRequestMetrics (enable, tracelevel, otherAttributelist)

Example usage

AdminServerManagement.configurePMIRequestMetrics ("true", "DEBUG",
[["armType", "TIVOLI_ARM"], ["enableARM", "true"]])

configureServerLogs

This script configures server logs for the application server of interest. To run the script, specify the node
name, server name, and root directory for the server logs, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

serverLogRoot Specifies the root directory for the server logs.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[["formatWrites”, "true"], ["messageFormatKind”, "BASIC"], ["rolloverType”, "BOTH"]]

Syntax

AdminServerManagement.configureServerLogs (nodeName, serverName, serverLogRoot, otherAttributelist)

Example usage WIS

AdminServerManagement.configureServerLogs ("myNode", "myServer", "C:\temp\mylog",
[["formatWrites"”, "true"], ["messageFormatKind", "BASIC"], ["rolloverType", "BOTH"]])

L Ax__f HP-Ux f| Solaris § Linux

AdminServerManagement.configureServerLogs ("myNode", "myServer", "/temp/mylog",
[["formatWrites"”, "true"], ["messageFormatKind", "BASIC"], ["rolloverType", "BOTH"]])

configureTraceService

This script configures trace settings for the application server. Configure trace to obtain detailed
information about running the application server. To run the script, specify the node name, server name,
trace specification, and output type arguments, as defined in the following table:

102 Scripting the application serving environment

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
startupTraceSpecification Specifies the trace specification to enable for the component of interest. For example, the

com.ibm.ws.webservices.trace.MessageTrace=all trace specification traces the contents of a
SOAP message, including the binary attachment data.

traceOutputType Specifies where trace output should be written. The trace output can be written directly to an
output file, or stored in memory.

otherAttributeList Optionally specifies additional attributes for the trace service using the following name and
value pair format: [["enable”, "true"], ["traceFormat”, "LOG_ANALYZER"]]

Syntax

AdminServerManagement.configureTraceService(nodeName, serverName, traceString, outputType, otherAttributelist)

Example usage

AdminServerManagement.configureTraceService("myNode", "myServer", "com.ibm.ws.management.x=all=enabled",
"SPECIFIED_FILE", [["enable", "true"], ["traceFormat", "LOG_ANALYZER"]])

Server configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to create application servers, Web servers, and generic servers. You can
run each script individually, or combine procedures to create custom automation scripts for your
environment.

All server management script procedures are located in the lapp_server _roolscriptLibraries/servers/\V'70
directory. If you do not want to set an argument, specify an empty string as the value for the argument, as
the following syntax demonstrates: "".

Use the following script procedures to administer your application server:
+ [“createApplicationServer’]

+ [“createAppServerTemplate” on page 104

+ [‘createGenericServer’ on page 104|

[‘createWebServer” on page 105

[‘deleteServer” on page 105

[‘deleteServerTemplate” on page 106

createApplicationServer

This script creates a new application server in your environment. During the installation process, the
product creates a default application server, named serverl. Most installations require several application
servers to handle the application serving needs of their production environment.

To run the script, specify the node, server, and template names, as defined in the following table:

Argument Description

nodeName Specifies the name of the node on which to create the application server.
serverName Specifies the name of the server to create.

templateName Optionally specifies the template to use to create the application server.
Syntax

AdminServerManagement.createApplicationServer(nodeName, serverName, templateName)

Example usage

AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

Chapter 3. Using the script library to automate the application serving environment 103

createAppServerTemplate

This script creates a new application server template in your configuration. A server template is used to
define the configuration settings for a new application server. When you create a new application server,
you either select the default server template or a template you previously created, that is based on
another, already existing application server. The default template is used if you do not specify a different
template when you create the server.

To run the script, specify the node name, server name, and new template name arguments, as defined in
the following table:

Argument Description

nodeName Specifies the node that corresponds to the server from which to base the template.
serverName Specifies the name of the server from which to base the template.
newTemplateName Specifies the name of the new template to create.

Syntax

AdminServerManagement.createAppServerTemplate (nodeName, serverName, newTemplateName)

Example usage

AdminServerManagement.createAppServerTemplate ("myNode", "myServer", "myNewTemplate")
createGenericServer

This script configures a new generic server in the configuration. A generic server is a server that the
application server manages, but does not supply. If you do not want to set an argument, specify an empty
string as the value for the argument, as the following syntax demonstrates: "".

To run the script, specify the node name, new server name, template name, start command path and
arguments, working directory, and stop command path and arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node on which to create the server.

newServerName Specifies the name of the server to create.

templateName Optionally specifies the template to use to create the server.

startCmdPath Optionally specifies the path to the command that will run when this generic server is started.

startCmdArguments Optionally specifies the arguments to pass to the startCommand when the generic server is
started.

workingDirectory Optionally specifies the working directory for the generic server.

stopCmdPath Optionally specifies the path to the command that will run when this generic server is
stopped.

stopCmdArguments Optionally specifies the arguments to pass to the stopCommand parameter when the generic
server is stopped.

Syntax
AdminServerManagement.createGenericServer(nodeName, newServerName, templateName,

startCmdPath, startCmdArguments, workingDirectory, stopCmdPath,
stopCmdArguments)

Example usage WITITEN

AdminServerManagement .createGenericServer("myNode", "myServer",
“default", "", "", “c:\temp", e ||||)

L Ax f Linuc | HP-UX il Solaris

AdminServerManagement.createGenericServer("myNode", "myServer",
"default", ||||’ ||||’ “/ternp", ||||, uu)

104 Scripting the application serving environment

createWebServer

This script configures a Web server in your configuration. An application server works with a Web server to
handle requests for dynamic content, such as servlets, from Web applications. A Web server uses Web
server plug-ins to establish and maintain persistent HTTP and HTTPS connections with an application
server. If you do not want to set an argument, specify an empty string as the value for the argument, as
the following syntax demonstrates: "".

To run the script, specify the node name, new server name, port number, server install root, plug-in
installation root, configuration file path, Windows Operating System service name, error log path, access
log path, and web protocol type, as defined in the following table:

Argument Description
nodeName Specifies the name of the node on which the Web server is defined.
newServerName Specifies the name of the Web server to create.
port Optionally specifies the port from which to ping the status of the Web server.
serverlinstallRoot Optionally specifies the fully qualified path where the Web server is installed. This field is
required if you are using IBM® HTTP Server. For all other Web servers, this field is not
required. If you enable any administrative function for non-IBM HTTP Server Web servers,
the installation path is necessary.
plugininstallPath Specifies the installation path for the Web server plug-in.
configFilePath Specifies the configuration file for your Web server. Specify the file and not just the directory
of the file. The application server generates the plugin-cfg.xml file by default. The
configuration file identifies applications, application servers, clusters, and HTTP ports for the
Web server. The Web server uses the file to access deployed applications on various
application servers.
| Windows [P) Specifies the Windows Operating System name for the Web server.
windowsServiceName
errorLogPath Specifies the location of the error log file.
accesslLogPath Specifies the location of the access log file.
webProtocol Specifies the protocol to use for Web server communications. Use the HTTPS protocol to
securely communicate with the Web server. The default is HTTP.
Syntax

AdminServerManagement.createWebServer(nodeName, newServerName, port,

serverInstallRoot, pluginInstallPath, configFilePath,

windowsServiceName, errorLogPath,
accesslogPath, webProtocol)

Example usage

AdminServerManagement.createWebServer("myNode", "myWebServer", "", "",omn e oown o o o)

deleteServer

This script removes a server from the application server configuration.

To run the script, specify the node and server names, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server to delete.
Syntax

AdminServerManagement.deleteServer(nodeName, serverName)

Example usage

AdminServerManagement.deleteServer("myNode", "myServer")

Chapter 3. Using the script library to automate the application serving environment 105

deleteServerTemplate
This script deletes a server template from your configuration.

To run the script, specify the template name, as defined in the following table:

Argument Description
templateName Specifies the name of the template to delete.
Syntax

AdminServerManagement.deleteServerTemplate (templateName)

Example usage

AdminServerManagement.deleteServerTemplate("newServerTemplate")

Server query scripts

The scripting library provides multiple script procedures to automate your server configurations. This topic
provides usage information for scripts that query your application server configuration. You can run each
script individually, or combine procedures to create custom automation scripts for your environment.

All server management script procedures are located in the [app_server_roo¥scriptLibraries/servers/V70
directory. Use the following script procedures to query your application server configuration:

* [‘checklfServerExists’|

* |“‘checklfServerTemplateExists ” on page 107|
* |“‘getJavaHome” on page 107
* |“getServerProcessType” on page 107|
* |“getServerPID” on page 107
* [‘help” on page 108
. “‘IistJVMProperties” on page 108|
* |“listServers” on page 108
« |listServerTemplates” on page 109|

» [“listServerTypes” on page 1@|

+ [“queryingMBeans” on page 109
[‘showServerinfo” on page 110|
[“viewingProductinformation” on page 110|

checklfServerExists

This script determines whether the server of interest exists in your configuration. To run the script, specify
the node name and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.checkIfServerExists(nodeName, serverName)

Example usage

AdminServerManagement.checkIfServerExists("myNode", "myServer")

106 Scripting the application serving environment

checklfServerTemplateExists

This script determines whether the server template of interest exists in your configuration. To run the
script, specify the template name arguments, as defined in the following table:

Argument Description
templateName Specifies the name of the server template of interest.
Syntax

AdminServerManagement.checkIfServerTemplateExists (templateName)

Example usage

AdminServerManagement.checkIfServerTemplateExists("newServer")
getJavaHome

This script displays the Java home value. To run the script, specify the node name and server name
arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement .getJavaHome (nodeName, serverName)

Example usage

AdminServerManagement.getJavaHome ("myNode", "myServer")
getServerProcessType

This script displays the type of server process for a specific server. To run the script, specify the node and
server name arguments for the server of interest, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.getServerProcessType (nodeName, serverName)

Example usage

AdminServerManagement.getServerProcessType("myNode", "serverl")
getServerPID

This script displays the running server process ID for a specific target. To run the script, specify the node
and server name arguments for the server of interest, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

Chapter 3. Using the script library to automate the application serving environment 107

AdminServerManagement.getServerPID(nodeName, serverName)

Example usage

AdminServerManagement.getServerPID("myNode", "serverl")
help

This script displays the script procedures that the AdminServerManagement script library supports. To
display detailed help for a specific script, specify the name of the script of interest, as defined in the
following table:

Argument Description
scriptName Specifies the name of the script of interest.
Syntax

AdminServerManagement.help(scriptName)

Example usage

AdminServerManagement.help("getServerProcessType")
listdVMProperties

This script displays the properties that are associated with your Java virtual machine (JVM) configuration.
To run the script, specify the node name, server name, and optionally the JVM property of interest, as
defined in the following table:

Argument Description

nodeName Optionally specifies the name of the node of interest.
serverName Optionally specifies the name of the server of interest.
JVMProperty Optionally specifies the JVM property to query.
Syntax

AdminServerManagement.1istJVMProperties(nodeName, serverName, JVMProperty)

Example usage

AdminServerManagement.1istJVMProperties ("myNode", "myServer", "")
listServers

This script displays the servers that exist in your configuration. You can optionally specify the node name
or server type to query for a specific scope, as defined in the following table:

Argument Description

serverType Specifies the name of the server to query.
nodeName Specifies the name of the node to query.
Syntax

AdminServerManagement.listServers(serverType, nodeName)

Example usage
AdminServerManagement.listServers ("APPLICATION_SERVER", "myNode")

108 Scripting the application serving environment

listServerTemplates

This script displays the server templates in your configuration. To run the script, specify the template
version, server type, and template name, as defined in the following table:

Argument Description

templateVersion Optionally specifies the version of the template of interest.

serverType Optionally specifies the type of server. Valid values include the GENERIC_SERVER,
WEB_SERVER, APPLICATION_SERVER , and PROXY_SERVER server types.

templateName Optionally specifies the name of the template of interest.

Syntax

AdminServerManagement.listServerTemplates(templateVersion, serverType, templateName)

Example usage
AdminServerManagement.listServerTemplates("", "APPLICATION_SERVER", "default")

listServerTypes

This script displays the server types that are available on the node of interest. To run the script, specify the
node name, as defined in the following table:

Argument Description
nodeName Optionally specifies the name of the node of interest.
Syntax

AdminServerManagement.1istServerTypes(nodeName)

Example usage

AdminServerManagement.listServerTypes ("myNode")
queryingMBeans

This script queries the application server for Managed Beans (MBeans). Enhance the operation of an
application server by defining command-line information for starting or initializing the application server
process. Process definition settings define runtime properties such as the program to run, arguments to
run the program, and the working directory.

To run the script, specify the node name and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
mbeanType Specifies the type of MBean to query.
Syntax

AdminServerManagement.queryingMBeans (nodeName, serverName, mbeanType)

Example usage

AdminServerManagement.queryingMBeans ("myNode", "serverl", "Server")

Chapter 3. Using the script library to automate the application serving environment 109

showServerinfo

This script displays server configuration properties for the server of interest. The script displays the cell
name, server type, product version, node name, and server name. To run the script, specify the node
name and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.showServerInfo(nodeName, serverName)

Example usage

AdminServerManagement.showServerInfo("myNode", "myServer")

viewingProductinformation

This script displays the application server product version.

Syntax

AdminServerManagement.viewingProductInformation()

Example usage

AdminServerManagement.viewingProductInformation()

Server administration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to delete, start, and stop servers. You can run each script individually or

combine procedures to create custom automation scripts for your environment.

All server management script procedures are located in the |app_server_rooi’scriptLibraries/serversN61

directory.

Use the following script procedures to administer your application server:

+ [“startAllServers’|

« [“startSingleServer” on page 111|
* |“stopAllServers” on page 111
« |‘stopSingleServer” on page 111|

startAllServers

This script starts all servers on a node in your configuration.

To run the script, specify the node name, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
Syntax

AdminServerManagement.startAl1Servers (nodeName)

Example usage

AdminServerManagement.startAl1Servers ("myNode")

110 Scripting the application serving environment

startSingleServer
This script starts a specific server in your configuration.

To run the script, specify the node name and server name, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server to start.
Syntax

AdminServerManagement.startSingleServer(nodeName, serverName)

Example usage

AdminServerManagement.startSingleServer("myNode", "myServer")
stopAllServers
This script stops all servers on a node in your configuration.

To run the script, specify the node name, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
Syntax

AdminServerManagement.stopAllServers (nodeName)

Example usage

AdminServerManagement.stopAllServers("myNode")
stopSingleServer
This script stops a single server in your configuration.

To run the script, specify the node name and server name, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.stopSingleServer(nodeName, serverName, classname, displayname, classpath, otherAttributelist)

Example usage

AdminServerManagement.stopSingleServer("myNode", "myServer")

Automating administrative architecture setup using the scripting
library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
server, node, and cluster management scripts to configure servers, nodes, node groups, and clusters in
your application server environment.

Chapter 3. Using the script library to automate the application serving environment 111

Before you begin

Before you can complete this task, you must install an application server in your environment.
About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#
AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminAppTlication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server_roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server_roo¥scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Use the scripts in the following directories to configure your administrative architecture:

 The server and cluster management procedures are located in the [app_server_rooffscriptLibraries/
servers/V70 subdirectory.

* The node and node group management procedures are located in the |app_server_rooz|’scriptLibraries/
system/V70 subdirectory.

Each script from the directory automatically loads when you launch the wsadmin tool. To automatically
load your own Jython scripts (*.py) when the wsadmin tool starts, create a new subdirectory, and save
existing automation scripts in the app_server_rooz}’scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

This topic provides one sample combination of procedures. Use the following steps to create a node group
and add three nodes to the group:

1. Optional: Launch the wsadmin tool.

112 Scripting the application serving environment

Use this step to launch the wsadmin tool and connect to a server, job manager, or administrative agent

profile, or run the tool in local mode. If you launch the wsadmin tool, use the interactive mode

examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

bin>wsadmin -Tang jython

» Enter the following command from the bin directory to launch the wsadmin tool in local mode using

the Jython scripting language:

wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Display the nodes in your environment.

Run the listNodes script procedure from the AdminNodeManagement script library, as the following
example demonstrates:

bin>wsadmin -lang jython -c "AdminNodeManagement.listNodes()"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminNodeManagement.1istNodes ()

For this example, the command returns the following output:

Nodel
Node2
Node3

3. Create a node group.

Run the createNodeGroup script procedure from the AdminNodeManagement script library, specifying
the name to assign to the new node group, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminNodeManagement.createNodeGroup ("NodeGroupl")"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminNodeManagement .createNodeGroup ("myNodeGroup")
4. Add nodes to the node group.

Run the addNodeGroupMember script procedure from the AdminNodeManagement script library to add
the Nodel, Node2, and Node3 nodes to the NodeGroupl node group, specifying the node name and node
group name, as the following examples demonstrate:

wsadmin -lang jython -c "AdminNodeManagement.addNodeGroupMember("Nodel", "NodeGroupl")"
wsadmin -lang jython -c "AdminNodeManagement.addNodeGroupMember("Node2", "NodeGroupl")"
wsadmin -lang jython -c "AdminNodeManagement.addNodeGroupMember("Node3", "NodeGroupl")"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminNodeManagement .addNodeGroupMember ("Nodel", "NodeGroupl")
wsadmin>AdminNodeManagement .addNodeGroupMember ("Node2", "NodeGroupl")
wsadmin>AdminNodeManagement .addNodeGroupMember ("Node3", "NodeGroupl")

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the |app_server roofscriptLibraries directory.

Chapter 3. Using the script library to automate the application serving environment 113

Node administration scripts

The scripting library provides multiple script procedures to automate your server configurations. This topic
provides usage information for scripts that query, configure, and manage your node configurations. You
can run each script individually, or combine procedures to create custom automation scripts for your
environment.

All node management script procedures are located in the|app_server_rooz}’scriptLibraries/system/V?O
directory. Use the following script procedures to query, configure, and manage your node configurations:

. ‘“configureDiscoveryProtocoIOnNode”|
+ [doesNodeExist]

* |“isNodeRunning” on page 115|

« |“listNodes” on page 115

* |‘restartActiveNodes” on page 115|

* |“restartNodeAgent” on page 115|
[“stopNode” on page 116
[“stopNodeAgent” on page 116]

« [“syncActiveNodes” on page 116|

+ [“syncNode” on page 116

configureDiscoveryProtocolOnNode

This script configures the discovery protocol for the node of interest. If the discovery protocol that a node
uses is not appropriate for the node, modify the configuration to use the appropriate protocol.

To run the script, specify the node of interest and the protocol, as defined in the following table:

Argument Description

nodeName Specifies the name of the node. The node name is unique within the cell. A node name
usually is identical to the host name for the computer. That is, a node usually
corresponds to a physical computer system with a distinct IP host address.

discoveryProtocol Specifies the protocol that the node follows to retrieve information from a network. The
Discovery protocol setting is only valid for managed nodes. Specify Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP). UDP is faster than TCP, but
TCP is more reliable than UDP because UDP does not guarantee delivery of
datagrams to the destination. Between these two protocols, the TCP default is
recommended.

Syntax

AdminNodeManagement.configureDiscoveryProtocolOnNode (nodeName, discoveryProtocol)

Example usage

AdminNodeManagement.configureDiscoveryProtocolOnNode ("myNode", "UDP")
doesNodeEXxist

This script displays a value of 1 if the node of interest exists, or a value of -1 if the node of interest does
not exist. To run the script, specify the name of the node, as defined in the following table:

Argument Description

nodeName Specifies the name of the node to query. The node name is unique within the cell. A
node name usually is identical to the host name for the computer. That is, a node
usually corresponds to a physical computer system with a distinct IP host address.

Syntax

AdminNodeManagement.doesNodeExist ("nodeName")

114 Scripting the application serving environment

Example usage

AdminNodeManagement .doesNodeExist ("myNode")

isNodeRunning

This script displays a value of 1 if the node of interest can be started, or a value of -1 if the node of
interest cannot be started. To run the script, specify the name of the node, as defined in the following

table:

Argument Description

nodeName Specifies the name of the node of interest. The node name is unique within the cell. A
node name usually is identical to the host name for the computer. That is, a node
usually corresponds to a physical computer system with a distinct IP host address.

Syntax

AdminNodeManagement . isNodeRunning (nodeName)

Example usage

AdminNodeManagement . i sNodeRunning ("myNode")
listNodes
This script displays a list of nodes

Syntax

AdminNodeManagement.1istNodes ()

Example usage

AdminNodeManagement. 1istNodes ()

restartActiveNodes

in your environment.

This script restarts the nodes in your environment with node agents that are in the started state.

Syntax

AdminNodeManagement.restartActiveNodes ()

Example usage

AdminNodeManagement.restartActiveNodes ()
restartNodeAgent

This script restarts the node agent

of interest. Node agents are administrative agents that monitor

application servers on a host system and route administrative requests to servers. A node agent is the
running server that represents a node in a Network Deployment environment.

To run the script, specify the node

of interest, as defined in the following table:

Argument Description
nodeName Specifies the name of the node to restart. The node name is unique within the cell. A
node name usually is identical to the host name for the computer. That is, a node
usually corresponds to a physical computer system with a distinct IP host address.
Syntax
AdminNodeManagement.restartNodeAgent (nodeName)
Chapter 3. Using the script library to automate the application serving environment 115

Example usage
AdminNodeManagement . restartNodeAgent ("myNode")

stopNode
This script stops the node of interest. Start or stop a node as needed when administering your Network
Deployment environment. Before your environment can service requests, you must have the deployment

manager and node started, and typically an HTTP server running.

To run the script, specify the node of interest, as defined in the following table:

Argument Description

nodeName Specifies the name of the node to stop. The node name is unique within the cell. A
node name usually is identical to the host name for the computer. That is, a node
usually corresponds to a physical computer system with a distinct IP host address.

Syntax

AdminNodeManagement . stopNode (nodeName)

Example usage
AdminNodeManagement . stopNode ("myNode")

stopNodeAgent
This script stops the node agent of interest. Node agents are administrative agents that monitor application
servers on a host system and route administrative requests to servers. A node agent is the running server

that represents a node in a Network Deployment environment.

To run the script, specify the node of interest, as defined in the following table:

Argument Description

nodeName Specifies the name of the node. The node name is unique within the cell. A node name
usually is identical to the host name for the computer. That is, a node usually
corresponds to a physical computer system with a distinct IP host address.

Syntax

AdminNodeManagement . stopNodeAgent (nodeName)

Example usage
AdminNodeManagement.stopNodeAgent ("myNode")

syncActiveNodes

This script propagates configuration changes to each active node in your environment. By default, this
situation occurs periodically, as long as the node can communicate with the deployment manager.

Syntax

AdminNodeManagement.syncActiveNodes ()

Example usage

AdminNodeManagement.syncActiveNodes ()
syncNode

This script propagates configuration changes to the node of interest. By default, this situation occurs
periodically, as long as the node can communicate with the deployment manager.

116 Scripting the application serving environment

To run the script, specify the node of interest, as defined in the following table:

Argument Description

nodeName Specifies the name of the node. The node name is unique within the cell. A node name
usually is identical to the host name for the computer. That is, a node usually
corresponds to a physical computer system with a distinct IP host address.

Syntax

AdminNodeManagement . syncNode (nodeName)

Example usage

AdminNodeManagement .syncNode ("myNode")

Node group configuration scripts

The scripting library provides multiple script procedures to automate your server configurations. Use the
information in this topic to use scripts that query, configure, and manage your node configurations. You
can run each script individually, or combine procedures to create custom automation scripts for your
environment.

Use node groups to define groups of nodes can host members of the same cluster. An application that is
deployed to a cluster must be capable of running on any of the cluster members. The node that hosts
each of the cluster members must be configured with software and settings that are necessary to support
the application.

By organizing nodes that satisfy your application requirements into a node group, you establish an
administrative policy that governs which nodes can be used together to form a cluster. Those who define
the cell configuration and those who create server clusters can operate with more independence from one
another.

All node management script procedures are located in the |app_server_roof{scriptLibraries/system/V7O
directory. Use the following script procedures to query, configure, and manage your node configurations:

[‘addNodeGroupMember’]

+ [‘checklfNodeExists” on page 11§

* |“checklfNodeGroupExists” on page 118|
* |‘createNodeGroup” on page 118|

» |‘createNodeGroupProperty” on page 119
» |“deleteNodeGroup” on page 119|

+ [“deleteNodeGroupMember” on page 119|
[“deleteNodeGroupProperty” on page 120
[‘help” on page 120|

[listNodeGroups” on page 120
[“listNodeGroupMembers” on page 120|
[“listNodeGroupProperties” on page 121|
[‘modifyNodeGroup” on page 121
[‘modifyNodeGroupProperty” on page 121|

addNodeGroupMember
This script adds a node to a node group that exists in your configuration.

To run the script, specify the name of the node and the node group, as defined in the following table:

Chapter 3. Using the script library to automate the application serving environment 117

Argument Description

nodeName Specifies a logical name for the node group member. A node group member is a node.
The name must be unique within the cell. A node group member name typically is
identical to the host name for the computer.

nodeGroupName Specifies a logical name for the node group. The name must be unique within the cell.
The name can start with a number.

Syntax

AdminNodeManagement .addNodeGroupMember (nodeName, discoveryProtocol)

Example usage
AdminNodeManagement .addNodeGroupMember ("myNode", "myNodeGroup")

checklfNodeEXxists
This script displays whether the node of interest exists in a specific node group.

To run the script, specify the node group and node arguments, as defined in the following table:

Argument Description

nodeGroupName Specifies the name of the node group to query.
nodeName Specifies the name of the node to query.
Syntax

AdminNodeManagement.checkIfNodeExists(nodeGroupName, nodeName)

Example usage
AdminNodeManagement.checkIfNodeExists ("myNodeGroup", "myNode")

checklfNodeGroupExists
This script displays whether a specific node group exists in your configuration.

To run the script, specify the name of the node group, as defined in the following table:

Argument Description
nodeGroupName Specifies the name of the node group to query.
Syntax

AdminNodeManagement.checkIfNodeGroupExists (nodeGroupName)

Example usage
AdminNodeManagement.checkIfNodeGroupExists ("myNodeGroup")

createNodeGroup
This script creates a new node group in your configuration.

To run the script, specify the name of the node group, as defined in the following table:

Argument Description
nodeGroupName Specifies the name of the node group to create.
Syntax

AdminNodeManagement.createNodeGroup ("nodeGroupName")

118 Scripting the application serving environment

Example usage

AdminNodeManagement.createNodeGroup ("myNodeGroup")
createNodeGroupProperty
This script assigns custom properties to the node group of interest.

To run the script, specify the name of the node, as defined in the following table:

Argument Description
nodeGroupName Specifies the name of the node of interest.
customPropertyName Specifies the name, or key, for the property. Each property name must be unique. If the

same name is used for multiple properties, the value specified for the first property that
has that name is used. Do not start your property names with was. because this prefix
is reserved for properties that are predefined in the application server.

customPropertyValue Specifies the value to assign to the custom property name.
customPropertyDesc Optionally specifies a description for the custom property to create.
isPropertyRequired Optionally specifies whether the custom property is required in your configuration.

Specify true to set the custom property as required in your configuration.

Syntax

AdminNodeManagement.createNodeGroupProperty (nodeGroupName, customPropertyName, customPropertyValue, customPropertyDesc, isPropertyRequired)

Example usage

AdminNodeGroupManagement . createNodeGroupProperty ("myNodeGroup", "myProp", “myPropValue", "“this is my prop", "true")
deleteNodeGroup
This script deletes a node group from your configuration.

To run the script, specify the node group name, as defined in the following table:

Argument Description
nodeGroupName Specifies the name of the node group to delete.
Syntax

AdminNodeManagement .deleteNodeGroup (nodeGroupName)

Example usage
AdminNodeManagement .deleteNodeGroup ("myNodeGroup")

deleteNodeGroupMember
This script removes a node from a specific node group in your configuration.

To run the script, specify the node group name and node name arguments, as defined in the following
table:

Argument Description

nodeGroupName Specifies the name of the node group of interest.

nodeName Specifies the name of the node to remove from the node group.
Syntax

AdminNodeManagement.deleteNodeGroupMember (nodeGroupName , nodeName)

Example usage

Chapter 3. Using the script library to automate the application serving environment 119

AdminNodeManagement.deleteNodeGroupMember ("myNodeGroup", "myNode")
deleteNodeGroupProperty
This script removes a specific custom property from a node group.

To run the script, specify the node group name and property name arguments, as defined in the following
table:

Argument Description

nodeGroupName Specifies the name of the node group of interest.

customPropertyName Specifies the name of the custom property to remove from your node group
configuration.

Syntax

AdminNodeManagement.deleteNodeGroupProperty (nodeGroupName, customPropertyName)

Example usage
AdminNodeManagement.deleteNodeGroupProperty ("myNodeGroup", "myProp")

help

This script displays the script procedures that the AdminNodeGroupManagement script library supports. To
display detailed help for a specific script, specify the name of the script of interest, as defined in the
following table:

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminServerManagement.help(script)

Example usage
AdminServerManagement.help("modifyNodeGroupProperty")

listNodeGroups

This script displays the node groups that exist in your configuration. If you specify the name of a specific
node, the script returns the name of the node group to which the node belongs.

Argument Description
nodeName Optionally specifies the name of the node to use to query the node groups.
Syntax

AdminNodeManagement.1istNodeGroups ()

Example usage

AdminNodeManagement.1istNodeGroups ()
listNodeGroupMembers
This script lists the name of each node that is configured within a specific node group.

To run the script, specify the node group argument, as defined in the following table:

120 Scripting the application serving environment

Argument Description

nodeGroupName Specifies the name of the node group of interest.

Syntax

AdminNodeManagement.1istNodeGroupMembers (nodeGroupName)

Example usage

AdminNodeManagement.1istNodeGroupMembers ("myNodeGroup")
listNodeGroupProperties
This script lists the custom properties that are configured within a specific node group.

To run the script, specify the node group argument, as defined in the following table:

Argument Description
nodeGroupName Specifies the name of the node group of interest.
Syntax

AdminNodeManagement.1istNodeGroupProperties (nodeGroupName)

Example usage

AdminNodeManagement.1istNodeGroupProperties ("myNodeGroup")
modifyNodeGroup
This script modifies the short name and description of a node group.

To run the script, specify the node group, short name and description arguments, as defined in the
following table:

Argument Description

nodeGroupName Specifies the name of the node group of interest.
shortName Specifies the short name of the node group of interest.
description Specifies a description of the node group.

Syntax

AdminNodeManagement.1istNodeGroupProperties (nodeGroupName, shortName, description)

Example usage
AdminNodeManagement.1istNodeGroupProperties ("myNodeGroup", "NG1", "my first node group")

modifyNodeGroupProperty
This script modifies the value of a custom property assigned to a node group.

To run the script, specify the node group, custom property, custom property value, custom property
description, and whether the property is required, as defined in the following table:

Argument Description

nodeGroupName Specifies the name of the node group of interest.
customPropertyName Specifies the name of the custom property to modify.
customPropertyValue Optionally specifies a new value for the custom property of interest.
customPropertyDescription Optionally specifies a description for the custom property.

Chapter 3. Using the script library to automate the application serving environment

121

Argument Description

isPropertyRequired Optionally specifies whether the custom property is required.

Syntax

AdminNodeManagement .modifyNodeGroupProperty (nodeGroupName, customPropertyName, customPropertyValue, customPropertyDescription, isPropertyRequired)

Example usage

AdminNodeManagement .modifyNodeGroupProperty ("myNodeGroup", "customProp", "newValue", "new description of property", "false")

Cluster configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to configure clusters with or without cluster members, using a template, and to
remove clusters from your configuration. You can run each script individually, or combine procedures to
create custom automation scripts.

The AdminClusterManagement script procedures are located in the [app_server_rooflscriptLibraries/server/
V70 directory.

Use the following script procedures to configure clusters in your environment:
* [“createClusterMember’|

* [‘createClusterWithFirstMember” on page 12§|

* |“createClusterWithoutMember” on page 123]
* |‘createFirstClusterMemberWithTemplate” on page 123|

* |“‘createFirstClusterMemberWithTemplateNodeServer” on page 124|

Use the following script procedures remove clusters and cluster members from your configuration:
+ |“deleteCluster” on page 124|
» |“deleteClusterMember” on page 125

createClusterMember

This script assigns a server cluster member to a specific cluster. When you create the first cluster member,
a copy of that member is stored as part of the cluster data and becomes the template for all additional
cluster members that you create.

To run the script, specify the cluster name, node name, and new member name arguments, as defined in
the following table:

Argument Description

clusterName Specifies the name of the cluster to which the system adds the cluster member.
nodeName Specifies the name of the node on which the application server resides.
newMemberName Specifies the name to assign to the cluster member.

Syntax

AdminClusterManagement.createClusterMember(clusterName, nodeName, newMemberName)

Example usage

AdminClusterManagement.createClusterMember ("myCluster", "myNode", "clusterMemberl")

122 Scripting the application serving environment

createClusterWithFirstMember

This script creates a new cluster configuration and adds the first cluster member to the cluster. Use
clusters to manage a group of application servers as a single unit, and distribute client requests among the
application servers that are members of the cluster. Create a cluster to balance your client requests across
multiple application servers and to provide a highly available environment for your applications.

To run the script, specify the cluster name, cluster type, node name, and server name arguments, as
defined in the following table:

Argument Description

clusterName Specifies the name to assign to the new cluster.

clusterType Specifies the type of cluster to create. You can specify a value of APPLICATION_SERVER,
GENERIC_SERVER, or WEB_SERVER.

nodeName Specifies the name of the node on which the cluster resides.

serverName Specifies the name of the server to add to the cluster.

Syntax

AdminClusterManagement.createClusteriithFirstMember(clusterName, clusterType, nodeName, serverName)

Example usage
AdminClusterManagement.createClusteriWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", “myServer")

createClusterWithoutMember

This script creates a new cluster configuration in your environment. Use clusters to manage a group of
application servers as a single unit, and distribute client requests among the application servers that are
members of the cluster. Create a cluster to balance your client requests across multiple application servers
and to provide a highly available environment for your applications.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name to assign to the new cluster.
Syntax

AdminClusterManagement.createClusterWithoutMember(clusterName)

Example usage

AdminClusterManagement.createClusterWithoutMember("myCluster")
createFirstClusterMemberWithTemplate

This script uses a template to add the first server cluster member to a specific cluster. A copy of the first
cluster member that you create is stored in the cluster scope as a template. You can create the first cluster
member using any existing server as a template or a default server template. You can also create a first
cluster member when you create the cluster by converting a server to a cluster. When you create a first
cluster member, the template of the cluster member is stored in the scope of the cluster. Additional cluster
members are created using the cluster member template stored in the cluster scope

To run the script, specify the cluster name, node name, new member name, and template name
arguments, as defined in the following table:

Argument Description

clusterName Specifies the name of the cluster of interest.

Chapter 3. Using the script library to automate the application serving environment 123

Argument Description

nodeName Specifies the name of the node on which the application server resides.
newMemberName Specifies the name to assign to the cluster member.

templateName Specifies the name of the template to use to create the cluster member.
Syntax

AdminClusterManagement.createFirstClusterMemberWithTemplate(clusterName, nodeName, newMemberName, templateName)

Example usage

AdminClusterManagement.createFirstClusterMemberWithTemplate ("myCluster", "myNode", "myClusterMember", “default")

createFirstClusterMemberWithTemplateNodeServer

This script uses a node with an existing application server as a template to create a new cluster member
in your configuration. When you create the first cluster member, a copy of that member is stored as part of
the cluster data and becomes the template for all additional cluster members that you create.

To run the script, specify the cluster name, node name, new member name, template node name, and
template server name arguments, as defined in the following table:

Argument Description

clusterName Specifies the name of the cluster to which the system adds the cluster member.

nodeName Specifies the name of the node on which the application server resides.

newMemberName Specifies the name to assign to the cluster member.

templateNodeName Specifies the name of the node with an existing application server to use as the template
when creating the new cluster member.

templateServerName Specifies the name of the existing application server to use as the model when creating the
new cluster member.

Syntax

AdminClusterManagement.createFirstClusterMemberWithTemplateNodeServer(clusterName, nodeName, newMemberName, newMemberName, templateNodeName, templateServerName)

Example usage

AdminClusterManagement.createFirstClusterMemberWithTemplateNodeServer("myCluster", "myNode", "newClusterMember", "“myTemplateNode", "myTemplateServer")

deleteCluster

This script deletes the configuration of a server cluster. A server cluster consists of a group of application
servers that are referred to as cluster members. The script deletes the server cluster and each of its
cluster members.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster to remove from your configuration.
Syntax

AdminClusterManagement.deleteCluster(clusterName)

Example usage

AdminClusterManagement.deleteCluster("myCluster")

124 Scripting the application serving environment

deleteClusterMember

This script removes a cluster member from your cluster configuration. A cluster member is a server that
belongs to a cluster.

To run the script, specify the cluster name, node name, and server cluster member arguments, as defined
in the following table:

Argument Description

clusterName Specifies the name of the cluster from which to remove the cluster member.
nodeName Specifies the name of the node that is associated with the cluster member to delete.
clusterMemberName Specifies the name of the cluster member to remove from your configuration.
Syntax

AdminClusterManagement.deleteClusterMember (clusterName, nodeName, clusterMemberName)

Example usage

AdminClusterManagement.deleteClusterMember ("myCluster", "myNode", “clusterMemberl")

Cluster query scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to determine if clusters and cluster members exist and to display the clusters
and cluster members that are configured in your environment. You can run each script individually, or
combine procedures to create custom automation scripts.

The AdminClusterManagement script procedures are located in the [app_server_roofscriptLibraries/server/
V70 directory.

Use the following script procedures to query your cluster configuration:
+ [“checklfClusterExists’|

[‘checklfClusterMemberExists’]

* [*help” on page 126|

[“listClusters” on page 126]

[“listClusterMembers” on page 126|

checklfClusterExists
This script displays whether the cluster of interest exists in your configuration.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster of interest.
Syntax

AdminClusterManagement.checkIfClusterExists(clusterName)

Example usage

AdminClusterManagement.checkIfClusterExists("myCluster")
checklfClusterMemberExists

This script displays whether a specific cluster member exists in your cluster configuration.

Chapter 3. Using the script library to automate the application serving environment 125

To run the script, specify the cluster name and server cluster member arguments, as defined in the
following table:

Argument Description

clusterName Specifies the name of the cluster to query.
serverName Specifies the name of the server of interest.
Syntax

AdminClusterManagement.checkIfClusterMemberExists(clusterName, serverName)

Example usage

AdminClusterManagement.checkIfClusterMemberExists ("myCluster", "myClusterMember")
help

This script displays the script procedures that the AdminClusterManagement script library supports. To
display detailed help for a specific script, specify the name of the script of interest, as defined in the
following table:

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminResources.help(script)

Example usage

AdminResources.help("createClusterWithoutMember")
listClusters
This script displays each cluster that exists in your configuration. This script does not require arguments.

Syntax

AdminClusterManagement.listClusters()

Example usage

AdminClusterManagement.listClusters()
listClusterMembers
This script displays the server cluster members that exist in a specific cluster configuration.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster of interest.
Syntax

AdminClusterManagement.listClusterMembers (clusterName)

Example usage

AdminClusterManagement.listClusterMembers ("myCluster")

126 Scripting the application serving environment

Cluster administration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to start and stop cluster processes with a variety of options. You can run each
script individually or combine procedures to create custom automation scripts.

The AdminClusterManagement script procedures are located in the |app_server_rooz}’scriptLibraries/server/
v61 directory.

Use the following script procedures to start cluster processes in your environment:
* [‘rippleStartAllClusters’]

« |“rippleStartSingleCluster’|

» [“startAliClusters’]

« [‘startSingleCluster” on page 128|

Use the following script procedures to stop cluster processes in your environment:
« [immediateStopAlIRunningClusters” on page 128|

+ [{mmediateStopSingleCluster” on page 128]

+ [“stopAllClusters” on page 12§

+ [“stopSingleCluster” on page 129

rippleStartAllClusters
This script stops and restarts each cluster within a cell configuration.

Syntax

AdminClusterManagement.rippleStartA11CTusters ()

Example usage
AdminClusterManagement.rippleStartAl1CTusters ()

rippleStartSingleCluster
This script stops and restarts the cluster members within a specific cluster configuration.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster to stop and restart.
Syntax

AdminClusterManagement.rippleStartSingleCluster(clusterName)

Example usage
AdminClusterManagement.rippleStartSingleCluster("myCluster")

startAllClusters
This script starts each cluster within a cell configuration.

Syntax

AdminClusterManagement.startAl1Clusters()

Example usage

Chapter 3. Using the script library to automate the application serving environment 127

AdminClusterManagement.startA11CTusters ()
startSingleCluster
This script starts a specific cluster in your configuration.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster of interest.
Syntax

AdminClusterManagement.startSingleCluster(clusterName)

Example usage

AdminClusterManagement.startSingleCluster("myCluster")
immediateStopAllIRunningClusters

This script stops the server cluster members for each active cluster within a specific cell. The server
ignores any current or pending tasks. When the stop operation begins, the cluster state changes to
partially stopped. After all servers stop, the cluster state becomes stopped.

Syntax

AdminClusterManagement.immediateStopAl1RunningClusters()

Example usage

AdminClusterManagement.immediateStopATl1RunningClusters ()

immediateStopSingleCluster

This script stops the server cluster members for a specific cluster within a cell. The server ignores any
current or pending tasks. When the stop operation begins, the cluster state changes to partially stopped.

After all servers stop, the cluster state becomes stopped.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster to stop.
Syntax

AdminClusterManagement.immediateStopSingleCluster(clusterName)

Example usage

AdminClusterManagement.immediateStopSingleCluster("myCluster")
stopAllClusters

This script stops the server cluster members of each active cluster within a specific cell. Each server stops
so that the server can complete existing requests and allow failover to another member of the cluster.
When the stop operation begins the cluster state changes to partially stopped. After all servers stop, the
cluster state becomes stopped.

Syntax

AdminClusterManagement.stopAl1Clusters()

128 Scripting the application serving environment

Example usage
AdminClusterManagement.stopAl1Clusters()

stopSingleCluster

This script stops the server cluster members of a specific active cluster within a cell. Each server stops so
that the server can complete existing requests and allow failover to another member of the cluster. When
the stop operation begins the cluster state changes to partially stopped. After all servers stop, the cluster
state becomes stopped.

To run the script, specify the cluster name argument, as defined in the following table:

Argument Description
clusterName Specifies the name of the cluster to stop.
Syntax

AdminClusterManagement.stopSingleCluster(clusterName)

Example usage

AdminClusterManagement.stopSingleCluster("myCluster")

Automating application configurations using the scripting library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
application management scripts to install, uninstall, export, start, stop, and manage applications in your
environment.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:
wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:

#

My Custom Jython Script - file.py

#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusteriithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminAppTlication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")
Save the custom script and run it from the command line, as the following syntax demonstrates:

bin>wsadmin -Tanguage jython -f path/to/your/jython/file.py

Chapter 3. Using the script library to automate the application serving environment 129

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server_roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server_roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The application management procedures in scripting library are located in the |app_server_r004/
scriptLibraries/application/V70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the|app_server_rooil
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminApplication.py scripts to perform multiple combinations of administration functions.
This topic provides one sample combination of procedures. Use the following steps to use the scripting
library to install an application on a cluster and start the application:

1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you

launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a

server:
bin>wsadmin -Tang jython

» Enter the following command from the bin directory to launch the wsadmin tool in local mode and

using the Jython scripting language:
bin>wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Create a cluster.

Run the createClusterWithoutMember script procedure from the AdminClusterManagement script

library, and specify the required arguments, as the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminClusterManagement.createClusterWithoutMember('myCluster')"

You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminClusterManagement.createClusterWithoutMember ("myCluster")
3. Create a cluster member for the new cluster.

Run the createClusterMember script procedure from the AdminClusterManagement script library, and

specify the required arguments, as the following example demonstrates:
bin>wsadmin -lang jython -c "AdminClusterManagement.createClusterMember('myCluster', 'myNode, 'myNewMember')"

You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminClusterManagement.createClusterWithoutMember ("myCluster", "myNode", "
4. Install the application on the newly created cluster.

Run the installAppWithClusterOption script procedure from the AdminApplication script library, and

specify the required arguments, as the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminApplication.installAppWithClusterOption('myApplication', 'myApplicationEar.ear"', 'myCluster')"

You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminApplication.installAppWithClusterOption("myApplication", "myApplicationEar.ear", "myCluster")
5. Start the application on the cluster.

Run the startApplicationOnCluster script procedure from the AdminApplication script library and specify

the required arguments, as the following example displays:
bin>wsadmin -Tang jython -c "AdminApplication.startApplicationOnCluster('myApplication','myCluster')"

You can also use interactive mode to run the script procedure, as the following example displays:

'myNewMember")

130 Scripting the application serving environment

wsadmin>AdminApplication.startApplicationOnCluster("myApplication", "myCluster")
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the [app_server rooyscriptLibraries directory.

Application installation and uninstallation scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that install applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the |app_server_rooz}’scriptLibraries/appIication/
V70 directory. Use the following script procedures to install and uninstall applications:

. “instaIIAppWithAppNameOption”I

+ [‘installAppWithDefaultBindingOption” on page 132

* |“installAppWithNodeAndServerOptions” on page 132|
* |“installAppWithClusterOption” on page 133
+ [“installAppModulesToSameServerWithMapModulesToServersOption” on page 133
[“installAppModulesToDiffServersWithMapModulesToServersOption” on page 134
[“installAppModulesToSameServerWithPatternMatching” on page 134
[“installAppModulesToDiffServersWithPatternMatching” on page 135
[“installAppModulesToMultiServersWithPatternMatching” on page 135
[“installAppWithTargetOption” on page 136|

[“installAppWithDeployEjbOptions” on page 136]

[“installAppWithVarious TasksAndNonTasksOptions” on page 137

[“installWarFile” on page 137]

« [‘uninstallApplication” on page 138

installAppWithAppNameOption

This script installs an application using the -appname option. The -appname option specifies the name of
the application. The default is the display name of the application.

To run the script, specify the application name and Enterprise Archive (EAR) file arguments, as defined in
the following table:

Argument Description

appName Specifies the name of the application to install.

Chapter 3. Using the script library to automate the application serving environment 131

Argument Description

earFile Specifies the EAR file to deploy.

Syntax

AdminApplication.installAppWithAppNameOption (appName,
earfile)

Example usage BTN

AdminApplication.installAppWithAppNameOption("myApp",
"c:/ears/DefaultApplication.ear")

A HP-UX Solaris

AdminApplication.installAppWithAppNameOption ("myApp", "\ears\DefaultApplication.ear")
installAppWithDefaultBindingOption

This script installs an application using the -usedefaultbindings option.

To run the script, specify the application name, Enterprise Archive (EAR) file, data source Java Naming

and Directory Interface (JNDI) name, data source user name, data source password, connection factory,
Enterprise JavaBeans prefix, and virtual host name arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the target node.

serverName Specifies the name of the target server.
dsJndiName Specifies the JNDI name of the data source to use.
dsUserName Specifies the user name for the data source.
dsPassword Specifies the password for the data source.
connFactory Specifies the name of the connection factory to use.
EJBprefix Specifies the Enterprise JavaBean (EJB) prefix to use.
virtualHostName Specifies the virtual host for the application to install.
Syntax

AdminApplication.installAppWithDefaultBindingOption(appName,
earfile, nodeName, serverName, dsJndiName,

dsUserName, dsPassword, connFactory, EJBprefix,
virtualHostName)

Example usage BRI

AdminApplication.installAppWithDefaultBindingOption("myApp",
"c:/ears/DefaultApplication.ear", "myNode", "myServer", "mydndi", "userl", "password",
Ilmycfll’ "m_,VEjb", llmyVHll)

L Ax___J Solaris | Linux | HP-UX

AdminApplication.installAppWithDefaultBindingOption("myApp", "\ears\DefaultApplication.ear", "myNode",
"myServer", "mydndi", "userl", "password", "myCf", "myEjb", "myVH")

installAppWithNodeAndServerOptions
This script installs an application using the -node and -server options.
To run the script, specify the application name, EAR file, node name, and server name arguments, as

defined in the following table:

132 Scripting the application serving environment

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
Syntax

AdminApplication.installAppWithNodeAndServerOptions (appName,
earfFile, nodeName, serverName)

Example usage BTN

AdminApplication.installAppWithNodeAndServerOptions ("myApp",
"c:/ears/DefaultApplication.ear", "myNode", "myServer")

L Ax__§ Solaris | Linux | HP-UX

AdminApplication.installAppWithNodeAndServerOptions("myApp", "/ears/DefaultApplication.ear",
"myNode", "myServer")

installAppWithClusterOption
This script installs an application using the -cluster option.

To run the script, specify the application name, EAR file, and cluster name arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

clusterName Specifies the name of the cluster of interest.
Syntax

AdminApplication.instalTAppWithClusterOption(appName,
earFile, clusterName)

Example usage BRI

AdminApplication.instalTAppWithClusterOption("myApp",
"c:\ears\DefaultApplication.ear", "myCluster")

| Ax___J Solaris _J Linu _J HP-UX

AdminApplication.instalTAppWithClusterOption("myApp", "/ears/DefaultApplication.ear",
"myCluster")

installAppModulesToSameServerWithMapModulesToServersOption
This script deploys application modules to the same server using the -MapModulesToServers option.

To run the script, specify the application name, EAR file, node name, and server name arguments, as
defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.

Chapter 3. Using the script library to automate the application serving environment 133

Syntax

AdminApplication.installAppModulesToSameServerhithMapModulesToServersOption(appName,
earFile, nodeName, serverName)

Example usage BRI

AdminApplication.installAppModulesToSameServerhithMapModulesToServersOption("myApp",
"c:\ears\DefaultApplication.ear", "myNode", "myServer")

| Ax__J| Solaris J Linu _§ HP-UX

AdminApplication.installAppModulesToSameServerhithMapModulesToServersOption("myApp",
"/ears/DefaultApplication.ear", "myNode", "myServer")

installAppModulesToDiffServersWithMapModulesToServersOption

This script deploys application modules to different servers using the -MapModulesToServers option. Use
this script to install application modules to one or two servers. To install to additional servers, create a
custom script based on the syntax in the AdminApplication.py file, or run the script multiple times.

To run the script, specify the application name, EAR file, node name, and both server name arguments, as
defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppModulesToDiffServersWithMapModulesToServersOption (appName,
earfile, nodeName, serverNamel,
serverName?2)

Example usage BRI

AdminApplication.installAppModulesToDiffServersWithMapModulesToServersOption ("myApp",
"c:\ears\DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

| Ax___J| Solaris _J Linu _§ HP-UX

AdminApplication.installAppModulesToDiffServersWithMapModulesToServersOption ("myApp",
"/ears/DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

installAppModulesToSameServerWithPatternMatching

This script deploys application modules with the -MapModulesToServers pattern matching option.

To run the script, specify the application name, EAR file, node name, and server name arguments, as

defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
Syntax

AdminApplication.installAppModulesToSameServerWithPatternMatching(appName,

earFile, nodeName, serverName)

134 Scripting the application serving environment

Example usage IRITEETTEN

AdminApplication.installAppModulesToSameServerUingPatternMatching("myApp", "c:\ears\DefaultApplication.ear", "myNode", "myServer")

| Ax__J| Solaris i Linux _J HP-UX

AdminApplication.installAppModulesToSameServerUingPatternMatching("myApp",
"/ears/DefaultApplication.ear", "myNode", "myServer")

installAppModulesToDiffServersWithPatternMatching

This script deploys application modules to different servers using the -MapModulesToServers pattern
matching option. Use this script to install application modules to one or two servers. To install to additional
servers, create a custom script based on the syntax in the AdminApplication.py file, or run the script
multiple times.

To run the script, specify the application name, EAR file, node name, and both server name arguments, as
defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppModulesToDiffServersWithPatternMatching (appName,
earfile, nodeName, serverNamel,
serverName?2)

Example usage IRITEETTEN

AdminApplication.installAppModulesToDiffServersWithPatternMatching("myApp",
"c:\ears\DefaultApplication.ear", "myNode", "myServerl", "myServer2")

| Ax__J| Solaris i Linux _J HP-UX

AdminApplication.installAppModulesToDiffServersWithPatternMatching("myApp", "/ears/DefaultApplication.ear", "myNode", "myServerl", "myServer2")
installAppModulesToMultiServersWithPatternMatching

This script deploys application modules to multiple servers using the -MapModulesToServers pattern
matching option. Use this script to install application modules to one or two servers. To install to additional
servers, create a custom script based on the syntax in the AdminApplication.py file, or run the script
multiple times.

To run the script, specify the application name, EAR file, node name, and each server name arguments,
as defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

Chapter 3. Using the script library to automate the application serving environment 135

AdminApplication.installAppModulesToMultiServersWithPatternMatching(appName,
earfile, nodeName, serverNamel,
serverName?2)

Example usage BRIITITEN

AdminApplication.installAppModulesToMultiServersWithPatternMatching("myApp",
"c:\ears\DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

L AX | Solaris | HP-UX_

AdminApplication.installAppModulesToMultiServersWithPatternMatching("myApp",
"/ears/DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

installAppWithTargetOption

This script deploys an application to multiple servers using the -target option. Use this script to install
application modules to one or two servers. To install to additional servers, create a custom script based on
the syntax in the AdminApplication.py file, or run the script multiple times.

To run the script, specify the application name, EAR file, node name, and each server name arguments,
as defined in the following table:

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppWithTargetOption(appName,
earfile, nodeName, serverNamel,
serverName2)

Example usage BTN

AdminApplication.installAppWithTargetOption("myApp",
"c:\ears\DefaultApplication.ear", "myNode", "myServerl", "myServer2")

LAl Solaris | HP-UX_

AdminApplication.installAppWithTargetOption("myApp", "/ears/DefaultApplication.ear", "myCell",
"myNode", "myServerl", "myServer2")

installAppWithDeployEjbOptions
This script deploys an application with the -deployejb option.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the target node.
serverName Specifies the name of the target server.
Syntax

AdminApplication.installAppWithDeployEjbOptions (appName,
earfFile, nodeName, serverName)

136 Scripting the application serving environment

Example usage IRITEETTEN

AdminApplication.installAppWithDeployEjbOptions ("myApp",
"c:\ears\DefultApplication.ear", "myNode", "myServer")

| Solaris | AXx_ QL _J HP-UX

AdminApplication.installAppWithDeployEjbOptions("myApp", "/ears/DefultApplication.ear", "myNode",

"myServer")

installAppWithVariousTasksAndNonTasksOptions

This script deploys an application with various tasks and non-tasks options.

To run the script, specify the application

name and EAR file arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

Syntax

AdminApplication.installAppWithVariousTasksAndNonTasksOptions (appName,

earfFile)

Example usage BRI

AdminApplication.installAppWithVariousTasksAndNonTasksOptions ("myApp",

"c:\ears\DefaultApplication.ear")

| Ax___J| Solaris _J Linu _J HP-UX

AdminApplication.installAppWithVariousTasksAndNonTasksOptions ("myApp",

"/ears/DefaultApplication.ear")

installWarFile

This script installs a Web application archive (WAR) file. A Web module is created by assembling servlets,
JavaServer Pages (JSP) files, and static content such as Hypertext Markup Language (HTML) pages into
a single deployable unit. Web modules are stored in Web archive (WAR) files, which are standard Java

archive files.

To run the script, specify the application name, WAR file, node name, server name, and context root
arguments, as defined in the following table:

Argument Description
appName Specifies the name of the application to install.
warFile Specifies the WAR file to deploy.
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
contextRoot Specifies the context root of the Web application. The context root is combined with the
defined servlet mapping (from the WAR file) to compose the full URL that users type to
access the servlet. For example, if the context root is /gettingstarted and the servlet mapping
is MySession, then the URL is http://host:port/gettingstarted/MySession.
Syntax

AdminApplication.installWarFile(appName, warfile,
nodeName, serverName, contextRoot)

Example usage BRI

AdminApplication.installWarFile("myApp",

"c:\binaries\DefaultWebApplication.war", "myNode", "myServer", "/")

Chapter 3. Using the script library to automate the application serving environment 137

| Ax___J| Solaris | HP-UX_

AdminApplication.installWarFile("myApp", "/binaries/DefaultWebApplication.war", "myNode",
"myServer", "/")

uninstallApplication
This script uninstalls an application.

To run the script, specify the application name argument, as defined in the following table:

Argument Description
appName Specifies the name of the application to uninstall.
Syntax

AdminApplication.uninstallApplication(appName)

Example usage
AdminApplication.uninstallApplication("myApp")

Application query scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that query your application configuration. You can run each
script individually or combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the [app_server_roofscriptLibraries/application/
V70 directory. Use the following script procedures to query application configurations:

« [“checkIfAppExists’|

* [‘getAppDeployedNodes” on page 139|

* |“getAppDeploymentTarget” on page 139|
* |“getTaskinfoForAnApp” on page 1@

* |“listApplications” on page 140
* |“listApplicationsWithTarget” on page 140|
* |“listModulesInAnApp” on page 145|

checklfAppExists
This script checks if the application is deployed on the application server.

To run the script, specify the application name argument, as defined in the following table:

Argument Description
appName Specifies the name of the application of interest.
Syntax

AdminApplication.checkIfAppExists (appName)

Example usage
AdminApplication.checkIfAppExists("myApp")

138 Scripting the application serving environment

getAppDeployedNodes
This script lists the nodes on which the application of interest is deployed.

To run the script, specify the application name argument, as defined in the following table:

Argument Description
appName Specifies the name of the application of interest.
Syntax

AdminApplication.getAppDeployedNodes (appName)

Example usage
AdminApplication.getAppDeployedNodes ("myApp")

getAppDeploymentTarget
This script displays the application deployment target for the application of interest.

To run the script, specify the application name argument, as defined in the following table:

Argument Description
appName Specifies the name of the application of interest.
Syntax

AdminApplication.getAppDeploymentTarget (appName)

Example usage
AdminApplication.getAppDeploymentTarget ("myApp")

getTaskinfoForAnApp
This script displays task information for a specific application Enterprise Archive (EAR) file. The script
obtains information about the data that is needed for your application. You need to provide data for rows or

entries that are either missing information, or require an update.

To run the script, specify the EAR file and the task arguments, as defined in the following table:

Argument Description

earFile Specifies the name of the EAR file of interest.
taskName Specifies the name of the task of interest.
Syntax

AdminApplication.getTaskInfoForAnApp(appName, taskName)

Example usage BTN

AdminApplication.getTaskInfoForAnApp("c:\ears\DefaultApplication.ear", "MapWebModToVH")

L Ax__J Solaris | HP-UX | Linux

AdminApplication.getTaskInfoForAnApp("/ears/DefaultApplication.ear", "MapWebModToVH")

Chapter 3. Using the script library to automate the application serving environment 139

listApplications
This script lists all deployed applications. The script does not require arguments.

Syntax

AdminApplication.TistApplications()

Example usage
AdminApplication.listApplications()

listApplicationsWithTarget
This script lists all deployed applications for a specific target.

To run the script, specify the node name and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminApplication.TistApplicationsWithTarget (nodeName, serverName)

Example usage
AdminApplication.listApplicationsWithTarget ("myNode", "serverl")

listModulesinAnApp
This script lists each module in a deployed application.

To run the script, specify the application name and server name arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminApplication.TlistModulesInAnApp (appName, serverName)

Example usage
AdminApplication.listModulesInAnApp ("myApp", "myServer")

Application update scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that update applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the |app_server_rooffscriptLibraries/application/
V70 directory. Use the following script procedures to update application configurations:

+ [“addSingleFileToAnAppWithUpdateCommand” on page 141

+ [“addSingleModuleFileToAnAppWithUpdateCommand” on page 141|

+ [“addUpdateSingleModuleFileToAnAppWithUpdateCommand” on page 142|
+ [“addPartialAppToAnAppWithUpdateCommand” on page 142

140 Scripting the application serving environment

[‘deleteSingleFileToAnAppWithUpdateCommand” on page 142]
[‘deleteSingleModuleFileToAnAppWithUpdateCommand” on page 143
[‘deletePartialAppToAnAppWithUpdateCommand” on page 143]

* [‘updateApplicationUsingDefaultMerge” on page 144

+ [‘updateApplicationWithUpdatelgnoreNewOption” on page 144

» |“updateApplicationWithUpdatelgnoreOldOption” on page 144|

* |“‘updateEntireAppToAnAppWithUpdateCommand ” on page 145|

* [‘updatePartialAppToAnAppWithUpdateCommand” on page 145|

* |“‘updateSingleFileToAnAppWithUpdateCommand” on page 146|
|“updateSingIeModuIeFiIeToAnAppWithUpdateCommand" on page 146|

addSingleFileToAnAppWithUpdateCommand

This script uses the update command to add a single file to a deployed application.

To run the script, specify the application name, file name, and the content uniform resource identifier (URI)

arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.addSingleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BRI

AdminApplication.addSingleFileToAnAppWithUpdateCommand ("myApp", "c:\sample.txt", "META-INFO/sample.txt")

| Ax___J| Solaris _J Linu _J HP-UX

AdminApplication.addSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.txt", "META-INFO/sample.txt")
addSingleModuleFileToAnAppWithUpdateCommand

This script uses the update command to add a single module file to a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the

following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.addSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BRI

AdminApplication.addSingleModuleFileToAnAppWithUpdateCommand("myApp", "c:\Increment.jar", "Increment.jar")

| Ax___J| Solaris _J Linu _§ HP-UX

AdminApplication.addSingleModuleFileToAnAppWithUpdateCommand("myApp", "/Increment.jar", "Increment.jar")

Chapter 3. Using the script library to automate the application serving environment

141

addUpdateSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to add and update a single module file for a deployed application.

To run the script, specify the application name, file name, content URI, and context root arguments, as
defined in the following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

contextRoot Specifies the context root for Web modules in the application.
Syntax

AdminApplication.addUpdateSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI, contextRoot)

Example usage IRIIEETEN

AdminApplication.addUpdateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"c:\DefaultWebApplication.war", "DefaultWebApplication.war",
"/webapp/defaultapp")

| Ax___J| Solaris _J Linu _§ HP-UX

AdminApplication.addUpdateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"/DefaultWebApplication.war", "DefaultWebApplication.war",
"/webapp/defaultapp")

addPartialAppToAnAppWithUpdateCommand
This script uses the update command to add a partial application to a deployed application.

To run the script, specify the application name and file content arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
Syntax

AdminApplication.addPartialAppToAnAppWithUpdateCommand (appName, fileContent)

Example usage IR

AdminApplication.addPartialAppToAnAppWithUpdateCommand ("myApp", "c:\partialadd.zip")

| Ax___J| Solaris _J Linu _§ HP-UX

AdminApplication.addPartialAppToAnAppWithUpdateCommand ("myApp", "/partialadd.zip")
deleteSingleFileToAnAppWithUpdateCommand
This script uses the update command to delete a single file from a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to update.

142 Scripting the application serving environment

Argument Description

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deleteSingleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BTN

AdminApplication.deleteSingleFileToAnAppWithUpdateCommand ("myApp", "c:\sample.

txt", "META-INFO/sample.txt")

LAl Solaris | HP-UX_

AdminApplication.deleteSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.

txt", "META-INFO/sample.txt")

deleteSingleModuleFileToAnAppWithUpdateCommand

This script uses the update command to delete a single module file from a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the

following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deleteSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BRI

AdminApplication.deleteSingleModuleFileToAnAppWithUpdateCommand ("myApp",

“c:\Increment.jar", "Increment.jar")

| Ax___J| Solaris _J Linu _§ HP-UX

AdminApplication.deleteSingleModuleFileToAnAppWithUpdateCommand ("myApp",

"/Increment.jar", "Increment.jar")

deletePartialAppToAnAppWithUpdateCommand

This script uses the update command to delete a partial application from a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in

the following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deletePartialAppToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage IR

Chapter 3. Using the script library to automate the application serving environment

143

AdminApplication.deletePartialAppToAnAppWithUpdateCommand ("myApp", "c:\part
ialdelete.zip", "partialdelete")

LAl Solaris | HP-UX_

AdminApplication.deletePartialAppToAnAppWithUpdateCommand ("myApp", "/part
ialdelete.zip", "partialdelete")

updateApplicationUsingDefaultMerge
This script updates an application using default merging.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateApplicationUsingDefaultMerge(appName, earFile)

Example usage BRI

AdminApplication.updateApplicationUsingDefaultMerge("myApp", "c:\ears\D
efaultApplication.ear")

| Ax___J| Solaris J Linu _§ HP-UX

AdminApplication.updateApplicationUsingDefaultMerge("myApp", "/ears/D
efaultApplication.ear")

updateApplicationWithUpdatelgnoreNewOption

This script updates an application using -update.ignore.new option. The system ignores the bindings from
the new version of the application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateApplicationWithUpdateIgnoreNewOption(appName, earFile)

Example usage IR

AdminApplication.updateApplicationWithUpdateIgnoreNewOption("myApp",
"c:\ears\DefaultApplication.ear")

| Ax__J| Solaris _J Linux _§ HP-UX

AdminApplication.updateApplicationWithUpdateIgnoreNewOption("myApp",
"c:/ears/DefaultApplication.ear")

updateApplicationWithUpdatelgnoreOldOption

This script updates an application using the -update.ignore.old option. The system ignores the bindings
from the installed version of the application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

144 Scripting the application serving environment

Argument Description

appName Specifies the name of the application to update.
earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateApplicationWithUpdateIgnore01dOption(appName, earfile)

Example usage BTN

AdminApplication.updateApplicationWithUpdateIgnore01dOption("myApp",
"c:\ears\DefaultApplication.ear")

LAl Solaris | HP-UX_

AdminApplication.updateApplicationWithUpdateIgnore0ldOption("myApp",
"/ears/DefaultApplication.ear")

updateEntireAppToAnAppWithUpdateCommand
This script uses the update command to update an entire deployed application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateEntireAppToAnAppWithUpdateCommand (appName, earFile)

Example usage BRI

AdminApplication.updateEntireAppToAnAppWithUpdateCommand ("myApp", "c:\new.ear")
AdminApplication.updateEntireAppToAnAppWithUpdateCommand ("myApp", "/new.ear")

updatePartial AppToAnAppWithUpdateCommand
This script uses the update command to update a partial application for a deployed application.

To run the script, specify the application name, file name,and the content URI arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updatePartialAppToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BRI

AdminApplication.updatePartialAppToAnAppWithUpdateCommand ("myApp", "c:\part
ialadd.zip", "partialadd")

| Ax___J| Solaris _J Linu _J§ HP-UX

AdminApplication.updatePartialAppToAnAppWithUpdateCommand ("myApp", "/part
ialadd.zip", "partialadd")

Chapter 3. Using the script library to automate the application serving environment 145

updateSingleFileToAnAppWithUpdateCommand
This script uses the update command to update a single file on a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in
the following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updateSingleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage IRIIEETEN

AdminApplication.updateSingleFileToAnAppWithUpdateCommand ("myApp", "c:\sample.
txt", "META-INFO/sample.txt")

| Ax___J| Solaris J Linu _J HP-UX

AdminApplication.updateSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.
txt", "META-INFO/sample.txt")

updateSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to update a single module file for a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in
the following table:

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updateSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage BRI

AdminApplication.updateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"c:\sample.jar", "Increment.jar")

| Ax__J| Solaris | HP-UX_

AdminApplication.updateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"/sample.jar", "Increment.jar")

Application export scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that export applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the|app_server_rooz}’scriptLibraries/appIication/
V70 directory. Use the following script procedures to export applications:

* |“exportAnAppToFile” on page 147|
* |“exportAllApplicationsToDir” on page 147|

146 Scripting the application serving environment

* [“exportAnAppDDLToDir]

exportAnAppToFile
This script exports a deployed application to a specific file.

To run the script, specify the application name and export file name arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application of interest.

exportFileName Specifies the name of the file to which the system exports the application.
Syntax

AdminApplication.exportAnAppToFile(appName, exportFileName)

Example usage
AdminApplication.exportAnAppToFile("myApp", "exported.ear")

exportAllApplicationsToDir
This script exports all deployed applications to a specific directory.

To run the script, specify the application name and export file name arguments, as defined in the following
table:

Argument Description
exportDirectory Specifies the fully qualified directory path to which the system exports each application.
Syntax

AdminApplication.exportAl1ApplicationsToDir(exportDirectory)

Example usage BTN

AdminApplication.exportAllApplicationsToDir("c:\export")

| Ax___J| Solaris i Linu _J HP-UX

AdminApplication.exportAl1ApplicationsToDir("/export")
exportAnAppDDLToDir
This script exports the data definition language (DDL) from the application to a specific directory.

To run the script, specify the application name, export directory, and options arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to export.

exportDirectory Specifies the fully qualified directory path to which the system exports each application.
options Optionally specifies additional export options.

Syntax

AdminApplication.exportAnAppDDLToDir (appName, exportFileName, options)

Example usage WIITITEN

Chapter 3. Using the script library to automate the application serving environment 147

AdminApplication.exportAnAppDDLToDir("myApp", "c:\export", "")

LAl Solaris | HP-UX_

AdminApplication.exportAnAppDDLToDir("myApp", "/export", "")

Application deployment configuration scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that deploy applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the [app_server_roofscriptLibraries/application/
V70 directory. The application deployment script procedures contain multiple arguments. If you do not want
to specify an argument with the script, specify the value of the argument as an empty string, as the
following syntax demonstrates: "".

Use the following script procedures to deploy applications:

« [‘configureStartingWeightForAnApplication’]

« [“configureClassLoaderPolicyForAnApplication”|

* [‘configureClassLoaderLoadingModeForAnApplication” on page 149
. :“configureSessionManagementForAnAppIication” on page 143|

. :“configureAppIicationLoading” on page 150
. :“configureLibraryReferenceForAnAppIication” on page 15d
. :“configureEJBModuIesOfAnAppIication” on page 151
. :“configureWebModulesOfAnAppIication” on page 151]

. ‘“configureConnectorModulesOfAnAppIication” on page 152|

configureStartingWeightForAnApplication
This script configures the starting weight attribute for an application.

To run the script, specify the application name and starting weight arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application to configure.
startingWeight Specifies the starting weight to set for the application of interest.
Syntax

AdminApplication.configureStartingWeightForAnApplication(appName,
startingheight)

Example usage

AdminApplication.configureStartingWeightForAnApplication("myApp",
"10")

configureClassLoaderPolicyForAnApplication
This script configures the class loader policy attribute for an application.

To run the script, specify the application name argument, as defined in the following table:

Argument Description

appName Specifies the name of the application to configure.

148 Scripting the application serving environment

Argument

Description

classloaderPolicy

Specifies the class loader policy for the application of interest. For each application server in
the system, you can set the application class-loader policy to SINGLE or MULTIPLE. When the
application class-loader policy is set to SINGLE, then a single application class loader loads all
EJB modules, dependency JAR files, and shared libraries in the system. When the
application class-loader policy is set to MULTIPLE, then each application receives its own class
loader that is used for loading the EJB modules, dependency JAR files, and shared libraries
for that application.

Syntax

AdminApplication.configureClassLoaderPolicyForAnApplication(appName,

classloaderPolicy)

Example usage

AdminApplication.configureClassLoaderPolicyForAnApplication("myApp",

"SINGLE")

configureClassLoaderLoadingModeForAnApplication

This script configures the class loader loading mode for an application. The class-loader delegation mode,
also known as the class loader order, determines whether a class loader delegates the loading of classes

to the parent class loader.

To run the script, specify the application

name argument, as defined in the following table:

Argument

Description

appName

Specifies the name of the application to configure.

classloaderMode

Specifies the class loader mode to set for the application of interest. You can set the class
loader mode to PARENT_FIRST or PARENT_LAST.

The PARENT_FIRST class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class path.
This value is the default for the class-loader policy and for standard JVM class loaders.

The PARENT_LAST class-loader mode causes the class loader to attempt to load classes from
its local class path before delegating the class loading to its parent. Using this policy, an
application class loader can override and provide its own version of a class that exists in the
parent class loader.

Syntax

AdminApplication.configureClassLoaderLoadingModeForAnApplication(appName,

classloaderMode)

Example usage

AdminApplication.configureClassLoaderLoadingModeForAnApplication("myApp",

"PARENT_LAST")

configureSessionManagementForAnApplication

This script configures session management for an application.

To run the script, specify the application

name argument, as defined in the following table:

Argument Description
appName Specifies the name of the application to configure.
enableCookie Specifies whether to enable cookies.

enableProtocolSwitching

Specifies whether session tracking uses cookies to carry session IDs. If cookies are enabled,
session tracking recognizes session IDs that arrive as cookies and tries to use cookies for
sending session IDs. If cookies are not enabled, session tracking uses Uniform Resource
Identifier (URL) rewriting instead of cookies (if URL rewriting is enabled).

Chapter 3. Using the script library to automate the application serving environment 149

Argument Description

enableURLRewriting Specifies whether the session management facility uses rewritten URLs to carry the session
IDs. If URL rewriting is enabled, the session management facility recognizes session IDs that
arrive in the URL if the encodeURL method is called in the servlet.

enableSSLTracking Note: This feature is deprecated in WebSphere Application Server version 7.0. You can
reconfigure session tracking to use cookies or modify the application to use URL rewriting. If
you do not want to specify this argument, specify the value as an empty string, as the
following syntax demonstrates: "".
Specifies that session tracking uses Secure Sockets Layer (SSL) information as a session
ID. Enabling SSL tracking takes precedence over cookie-based session tracking and URL
rewriting.

enableSerializedSession Specifies whether to allow concurrent session access in a given server.

accessSessionOnTimeout

Specifies whether the servlet is started normally or aborted in the event of a timeout. If you
specify true, the servlet is started normally. If you specify false, the servlet execution aborts
and error logs are generated.

maxWaitTime

Specifies the maximum amount of time a servlet request waits on an HTTP session before
continuing execution. This parameter is optional and expressed in seconds. The default is 5
seconds. Under normal conditions, a servlet request waiting for access to an HTTP session
gets notified by the request that currently owns the given HTTP session when the request
finishes.

sessionPersistMode

Specifies whether to enable session persistence mode.

allowOverflow

Specifies whether the number of sessions in memory can exceed the value specified by the
Max in-memory session count property. This option is valid only in non-distributed sessions
mode.

maxInMemorySessionCount

Specifies the maximum number of sessions to maintain in memory.

invalidTimeout Specifies the amount of time, in minutes, before an invalid timeout occurs.
sessionEnable Specifies whether to enable session.
Syntax

AdminApplication.configureSessionManagementForAnApplication(appName,
enableCookie, enableProtocolSwitching, enableURLRewriting,
enableSSLTracking, enableSerializedSession, accessSessionOnTimeout,

maxWaitTime, sessionPersistMode, allowOverflow,

maxInMemorySessionCount, invalidTimeout, sessionEnable)

Example usage

AdminApplication.configureSessionManagementForAnApplication("myApplication",

"false", "false", "true", ", "true", "90",

40", "true")

configureApplicationLoading

"NONE™, "true", "1500",

This script configures the application loading attribute for an application.

To run the script, specify the application name argument, as defined in the following table:

Argument Description

appName Specifies the name of the application to configure.
enableTargetMapping Specifies whether to enable target mapping during application loading.
Syntax

AdminApplication.configureApplicationLoading(appName,

enableTargetMapping)

Example usage

AdminApplication.configureApplicationLoading("myApp", "true")

configureLibraryReferenceForAnApplication

This script configures the library reference for an application.

150 Scripting the application serving environment

To run the script, specify the application
following table:

name and shared library name arguments, as defined in the

Argument Description

appName Specifies the name of the application to configure.
libraryName Specifies the name of the shared library to configure.
Syntax

AdminApplication.configurelLibraryReferenceForAnApplication(appName,

libraryName)

Example usage

AdminApplication.configureLibraryReferenceForAnApplication("myApp",

"sharedLibaray")

configureEJBModulesOfAnApplication

This script configures the EJB modules of an application.

To run the script, specify the application

name argument, as defined in the following table:

Argument Description

appName Specifies the name of the application to configure.

startingWeight Specifies the target weight of the EJB modules in the application of interest.
enableTargetMapping Specifies whether to enable target mapping for EJB modules.

Syntax

AdminApplication.configureEJBModulesOfAnApplication(appName,

startingWeight, enableTargetMapping)

Example usage

AdminApplication.configureEJBModulesOfAnApplication("myApp", "1500",

"true")

configureWebModulesOfAnApplication

This script configures the Web modules of an application.

To run the script, specify the application

name argument, as defined in the following table:

Argument Description

appName Specifies the name of the application of interest.

webModuleName Specifies the name of the Web module to configure.

startingWeight Specifies the starting weight for the Web module of interest.

classloaderMode Specifies the class loader mode to set for the application of interest. You can set the class
loader mode to PARENT_FIRST or PARENT_LAST.
The PARENT_FIRST class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class path.
This value is the default for the class-loader policy and for standard JVM class loaders.
The PARENT_LAST class-loader mode causes the class loader to attempt to load classes from
its local class path before delegating the class loading to its parent. Using this policy, an
application class loader can override and provide its own version of a class that exists in the
parent class loader.

Syntax

AdminApplication.configurelWebModulesOfAnApplication(appName,

webModuleName, startingWeight, classloaderMode)

Chapter 3. Using the script library to automate the application serving environment 151

Example usage

AdminApplication.configureWebModulesOfAnApplication("myApp", "myWebModule",
"250", "PARENT_FIRST")

configureConnectorModulesOfAnApplication

This script configures the connector modules of an application. To run the script, specify the application
name, J2C connection factory, and node name arguments.

To run the script, specify the application name argument, as defined in the following table:

Argument Description

appName Specifies the name of the application of interest.

j2cConnFactory Specifies the name of the Java 2 Connector (J2C) connection factory to configure.

jndiName Specifies the name of the Java Naming and Directory Interface (JNDI) of interest.

authDataAlias Specifies the name of the authentication data alias of interest.

connectionTimeout Specifies the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually
occurs because the maximum value of connections in the particular connection pool has
been reached.

Syntax

AdminApplication.configureConnectorModulesOfAnApplication(appName,
J2cConnFactory, jndiName, authDataAlias,
connectionTimeout)

Example usage

AdminApplication.configureConnectorModulesOfAnApplication("myApp",
"myConnFactory", "myDefaultSSLSettings", "150")

Application administration scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that start and stop applications. You can run each script
individually or combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the [app_server_roof/scriptLibraries/application/
V70 directory. Use the following script procedures to start and stop applications:

» [“startApplicationOnSingleServer’|

* |“startApplicationOnAllDeployedTargets” on page 153|
* |“startApplicationOnCluster” on page 153
* |“stopApplicationOnSingleServer ” on page 153|

* |“stopApplicationOnAllDeployedTargets” on page 154|
« [“stopApplicationOnCluster’ on page 154

startApplicationOnSingleServer
This script starts an application on a single server.

To run the script, specify the application name, node name, and server name arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to start.

nodeName Specifies the name of the node on which the application is deployed.
serverName Specifies the name of the application server on which the application is deployed.

152 Scripting the application serving environment

Syntax

AdminApplication.startApplicationOnSingleServer (appName, nodeName, serverName)

Example usage
AdminApplication.startApplicationOnSingleServer("myApp", "myNode", "myServer")

startApplicationOnAllDeployedTargets
This script starts an application on all deployed nodes.

To run the script, specify the application name and node name arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application to start.

nodeName Specifies the name of the node on which the application is deployed.
Syntax

AdminApplication.startApplicationOnAl1DeployedTargets (appName, nodeName)

Example usage
AdminApplication.startApplicationOnAl1DeployedTargets ("myApp", "myNode")

startApplicationOnCluster
This script starts an application on a cluster.

To run the script, specify the application name and cluster name arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application to start.

clusterName Specifies the name of the cluster on which the application is deployed.
Syntax

AdminApplication.startApplicationOnCluster(appName, clusterName)

Example usage
AdminApplication.startApplicationOnCluster("myApp", "myCluster")

stopApplicationOnSingleServer
This script stops an application on a single server.

To run the script, specify the application name, node name, and server name arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to stop.

nodeName Specifies the name of the node on which the application is deployed.
serverName Specifies the name of the application server on which the application is deployed.
Syntax

AdminApplication.stopApplicationOnSingleServer(appName, nodeName, serverName)

Chapter 3. Using the script library to automate the application serving environment 153

Example usage
AdminApplication.stopApplicationOnSingleServer("myApp", "myNode", "myServer")

stopApplicationOnAllDeployedTargets
This script stops an application on all deployed nodes.

To run the script, specify the application name, cell name, and node name arguments, as defined in the
following table:

Argument Description

appName Specifies the name of the application to stop.

nodeName Specifies the name of the node on which the application is deployed.
Syntax

AdminApplication.stopApplicationOnAl1DeployedTargets (appName, nodeName)

Example usage
AdminApplication.stopApplicationOnAl1DeployedTargets ("myApp", "myNode")

stopApplicationOnCluster
This script stops an application on a cluster.

To run the script, specify the application name and cluster name arguments, as defined in the following
table:

Argument Description

appName Specifies the name of the application to stop.

clusterName Specifies the name of the cluster on which the application is deployed.
Syntax

AdminApplication.stopApplicationOnCluster(appName, clusterName)

Example usage
AdminApplication.stopApplicationOnCluster("myApp", "myCluster")

Automating business-level application configurations using the
scripting library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
application management scripts to install, uninstall, export, start, stop, and manage business-level
applications in your environment.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:

154 Scripting the application serving environment

#

My Custom Jython Script - file.py

#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
|app_server _roof/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The business-level application procedures in scripting library are located in the [app_server roof
scriptLibraries/application/V70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the [app_server _roo¥
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminBLA.py scripts to perform multiple combinations of administration functions. This
topic provides one sample combination of procedures. See the business-level application configuration
scripts documentation to view argument descriptions and syntax examples.

Use this topic and the scripting library to create an empty business-level application, add assets as
composition units, and start the business-level application.

1. Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
bin>wsadmin -Tang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
bin>wsadmin -conntype none -Tang jython
When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Import assets to your configuration.

Assets represent application binaries that contain business logic that runs on the target run time
environment and serves client requests. An asset can contain a file, an archive of files such as a ZIP
or Java archive (JAR) file, or an archive of archive files such as a Java Platform, Enterprise Edition

Chapter 3. Using the script library to automate the application serving environment 155

(Java EE) EAR file. Other examples of assets include Enterprise JavaBean (EJB) JAR files, EAR files,
Service Component Architecture (SCA) composite JAR files, OSGi bundles, mediation JAR files,
shared library JAR files, and non-Java EE contents such as PHP applications.

Run the importAsset script from the AdminBLA script library to import assets to the application server
configuration repository, as the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminBLA.importAsset("asset.zip", "true", "true")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminBLA. importAsset ("asset.zip", "true", "true")
3. Create an empty business-level application.
Run the createEmptyBLA script from the AdminBLA script library to create a new business-level
application, as the following example demonstrates:
bin>wsadmin -lang jython -c "AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")
4. Add the assets, as composition units, to the business-level application.
Composition units can represent deployed assets, other business-level applications, or external
artifacts that are deployed on non-WebSphere Application Server runtime environments without
backing assets. Business-level applications contain zero or more composition units. You cannot add
the same composition unit to more than one business-level application, but you can use one asset to
create more than one composition unit.
Run the addCompUnit script from the AdminBLA script library to add asset.zip to myBLA as a
composition unit, as the following example demonstrates:
bin>wsadmin -lang jython -c "AdminBLA.addCompUnit("myBLA", "asset.zip", "default", "myCompositionUnit", "cu description", "1", "serverl", "specname=actplanl")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminBLA.addCompUnit ("myBLA", "asset.zip", "default", "myCompositionUnit", "cu description", "1", "serverl", "specname=actplanl")
5. Save the configuration changes.
6. Synchronize the node.
Use the syncActiveNodes script in the AdminNodeManagement script library to synchronize each
active node in your environment, as the following example demonstrates:
wsadmin>AdminNodeManagement.syncActiveNodes ()
7. Start the business-level application.
Use the startBLA script from the AdminBLA script library to start each composition unit of the
business-level application on the deployment targets for which the composition units are configured, as
the following example demonstrates:
wsadmin>AdminBLA.startBLA("myBLA")

Results
The business-level application is configured and started on the deployment target of interest.

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument

for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

156 Scripting the application serving environment

What to do next

Use the business-level application configuration scripts to create custom scripts to automate your
environment. Save custom scripts to a new subdirectory of the [app_server_rooffscriptLibraries directory.

Business-level application configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to create, query, and manage your business-level applications. You can run
each script individually or combine procedures to create custom automation scripts.

The AdminBLA script procedures are located in the |app_server_rooi’scriptLibraries/application/V?O
directory.

Use the following script procedures to configure and administer your business-level applications:

“addCompUnit”|

“createEmptyBLA” on page 158|
[‘deleteAsset” on page 158
[‘deleteBLA” on page 158
[‘deleteCompUnit” on page 159
[‘editAsset” on page 159
[“editCompUnit” on page 159
[‘exportAsset” on page 160|
[importAsset” on page 160|
[‘startBLA” on page 161|
[“stopBLA” on page 161|

Use the following script procedures to query your business-level application configurations:

[‘help” on page 161|
[“listAssets” on page 161
[listBLAs” on page 162|
[“listCompUnits” on page 162
[‘viewAsset ” on page 162|
[‘viewCompUnit ” on page 163|

addCompUnit

This script adds assets, shared libraries, or additional business-level applications as composition units to
the empty business-level application. A composition unit represents an asset in a business-level
application. A configuration unit enables the asset contents to interact with other assets in the application.
It also enables the product run time to load and run asset contents.

To run the script, specify the business-level application name and the composition unit source arguments,
as defined in the following table:

Argument Description

blaName Specifies the name of the business-level application to which the system adds the
composition unit.

compUnitID Specifies the name of the composition unit to add to the business-level application of
interest.

deployableUnit Optionally specifies the name of the deployable unit for the asset. A deployable unit is the

smallest portion of an asset that can be individually chosen for deployment

compUnitName Optionally specifies the name for the composition unit to add.

Chapter 3. Using the script library to automate the application serving environment 157

Argument Description

compUnitDescription Optionally specifies a description for the new composition unit.
startingWeight Optionally specifies the starting weight of the composition unit.

target Optionally specifies the target to which the composition unit is mapped.
activationPlan Optionally specifies the activation plan for the composition unit.
Syntax

AdminBLA.addCompUnit(blaName, compUnitID, deployableUnit, compUnitName,
compUnitDescription, startingWeight, target, activationPlan)

Example usage

AdminBLA.addCompUnit("blal", "assetl.zip", "default", "myCompositionUnit", "cu description", "1",
"serverl", "specname=actplanl")

createEmptyBLA

This script creates a new business-level application in your environment. Create an empty business-level
application and then add assets, shared libraries, or business-level applications as composition units to the
empty business-level application.

To run the script, specify the business-level application name argument, as defined in the following table:

Argument Description

blaName Specifies the name to assign to the new business-level application.
description Optionally specifies a description for the business-level application.
Syntax

AdminBLA.createEmptyBLA(blaName, description)

Example usage
AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")

deleteAsset
This script removes a registered asset from your configuration.

To run the script, specify the asset ID argument, as defined in the following table:

Argument Description
assetlD Specifies the name of the asset to delete.
Syntax

AdminBLA.deleteAsset (assetID)

Example usage
AdminBLA.deleteAsset ("asset.zip")

deleteBLA
This script removes a business-level application from your configuration.

To run the script, specify the business-level application name argument, as defined in the following table:

Argument Description

blaName Specifies the name of the business-level application to delete.

158 Scripting the application serving environment

Syntax
AdminBLA.deleteBLA(blaName)

Example usage
AdminBLA.deleteBLA("myBLA")

deleteCompUnit

This script removes a composition unit from a specific business-level application configuration.

To run the script, specify the business-level application name and composition unit arguments, as defined

in the following table:

Argument Description

blaName Specifies the name of the business-level application of interest.
compUnitiD Specifies the identifier of the composition unit to delete.
Syntax

AdminBLA.deleteCompUnit(blaName, compUnitID)

Example usage
AdminBLA.deleteCompUnit ("myBLA", "asset.zip")

editAsset
This script edits the metadata of a specific registered asset.

To run the script, specify the arguments that are defined in the following table:

Argument Description

assetlD Specifies the name of the asset to edit.

assetDescription Optionally specifies the new description of the asset of interest.
assetDestinationURL Optionally specifies the new destination URL for the asset of interest.
assetTypeAspects Optionally specifies the new type aspects for the asset of interest.
assetRelationships Optionally specifies the new asset relationship configurations.

filePermission Optionally specifies the new file permission configuration for the asset of interest.
validateAsset Optionally specifies whether the command validates the asset.

Syntax

AdminBLA.editAsset (assetID, assetDescription, assetDestinationURL,
assetTypeAspects, assetRelationships, filePermission, validateAsset)

Example usage

AdminBLA.editAsset("assetl.zip", "asset for testing", "c:/installedAssets/assetl.zip",
"WebSphere:spec=sharedlib", "", ".x\.dl1=755#.%\.s0=755#.%\.a=755#.%\.s1=755", "true")

editCompUnit
This script edits a specific composition unit within a business-level application.

To run the script, specify the business-level application name and composition unit ID arguments, as
defined in the following table:

Chapter 3. Using the script library to automate the application serving environment

159

Argument Description

blaName Specifies the name of the business-level application to which the composition unit is
associated.

compUnitiD Specifies the name of the composition unit to edit.

compUnitDescription Optionally specifies a new description for the composition unit.

startingWeight Optionally specifies a new starting weight for the composition unit.

target Optionally specifies a new target to which the composition unit is mapped.

activationPlan Optionally specifies a new activation plan for the composition unit.

Syntax

AdminBLA.editCompUnit (blaName, compUnitID, compUnitDescription,
startingWeight, target, activationPlan)

Example usage

AdminApplication.installAppWithDeployEjbOptions("blal", "assetl.zip","cu description", "I1",
"serverl", "specname=actplanl")

exportAsset
This script exports a registered asset to a file on your system.

To run the script, specify the asset ID and file name arguments, as defined in the following table:

Argument Description

assetlD Specifies the identifier of the asset to export.

fileName Specifies the fully qualified file path to which the system exports the asset.
Syntax

AdminBLA.exportAsset (assetID, fileName)

Example usage BRI

AdminBLA.exportAsset ("asset.zip", "c:\temp\a.zip")

L Aax_f Linox Jl Solaris | HP-UX

AdminBLA.exportAsset ("asset.zip", "/temp/a.zip")
importAsset
This script imports and registers an asset to a management domain in your configuration.

To run the script, specify the assetlD, displayDescription, and deployableUnit arguments, as defined in the
following table:

Argument Description

assetlD Specifies the asset to import.

displayDescription Optionally specifies whether the script displays the description of the asset.
dispDeployableUnit Optionally specifies whether the script displays the deployable units for the asset to import.
Syntax

AdminBLA. importAsset (userID, displayDescription, dispDeployableUnit)

Example usage

AdminBLA. importAsset ("asset.zip", "true", "true")

160 Scripting the application serving environment

startBLA
This script starts the business-level application process in your configuration.

To run the script, specify business-level application name argument, as defined in the following table:

Argument Description
blaName Specifies the name of the business-level application to start.
Syntax

AdminBLA.startBLA(blaName)

Example usage
AdminBLA.startBLA("myBLA")

stopBLA
This script stops the business-level application process in your configuration.

To run the script, specify the business-level application name argument, as defined in the following table:

Argument Description
blaName Specifies the name of the business-level application to stop.
Syntax

AdminBLA.stopBLA(blaName)

Example usage
AdminBLA.stopBLA("myBLA")

help

This script displays the script procedures that the AdminBLA script library supports. To display detailed
help for a specific script, specify the name of the script of interest, as defined in the following table:

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminBLA.help(script)

Example usage
AdminBLA.help("createEmptyBLA")

listAssets
This script displays the registered assets in your configuration.

To run the script, you can choose to specify the asset ID, display description, and display deployable units
arguments, as defined in the following table:

Argument Description

assetlD Optionally specifies the group ID for which to display authorization groups.

displayDescription Optionally specifies whether the command displays a description for each asset. Specify true
to display descriptions.

Chapter 3. Using the script library to automate the application serving environment 161

Argument Description

displayDeployUnits Optionally specifies whether the command displays the deployable units that are associated
with the assets. Specify true to display the deployable units.

Syntax

AdminBLA.listAssets(assetID, displayDescription, displayDeployUnits)

Example usage

AdminBLA.listAssets("asset.zip", "true", "true")
listBLAs
This script displays each or specific business-level applications in your configuration.

To run the script, you can choose to specify the business-level application name and the display
description arguments, as defined in the following table:

Argument Description

blaName Optionally specifies the name of a business-level application of interest.

displayDescription Optionally specifies whether the command displays a description for each business-level
application. Specify true to display descriptions.

Syntax

AdminBLA.1istBLAs (blaName, displayDescription)

Example usage
AdminBLA.TistBLAs("", "true")

listCompUnits
This script displays composition units within a business-level application.

To run the script, specify the business-level application name argument, as defined in the following table:

Argument Description

blaName Specifies the name of the authorization group of interest.

displayDescription Optionally specifies whether the command displays a description for each composition unit.
Specify true to display descriptions.

Syntax

AdminBLA.1istCompUnits(blaName, displayDescription)

Example usage
AdminBLA.1istCompUnits("myBLA", "true")

viewAsset
This script displays the configuration attributes for a specific registered asset.

To run the script, specify the asset ID argument, as defined in the following table:

Argument Description
assetlD Specifies the name of the asset of interest.
Syntax

162 Scripting the application serving environment

AdminBLA.viewAsset (assetID)

Example usage

AdminBLA.viewAsset ("asset.zip")
viewCompUnit

This script displays the configuration attributes for a specific composition unit within a business-level
application.

To run the script, specify the business-level application and composition unit ID arguments, as defined in
the following table:

Argument Description

blaName Specifies the name of the business-level application of interest.
compUnitID Specifies the identifier for the composition unit of interest.
Syntax

AdminBLA.viewCompUnit (blaName, compUnitID)

Example usage
AdminBLA.viewCompUnit ("myBLA", "asset.zip")

Automating data access resource configuration using the scripting
library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
resource management scripts to configure and manage your Java Database Connectivity (JDBC)
configurations.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusteriithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Chapter 3. Using the script library to automate the application serving environment 163

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
|app_server_roo4’scriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
|app_server_roo4’scriptLibraries/appIication/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The data access resource management procedures in the scripting library are located in the
lapp_server_rooyscriptLibraries/resources/JDBC/V70 subdirectory. Each script from the directory
automatically loads when you launch the wsadmin tool. To automatically load your own Jython scripts
(*.py) when the wsadmin tool starts, save your automation scripts to a new subdirectory in the
lapp_server_rooyscriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the scripts to perform many combinations of administration functions. Use the following
sample combination of procedures to configure a JDBC provider and data source.

1. Verify that all of the necessary JDBC driver files are installed on your node manager. If you opt to
configure a user-defined JDBC provider, check your database documentation for information about the
driver files.

2. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.
» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
bin>wsadmin -Tang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:

bin>wsadmin -conntype none -Tang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.
3. Configure a JDBC provider.

Run the createJDBCProvider procedure from the script library and specify the required arguments. To
run the script, specify the node name, server name, name to assign to the new JDBC provider, and the
implementation class name. You can optionally specify additional attributes in the following format:
[["attrl”, "valuel”], ["attr2”, "value2"]]. Custom properties for specific vendor JDBC drivers
must be set on the application server data source. Consult your database documentation for
information about available custom properties.

The following example creates a JDBC provider in your configuration:

bin>wsadmin -lang jython -c "AdminJDBC.createJDBCProvider("myNode",
"myServer", "myJDBCProvider", "myImplementationClass", [["description", "testing"],
["xa", "false"], ["providerType", "provType"]])"

You can also use interactive mode to run the script procedure, as the following example displays:
wsadmin>AdminJDBC.createJDBCProvider("myNode", "myServer",
"myJDBCProvider", "myImplementationClass", [["description", "testing"], ["xa",
"false"], ["providerType", "provType"]])
The script returns the configuration ID of the new JDBC provider.
4. Use a template to configure a data source.

Run the createDataSourceUsingTemplate procedure from the script library and specify the required
arguments. To run the script, specify the node name, server name, JDBC provider name, configuration

164 Scripting the application serving environment

ID of the template to use, and the name to assign to the new data source. You can optionally specify
additional attributes in the following format: [["attrl”, "valuel”], ["attr2”, "value2"]].

The following example uses a template to create a data source in your configuration:

bin>wsadmin -Tang jython -c "AdminJDBC.createDataSourceUsingTemplate("myNode",

"myServer", "myJDBCProvider", "Derby JDBC Driver

DataSource (templates/system|jdbc-resource-provider-templates.xml#DataSource_derby 1)", "myDataSource",
[["authDataAlias", "myalias"], ["authMechanismPreference", "BASIC_PASSWORD"],

["description", "testing"], ["jndiName", "dsjndil"], ["logMissingTransactionContext",

"true"], ["statementCacheSize", "5"]1]1)"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJDBC.createDataSourceUsingTemplate("myNode", "myServer",

"myJDBCProvider", "Derby JDBC Driver

DataSource (templates/system|jdbc-resource-provider-templates.xml#DataSource_derby 1)", "myDataSource",
[["authDataAlias", "myalias"], ["authMechanismPreference", "BASIC PASSWORD"],

["description", "testing"], ["jndiName", "dsjndil"], ["logMissingTransactionContext",

"true"], ["statementCacheSize", "5"1])

The script returns the configuration ID of the new data source.
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the |app_server_r004/scriptLibraries directory.

J2C query scripts

The scripting library provides many script procedures to manage your Java 2 Connector (J2C)
configurations. This topic provides usage information for scripts that query your J2C configuration. You can
run each script individually or combine many procedures to create custom automation scripts for your
environment.

Each J2C management script procedure is located in the [app_server_roofscriptLibraries/resources/J2C
directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_roofscriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to query your J2C configurations:
+ [“listAdminObjectinterfaces” on page 166|

« [“listConnectionFactoryInterfaces” on page 166

« [“listJ2CActivationSpecs” on page 166

Chapter 3. Using the script library to automate the application serving environment 165

[“listJ2CAdminObjects” on page 167
[listJ2CConnectionFactories” on page 167
[“listJ2CResourceAdapters” on page 167|
[“listMessageListenerTypes” on page 168

listAdminObijectinterfaces
This script displays a list of the administrative object interfaces for the J2C resource adapter of interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Argument Description
resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.1istAdminObjectInterfaces (resourceAdapterID)

Example usage
AdminJ2C.1istAdminObjectInterfaces("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)")

listConnectionFactoryinterfaces
This script displays a list of the connection factory interfaces for the J2C resource adapter of interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Argument Description
resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.1istConnectionFactoryInterfaces(resourceAdapterID)

Example usage
AdminJ2C.1listConnectionFactoryInterfaces("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)")

listJ2CActivationSpecs
This script displays a list of the J2C activation specifications in your J2C configuration.

To run the script, specify the J2C resource adapter and message listener type arguments, as defined in
the following table:

Argument Description

resourceAdapterID Specifies the configuration ID of the resource adapter of interest.
messageListenerType Specifies the message listener type.

Syntax

AdminJ2C.1istJ2CActivationSpecs(resourceAdapterID, messagelistenerType)

Example usage

Admind2C.1istJ2CActivationSpecs ("J2CTest (cells/myCell/nodes/myNode |resources.xml#J2CResourceAdapter 1184091767578)",
"javax.jms.Messagelistener2")

166 Scripting the application serving environment

listJ2CAdminObjects

This script displays a list of the administrative objects in your J2C configuration.

To run the script, specify the application name and server name arguments, as defined in the following

table:

Argument Description

resourceAdapterlD Specifies the name of the application of interest.
adminObjectinterface Specifies the name of the administrative object interface of interest.
Syntax

AdminJ2C.1istJ2CAdminObjects (resourceAdapterID, adminObjectInterface)

Example usage

AdminJ2C.1istJ2CAdminObjects ("J2CTest (cells/myCell/nodes/myNode | resources.xml#J2CResourceAdapter_1184091767578)",

"fvt.adapter.message.FVTMessageProvider2")

listd2CConnectionFactories

This script displays a list of the J2C connection factories in your J2C configuration.

To run the script, specify the J2C resource adapter and connection factory interface arguments, as defined

in the following table:

Argument Description

resourceAdapterID Specifies the configuration ID of the resource adapter of interest.
connFactoryinterface Specifies the name of the connection factory interface of interest.
Syntax

AdminJ2C.1istJ2CConnectionFactories(resourceAdapterID, connFactorylInterface)

Example usage

AdminJ2C.1istJ2CConnectionFactories("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter_1184091767578)",

"javax.sql.DataSource2")

listJ2CResourceAdapters

This script displays each J2C resource adapter in your configuration.

To run the script, you can optionally specify the J2C resource adapter argument, as defined in the

following table:

Argument Description
resourceAdapterName Specifies the name of the resource adapter to display.
Syntax

AdminJ2C.1istJ2CResourceAdapters (resourceAdapterName)

Example usage
AdminJ2C.1istJ2CResourceAdapters ()
AdminJ2C.1istJ2CResourceAdapters ("myResourceAdapter")

Chapter 3. Using the script library to automate the application serving environment

167

listMessageListenerTypes
This script displays a list of the message listener types for the J2C resource adapter of interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Argument Description
resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.1istMessageLlistenerTypes (resourceAdapterID)

Example usage
AdminJ2C.1istMessageListenerTypes ("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)")

J2C configuration scripts

The scripting library provides many script procedures to manage your Java 2 Connector (J2C)
configurations. Use the scripts in this topic to create activation specifications, administrative objects, and
connection factories, and to install resource adapters. You can run each script individually or combine
many procedures to create custom automation scripts for your environment.

Each J2C management script procedure is located in the |app_server_rooffscriptLibraries/resources/J2C
directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_rooﬂ’scriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to configure J2C in your environment:
+ [‘createJ2CActivationSpec’|

+ [“createJ2CAdminObject” on page 169

+ [“createJ2CConnectionFactory” on page 169

+ [“installJ2CResourceAdapter”’ on page 170|

createJ2CActivationSpec

This script creates a J2C activation specification in your configuration. The script returns the configuration
ID of the new J2C activation specification.

To run the script, specify the resource adapter, activation specification name, message listener type, and
the Java Naming and Directory Interface (JNDI) name arguments, as defined in the following table:

Argument Description

resourceAdapter|D Specifies the configuration ID of the resource adapter of interest.

activationSpecName Specifies the name to assign to the new activation specification.

messageListenerType Specifies the message listener type.

jndiName Specifies the Java Naming and Directory Interface (JNDI) name.

attributes Optionally specifies additional parameters in the following format: [["attrl”, "valuel”],
["attr2”, "value2"]].

168 Scripting the application serving environment

Syntax

AdminJ2C.createJ2CActivationSpec(resourceAdapterID,
activationSpecName, messagelistenerType, jndiName,
attributes)

Example usage

AdminJ2C.createJ2CActivationSpec("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)
)", "J2CASTest", "javax.jms.MessagelListener2", "jndiAS")

AdminJ2C.createJ2CActivationSpec("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)
)", "J2CASTest", "javax.jms.Messagelistener2", "jndiAS", [["destinationdndiName", "destjndi"],
["description”, "testing"], ["authenticationAlias", "myalias"]])

createJ2CAdminObject

This script creates a J2C administrative object in your configuration. The script returns the configuration ID
of the new J2C administrative object.

To run the script, specify the resource adapter, activation specification name, Java Naming and Directory
Interface (JNDI) name, and the administrative object interface name arguments, as defined in the following

table:

Argument Description

resourceAdapterlD

Specifies the configuration ID of the resource adapter of interest.

activationSpecName

Specifies the name to assign to the new activation specification.

adminObjectinterface Specifies the name of the administrative object interface.

jndiName Specifies the Java Naming and Directory Interface (JNDI) name.

attributes Optionally specifies additional parameters in the following format: [["attrl”, "valuel”],
["attr2”, "value2"]].

Syntax

AdminJ2C.createJ2CAdminObject (resourceAdapteriID,
activationSpecName, adminObjectInterface, jndiName,
attributes)

Example usage

AdminJ2C.createJ2CAdminObject ("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)",
"J2CAOTest", "fvt.adapter.message.FVTMessageProvider2", "jndiA0", [["description”,
"testing"]])

createJ2CConnectionFactory

This script creates a new J2C connection factory in your configuration. The script returns the configuration
ID of the new J2C connection factory.

To run the script, To run the script, specify the resource adapter, connection factory name, the connection
factory interface, and the Java Naming and Directory Interface (JNDI) name arguments, as defined in the
following table:

Argument Description

resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.

connFactoryName Specifies the name to assign to the new connection factory.

connFactorylinterface Specifies the connection factory interface.

jndiName Specifies the Java Naming and Directory Interface (JNDI) name.

attributes Optionally specifies additional parameters in the following format: [["attrl”, "valuel’],
["attr2”, "value2"]].

Syntax

Chapter 3. Using the script library to automate the application serving environment 169

AdminJ2C.createJ2CConnectionFactory (resourceAdapterID,
connFactoryName, connFactorylInterface, jndiName,
attributes)

Example usage

AdminJ2C.createJ2CConnectionFactory ("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 11840917675
578)", "J2CCFTest", "javax.sql.DataSource2", "jndiCF")

AdminJ2C.createJ2CConnectionFactory ("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 11840917675
578)", "J2CCFTest", "javax.sql.DataSource2", "jndiCF", [["description”, "testing"], ["authDataAlias",
"myalias"]])

installJ2CResourceAdapter

This script installs a J2C resource adapter in your configuration. The script returns the configuration ID of
the new J2C resource adapter.

To run the script, specify the node name, resource adapter archive (RAR) file, and the resource adapter
name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

rarFile Specifies the fully qualified file path for the RAR file to install.

resourceAdapterName Specifies the name to assign to the new resource adapter.

attributes Optionally specifies additional parameters in the following format: [["attrl”, "valuel”],
["attr2”, "value2"]].

Syntax

AdminJ2C.1instal1J2CResourceAdapter (nodeName, rarfile,
resourceAdapterName, attributes)

Example usage BTN

AdminJ2C.instal1J2CResourceAdapter ("myNode",
"C:\temp\jcalsemd. rar", "J2CTest")

AdminJ2C.instal1J2CResourceAdapter("myNode",
"C:\temp\jcalsemd. rar", "J2CTest", [["rar.desc", "testing"], ["rar.threadPoolAlias",
"myalias"]])

Solaris _f§ _AX___§ HP-UX_

AdminJ2C.instal1J2CResourceAdapter("myNode", "/temp/jcalscmd.rar", "J2CTest")

Solaris _f§ _AX___§ HP-UX_

AdminJ2C.instal1J2CResourceAdapter("myNode", "/temp/jcalscmd.rar", "J2CTest",
[["rar.desc", "testing"], ["“rar.threadPoolAlias", "myalias"]])

JDBC configuration scripts

The scripting library provides many script procedures to manage Java Database Connectivity (JDBC)
configurations in your environment. This topic provides usage information for scripts that configure JDBC
settings. You can run each script individually or combine many procedures to create custom automation
scripts for your environment.

Each AdminJDBC script procedure is located in the |app_server_rooi’scriptLibraries/resources/JDBCN?O
directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

170 Scripting the application serving environment

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_roofscriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to configure JDBC in your environment:
* [‘createDataSource’]

* |‘createDataSourceUsingTemplate’]

* |[‘createJDBCProvider” on page 172|

* |“‘createJDBCProviderUsingTemplate” on page 172|

createDataSource

This script creates a new data source in your configuration. The script returns the configuration ID of the
new data source.

To run the script, specify the node name, server name, JDBC provider, and data source name arguments,
as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jdbcProvider Specifies the name of the JDBC provider of interest.

dsName Specifies the name to assign to the new data source.

attributes Optionally specifies additional parameters in the following format: [["parameterl”,
"valuel”], ["parameter2”, "value2"]].

Syntax

AdminJDBC.createDataSource(nodeName, serverName,
JjdbcProvider, dsName, attributes)

Example usage

AdminJDBC.createDataSource("myNode", "myServer", "myJDBCProvider",
"myDataSource")

AdminJDBC.createDataSource("myNode", "myServer", "myJDBCProvider",
"myDataSource", [["authDataAlias", "myalias"], ["authMechanismPreference", "BASIC PASSWORD"],
["description", "testing"], ["jndiName", "dsjndil"], ["logMissingTransactionContext",
"true"], ["statementCacheSize", "5"1])

createDataSourceUsingTemplate

This script uses a template to create a new data source in your configuration. The script returns the
configuration ID of the new data source.

To run the script, specify the node name, server name, JDBC provider, template ID, and data source name
arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jdbcProvider Specifies the name of the JDBC provider of interest.

templatelD Specifies the configuration ID of the template to use to create the data source.

dsName Specifies the name to assign to the new data source.

attributes Optionally specifies additional parameters in the following format: [["parameterl”,
"valuel”], ["parameter2”, "value2"]].

Syntax

Chapter 3. Using the script library to automate the application serving environment 171

AdminJDBC.createDataSourceUsingTemplate (nodeName,
serverName, jdbcProvider, templatelID, dsName,
attributes)

Example usage

AdminJDBC.createDataSourceUsingTemplate ("myNode", "myServer",
"myJDBCProvider", "Derby JDBC Driver
DataSource (templates/system|jdbc-resource-provider-templates.xml#DataSource_derby 1)", “"myDataSource")

AdminJDBC.createDataSourceUsingTemplate("myNode", "myServer", "myJDBCProvider", "Derby JDBC Driver
DataSource (templates/system|jdbc-resource-provider- templates.xml#DataSource_derby 1)", "myDataSource",
[["authDataAlias", “myalias"], ["authMechanismPreference", "BASIC_PASSWORD"], ["description",
"testing"], [“"jndiName", "dsjndil"], ["logMissingTransactionContext", "“true"],

["statementCacheSize", "5"1])

createJDBCProvider

This script creates a new JDBC provider in your environment. The script returns the configuration ID of the
new JDBC provider.

To run the script, specify the node name, server name, JDBC provider, and implementation class
arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jdbcProvider Specifies the name to assign to the new JDBC provider.

implementationClass Specifies the name of the implementation class to use.

attributes Optionally specifies additional parameters in the following format: [["parameterl”,
"valuel”], ["parameter2”, "value2"]].

Syntax

AdminJDBC.createJDBCProvider(nodeName, serverName,
JjdbcProvider, implementationClass, attributes)

Example usage

AdminJDBC.createJDBCProvider ("myNode", "myServer", "myJDBCProvider",
"myImplementationClass")

AdminJDBC.createJDBCProvider("myNode", "myServer", “myJDBCProvider", “"myImplementationClass", [["description", "testing"], ["xa", "false"], ["providerType",
"provType"]])

createJDBCProviderUsingTemplate

This script uses a template to create a new JDBC provider in your environment. To run the script, specify
the node name, server name, configuration ID of the template to use, name to assign to the new JDBC
provider, and the implementation class name. You can optionally specify additional attributes in the
following format: [["attrl”, "valuel”], ["attr2”, "value2"]]. The script returns the configuration ID of
the new JDBC provider.

To run the script, specify the node name, server name, template 1D, JDBC provider name, and
implementation class arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

templatelD Specifies the configuration ID of the template to use to create the JDBC provider.

jdbcProvider Specifies the name to assign to the new JDBC provider.

implementationClass Specifies the name of the implementation class to use.

attributes Optionally specifies additional parameters in the following format: [["parameterl”,
"valuel”], ["parameter2”, "value2"]].

172 Scripting the application serving environment

Syntax

AdminJDBC.createJDBCProviderUsingTemplate (nodeName ,
serverName, templatelID, jdbcProvider,
implementationClass, attributes)

Example usage

AdminJDBC.createJDBCProviderUsingTemplate("myNode", "myServer", "Derby JDBC
Provider(templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#JDBCProvider 1124467079638)",
"myJDBCProvider", "myImplementationClass")

AdminJDBC.createJDBCProviderUsingTemplate ("myNode", "myServer", "Derby JDBC
Provider(templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#JDBCProvider 1124467079638)",
"myJDBCProvider", “"myImplementationClass", [["description", “testing"], ["xa",

"false"], ["providerType", "provType"l]l)

JDBC query scripts

The scripting library provides many script procedures to manage Java Database Connectivity (JDBC)
configurations in your environment. This topic provides usage information for scripts that retrieve
configuration IDs for your JDBC configuration. You can run each script individually or combine many
procedures to create custom automation scripts for your environment.

Each AdminJDBC script procedure is located in the |app_server_rooi’scriptLibraries/resources/JDBCN7O
directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_roozyscriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to query your JDBC configuration:
+ [“istDataSources’|

« [“listDataSourceTemplates’]

+ [“istJDBCProviders” on page 174

+ [“istJDBCProviderTemplates” on page 174

listDataSources
This script displays a list of configuration IDs for the data sources in your configuration.

No input arguments are required for the script. However, you can specify a data source name to return a
specific configuration id, as defined in the following table:

Argument Description
dsName Optionally specifies the name of the data source of interest.
Syntax

AdminJDBC.1istDataSources (dsName)

Example usage
AdminJDBC.TistDataSources()
AdminJDBC.1istDataSources ("myDataSource")

listDataSourceTemplates

This script displays a list of configuration IDs for the data source templates in your environment.

Chapter 3. Using the script library to automate the application serving environment 173

No input arguments are required for the script. However, you can specify a template name to return a
specific configuration id, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJDBC.1istDataSourceTemplates (templateName)

Example usage
AdminJDBC.1istDataSourceTemplates()
AdminJDBC.1istDataSourceTemplates ("Derby JDBC Driver DataSource")

listdDBCProviders
This script displays a list of configuration IDs for the JDBC providers in your environment.

No input arguments are required for the script. However, you can specify a JDBC provider name to return
a specific configuration id, as defined in the following table:

Argument Description
jdbcName Optionally specifies the name of the JDBC provider of interest.
Syntax

AdminJDBC.1istJDBCProviders (jdbcName)

Example usage
AdminJDBC.1istJDBCProviders()
AdminJDBC.1istJDBCProviders ("myJDBCProvider")

listJDBCProviderTemplates
This script displays a list of configuration IDs for the JDBC provider templates in your environment.

No input arguments are required for the script. However, you can specify a template name to return a
specific configuration id, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJDBC.1istJDBCProviderTemplates (templateName)

Example usage
AdminJDBC.1istJDBCProviderTemplates ()
AdminJDBC.1istJDBCProviderTemplates ("Derby JDBC Provider")

Automating messaging resource configurations using the scripting
library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
resource management scripts to configure and manage your Java Messaging Service (JMS)
configurations.

174 Scripting the application serving environment

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

* Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -Tanguage jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server_roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The messaging resource management procedures in the scripting library are located in the
lapp_server_rooyscriptLibraries/resources/JMS/V70 subdirectory. Each script from the directory
automatically loads when you launch the wsadmin tool. To automatically load your custom Jython scripts
(*.py) when the wsadmin tool starts, save your automation scripts to a new subdirectory in the
lapp_server_rooyscriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the scripts to perform multiple combinations of administration functions. Use the following
sample combination of procedures to create a JMS provider and configure JMS resources for the JMS
provider.

1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.

* Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

bin>wsadmin -Tang jython

» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:

Chapter 3. Using the script library to automate the application serving environment 175

bin>wsadmin -conntype none -Tang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.

2. Configure a JMS provider.

Run the createJMSProvider procedure from the script library and specify the required arguments. To
run the script, specify the node, server, JMS provider name, external initial contextual factory name,
and external provider URL. You can optionally specify additional attributes in the following format:
[["attrl”, "valuel”], ["attr2”, "value2"]]. The following table provides additional information about

the arguments to specify:

Argument Description
Node name Specifies the name of the node of interest.
Server name Specifies the name of the server of interest.

JMS provider name

Specifies the name to assign to the new JMS provider.

External initial contextual factory name

Specifies the Java class name of the initial context factory for the JMS provider.

External provider URL

Specifies the JMS provider URL for external JNDI lookups.

The following example creates a JMS provider in your configuration:

bin>wsadmin -lang jython -c "AdminJMS.createJMSProvider("myNode", "myServer", "myJMSProvider",
“extInitCF", "extPURL", [["description", "testing"], ["supportsASF", "“true"],

["providerType", "jmsProvType"]])"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJMS.createJMSProvider("myNode", "myServer", “myJMSProvider", "extInitCF",
"extPURL", [["description", "testing"], ["supportsASF", "“true"], ["providerType",

"jmsProvType"]])

The script returns the configuration ID of the new JMS provider.

3. Configure a generic JMS connection factory.
Run the createGenericdMSConnectionFactory procedure from the script library and specify the
required arguments. To run the script, specify the node, server, JMS provider name, name of the new
connection factory, JNDI name, and external JNDI name. You can optionally specify additional
attributes in the following format: [["attrl”, "valuel”], ["attr2”, "value2"]]. The following table
provides additional information about the arguments to specify:

Argument

Description

Node name

Specifies the name of the node of interest.

Server name

Specifies the name of the server of interest.

JMS provider name

Specifies the name of the JMS provider.

Connection factory name

Specifies the name to assign to the new connection factory

JNDI name

Specifies the JNDI name that the system uses to bind the connection factory into the name space.

External JNDI name

Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual

(physical) resources bound into JNDI by the platform.

The following example creates a JMS connection factory in your configuration:

bin>wsadmin -lang jython -c "AdminJMS.createGenericJMSConnectionFactory("myNode", "myServer",
"myJMSProvider", "JMSCFTest", "jmsjndi", "extjmsjndi", [["XAEnabled", "true"],
["authDataAlias", "myalias"], ["description", "testing"]])"

You can also use interactive mode to run the script procedure, as the following example displays:
wsadmin>AdminJMS.createGenericJMSConnectionFactory ("myNode", "myServer", "“myJMSProvider",
"JMSCFTest", “jmsjndi", “"extjmsjndi", [["XAEnabled", "true"], ["authDataAlias",
"myalias"], ["description", "testing"]])

The script returns the configuration ID of the new generic JMS connection factory.

4. Create a generic JMS destination.

Run the createGenericdMSDestination procedure from the script library and specify the required
arguments. To run the script, specify the node, server, JMS provider name, generic JMS destination

176 Scripting the application serving environment

name, JNDI name, and external JNDI name. You can optionally specify additional attributes in the
following format: [["attrl”, "valuel”], ["attr2”, "value2"]]. The following table provides additional
information about the arguments to specify:

Argument Description

Node name Specifies the name of the node of interest.

Server name Specifies the name of the server of interest.

JMS provider name Specifies the name of the JMS provider.

Generic JMS destination name Specifies the name to assign to the new generic JMS destination.

JNDI name Specifies the JNDI name that the system uses to bind the connection factory into the name space.

External JNDI name Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

The following example uses a template to use a template to create a generic JMS destination in your
configuration:

bin>wsadmin -Tang jython -c "AdminJMS.createGenericJMSDestination("myNode", “myServer", "myJMSProvider",
"JMSDest", "destjndi", "extDestdndi", [["description", “testing"l, ["category",
"jmsDestCatagory"], ["type", "TOPIC"]]))"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJMS.createGenericJMSDestination("myNode", "myServer", "myJMSProvider", "JMSDest",
"destjndi", "extDestJdndi", [["description", "testing"], ["category", "jmsDestCatagory"],
["type", "TOPIC']]))

The script returns the configuration ID of the new generic JMS destination.
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the [app_server_rooyscriptLibraries directory.

JMS configuration scripts

The scripting library provides many script procedures to manage your Java Messaging Service (JMS)
configurations. This topic provides usage information for scripts that query your JMS configuration. You
can run each script individually or combine many procedures to create custom automation scripts for your
environment.

Each AdminJMS management script procedure is located in the [app_server_roofscriptLibraries/resources/
JMS/V70 directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

Chapter 3. Using the script library to automate the application serving environment 177

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_roof/scriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to configure JMS in your environment:

+ [“‘createGenericJMSConnectionFactory’|

+ [‘createGenericJMSConnectionFactoryUsingTemplate” on page 179

+ [‘createGenericJMSDestination” on page 179

« |‘createGenericJMSDestinationUsingTemplate” on page 180

* [‘createJMSProvider’ on page 180|

* |“createJMSProviderUsingTemplate” on page 181|

* [‘createWASQueue” on page 181

» [‘createWASQueueUsingTemplate” on page 182

» |“createWASQueueConnectionFactory” on page 183|

+ [‘createWASQueueConnectionFactoryUsingTemplate” on page 183

[“createWASTopic” on page 184

[“createWASTopicUsingTemplate” on page 184

[‘createWASTopicConnectionFactory” on page 185|

[‘createWASTopicConnectionFactoryUsingTemplate” on page 185|

[“startListenerPort” on page 186]

createGenericJMSConnectionFactory

This script creates a new generic JMS connection factory in your configuration. The script returns the
configuration ID of the new generic JMS connection factory.

To run the script, specify the node, server, JMS provider name, name of the new connection factory, JNDI
name, and external JNDI name arguments, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jmsProvider Specifies the name of the JMS provider.
connFactoryName Specifies the name to assign to the new connection factory
JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.
attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].
Syntax

AdminJMS.createGenericJMSConnectionFactory (nodeName ,
serverName, jmsProvider, connFactoryName, jndiName,

extJdndiName, attributes)

Example usage

AdminJMS.createGenericJMSConnectionFactory ("myNode", "myServer",

"JMSTest", "JMSCFTest", "jmsjndi", "extjmsjndi")

AdminJMS.createGenericJMSConnectionFactory ("myNode", "myServer",
"JMSTest", "JMSCFTest", "jmsjndi", "extjmsjndi", [["XAEnabled", "true"],
["authDataAlias", "myalias"], ["description", "testing"]])

178 Scripting the application serving environment

createGenericJMSConnectionFactoryUsingTemplate

This script uses a template to create a generic JMS connection factory in your configuration. The script
returns the configuration ID of the new generic JMS connection factory.

To run the script, specify the node, server, JMS provider name, template 1D, connection factory name,
JNDI name, and external JNDI name arguments, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jmsProvider Specifies the name of the JMS provider.
templatelD Specifies the configuration ID of the template to use.
connFactoryName Specifies the name to assign to the new connection factory
JjndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.
attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].
Syntax

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate (nodeName ,

serverName, jmsProvider, templatelD,

connFactoryName, jndiName, extJndiName, attributes)

Example usage

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate ("myNode", "myServer",

"JMSTest", "Generic QueueConnectionfFactory for

Windows (templates/system|JMS-resource-provider-templates.xml#GenericJMSConnectionFactory 1)", "JMSCFTest",

"jmsjndi", “"extjmsjndi")

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate ("myNode", "myServer",

"JMSTest", "Generic QueueConnectionFactory for

Windows (templates/system|JMS-resource-provider-templates.xml#GenericJMSConnectionFactory 1)", "JMSCFTest",

"jmsjndi", "extjmsjndi",
["description", "testing"1])

[["XAEnabled", "true"], ["authDataAlias", "myalias"],

createGenericJMSDestination

This script creates a generic JMS destination in your configuration. The script returns the configuration 1D

of the new generic JMS destination.

To run the script, specify the node, server, JMS provider name, JMS destination name, JNDI name, and
external JNDI name arguments, as defined in the following table,

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jmsProvider Specifies the name of the JMS provider.

genericJMSDestination

Specifies the name to assign to the new generic JMS destination.

jndiName

Specifies the JNDI name that the system uses to bind the connection factory into the name space.

extJndiName

Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

attributes

Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Chapter 3. Using the script library to automate the application serving environment 179

Syntax

AdminJMS.createGenericJMSDestination(nodeName,
serverName, jmsProvider, genericJMSDestination,
JjndiName, extJndiName, attributes)

Example usage

AdminJMS.createGenericJMSDestination("myNode", "
"JMSDest", "destjndi", "extDestJndi")

AdminJMS.createGenericJMSDestination("myNode", "
"JMSDest", "destjndi", “"extDestJndi", [["descri
"jmsDestCatagory"], ["type", "TOPIC"]])

myServer", "JMSTest",

'myServer", "JMSTest",
ption", "testing"l, ["category",

createGenericdJMSDestinationUsingTemplate

This script uses a template to create a generic JMS destination in your configuration. The script returns
the configuration ID of the new generic JMS destination.

To run the script, specify the node, server, JMS provider name, template 1D, generic JMS destination
name, JNDI name, and external JNDI name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jmsProvider Specifies the name of the JMS provider.

templatelD Specifies the configuration ID of the template to use.

genericJMSDestination

Specifies the name to assign to the new generic JMS destination.

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS.createGenericJMSDestinationUsingTemplate (nodeName,

serverName, jmsProvider, templatelD,
genericJMSDestination, jndiName, extJndiName,
attributes)

Example usage

AdminJMS.createGenericJMSDestinationUsingTemplate("myNode", "myServer",

"JMSTest",
"Example.JMS.Generic.Win.Topic (templates/system|
"JMSDest", “destjndi", “extDestdndi")

JMS-resource-provider-templates.xml#GenericdMSDestination_2)",

AdminJMS.createGenericJMSDestinationUsingTemplate("myNode", "myServer",

"JMSTest",
"Example.JMS.Generic.Win.Topic(templates/system|

JMS-resource-provider-templates.xml#GenericdMSDestination_2)",

"JMSDest", "destjndi", "extDestJndi", [["description", "testing"], ["category"

"jmsDestCatagory"], ["type", "TOPIC"]])

createJMSProvider

This script creates a JMS provider in your configuration. The script returns the configuration ID of the new

JMS provider.

To run the script, specify the node, s
and external provider URL argument

erver, JMS provider name, external initial contextual factory name,
s, as defined in the following table:

Argument

Description

nodeName

Specifies the name of the node of interest.

180 Scripting the application serving environment

Argument Description

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name to assign to the new JMS provider.

extContextFactory Specifies the Java class name of the initial context factory for the JMS provider.

extProviderURL Specifies the JMS provider URL for external JNDI lookups.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS.createJMSProvider(nodeName, serverName,
JmsProvider, extContextFactory, extProviderURL,
attributes)

Example usage

AdminJMS.createJMSProvider("myNode", "myServer", "JMSTestl",
"extInitCF", "extPURL")

AdminJMS.createJMSProvider("myNode", "myServer", "JMSTestl",
"extInitCF", "extPURL", [["description", "testing"], ["supportsASF", "“true"],
["providerType", "jmsProvType"]])

createJMSProviderUsingTemplate

This script uses a template to create a JMS provider in your configuration. The script returns the
configuration ID of the new JMS provider.

To run the script, specify the node, server, configuration ID of the JMS provider template, name to assign
to the new JMS provider, external initial context factory, and external provider URL arguments, as defined

in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
templatelD Specifies the configuration ID of the JMS provider template to use.
jmsProvider Specifies the name to assign to the new JMS provider.
extContextFactory Specifies the Java class name of the initial context factory for the JMS provider.
extProviderURL Specifies the JMS provider URL for external JNDI lookups.
attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].
Syntax

AdminJMS.createJMSProviderUsingTemplate (nodeName,
serverName, templatelID, jmsProvider,
extContextFactory, extProviderURL, attributes)

Example usage

AdminJMS.createJMSProviderUsingTemplate("myNode", "myServer", "WebSphere JMS
Provider(templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#builtin_jmsprovider)",
"JMSTest", "extInitCF", "extPURL")

AdminJMS.createJMSProviderUsingTemplate ("myNode", "myServer", "WebSphere JMS
Provider(templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#builtin_jmsprovider)",
"JMSTest", "extInitCF", "extPURL", [["description","testing"], ["supportsASF",

"true"], ["providerType", "jmsProvType"]])

createWASQueue
This script creates a WAS queue in your configuration. You should only use WAS JMS resources for

applications that perform messaging with a WebSphere Application Server version 5.1 embedded
JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS queue.

Chapter 3. Using the script library to automate the application serving environment

181

To run the script, specify the node, server, JMS provider name, name to assign to the queue, and JNDI
name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

queueName Specifies the name to assign to the new queue.

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS.createWASQueue (nodeName, serverName,
JmsProvider, queueName, jndiName,
attributes)

Example usage

AdminJMS.createWASQueue ("myNode", "myServer", "JMSTest",
"WASQueueTest", "queuejndi")

AdminJMS. createWASQueue ("myNode", "myServer", "JMSTest", "WASQueueTest", "queuejndi", [["description", "testing"], ["persistence",
"APPLICATION_DEFINED"], ["priority", "APPLICATION_DEFINED"], ["specifiedPriority",
IIZII]])

createWASQueueUsingTemplate

This script uses a template to WAS queue in your configuration. You should only use WAS JMS resources
for applications that perform messaging with a WebSphere Application Server version 5.1 embedded
JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS queue.

To run the script, specify the node, server, JMS provider name, configuration ID of the template, name to
assign to the queue, and JNDI name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

templatelD Specifies the configuration ID of the WAS queue template to use.

queueName Specifies the name to assign to the new queue.

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS. createWASQueueUsingTemplate (nodeName ,
serverName, jmsProvider, templatelD, queueName,
JndiName, attributes)

Example usage

AdminJMS.createWASQueueUsingTemplate("myNode", "myServer", "JMSTest",
"WASQueueTest", "queuejndi")

AdminJMS.createWASQueueUsingTemplate ("myNode", "myServer", "JMSTest",
"WASQueueTest", "queuejndi", [["description", "testing"], ["persistence",
"APPLICATION_DEFINED"], ["priority", "APPLICATION_DEFINED"], ["specifiedPriority",
Ilzll]])

182 Scripting the application serving environment

createWASQueueConnectionFactory

This script creates a WAS queue connection factory in your configuration. You should only use WAS JMS
resources for applications that perform messaging with a WebSphere Application Server version 5.1
embedded JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS queue

connection factory.

To run the script, specify the node, server, JMS provider name, name to assign to the queue connection

factory, and JNDI name arguments,

as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

queueConnFactoryName Specifies the name to assign to the new WAS queue connection factory.

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS.createWASQueueConnectionFactory (nodeName ,

serverName, jmsProvider, queueConnFactoryName,
JjndiName, attributes)

Example usage

AdminJMS.createWASQueueConnectionFactory ("myNode", "myServer",

"JMSTest", "queueCFTest", "queuejndi")

AdminJMS.createWASQueueConnectionFactory ("myNode",

"myServer",

"JMSTest", "queueCFTest", "queuejndi", [["description", "testing"], ["persistence",
"APPLICATION_DEFINED"], ["priority", "APPLICATION_DEFINED"], ["specifiedPriority",

"2"11)

createWASQueueConnectionFactoryUsingTemplate

This script uses a template to create a WAS queue connection factory in your configuration. You should
only use WAS JMS resources for applications that perform messaging with a WebSphere Application
Server version 5.1 embedded JMSServer in a Version 7.0 cell. The script returns the configuration ID of
the new WAS queue connection factory.

To run the script, specify the node, server, JMS provider name, configuration ID of the template, name to
assign to the queue connection factory, and JNDI name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

templatelD Specifies the configuration ID of the WAS queue connection factory template to use.

queueConnFactoryName Specifies the name to assign to the new WAS queue connection factory.

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS. createWASQueueConnectionFactoryUsingTemplate (nodeName,

serverName, jmsProvider, templatelD,
queueConnFactoryName, jndiName, attributes)

Example usage

Chapter 3. Using the script library to automate the application serving environment

183

AdminJMS. createWASQueueConnectionFactoryUsingTemplate ("myNode", "myServer",

"JMSTest", "Example WAS

OueueConnectionFactory(templates/system|JMS-resource-provider-templates.xml#WASOueueConnectionFactory_])",

"queueCFTest", "queuecfjndi")

AdminJMS.createWASQueueConnectionFactoryUsingTemplate ("myNode", "myServer",

"JMSTest", "Example WAS

QueueConnectionFactory (templates/system|JMS-resource-provider-templates. xml#WASQueueConnectionFactory 1)",
"queueCFTest", "queuecfjndi", [['XAEnabled', 'true'], ['authDataAlias', ‘'myalias'],
['description', 'testing']l, ['xaRecoveryAuthAlias', 'recoveryalias']])

createWASTopic

This script creates a WAS topic in your JMS configuration. You should only use WAS JMS resources for
applications that perform messaging with a WebSphere Application Server version 5.1 embedded
JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS topic.

To run the script, specify the node, server, JMS provider name, name to assign to the topic, JNDI name,
and the topic arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

topicName Specifies the name to assign to the new topic.

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

topic Specifies the name of the topic (as a qualifier in the topic space) that this topic is to use.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS.createWASTopic (nodeName, serverName,
JmsProvider, topicName, jndiName, topic,
attributes)

Example usage

AdminJMS.createWASTopic("myNode", “myServer", "JMSTest",

"TopicTest", "topicjndi", "mytopic")

AdminJMS.createWASTopic("myNode", "myServer", "JMSTest",
"TopicTest", "topicjndi", "mytopic", [["persistence", "PERSISTENT"], ["priority",
"SPECIFIED"], ["description", "“testing"], ["specifiedPriority", "1"11)

createWASTopicUsingTemplate

This script uses a template to create a WAS topic in your JMS configuration. You should only use WAS
JMS resources for applications that perform messaging with a WebSphere Application Server version 5.1
embedded JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS topic.

To run the script, specify the node, server, JMS provider name, configuration ID of the template, name to
assign to the topic, JNDI name, and the topic arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider of interest.

templatelD Specifies the configuration ID of the WAS topic template to use.

topicName Specifies the name to assign to the new topic.

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

topic Specifies the name of the topic (as a qualifier in the topic space) that this topic is to use.

attributes Optionall]y]specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

184 Scripting the application serving environment

Syntax

AdminJMS.createWASTopicUsingTemplate (nodeName ,
serverName, jmsProvider, templatelID, topicName,
JjndiName, topic, attributes)

Example usage

AdminJMS.createWASTopicUsingTemplate("myNode", "myServer", "JMSTest",
"Example.JMS.WAS.T1 (templates/system|JMS-resource-provider-templates.xml#WASTopic_1)", "TopicTest",
"topicjndi", "mytopic")

AdminJMS.createWASTopicUsingTemplate ("myNode", "myServer", "JMSTest",

"Example.JMS.WAS.T1 (templates/system|JMS-resource-provider-templates.xml#WASTopic_1)", "TopicTest",
"topicjndi", "mytopic", [["persistence", "PERSISTENT"], ["priority", "SPECIFIED"],

["description", "testing"], ["specifiedPriority", "1"]1)

createWASTopicConnectionFactory

This script creates a WAS topic connection factory in your configuration. You should only use WAS JMS
resources for applications that perform messaging with a WebSphere Application Server version 5.1
embedded JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new WAS topic
connection factory.

To run the script, specify the node, server, JMS provider name, name to assign to the connection factory,
JNDI name, and the port arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

JjmsProviderName Specifies the name of the JMS provider of interest.

topicConnFactoryName Specifies the name to assign to the new connection factory.

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
port Specify the port of interest.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,

"value2"]].

Syntax

AdminJMS.createWASTopicConnectionFactory (nodeName,
serverName, jmsProviderName, topicConnFactoryName,
JjndiName, port, attributes)

Example usage

AdminJMS.createWASTopicConnectionFactory ("myNode", "myServer",
"JMSTest", "TopicCFTest", "topiccfjndi", "DIRECT")

AdminJMS.createWASTopicConnectionFactory ("myNode", "myServer",

"JMSTest", "TopicCFTest", "topiccfjndi", "DIRECT", [['XAEnabled', 'true'],
['authDataAlias', 'myalias'], ['authMechanismPreference', 'BASIC_PASSWORD'], ['clientID',
'myID'], ['description', 'testing'l, ['cloneSupport', 'true']])

createWASTopicConnectionFactoryUsingTemplate

This script uses a template to create a WAS topic connection factory in your configuration. You should only
use WAS JMS resources for applications that perform messaging with a WebSphere Application Server
version 5.1 embedded JMSServer in a Version 7.0 cell. The script returns the configuration ID of the new
WAS topic connection factory.

To run the script, specify the node, server, JMS provider name, configuration ID of the template, name to
assign to the connection factory, JNDI name, and the port arguments, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

Chapter 3. Using the script library to automate the application serving environment 185

Argument Description

jmsProviderName Specifies the name of the JMS provider of interest.

templatelD Specifies the configuration ID of the WAS topic connection factory to use.

topicConnFactoryName Specifies the name to assign to the new connection factory.

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.

port Specifies the port of interest.

attributes Optionally specifies additional attributes in the following format: [["attrl”, "valuel”], ["attr2”,
"value2"]].

Syntax

AdminJMS. createWASTopicConnectionFactoryUsingTemplate (nodeName,
serverName, jmsProviderName, templatelD,
topicConnFactoryName, jndiName, port, attributes)

Example usage

AdminJMS.createWASTopicConnectionFactoryUsingTemplate("myNode", "myServer",

"JMSTest", "First Example WAS
TopicCannectionFactory(templates/system|JMS-resource-provider-templates.xml#WASTopicConnectionFactory_])",
"TopicCFTest", "topiccfjndi", "DIRECT")

AdminJMS.createWASTopicConnectionFactoryUsingTemplate("myNode", "myServer",

"JMSTest", "First Example WAS

TopicConnectionFactory (templates/system|JMS-resource-provider-templates.xml#WASTopicConnectionFactory 1)",
"TopicCFTest", "topiccfjndi", "DIRECT", [['XAEnabled', 'true'], ['authDataAlias',

'‘myalias'], ['authMechanismPreference', 'BASIC_PASSWORD'], ['clientID', 'myID'],

['description', 'testing']l, ['cloneSupport', 'true'l])

startListenerPort

This script starts a listener port in your environment. The script returns a value of 1 if the system
successfully starts the listener port or a value of -1 if the system does not start the listener port.

To run the script, specify the node and server name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax
AdminJMS.startListenerPort (nodeName,

serverName)

Example usage
AdminJMS.startListenerPort ("myNode", "myServer")

JMS query scripts

The scripting library provides many script procedures to manage your Java Messaging Service (JMS)
configurations. This topic provides usage information for scripts that retrieve configuration IDs from your
JMS configuration. You can run each script individually or combine many procedures to create custom
automation scripts for your environment.

Each JMS management script procedure is located in the [app_server_roofscriptLibraries/resources/JMS/
V70 directory.

The Jython script library provides script functions for J2C resources, JDBC providers, and JMS resources
at the server scope. You can write your own custom scripts to configure resources at the cell, node, or
cluster level.

186 Scripting the application serving environment

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_roofscriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Use the following script procedures to query your JMS configurations:
+ [“istGenericJMSConnectionFactories’|

+ [“listGenericJMSConnectionFactoryTemplates’]

* |“listGenericJMSDestinations” on page 188|

* |“listGenericJMSDestinationTemplates” on page 188|

» [1listIMSProviders” on page 188

* |“listdMSProviderTemplates” on page 189|

* |“listWASQueueConnectionFactoryTemplates” on page 189|
+ [listWASQueueTemplates” on page 189

* |“listWASTopicConnectionFactoryTemplates” on page 190|
+ [istWASQueueConnectionFactories” on page 190
[istWASQueues” on page 190
[“istWASTopicConnectionFactories” on page 191|
[listWASTopics” on page 191|

[“listWASTopicTemplates” on page 191|

listGenericdMSConnectionFactories

This script displays a list of configuration IDs for the generic JMS connection factories configured in your
environment.

The script does not require any input parameters. However, to return a specific generic JMS connection
factory, specify the generic JMS connection factory name, as defined in the following table:

Argument Description
connFactoryName Optionally specifies the name of the generic JMS connection factory of interest.
Syntax

AdminJMS.1istGenericJMSConnectionFactories(connFactoryName)

Example usage
AdminJMS.1istGenericJdMSConnectionFactories ()
AdminJMS.1istGenericJMSConnectionFactories("JMSCFTest")

listGenericdMSConnectionFactoryTemplates
This script displays a list of generic JMS connection factory template configuration ids.

The script does not require any input parameters. However, to return a specific generic JMS connection
factory template, specify the template ID argument, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istGenericJMSConnectionFactoryTemplates (templateName)

Example usage

Chapter 3. Using the script library to automate the application serving environment 187

AdminJMS.1istGenericJMSConnectionFactoryTemplates ()

AdminJMS.1istGenericJMSConnectionFactoryTemplates("Generic QueueConnectionFactory for Windows")
listGenericJMSDestinations

This script displays a list of configuration IDs for the generic JMS destinations configured in your

environment. The script does not require any input parameters. However, to return a specific generic JMS

destination, specify the generic JMS destination name.

The script does not require any input parameters. However, to return a specific generic JMS destination,

specify the generic JMS destination name, as defined in the following table:

Argument Description
destinationName Optionally specifies the name of the generic JMS destination of interest.
Syntax

AdminJMS.1istGenericJMSDestinations (destinationName)

Example usage
AdminJMS.1istGenericJMSDestinations ()
AdminJMS.1istGenericJMSDestinations ("JMSDestination")

listGenericJMSDestinationTemplates
This script displays a list of generic JMS destination template configuration ids.

The script does not require any input parameters. However, to return a specific template, specify the
template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istGenericJMSDestinationTemplates (templateName)

Example usage
AdminJMS.1istGenericJMSDestinationTemplates()
AdminJMS.1istGenericJMSDestinationTemplates ("Example.JMS.Generic.Win. Topic")

listdMSProviders

This script displays a list of configuration IDs for the JMS providers that are configured in your
environment.

The script does not require any input parameters. However, to return a specific JMS provider, specify the

JMS provider name, as defined in the following table:

Argument Description
jmsProviderName Optionally specifies the name of the generic JMS connection factory of interest.
Syntax

AdminJMS.1istIMSProviders (jmsProviderName)

Example usage
AdminJMS.1istJMSProviders()

188 Scripting the application serving environment

AdminJMS.1istJIMSProviders("JMSTest")
listdMSProviderTemplates
This script displays a list of JMS provider template configuration ids.

The script does not require any input parameters. However, to return a specific template, specify the
template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istJMSProviderTemplates (templateName)

Example usage
AdminJMS.1istJMSProviderTemplates ()
AdminJMS.1istJMSProviderTemplates ("WebSphere JMS Provider")

listWASQueueConnectionFactoryTemplates
This script displays a list of JMS queue connection factory template configuration ids.

The script does not require any input parameters. However, to return a specific template, specify the
template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istWASQueueConnectionFactoryTemplates (templateName)

Example usage
AdminJMS.11istWASQueueConnectionFactoryTemplates ()
AdminJMS.11istWASQueueConnectionFactoryTemplates ("Example WAS QueueConnectionFactory")

listWASQueueTemplates
This script displays a list of JMS queue template configuration ids.

The script does not require any input parameters. However, to return a specific generic template, specify
the template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.11istWASQueueTemplates (templateName)

Example usage
AdminJMS.1istWASQueueTemplates ()
AdminJMS.1istWASQueueTemplates ("Example.JMS.WAS.QI")

Chapter 3. Using the script library to automate the application serving environment 189

listWASTopicConnectionFactoryTemplates
This script displays a list of JMS topic connection factory template configuration ids.

The script does not require any input parameters. However, to return a specific template, specify the
template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istWASTopicConnectionFactoryTemplates (templateName)

Example usage
AdminJMS.1istWASTopicConnectionFactoryTemplates()
AdminJMS.1istWASTopicConnectionFactoryTemplates("First Example WAS TopicConnectionFactory")

listWASQueueConnectionFactories

This script displays a list of configuration IDs for the JMS queue connection factories configured in your
environment.

The script does not require any input parameters. However, to return a specific JMS queue connection
factory, specify the connection factory name, as defined in the following table:

Argument Description
connFactoryName Optionally specifies the name of the JMS connection factory of interest.
Syntax

AdminJMS.1istWASQueueConnectionFactories(connFactoryName)

Example usage
AdminJMS.1istWASQueueConnectionFactories()

AdminJMS.1istWASQueueConnectionFactories("queuecsf™)
listWASQueues
This script displays a list of JMS queues.

The script does not require any input parameters. However, to return a specific queue, specify the queue
name, as defined in the following table:

Argument Description
queueName Optionally specifies the name of the queue of interest.
Syntax

AdminJMS.11stWASQueues (queueName)

Example usage
AdminJMS.11istWASQueues ()
AdminJMS.1istWASQueues ("WASQueueTest")

190 Scripting the application serving environment

listWASTopicConnectionFactories

This script displays a list of configuration IDs for the JMS topic connection factories configured in your
environment.

The script does not require any input parameters. However, to return a specific JMS topic connection
factory, specify the connection factory name, as defined in the following table:

Argument Description
connfFactoryName Optionally specifies the name of the JMS topic connection factory of interest.
Syntax

AdminJMS.1istWASTopicConnectionFactories(connFactoryName)

Example usage
AdminJMS.1istWASTopicConnectionFactories ()
AdminJMS.1istWASTopicConnectionFactories("TopicCFTest")

listWASTopics
This script displays a list of configuration IDs for the JMS topics configured in your environment.

The script does not require any input parameters. However, to return a specific topic, specify the topic
name, as defined in the following table:

Argument Description
topicName Optionally specifies the name of the topic of interest.
Syntax

AdminJMS.1istWASTopics (topicName)

Example usage
AdminJMS.1istWASTopics ()
AdminJMS.1istWASTopics("TopicTest")

listWASTopicTemplates
This script displays a list of JMS topic template configuration ids.

The script does not require any input parameters. However, to return a specific template, specify the
template name, as defined in the following table:

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJMS.1istWASTopicTemplates (templateName)

Example usage
AdminJMS.1istWASTopicTemplates()
AdminJMS.1istWASTopicTemplates ("Example.JMS.WAS.TI1")

Chapter 3. Using the script library to automate the application serving environment

191

Automating authorization group configurations using the scripting
library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
authorization groups scripts create, configure, remove and query your authorization group configuration.

Before you begin

Before you can complete this task, you must install an application server in your environment.
About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server_roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
(app_server_roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The authorization group management procedures in scripting library are located in the
|app_server_rooilscriptLibraries/security/V7O subdirectory. Each script from the directory automatically loads
when you launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin
tool starts, create a new subdirectory and save existing automation scripts under the|app_server_rooz}’
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminAuthorizations.py scripts to perform multiple combinations of authorization group
administration functions. This topic provides one sample combination of procedures. Use the following

192 Scripting the application serving environment

steps to create an authorization group, adds resources to the group, and assigns user roles.
1. Optional: [Launch the wsadmin scripting tool using the Jython scripting language.|

Use this step to launch the wsadmin tool and connect to a server. If you launch the wsadmin tool, use
the interactive mode examples in this topic to run scripts. Alternatively, you can run each script
individually without launching the wsadmin tool.

* Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

bin>wsadmin -Tang jython

When the wsadmin tool launches, the system loads each script from the scripting library.
2. Create an authorization group.
Use the createAuthorizationGroup script to create a new authorization group in your configuration, as
the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminAuthorizations.createAuthorizationGroup("myAuthGroup")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminAuthorizations.createAuthorizationGroup ("myAuthGroup")
3. Add resources to the new authorization group.

Use the addResourceToAuthorizationGroup script to add resources. You can create a file-grained
administrative authorization groups by selecting administrative resources to be part of the authorization
group, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminAuthorizations.addResourceToAuthorizationGroup("myAuthGroup", "Node=myNode:Server=myServer")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminAuthorizations.addResourceToAuthorizationGroup ("myAuthGroup", "Node=myNode:Server=myServer")

4. Assign users to the administrative role for the authorization group.

Use the mapUsersToAdminRole script to assign one or more users to the administrative role for the
resources in the authorization group. You can assign users for the authorization group to the
administrator, configurator, deployer, operator, monitor, adminsecuritymanager, and iscadmins
administrative roles. The following example maps the user0l, user02, and user03 users as
administrators for the resources in the authorization group:

bin>wsadmin -Tang jython -c "AdminAuthorizations.mapUsersToAdminRole("myAuthGroup", "administrator", "user0l user02 user03")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminAuthorizations.mapUsersToAdminRole("myAuthGroup", “administrator", "user0l user02 user3")
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the |lapp_server roofscriptLibraries directory.

Chapter 3. Using the script library to automate the application serving environment 193

Authorization group configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to create, configure, remove and query your security authorization group
configuration. You can run each script individually or combine procedures to create custom automation
scripts.

The AdminAuthorizations script procedures are located in the|app_server_roozi’scriptLibraries/security/V70
directory.

Use the following script procedures to configure authorization groups:
» [‘addResourceToAuthorizationGroup’]

* |“createAuthorizationGroup” on page 195|

* |“‘mapGroupsToAdminRole” on page 195|

* “mapUsersToAdminRole” on page 195|

Use the following script procedures to remove users and groups from the security authorization settings:
« [“deleteAuthorizationGroup” on page 196|

* [“removeGroupFromAIllAdminRoles” on page 196|

+ [“removeGroupsFromAdminRole” on page 196|

+ [“removeResourceFromAuthorizationGroup” on page 197]

[removeUserFromAllAdminRoles” on page 197

[removeUsersFromAdminRole” on page 197

Use the following script procedures to query your security authorization group configuration:
[“help” on page 198]

[“listAuthorizationGroups” on page 198

[“listAuthorizationGroupsForUserID” on page 198§|

[“listAuthorizationGroupsForGrouplD” on page 198

[“listAuthorizationGroupsOfResource” on page 199

[listUserIDsOfAuthorizationGroup” on page 199|

[“listGrouplDsOfAuthorizationGroup ” on page 199

[“listResourcesOfAuthorizationGroup ” on page 199|

[“listResourcesForUserID ” on page 200

addResourceToAuthorizationGroup

This script adds a resource to an existing authorization group in your configuration. You can create a
fine-grained administrative authorization groups by selecting administrative resources to be part of the
authorization group. You can assign users or groups to this new administrative authorization group and
also give them access to the administrative resources contained within.

To run the script, specify the authorization group name and resource name, as defined in the following
table:

Argument Description

authGroupName Specifies the name of the authorization group of interest.

resource Specifies the name of the resource to add to the authorization group of interest.
Syntax

AdminAuthorizations.addResourceToAuthorizationGroup (authGroupName, resource)

194 Scripting the application serving environment

Example usage

AdminAuthorizations.addResourceToAuthorizationGroup ("myAuthGroup", "Node=myNode:Server=myServer")

createAuthorizationGroup

This script creates a new authorization group in your configuration. Administrative authorization groups that
specify users and groups that have certain authorities with the selected resources.

To run the script, specify the authorization group name argument, as defined in the following table:

Argument Description
authGroupName Specifies the name of the authorization group to create.
Syntax

AdminAuthorizations.createAuthorizationGroup (authGroupName)

Example usage

AdminAuthorizations.createAuthorizationGroup ("myAuthGroup")
mapGroupsToAdminRole

This script maps group IDs to one or more administrative roles in the authorization group. The name of the
authorization group that you provide determines the authorization table. The group ID can be a short name
or fully qualified domain name in case Lightweight Directory Access Protocol (LDAP) user registry is used.

To run the script, specify the authorization group name, administrative role, and group ID arguments, as
defined in the following table:

Argument Description

authGroupName Specifies the name of the authorization group of interest.

adminRole Specifies the name of the administrative role to which the system maps the user IDs.
grouplDs Specifies the group IDs to map to the role and authorization group.

Syntax

AdminAuthorizations.mapGroupsToAdminRole(authGroupName, adminRole, groupIDs)

Example usage

AdminAuthorizations.mapGroupsToAdminRole("myAuthGroup", "administrator", "group0l group02 group03")

mapUsersToAdminRole

This script maps user IDs to one or more administrative roles in the authorization group. The name of the
authorization group that you provide determines the authorization table. The user ID can be a short name
or fully qualified domain name in case LDAP user registry is used.

To run the script, specify the authorization group name, administrative role, and user ID arguments, as
defined in the following table:

Argument Description

authGroupName Specifies the name of the authorization group of interest.

adminRole Specifies the name of the administrative role to which the system maps the user IDs.
userlDs Specifies the user IDs to map to the role and authorization group.

Syntax

Chapter 3. Using the script library to automate the application serving environment 195

AdminAuthorizations.mapUsersToAdminRole(authGroupName, adminRole, userIDs)

Example usage

AdminAuthorizations.mapUsersToAdminRole("myAuthGroup", "administrator", "user@l user02 user03")
deleteAuthorizationGroup
This script removes an authorization group from your security configuration.

To run the script, specify the authorization group argument, as defined in the following table:

Argument Description
authGroupName Specifies the name of the authorization group to delete.
Syntax

AdminAuthorizations.deleteAuthorizationGroup (authGroupName)

Example usage

AdminAuthorizations.deleteAuthorizationGroup ("myAuthGroup")
removeGroupFromAllAdminRoles

This script removes a specific group from an administrative role in each authorization group in your
configuration.

To run the script, specify the group ID argument, as defined in the following table:

Argument Description

grouplD Specifies the group ID to remove from the administrative role in each authorization group in
your configuration.

Syntax

AdminAuthorizations.removeGroupFromAl1AdminRoles (groupID)

Example usage

AdminAuthorizations.removeGroupFromAl1AdminRoles ("group01")
removeGroupsFromAdminRole
This script removes specific groups from an administrative role in the authorization group of interest.

To run the script, specify the authorization group name, administrative role, and group ID arguments, as
defined in the following table:

Argument Description

authGroupName Specifies the name of the authorization group of interest.

adminRole Specifies the name of the administrative role from which to remove the user IDs.
grouplDs Specifies the group IDs to remove from the specific role in the authorization group.
Syntax

AdminAuthorizations.removeUsersFromAdminRole (authGroupName, adminRole, groupIDs)

Example usage

AdminAuthorizations.removeUsersFromAdminRole ("myAuthGroup", "administrator", "group0l group02 group03")

196 Scripting the application serving environment

removeResourceFromAuthorizationGroup
This script removes a specific resource from the authorization group of interest.

To run the script, specify the authorization group name and resource name arguments, as defined in the
following table:

Argument Description

authGroupName Specifies the name of the authorization group of interest.
resource Specifies the name of the resource to remove.
Syntax

AdminAuthorizations.removeResourceFromAuthorizationGroup (authGroupName, resource)

Example usage

AdminAuthorizations.removeResourceFromAuthorizationGroup ("myAuthGroup", "Node=myNode:Server=myServer")
removeUserFromAllAdminRoles

This script removes a specific user from an administrative role in each authorization group in your
configuration.

To run the script, specify the following arguments:

Argument Description

userlD Specifies the user ID to remove from the administrative role in each authorization group in
your configuration.

Syntax

AdminAuthorizations.removeUserFromAlTAdminRoles (userID)

Example usage

AdminAuthorizations.removeUserFromAl1AdminRoles ("user@1")

removeUsersFromAdminRole
This script removes specific users from an administrative role in the authorization group of interest.

To run the script, specify the following arguments:

Argument Description

authGroupName Specifies the name of the authorization group of interest.

adminRole Specifies the name of the administrative role from which to remove the user IDs.
userlDs Specifies the user IDs to remove from the specific role in the authorization group.
Syntax

AdminAuthorizations.removeUsersFromAdminRole (authGroupName, adminRole, userIDs)

Example usage

AdminAuthorizations.removeUsersFromAdminRole("myAuthGroup", "administrator", "user0l user02 user03")

Chapter 3. Using the script library to automate the application serving environment 197

help

This script displays the script procedures that the AdminClusterManagement script library supports. To
display detailed help for a specific script, specify the name of the script of interest, as defined in the
following table:

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminResources.help(script)

Example usage

AdminResources.help("listAuthorizationGroups")
listAuthorizationGroups

This script displays each authorization group in your security configuration. This script does not require
arguments.

Syntax

AdminAuthorizations.listAuthorizationGroups()

Example usage

AdminAuthorizations.listAuthorizationGroups()
listAuthorizationGroupsForUserlD
This script displays each authorization group to which a specific user ID has access.

To run the script, specify the user ID argument, as defined in the following table:

Argument Description
userlD Specifies the user ID for which to display authorization groups.
Syntax

AdminAuthorizations.listAuthorizationGroupsForUserID(userID)

Example usage

AdminAuthorizations.listAuthorizationGroupsForUserID("user6l")
listAuthorizationGroupsForGrouplID
This script displays each authorization group to which a specific group ID has access.

To run the script, specify the group ID argument, as defined in the following table:

Argument Description
grouplD Specifies the group ID for which to display authorization groups.
Syntax

AdminAuthorizations.listAuthorizationGroupsForGroupID(groupID)

Example usage

AdminAuthorizations.listAuthorizationGroupsForGroupID("group01")

198 Scripting the application serving environment

listAuthorizationGroupsOfResource
This script displays each authorization group to which a specific resource is mapped.

To run the script, specify the resource name argument, as defined in the following table:

Argument Description
resource Specifies the resource of interest.
Syntax

AdminAuthorizations.TlistAuthorizationGroupsOfResource(resource)

Example usage

AdminAuthorizations.listAuthorizationGroupsOfResource("Node=myNode:Server=myServer")

listUserlDsOfAuthorizationGroup

This script displays the user IDs and access level that are associated with a specific authorization group.

To run the script, specify the authorization group name argument, as defined in the following table:

Argument Description
authGroupname Specifies the name of the authorization group of interest.
Syntax

AdminAuthorizations.listUserIDsOfAuthorizationGroup (authGroupName)

Example usage
AdminAuthorizations.listUserIDsOfAuthorizationGroup ("myAuthGroup")

listGrouplDsOfAuthorizationGroup

This script displays the group IDs and access level that are associated with a specific authorization group.

To run the script, specify the authorization group name argument, as defined in the following table:

Argument Description
authGroupname Specifies the name of the authorization group of interest.
Syntax

AdminAuthorizations.listGroupIDsOfAuthorizationGroup (authGroupName)

Example usage
AdminAuthorizations.listGroupIDsOfAuthorizationGroup ("myAuthGroup")

listResourcesOfAuthorizationGroup
This script displays the resources that are associated with a specific authorization group.

To run the script, specify the authorization group name argument, as defined in the following table:

Argument Description

authGroupname Specifies the name of the authorization group of interest.

Chapter 3. Using the script library to automate the application serving environment

199

Syntax

AdminAuthorizations.listResourcesOfAuthorizationGroup (authGroupName)

Example usage

AdminAuthorizations.listResourcesOfAuthorizationGroup ("myAuthGroup")
listResourcesForUserlD
This script displays the resources that a specific user ID can access.

To run the script, specify the user ID argument, as defined in the following table:

Argument Description
userlD Specifies the user ID of interest.
Syntax

AdminAuthorizations.listResourcesForUserID(userID)

Example usage

AdminAuthorizations.listResourcesForUserID("userdl")
listResourcesForGrouplID
This script displays the resources that a specific group ID can access.

To run the script, specify the group ID argument, as defined in the following table:

Argument Description
grouplD Specifies the group ID of interest.
Syntax

AdminAuthorizations.listResourcesForGroupID(groupID)

Example usage

AdminAuthorizations.listResourcesForGroupID("group0l")

Automating resource configurations using the scripting library.

The scripting library provides Jython script procedures to assist in automating your environment. Use the
scripts in the AdminResources script library to configure mail, URL, and resource settings.

Before you begin
Before you can complete this task, you must install an application server in your environment.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:

200 Scripting the application serving environment

#

My Custom Jython Script - file.py

#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
|app_server _roof/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The resource management procedures in scripting library are located in the lapp_server rooy
scriptLibraries/resource/V70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the [app_server _roo¥
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminResources.py scripts to perform multiple combinations of administration functions.
This topic provides one sample combination of procedures. See the documentation for the resource
configuration scripts for additional scripts, argument descriptions, and syntax examples.

The example script in this topic configures a custom mail provider and session. A mail provider
encapsulates a collection of protocol providers like SMTP, IMAP and POP3, while mail sessions
authenticate users and controls users’ access to messaging systems. Configure your own mail providers
and sessions to customize how JavaMail is handled.

1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, job manager, or administrative agent
profile, or run the tool in local mode. If you launch the wsadmin tool, use the interactive mode
examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

wsadmin -Tang jython
« Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
wsadmin -conntype none -lang jython
When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Create a mail provider.

Chapter 3. Using the script library to automate the application serving environment 201

Run the createMailProvider script from the AdminResources script library, specifying the node name,
server name, and new mail provider name, as the following example demonstrates:
wsadmin -lang jython -c "AdminResources.createMailProvider(myNode, myServer, newMailProvider)"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminResources.createMailProvider(nodeName, serverName, mailProviderName)

3. Define the protocol provider for the mail provider.

You can also configure custom properties, classes, JNDI name, and other mail settings with this script.
See the documentation for the resource configuration scripts for argument descriptions and syntax
examples. Run the configMailProvider script from the AdminResources script library to define the
protocol provider, as the following example demonstrates:

wsadmin -lang jython -c "AdminResources.configMailProvider(myNode, myServer, newMailProvider, "", "", "SQApP", ", mw wu ww o wn’ wuyu
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminResources.configMailProvider(myNode, myServer, newMailProvider, "", "", "SOAP", "",6 "m, wn ww ww o ww)

4. Create the mail session.
Run the createMailSession script from the AdminResources script library, specifying the node name,
server name, mail provider name, mail session name, and Java Naming and Directory Interface (JNDI)
name arguments, as the following example demonstrates:

wsadmin -lang jython -c "AdminResources.createMailSession("myNode", "myServer", "newMailProvider", "myMailSession", "myMailSession/jndi")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminResources.createMailSession("myNode", "myServer", "newMailProvider", "myMailSession", "myMailSession/jndi")

5. Save the configuration changes.

6. Synchronize the node.

To propagate the configuration changes to the node, run the syncNode script procedure from the
AdminNodeManagement script library, specifying the node of interest, as the following example
demonstrates:

wsadmin -lang jython -c "AdminNodeManagement.syncNode ("myNode")"
You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminNodeManagement.syncNode ("myNode")

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")

What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the [app_server rooyscriptLibraries directory.

Resource configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the mail, URL, and resource environment configuration scripts to create and configure resources in
your environment. You can run each script individually or combine procedures to create custom automation
scripts.

202 scripting the application serving environment

The mail, URL, and resource management script procedures are located in the [app_server_roof
scriptLibraries/resources/V70 directory.

Use the following script procedures to configure your mail settings:
+ [‘createCompleteMailProvider’|

* |‘createMailProvider” on page 204|

» |“createMailSession” on page 204|

« |“createProtocolProvider” on page 205

Use the following script procedures to configure your resource environment settings:
* |“‘createCompleteResourceEnvProvider” on page 205|

» [‘createResourceEnvEntries” on page 206|

» [‘createResourceEnvProvider’ on page 206|

« [‘createResourceEnvProviderRef” on page 207|

Use the following script procedures to configure your URL provider settings:
« [“createCompleteURLProvider’ on page 208
+ [“createURL” on page 208|

Use the following script procedures to configure additional Java Enterprise Edition (JEE) resources:
+ [“createJAASAuthenticationAlias” on page 209

[‘createLibraryRef” on page 209

[‘createSharedLibrary” on page 209

+ [“createScheduler’ on page 210|

[‘createWorkManager” on page 211|

[‘help” on page 211

createCompleteMailProvider

This script configures additional configuration attributes for your mail provider. A mail provider encapsulates
a collection of protocol providers like SMTP, IMAP and POP3, while mail sessions authenticate users and
controls user access to messaging systems. Configure your own mail providers and sessions to customize
how JavaMail is handled.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

mailProviderName Specifies the mail provider that the application server uses for this mail session.

propName Specifies the name of the custom property.

propValue Specifies the value of the custom property.

protocolName Specifies the name of the protocol provider. The application server contains protocol
providers for SMTP, IMAP and POP3.

className Specifies the implementation class name of the protocol provider.

mailSessionName Specifies the administrative name of the JavaMail session object.

JNDIName Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including

any naming subcontexts. This name provides the link between the platform binding
information for resources defined in the client application deployment descriptor and the
actual resources bound into JNDI by the platform.

mailStoreHost Specifies the server that is accessed when receiving the mail. This setting, combined with
the mail store user ID and password, represents a valid mail account. For example, if the
mail account is john_wi11iam@my.company.com, then the mail store host is my.company.com.

Chapter 3. Using the script library to automate the application serving environment 203

Argument Description

mailStoreUser Specifies the user ID for the given mail account. For example, if the mail account is
john_william@my.company.com then the user is john_william.

mailStorePassword Specifies the password for the given mail account . For example, if the mail account is
john_william@my.company.com then enter the password for ID john_william.

Syntax

AdminResources.createCompleteMailProvider(nodeName ,
serverName, mailProviderName, propName, propValue,
protocolName, className, mailSessionName, JNDIName,
mailStoreHost, mailStoreUser, mailStorePassword)

Example usage

AdminResources.createCompleteMailProvider("myNode",
"myServer", "myMailProvider", "myProp", "myPropValue", "myMailProtocol",
"com. ibm.mail.myMailProtocol.myMailStore", "myMailSession", "myMailSession/jndi", "serverl",
"mailuser", "password")

createMailProvider

This script creates a mail provider in your environment. The application server includes a default mail
provider called the built-in provider. If you use the default mail provider you only have to configure the mail
session. To use the customized mail provider you must first create the mail provider and session.

To run the script, specify the node, server, and mail provider names, as defined in the following table:

Argument Description
nodeName Specifies the name of the node on which to create the mail provider.
serverName Specifies the name of the server for which to create the mail provider.
mailProviderName Specifies the name to assign to the new mail provider.
Syntax
AdminResources.createMailProvider(nodeName, serverName,
mailProviderName)

Example usage

AdminResources.createMailProvider("myNode", "myServer",
"myMailProvider")

createMailSession

This script creates a new mail session for your mail provider. Mail sessions are represented by the
javax.mail.Session class. A mail session object authenticates users, and controls user access to
messaging systems.

To run the script, specify the node name, server name, mail provider name, mail session name, and Java
Naming and Directory Interface (JNDI) name arguments, as defined in the following table:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

mailProviderName Specifies the mail provider that the application server uses for this mail session.

mailSessionName Specifies the administrative name of the JavaMail session object.

JNDIName Specifies the JNDI name for the resource, including any naming subcontexts. This name
provides the link between the platform binding information for resources defined in the client
application deployment descriptor and the actual resources bound into JNDI by the platform.

Syntax

204 scripting the application serving environment

AdminResources.createMailSession(nodeName, serverName,
mailProviderName, mailSessionName, JNDIName)

Example usage

AdminResources.createMailSession("myNode", "myServer", "myMailProvider",
"myMailSession", "myMailSession/jndi")

createProtocolProvider

This script creates a protocol provider in your configuration, which provides the implementation class for a
specific protocol to support communication between your JavaMail application and mail servers. The
application server contains protocol providers for SMTP, IMAP and POP3. If you require custom providers
for different protocols, install them in your application serving environment before configuring the providers.
See the JavaMail API design specification for guidelines. After configuring your protocol providers, return to
the mail provider page to find the link for configuring mail sessions.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

mailProviderName Specifies the name of the mail provider that the application server uses in association with
the protocol provider.

protocolName Specifies the name of the protocol provider. The application server contains protocol
providers for SMTP, IMAP and POP3.

className Specifies the implementation class name of the protocol provider.

type Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Syntax

AdminResources.createProtocolProvider(nodeName,
serverName, mailProviderName, protocolName,
className, type)

Example usage

AdminResources.createProtocolProvider("myNode", "myServer", "myMailProvider",
"myMailProtocol", "com.ibm.mail.myMailProtocol.myMailStore",
"STORE")

createCompleteResourceEnvProvider

This script configures a resource environment provider, which encapsulate the referenceables that convert
resource environment entry data into resource objects in your configuration.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

resourceEnvProviderName Specifies the name to assign to the resource environment provider.

propName Specifies the name of a custom property to set.

propValue Specifies the value of the custom property.

factoryClass Specifies the factory that converts resource environment entry data into a class instance for
a physical resource.

className Specifies the class name for the referenceable.

resourceEnvEntryName Specifies the name of the resource environment entry.

JNDIName Specifies the JNDI name for the resource environment entry, including any naming

subcontexts. This name is used as the linkage between the platform binding information for
resources defined by a module deployment descriptor and actual resources bound into JNDI
by the platform.

Chapter 3. Using the script library to automate the application serving environment 205

Syntax

AdminResources.createCompleteResourceEnvProvider(nodeName,

serverName, resourceEnvProviderName, propName,
propValue, factoryClass, className,
resourceEnvEntryName, JNDIName)

Example usage

AdminResources.createCompleteResourceEnvProvider("myNode", "myServer",
"myResEnvProvider", "myProp", "myPropValue", "com.ibm.resource.resl", "java.lang.String",

"myResEnvEntry", "“resl/myResEnv")

createResourceEnvEntries

This script creates a resource environment entry in your configuration. Within an application server name
space, the data contained in a resource environment entry is converted into an object that represents a
physical resource. This resource is frequently called an environment resource.

To run the script, specify the following arguments:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

resourceEnvProviderName

Specifies the resource environment provider for this entry. The provider encapsulates the
classes that, when implemented, convert resource environment entry data into resource
objects.

referenceable Specifies the referenceable, which encapsulates the class name of the factory that converts
resource environment entry data into a class instance for a physical resource.

resourceEnvEntry Specifies a name for the resource environment entry to create.

JNDIName Specifies the string to use to look up this environment resource using JNDI. This is the string
to which you bind resource environment reference deployment descriptors.

Syntax

AdminResources.createResourceEnvEntries (nodeName ,

serverName, resourceEnvProviderName, referenceable,

resourceEnvEntry, JNDIName)

Example usage

AdminResources.createResourceEnvEntries ("myNode", "myServer",
"myResEnvProvider", "com.ibm.resource.resl", "myResEnvEntry", "resl/myResEnv")

createResourceEnvProvider

This script creates a resource environment provider in your configuration. The resource environment
provider encapsulates the classes that, when implemented, convert resource environment entry data into

resource objects.

To run the script, specify the node name, server name, and resource environment provider name
arguments, as defined in the following table:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

resourceEnvProviderName

Specifies the resource environment provider to create.

Syntax

AdminResources.createResourceEnvProvider(nodeName ,
serverName, resourceEnvProviderName)

Example usage

206 Scripting the application serving environment

AdminResources.createResEnvProvider("myNode", "myServer",
"myResEnvProvider")

createResourceEnvProviderRef

This script creates a resource environment provider reference in your configuration. Resource environment
references are different than resource references. Resource environment references allow your application
client to use a logical name to look up a resource bound into the server JNDI namespace. A resource
reference allows your application to use a logical name to look up a local JEE resource. The JEE
specification does not specify a particular implementation of a resource.

To run the script, specify the following arguments:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

resourceEnvProviderName

Specifies the resource environment provider for this reference. The provider encapsulates the
classes that, when implemented, convert resource environment entry data into resource
objects.

factoryClass Specifies the class of the factory that converts resource environment entry data into a class
instance for a physical resource.

className Specifies the class name to associate with the referenceable.

Syntax

AdminResources.createResourceEnvProviderRef (nodeName,
serverName, resourceEnvProviderName, factoryClass,

className)

Example usage

AdminResources.createResourceEnvProviderRef ("myNode", "myServer",
"myResEnvProvider", "com.ibm.resource.resl", "java.lang.String")

configURLProvider

This script configures a URL provider, which supplies the implementation classes that are necessary for
the application server to access a URL through a specific protocol. The default URL provider provides
connectivity through protocols that are supported by the IBM Developer Kit. These protocols include HTTP
and File Transfer Protocol (FTP), which work for must URLs.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
URLProviderName Specifies the name of the URL provider to configure.

URLStreamHandlerClass

Specifies fully qualified name of a user-defined Java class that extends the
java.net.URLStreamHandler class for a particular URL protocol, such as FTP.

URLProtocol Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

propName Specifies the name of the custom property to set for the URL provider.

propValue Specifies the value of the custom property to set for the URL provider.

URLName Specifies the name of a Uniform Resource Locator (URL) name that points to an Internet or
intranet resource. For example: http://www.ibm.com.

JNDIName Specifies the JNDI name. Do not assign duplicate JNDI names across different resource
types, such as mail sessions versus URL configurations. Do not assign duplicate JNDI
names for multiple resources of the same type in the same scope.

URLSpec Specifies the string from which to form a URL.

Syntax

Chapter 3. Using the script library to automate the application serving environment 207

AdminResources.configURLProvider(nodeName, serverName,
URLProviderName, URLStreamHandlerClass, URLProtocol,
propName, propValue, URLName, JNDIName,

URLSpec)

Example usage

AdminResources.configURLProvider("myNode", "myServer", “myURLProvider",
"com. ibm.resource.urll", "ftp", "myProp", "myPropValue", "myURL", "urll/myURL", "myURLSpec")

createCompleteURLProvider

This script creates a URL provider, which supplies the implementation classes that are necessary for the
application server to access a URL through a specific protocol. The default URL provider provides
connectivity through protocols that are supported by the IBM Developer Kit. These protocols include HTTP
and File Transfer Protocol (FTP), which work for must URLSs.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

URLProviderName Specifies the name of the URL provider to configure.

URLStreamHandlerClass Specifies fully qualified name of a user-defined Java class that extends the
java.net.URLStreamHandler class for a particular URL protocol, such as FTP.

URLProtocol Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

Syntax

AdminResources.createCompleteURLProvider(nodeName,
serverName, URLProviderName, URLStreamHandlerClass,
URLProtocol)

Example usage

AdminResources.createCompleteURLProvider("myNode", "myServer",
"myURLProvider", "com.ibm.resource.urll", "ftp")

createURL

This script creates a URL provider, which supplies the implementation classes that are necessary for the
application server to access a URL through a specific protocol. The default URL provider provides
connectivity through protocols that are supported by the IBM Developer Kit. These protocols include HTTP
and File Transfer Protocol (FTP), which work for must URLs.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

URLProviderName Specifies the name of the URL provider to assign the URL to.

URLName Specifies the name of the URL to create.

JNDIName Specifies the JNDI name. Do not assign duplicate JNDI names across different resource
types, such as mail sessions versus URL configurations. Do not assign duplicate JNDI
names for multiple resources of the same type in the same scope.

URLSpec Specifies the string from which to form a URL.

Syntax

AdminResources.createURL(nodeName, serverName,
URLProviderName, URLName, JNDIName,
URLSpec)

208 Scripting the application serving environment

Example usage

AdminResources.createURL("myNode", "myServer", "myURLProvider",

"myURL", “urll/myURL", "myURLSpec")

createJAASAuthenticationAlias

This script creates a Java Authentication and Authorization Service (JAAS) authentication alias. The alias
identifies the authentication data entry. When configuring resource adapters or data sources, the
administrator can specify which authentication data to choose using the corresponding alias.

To run the script, specify the following arguments:

Argument Description

authAliasName Specifies the name of the authentication alias to create.

authAliasID A user identity of the intended security domain. For example, if a particular authentication
data entry is used to open a new connection to DB2, this entry contains a DB2 user identity.

authAliasPW Specifies the password of the user identity is encoded in the configuration repository.

Syntax

AdminResources.createJAASAuthenticationAlias (authAliasName,

authAliasID, authAliasPW)

Example usage

AdminResources.createJAASAuthenticationAlias ("myJAAS",

"password")

createLibraryRef

"userfl",

This script creates a library reference, which defines how to use global libraries. The first step for making a
library file available to multiple applications deployed on a server is to create a shared library for each
library file that your applications need. When you create the shared libraries, set variables for the library

files.

To run the script, specify the following arguments:

Argument Description

libraryRefName Specifies the name of the library reference to create.

applicationName Specifies the name of the application to associate with the library reference.
Syntax

AdminResources.createLibraryRef(libraryRefName,
applicationName)

Example usage

AdminResources.createLibraryRef ("myLibrary", "myApplication")

createSharedLibrary

This script creates a shared library in your configuration. The first step for making a library file available to
multiple applications deployed on a server is to create a shared library for each library file that your
applications need. When you create the shared libraries, set variables for the library files.

To run the script, specify the following arguments:

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

Chapter 3. Using the script library to automate the application serving environment 209

Argument Description

sharedLibName Specifies the name to assign to the shared library.

sharedLibClassPath Specifies the file path where the product searches for classes and resources of the shared
library. If a path in the list is a file, the product searches the contents of that . jar or .zip file.
If a path in the list is a directory, then the product searches the contents of .jar and .zip
files in that directory. For performance reasons, the product searches the directory itself only
if the directory contains subdirectories or files other than .jar or .zip files.

Syntax

AdminResources.createSharedLibrary (nodeName,
serverName, sharedLibName, sharedLibClassPath)

Example usage WITITEN

AdminResources.createSharedLibrary ("myNode", "myServer",

"myLibrary", “c:\myLibrary.zip")

L Ax___J Solaris | Linux | HP-UX

AdminResources.createSharedLibrary("myNode", "myServer", “myLibrary",

"/myLibrary.zip")

createScheduler

This script creates a scheduler in your configuration. Schedulers are persistent and transactional timer
services that can run business logic. Each scheduler runs tasks independently and has a programming
interface accessible from JEE applications using the Java Naming and Directory Interface (JNDI). You can
also manage schedulers using a Java Management Extensions (JMX) MBean. See the scheduler
documentation in the Information Center for details on how to configure and use schedulers.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

schedulerName Specifies the name by which this scheduler is known for administrative purposes.

JNDIName Specifies the JNDI name that determines where this scheduler instance is bound in the name
space. Clients can look this name up directly, although the use of resource references is
recommended.

scheduleCategory Specifies a string that can be used to classify or group this scheduler.

datasourceJNDI Specifies the name of the data source where persistent tasks are stored. Any data source
available in the name space can be used with a scheduler. Multiple schedulers can share a
single data source while using different tables by specifying a table prefix.

tablePrefix Specifies the string prefix to affix to the scheduler tables. Multiple independent schedulers
can share the same database if each instance specifies a different prefix string.

pollinterval Specifies the interval, in seconds, that a scheduler polls the database. The default value is
appropriate for most applications. Each poll operation can be consuming. If the interval is
extremely small and there are many scheduled tasks, polling can consume a large portion of
system resources. The default value is 30.

workMgmtJNDI Specifies the JNDI name of the work manager, which is used to manage the number of tasks
that can run concurrently with the scheduler. The work manager also can limit the amount of
JEE context applied to the task.

Syntax

AdminResources.createScheduler(nodeName, serverName,
schedulerName, JNDIName, scheduleCategory,

datasourceJNDI, tablePrefix, polllnterval, workMgmtJNDI)

Example usage

AdminResources.createScheduler("myNode", "myServer", “"myScheduler",
"myScheduledndi", "Default", "jdbc/MyDatasource", "schl", "30",

"myWorkManager")

210 Scripting the application serving environment

createWorkManager

This script creates a work manager in your configuration. Work managers contain a pool of threads that
are bound into Java Naming and Directory Interface.

To run the script, specify the following arguments:

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

workMgrName Specifies the name by which this work manager is known for administrative purposes.

JNDIName Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work
manager in the namespace.

workMgrCategory Specifies a string that you can use to classify or group this work manager.

alarmThreads Specifies the desired maximum number of threads used for alarms. The default value is 2.

minThreads Specifies the minimum number of threads available in this work manager.

maxThreads Specifies the maximum number of threads available in this work manager.

threadPriority Specifies the priority of the threads available in this work manager. Every thread has a
priority. Threads with higher priority are run before threads with lower priority. For more
information about how thread priorities are used, see the APl documentation for the
setPriority method of the java.lang.Thread class in the Java EE specification.

isGrowable Specifies whether the number of threads in this work manager can be increased. Specify a
value of true to indicate that the number of threads can increase.

serviceNames Specifies a list of services to make available to this work manager.

Syntax

AdminResources.createWorkManager (nodeName, serverName,
workMgrName , JNDIName, workMgrCategory,
alarmThreads, minThreads, maxThreads, threadPriority, isGrowable, serviceNames)

Example usage

AdminResources.createWorkManager ("myNode", "myServer", "myWorkManager",
"Work Manager", "wm/myWorkManager", "Default", 5, 1, 10, 5, "true",
"AppProfileService UserWorkArea com.ibm.ws.i18n security")

help

This script displays the script procedures that the AdminResources script library supports. To display
detailed help for a specific script, specify the name of the script of interest, as defined in the following
table:

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminResources.help(script)

Example usage

AdminResources.help("createWorkManager")

Displaying script library help information with the wsadmin tool

The script library provides Jython script procedures to assist in automating your environment. The script
library includes help commands to list each available script library, display information for specific script
libraries, and to display information for specific script procedures.

Chapter 3. Using the script library to automate the application serving environment 211

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER", "myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication", "..\installableApps\DefaultApplication.ear",
"myCluster")

Start all servers and applications on the node
AdminServerManagement.startAll1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -Tanguage jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script in the script
library demonstrates best practices for writing wsadmin scripts. The script library code is located in the
[app_server roofscriptLibraries directory. Within this directory, the scripts are organized into
subdirectories according to functionality, and further organized by version. For example, the
[app_server_roofscriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Use the AdminLibHelp script library to display general information about each script library, specific
information about a specific script library, and information about specific scripts.

» Display general script library information.

Use the following command invocation to display general script library information with the wsadmin
tool:

print AdminLibHelp()

» Display scripts in a specific script library.
You can also use AdminLibHelp script to display each script within a specific script library. For example,
the following command invocation displays each script in the AdminApplication script library:

print AdminLibHelp.help("AdminApplication")

» Display detailed script information.

Use the help script with the script library of interest to display detailed descriptions, arguments, and
usage information for a specific script. For example, the following command invocation displays detailed
script information for the listApplications script in the AdminApplication script library:

print AdminApplication.help('listApplications')

212 Scripting the application serving environment

Chapter 4. Administering applications using scripting

You can use administrative scripts and the wsadmin tool to install, uninstall, and manage applications.
About this task

There are two methods you can use to install, uninstall, and manage applications. You can use the
commands for the AdminApp and AdminControl objects to invoke operations on your application
configuration.

Alternatively, you can use the AdminApplication and BLAManagement Jython script libraries to perform
specific operations to configure your enterprise and business-level applications.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.

You might need to complete one or more of the following topics to administer your application
configurations with the wsadmin tool.

Install enterprise applications.l Use the AdminApp object or the AdminApplication script library to install
an application to the application server runtime. You can install an enterprise archive file (EAR), Web
archive (WAR) file, servlet archive (SAR), or Java archive (JAR) file.

|Insta|l business-level applications.| Use the BLAManagement command group for the AdminTask object
or the AdminBLA script library to install business-level applications.

+ [Manage enterprise applications using pattern matching| Use the AdminApp object or the
AdminApplication script library to implement pattern matching when installing, updating, or editing an
application. Pattern matching simplifies the task of supplying required values for certain complex options
by allowing you to pass in asterisk (*) to all of the required values that cannot be edited.

+ [Manage Integrated Solutions Console applications.| Use the AdminApp object to deploy or remove
portlet-based Integration Solutions Console applications.

[Uninstall enterprise applications.| Use the AdminApp object or the AdminApplication script library to
uninstall applications.

[Uninstall business-level applications.| Use the BLAManagement command group for the AdminTask
object or the AdminBLA script library to uninstall business-level applications.

[Switch JavaServer Faces implementations.| Use the modifyJSFImplementation command to set the Sun
Reference Implementation or the Apache MyFaces project as the JSF implementation for Web
applications.

Installing enterprise applications using scripting

Use the AdminApp object or the AdminApplication script library to install an application to the application
server runtime. You can install an enterprise archive file (EAR), Web archive (WAR) file, servlet archive
(SAR), or Java archive (JAR) file.

Before you begin

On a network deployment installation, verify that the deployment manager is running before you install an
application. Use the startManager command utility to start the deployment manager.

There are two ways to complete this task. Complete the steps in this topic to use the AdminApp object to

install enterprise applications. Alternatively, you can use the scripts in the AdminApplication script library to
install, uninstall, and administer your application configurations.

© Copyright IBM Corp. 2008 213

About this task

Use this topic to install an application from an enterprise archive file (EAR), a Web archive (WAR) file, a
servlet archive (SAR), or a Java archive (JAR) file. The archive file must end in .ear, .jar, .sar or .war
for the wsadmin tool to complete the installation. The wsadmin tool uses these extensions to determine the
archive type. The wsadmin tool automatically wraps WAR and JAR files as an EAR file.

Note: Use the most recent product version of the wsadmin tool when installing applications to
mixed-version environments to ensure that the most recent wsadmin options and commands are
available.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Determine which options to use to install the application in your configuration.

For example, if your configuration consists of a node, a cell, and a server, you can specify that
information when you enter the install command. Review the list of valid options for the install and
installinteractive commands in the [‘Options for the AdminApp object install, installinteractive, edit,|
feditInteractive, update, and updatelnteractive commands” on page 1276) topic to locate the correct
syntax for the -node, -cell, and -server options. For this configuration, use the following command

examples:
Using Jython:

AdminApp.install('location_of ear.ear','[-node nodeName -cell cellName -server serverName]')
Using Jacl:

$AdminApp install "location_of ear.ear" {-node nodeName -cell cellName -server serveriName}

You can also obtain a list of supported options for an enterprise archive (EAR) file using the options
command, for example:

Using Jython:
print AdminApp.options()
Using Jacl:
$AdminApp options
3. Choose to use the install or installinteractive command to install the application.

You can install the application in batch mode, using the install command, or you can install the
application in interactive mode using the installinteractive command. Interactive mode prompts you
through a series of tasks to provide information. Both the install command and the installinteractive
command support the set of options you chose to use for your installation in the previous step.

4. Install the application. For this example, only the server option is used with the install command,
where the value of the server option is serv2. Customize your install or installlnteractive command
with on the options you chose based on your configuration.

« Using the install command to install the application in batch mode:

— For a network deployment installation only, the following command uses the EAR file and the
command option information to install the application on a cluster:

- Using Jython string:
AdminApp.install('c:/MyStuff/applicationl.ear', '[-cluster clusterl]")
- Using Jython list:
AdminApp.install('c:/MyStuff/applicationl.ear', ['-cluster', 'clusterl'])

- Using Jacl:
$AdminApp install “c:/MyStuff/applicationl.ear" {-cluster clusterl}
where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object allowing application objects to be managed
install is an AdminApp command

214 Sscripting the application serving environment

MyStuff/application1.ear is the name of the application to install

cluster is an installation option

clusterl the value of the cluster option which will be cluster name

» Use the installlnteractive command to install the application using interactive mode. The following
command changes the application information by prompting you through a series of installation
tasks:

— Using Jython:
AdminApp.installInteractive('c:/MyStuff/applicationl.ear")

— Using Jacl:
$AdminApp installInteractive "c:/MyStuff/applicationl.ear"

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object allowing application objects to be managed
installInteractive is an AdminApp command
MyStuff/application1.ear is the name of the application to install

5. Save the configuration changes.

6. In a network deployment environment only, synchronize the node. See the [‘Synchronizing nodes with|
[the wsadmin tool” on page 40| article for more information.

What to do next

The steps in this task return a success message if the system successfully installs the application. When
installing large applications, the command might return a success message before the system extracts
each binary file. You cannot start the application until the system extracts all binary files. If you installed a
large application, use the isAppReady and getDeployStatus commands for the AdminApp object to verify
that the system extracted the binary files before starting the application.

The isAppReady command returns a value of true if the system is ready to start the application, or a
value of false if the system is not ready to start the application. For example, using Jython:
print AdminApp.isAppReady('applicationl')

Using Jacl:

$AdminApp isAppReady applicationl

If the system is not ready to start the application, the system might be expanding application binaries. Use
the getDeployStatus command to display additional information about the binary file expansion status, as
the following examples display:

Using Jython:

print AdminApp.getDeployStatus('applicationl"')

Using Jacl:

$AdminApp getDeployStatus applicationl

Setting up business-level applications using scripting

You can create an empty business-level application, and then add assets, shared libraries, or
business-level applications as composition units to the empty business-level application.

Chapter 4. Administering applications using scripting 215

Before you begin

Before you can create a business-level application, determine the assets or other files to add to your
application.

Also, verify that the target application server is configured. As part of configuring the server, determine
whether your application files can run on your deployment targets.

About this task

You can use the wsadmin tool to create business-level applications in your environment. This topic
demonstrates how to use the AdminTask object to import and register assets, create empty business-level
applications, and add assets to the business-level application as composition units. Alternatively, you can
use the scripts in the AdminBLA script library to set up and administer business-level applications.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|
2. Import assets to your configuration.

Assets represent application binaries that contain business logic that runs on the target runtime
environment and serves client requests. An asset can contain an archive of files such as a
compressed (zip) or Java archive (JAR) file, or an archive of archive files such as a Java Platform,
Enterprise Edition (Java EE) enterprise archive (EAR) file. Examples of assets include EAR files,
shared library JAR files, and custom advisors for proxy servers.

Use the importAsset command to import assets to the application server configuration repository. See
the documentation for the BLAManagement command group for the AdminTask object for additional
parameter and step options.

For this example, the commands add three assets to the asset repository. Two of the assets are

non-Java EE assets and one is an enterprise asset. The following command imports the assetl.zip
asset to the asset repository and sets the returned configuration ID to the assetl variable:

assetl = AdminTask.importAsset('-source c:/ears/assetl.zip')

Lnux il Solaris J HP-UX I AX

assetl = AdminTask.importAsset('-source \ears\assetl.zip')

The following command imports the asset2.zip asset metadata only, sets the asset name as
testAsset.zip, sets the deployment directory, specifies that the asset is used for testing, and sets the
returned configuration ID to the testasset variable:

testasset = AdminTask.importAsset('-source c:/ears/asset2.zip -storageType
METADATA —AssetOptions [[.* testAsset.zip . "asset for testing"
c:/installedAssets/testAsset.zip/BASE/testAsset.zip "" "" "" false]]')

| Linux Q) Solaris _Jl HP-UX |l AX

testasset = AdminTask.importAsset('-source \ears\asset2.zip -storageType
METADATA —AssetOptions [[.* testAsset.zip .* "asset for testing"
c:/installedAssets/testAsset.zip/BASE/testAsset.zip "" "" "" false]]')

The following command imports the defaultapp.ear asset, storing all application binaries, and sets the
returned configuration ID to the J2EEAsset variable:

J2EEAsset = AdminTask.importAsset('-source c:/ears/defaultapplication.ear
—storageType FULL —AssetOptions [[.* defaultapp.ear .* "desc" "™ "" "" "" false]]"')

tnux il Solaris _ J HP-UX I AX

J2EEAsset = AdminTask.importAsset('-source \ears\defaultapplication.ear
—storageType FULL -AssetOptions [[.* defaultapp.ear .* "desc" "" "" "" "' false]]')

216 Scripting the application serving environment

The assets of interest are registered as named configuration artifacts in the application server
configuration repository, which is referred to as the asset registry. Use the listAssets command to
display a list of registered assets and verify that the settings are correct, as the following example
demonstrates:

AdminTask.1istAssets('-includeDescription true -includeDeplUnit
true')

3. Create an empty business-level application.

Use the createEmptyBLA command to create a new business-level application and set the returned
configuration ID to the myBLA variable, as the following example demonstrates:

myBLA = AdminTask.createEmptyBLA('-name myBLA -description "BLA that contains
assetl, asset2, and J2EEAsset"')

The system creates the business-level application. Use the listBLAs command to display a list of each
business-level application in the cell, as the following example demonstrates:
AdminTask.TistBLAs ()

4. Add the assets, as composition units, to the business-level application.

Composition units can represent deployed assets, other business-level applications, or external
artifacts that are deployed on non-Application Server run times without backing assets. Business-level
applications contain zero or more composition units. You cannot add the same composition unit to
more than one business-level application, but you can use one asset to create more than one
composition unit.

The following command adds the assetl.zip asset as a composition unit in the myBLA business-level
application, and maps the deployment to the serverl server:

AdminTask.addCompUnit('-blaID myBLA —cuSourcelID assetl -CUOptions [[.* .*
compositionUnitl "“composition unit that is backed by assetl" 0]] -MapTargets [[.* serverl]]
—ActivationPlanOptions [[.* specname=actplanO+specname=actplanl]]")

The following command adds the testAsset.zip asset as a composition unit in the myBLA
business-level application, and maps the deployment to the serverl and testServer servers:

AdminTask.addCompUnit('-blaID myBLA —cuSourcelID asset2 -CUOptions [[.* .x
compositionUnit2 "composition unit that is backed by asset2" 0]] -MapTargets [[.x
serverl+testServer]] —ActivationPlanOptions [.* specname=actplan@+specname=actplanl]")

The following command adds the defaultapp.ear asset as a composition unit in the myBLA
business-level application, and maps the deployment to the serverl and testServer servers:

AdminTask.addCompUnit('[-blaID blal -cuSourcelD ' + J2EEAsset +

-defaultBindingOptions
defaultbinding.ejbjndi.prefix=ejb#defaultbinding.virtual.host=default_host#defaultbinding. force=yes
-AppDeploymentOptions [-appname defaultapp] -MapModulesToServers [["Default Web Application” .=
WebSphere:cell=cellName,node=nodeName,server=serverl] ["Increment EJB module" .*
Websphere:cell=cellName,node=nodeName,server=testServer]] -CtxRootForWebMod [["Default Web Application" .*
myctx/]]1")

5. Save your configuration changes.

6. Synchronize the nodes.
Use the syncActiveNodes script in the AdminNodeManagement script library to synchronize each
active node in your environment, as the following example demonstrates:

AdminNodeManagement.syncActiveNodes ()
7. Start the business-level application.

Use the startBLA command to start each composition unit of the business-level application on the
deployment targets for which the composition units are configured, as the following example
demonstrates:

AdminTask.startBLA('-blaID myBLA"')

Results
The system adds three composition units backed by assets to a new business-level application. Each of

the three assets are deployed and started on the serverl server. The testAsset.zip and defaultapp.ear
assets are also deployed and started on the testServer server.

Chapter 4. Administering applications using scripting 217

Uninstalling enterprise applications with the wsadmin tool

You can use the AdminApp object or the AdminApplication script library to uninstall applications.
Before you begin

There are two ways to complete this task. This topic uses the AdminApp object to uninstall enterprise
applications. Alternatively, you can use the scripts in the AdminApplication script library to install, uninstall,
and administer your application configurations.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Uninstall the application:

Specify the name of the application you want to uninstall, not the name of the Enterprise Archive
(EAR) file.
» Using Jacl:
$AdminApp uninstall applicationl
* Using Jython:

AdminApp.uninstall('applicationl')

where:
$ is a Jacl operator for substituting a variable name with its value
AdminApp is an object supporting application objects management
uninstall is an AdminApp command
applicationl is the name of the application to uninstall

3. Save the configuration changes.
4. In a network deployment environment only, synchronize the node.

Use the syncActiveNodes script from the AdminNodeManagement script library to synchronize each
active node in your configuration, as the following example demonstrates:

AdminNodeManagement.syncActiveNodes ()

Results

Uninstalling an application removes it from the application server configuration and from each server that
the application was installed on. The system deletes the application binaries (EAR file contents) from the
installation directory. This occurs when the configuration is saved for single server product versions or
when the configuration changes are synchronized from the deployment manager to the individual nodes
for network deployment configurations.

218 Scripting the application serving environment

Related tasks

[Uninstalling enterprise applications|

After an application no longer is needed, you can uninstall it.

[Chapter 4, “Administering applications using scripting,” on page 213

You can use administrative scripts and the wsadmin tool to install, uninstall, and manage applications.
[‘Automating application configurations using the scripting library” on page 129

The scripting library provides Jython script procedures to assist in automating your environment. Use the
application management scripts to install, uninstall, export, start, stop, and manage applications in your
environment.

Related reference

|“Application installation and uninstallation scripts” on page 131|

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that install applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Deleting business-level applications using scripting

You can use the wsadmin tool to remove business-level applications from your environment. Deleting a
business-level application removes the application from the product configuration repository and it deletes
the application binaries from the file system of all nodes where the application files are installed.

Before you begin

There are two ways to complete this task. This topic uses the commands in the BLAManagement
command group for the AdminTask object to remove business-level applications from your configuration.
Alternatively, you can use the scripts in the AdminBLA script library to configure, administer, and remove
business-level applications

About this task
1. |[Launch the wsadmin scripting tool using the Jython scripting language.|
2. Verify that the business-level application is ready to be deleted.

Before deleting a business-level application, use the deleteCompUnit command to remove each
configuration unit that is associated with the business-level application. Also, verify that no other
business-level applications reference the business-level application to delete.

Use the following example to delete the composition units for the business-level application of interest:
AdminTask.deleteCompUnit('-blaID myBLA —culD compositionUnitl')

Repeat this step for each composition unit that is associated with the business-level application of
interest.

3. Delete the business-level application.

Use the deleteBLA command to remove a business-level application from your configuration, as the
following example demonstrates:
AdminTask.deleteBLA('-blaID myBLA")

If the system successfully deletes the business-level application, the command returns the
configuration ID of the deleted business-level application, as the following example displays:
WebSphere:blaname=myBLA

4. Save your configuration changes.
5. Synchronize the node.

Use the syncActiveNodes script in the AdminNodeManagement script library to propagate the changes
to each active node, as the following example demonstrates:

AdminNodeManagement.syncActiveNodes ()

Chapter 4. Administering applications using scripting 219

Pattern matching with the wsadmin tool

Use the Jython or Jacl scripting language to implement pattern matching when installing, updating, or
editing an application. Pattern matching simplifies the task of supplying required values for certain complex
options by allowing you to pass in asterisk (*) to all of the required values that cannot be edited.

Before you begin

There are two ways to complete this task. This topic uses the AdminApp object to install enterprise
applications. Alternatively, you can use the scripts in the AdminApplication script library to install, uninstall,
and administer your application configurations with many options, including pattern matching.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.
* Install each Web archive (WAR) and Java archive file to the application server.

1. |Launch the wsadmin scripting tool using the Jython scripting language

2. Install each Web archive (WAR) and Java archive file to the application server, as the following
examples demonstrate:
— Using Jython:

AdminApp.install('DefaultApplication.ear', ['-appname', 'TEST', '-MapModulesToServers', [['.*',
'.x', 'WebSphere:cell=myCell,node=myNode,server=myServer']]])

— Using Jacl:

$AdminApp install DefaultApplication.ear {-appname TEST -MapModulesToServers
{{.* .x WebSphere:cell=myCell,node=myNode,server=myServer}}}

3. Save your configuration changes.

* Install each WAR file to the myServer server on the myNodenode and each JAR file to the yourServer
server on the yourNode node.

1. |Launch the wsadmin scripting tool using the Jython scripting language

2. Install the WAR and JAR files to different application server management scopes, as the following
examples demonstrate:

— Using Jython:

AdminApp.install('DefaultApplication.ear', ['-appname', 'TEST', '-MapModulesToServers', [['.*',
'.x.war,.x', 'WebSphere:cell=myCell,node=myNode,server=myServer'], ['.*', '.x.jar,.*",
'WebSphere:cel1=myCel1,node=yourNode,server=yourServer']]])

— Using Jacl:

$AdminApp install DefaultApplication.ear {-appname TEST -MapModulesToServers
{{.* .x.war,.* WebSphere:cell=myCel1,node=myNode,server=myServer}
{.* .x.jar,.* WebSphere:cell=myCell,node=yourNode,server=yourServer}}}

3. Save your configuration changes.

Managing administrative console applications using scripting

Use the Jython or Jacl scripting languages to deploy or remove portlet-based administrative console
applications.

Before you begin

Verify that the administrative console Enterprise Archive (EAR) file is not archived before installation.
» Deploy a portlet-based console application into the EAR file.

1. |Launch the wsadmin scripting tool using the Jython scripting language

2. Deploy a portlet-based console application into the EAR file.

To use the existing listener port instead of using or creating a new activation specification, determine
whether the EJB JAR version is lower than 2.1. The system automatically creates and uses an

220 Scripting the application serving environment

activation specification when you specify the -usedefaultbindings option to deploy an application. If
an activation specification exists, the system ignores the listener port, and instead uses the
activation specification. To deploy an application with an EJB JAR version greater than or equal to
2.1 using the defined listener ports instead of a new activation specification, set the
com.ibm.websphere.management.application.dfltbondng.mdb.preferexisting system property to true in
the wsadmin.properties file in the properties directory of the profile of interest.
— Using Jython:
AdminApp.update('isclite', 'modulefile', '[-operation add -contents
c:/WebSphere/AppServer/systemApps/isclite.ear/upzippedWARName
-contenturi upzippedWARName -usedefaultbindings -contextroot contextroot]"')
— Using Jacl:
$AdminApp update isclite modulefile {-operation add -contents
c:/WebSphere/AppServer/systemApps/isclite.ear/upzippedWARName
-contenturi upzippedWARName -usedefaultbindings -contextroot contextroot}
3. Save your configuration changes.
* Remove a portlet-based Web archive (WAR) file.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Remove the portlet-based WAR file, as the following examples demonstrate:
— Using Jython:
AdminApp.update('isclite', 'modulefile', '[-operation delete -contenturi WarName]')
— Using Jacl:
$AdminApp update isclite modulefile {-operation delete -contenturi WarName}

3. Save your configuration changes.

Managing JavaServer Faces implementations using scripting

JavaServer Faces (JSF) is a user interface framework or application programming interface (API) that
eases the development of Java based Web applications. The product supports JSF at a runtime level,
which reduces the size of Web applications since runtime binaries no longer need to be included in your
Web application. Use the wsadmin tool to set the JSF implementation as the Sun Reference 1.2
implementation or the Apache MyFaces 1.2 project.

About this task

The JSF runtime:

* Makes it easy to construct a user interface from a set of reusable user interface components.
» Simplifies migration of application data to and from the user interface.

* Helps manage user interface state across server requests.

* Provides a simple model for wiring client-generated events to server-side application code.

» Supports custom user interface components to be easily build and reused.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|

2. Determine whether to use JSF with your applications.

Review specification documentation for JSF 1.2 to determine whether to use JSF with your
applications. Then, determine which implementation to use. You can use the Sun Reference
Implementation or the open source Apache MyFaces project. The Sun Reference Implementation is
the default implementation.

3. Set the JSF implementation.
Use the modifyJSFImplementation command for the AdminTask object to set the JSF implementation.

* The following example sets the Sun Reference Implementation for JSF:
AdminTask.modifyJSFImplementation('myApplication', '[-impIName "SunRI1.2"]")

* The following example sets the MyFaces implementation for JSF:
AdminTask.modifyJSFImplementation('myApplication', '[-imp1Name "MyFacesl.2"]")

Chapter 4. Administering applications using scripting 221

4. Recompile the JavaServer Pages (JSP) if you switched implementations and use precompiled
JavaServer Pages (JSP) that contain JSF.

BLAManagement command group for the AdminTask object

You can use the Jython scripting language to configure and administer business-level applications with the
wsadmin tool. Use the commands and parameters in the BLAManagement group to create, edit, export,
delete, and query business-level applications in your configuration.

In order to configure and administer business-level applications you must use the Configurator
administrative role.

An asset represents one or more application binary files that are stored in an asset repository. Typical
assets include application business logic such as enterprise archives, library files, and other resource files.
Use the following commands to manage your asset configurations:

+ [deleteAsset

D
o
=
>
7
»
D
—

ﬂ

* |exportAsset
e [importAsset
istAssets
* |updateAsse
* |viewAsset

Ii

Ii
—

A business-level application is a configuration artifact that consists of zero or more composition units or
other business-level applications. Business-level applications are administrative models that define an
application, and can contain enterprise archive (EAR) files, shared libraries, PHP applications, and more.
Use the following commands to configure and administer business-level applications:

* [createEmptyBLA|

» |deleteBLA

.

.
* |listBLAS

* |listControlOps

e |startBL
topBLA
e |viewBLA

III_
>I

A composition unit represents an asset in a business-level application. A configuration unit enables the
asset contents to interact with other assets in the application. It also enables the product run time to load
and run asset contents. Use the following commands to manage your composition unit configurations:

* |addCompUni

+ |deleteCompUnit|

* [editCompUnit

¢ |listCompUnits|

» [setCompUnitTargetAutoStar{
viewCompUnit

J

i

{

222 Scripting the application serving environment

deleteAsset

The deleteAsset command removes an asset from your business-level application configuration. Before
using this command, verify that no composition units are associated with the asset of interest. The
command fails if the asset is associated with configuration units.

Target object
None

Required parameters

-assetlD
Specifies the configuration ID of the asset to delete. The command accepts incomplete IDs for the
assetlD parameter, as long as the system can match the string to a unique asset. (String, required)

Optional parameters

-force
Specifies whether to force the system to delete the asset, even if other assets depend on this asset.
(Boolean, optional)

Return value

The command returns the configuration ID of the deleted asset, as the following example displays:
WebSphere:assetname=asset2.zip

Batch mode example usage

» Using Jython string:
AdminTask.deleteAsset('-assetID asset2.zip -force true')
* Using Jython list:

AdminTask.deleteAsset(['-assetID', ‘'asset2.zip', '-force', 'true'])

Interactive mode example usage
» Using Jython:

AdminTask.deleteAsset('-interactive')
editAsset

The editAsset command modifies additional asset configuration options. You can use this command to
modify the description, destination URL, asset relationships, file permissions, and validation settings.

Target object
None

Required parameters

-assetlD
Specifies the configuration ID of the asset to edit. This parameter accepts an incomplete configuration
ID, as long as the system can match the string to a unique asset ID. (String, required)

Optional steps

For optional steps, use the .* characters to specify a read-only argument in the command syntax. Specify
an empty string with the "” characters to keep the existing value of the argument. If you do not specify a
value or an empty string for a writable argument, the command resets the argument to a null value.

Chapter 4. Administering applications using scripting 223

-AssetOptions
Use the AssetOptions step and the following arguments to set additional properties for the asset.

inputAsset (read-only)
Specifies the source package of the asset.

name (read-only)
Specifies the name of the asset. The default value for this argument is the file name of the
source package.

defaultBindingProps (read-only)
Specifies the default binding properties for the asset. This argument only applies to enterprise
assets. For assets which are not enterprise assets, specify the asterisk character (*) for
pattern matching. For enterprise assets, specify the .* value to set the argument as a
non-empty value.

description
Specifies a description for the asset.

destinationUrl
Specifies the URL of the asset binaries to deploy.

typeAspect
Specifies the asset type aspect.

relationship
Specifies the asset relationship. Use the plus sign character (+) to add additional assets to the
existing relationship. Use the number sign character (#) to delete an existing asset from the
relationship. To replace the existing relationships, specify the same syntax as in the
importAsset command. If the asset specified in the relationship does not exist for add or
update, the command returns an exception.

filePermission
Specifies the file permission configuration.

validate
Specifies whether to validate the asset. The default value is false.

Return value
The command returns the configuration ID of the asset of interest.
Batch mode example usage

Use the following examples to edit a non-enterprise asset:
* Using Jython string:

AdminTask.editAsset('-assetID asset3.zip —AssetOptions [[.* asset3.zip * "asset for testing"
c:/installedAssets/asset3.zip/BASE/asset3.zip "" assetname=a.jar "" falsell')

* Using Jython list:

AdminTask.editAsset(['-assetID', 'asset3.zip', '-AssetOptions', '[[.* asset3.zip * "asset for testing”
c:/installedAssets/asset3.zip/BASE/asset3.zip "" assetname=a.jar "" false]]'l)

Use the following examples to edit an enterprise asset:

» Using Jython string:

AdminTask.editAsset('-assetID defaultapp.ear —AssetOptions
[[.* defaultapp.ear .* "asset for testing" "" "" "" " false]]")

* Using Jython list:

AdminTask.editAsset(['-assetID', 'defoultapp.ear', '-AssetOptions',
"[[.* defaultapp.ear .x "asset for testing" "" "" "" "" fqlse]]'])

Interactive mode example usage

224 scripting the application serving environment

* Using Jython:

AdminTask.editAsset('-interactive')

exportAsset

The exportAsset command exports an asset configuration to a file.
Target object

None

Required parameters

-assetlD
Specifies the configuration ID of the asset to export. This parameter accepts an incomplete
configuration ID as long as the ID matches a unique asset. (String, required)

-filename
Specifies the file name to which the system exports the asset configuration. (DownloadFile, required)
Return value

The command does not return output.

Batch mode example usage

* Using Jython string:

AdminTask.exportAsset('-assetID asset2.zip —filename c:/temp/a2.zip")
* Using Jython list:

AdminTask.exportAsset (['-assetID', 'asset2.zip', '—filename', 'c:/temp/a2.zip'])

Interactive mode example usage
* Using Jython:

AdminTask.exportAsset('-interactive')
importAsset

The importAsset command imports an asset configuration to the asset repository. After importing assets,
you can add the assets to business-level applications as composition units.

Target object
None

Required parameters
-source

Specifies the name of the source file to import. (UploadFile, required)
Optional parameters

-storageType
Specifies the way the system saves the asset in the asset repository. The default asset repository
stores full binaries, metadata of binaries, or no binaries. Specify FULL to store full binaries. Specify
METADATA to store the metadata portion of the binaries. Specify NONE to store no binaries in the asset
repository. The default value is FULL. (String, optional)

Optional steps

Chapter 4. Administering applications using scripting 225

For optional steps, use the .* characters to specify a read-only argument in the command syntax. Specify
an empty string with the "” characters to keep the existing value of the argument. If you do not specify a
value or an empty string for a writable argument, the command resets the argument to a null value.

-AssetOptions
Use the AssetOptions step and the following arguments to set additional properties for the asset.

inputAsset (read-only)
Specifies the source package of the asset.

name Specifies the name of the asset. The extension file name of the asset must match the
extension file name of the source package. The default value for this argument is the file name
of the source package.

defaultBindingProps (read-only)
Specifies the default binding properties for the asset. This argument only applies to enterprise
assets. For assets which are not enterprise assets, specify the asterisk character (*) for
pattern matching. For enterprise assets, specify the .* value to set the argument as a
non-empty value.

description
Specifies a description for the asset.

destinationUrl
Specifies the URL of the asset binaries to deploy.

typeAspect
Specifies the asset type aspect. Specify the typeAspect option in object name format, as the
following syntax demonstrates: spec=xxx

relationship
Specifies the asset relationship. Use the plus sign character (+) to specify multiple asset
relationships. The command returns an exception if you specify assets in the relationship that
do not exist.

filePermission
Specifies the file permission configuration.

validate
Specifies whether to validate the asset.

Return value

The command returns the configuration ID of the asset that the system creates, as the following example
displays:

WebSphere:assetname=asset2.zip
Batch mode example usage

Use the following examples to import a non-enterprise asset:
* Using Jython string:

AdminTask.importAsset('-source c:\ears\assetl.zip -storageType NONE')

* Using Jython list:

AdminTask.importAsset(['-source', 'c:\ears\assetl.zip', '-storageType', 'NONE'])

Use the following examples to import a non-enterprise asset, set asset2.zip as the asset name, save the
metadata binaries in the asset repository, and set the destination directory of the binaries to deploy:

» Using Jython string:

AdminTask.importAsset('-source c:\ears\assetl.zip -storageType METADATA —AssetOptions
[[.* asset2.zip .* "asset for testing" c:/installedAssets/asset2.zip/BASE/asset2.zip "" "" "" "" false]]"')

226 Scripting the application serving environment

* Using Jython list:

AdminTask.importAsset (['-source', 'c:\ears\assetl.zip', '-storageType', 'METADATA', '-AssetOptions',
"[[.* asset2.zip .* "asset for testing" c:/installedAssets/asset2.zip/BASE/asset2.zip "" "" "" "" fglse]]")

Use the following examples to import a non-enterprise asset, and specifies asset relationships with the
a.jar and b.jar assets:
* Using Jython string:

AdminTask.importAsset (' [-source c:\ears\asset3.zip -storageType FULL —AssetOptions
[[.* asset3.zip .* "asset for testing" "" spec=zip assetname=a.jar+assetname=b.jar "" falsel]]"')

* Using Jython list:

AdminTask.importAsset (['-source', 'c:\ears\asset3.zip', '-storageType', 'FULL', '-AssetOptions',
"[[.* asset3.zip .* "asset for testing" "" spec=zip assetname=a.jar+assetname=b.jar "" false]]'l)

Use the following examples to import an enterprise asset:

» Using Jython string:

AdminTask.importAsset('-source c:\ears\defaultapplication.ear —storageType FULL —AssetOptions
[[.* defaultapp.ear .* "desc" "" "" "" false]]')

* Using Jython list:

AdminTask.importAsset (['-source', 'c:\ears\defaultapplication.ear', '-storageType',
'FULL', '-AssetOptions', '[[.* defaultapp.ear .* "desc" "" "" "" false]]'])

Interactive mode example usage

* Using Jython:

AdminTask.importAsset('-interactive')

listAssets

The listAssets command displays the configuration ID of each asset within the cell.
Target object

None

Optional parameters

-assetlD
Specifies the configuration ID of the asset of interest. This parameter accepts an incomplete
configuration ID as long as the ID matches a unique asset. (String, optional)

-includeDescription
Specifies whether to include the a description of each asset that the command returns. Specify true to
display the asset descriptions. (String, optional)

-includeDeplUnit
Specifies whether to display the deployable units for each asset that the command returns. Specify
true to display the deployable units. (String, optional)

Return value

The command returns a list of configuration IDs for the assets of interest. Depending on the parameter
values specified, the command might display the description and deployable composition units for each
asset, as the following example displays:

WebSphere:assetname=assetl.zip
"asset for testing"

WebSphere:assetname=asset2.zip
"second asset for testing"
a.jar

WebSphere:aasetname=asset3.zip

"third asset for testing"
al.jar+a2.jar

Chapter 4. Administering applications using scripting 227

WebSphere:assetname=a.jar0
"a.jar for sharedlib"

WebSphere:assetname=b.jar
"b.jar for sharedlib"

WebSphere:assetname=defaultapp.ear
"default app"

Batch mode example usage

Use the following examples to list each asset in the cell:
* Using Jython:

AdminTask.TistAssets()

Use the following examples to list each asset in the cell:
* Using Jython string:

AdminTask.listAssets('-assetID assetl.zip')

* Using Jython list:

AdminTask.listAssets(['-assetID assetl.zip'])

Use the following examples to list each asset, asset description, and deployable composition units in the
cell:

» Using Jython string:
AdminTask.listAssets('-includeDescription true —includeDeplUnit true')
* Using Jython list:

AdminTask.listAssets(['-includeDescription', 'true', '—includeDeplUnit', 'true')

Interactive mode example usage
» Using Jython:

AdminTask.listAssets('-interactive')

updateAsset

The updateAsset command modifies one or more files or module files or module files of an asset. The
command updates the asset binary file, but does not update the composition units that the system deploys
with the asset as a backing object.

Target object
None

Required parameters

-assetlD
Specifies the configuration ID of the asset to update. This parameter accepts an incomplete
configuration ID as long as the ID matches a unique asset. (String, required)

-operation
Specifies the operation to invoke on the asset of interest. (String, required)

The following table displays each operation that you can invoke on an asset:

Operation Description

replace The replace operation replaces the contents of the asset of interest.

merge The merge operation updates multiple files for the asset, but does not update all files.
add The add operation adds a new file or module file.

228 Scripting the application serving environment

Operation Description

addupdate The addupdate operation adds or updates one file or module file. If the file does not exist, the system adds the
contents. If the file exists, the system updates the file.

update The update operation updates one file or module file.

delete The delete operation deletes a file or module file.

-contents

Specifies the file that contains the content to add or update. This parameter is not required for the
delete operation. (UploadFile, optional)

Optional parameters

-contenturi

Specifies the Uniform Resource Identifier (URI) of the file to add, update, or remove from the asset.

This parameter is not required for the merge or replace operations. (String, optional)
Return value
The command returns
Batch mode example usage

The following example replaces the contents of a non-enterprise asset:
* Using Jython string:

AdminTask.updateAsset('-assetID assetl.zip -operation replace -contents c:/temp/a.zip"')

* Using Jython list:

AdminTask.updateAsset(['-assetID', 'assetl.zip', '-operation', 'replace', '-contents', 'c:/temp/a.zip'])

The following example partially updates the files of a non-enterprise asset:
» Using Jython string:

AdminTask.updateAsset('-assetID assetl.zip —operation merge —contents c:/temp/p.zip")

* Using Jython list:

AdminTask.updateAsset(['-assetID', 'assetl.zip', '-operation', 'merge', '—contents', 'c:/temp/p.zip'])

The following example updates an enterprise asset with an Enterprise JavaBean (EJB) module file:
» Using Jython string:

AdminTask.updateAsset('-assetID defaultapp.ear —operation add —contents
c:/temp/filename.jar —contenturi filename.jar')

* Using Jython list:
AdminTask.updateAsset(['-assetID', 'defaultapp.ear', '—operation', 'add', '-contents',

‘c:/temp/filename.jar', '—-contenturi', 'filename.jar'])

Interactive mode example usage
* Using Jython:

AdminTask.updateAsset('-interactive')

viewAsset

The viewAsset command displays additional asset configuration options and configured values.
Target object

None

Required parameters

Chapter 4. Administering applications using scripting

229

-assetlD
Specifies the configuration ID of the asset of interest. This parameter accepts an incomplete
configuration ID as long as the ID matches a unique asset. (String, required)

Optional parameters
None
Return value

The command returns configuration data for the asset of interest, as the following example displays:

Specify Asset options (AssetOptions)

Specify options for Asset.

*Asset Name (name): [defaultapp.ear]

Default Binding Properties (defaultBindingProps):
[defaultbinding.ejbjndi.prefix#defaultbinding.datasource.jndi#defaultbinding.datasource.username

#defaultbinding.datasource.password#defaultbinding.cf.jndi

#defaultbinding.cf.resauth#defaultbinding.virtual.host#defaultbinding.force]

Asset Description (description): []

Asset Binaries Destination Url (destination): [${USER_INSTALL_ROOT}/installedAssets/defaultapp.ear/BASE/defaultapp.ear]

Asset Type Aspects (typeAspect): [WebSphere:spec=j2ee_ear]

Asset Relationships (relationship): [JFile Permission (filePermission): [.*\\.d11=755#.%\\.s0=755#.%\\.a=755#.*%\\.s1=755]

Validate asset (validate): [false]

Batch mode example usage
* Using Jython string:
AdminTask.viewAsset('-assetID asset3.zip')

* Using Jython list:

AdminTask.viewAsset(['-assetID', 'asset3.zip'])

Interactive mode example usage
* Using Jython:

AdminTask.viewAsset('-interactive')
addCompUnit

The addCompUnit command adds a composition unit to a specific business-level application. A
composition unit represents an asset in a business-level application, and enables the asset contents to
interact with other assets in the application. It also enables the product run time to load and run asset
contents.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

-cuSourcelD
Specifies the source configuration ID for the composition unit to add. You can specify an asset ID or a
business-level application ID. (String, required)

Optional parameters

-deplUnits
Specifies the deployable units to deploy for the asset. You can specify a subset of deployable units, all
deployable units, or use the default as a shared library. If you do not specify this parameter, the
system deploys each deployable unit. The system does not deploy Java EE assets. (String, optional)

230 Scripting the application serving environment

-cuConfigStrategyFile
Specifies the fully qualified file path for custom default binding properties. This parameter only applies
to enterprise assets. (String, optional)

-defaultBindingOptions
Specifies optional Java Naming and Directory Interface (JNDI) binding properties for an enterprise
asset. The binding properties available depend upon the type of enterprise asset. Use the format
property=value to specify a default binding property. To specify more than one property, separate
each property=value statement by the delimiter #.

You can specify binding properties now, when creating the asset, or later, when adding the asset as a
composition unit to a business-level application. If you specify binding properties later, when adding
the asset to a business-level application, then you can use a strategy file to specify the binding
properties. (String, optional)

Use the following options with the defaultBindingOptions parameter:

enterprise asset type Supported binding properties

Enterprise bean (EJB) defaultbinding.ejbjndi.prefix

defaultbinding.force

Data source defaultbinding.datasource.jndi
defaultbinding.datasource.username
defaultbinding.datasource.password

defaultbinding.force

Connection factory defaultbinding.cf.jndi
defaultbinding.cf.resauth

defaultbinding.force

Virtual host defaultbinding.virtual.host

defaultbinding.force

Optional steps

You can also specify values for optional steps to set additional properties for the new composition unit.
These steps do not apply to enterprise assets. For optional steps, use the .* characters to specify a
read-only argument in the command syntax. Specify an empty string with the "” characters to keep the
existing value of the argument. If you do not specify a value or an empty string for a writable argument,
the command resets the argument to a null value.

-CUOptions
Specifies additional properties for the composition unit. Specify the following options with the
CUOptions step:

parentBLA (read-only)
Specifies the parent business-level application for the new composition unit.

backingID (read-only)
Specifies the composition unit source ID.

name Specifies the name of the composition unit.

description
Specifies a description of the composition unit.

startingWeight
Specifies the starting weight of the composition unit.

Chapter 4. Administering applications using scripting 231

startedOnDistributed
Specifies whether to start the composition unit after distributing changes to the target nodes.
The default value is false.

restartBehaviorOnUpdate
Specifies the nodes to restart after editing the composition unit. Specify ALL to restart each
target node. Specify DEFAULT to restart the nodes controlled by the sync plug-ins. Specify NONE
to prevent the system from restarting nodes.

For example, specify the syntax of this step as -CUOptions [[.* .* cud "cu4 desc” 0 false
DEFAULT]]

-MapTargets
Specifies additional properties for the composition unit target mapping. Specify the following options
with the MapTargets step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

server Specifies the target or targets to deploy the composition units. The default value is the serverl
server. Use the plus sign character (+) to specify multiple targets. Use the plus sign
character (+) as a prefix to add an additional target. Specify the complete object name format
for each server that is not aWebSphere Application Server server.

For example, specify the syntax of this step as -MapTargets [[al.jar clusterl+cluster2] [a2.jar
+server2]]

-ActivationPlanOptions
Specifies additional properties for the composition unit activation plan. Specify the following options
with the ActivationPlanOptions step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

activationPlan
Specifies a list of components as the activation plan. Specify each activation plan in the format
specName=xxx,specVersion=yyy, where specName represents the name of the specification and
is required. Use the plus sign character (+) to specify multiple activation plans.

For example, specify the syntax of this step as -ActivationPlanOptions [[al.jar
specname=actplanO+specname=actplanl] [a2.jar specname=actplanl+specname=actplan2]]

-CreateAuxCUOptions
Specifies additional properties for an auxiliary composition unit. Use this step if the composition unit
source is an asset that corresponds to an asset that does not have a matching composition unit in the
business-level application. Specify the following options with the CreateAuxCUOptions step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

inputAsset (read-only)
Specifies composition unit source ID.

culD Specifies the composition unit ID that the system creates for the asset. If you do not want to
create a new composition unit, do not specify this argument.

matchTarget
Specifies whether to match the targets of the dependency auxiliary composition unit with the
targets of the new composition unit. The default value is true.

232 Scripting the application serving environment

For example, specify the syntax of this step as —CreateAuxCUOptions [[al.jar a.jar auxCU true]
[a2.jar a.jar defaultCU false]]

-RelationshipOptions
Specifies additional properties for relationships between assets, composition units, and business-level
applications. Use this step if the source ID of the composition unit is an asset that has a matching
composition unit in the business-level application. Specify the following options with the
RelationshipOptions step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

relationship
Defines the composition unit relationships. Specify the composition unit object name in the
format: cuName=xxx. Use the plus sign character (+) to specify multiple composition unit object
names in the relationship. If the composition unit specified in the relationship does not exist
under the same business-level application, the system removes the composition unit from the
relationship.

matchTarget
Specifies whether to match the targets of the composition unit relationship with the targets of
the new composition unit. The default value is true.

For example, specify the syntax of this step as —RelationshipOptions [[al.jar a.jar auxCU true]
[a2.jar a.jar defaultCU false]]

Return value

The command returns the configuration IDs of the composition unit and the new composition unit created
for the asset in the asset relationship, as the following example displays:

WebSphere:cuname=cu4
WebSphere:cuname=cua
WebSphere:cuname=cud

Batch mode example usage

Use the following examples to add a non-enterprise asset:
* Using Jython string:

AdminTask.addCompUnit('-blaID myBLA —cuSourcelD assetname=assetl.zip -CUOptions
[[.* .* cul "cul descl" O false DEFAULT]] -MapTargets [[.* serverl]] —ActivationPlanOptions
[.* specname=actplan@+specname=actplanl]")

* Using Jython list:
AdminTask.addCompUnit(['-blaID', 'myBLA', '—cuSourcelD', 'assetname=assetl.zip', '-CUOptions',

"[[.* .* cul "cul descl" 0 false DEFAULT]]', '-MapTargets', '[[.* serverI]]', '-ActivationPlanOptions',
'[.* specname=actplan@+specname=actplanl]'])

Use the following examples to add a business-level application composition unit:

* Using Jython string:

AdminTask.addCompUnit('-blaID myBLA -cuSourcelID yourBLA -CUOptions [[.* .* cu3 "cu3 desc3" 0 false DEFAULT]]')
* Using Jython list:

AdminTask.addCompUnit(['-blaID', 'myBLA', '-cuSourcelID', 'yourBLA', '-CUOptions',
"[[.* .* cu3 "cu3 desc3" O false DEFAULT]]'])

Use the following examples to add a composition unit for a non-enterprise asset and deploy the
composition unit to multiple targets:
* Using Jython string:

AdminTask.addCompUnit('-blaID theirBLA —cuSourcelD asset2.zip —CUOptions
[[.* .* cu2 "cu2 desc" 0 false DEFAULT]] -MapTargets [[.* serverl+server2]]')

* Using Jython list:

Chapter 4. Administering applications using scripting 233

AdminTask.addCompUnit(['-blaID', 'theirBLA', '—cuSourcelD', 'asset2.zip', '-CUOptions',
"[[.* .* cu2 "cu2 desc" O false DEFAULT]]', '-MapTargets', '[[.* serverl+server2]]'])

Use the following examples to add a composition unit that is a non-enterprise asset with a deployable unit:
* Using Jython string:

AdminTask.addCompUnit('-blaID yourBLA —cuSourcelD asset2.zip —deplUnits a.jar —CUOptions
[[.* .* cu3 "cu3 desc" 0 false DEFAULT]] —MapTargets [[a.jar serverl]] —ActivationPlanOptions
[[a.jar specname=actplani]]')

* Using Jython list:

AdminTask.addCompUnit(['-blaID', 'yourBLA', '—cuSourcelD', 'asset2.zip', '-deplUnits', 'a.jar', '-CUOptions',
"[[.* .* cu3 "cu3 desc" O false DEFAULT]]', '-MapTargets', '[[a.jar serverl]]', '-ActivationPlanOptions'
'[la.jar specname=actplani]]'])

Use the following examples to add a composition unit for a non-enterprise asset as a shared library:
* Using Jython string:

AdminTask.addCompUnit('-blaID ourBLA —cuSourcelID b.jar —deplUnits default —CUOptions
[[.* .* cub "cub desc" 0 false DEFAULT]] —MapTargets [[default serverl]]')

* Using Jython list:

AdminTask.addCompUnit(['-blaID", 'ourBLA', '—cuSourceID', 'b.jar', '—deplUnits', 'default', '-CUOptions',
"[[.* .* cub "cub desc" O false DEFAULT]]', '-MapTargets', '[[default serverl]]'])

Use the following examples to add a composition unit for a non-enterprise asset with a dependency. For
this example, the cub composition unit exists as a shared library of the ourBLA business-level application:

» Using Jython string:

AdminTask.addCompUnit('-blaID ourBLA —cuSourcelD asset3.zip —deplUnits al.jar -CUOptions
[[.* .* cud4 "cu4 desc" O false DEFAULT]] -MapTargets [[al.jar clusterl+cluster2]] —CreateAuxCUOptions
[[al.jar a.jar cua true]] —-RelationshipOptions [[al.jar cuname=cub true]]"')

* Using Jython list:

AdminTask.addCompUnit(['-blaID', 'ourBLA', '—cuSourcelD', 'asset3.zip', '—deplUnits', 'al.jar', '-CUOptions',
"[[.* .* cud4 "cud desc" O false DEFAULT]]', '-MapTargets', '[[al.jar clusterl+cluster2]]', '—CreateAuxCUOptions',
'[[al.jar a.jar cua true]l', '-RelationshipOptions', '[[al.jar cuname=cub true]]'l)

Use the following examples to add an enterprise asset:
* Using Jython string:

AdminTask.addCompUnit('[-blaID yourBLA —cuSourcelD defaultapp.ear —defaultBindingOptions
defaultbinding.ejbjndi.prefix=ejb# defaultbinding.virtual.host=default_host#
defaultbinding. force=yes —AppDeploymentOptions [-appname defaultapp -installed.ear.destination
application_root/myCell/defaultapp.ear] -MapModulesToServers
[[defaultapp.war .* WebSphere:cell=cellName,node=nodeName,server=serverl]
[Increment.jar .* Websphere:cell=cellName,node=nodeName,server=server2]] -CtxRootForWebMod
[[defaultapp.war .* myctx/1]11")

* Using Jython list:

AdminTask.addCompUnit(['-blaID', 'yourBLA', '—cuSourcelID', 'defaultapp.ear', '—defaultBindingOptions',
‘defaultbinding.ejbjndi.prefix=ejb# defaultbinding.virtual.host=default_host# defaultbinding.force=yes',
'—AppDeploymentOptions', '[-appname defaultapp -installed.ear.destination application_root/myCell/defaultapp.ear]",
'~MapModulesToServers', '[[defaultapp.war .* WebSphere:cell=cellName,node=nodeName,server=serverl]
[Increment.jar .* Websphere:cell=cellName,node=nodeName,server=server2]]', '-CtxRootForWebMod',
'[[defaultapp.war .* myctx/1]1'])

Interactive mode example usage

* Using Jython:

AdminTask.addCompUnit('-interactive')
deleteCompUnit

The deleteCompUnit command removes a composition unit. Both parameters for this command accept
incomplete configuration IDs, as long as the system can match the string to a unique ID.

Target object
None

Required parameters

234 Scripting the application serving environment

-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

-culD
Specifies the configuration ID of the composition unit to delete. (String, required)

Optional parameters

-force
Specifies whether to force the system to delete the composition unit, whether or not other composition
units are associated with it. (Boolean, optional)

Return value

The command returns the configuration ID of the composition unit that the system deleted, as the following
example displays:

WebSphere:cuname=cul

Batch mode example usage

* Using Jython string:
AdminTask.deleteCompUnit('-blaID myBLA —culD cul -force true')
* Using Jython list:

AdminTask.deleteCompUnit(['-blaID', 'myBLA', '—culD', 'cul', '-force', 'true'])

Interactive mode example usage
* Using Jython:

AdminTask.deleteCompUnit('-interactive')
editCompUnit

The editCompUnit command modifies additional composition unit options. You can use this command to
modify the starting weight of the composition unit, deployment targets, activation plan options, and
relationship settings.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

-culD
Specifies the configuration ID of the composition unit to edit. (String, required)

Optional steps

You can also specify values for optional steps to edit properties of the composition unit. These steps do
not apply to enterprise assets. For optional steps, use the .* characters to specify a read-only argument in
the command syntax. Specify an empty string with the "” characters to keep the existing value of the
argument. If you do not specify a value or an empty string for a writable argument, the command resets
the argument to a null value.

-CUOptions
Specifies additional properties for the composition unit. Specify the following options with the
CUOptions step:

Chapter 4. Administering applications using scripting 235

parentBLA (read-only)
Specifies the parent business-level application for the composition unit.

backingID (read-only)
Specifies the composition unit source ID.

name (read-only)
Specifies the name of the composition unit.

description
Specifies a description of the composition unit.

startingWeight
Specifies the starting weight of the composition unit.

startedOnDistributed
Specifies whether to start the composition unit after distributing changes to the target nodes.
The default value is false.

restartBehaviorOnUpdate
Specifies the nodes to restart after editing the composition unit. Specify ALL to restart each
target node. Specify DEFAULT to restart the nodes controlled by the sync plug-ins. Specify NONE
to prevent the system from restarting nodes.

For example, specify the syntax for this step as -CUOptions [[.* .* cu4 "cu4 description” 0 false
DEFAULT]]

-MapTargets
Specifies additional properties for the composition unit target mapping. Specify the following options
with the MapTargets step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

server Specifies the target or targets to deploy the composition units. The default value is the serverl
server. Use the plus sign character (+) to specify multiple targets. Use the plus sign
character (+) as a prefix to add an additional target. Specify the complete object name format
for each server that is not a WebSphere Application Server server.

For example, specify the syntax of this step as -MapTargets [[al.jar clusterl+cluster2] [a2.jar
serverl+server?]]

-ActivationPlanOptions
Specifies additional properties for the composition unit activation plan. Specify the following options
with the ActivationPlanOptions step:

deplUnit (read-only)
Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,
which deploys the entire composition unit.

activationPlan
Specifies a list of components as the activation plan. Specify each activation plan in the format
specName=xxx,specVersion=yyy, where specName represents the name of the specification and
is required. Use the plus sign character (+) to specify multiple activation plans.

For example, specify the syntax of this step as -ActivationPlanOptions [[al.jar
specname=actplanO+actplanl] [a2.jar specname=actplanl+specname=actplan2]]

-RelationshipOptions
Specifies additional properties for relationships between assets, composition units, and business-level
applications. Use this step if the source ID of the composition unit is an asset that has a matching
composition unit in the business-level application. Specify the following options with the
RelationshipOptions step:

236 Scripting the application serving environment

deplUnit (read-only)

Specifies the deployable unit Uniform Resource Identifier (URI). The default value is default,

which deploys the entire composition unit.

relationship

Defines the composition unit relationships. Specify the composition unit object name in the

format: cuName=xxx. Use the plus sign character (+) to specify multiple composition unit object
names in the relationship. If the composition unit specified in the relationship does not exist
under the same business-level application, the system removes the composition unit from the

relationship.

matchTarget

Specifies whether to match the targets of the composition unit relationship with the targets of

the new composition unit. The default value is true.

For example, specify the syntax of this step as —RelationshipOptions [[al.jar a.jar auxCU true]

[a2.jar a.jar defaultCU false]]
Return value
The command returns the configuration ID of the composition unit that the system edits.
Batch mode example usage

Use the following examples to edit a composition unit of an asset and replace the target from existing
targets:
» Using Jython string:

AdminTask.editCompUnit('-blaID myBLA —culD cul —CUOptions [[.* .* cul cudesc 1 false DEFAULT]] -MapTargets
[[.* serverZ]] -ActivationPlanOptions [.* #specname=actplanO+specname=actplanz]"')

* Using Jython list:
AdminTask.editCompUnit(['-blaID', 'myBLA', '—culD', 'cul', '-CUOptions',

"[[.* .* cul cudesc 1 false DEFAULT]]', '-MapTargets', '
[[.* server2]]"', '-ActivationPlanOptions', '[.* #specname=actplan@+specname=actplan2]'])

Use the following examples to edit a composition unit of an asset and its relationships:
» Using Jython string:

AdminTask.editCompUnit('-blaID ourBLA —culD cu4 —CUOptions [[.* .* cu4 "new cu desc" 1 false DEFAULT]]
—MapTargets [[al.jar serverl+serverZ]] —RelationshipOptions [[al.jar cuname=cub true]]')

* Using Jython list:

AdminTask.editCompUnit(['-blaID', 'ourBLA', '—culD', 'cu4', '-CUOptions', '
[[.* .* cu4 "new cu desc" 1 false DEFAULT]]', '-MapTargets', '[[al.jar serverl+server2]]', '-RelationshipOptions',
'[[al.jar cuname=cub truel]'])

Use the following examples to edit a composition unit by adding a new relationship to the existing
relationship:
* Using Jython string:

AdminTask.editCompUnit('[-blaID ourBLA —culD cu4 —CUOptions [[.* .* cud4 "new cu desc" 1 false DEFAULT]]
—MapTargets [[al.jar serverl+server2]] —RelationshipOptions [[al.jar +cuname=cuc true]] -ActivationPlanOptions
[al.jar +specname=actplan2#specname=actplani]]"')

* Using Jython list:
AdminTask.editCompUnit(['-blaID', 'ourBLA', '-culD', 'cu4', '-CUOptions', '

[[.* .* cud4 "new cu desc" 1 false DEFAULT]]', '-MapTargets', '[[al.jar serverl+server2]]', '-RelationshipOptions',
'[lal.jar +cuname=cuc true]]', '-ActivationPlanOptions', '[al.jar +specname=actplan2#specname=actplanl]'])

Use the following examples to edit an enterprise composition unit configuration:
* Using Jython string:
AdminTask.editCompUnit('-blaID yourBLA —culD defaultapp -MapModulesToServers
[[defaultapp.war .* WebSphere:cluster=clusterl] [Increment.jar .* Websphere:cluster=cluster2]]
—CtxRootForWebMod [[defaultapp.war .* /1] —MapWebModToVH [[defaultapp.war .* vh1]]"')

* Using Jython list:

Chapter 4. Administering applications using scripting

237

AdminTask.editCompUnit(['-blaID', 'yourBLA', '—culD', 'defaultapp', '-MapModulesToServers',
'[[defaultapp.war .* WebSphere:cluster=clusterl][Increment.jar .* Websphere:cluster=cluster2]]', '-CtxRootForWebMod',
'[[defaultapp.war .* /11", '-MapWebModToVH', '[[defaultapp.war .* vhi]]'])

Interactive mode example usage

* Using Jython:

AdminTask.editCompUnit('-interactive')
listCompUnits

The listCompUnits command displays each composition unit that is associated with a specific
business-level application.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

Optional parameters

-includeDescription
Specifies whether to include a description of each asset that the command returns. (String, optional)

-includeType
Specifies whether to include the type for each asset that the command returns. (String, optional)

Return value

The command returns a list of configuration IDs and the type for each composition unit, as the following
example displays:

Websphere:cuname=cul

asset

"description for cul"
Websphere:cuname=cu4

bla

"description for cu4"
WebSphere:cuname=defaultapp
enterprise

"description for defaultapp"

Batch mode example usage

* Using Jython string:
AdminTask.TistCompUnits('-blalD blaname=theirBLA")
* Using Jython list:

AdminTask.1listCompUnits(['-blaID', 'blaname=theirBLA'])

Interactive mode example usage
* Using Jython:

AdminTask.TistCompUnits('-interactive')
setCompUnitTargetAutoStart

The setCompUnitTargetAutoStart command enables or disables automatic starting of composition units. If
you enable this option, the system automatically starts the composition unit when the composition unit
target starts.

Target object

238 Scripting the application serving environment

None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. The command accepts an
incomplete configuration ID if the system matches it to a unique business-level application ID. (String,
required)

-culD
Specifies the composition unit of interest. The command accepts an incomplete configuration ID if the
system matches it to a unique composition unit ID. (String, required)

-targetiD
Specifies the name of the target of interest. For example, specify the server name to set the target to
a specific server. (String, required)

-enable
Specifies whether to automatically start the composition unit of interest when the specified target
starts. Specify true to start the composition unit automatically. If you do not specify true, the system
will not start the composition unit when the target starts. The default value is true. (String, required)

Return value
The command does not return output.

Batch mode example usage

» Using Jython string:

AdminTask.setCompUnitTargetAutoStart('-blaIlD blal —culD cul —targetID serverl —enable true')

* Using Jython list:

AdminTask.setCompUnitTargetAutoStart(['-blaID', 'blal', '-culD', 'cul', '—targetID',
'serverl', '—enable', 'true'])

Interactive mode example usage

* Using Jython string:

AdminTask.setCompUnitTargetAutoStart('-interactive')
viewCompUnit

The viewCompUnit command displays configuration information for a composition unit that belongs to a
specific business-level application.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. This parameter accepts an
incomplete configuration ID if the system matches it to a unique business-level application ID. (String,
required)

-culD
Specifies the configuration ID of the composition unit of interest. This parameter accepts an incomplete
configuration ID if the system matches it to a unique composition unit ID. (String, required)

Optional parameters

Chapter 4. Administering applications using scripting 239

None
Return value

The command returns configuration information for the composition unit of interest, as the following
example displays:

Specify Composition Unit options (CUOptions)

Specify name, description options for Composition Unit.

Parent BLA (parentBLA): [WebSphere:blaname=myBLA]

Backing Id (backingld): [WebSphere:assetname=assetl.zip]

Name (name): [cul]

Description (description): [cuDesc]

Starting Weight (startingWeight): [0]

Started on distributed (startedOnDistributed): [false]

Restart behavior on update (restartBehaviorOnUpdate): [DEFAULT]
Specify servers (MapTargets)

Specify targets such as application servers or clusters of application servers where you want to deploy the cu contained in the application.

Deployable Unit (deplUnit): [default]
*Servers (server): [WebSphere:node=myNode,server=serverl]

Specify Composition Unit activation plan options (ActivationPlanOptions)
Specify CU activation plan optionsDeployableUnit Name (deplUnit): [default]
Activation Plan (activationPlan): [WebSphere:specname=actplan@+WebSphere:specname=actplanl]

Batch mode example usage

The following example displays configuration information for a non-enterprise asset:
» Using Jython string:

AdminTask.viewCompUnit('-blaID myBLA -culD myCompUnit")

* Using Jython list:

AdminTask.viewCompUnit(['-blaID', 'myBLA', '-culD', 'myCompUnit'])

The following example displays configuration information for an enterprise asset:
* Using Jython string:

AdminTask.viewCompUnit('-blaID myBLA -culD defaultApplication")

* Using Jython list:

AdminTask.viewCompUnit(['-blaID', 'myBLA', '-culD', 'defaultApplication'])

Interactive mode example usage
* Using Jython:

AdminTask.viewCompUnit('-interactive')

createEmptyBLA

The createEmptyBLA command to create an empty business-level application. After creating a
business-level application, you can add assets or other business-level applications as composition units to
the application.

Target object

None

Required parameters

-name
Specifies a unique name for the new business-level application. (String, required)

Optional parameters

240 scripting the application serving environment

-description
Specifies a description of the new business-level application. (String, optional)

Return value

The command returns the configuration ID of the new business-level application, as the following example
displays:

WebSphere:blaname=myBLA

Batch mode example usage

* Using Jython string:

AdminTask.createEmptyBLA('-name myBLA -description "my description for BLA"')
* Using Jython list:

AdminTask.createEmptyBLA(['-name', 'myBLA', '-description', '"my description for BLA"'])

Interactive mode example usage
* Using Jython:

AdminTask.createEmptyBLA('-interactive')
deleteBLA

The deleteBLA command removes a business-level application from your configuration. Before deleting a
business-level application, use the deleteCompUnit command to remove each configuration unit that is
associated with the business-level application. Also, verify that no other business-level applications
reference the business-level application to delete.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. The command accepts an
incomplete ID for the blalD parameter, as long as the system can match the string to a unique
identifier. For example, you can specify the myBLA partial ID to identify the WebSphere:blaname=myBLA
configuration ID. (String, required)

Optional parameters
None
Return value

The command returns the configuration ID of the deleted business-level application, as the following
example displays:
WebSphere:blaname=myBLA

Batch mode example usage
* Using Jython string:
AdminTask.deleteBLA('-blaID myBLA")

* Using Jython list:

AdminTask.deleteBLA(['-blaID', 'myBLA'])

Interactive mode example usage

Chapter 4. Administering applications using scripting 241

* Using Jython:

AdminTask.deleteBLA('-interactive')

editBLA

The editBLA command modifies the description of a business-level application.
Target object

None

Required parameters
-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

Optional steps

For optional steps, use the .* characters to specify a read-only argument in the command syntax. Specify
an empty string with the "” characters to keep the existing value of the argument. If you do not specify a
value or an empty string for a writable argument, the command resets the argument to a null value.

-BLAOptions
Use the BLAOptions step to specify a new description for the business-level application of interest.

name (read-only)
Specifies the name of the business-level application.

description
Specifies a description of the business-level application.

Return value
The command does not return output.

Batch mode example usage

* Using Jython string:

AdminTask.editBLA('-blaID DefaultApplication —BLAOptions [[.* "my new description"]]")
* Using Jython list:

AdminTask.editBLA(['-blaID', 'DefaultApplication', '-BLAOptions', '[[.* "my new description"]]'])

Interactive mode example usage
* Using Jython:

AdminTask.editBLA('-interactive')
getBLAStatus

The getBLAStatus command displays whether a business-level application or composition unit is running
or stopped.

Target object
None

Required parameters

242 Scripting the application serving environment

-blalD
Specifies the configuration ID of the business-level application of interest. Use the listBLAs command
to display a list of business-level application configuration IDs. (String, required)

Optional parameters

-culD
Specifies the configuration ID of the composition unit of interest. Use the listCompUnits command to
display a list of composition unit configuration IDs. (String, optional)

Return value
The command returns the status of the business-level application or composition unit of interest.

Batch mode example usage

» Using Jython string:

AdminTask.getBLAStatus('-blalD WebSphere:blaname=myBLA -culD Websphere:cuname=cul')
» Using Jython list:

AdminTask.getBLAStatus(['-blaID', 'WebSphere:blaname=myBLA', '-culD', 'Websphere:cuname=cul'])

Interactive mode example usage
» Using Jython:

AdminTask.getBLAStatus('-interactive')

listBLAs

The listBLAs command displays the business-level applications in your configuration.
Target object

None

Optional parameters

-blalD
Specifies the configuration ID of the business-level application of interest. (String, optional)

-includeDescription
Specifies whether to include a description of each business-level application that the command
returns. Specify true to display the business-level application descriptions. (String, optional)

Return value

The command returns a list of configuration IDs for each business-level application in your configuration,
as the following example displays:

WebSphere:blaname=myBLA
WebSphere:blaname=yourBLA

Batch mode example usage

The following example lists each business-level application in the configuration:
* Using Jython:
AdminTask.1istBLAs ()

Use the following examples to list each business-level application in the configuration:
* Using Jython string:

Chapter 4. Administering applications using scripting 243

AdminTask.1istBLAs('-blaID myBLA")
» Using Jython list:

AdminTask.1istBLAs(['-blaID', 'myBLA'])

Use the following examples to list each business-level application and the corresponding descriptions:
* Using Jython string:

AdminTask.1istBLAs('-includeDescription true')

* Using Jython list:

AdminTask.1istBLAs(['-includeDescription', 'true'])

Interactive mode example usage
* Using Jython string:

AdminTask.TistBLAs('-interactive')
listControlOps

The listControlOps command displays the control operations for a business-level application and the
corresponding composition units.

Target object
None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. (String, required)

Optional parameters

-culD
Specifies the composition unit of interest. (String, optional)

-opName
Specifies the operation name of interest. (String, optional)

-long
Specifies whether to include additional configuration information in the command output. (String,
optional)

Return value

The command returns a list of operations, operation descriptions, and parameter descriptions for the query
scope, as the following example displays:

"Operation: start"

" Description: Start operation"

" Operation handler ID: com.mycompany.myasset.ControlOpHandler"
" Operation handler data URI: None"

"Operation: stop"

" Description: Stop operation"

Operation handler ID: com.mycompany.myasset.ControlOpHandler"
" Operation handler data URI: None"

"Operation: clearCache"

" Description: Clears specified cache or all caches"

" Operation handler ID: com.mycompany.myasset.ControlOpHandler"
" Operation handler data URI: None"

" Parameter: cacheName"

" Description: Name of cache to clear. If not specified, all caches are cleared."

Batch mode example usage
» Using Jython string:

AdminTask.TistControl0ps('-bTlaID myBLA —culD myservice.jar -long true')

244 scripting the application serving environment

* Using Jython list:

AdminTask.TistControlOps(['-blaID", 'myBLA', '—culD', 'myservice.jar', '-long true'])

Interactive mode example usage
» Using Jython:

AdminTask.listControlOps('-interactive')

startBLA

The startBLA command starts the business-level application of interest.
Target object

None

Required parameters

-blalD
Specifies the configuration ID of the business-level application to start. The command accepts an
incomplete configuration ID if the system matches the string to a unique ID in your configuration.
(String, required)

Return value

The command returns a status message if the business-level application starts. If the business-level
application does not start, the command does not return output. The following example displays the status
message output:

BLA ID of started BLA if the BLA was not already running.

Batch mode example usage
* Using Jython string:
AdminTask.startBLA('-blaID myBLA")

* Using Jython list:

AdminTask.startBLA(['-blaID', 'myBLA'])

Interactive mode example usage
* Using Jython:

AdminTask.startBLA('-interactive')

stopBLA

The stopBLA command stops the business-level application of interest.
Target object

None

Required parameters

-blalD
Specifies the configuration ID of the business-level application to stop. The command accepts an
incomplete configuration ID if the system matches the string to a unique ID in your configuration.
(String, required)

Return value

Chapter 4. Administering applications using scripting 245

The command returns a status message if the business-level application stops. If the business-level
application does not stop, the command does not return output. The following example displays the status
message output:

BLA ID of stopped BLA if the BLA was not already stopped.

Batch mode example usage
» Using Jython string:
AdminTask.stopBLA('-blaID myBLA")

» Using Jython list:

AdminTask.stopBLA(['-blaID', 'myBLA'])

Interactive mode example usage
* Using Jython:

AdminTask.stopBLA('-interactive')

viewBLA

The viewBLA command displays the name and description of the business-level application of interest.
Target object

None

Required parameters

-blalD
Specifies the configuration ID of the business-level application of interest. The command accepts an
incomplete configuration ID if the system matches the string to a unique business-level application.
(String, required)

Optional parameters
None
Return value

The command returns configuration information for the business-level application of interest, as the
following example displays:

Specify BLA options (BLAOptions)

Specify options for BLA

*BLA Name (name): [DefaultApplication]

BLA Description (description): []

Batch mode example usage

* Using Jython string:

AdminTask.viewBLA('-blaID DefaultApplication")

* Using Jython list:

AdminTask.viewBLA(['-blaID', 'DefaultApplication'])

Interactive mode example usage
* Using Jython:

AdminTask.viewBLA('-interactive')

246 Scripting the application serving environment

JSFCommands command group for the AdminTask object

You can use the Jython scripting language to display and modify the JavaServer Faces (JSF)
implementation.

Use the following command to administer JSF:
+ |“listJSFlmplementation’|
* [‘modifyJSFImplementation’]

listdSFImplementation

The listJSFImplementation command displays the JSF implementation and version for a specific
application.

Target object

Specify the name of the application of interest. (String, required)
Required parameters

None.

Return value

The command displays the JSF implementation and version. For example, if the command returns
"SUNRI1.2", then JSF uses version 1.2 of the Sun Reference Implementation.

Batch mode example usage

* Using Jython string:
AdminTask.listJSFImplementation('applicationl')
* Using Jython list:

AdminTask.listJSFImplementation('applicationl')

Interactive mode example usage
* Using Jython:

AdminTask.listJSFImplementation('-interactive')

modifyJSFImplementation

The modifyJSFImplementation command modifies the JSF implementation for a specific application.
Target object

Specify the name of the application of interest. (String, required)

Required parameters

-impIName
Specifies the name of the implementation to use. Specify SUNRI1.2 to use the Sun Reference 1.2
Implementation, or specify MyFacesl.2 to use the Apache MyFaces 1.2 project implementation. By
default, applications use the Sun Reference Implementation. (String, required)

Return value

The command does not return output.

Chapter 4. Administering applications using scripting 247

Batch mode example usage

* Using Jython string:
AdminTask.modifyJSFImplementation('-impIName MyFacesl.2')
* Using Jython list:

AdminTask.modifyJSFImplementation('-impIName', 'MyFacesl.2')

Interactive mode example usage
* Using Jython:

AdminTask.modifyJSFImplementation('-interactive')

Application management command group for the AdminTask object

You can use the Jython or Jacl scripting languages to manage applications with the wsadmin tool. Use the
commands and parameters in the AppManagementCommands group can be used to display and process
SQL-Java (SQLJ) profiles or pureQuery bind files.

The AppManagementCommands command group for the AdminTask object includes the following
commands:

:
* |“processSqljProfiles” on page 249|

+ [“listPureQueryBindFiles” on page 250

+ [‘processPureQueryBindFiles” on page 250

listSqljProfiles

The listSqljProfiles command parses the .ear file of the specified application and returns a list of .ser files
found. SQLJ profiles have a .ser filename extension. If there are any files in the .ear file that are not SQLJ
profiles, but have a .ser filename extension, those files may be listed also.

Parameters and return values

-appName
The name of the installed application. Your application must be installed prior to running customization
and binding on it. This parameter is required.

Examples

Batch mode example usage:

» Using JACL:

$AdminTask 1istSqljProfiles {-appName application_name}
* Using Jython:

print AdminTask.1istSq1jProfiles('-appName application_name")

Interactive mode example usage:
* Using JACL:

$AdminTask 1istSqljProfiles -interactive

* Using Jython:

print AdminTask.1istSqljProfiles('-interactive')

Output appears with syntax specific to the local operating system. The list of available profiles can be
added to a group file .grp directly.

248 scripting the application serving environment

processSqljProfiles

The processSqljProfiles command creates a DB2 customization of the SQLJ profiles. The command
optionally, by default, calls the SQLJ profile binder to bind the DB2 packages.

Note: If you are processing a large enterprise application, or you are processing many SQLJ profiles, the
process might take longer than the default timeout for the wsadmin tool. The default connection
timeout for the wsadmin tool is set to three minutes. If the default timeout is reached and you lose
the connection to the server, the wsadmin console issues a timeout statement. You can check the
system output log for the final results of the customization and bind process and the amount of time
for that the process. Do not execute the processSqljProfiles command again until the previous
command has completed, or the results may be unpredictable.

To prevent this disconnection, configure the session timeout to a longer period of time. See the
system output log for the total processing time, and use that time period as a basis for the new
timeout value. To extend the default timeout value, change the wsadmin properties file that
corresponds to the connection type that you are using:

* For the SOAP connection type, change the following entry in the soap.client.props file:
com. ibm.SOAP.requestTimeout=180

* For JSR160RMI and RMI connection types, change the following entry in the sas.client.props file:
com. ibm.CORBA.requestTimeout=180

» For the IPC connection type, change the following entry in the ipc.client.props file:

com.ibm.IPC.requestTimeout=180

There are two ways you can verify whether the binding or customization took place:

» If you performed a customization process, you can run a query from the command line to see the
application .ear files that were changed:

wsadmin>print AdminConfig.hasChanges()

The query will return 0 if there are no changes, and 1 if changes occurred on the server. To view the
configuration files that have unsaved changes, run:

wsadmin>print AdminConfig.queryChanges()

* View the System Out log to determine if the binding or processing was successful.
Target object

The installed application SQLJ profiles. These profiles are either single, serial .ser files or profiles grouped
in a .grp group file. This target object is required.

Parameters and return values

-appName
The name of the installed application. Your application must be installed prior to running customization
and binding on it. This parameter is required.

-classpath
The path that tells the application server where to find the necessary SQLJ driver .jar files. This
parameter is optional.

-dburl
The location of the DB2 server on the network. This parameter is optional.

-user
User name of the account performing the access to the DB2 database. This parameter is optional.

Chapter 4. Administering applications using scripting 249

-password
Password for the account accessing the DB2 database. This parameter is optional.

-options
Additional options that are used with the db2sqljcustomize command may be inserted under the
-options parameter except for the parameters listed above. This parameter is optional. For additional
information about the db2sgljcustomize command, consult db2sgljcustomize - SQLJ profile
customizer.

-profiles
The location of the SQLJ profiles .ser files or .grp file. This parameter is required.

Examples
Batch mode example usage:

Interactive mode example usage:

wsadmin>print AdminTask.processSqljProfiles('-interactive') Process serialized SQLJ

profiles. Process the serialized SQLJ profiles in an installed application. Customize the profiles with run time information and
bind static SQL packages in a database. Refer to the Database SQLJ customize and bind documentation. Do only bind
processing. (bindOnly): false =Application name. (appName): Application Classpath to SQLJ tools. (classpath):
C:/IBM/SQLLIB/java/db2jcc.jar Database connection URL. (dbURL): Database connection user name. (user): Database connection
password. (password): Options for SQLJ tools. (options): =*SQLJ profile names. (profiles): c:\\temp\\ApplicationSerNames.grp
Process serialized SQLJ profiles. F (Finish) C (Cancel) Select [F, C]: [F] WASX72781: Generated command line:
AdminTask.processSqljProfiles('[-bindOnly false -appName Application -classpath [C:/IBM/SQLLIB/java/db2jcc.jar] -profiles
[c:\\temp\\ApplicationSerNames.grp 11")

listPureQueryBindFiles

The listPureQueryBindFiles command parses the .ear file of the specified application and returns a list of
.bindprops and .pdgxml files found. PureQuery bind options files have a .bindprops filename extension.
Bind files have a .pdgxml filename extension. If .ear file contains files that are not pureQuery bind files but
have a .bindprops or a .pdgxml filename extension, those files may also be listed.

Parameters and return values

-appName
The name of the installed application. This parameter is required.

Examples

Batch mode example usage:
» Using JACL:

$AdminTask 1istPureQueryBindFiles {-appName application_name}
* Using Jython:

print AdminTask.listPureQueryBindFiles('-appName application_name")

Interactive mode example usage:
» Using JACL:

$AdminTask 1istPureQueryBindFiles -interactive
* Using Jython:

print AdminTask.1istPureQueryBindFiles('-interactive')

Output appears with syntax specific to the local operating system.
processPureQueryBindFiles
The processPureQueryBindFiles command invokes the DB2 pureQuery bind utility on a list of pureQuery

bind files.

250 Scripting the application serving environment

Note: If you are processing a large enterprise application, or you are processing many pureQuery bind
files using wsadmin, the process might take longer than the default timeout for the wsadmin tool.
The default connection timeout for the wsadmin tool is set to three minutes. If the default timeout is
reached and the process running on the server has not yet completed, the wsadmin console issues
a timeout statement. You can check the system output log on the server for the final results of the
bind process and the time when that process completed. Do not execute the
processPureQueryBindFiles command again until the previous command has completed, or the
results may be unpredictable.

To prevent this timeout, configure the wsadmin request timeout to a longer period of time. After a
successful customization and binding process, use the system output log to estimate the total
processing time. Use this time period as a basis for the new timeout value. To extend the default
timeout value, change the wsadmin properties file that corresponds to the connection type that you
are using:
» For the SOAP connection type, change the following entry in the soap.client.props file:
com. ibm.SOAP.requestTimeout=180
* For JSR160RMI and RMI connection types, change the following entry in the sas.client.props file:
com.ibm.CORBA.requestTimeout=180
» For the IPC connection type, change the following entry in the ipc.client.props file:

com.ibm.IPC.requestTimeout=180

To verify whether the binding took place, view the System Out log to determine if the bind processing was
successful.

Parameters and return values
-appName

The name of an installed application that contains the pureQuery bind files to be processed. Your
application must be installed prior to running binding on it.

-classpath
A list of the paths to the Java archive (JAR) files that contain the pureQuery bind utility and its
dependencies: pdq.jar, pdgmgmt.jar, db2jcc4.jar or db2jcc.jar, db2jcc_license_cisuz.jar or
db2jcc_license_cu.jar. Use / or \\\ as a file separator. Use a blank space to separate the paths for the
JAR files.

-dburl
The URL for connecting to the database. The format is jdbc:db2://server_name:port/database_name.

-user
User name of the account performing the access to the DB2 database.

-password
Password for the account accessing the DB2 database.

-options
Any additional options that are needed by the pureQuery bind utility. Provide bind options as
-bindoptions "bind_options_string”. For additional information about the pureQuery bind utility,
consult the topic on the pureQuery Bind utility.

-files
A list of the names of the pureQuery bind files to be processed. The bind file path names must be
relative to the application .ear file that contains them. Use / or \\\ as a file separator. If you specify
multiple profile paths, use a blank space to separate them.

Examples

Batch mode example usage:

Chapter 4. Administering applications using scripting 251

Interactive mode example usage:

print AdminTask.processPureQueryBindFiles('-interactive') Process pureQuery bind files.

Process the pureQuery bind files in an installed application. Bind static SQL packages in a database. Refer to IBM pureQuery
Bind utility documentation. #Application name. (appName): MyApp Classpath to pureQuery Bind utility. (classpath):
/pdq_home/pdq.jar /pdq_home/pdgmgmt.jar /db2_home/SQLLIB/java/db2jcc4.jar /db2_home/SQLLIB/java/db2jcc_license_cu.jar *Database
connection URL. (url): jdbc:db2://hostname:50000/databasename Database connection user name. (user): dbuserl Database connection
password. (password): dbpswrdl Options for the pureQuery Bind utility. (options): -bindoptions "BLOCKING NO" *pureQuery bind file
names. (files): META-INF/xyz.bindprops META-INF/abc.bindprops Process pureQuery bind files. F (Finish) C (Cancel) Select [F,
C]: [F] WASX72781: Generated command line: AdminTask.processPureQueryBindFiles('[-appName MyApp -classpath [/pdq_home/pdq.jar
/pdq_home/pdgmgmt . jar /db2_home/SQLLIB/java/db2jcc4.jar /db2_home/SQLLIB/java/db2jcc_Tlicense_cu.jar] -url
jdbc:db2://hostname:50000/databasename -user dbuserl -password *##xx -options [-bindoptions "BLOCKING NO"] -files
[META-INF/xyz.bindprops META-INF/abc.bindprops 11")

Related concepts

[Changing the console session expiration|

Run this JACL script to set how long Integrated Solutions Console can be used until the login session
expires.

Related tasks

[‘Using the AdminTask object for scripted administration” on page 59|

Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

[Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications]

Simplify the process of customizing and binding SQLJ profiles for your applications by performing these
functions in the administrative console or with scripting. SQLJ profiles must be customized and bound
before the enterprise application can use the application’s embedded SQL.

[Task overview: Data Studio pureQuery|
Data Studio pureQuery provides Java Persistence APl (JPA) users an alternative way to access a DB2
database. PureQuery supports static Structured Query Language (SQL).

[db2sgljcustomize - SQLJ profile customizer]
Related reference

[‘Commands for the AdminTask object” on page 1324]
Use the AdminTask object to run administrative commands with the wsadmin tool.

[‘Wsadmin tool” on page 1187
The wsadmin tool runs scripts. You can use the wsadmin tool to manage application server as well as the
configuration, application deployment, and server runtime operations.

Related information
[oureQuery Bind utility]

252 Scripting the application serving environment

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/r0002073.htm
http://publib.boulder.ibm.com/infocenter/dstudio/v1r1m0/topic/com.ibm.datatools.javatool.runtime.doc/topics/rpdqrunbndutl.html

Chapter 5. Managing deployed applications using scripting

Use these topics to learn more about managing deployed applications with scripting and the wsadmin tool.

« [Start enterprise applications| and[stop enterprise applications| You can use the AdminControl object to
start an application that is not running (has a status of Stopped) or stop an application that is running
(has a status of Started).

- [Start business-level applications| and[stop business-level applications| You can use the wsadmin tool
and the BLAManagement command group to start and stop business-level applications.

[Update applications} Use the wsadmin tool to update installed applications on an application server.

. Use the commands in the BLAManagement command group to manage your asset
configuration. This topic provides examples for listing assets, viewing asset configuration data, removing

assets from the asset repository, updating one or more files for assets, and exporting assets.

. |Manage composition units|. Use the commands in the BLAManagement command group to manage

composition units. This topic provides examples for adding, removing, editing, exporting, and viewing

composition units.

|List application modulesl Use the AdminApp object listModules command to list the modules in an
installed application.

 |Query the application statel Use the wsadmin tool and scripting to determine if an application is running.

 |Disable application Ioadind, You can use the AdminConfig object and scripting to disable application
loading in deployed targets.

. |Configure session management for applicationsl or |configure session management for web modulesl.
Use scripting and the wsadmin tool to configure applications for session management in applications or
Web modules.

« [Configure a shared library for an application server or [configure a shared library for an application|. You

can use scripting to configure a shared library for application servers or applications.

[Set background applications| You can enable or disable a background application using scripting and

the wsadmin tool.

+ [Configure name space bindings. Use this topic to configure name space bindings with the Jython or
Jacl scripting languages and the wsadmin tool.

« [Export applications| You can export your applications before you update installed applications or before
you migrate to a different version of the product.

Starting applications with scripting

Use scripting and the wsadmin tool to start an application that is not running.
Before you begin

There are two ways to complete this task. This topic uses the AdminControl object to start an application.
Alternatively, you can use the scripts in the AdminApplication script library to start, stop, and manage
applications.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|

2. Identify the application manager MBean for the server where the application resides and assign it the
appManager variable. The following example returns the name of the application manager MBean.

» Using Jacl:
set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=ApplicationManager,process=serverl,x]
* Using Jython:

appManager = AdminControl.queryNames('cell=mycell,node=mynode,type=ApplicationManager,process=serverl,*")
print appManager

© Copyright IBM Corp. 2008 253

where:

set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=ApplicationManager ,processsherhérhrchical containment path of the configuration
object

print is a Jython command

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanldentifier=ApplicationManager,
type=ApplicationManager,node=mynode,process=serverl

3. Start the application. The following example invokes the startApplication operation on the MBean,
providing the application name that you want to start.
» Using Jacl:
$AdminControl invoke $appManager startApplication myApplication
* Using Jython:
AdminControl.invoke(appManager, 'startApplication', 'myApplication')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

invoke is an AdminControl command

appManager evaluates to the ID of the server that is specified in step
number 1

startApplication is an attribute of the modify command

myApplication is the value of the startApplication attribute

Starting business-level applications using scripting

You can use the wsadmin tool and the BLAManagement command group to start business-level
applications.

Before you begin

There are two ways to complete this task. Use the BLAManagement command group for the AdminTask
object or the scripts in the AdminBLA script library to start your business-level applications.

* Use the AdminTask object commands to start business-level applications.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.l
2. List the business-level applications in your environment.

Use the listBLAs command to display a list of business-level applications in your environment, as
the following example demonstrates:
AdminTask.1istBLAs ()

254 Scripting the application serving environment

You can optionally specify the partial name of the business-level application of interest to display the
configuration ID of the business-level application. The command accepts a partial business-level
application name if the system matches the specified name to a unique configuration ID. Use the
following example to set the configuration ID of the myBLA business-level application to the blalID
variable:
myBLA=AdminTask.TistBLAs('-blaID BLAI')
3. Determine the status of the business-level application.
Use the getBLAStatus command to display the status of the business-level application of interest, as
the following example demonstrates:
AdminTask.getBLAStatus('-blaID myBLA")
The command returns the status of the business-level application as STOPPED or STARTED.
4. Start the business-level application.
Use the startBLA command to start the business-level application, as the following example
demonstrates:
AdminTask.startBLA('-blaID myBLA")
The command returns the following message if the system successfully starts the business-level
application:
BLA ID of started BLA if the BLA was not already running.
» Use the Jython script library to start business-level applications.
1. |Launch the wsadmin scripting tool using the Jython scripting language)
2. List the business-level applications in your environment.
Use the listBLAs script to display a list of business-level applications in your environment, using the
following syntax:
AdminBLA.1istBLAs(blaName, displayDescription)
You can specify one, both, or neither the blaName and displayDescription arguments. Use the
blaName argument to specify the name of a specific business-level application, and the
displayDescription argument to specify whether to display the description of each returned
business-level application. Specify an empty string in place of arguments that you do not want to
specify, as the following example demonstrates:
AdminBLA.1istBLAs("", "true")
3. Start the business-level application.

Use the startBLA script to start the business-level application, using the following syntax:
AdminBLA.startBLA(blaName)
Use the blaName argument to specify the name of the business-level application to start, as the
following example demonstrates:
AdminBLA.startBLA("myBLA")

Stopping applications with scripting

You can use the wsadmin tool and the AdminConfig object to stop applications.
Before you begin

There are two ways to complete this task. The example in this topic uses the AdminControl object to stop
the application. Alternatively, you can use the scripts in the AdminApplication script library to start, stop,
and administer your application configurations.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|

2. Identify the application manager MBean for the server where the application resides, and assign it to
the appManager variable.

* Using Jacl:

set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=
ApplicationManager ,process=serverl,*]

Chapter 5. Managing deployed applications using scripting 255

* Using Jython:

appManager = AdminControl.queryNames('cell=mycell,node=mynode,type=

ApplicationManager ,process=serverl,*")
print appManager

where:
set is a Jacl command
appManager is a variable name
$ is a Jacl operator for substituting a variable name with its

value

AdminControl

is an object that enables the manipulation of MBeans
running in a WebSphere server process

queryNames

is an AdminControl command

cell=mycell,node=mynode,type=
ApplicationManager,process=serverl

is the hierarchical containment path of the configuration
object

print

is a Jython command

This command returns the application manager MBean.

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanIdentifier=ApplicationManager,
type=ApplicationManager,node=mynode,process=serverl

3. Query the running applications belonging to this server and assign the result to the apps variable.

* Using Jacl:

set apps [$AdminControl queryNames cell=mycell,node=mynode,type=Application,

process=serverl,x*]
* Using Jython:

get Tine separator
import java.lang.System as sys

TineSeparator = sys.getProperty('line.separator')

apps = AdminControl.queryNames('cell=mycell,node=mynode,type=Application,

process=serverl,*').split(1ineSeparator)

print apps
where:

set is a Jacl command

apps is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=
ApplicationManager,process=serverl

is the hierarchical containment path of the configuration
object

print

is a Jython command

This command returns a list of application MBeans.

Example output:

256 Scripting the application serving environment

WebSphere:cell=mycell,name=adminconsole,mbeanIdentifier=deployment.xml
#ApplicationDeployment_1,type=Application,node=mynode,Server=serverl,
process=serverl,J2EEName=adminconsole
WebSphere:cell=mycell,name=filetransfer,mbeanldentifier=depTloyment.xml
#ApplicationDeployment_1,type=Application,node=mynode,Server=serverl,
process=serverl,J2EEName=filetransfer

4. Stop all the running applications.
» Using Jacl:

foreach app $apps
set appName [$AdminControl getAttribute $app name]
$AdminControl invoke $appManager stopApplication $appName}

* Using Jython:

for app in apps:
appName = AdminControl.getAttribute(app, 'name')
AdminControl.invoke(appManager, 'stopApplication', appName)

This command stops all the running applications by invoking the stopApplication operation on the
MBean, passing in the application name to stop.

Results

Once you complete the steps for this task, all running applications on the server are stopped.

Stopping business-level applications with scripting

You can use the wsadmin tool and the BLAManagement command group to stop business-level
applications.

Before you begin

There are two ways to complete this task. Use the BLAManagement command group for the AdminTask
object or the scripts in the AdminBLA script library to stop your business-level applications.

* Use the AdminTask object to stop business-level applications.
1. |Launch the wsadmin scripting tool using the Jython scripting language
2. List the business-level applications in your environment.
Use the listBLAs command to display a list of business-level applications in your environment, as
the following example demonstrates:
AdminTask.1istBLAs()
You can optionally specify the partial name of the business-level application of interest to display the
configuration ID of the business-level application. The command accepts a partial business-level
application name if the system matches the specified name to a unique configuration ID. Use the
following example to set the configuration ID of the myBLA business-level application to the blalID
variable:
myBLA=AdminTask.1istBLAs('-blaID BLAI')
3. Determine the status of the business-level application.
Use the getBLAStatus command to display the status of the business-level application of interest, as
the following example demonstrates:
AdminTask.getBLAStatus('-blaID myBLA")
The command returns the status of the business-level application as STOPPED or RUNNING.
4. Stop the running business-level application.
Use the stopBLA command to stop the business-level application, as the following example
demonstrates:
AdminTask.stopBLA('-blaID myBLA")

Chapter 5. Managing deployed applications using scripting 257

The command returns the following message if the system successfully stops the business-level
application:
BLA ID of stopped BLA if the BLA was not already stopped.
» Use the Jython script library to stop business-level applications.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. List the business-level applications in your environment.
Use the listBLAs script to display a list of business-level applications in your environment, using the
following syntax:
AdminBLA.1istBLAs(bTlaName, displayDescription)
You can specify one, both, or neither the blaName and displayDescription arguments. Use the
blaName argument to specify the name of a specific business-level application, and the
displayDescription argument to specify whether to display the description of each returned
business-level application. Specify an empty string in place of arguments that you do not want to
specify, as the following example demonstrates:
AdminBLA.TistBLAs("", "true")
3. Stop the business-level application.

Use the stopBLA script to stop the business-level application, using the following syntax:
AdminBLA.stopBLA(bTaName)
Use the blaName argument to specify the name of the business-level application to stop, as the
following example demonstrates:
AdminBLA.stopBLA("myBLA")

Updating installed applications with the wsadmin tool

Use the wsadmin tool and scripting to update installed applications on an application server.
About this task

Both the update command and the updateinteractive command support a set of options. You can also
obtain a list of supported options for an Enterprise Archive (EAR) file using the options command, for
example:

Using Jacl:
$AdminApp options

Using Jython:
print AdminApp.options()

Note: If an application is running, changing an application setting causes the application to restart. On
stand-alone servers, the application restarts after you save the change. On multiple-server
products, the application restarts after you save the change and files synchronize on the node
where the application is installed. To control when synchronization occurs on multiple-server
products, deselect Synchronize changes with nodes on the Console preferences page.

Perform the following steps to update an application:
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Update the installed application using one of the following options:
» The following command updates a single file in a deployed application:
— Using Jacl:

$AdminApp update appl file {-operation update -contents c:/apps/appl/my.xml
-contenturi appl.jar/my.xml}

— Using Jython string:

258 Scripting the application serving environment

AdminApp.update('appl', 'file', '[-operation update -contents c:/apps/appl/my.xml

-contenturi appl.jar/my.xml]")

— Using Jython list:

AdminApp.update('appl', 'file', ['-operation', 'update', '-contents',

'c:/apps/appl/my.xml', '-contenturi', ‘appl.jar/my.xml'])

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

file is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/appl/my.xml

is the value of the contents option

contenturi

is an option of the update command

appl.jar/my.xml

is the value of the contenturi option

* The following command adds a module to the deployed application, if the module does not exist.

Otherwise, the existing module is updated.
— Using Jacl:

$AdminApp update appl modulefile {-operation addupdate -contents
c:/apps/appl/Increment.jar -contenturi Increment.jar -nodeployejb -BindJndiForEJBNonMessageBinding {{"Increment EJB module"

Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

— Using Jython string:

AdminApp.update('appl', 'modulefile', '[-operation addupdate -contents
c:/apps/appl/Increment.jar -contenturi Increment.jar -nodeployejb -BindJndiForEJBNonMessageBinding [["Increment EJB module"

Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]"')
— Using Jython list:

binddndiForEJBValue = [["Increment EJB module", "Increment",

Increment.jar,META-INF/ejb-jar.xml1", "Inc"]] AdminApp.update('appl', 'modulefile', ['-operation', 'addupdate', '-contents',
'c:/apps/appl/Increment.jar', '-contenturi','Increment.jar' '-nodeployejb', ~-BindJndiForEJBNonMessageBinding',

bindJndiForEJBValue])

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminApp is an object that supports application objects
management
update is an AdminApp command
appl is the name of the application to update

modulefile

is the content type value

operation is an option of the update command
addupdate is the value of the operation option
contents is an option of the update command

/apps/appl/Increment.jar

is the value of the contents option

contenturi

is an option of the update command

Chapter 5. Managing deployed applications using scripting 259

Increment.jar

is the value of the contenturi option

nodeployejb

is an option of the update command

BindJndiForEJBNonMessageBinding

is an option of the update command

"Increment EJB module” Increment Increment.jar,META-
INF/ejb-jar.xml Inc

is the value of the BindJndiForEJBNonMessageBinding
option. The value of this option is defined in your
application configuration. To determine the value of this
option, use the following Jython or Jacl command:

Using Jython:
AdminApp.view('myAppName')

Using Jacl:
$AdminApp view myAppName

bindJdndiForEJBValue

is a Jython variable that contains the value of the
BindJndiForEJBNonMessageBinding option

* The following command uses a partial application to update a deployed application:

— Using Jacl:

$AdminApp update appl partialapp {-contents c:/apps/appl/applPartial.zip}

— Using Jython string:

AdminApp.update('appl', 'partialapp', '[-contents
c:/apps/appl/applPartial.zip]')

— Using Jython list:

AdminApp.update('appl', 'partialapp', ['-contents',
'c:/apps/appl/applPartial.zip'])

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

partialapp is the content type value

contents is an option of the update command

/apps/appl/applPartial.zip is the value of the contents option

» Update the entire deployed application.

To use the existing listener port instead of using or creating a new activation specification, determine
whether the EJB JAR version is lower than 2.1. The system automatically creates and uses an
activation specification when you specify the -usedefaultbindings option to deploy an application. If
an activation specification exists, the system ignores the listener port, and instead uses the
activation specification. To deploy an application with an EJB JAR version greater than or equal to
2.1 using the defined listener ports instead of a new activation specification, set the
com.ibm.websphere.management.application.dfltbndng.mdb.preferexisting system property to true in
the wsadmin.properties file in the properties directory of the profile of interest.

— Using Jacl:

$AdminApp update appl app {-operation update -contents c:/apps/appl/newAppl.jar
-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding {{"Increment EJB module" Increment

Increment.jar,META-INF/ejb-jar.xml Inc}}}
— Using Jython string:

260 Scripting the application serving environment

AdminApp.update('appl', 'app', '[-operation update -contents
c:/apps/appl/newAppl.ear

Increment.jar,META-INF/ejb-jar.xml Inc]]]"')
— Using Jython list:
bindJndiForEJBValue

[["Increment EJB module", "Increment",

-usedefaultbindings -nodeployejb -BindJdndiForEJBNonMessageBinding [["Increment EJB module" Increment

Increment.jar,META-INF/ejb-jar.xm1", "Inc"]] AdminApp.update('appl', 'app', ['-operation', 'update', '-contents',
'c:/apps/appl/NewAppl.ear', '-usedefaultbindings', '-nodeployejb', ~-BindJndiForEJBNonMessageBinding', bindJndiForEJBValue])
where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

app is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/appl/newAppl.ear

is the value of the contents option

usedefaultbindings

is an option of the update command

nodeployejb

is an option of the update command

BindJndiForEJBNonMessageBinding

is an option of the update command

"Increment EJB module” Increment Increment.jar,META-
INF/ejb-jar.xml Inc

is the value of the BindJndiForEJBNonMessageBinding
option. The value of this option is defined in your
application configuration. To determine the value of this
option, use the following Jython or Jacl command:

Using Jython:
AdminApp.view('myAppName')

Using Jacl:
$AdminApp view myAppName

bindJndiForEJBValue

is a Jython variable containing the value of the
BindJdndiForEJBNonMessageBinding option

Save the configuration changes.

In a network deployment environment only, synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate

the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following

example demonstrates:

AdminNodeManagement.syncActiveNodes ()

demonstrates:
AdminNodeManagement.syncNode ("myNode")

What to do next

Use the syncNode script to propagate the changes to a specific node, as the following example

The steps in this task return a success message if the system successfully updates the application. When
updating large applications, the command might return a success message before the system extracts
each binary file. You cannot start the application until the system extracts all binary files. If you installed a

Chapter 5. Managing deployed applications using scripting 261

large application, use the isAppReady and getDeployStatus commands for the AdminApp object to verify
that the system extracted the binary files before starting the application.

The isAppReady command returns a value of true if the system is ready to start the application, or a
value of false if the system is not ready to start the application.
AdminApp.isAppReady ('myappl')

If the system is not ready to start the application, the system might be expanding application binaries. Use
the getDeployStatus command to display additional information about the binary file expansion status, as
the following example displays:

AdminApp.getDeployStatus('appl")

Managing assets with scripting

Use the commands in the BLAManagement command group to manage your asset configuration. Use the
examples in this topic to list assets, view asset configuration data, remove assets from the asset
repository, update one or more files for assets, and export assets.

Before you begin

There are two ways to complete this task. Complete the tasks in this topic to manage assets with the
BLAManagement command group for the AdminTask object. Alternatively, you can use the scripts in the
AdminBLA script library to administer your asset configurations.

» List assets.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.l
2. List the assets registered to the asset repository.
Use the listAssets command to display the configuration ID, description, and deployment target for
each asset within the cell, as the following command demonstrates:
AdminTask.1istAssets()
* View asset settings.
1. |Launch the wsadmin scripting tool using the Jython scripting language
2. Display the asset settings.
Use the viewAsset command to display the configuration information for the asset of interest, as the
following example demonstrates:
AdminTask.viewAsset('-assetID myAsset.zip')

The command returns the configured asset options, as the following sample output displays:

Specify Asset options (AssetOptions) Specify options for Asset. xAsset Name (name):
[defaultapp.ear] Default Binding Properties (defaultBindingProps):
[defaultbinding.ejbjndi.prefix#defaultbinding.datasource.jndi#
defaultbinding.datasource.username# defaultbinding.datasource.password# defaultbinding.cf.jndi#
defaultbinding.cf.resauth#defaultbinding.virtual.host# defaultbinding.force]
Asset Description (description): [] Asset Binaries
Destination Url (destination): [${USER_INSTALL_ROOT}/installedAssets/defaultapp.ear/BASE/defaultapp.ear]
Asset Type Aspects(typeAspect): [WebSphere:spec=j2ee_ear] Asset Relationships (relationship):
[1File Permission (filePermission):
[.*\\.d11=755#.%\\.50=755#.%\\.a=755#.%\\.s1=755] Validate asset (validate): [false]

* Remove one or more assets from the product management domain.
1. |Launch the wsadmin scripting tool using the Jython scripting language
2. Determine if the asset can be deleted.
You cannot delete an asset from the asset registry if it is associated with composition unit in a
business-level application. Use the listCompUnits command to display the configuration ID, type,
and description for each composition unit in a business-level application, as the following example
demonstrates:
AdminTask.TistCompUnits('-blaID myBLA -includeDescription true')
The command returns the following sample output:

262 Scripting the application serving environment

Websphere:cuname=cul asset "Composition unit for asset.zip" Websphere:cuname=cu4 bla "cud
description" WebSphere:cuname=defaultapp __j2ee "defaultapp description”

The type for the cul composition unit is asset, which denotes that the composition unit is associated
with an asset. Use the deleteCompUnit command to remove the composition unit before deleting the
asset from the asset repository, as the following example demonstrates:

AdminTask.deleteCompUnit('-blaID myBLA —culD cul')

3. Delete the asset.

Use the deleteAsset command to remove the asset of interest from the asset repository, as the
following example demonstrates:

AdminTask.deleteAsset ('-assetID asset2.zip')

The command returns the configuration ID of the deleted asset, as the following example displays:

WebSphere:assetname=asset2.zip

» Update the contents of an asset.
1. |Launch the wsadmin scripting tool using the Jython scripting language
2. Determine how to update the asset.

You can invoke several different operations on assets that are registered in the asset repository, as
the following table displays:

Operation Description

replace The replace operation replaces the contents of the asset of interest.

merge The merge operation updates multiple files for the asset, but does not update all files.

add The add operation adds a new file or module file.

addupdate The addupdate operation adds or updates one file or module file. If the file does not exist, the system adds the
contents. If the file exists, the system updates the file.

update The update operation updates one file or module file.

delete The delete operation deletes a file or module file.

3. Update the asset of interest.

The updateAsset command modifies one or more files or module files of an asset, as the following
example demonstrates:

AdminTask.updateAsset('-assetID asset2.zip —operation merge —contents
c:/temp/updatedFiles_assetl.zip')

__ Linux _Jll Solaris _Jl HP-UX I AX

AdminTask.updateAsset('-assetID asset2.zip —operation merge —contents
\temp\updatedFiles_assetl.zip"')

The command updates the asset binary file, but does not update the composition unit that the
system deploys with the asset as a backing object.

4. Save your configuration changes.

» Export an asset to a target location.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Export the asset of interest.

Use the exportAsset command to save an asset configuration to a file. The command accepts an
incomplete asset configuration ID if the system matches it to a unique ID in your configuration. The
following example exports an asset:

AdminTask.exportAsset ('-assetID asset2.zip —filename c:/temp/a2.zip")

| Linux) Solaris _Jl HP-UX I AX

AdminTask.exportAsset('-assetID asset2.zip —filename \temp\a2.zip')

Chapter 5. Managing deployed applications using scripting 263

Managing composition units with scripting

Use the commands in the BLAManagement command group to manage composition units. Use the
examples in this topic to add, remove, edit, export, and view composition units.

Before you begin

There are two ways to complete the examples in this task. Use the BLAManagement command group for
the AdminTask object to manage composition units. Alternatively, you can use the scripts in the AdminBLA
script library to administer your composition unit configurations.

About this task

Composition units can represent deployed assets, other business-level applications, or external artifacts
that are deployed on non-WebSphere Application Server runtime environments without associated assets.
Business-level applications contain zero or more composition units. You cannot add the same composition
unit to more than one business-level application, but you can use one asset to create more than one
composition unit.

* Add composition units.
1. |Launch the wsadmin scripting tool using the Jython scripting language
2. Add composition units.

Use the addCompUnit command to add composition units to business-level applications. Use the
following command example to add the assetl asset as a composition unit in the myBLA
business-level application, and map the deployment to the serverl server:

AdminTask.addCompUnit('-blaID myBLA —cuSourcelID assetl -CUOptions [[.* .*
compositionUnitl "composition unit that is backed by assetl" 0]] -MapTargets [[.* serverl]]
—ActivationPlanOptions [.* specname=actplanO+specname=actplanl]")

Use the following command to add the asset2 asset as a composition unit in the myBLA
business-level application, and map the deployment to the serverl and testServer servers:

AdminTask.addCompUnit('-blaID myBLA —cuSourcelID asset2 -CUOptions [[.* .*
compositionUnit2 “"composition unit that is backed by asset2" 0]] -MapTargets [[.*
serverl+testServer]] —ActivationPlanOptions [.* specname=actplanO+specname=actplanl]")

Use the following command to add the J2EEAsset asset as a composition unit in the myBLA
business-level application, and map the deployment to the serverl and testServer servers:

AdminTask.addCompUnit('[-blaID myBLA —cuSourcelD J2EEAsset

—defaultBindingOptions defaultbinding.ejbjndi.prefix=ejb# defaultbinding.virtual.host=default_host#

defaultbinding. force=yes —AppDeploymentOptions [-appname defaultapp -installed.ear.destination

application_root/myCell/defaultapp.ear] —MapModulesToServers [[defaultapp.war .* WebSphere:cell=cellName,node=nodeName,server=serverl][Increment.jar .
Websphere:cell=cellName,node=nodeName,server=testServer]] -CtxRootForWebMod [[defaultapp.war .=

myctx/]111")

The command returns the configuration IDs of the composition unit and the new composition unit
created for the asset in the asset relationship, as the following example displays:

WebSphere:cuname=compositionUnitl WebSphere:cuname=compositionUnit2
WebSphere:cuname=J2EEAsset

3. Save your configuration changes.
» Display composition units and configuration settings.

Use the listCompUnits and viewCompUnits commands to display the configuration IDs of each
composition unit that matches a specific search scope.
You can use the listCompUnits command to display each composition unit in your configuration or within
a specific business-level application. The following example displays each composition unit in the myBLA
business-level application:

AdminTask.TistCompUnits('-blaID blaname=myBLA")
The command returns the configuration IDs and type of backing asset for each composition unit that
matches the search scope, as the following sample displays:

Websphere:cuname=cul asset Websphere:cuname=cu4 bla WebSphere:cuname=defaultapp
__J2ee

264 Scripting the application serving environment

You can use the viewCompUnits command to display additional configuration information about a

specific composition unit of a business-level application. For example, the following example displays

additional information about the cul composition unit for the myBLA business-level application:
AdminTask.viewCompUnit('-blaID myBLA -culD cul')

The command returns detailed configuration information for the composition unit, as the following
sample displays:

Specify Composition Unit options (CUOptions) Specify name, description options for

Composition Unit. Parent BLA (parentBLA): [WebSphere:blaname=myBLA] Backing Id (backingId): [WebSphere:assetname=assetl.zip]
Name (name): [cul] Description (description): [my description of cul composition unit] Starting Weight (startingWeight): [0]
Specify servers (MapTargets) Specify targets such as application servers or clusters of application servers where you want to
deploy the composition unit contained in the application. Deployable Unit (deplUnit): [default] #Servers (server):
[WebSphere:node=myNode,server=serverl] Specify Composition Unit activation plan options (ActivationPlanOptions) Specify
composition unit activation plan optionsDeployableUnit Name (deplUnit): [default] Activation Plan (activationPlan):
[WebSphere:specname=actplan0+WebSphere: specname=actplanl]

Use the editCompUnit command to modify the composition unit configuration options.
» Edit composition units.

1. |Launch the wsadmin scripting tool using the Jython scripting language

2. Modify the composition unit.

Use the editCompUnit command to modify composition unit options. You can use this command to
modify the starting weight of the composition unit, deployment targets, activation plan options, and
relationship settings. See the documentation for the BLAManagement command group for the
AdminTask object to view descriptions of each option that you can modify.

The following example edits a composition unit, which is associated with an asset, and replaces the
deployment target:

AdminTask.editCompUnit('-blaID myBLA —culD cul —CUOptions [[.* .* cul
cudesc 1]] -MapTargets [[.* server2]] -ActivationPlanOptions [.*
#specname=actplan@+specname=actplan2] ")

The command returns the configuration ID of the composition unit that the system edits, as the
following sample displays:
WebSphere:cuname=cul
3. Save your configuration changes.
* Remove composition units.
1. |Launch the wsadmin scripting tool using the Jython scripting language|
2. Remove composition units.
Use the deleteCompUnit command to remove a composition unit. Both parameters for the following

command accept incomplete configuration IDs, as long as the system can match the string to a
unique ID:

AdminTask.deleteCompUnit('-bTaID myBLA —culD cul')
The command returns the configuration ID of the composition unit that the system deletes, as the
following sample demonstrates:

WebSphere:cuname=cul

3. Save your configuration changes.

Listing the modules in an installed application with scripting

Use the AdminApp object listModules command to list the modules in an installed application.

Before you begin
1. |Launch the wsadmin scripting tool using the Jython scripting language.|
2. Display the application modules.
Using Jacl:
$AdminApp listModules DefaultApplication -server
Using Jython:
print AdminApp.listModules('DefaultApplication', '-server')

Chapter 5. Managing deployed applications using scripting 265

where:

$ is a Jacl operator for substituting a variable name with its
value

print is a Jython command

AdminApp is an object that supports application object management

listmodules is an AdminApp command

DefaultApplication is the name of the application

-server is an optional option specified

Example output:

DefaultApplication#IncCMP11.jar+META-INF/ejb-jar.xml#WebSphere:cell=mycell,node=mynode,server=myserver
DefaultApplication#DefaultWebApplication.war+WEB-INF/web.xml#WebSphere:cell=mycell,node=mynode,server=myserver

Example: Listing the modules in an application server

This example lists all of the modules on all of the enterprise applications that are installed on the serverl
server in a node named nodel.

An asterisk (*) means that the module is installed on server1 and node1 and another server or node. A
plus sign (+) means that the module is installed on server1 and node1 only.

| oo e

set serverName serverl
set nodeName nodel

set ejbList {}

set webList {}

11

12 e m m e e e e e e
13 # gets all deployment objects and assigned it to deployments variable

15 set deployments [$AdminConfig getid /Deployment:/]
18 # lines 22 thru 148 Iterates through all the deployment objects to get the modules

19 # and perform filtering to 1list application that has at Teast one module installed
20 # in serverl in node myNode

2] i mm e o -
22 foreach deployment $deployments {

23

24 [e e e L

25 # reset the Tists that hold modules for each application

26 mmm o

27 set webList {}
28 set ejbList {}

29

30 fmm e o
31 # get the application name

32 e
33 set appName [Tindex [split $deployment (] 0]
34

35 fmm o
36 # get the deployedObjects

37 fmm e o
38 set depObject [$AdminConfig showAttribute $deployment deployedObject]
39

40 e m e e e e
41 # get all modules in the application

266 Scripting the application serving environment

set modServerMatch {}
set modServerMoreMatch {}
set modServerNotMatch {}

set sameNodeSameServer "false"
set diffNodeSameServer "false"
set sameNodeDiffServer "false"
set diffNodeDiffServer "false"

set targetName [Tindex [split $target #] 1]
if {[regexp "ClusteredTarget" $targetName] != 1} {
set sName [$AdminConfig showAttribute $target name]
set nName [$§AdminConfig showAttribute $target nodeName]

if {§sName == §serverName} {
if {$nName == $nodeName} {
set sameNodeSameServer "true"
} else {
set diffNodeSameServer "true"

if {$nName == $nodeName} {
set sameNodeDiffServer "true"
} else {
set diffNodeDiffServer "true"
1

}

if {$sameNodeSameServer == "true"} {
if {$sameNodeDiffServer == "true" || $diffNodeDiffServer == "true" ||
$diffNodeSameServer == "true"} {

Chapter 5. Managing deployed applications using scripting

267

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

break

}
1
}
}
B e
put it in the appropriate list
o o e,
if {$sameNodeSameServer == "true"} {
if {$diffNodeDiffServer == "true" || $diffNodeSameServer == "true" || $sameNodeDiffServer == "true"} {
set modServerMoreMatch [linsert $modServerMoreMatch end [$AdminConfig showAttribute $module uri]]
} else {
set modServerMatch [linsert $modServerMatch end [$AdminConfig showAttribute $module uri]]
}
} else {
set modServerNotMatch [linsert $modServerNotMatch end [$AdminConfig showAttribute $module uri]l]
}
}
e e e ——————————————
print the output with some notation as a mark
e

if {$modServerMatch != {} || $modServerMoreMatch != {}} {
puts stdout "\tApplication name: $appName"

134

135

136 #mmmmmm o -
137 # do grouping to appropriate module and print

138 o mmmm e
139 if {$modServerMatch != {}} {

140 filterAndPrint $modServerMatch "+"

141

142 if {$modServerMoreMatch != {}} {

143 filterAndPrint $modServerMoreMatch "*"

144

1
145 if {($modServerMatch != {} || $modServerMoreMatch != {}) "" $modServerNotMatch != {}} {
146 filterAndPrint $modServerNotMatch ""
147 '}
148}
149
150
151 proc filterAndPrint {lists flag} {
152 global webList
153 global ejbList

154 set webExists "false"

155 set ejbExists "false"

156

157 L e T et e
158 # If 1ist already exists, flag it so as not to print the title more then once
159 # and reset the 1ist

160 e e et e e e
161 if {$webList !'= {}} {

162 set webExists "true"

163 set webList {}

164 }

165 if {$ejbList != {}} {

166 set ejbExists "true"

167 set ejbList {}

168 1

169

170 R et

171 # do some filtering for web modules and ejb modules

172 R T T

173 foreach Tlist $lists {

174 set temp [lindex [split $1ist .] 1]

268 Scripting the application serving environment

175 if {$temp == "war"} {

176 set webList [lTinsert $webList end §$1ist]

177 } elseif {$temp == "jar"} {

178 set ejbList [lTinsert $ejbList end §$1ist]

179 }

180 }

181

182 R et T e e

183 # sort the 1ist before printing

184 Fmm -

185 set webList [1sort -dictionary $webList]

186 set ejbList [1sort -dictionary $ejblList]

187

188 e e L L e
189 # print out all the web modules installed in serverl

190 B mm e
191 if {$webList !'= {}} {

192 if {$webExists == "false"} {

193 puts stdout "\t\tWeb Modules:"

194

195 foreach web $webList {

196 puts stdout "\t\t\t$web $flag"

197 }

198 }

199

200 Fmm e e -
201 # print out all the ejb modules installed in serverl

202 e e L L LR R e
203 if {$ejbList !'= {}} {

204 if {$ejbExists == "false"} {

205 puts stdout "\t\tEJB Modules:"

206 }

207 foreach ejb $ejbList {

208 puts stdout "\t\t\t$ejb $flag"

209 }

210 }

211}

Example output for serverl on node nodel:
Application name: TEST1
EJB Modules:
depImtest.jar +
Web Modules:
mtcomps.war *
Application name: TEST2
Web Modules:
mtcomps.war +
EJB Modules:
depImtest.jar +
Application name: TEST3
Web Modules:
mtcomps.war *
EJB Modules:
depImtest.jar =
Application name: TEST4
EJB Modules:
depimtest.jar =
Web Modules:
mtcomps.war

Querying the application state using scripting

Use the wsadmin tool and scripting to determine if an application is running.

Chapter 5. Managing deployed applications using scripting 269

Before you begin

There are two ways to complete this task. The example in this topic uses the AdminConfig object to create
and configure a shared library. Alternatively, you can use the createSharedLibrary script in the
AdminResources script library to configure shared libraries.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Determine the application state.
The following example queries the presence of the Application MBean to find out whether the
application is running.
» Using Jacl:
$AdminControl completeObjectName type=Application,name=myApplication,*
* Using Jython:

print AdminControl.completeObjectName('type=Application,name=myApplication,x")

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application Server process

completeObjectName is an AdminControl command

type=Application,name=myApplication is the hierarchical containment path of the configuration
object

print is a Jython command

Results

If myApplication is running, then an MBean is created. Otherwise, the command returns nothing. If
myApplication is running, the output would resemble the following:
WebSphere:cell=mycell,name=myApplication,mbeanldentifier=cells/mycell/applications/myApplication.ear/

deployments/myApplication/deployment.xml#ApplicationDeployment 1,type=Application,node=mynode,Server=
dmgr,process=dmgr,J2EEName=myApplication

Disabling application loading in deployed targets using scripting

You can use the AdminConfig object and scripting to disable application loading in deployed targets.
About this task

The following example uses the AdminConfig object to disable application loading in deployed targets:
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|

2. Obtain the Deployment object for the application and assign it to the deployments variable, for
example:

* Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployments = AdminConfig.getid("/Deployment:myApp/")

270 Scripting the application serving environment

where:

set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:
myApp (cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)
3. Obtain the target mappings in the application and assign them to the targetMappings variable, for
example:
» Using Jacl:

set deploymentObjl [$AdminConfig showAttribute $deployments deployedObject]
set targetMapl [Tindex [$AdminConfig showAttribute $deploymentObjl targetMappings] 0]

Example output:
(cells/mycell/applications/ivtApp.ear/deployments/ivtApp|deployment.xml#DeploymentTargetMapping_ 1)
* Using Jython:

deploymentObjl = AdminConfig.showAttribute(deployments, 'deployedObject')
targetMapl = AdminConfig.showAttribute(deploymentObjl, 'targetMappings')
targetMapl = targetMapl[l:len(targetMapl)-1].split(" ")

print targetMapl

Example output:
['(cells/mycell/applications/ivtApp.ear/deployments/ivtApp|deployment.xml#DeploymentTargetMapping 1)']

where:

set is a Jacl command

deploymentObjl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

deployments evaluates the ID of the Deployment object that is
specified in step number 1

deployedObject is an attribute

targetMapl is a variable name

targetMappings is an attribute

Tindex is a Jacl command

print is a Jython command

4. Disable the loading of the application on each deployed target, for example:
» Using Jacl:

Chapter 5. Managing deployed applications using scripting 271

foreach tm $targetMapl {
$AdminConfig modify $tm {{enable false}}
1

* Using Jython:

for targetMapping in targetMapl:
AdminConfig.modify(targetMapping, [["enable", "false"]])

5. Save the configuration changes.
6. In a network deployment environment only, synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

* Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

« Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Configuring applications for session management using scripting

This task provides an example that uses the AdminConfig object to configure a session manager for the
application.

Before you begin
About this task

You can use the AdminApp object to set configurations in an application. Some configuration settings are
not available through the AdminApp object.

1. [Launch the wsadmin scripting tool using the Jython scripting language.|

2. ldentify the deployment configuration object for the application and assign it to the deployment
variable. For example:
* Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployments = AdminConfig.getid('/Deployment:myApp/")
print deployments

where:

set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:
myApp (cel1s/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)
3. Retrieve the application deployment object and assign it to the appDeploy variable. For example:

272 Scripting the application serving environment

» Using Jacl:
set appDeploy [$AdminConfig showAttribute $deployments deployedObject]
* Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, 'deployedObject')
print appDeploy

where:

set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object that is specified
in step number 1

deployedObject is an attribute

Example output:
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationDeployment 1)

4. To obtain a list of attributes that you can set for a session manager, use the attributes command. For
example:

» Using Jacl:
$AdminConfig attributes SessionManager
* Using Jython:

print AdminConfig.attributes('SessionManager')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
attributes is an AdminConfig command
SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"
"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"
"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrTRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)x"
"sessionDRSPersistence DRSSettings"
"sessionDatabasePersistence SessionDatabasePersistence"
"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"
"tuningParams TuningParams"

When you configure and application for session management, it is recommended that you specify each
attribute.

5. Set up the attributes for the session manager. The following example sets four top-level attributes in
the session manager. You can modify the example to set other attributes of the session manager,

Chapter 5. Managing deployed applications using scripting 273

including the nested attributes in DRSSettings, SessionDataPersistence, and TuningParms object
types. To list the attributes for those object types, use the attributes command of the AdminConfig
object.

» Using Jacl:

set attrl [Tist enableSecurityIntegration true]

set attr2 [Tist maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set kuki [Tist maximumAge -1]

set cookie [Tist $kuki]

Set cookieSettings [list defaultCookieSettings $cookie]
set attrs [Tist $attrl $attr2 $attr3 $cookieSettings]
set sessionMgr [1ist sessionManagement $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30} {sessionPersistenceMode NONE}
{defaultCookieSettings {{maximumAge -1}}}}

* Using Jython:

attrl = ['enableSecurityIntegration', 'true']
attr2 = ['maxWaitTime', 30]
attr3 = ['sessionPersistenceMode', 'NONE']

kuki = ['maximumAge', -1]

cookie = [kuki]

cookieSettings = ['defaultCookieSettings', cookie]
attrs = [attrl, attr2, attr3, cookieSettings]
sessionMgr = [['sessionManagement', attrs]]

Example output using Jython:

[[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30], [sessionPersistenceMode, NONE],
[defaultCookieSettings [[maximumAge, -1]]11]

where:
set is a Jacl command
attrl, attr2, attr3, attrs, sessionMgr are variable names
$ is a Jacl operator for substituting a variable name with its
value
enableSecurityIntegration is an attribute
true is a value of the enableSecuritylntegration attribute
maxWaitTime is an attribute
30 is a value of the maxWaitTime attribute
sessionPersistenceMode is an attribute
NONE is a value of the sessionPersistenceMode attribute

6. Perform one of the following:
* Create the session manager for the application. For example:
— Using Jacl:
$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr]
— Using Jython:
print AdminConfig.create('ApplicationConfig', appDeploy, sessionMgr)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
create is an AdminConfig command
ApplicationConfig is an attribute

274 Scripting the application serving environment

appDepTloy evaluates the ID of the deployed application that is
specified in step number 2

1ist is a Jacl command

sessionMgr evaluates the ID of the session manager that is specified
in step number 4

Example output:
(cel1s/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationConfig 1)
» If a session manager already exists, use the modify command of the AdminConfig object to update
the configuration of the session manager. For example:
— Using Jacl:

set configs [lindex [$AdminConfig showAttribute $appDeploy configs] 0]
set appConfig [1index $configs 0]

set SM [$AdminConfig showAttribute $appConfig sessionManagement]
$AdminConfig modify $SM $attrs

— Using Jython:

configs = AdminConfig.showAttribute (appDeploy, 'configs')
appConfig = configs[1l:1en(configs)-1]

SM = AdminConfig.showAttribute (appConfig, 'sessionManagement')
AdminConfig.modify (SM, attrs)

7. Save the configuration changes.
8. Synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.
» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:
AdminNodeManagement.syncActiveNodes ()
» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:
AdminNodeManagement.syncNode ("myNode")

Chapter 5. Managing deployed applications using scripting 275

Related concepts

[Session management support
WebSphere Application Server provides facilities, grouped under the heading Session Management, that
support the javax.servlet.http.HttpSession interface described in the Servlet API specification.

Related tasks

[‘Configuring applications for session management in Web modules using scripting’]
Use scripting and the wsadmin tool to configure applications for session management in Web modules.

[Configuring session management by level

When you configure session management at the Web container level, all applications and the respective
Web modules in the Web container normally inherit that configuration, setting up a basic default
configuration for the applications and Web modules below it. However, you can set up different
configurations individually for specific applications and Web modules that vary from the Web container
default. These different configurations override the default for these applications and Web modules only.
Developing session management in servlets|

Chapter 3, “Using the script library to automate the application serving environment,” on page 83|

The script library provides Jython script procedures to assist in automating your environment. Use the

sample scripts to manage applications, resources, servers, nodes, and clusters. You can also use the
script procedures as examples to learn the Jython syntax.

[‘Using the AdminConfig object for scripted administration” on page 41|
Use the AdminConfig object to manage the configuration information that is stored in the repository.

Configuring applications for session management in Web modules
using scripting

Use scripting and the wsadmin tool to configure applications for session management in Web modules.
Before you begin

About this task

You can use the AdminApp object to set configurations in an application. Some configuration settings are
not available through the AdminApp object. The following task uses the AdminConfig object to configure a
session manager for a Web module in the application.
1. [Launch the wsadmin scripting tool using the Jython scripting language.|
2. ldentify the deployment configuration object for the application and assign it to the deployment
variable. For example:
* Using Jacl:
set deployments [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployments = AdminConfig.getid('/Deployment:myApp/"')
print deployments

where:

set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Deployment is an attribute

276 Scripting the application serving environment

myApp is the value of the attribute

Example output:

myApp (cel1s/mycel1/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)

3. Get all the modules in the application and assign them to the modules variable. For example:
» Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployments deployedObject]
set modl [$AdminConfig showAttribute $appDeploy modules]

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#EJBModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment_2)

* Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, 'deployedObject')
modl = AdminConfig.showAttribute(appDeploy, 'modules')
print modl

Example output:

[(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xm]#EJBModuleDeployment_2)]

where:

set is a Jacl command

appDeploy is a variable name

mod1 is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object that is specified
in step number 1

deployedObject is an attribute

4. To obtain a list of attributes that you can set for a session manager, use the attributes command. For
example:

* Using Jacl:
$AdminConfig attributes SessionManager
* Using Jython:

print AdminConfig.attributes('SessionManager')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
attributes is an AdminConfig command
SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"
"allowSerializedSessionAccess Boolean"
"context ServiceContext@"

Chapter 5. Managing deployed applications using scripting 277

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"
"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUr1Rewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)=*"
"sessionDRSPersistence DRSSettings"
"sessionDatabasePersistence SessionDatabasePersistence"
"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"
"tuningParams TuningParams"

5. Set up the attributes for session manager. The following example sets four top-level attributes in the
session manager. You can modify the example to set other attributes in the session manager, including
the nested attributes in Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types.
To list the attributes for those object types, use the attributes command of AdminConfig object.

* Using Jacl:

set attr0 [1ist enable true]

set attrl [Tist enableSecurityIntegration true]

set attr2 [Tist maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attr4 [list enableCookies true]

set attr5 [list invalidationTimeout 45]

set tuningParmsDetaillist [list $attr5]

set tuningParamsList [list tuningParams $tuningParmsDetaillist]

set pwdList [1ist password 95ee608]

set userList [Tist userId Administrator]

set dsNameList [1ist datasourceJNDIName jdbc/session]

set dbPersistenceList [list $dsNamelList $userList $pwdList]

set sessionDBPersistencelList [list $dbPersistencelist]

set sessionDBPersistencelist [list sessionDatabasePersistence $dbPersistencelist]
set kuki [Tist maximumAge 1000]

set cookie [Tist $kuki]

set cookieSettings [list defaultCookieSettings $cookie]

set sessionManagerDetaillist [lTist $attr0 $attrl $attr2 $attr3 $attrd $cookieSettings
$tuningParamsList $sessionDBPersistencelist]

set sessionMgr [Tist sessionManagement $sessionManagerDetaillist]

set id [$AdminConfig create ApplicationConfig $appDeploy [1ist $sessionMgr] configs]
set targetMappings [lindex [$AdminConfig showAttribute $appDeploy targetMappings] 0]
set attrs [list config $id]

$AdminConfig modify $targetMappings [list $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}
{sessionPersistenceMode NONE} {enabled true}}

* Using Jython:

attr@ = ['enable', 'true']

attrl = ['enableSecurityIntegration', 'true']
attr2 = ['maxWaitTime', 30]

attr3 = ['sessionPersistenceMode', 'NONE']
attr4 = ['enableCookies', 'true']

attr5 = ['invalidationTimeout', 45]

tuningParmsDetaillist = [attr5]

tuningParamsList = ['tuningParams', tuningParmsDetaillist]

pwdList = ['password', '95ee608']

userList = ['userId', 'Administrator']

dsNameList = ['datasourceJNDIName', 'jdbc/session']

dbPersistencelList = [dsNamelist, userList, pwdList]

sessionDBPersistencelList = [dbPersistencelist]

sessionDBPersistencelList = ['sessionDatabasePersistence', dbPersistencelist]
kuki = ['maximumAge', 1000]

cookie = [kuki]

cookieSettings = ['defaultCookieSettings', cookie]

sessionManagerDetaillist = [attr®, attrl, attr2, attr3, attrd, cookieSettings,
tuningParamsList, sessionDBPersistencelist]

sessionMgr = ['sessionManagement', sessionManagerDetaillist]

id = AdminConfig.create('ApplicationConfig', appDeploy,[sessionMgr], 'configs')
targetMappings = AdminConfig.showAttribute(appDeploy, 'targetMappings')
targetMappings = targetMappings[1:len(targetMappings)-1]

print targetMappings

attrs = ['config', id]

AdminConfig.modify(targetMappings,[attrs])

278 Scripting the application serving environment

Example output using Jython:
[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30], [sessionPersistenceMode, NONE]]
6. Set up the attributes for the Web module. For example:
» Using Jacl:

set nameAttr [1ist name myWebModuleConfig]
set descAttr [1ist description "Web Module config post create"]
set webAttrs [1ist $nameAttr $descAttr $sessionMgr]

Example output:

{name myWebModuleConfig} {description {Web Module config post create}}
{sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}
{sessionPersistenceMode NONE} {enabled true}}}

* Using Jython:

nameAttr = ['name', 'myWebModuleConfig']
descAttr = ['description', "Web Module config post create"]
webAttrs = [nameAttr, descAttr, sessionMgr]

Example output:

[[name, myWebModuleConfig], [description, "Web Module config post create"],
[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],
[sessionPersistenceMode, NONE], [enabled, true]]]]

where:
set is a Jacl command
nameAttr, descAttr, webAttrs are variable names
$ is a Jacl operator for substituting a variable name with its
value
name is an attribute
myWebModuleConfig is a value of the name attribute
description is an attribute
Web Module config post create is a value of the description attribute

7. Create the session manager for each Web module in the application. You can modify the following
example to set other attributes of the session manager in a Web module configuration. You must also
define a target mapping for this step.

» Using Jacl:

foreach module $modl {
if {[regexp WebModuleDeployment $module] == 1} {
set moduleConfig [$AdminConfig create WebModuleConfig $module $webAttrs]
set targetMappings [lindex [$AdminConfig showAttribute $module targetMappings] 0]
set attrs [list config $moduleConfig]
$AdminConfig modify $targetMappings [list $attrs]
1
}

* Using Jython:

arrayModules = mod1[1:1en(mod1)-1].split(" ")

for module in arrayModules:

if module.find('WebModuleDeployment') != -1:
AdminConfig.create('WebModuleConfig', module, webAttrs)
targetMappings = targetMappings[1:len(targetMappings)-1]
attrs = ['config', moduleConfig]
AdminConfig.modify (targetMappings, [attrs])

Example output:
myWebModuleConfig(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleConfiguration_1)

If you do not specify the tuningParamsList attribute when you create the session manager, you will
receive an error when you start the deployed application.

8. Save the configuration changes.
9. In a network deployment environment only, synchronize the node.

Chapter 5. Managing deployed applications using scripting 279

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")
Related concepts

[Session management support]
WebSphere Application Server provides facilities, grouped under the heading Session Management, that
support the javax.servlet.http.HttpSession interface described in the Serviet API specification.

Related tasks

|“Configuring applications for session management using scripting” on page 272|
This task provides an example that uses the AdminConfig object to configure a session manager for the
application.

[Configuring session management by level|

When you configure session management at the Web container level, all applications and the respective
Web modules in the Web container normally inherit that configuration, setting up a basic default
configuration for the applications and Web modules below it. However, you can set up different
configurations individually for specific applications and Web modules that vary from the Web container
default. These different configurations override the default for these applications and Web modules only.

[Developing session management in servlets|

[Chapter 3, “Using the script library to automate the application serving environment,” on page 83|

The script library provides Jython script procedures to assist in automating your environment. Use the
sample scripts to manage applications, resources, servers, nodes, and clusters. You can also use the
script procedures as examples to learn the Jython syntax.

[‘Using the AdminConfig object for scripted administration” on page 41|
Use the AdminConfig object to manage the configuration information that is stored in the repository.

Exporting applications using scripting

You can export your applications before you update installed applications or before you migrate to a
different version of the WebSphere Application Server product.

Before you begin
About this task

Exporting applications enables you to back them up and preserve their binding information.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Export applications.
» Export an enterprise application to a location of your choice, for example:
— Using Jacl:
$AdminApp export appl C:/mystuff/exported.ear
— Using Jython:
AdminApp.export('appl', 'C:/mystuff/exported.ear')
where:

$ is a Jacl operator for substituting a variable name with its
value

280 Scripting the application serving environment

AdminApp is an object allowing application objects management

export is an AdminApp command

appl is the name of the application that will be exported

/mystuff/exported.ear is the name of the file where the exported application will
be stored

» Export Data Definition Language (DDL) files in the enterprise bean module of an application to a
destination directory, for example:
— Using Jacl:
$AdminApp exportDDL appl C:/mystuff
— Using Jython:
AdminApp.exportDDL('appl', 'C:/mystuff')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object allowing application objects management

exportDDL is an AdminApp command

appl is the name of the application whose DDL files will be
exported

/mystuff is the name of the directory where the DDL files export
from the application

Configuring a shared library using scripting

You can use scripting to configure a shared library for application servers. Shared libraries are files used
by multiple applications. Create a shared library to reduce the number of duplicate library files on your
system.

Before you begin

There are two ways to complete this task. The example in this topic uses the AdminConfig object to create
and configure a shared library. Alternatively, you can use the createSharedLibrary script in the
AdminResources script library to configure shared libraries.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.
1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|
2. Identify the server and assign it to the server variable. For example:

» Using Jacl:
set serv [$AdminConfig getid /Cell:mycell/Node:mynode/Server:serverl/]

* Using Jython:

serv = AdminConfig.getid('/Cell:mycell/Node:mynode/Server:serverl/")

print serv

where:
set is a Jacl command
serv is a variable name

Chapter 5. Managing deployed applications using scripting 281

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Cell is an attribute

mycell is the value of the attribute

Node is an attribute

mynode is the value of the attribute

Server is an attribute

serverl is the value of the attribute

Example output:

serverl(cells/mycell/nodes/mynode/servers/serverl|server.xml#Server 1)

3. Create the shared library in the server. For example:
» Using Jacl:

$AdminConfig create Library $serv {{name mySharedLibrary} {classPath c:/mySharedLibraryClasspath}}
* Using Jython:

print AdminConfig.create('Library', serv, [['name', 'mySharedLibrary'], ['classPath',
"c:/mySharedLibraryClasspath']])

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

create is an AdminConfig command

Library is an attribute

serv evaluates the ID of the server that is specified in step
number 1

name is an attribute

mySharedLibrary is a value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classpath attribute

print is a Jython command

Example output:

MysharedLibrary(cells/mycell/nodes/mynode/servers/serverl|libraries.xml#Library 1)

4. Identify the application server from the server and assign it to the appServer variable. For example:
» Using Jacl:

set appServer [$AdminConfig 1ist ApplicationServer $serv]
* Using Jython:

appServer = AdminConfig.list('ApplicationServer', serv)
print appServer

where:

set is a Jacl command

appServer is a variable name

282 Scripting the application serving environment

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

list is an AdminConfig command

ApplicationServer

is an attribute

serv evaluates the ID of the server that is specified in step
number 1
print is a Jython command

Example output:

serverl(cells/mycell/nodes/mynode/servers/serverl|server.xml#ApplicationServer 1

5. Identify the class loader in the application server and assign it to the classLoader variable. For

example:

* To use the existing class loader that is associated with the server, the following commands use the

first class loader:
— Using Jacl:

set classLoad [$AdminConfig showAttribute $appServer classloaders]

set classLoaderl [lindex $classLoad 0]

— Using Jython:

classLoad = AdminConfig.showAttribute(appServer, 'classloaders')

cleanClassLoaders = classLoad[1:1en(classLoad)-1]
classLoaderl = cleanClassLoaders.split(' ')[0]

where:

set

is a Jacl command

classLoad, classLoaderl

is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

appServer evaluates the ID of the application server that is specified

in step number 3

classloaders

is an attribute

print

is a Jython command

» To create a new class loader, issue the following command:

— Using Jacl:

set classLoaderl [$AdminConfig create Classloader $appServer {{mode PARENT_FIRST}}]

— Using Jython:

classLoaderl = AdminConfig.create('Classloader', appServer, [['mode', 'PARENT_FIRST']])

where:
set is a Jacl command
classLoaderl is a variable name
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration

Chapter 5. Managing deployed applications using scripting 283

create is an AdminConfig command

Classloader is an attribute

appServer evaluates the ID of the application server that is specified
in step number 3

mode is an attribute

PARENT_FIRST is the value of the attribute

print is a Jython command

Example output:
(cel1s/mycell/nodes/mynode/servers/serverl|server.xml#Classloader 1)
6. Associate the shared library that you created with the application server through the class loader. For
example:
» Using Jacl:
$AdminConfig create LibraryRef $classLoaderl {{libraryName MysharelLibrary}}
* Using Jython:
print AdminConfig.create('LibraryRef', classLoaderl, [['libraryName', 'MysharelLibrary']])

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

create is an AdminConfig command

LibraryRef is an attribute

classLoaderl evaluates the ID of the class loader that is specified in
step number 4

1ibraryName is an attribute

MysharelLibrary is the value of the attribute

print is a Jython command

Example output:
(cells/mycel1/nodes/mynode/servers/serverl|server.xml#LibraryRef 1)
7. Save the configuration changes.

8. Synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

* Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

* Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Configuring a shared library for an application using scripting

This task uses the AdminConfig object to configure a shared library for an application. Shared libraries are
files used by multiple applications. Create a shared library to reduce the number of duplicate library files
on your system.

284 scripting the application serving environment

Before you begin

There are two ways to complete this task. The example in this topic uses the AdminConfig object to create
and configure a shared library. Alternatively, you can use the createSharedLibrary script in the
AdminResources script library to configure shared libraries.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new

scripts.

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|

2. Identify the shared library and assign it to the library variable. You can either use an existing shared

library or create a new one, for example:

» To create a new shared library, perform the following steps:
a. lIdenitfy the node and assign it to a variable, for example:

— Using Jacl:

set nl [$§AdminConfig getid /Cell:mycell/Node:mynode/]

— Using Jython:

nl = AdminConfig.getid('/Cell:mycell/Node:mynode/")

print nl
where:

set is a Jacl command

nl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be modified

Node is the object type

mynode is the name of the object that will be modified

Example output:

mynode (cel1s/mycel1/nodes/mynode |node.xm1#Node 1)

b. Create the shared library in the node. The following example creates a new shared library in the
node scope. You can modify it to use the cell or server scope.

— Using Jacl:

set Tibrary [$AdminConfig create Library $nl {{name mySharedLibrary}

{classPath c:/mySharedLibraryClasspath}}]
— Using Jython:

library = AdminConfig.create('Library', nl, [['name', 'mySharedLibrary'],

['classPath', 'c:/mySharedLibraryClasspath']])
print library

where:
set is a Jacl command
library is a variable name
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration

Chapter 5. Managing deployed applications using scripting 285

create is an AdminConfig command

Library is an AdminConfig object

nl evaluates to the ID of host node specified in step number
1

name is an attribute

mySharedLibrary is the value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classPath attribute

Example output:
MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library_1)
« To use an existing shared library, issue the following command:
— Using Jacl:
set Tibrary [$AdminConfig getid /Library:mySharedLibrary/]
— Using Jython:

library = AdminConfig.getid('/Library:mySharedLibrary/")
print library

where:

set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Library is an attribute

mySharedLibrary is the value of the Library attribute

Example output:
MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library 1)
3. Identify the deployment configuration object for the application and assign it to the deployment
variable. For example:
» Using Jacl:
set deployment [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployment = AdminConfig.getid('/Deployment:myApp/"')
print deployment

where:

set is a Jacl command

deployment is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the Deployment attribute

286 Scripting the application serving environment

print is a Jython command

Example output:

myApp (cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)

4. Retrieve the application deployment and assign it to the appDeploy variable. For example:
* Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployment deployedObject]
* Using Jython:

appDeploy = AdminConfig.showAttribute(deployment, 'deployedObject')
print appDeploy

where:

set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

deployment evaluates the ID of the deployment configuration object
specified in step number 2

deployedObject is an attribute of modify objects

print is a Jython command

Example output:

(cells/mycell/applications/myApp.ear/deployments/
myApp | deployment.xm1#ApplicationDeployment 1)

5. Identify the class loader in the application deployment and assign it to the classLoader variable. For
example:
* Using Jacl:

set classLoadl [$AdminConfig showAttribute $appDeploy classloader]
* Using Jython:

classLoadl = AdminConfig.showAttribute(appDeploy, 'classloader')
print classLoadl

where:

set is a Jacl command

classloadl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

showAttribute is an AdminConfig command

appDepTloy evaluates the ID of the application deployment specified
in step number 3

classLoader is an attribute of modify objects

print is a Jython command

Example output:
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Classloader 1)
6. Associate the shared library in the application through the class loader. For example:

Chapter 5. Managing deployed applications using scripting 287

» Using Jacl:

$AdminConfig create LibraryRef $classLoadl {{1ibraryName
MysharelLibrary}}

* Using Jython:

print AdminConfig.create('LibraryRef', classLoadl, [['libraryName',
'MyshareLibrary']])

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

create is an AdminConfig command

LibraryRef is an AdminConfig object

classLoadl evaluates to the ID of class loader specified in step
number 4

1ibraryName is an attribute

Mysharelibrary is the value of the libraryName attribute

Example output:
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#LibraryRef 1)
7. Save the configuration changes.

8. Synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate
the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following
example demonstrates:

AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example
demonstrates:

AdminNodeManagement.syncNode ("myNode")

Setting background applications using scripting

You can enable or disable a background application using scripting and the wsadmin tool.
About this task

Background applications specify whether the application must initialize fully before the server starts. The
default setting is false and this indicates that server startup will not complete until the application starts. If
you set the value to true, the application starts on a background thread and server startup continues
without waiting for the application to start. The application may not ready for use when the application
server starts.

1. |Launch the wsadmin scripting tool using the Jython scripting language.|
2. Locate the application deployment object for the application. For example:
» Using Jacl:
set applicationDeployment [$AdminConfig getid /Deployment:adminconsole/ApplicationDeployment:/]
* Using Jython:
applicationDeployment = AdminConfig.getid('/Deployment:adminconsole/ApplicationDeployment:/")

288 Scripting the application serving environment

where:

set

is a Jacl command

applicationDeployment

is a variable name

$

is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object that represents the WebSphere Application
Server configuration

getid is an AdminConfig command

Deployment is a type

ApplicationDeployment is a type

adminconsole

is the name of the application

3. Enable the background application. For example:

» Using Jacl:

$AdminConfig modify $applicationDeployment "{backgroundApplication true}"

* Using Jython:

AdminConfig.modify(applicationDeployment, ['backgroundApplication', 'true'])

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object that represents the WebSphere Application
Server configuration
modify is an AdminConfig command

applicationDeployment

is a variable name that was set in step 1

backgroundAppTlication

is an attribute

true

is the value of the backgroundApplication attribute

4. Save the configuration changes.
5. Synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate

the configuration changes to node or nodes.

» Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following

example demonstrates:
AdminNodeManagement.syncActiveNodes ()

» Use the syncNode script to propagate the changes to a specific node, as the following example

demonstrates:

AdminNodeManagement.syncNode ("myNode")

Modifying WAR class loader policies for applications using scripting

You can use scripting and the wsadmin tool to modify WAR class loader policies for applications.

Before you begin

About this task

Note: If an application is running, changing an application setting causes the application to restart. On
stand-alone servers, the application restarts after you save the change. On multiple-server

Chapter 5. Managing deployed applications using scripting 289

products, the application restarts after you save the change and files synchronize on the node
where the application is installed. To control when synchronization occurs on multiple-server
products, deselect Synchronize changes with nodes on the Console preferences page.

To modify WAR class loader policies for an application, perform the following steps:

1. |Launch the wsadmin scripting tool using the Jython scripting Ianguage.|

2. Retrieve the configuration ID of the object that you want to modify and set it to the dep variable. For
example:

» Using Jacl:
set dep [$AdminConfig getid /Deployment:MyApp/]
* Using Jython:
dep = AdminConfig.getid("/Deployment:MyApp/")
3. Identify the deployed object and set it to the deployedObiject variable. For example:
» Using Jacl:
set deployedObject [$AdminConfig showAttribute $dep deployedObject]
* Using Jython:
deployedObject = AdminConfig.showAttribute(dep, "deployedObject")
4. Show the current attribute values of the configuration object with the show command, for example:
» Using Jacl:
$AdminConfig show $deployedObject warClasslLoaderPolicy
Example output:
{warClassLoaderPolicy MULTIPLE}
* Using Jython:

AdminConfig.show(deployedObject, 'warClasslLoaderPolicy')
Example output:
'[warClassLoaderPolicy MULTIPLE]'
5. Modify the attributes of the configuration object with the modify command, for example:
* Using Jacl:
$AdminConfig modify $deployedObject {{warClassLoaderPolicy SINGLE}}
* Using Jython:
AdminConfig.modify(deployedObject, [['warClassLoaderPolicy', 'SINGLE']])
6. Save the configuration changes.
7. Verify the changes that you made to the attribute value with the show command, for example:
» Using Jacl:
$AdminConfig show $deployedObject warClassLoaderPolicy
Example output:
{warClassLoaderPolicy SINGLE}
* Using Jython:
AdminConfig.show(deployedObject, 'warClassLoaderPolicy')
Example output:
'[warClassLoaderPolicy SINGLE]'

Modifying class loader modes for applications using scripting

You can modify class loader modes for an application with scripting and the wsadmin tool.

290 Scripting the application serving environment

Before you begin

There are two ways to complete this task. The example in this topic uses the AdminConfig object to create
and configure a shared library. Alternatively, you can use the createSharedLibrary script in the
AdminResources script library to configure shared libraries.

The scripting library provides a set of procedures to automate the most common administration functions.
You can run each script procedure individually, or combine several procedures to quickly develop new
scripts.

About this task

Note: If an application is running, changing an application setting causes the application to restart. On
stand-alone servers, the application restarts after you save the change. On multiple-server
products, the application restarts after you save the change and files synchronize on the node
where the application is installed. To control when synchronization occurs on multiple-server
products, deselect Synchronize changes with nodes on the Console preferences page.

1. |[Launch the wsadmin scripting tool using the Jython scripting language.|

2. Retrieve the configuration ID of the object that you want to modify and set it to the dep variable. For
example:

» Using Jacl:
set dep [$AdminConfig getid /Deployment:ivtApp/]
* Using Jython:
dep = AdminConfig.getid('/Deployment:ivtApp/"')
3. Identify the deployed object and set it to the depObject variable. For example:
» Using Jacl:
set depObject [$AdminConfig showAttribute $dep deployedObject]
* Using Jython:
depObject = AdminConfig.showAttribute(dep, 'deployedObject')
4. Identify the class loader and set it to the classldr variable. For example:
» Using Jacl:
set classldr [$AdminConfig showAttribute $depObject classloader]
* Using Jython:
classldr = AdminConfig.showAttribute(depObject, 'classloader')
5. Show the current attribute values of the configuration object with the showall command, for example:
» Using Jacl:
$AdminConfig showall $classldr
Example output:
{libraries {}} {mode PARENT_FIRST}
* Using Jython:
print AdminConfig.showall(classldr)
Example output:
[Tibraries []] [mode PARENT_FIRST]
6. Modify the attributes of the configuration object with the modify command, for example:
* Using Jacl:
$AdminConfig modify $classldr {{mode PARENT LAST}}
* Using Jython:
AdminConfig.modify(classldr, [['mode', 'PARENT LAST']])
7. Save the configuration changes.

Chapter 5. Managing deployed applications using scripting 291

8. Verify the changes that you made to the attribute value with the showall command, for example:
* Using Jacl:
$AdminConfig showall $classldr
Example output:
{libraries {}} {mode PARENT LAST}
* Using Jython:
AdminConfig.showall(classldr)
Example output:
[Tibraries []] [mode PARENT_LAST]

Modifying the starting weight of applications using scripting

You can use the wsadmin tool and scripting to modify the starting weight of an application.
Before you begin
About this task

Note: If an application is running, changing an application setting causes the application to restart. On
stand-alone servers, the application restarts after you save the change. On multiple-server
products, the application restarts after you save the change and files synchronize on the node
where the application is installed. To control when synchronization occurs on multiple-server
products, deselect Synchronize changes with nodes on the Console preferences page.

To modify the starting weight of an application, perform the following steps:

1. [Launch the wsadmin scripting tool using the Jython scripting language.|

2. Retrieve the configuration ID of the object that you want to modify and set it to the dep variable. For
example:

* Using Jacl:
set dep [$AdminConfig getid /Deployment:MyApp/]
* Using Jython:
dep = AdminConfig.getid("/Deployment:MyApp/")
3. Identify the deployed object and set it to the depObject variable. For example:
* Using Jacl:
set depObject [$AdminConfig showAttribute $dep deployedObject]
* Using Jython:
depObject = AdminConfig.showAttribute(dep, "deployedObject")
4. Show the current attribute values of the configuration object with the show command, for example:
* Using Jacl:
$AdminConfig show $depObject startingWeight
Example output:
{startingWeight 1}
* Using Jython:
AdminConfig.show(depObject, 'startingWeight')
Example output:
[startingWeight 1]
5. Modify the attributes of the configuration object with the modify command, for example:
* Using Jacl:
$AdminConfig modify $depObject {{startingWeight 2}}
* Using Jython:

292 Scripting the application serving environment

AdminConfig.modify(depObject, [['startingWeight', '2']])
6. Verify the changes that you made to the attribute value with the show command, for example:
» Using Jacl:
$AdminConfig show $depObject startingWeight
Example output:
{startingWeight 2}
* Using Jython:
AdminConfig.show(depObject, 'startingWeight')
Example output:
[startingWeight 2]
7. Save the configuration changes.

Configuring name space bindings using the wsadmin tool

Use this topic to configure name space bindings with the Jython or Jacl scripting languages and the
wsadmin tool.

Before you begin

About this task

Use this task and the following examples to configure string, Enterprise JavaBeans (EJB), CORBA, or
indirect name space bindings on a cell.
1. |Launch the wsadmin scripting tool using the Jython scripting language.|
2. Identify the cell and assign it to the cell variable.
Using Jacl:
set cell [$AdminConfig getid /Cell:mycell/]
Example output:
mycell(cells/mycell|cell.xml#Cell_1)
Using Jython:

cell = AdminConfig.getid('/Cell:mycell/")
print cell

You can change this example to configure on a node or server here.
3. Add a new name space binding on the cell. There are four binding types to choose from when
configuring a new name space binding. They are string, EJB, CORBA, and indirect.
» To configure a string type name space binding:
Using Jacl:

$AdminConfig create StringNameSpaceBinding $cell {{name bindingl} {nameInNameSpace
myBindings/myString} {stringToBind "This is the String value that gets bound"}}

Example output:
bindingl(cells/mycell|namebindings.xml#StringNameSpaceBinding_1)
Using Jython:

print AdminConfig.create('StringNameSpaceBinding', cell, [['name', 'bindingl'],
['nameInNameSpace', 'myBindings/myString'], ['stringToBind', "This is the String value that gets bound"]])

» To configure an EJB type name space binding:
Using Jacl:

$AdminConfig create EjbNameSpaceBinding $cell {{name binding2} {nameInNameSpace myBindings/myEJB}
{applicationNodeName mynode} {bindingLocation SINGLESERVER} {applicationServerName serverl}
{ejbdndiName ejb/myEJB}}

Using Jython:

Chapter 5. Managing deployed applications using scripting

293

print AdminConfig.create('EjbNameSpaceBinding', cell, [['name', 'binding2'], ['nameInNameSpace',
'myBindings/myEJB'], ['applicationNodeName', 'mynode'], ['bindinglLocation', 'SINGLESERVER'],
['applicationServerName', 'serverl'], ['ejbJndiName', 'ejb/myEJB']])

This example is for an EJB located in a server. For an EJB in a cluster, change the configuration
example to:
Using Jacl:

$AdminConfig create EjbNameSpaceBinding $cell {{name binding2} {nameInNameSpace myBindings/myEJB}
{bindinglLocation SERVERCLUSTER} {applicationServerName clusterl} {ejbJndiName ejb/myEJB}}

Using Jython:

print AdminConfig.create('EjbNameSpaceBinding', cell, [['name','binding2'],
['nameInNameSpace', 'myBindings/myEJB'], ['bindinglLocation','SERVERCLUSTER'],
['*applicationServerName','clusterl'], ['ejbdndiName','ejb/myEJB']])

Example output:
binding2(cells/mycell|namebindings.xml#EjbNameSpaceBinding_1)
« To configure a CORBA type name space binding:
Using Jacl:

$AdminConfig create CORBAObjectNameSpaceBinding $cell {{name binding3} {nameInNameSpace
myBindings/myCORBA} {corbanameUr1 corbaname:iiop:somehost.somecompany.com:2809#stuff/MyCORBAOjbect}
{federatedContext false}}

Example output:
binding3(cells/mycell|namebindings.xml#CORBAObjectNameSpaceBinding 1)
Using Jython:

print AdminConfig.create('CORBAObjectNameSpaceBinding', cell, [['name', 'binding3'],['nameInNameSpace',
'myBindings/myCORBA'], ['corbanameUrl', 'corbaname:iiop:somehost.somecompany.com:2809#stuff/MyCORBAOjbect'],
['federatedContext', 'false']])

» To configure an indirect type name space binding:
Using Jacl:

$AdminConfig create IndirectLookupNameSpaceBinding $cell
{{name binding4} {nameInNameSpace myBindings/myIndirect} {providerURL
corbaloc: :myCompany.com:9809/NameServiceServerRoot} {jndiName jndi/name/for/EJB}}

Example output:
binding4(ce11s/myce11|nameb1ndings.xm]#Ind1rectLookupNameSpaceBinding_l)
Using Jython:

print AdminConfig.create('IndirectLookupNameSpaceBinding', cell, [['name', 'binding4'],
['nameInNameSpace', 'myBindings/myIndirect'], ['providerURL', 'corbaloc::myCompany.com:9809/NameServiceServerRoot'],
[*jndiName', 'jndi/name/for/EJB']])

4. Save the configuration changes.

WSScheduleCommands command group of the AdminTask object

You can use the Jython or Jacl scripting languages to manage deployed applications with the wsadmin
tool. The commands and parameters in the WSScheduleCommands group can be used to create and

manage scheduler settings in your configuration. Schedulers enable J2EE application tasks to run at a
requested time.

The WSScheduleCommands command group for the AdminTask object includes the following commands:
+ [“deleteWSSchedule” on page 295|

+ [‘getWSSchedule” on page 295|

+ [“listWSSchedules” on page 295|

+ [‘modifyWSSchedule” on page 295|

294 scripting the application serving environment

deleteWSSchedule
The deleteWSSchedule command deletes the settings of a scheduler from the configuration.

Parameters and return values

-name
The name that uniquely identifies the scheduler. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:

getWSSchedule

The getWSSchedule command returns the settings of the specified scheduler.

Parameters and return values

-name
The name that uniquely identifies the scheduler. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:
listWSSchedules

The listWSSchedules command lists the scheduler.

Parameters and return values

-displayObjectNames
Set the value of this parameter to true to list the key set configuration objects within the scope. Set
the value of this parameter to false to list the strings that contain the key set group name and
management scope. (Boolean, optional)

Examples

Batch mode example usage:

Interactive mode example usage:
modifyWSSchedule
The modifyWSSchedule command changes the settings of an existing scheduler.

Parameters and return values

-name
The name that uniquely identifies the scheduler. (String, required)

-frequency
The period of time in days to wait before checking for expired certificates. (Integer, optional)

Chapter 5. Managing deployed applications using scripting 295

-dayOfWeek
The day of the week to check for expired certificates. (Integer, optional)

-hour
The hour of the day to check for expired certificates. (Integer, optional)

-minute
The minute to check for expired certificates. Use this parameter with the hour parameter. (Integer,
optional)

-nextStartDate
The next time, in seconds, to check for expired certificate. (Long, optional)

Examples
Batch mode example usage:

Interactive mode example usage:
Related tasks

[‘Using the AdminTask object for scripted administration” on page 59|
Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Related reference

[‘Commands for the AdminTask object” on page 1324]
Use the AdminTask object to run administrative commands with the wsadmin tool.

WSNotifierCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure deployed applications with the wsadmin
tool. The commands and parameters in the WSNotifierCommands group can be used to create and
manage notifications settings. WS-Notification enables Web services to use the "publish and subscribe”
messaging pattern, creating a one-to-many message distribution pattern.

The WSNotifierCommands command group for the AdminTask object includes the following commands:
« [‘deleteWSNotifier’|

« [‘getWSNotifier’ on page 297|

« [listWSNotifier’ on page 297

* [“modifyWSNotifier’ on page 297

deleteWSNotifier

The deleteWSNotifier command deletes the settings of a notification configuration.

Parameters and return values

-name
The name that uniquely identifies the notification configuration. (String, required)

Examples
Batch mode example usage:

Interactive mode example usage:

296 Scripting the application serving environment

getWSNotifier
The getWSNotifier command displays the settings of a particular notification configuration.

Parameters and return values

-name
The name that uniquely identifies the notification configuration. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:

listWSNotifier

The listWSNotifier command lists the notifier from the configuration.

Parameters and return values

-displayObjectNames
If you set the value of this parameter to true, this command returns all notification configuration objects
within the scope. If you set the value of this parameter to false, this command returns a list of strings
that contain the key set group name and the management scope. (Boolean, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

modifyWSNotifier

The modifyWSNotifier command changes the settings of an existing notification configuration.

Parameters and return values

-name
The name that uniquely identifies the notification configuration. (String, required)

-logToSystemOut
Set the value of this parameter to true if you want the certificate expiration information to log to system
out. If not, set the value of this parameter to false. (Boolean, optional)

-sendEmail
Set the value of this parameter to true if you want to e-mail the certificate expiration information. If not,
set the value of this parameter to false. (Boolean, optional)

-emailList
The list of e-mail addresses where you want to send certificate expiration information. Separate the
values in the list with colons (:). (String, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

Chapter 5. Managing deployed applications using scripting 297

Related tasks

[‘Using the AdminTask object for scripted administration” on page 59|
Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Related reference

[‘Commands for the AdminTask object” on page 1324
Use the AdminTask object to run administrative commands with the wsadmin tool.

CoreGroupManagement command group for the AdminTask object

You can use the Jython or Jacl scripting languages to manage deployed applications. The commands and
parameters in the CoreGroupManagement group can be used to create and manage core groups. A core
group is a high availability domain that consists of a set of processes in the same cell that can directly
establish high availability relationships. A cell must contain at least one core group.

The CoreGroupManagement command group for the AdminTask object includes the following commands:
+ [‘createCoreGroup’|

[‘deleteCoreGroup” on page 299|

[‘doesCoreGroupExist” on page 299

[‘getAllCoreGroupNames” on page 300|

[‘getCoreGroupNameForServer’ on page 300|

[‘getDefaultCoreGroupName” on page 301

+ [‘moveClusterToCoreGroup” on page 302|

+ [‘moveServerToCoreGroup” on page 302

createCoreGroup

The createCoreGroup command creates a new core group. The core group that you create contains no
members.

Target object
None

Parameters and return values

-coreGroupName
The name of the core group that you are creating. (String required)

Examples

Batch mode example usage:
* Using Jacl:
$AdminTask createCoreGroup {-coreGroupName MyCoreGroup} AdminConfig.save()
Optionally, you can use the following sample script to add a description for the new core group:

set core [$AdminConfig getid /Cell:myCell/CoreGroup:MyCoreGroup/] $AdminConfig
modify $core {{description "My Description"}} $AdminConfig save

* Using Jython string:
AdminTask.createCoreGroup (' [-coreGroupName MyCoreGroup]')
Optionally, you can use the following sample script to add a description for the new core group:

core = AdminConfig.getid('/Cel1:myCell/CoreGroup:MyCoreGroup/")
AdminConfig.modify(core, [['description', "This is my new description"]]) AdminConfig.save()

298 Scripting the application serving environment

Interactive mode example usage:
* Using Jacl:

$AdminTask createCoreGroup {-interactive}

* Using Jython string:

AdminTask.createCoreGroup ('[-interactive]')
deleteCoreGroup

The delete Core Group command deletes an existing core group. The core group that you specify must
not contain any members. You cannot delete the default core group.

Target object
None

Parameters and return values

-coreGroupName
The name of the existing core group that will be deleted. (String required)

Examples

Batch mode example usage:

» Using Jacl:

$AdminTask deleteCoreGroup {-coreGroupName MyCoreGroup}

* Using Jython string:

AdminTask.deleteCoreGroup ('[-coreGroupName MyCoreGroup]')
» Using Jython list:

AdminTask.deleteCoreGroup (['-coreGroupName', 'MyCoreGroup'])

Interactive mode example usage:
» Using Jacl:

$AdminTask deleteCoreGroup {-interactive}

* Using Jython string:
AdminTask.deleteCoreGroup ('[-interactive]')

* Using Jython list:

AdminTask.deleteCoreGroup ('[-interactive]')
doesCoreGroupExist

The doesCore Group Exist command returns a boolean value that indicates if the core group that you
specify exists.

Target object
None

Parameters and return values

-coreGroupName
The name of the core group. (String, required)

Examples

Batch mode example usage:

Chapter 5. Managing deployed applications using scripting 299

» Using Jacl:

$AdminTask doesCoreGroupExist {-coreGroupName MyCoreGroup}

* Using Jython string:

AdminTask.doesCoreGroupExist ('[-coreGroupName MyCoreGroup]')
* Using Jython list:

AdminTask.doesCoreGroupExist (['-coreGroupName', 'MyCoreGroup'l)

Interactive mode example usage:
» Using Jacl:

$AdminTask doesCoreGroupExist {-interactive}

* Using Jython string:
AdminTask.doesCoreGroupExist ('[-interactive]')
* Using Jython list:

AdminTask.doesCoreGroupExist (['-interactive'])
getAllCoreGroupNames

The getAll CoreGroup Names command returns a string that contains the names of all of the existing
core groups

Target object
None

Parameters and return values
e Parameters: None
* Returns: String array (String[1)

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask getAl1CoreGroupNames

* Using Jython string:
AdminTask.getAl1CoreGroupNames ()

* Using Jython list:

AdminTask.getAl1CoreGroupNames ()

Interactive mode example usage:
» Using Jacl:

$AdminTask getAl1CoreGroupNames {-interactive}

* Using Jython string:
AdminTask.getA11CoreGroupNames ('[-interactive]')
* Using Jython list:

AdminTask.getAl1CoreGroupNames (['-interactive'])
getCoreGroupNameForServer

The getCore GroupName ForServer command returns the name of the core group in which the server
that you specify is currently a member.

Target object

300 scripting the application serving environment

None

Parameters and return values

-nodeName

The name of the node that contains the server. (String, required)

-serverName

The name of the server. (String, required)

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask getCoreGroupNameForServer {-nodeName myNode -serverName myServer}

» Using Jython string:

AdminTask.getCoreGroupNameForServer ('[-nodeName myNode -server Name

myServer] ")

* Using Jython list:

AdminTask.getCoreGroupNameForServer (['-nodeName', 'myNode', '-serverName',

‘myServer'])

Interactive mode example usage:
» Using Jacl:

$AdminTask getCoreGroupName ForServer {-interactive}

* Using Jython string:

AdminTask.getCoreGroupName ForServer ('[-interactive]')

* Using Jython list:

AdminTask.getCoreGroupName ForServer (['-interactive'])

getDefaultCoreGroupName

The getDefault CoreGroup Name command returns the name of the default core group.

Target object
None

Parameters and return values
* Parameters: None
* Returns: String

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask getDefaultCoreGroupName

* Using Jython string:
AdminTask.getDefaultCoreGroupName ()

* Using Jython list:

AdminTask.getDefaultCoreGroupName ()

Interactive mode example usage:
» Using Jacl:

$AdminTask getDefaultCoreGroupName {-interactive}

Chapter 5. Managing deployed applications using scripting

301

* Using Jython string:
AdminTask.getDefaultCoreGroupName ('[-interactive]')
* Using Jython list:

AdminTask.getDefaultCoreGroupName (['-interactive'])
moveClusterToCoreGroup

The moveCluster ToCore Group command moves all of the servers in a cluster that you specify from a
core group to another core group. All of the servers in a cluster must be members of the same core group.

Target object
None

Parameters and return values

-source
The name of the core group that contains the cluster that you want to move. The core group must
exist prior to running this command. The cluster that you specify must be a member of this core group.
(String, required)

-target
The name of the core group where you want to move the cluster. (String, required)

-clusterName
The name of the cluster that you want to move. (String, required)

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask moveClusterToCoreGroup {-source OldCoreGroup -target NewCoreGroup
-clusterName ClusterOne}

* Using Jython string:

AdminTask.moveClusterToCoreGroup ('[-source OldCoreGroup -target NewCoreGroup
-clusterName ClusterOne]')

* Using Jython list:

AdminTask.moveClusterToCoreGroup (['-source', 'OldCoreGroup', '-target',
'NewCoreGroup', '-clusterName', 'ClusterOne'])

Interactive mode example usage:

» Using Jacl:

$AdminTask moveClusterToCoreGroup {-interactive}

* Using Jython string:

AdminTask.moveClusterToCoreGroup ('[-interactive]')

* Using Jython list:

AdminTask.moveClusterToCoreGroup (['-interactive'])

moveServerToCoreGroup

The moveServer ToCore Group command moves a server to a core group that you specify. When the
server is added to the core group that you specify, it is removed from the core group where it originally
resided.

Target object

None

302 Scripting the application serving environment

Parameters and return values

-source
The name of the core group that contains the server that you want to move. The core group must
already exist with the server that you specify being a member of the core group. (String, required)

-target
The name of the core group where you want to move the server. The core group that you specify must
exist prior to running the command. (String, required)

-nodeName
The name of the node that contains the server that you want to move. (String, required)

-serverName
The name of the server that you want to move. (String, required)

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask moveServerToCoreGroup {-source OldCoreGroup -target NewCoreGroup
-nodeName myNode -serverName myServer}

» Using Jython string:

AdminTask.moveServerToCoreGroup ('[-source OldCoreGroup -target NewCoreGroup
-nodeName myNode -server Name myServer]')

* Using Jython list:

AdminTask.moveServerToCore Group(['-source', 'OldCore Group', '-target',
'NewCoreGroup', '-node Name', 'myNode', '-serverName', 'myServer'])

Interactive mode example usage:

» Using Jacl:

$AdminTask moveServerTo CoreGroup {-interactive}

* Using Jython string:
AdminTask.moveServerTo CoreGroup ('[-interactive]')
* Using Jython list:

AdminTask.moveServerTo CoreGroup (['-interactive'])

Related tasks

|“Using the AdminTask object for scripted administration” on page 59|
Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Related reference

[‘Commands for the AdminTask object” on page 1324
Use the AdminTask object to run administrative commands with the wsadmin tool.

CoreGroupBridgeManagement command group for the AdminTask
object

You can use the Jython or Jacl scripting languages to manage deployed applications using scripting. The
commands and parameters in the CoreGroupBridgeManagement group can be used to create and
manage core group access points, TCP inbound channel port, and bridge interfaces. A bridge interface
specifies a particular node and server that runs the core group bridge service.

The CoreGroupBridgeManagement command group for the AdminTask object includes the following
commands:

+ [‘createCoreGroupAccessPoint” on page 304
+ [“deleteCoreGroupAccessPoints” on page 304|

Chapter 5. Managing deployed applications using scripting 303

[‘exportTunnelTemplate” on page 305
[‘getNamed TCPENndPoint” on page 305

* [“importTunnelTemplate” on page 306

* [“listCoreGroups” on page 307|

« [istEligibleBridgelnterfaces” on page 307|

createCoreGroupAccessPoint

The createCoreGroupAccessPoint command creates a default core group access point for the core group
that you specify and adds it to the default access point group. If the default access point group does not
exist, the command creates a default access point group.

Target object

Core group bridge settings object for the cell. (ObjectName, required).

Required parameters

-coreGroupName
The name of the core group for which the core group access point will be created. (String, required)

Optional parameters

None

Examples

Batch mode example usage:

Interactive mode example usage:

» Using Jacl:

$AdminTask createCoreGroupAccessPoint {-interactive}
* Using Jython:

AdminTask.createCoreGroupAccessPoint('-interactive')
deleteCoreGroupAccessPoints

The deleteCoreGroupAccessPoints command deletes all the core group access points that are associated
with a group that you specify.

Target object
Core group bridge settings object for the cell. (ObjectName, required)

Required parameters

-coreGroupName
The name of the core group whose core group access points will be deleted. (String, required)

Optional parameters
None

Examples

304 Scripting the application serving environment

Batch mode example usage:
* Using Jacl:

$AdminTask deleteCoreGroupAccessPoints (ce]1s/roh1tbu11dCe1101|coregroupbr1dge.xm1#
CoreGroupBridgeSettings_1) "-coreGroupName DefaultCoreGroup"

* Using Jython string:

AdminTask.deleteCoreGroupAccessPoints('cells/rohitbuildCell01|coregroupbridge.xml#CoreGroupBridgeSettings 1',
' [-coreGroupName DefaultCoreGroup]')

* Using Jython list:

AdminTask.deleteCoreGroupAccessPoints(' (cells/ rohitbui]dCe]101|coregroupbr1dge.xm1#
CoreGroupBridgeSettings_1)', ['-coreGroupName', 'DefaultCoreGroup'])

Interactive mode example usage:

» Using Jacl:

$AdminTask deleteCoreGroupAccessPoints {-interactive}

» Using Jython:

AdminTask.deleteCoreGroupAccessPoints('-interactive')
exportTunnelTemplate

The exportTunnelTemplate command exports a tunnel template and its associated children to a simple
properties file.

Target object
None

Required parameters

-tunnelTemplateName
Specifies the name of the tunnel template to export. (String, required)

-outputFileName
Specifies the name of the properties file to create. (String, required)

Optional parameters
None
Examples

Batch mode example usage:

* Using Jython string:

AdminTask.exportTunnelTemplate('[-tunnelTemplateName tunnelTemplatel -outputFileName tunnelTemplatel.props]')

* Using Jython list:

AdminTask.exportTunnelTemplate(['-tunnelTemplateName', 'tunnelTemplatel', '-outputFileName',
"tunnelTemplatel.props'])

Interactive mode example usage:

» Using Jython:

AdminTask.exportTunnelTemplate('-interactive')
getNamedTCPEndPoint

The getNamedTCPENdPoint command returns the port associated with the bridge interface that you
specify. The port that is returned is the one that is specified on the TCP inbound channel of the transport
channel chain for bridge interface that you specify.

Chapter 5. Managing deployed applications using scripting 305

Target object

The bridge interface object for which the port will be listed. (ObjectName, required)
Required parameters

None

Optional parameters

None

Examples

Batch mode example usage:

» Using Jacl:

$AdminTask getNamedTCPEndPoint (cells/rohitbuildCell@l|coregroupbridge.xml#Bridgelnterface 2)
» Using Jython string:

AdminTask.getNamedTCPEndPoint ('cells/rohitbuildCellOl|coregroupbridge.xml#BridgeInterface 2")
* Using Jython list:

AdminTask.getNamedTCPEndPoint ('cells/rohitbuildCellOl|coregroupbridge.xml#BridgeInterface 2")

Interactive mode example usage:

» Using Jacl:

$AdminTask getNamedTCPEndPoint {-interactive}
» Using Jython string:
AdminTask.getNamedTCPEndPoint('-interactive')

importTunnelTemplate

The importTunnelTemplate command imports a tunnel template and its children to the cell configuration.
Target object

None

Required parameters

-inputFileName
Specifies the name of the tunnel template file to import. (String, required)

-bridegelnterfaceNodeName
Specifies the name of the secure proxy node to use for the core group bridge interface. (String,
required)

-bridegelnterfaceServerName
Specifies the name of the secure proxy server to use for the core bridge interface. (String, required)

Optional parameters
None
Examples

Batch mode example usage:
* Using Jython string:

306 Scripting the application serving environment

AdminTask.importTunnelTemplate('[-inputFileName tunnelTemplatel.props
-bridegeInterfaceNodeName secureProxyNode -bridegeInterfaceServerName mySecureProxyServer]')

* Using Jython list:
AdminTask.importTunnelTemplate(['-inputFileName', 'tunnelTemplatel.props',
'-bridegeInterfaceNodeName', 'secureProxyNode', '-bridegeInterfaceServerName', 'mySecureProxyServer'])
Interactive mode example usage:
* Using Jython:

AdminTask.importTunnelTemplate('-interactive')
listCoreGroups

The listCoreGroups command returns a collection of core groups that are related to the core group that
you specify.

Target object
The name of the core group for which the related core groups will be listed. (String, required)

Required parameters

-cgBridgeSettings
The group bridge settings object for the cell. (ObjectName, required)

Optional parameters
None
Examples

Batch mode example usage:
» Using Jacl:

$AdminTask listCoreGroups DefaultCoreGroup "-cgBridgeSettings
(cells/rohitbuildCell0l|coregroupbridge.xml# CoreGroupBridgeSettings I1)"

* Using Jython string:

AdminTask.1istCoreGroups ('DefaultCoreGroup', '[-cgBridgeSetting (cells/
rohitbuildCe1101|coregroupbridge.xml#CoreGroupBridgeSettings 1)]"')

* Using Jython list:

AdminTask.1istCoreGroups('DefaultCoreGroup', ['-cgBridgeSetting', '(cells/
rohitbuildCe1101|coregroupbridge.xml#CoreGroupBridgeSettings_1)'])

Interactive mode example usage:

» Using Jacl:

$AdminTask 1istCoreGroups {-interactive}

* Using Jython:

AdminTask.1listCoreGroups('-interactive')
listEligibleBridgelnterfaces

The listEligibleBridgelnterfaces command returns a collection of node, server, and transport channel chain
combinations that are eligible to become bridge interfaces for the specified core group access point.

Target object

The core group access point object for which bridge interfaces will be listed. (ObjectName, required)

Chapter 5. Managing deployed applications using scripting 307

Required parameters
None

Optional parameters
None

Example output

A set of bridge interfaces. (Set of String) Each bridge interface is represented by a combination of a node,
a server and a DCS channel chain: <node name>, <server name>, <DCS Channel Chain objectName. For
example, an element of the set returned by this command may look like the following: rohitbuild dmgr
DCS-Secure(cells/rohitbuildCel1/nodes/rohitbuild/servers/dmgr|server.xml#Chain_4)

Examples

Batch mode example usage:
» Using Jacl:

$AdminTask 1istEligibleBridgeInterfaces
CGAP_DCG_2(cells/rohitbuildCell0l|coregroupbridge.xml#CoreGroupAccessPoint_1089636614062)

* Using Jython string:

AdminTask.1istEligibleBridgeInterfaces('CGAP_DCG 2(cells/rohitbuildCellOI|coregroupbridge.xml#
CoreGroupAccessPoint_1089636614062) ")

Interactive mode example usage:

* Using Jacl:

$AdminTask listEligibleBridgeInterfaces {-interactive}
* Using Jython:
AdminTask.listEligibleBridgeInterfaces('-interactive')
Related tasks

[‘Using the AdminTask object for scripted administration” on page 59|
Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Related reference

[‘Commands for the AdminTask object” on page 1324
Use the AdminTask object to run administrative commands with the wsadmin tool.

CoreGroupPolicyManagement command group for the AdminTask
object

You can use the Jython scripting language to configure and administer policies for high availability groups
with the wsadmin tool. Use the commands and parameters in the CoreGroupPolicyManagement group to
create, delete, and modify policies.

Use the following commands to define policies for high availability groups. Policies are defined at the core
group level and apply only to matching high availability groups associated with the core group of interest.

+ [createAllActivePolicy]
[createMOfNPolicy|
[createNoOpPolicy]
[createOneOfNPolicy|
+ [createStaticPolicy|

308 scripting the application serving environment

* |deletePolic
* |modifyPolic

createAllActivePolicy

The createAllActivePolicy command creates a high availability group policy that keeps each of the
application components running on each server in the high availability group at all times.

Target object
None.

Required parameters

-coreGroupName
Specifies the name of the core group to associate with the new policy. (String, required)

-policyName
Specifies the name of the policy. (String, required)
Use the following guidelines to specify the policyName parameter:
» Specify valid characters, including numbers, letters, underscores, and spaces.
» Begin the policy name with a number or a letter.
* End the policy name with a number, letter, or underscore.
-matchCriteria
Specifies one or more name and value pairs that the system uses to associate this policy with a high
availability group. These pairs must match attributes that are contained in the name of a high
availability group before this policy is associated with that group. (java.util.Properties, required)
Use the following guidelines to specify the matchCriteria parameter:
* Do not begin the match criteria with the underscore or period characters.
« Do not use the following characters: \/,#$8:;"*?<>|=+8%
* You must specify a value. This parameter can not be null or empty.

Optional parameters

-isAlive
Specifies, in seconds, the interval of time at which the high availability manager checks the health of
the active group members that are governed by this policy. If a group member has failed, the server
on which the group member resides is restarted. (Integer, optional)

-description
Specifies a description for the core group policy. (String, optional)

-customProperties
Specifies additional custom properties for the core group policy. (java.util.Properties, optional)

-quorum
Specifies whether quorum checking is enabled for a group governed by this policy. Quorum is a
mechanism that can be used to protect resources that are shared across members of the group in the
event of a failure. Quorum is an advanced hardware function and should not be enabled unless you
thoroughly understand how to properly use this function. If not used properly, this function can cause
data corruption. (Boolean, optional)

Return value

The command does not return output.

Chapter 5. Managing deployed applications using scripting 309

Batch mode example usage
* Using Jython string:

AdminTask.createAl1ActivePolicy('-coreGroupName myCoreGroup -policyName myPolicy
-matchCriteria "[[type WSAF_SIB][WSAF_SIB_BUS MyBus]]"')

» Using Jython list:

AdminTask.createAl1ActivePolicy('-coreGroupName', ‘'myCoreGroup', '-policyName',
'myPolicy', '-matchCriteria', '"[[type WSAF_SIB][WSAF_SIB BUS MyBus]]"')

Interactive mode example usage
* Using Jython:

AdminTask.createAl1ActivePolicy('-interactive')
createMOfNPolicy

The createMOfNPolicy command creates a high availability group policy that allows you to specify the
number (M) of high availability group members to keep active if it is possible to do so. The number of
active members must be greater than one and less than or equal to the number of servers in the high
availability group.

Target object
None.

Required parameters

-coreGroupName
Specifies the name of the core group to associate with the new policy. (String, required)

-policyName
Specifies the name of the policy. (String, required)

-matchCriteria
Specifies one or more name and value pairs that the system uses to associate this policy with a high
availability group. These pairs must match attributes that are contained in the name of a high
availability group before this policy is associated with that group. (java.util.Properties, required)

Optional parameters

-isAlive
Specifies, in seconds, the interval of time at which the high availability manager checks the health of
the active group members that are governed by this policy. If a group member has failed, the server
on which the group member resides is restarted. (Integer, optional)

-quorum
Specifies whether quorum checking is enabled for a group governed by this policy. Quorum is a
mechanism that can be used to protect resources that are shared across members of the group in the
event of a failure. Quorum is an advanced hardware function and should not be enabled unless you
thoroughly understand how to properly use this function. If not used properly, this function can cause
data corruption. (Boolean, optional)

-description
Specifies a description for the core group policy. (String, optional)

-customProperties
Specifies additional custom properties for the core group policy. (java.util.Properties, optional)

-failBack
Specifies whether work items assigned to the failing server are moved to the server that is designated
as the most preferred server for the group if a failure occurs. This field only applies for M of N and
One of N policies. (Boolean, optional)

310 Scripting the application serving environment

-preferredOnly
Specifies whether group members are only activated on servers that are on the list of preferred
servers for this group. This field only applies for M of N and One of N policies. (Boolean, optional)

-serversList
Specifies the members to prefer when activating a group member. The members must be part of the
core group for which the policy applies. Specify the value of the serverList parameter in the format of
node/server. (String[], optional)

-numActive
Specifies the number of the high availability group members to activate. This field only applies for the
M of N policy. (Integer, optional)

Return value
The command does not return output.

Batch mode example usage
* Using Jython string:

AdminTask.createMOfNPolicy('-coreGroupName myCoreGroup -policyName myPolicy
-matchCriteria "[[type WSAF_SIB][WSAF _SIB BUS MyBus]]"')

* Using Jython list:

AdminTask.createMOfNPolicy('-coreGroupName', 'myCoreGroup', '-policyName',
'myPolicy', '-matchCriteria', '"[[type WSAF_SIB][WSAF_SIB BUS MyBus]]"')

Interactive mode example usage

* Using Jython:

AdminTask.createMOfNPolicy('-interactive')
createNoOpPolicy

The createNoOpPolicy command creates a high availability group policy that indicates that no high
availability group members are made active.

Target object
None.

Required parameters

-coreGroupName
Specifies the name of the core group to associate with the new policy. (String, required)

-policyName
Specifies the name of the policy. (String, required)

-matchCriteria
Specifies one or more name and value pairs that the system uses to associate this policy with a high
availability group. These pairs must match attributes that are contained in the name of a high
availability group before this policy is associated with that group. (java.util.Properties, required)

Optional parameters

-isAlive
Specifies, in seconds, the interval of time at which the high availability manager checks the health of
the active group members that are governed by this policy. If a group member has failed, the server
on which the group member resides is restarted. (Integer, optional)

Chapter 5. Managing deplo